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1. INTRCDUCTION

We report here on the progress made in our work on the thermal
properties of fluids whose molecules interact via two-tody
non-spherical potentials.

To avoid unnecessary repetition we refer the reader to our 1983

[1]

annual report and concentrate here on the new developments that

took place this current year.

During the present period we directed our efforts to extending
the sphericalization procedure of the median potentia1[2] to
calculate the thermodynamics of fluid mixtures of rigid diatomic
molecules.

Our approach in considering this type of fluid mixtures was to
obtain an equivalent single component spherical potential. In order
to do that we explored and generalized the van der Waals one fluid
{vdWlf) mixing rules, originally introduced to treat atomic
mixtures interacting via conformal potentials. We describe this
subject in Section 2. The mixing rules were used in conjunction with
the modification of the median procedure that MacGowan developed for
Lennard-Jones (LJ) homonuclear diatomic f]uids,[4] which he calls
MED (12,6).[5] In Section 3 we give an account of this "mixing
rules plus medianization" procedure as applied to mixtures of diatomic
homonuclear LJ molecules, for which computer simulations were

available for comparison. In Section 4 we offer our conclusions.
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2. VAN DER WAALS ONE-FLUID MIXING RULES AND GENERALIZATIONS

The vdWlf model is a procedure that uses a simplified potential
to represent the mixture interatomic potentials. It was derived to be
applied to the case of conformal interatomic potentials, i.e.,

where ¢ is a universal function (for example 4[&'12 - 5'6] for LJ

atoms) and €i3 and bij define the well depth and the separation at
the minimum of ¢ij respectively for the interaction between species
i and j.

The prescription of the vdWlf approximation consists of defining

an equivalent single component fluid of potential

bx(r) =€, ¢(r/bx) (2)

where the x explicitly indicates the dependence on mixture composition,

and €y and bx are given by

3 3
bx = }E:xi X; bij (3)

3 3
sxbx =in XJ. Eij b‘ij (4)

where X; are the fractional concentration of the components. This

equivalent potential is then used to calculate the thermodynamic of

L @ the mixture. The results one obtains are very good if the spread of
3 values of the eij's and bij's is not too large. Indeed the vdWlf
¥ theory does much better than much more elaborate techniques.[ﬁ]

o In the case of molecular mixtures of non-spherical rigid

molecules our goal is to jointly utilize mixing rules of the sort of

vy v v,

the vdWlf theory and the sphericalization procedure given by the
median and its extension. The objective is then to obtain a single
 J spherical "medianized" concentration dependent potential representing,

Ty
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for the purpose of calculating the thermodynamics, the mixture., This

has certainly been our motivation in considering the mixing rules that
are the object of this description.

For the particular case of binary mixtures of diatomic
homonuclear LJ molecules described in Reference 1, one needs eight
parameters to describe the 1-1, 1-2 and 2-2 interactions; they are
€55 7 £3i7 bij = bji’ and 1i’ i = 1,2, which define entirely
the LJ site-site (atom-atom) potentials of the two species.

One has at least two ways to proceed, either: (i) "to
medianize" the 1-1, 1-2 and 2-2 potentials using the MED (12,6) and
then to construct mixing rules for the three resulting sphericalized
potentials; or (ii) to define mixing rules to obtain €y bx and
]x which define a single component diatomic homonuclear LJ molecular

fluid and the "medianize" it using MED (12,6).

Clearly, the results one would obtain by using (i) or (ii) will
not be the same. The advantage of procedure (i) is that, at least in
principle, one could extend this type of reasoning to treat mixtures
of molecules other than homonuclear diatomics. That one can do
provided one has a well defined medianization technique for such
potentials. One should bear in mind that this is not an obvious task
when the molecules do not possess a center of symmetry, and it has
only been done for diatomic non-homonuclear hard dumbells.

Even in the simple case of homonuclear diatomics LJ mixture we
are describing, in which the site-site potentials are conformal, the
resul ting medianized ones are not of the same shape. Therefore, one
must deal in general with non-conformal spherical potentials, i.e.,

where €4 and bij have the same meaning as before as o5 is a set of
parameters introduced to characterize the difference 7n shapes of the

¢1j's.
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6
! (exp-6) potential where there is only a single parameter a5 for
each dij and

An important realization of Eq. (5) is the exponential

NPUUEN, T IR

o(g,a) = 6 explall-g) - ac 01/(a-6).

i (8]

Ree has recently found that for mixtures of exp-6 atoms - he
modeled an He-H2 mixture at high temperatures and densities -, the

i

mixing rules of Eqs. (3) and (4) and the following extra mixing rule
for ay is very successful: ) a

3 3
axexby = 20 %i X5 945 €45 DY (6)

With MacGowan and Lebowitz we researched the possibility of
! making the formulation of mixing rules more systematic. We found that | é
for the case of conformal atomic LJ potentials we were able to clarify ]
how the rules of Eqs. (3) and (4) come atout by use of approximate
scaling arguments on the radial distribution functions 95 5 in the
: compressibility, energy and virial equations. For the case of exp-6
potentials by expanding to second order the potential around its
minimum in a Taylor series and employing again approximate scaling
arguments on the gij's, we show how one can generate various

- I

) alternative mixing rules for e b, and a,. Orne such set
produces thermodynamic results of accuracy equivalent to that of Ree's
work. The details of this work are contained in Appendix A, which is
a preprint of an article submitted and accepted for publication in

' Chemical Physics Letters.

This is the present status on this approach. Up to now to have

not applied this procedure (i) to molecular mixtures. Before leaving

0 this section we remark that our work on mixing rules for non-conformal
spherical potentials is a contribution in its own right for such fluid

.";J! PSPy '.4"m-‘l.4l._‘ m "

mixtures (as in the case of the exp-6), and not just an intermediate
step in "procedure (i)" for molecular mixtures. We explain procedure
" (ii) next.

A x'LA‘L.'-' Lyl




3. A ONE MOLECULAR FLUID APPROXIMATICN FOR DIATOMIC FLUID MIXTURES

We considered a C02-C2H6 mixture, treated as rigid

homonuclear diatomic LJ molecules, for which computer simulations were
avai1ab1e.[9] Because it happens in this case that the bond lengths
are very similar, 11 X 12 *2.36 ﬁ, it occurred to us to apply
procedure (ii) as defined in Section 2. That is: We first find €y
bx abd 1x which define a single component equivalent homonuclear
diatomic LJ fluid and then apply to it MED (12,6). For €y and bx

we used the mixing rules of Egs. (3) and (4). For 1 any reasonatle

rule would give essentially identical results, we chose

1x=2xi ]i (7)

The MED (12,6) ¢x(r) potential was utilized then in Ross's

(10] for obtaining the free energy and from it

variational procedure
the pressure and internal energies of the mixture. The results
compare favorably with those of the computer simulations, which is
remarkable considering the calculational simplicity of our
formulation. (It takes 1 second of CPU time of a DEC20 computer per

thermodynamic o,T point.)

We also applied this technique to equimolar binary mixtures of
rigid homonuclear diatomic mixtures, of molecules denoted as N.N, N-N
and N--N by the researchers that did molecular dynamics calculations
employing them.[11] They all have €i5 = N, bij = bN ,
i,j = 1,2, where N and bN are the parame%ers used t
represent N2. In tﬁis nomeﬁc]ature N-N is identical to N2 and has
an elongation 1/0 of 0.3292 while N.N and N--N have half and twice
that elongation, respectively. Here o is the point at which the LJ
potential crosses the axis and is related to b by b = 21/G c. The

mixing rules for ¢_ and bx obviously give €N and bN

X
while for this equimolar mixtures Eq. (6) giées the grithmetic mean of
11 and 12. The sparcity, and some errors we believe to exist in

the reported data by the authors of Reference 11, do not permit us to

draw definite conclusions in this case.
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We also developed an alternative mixing rule to that of Eq. (6)
using the systematic approach described in Appendix A for atomic
systems, and in Appendix B for the system under consideration. By
employing arguments of approximate scaling for the gij's in the
virial equation for these diatomic mixtures we obtained

3 3
PR = 2% X €55 Pij *ij (8)
where Aij = (1i+1j)/2b1j'

In the cases reported in this section the values of ]x
ottained with Eq. (8) are either identical or almost identical to that
of Eq. (6). To text the mixing rule of Eq. (&) one needs to compare
its results with computer simulations with 1, # 12 and x; # X,
which are not presently available.

We include in Appendix B a detailed account of the work
described in this section, which is a preprint of a paper with
Lebowitz and MacGowan scheduled for publication in the December 15,
1984 issue of Journal of Chemical Physics.
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4. CONCLUSICNS

Very significant progress has been made in extending the idea of
the median potential to obtain the fluid thermodynamic property
mixtures of rigid diatomic homonculear molecules. Also we have made a
contritution in clarifying and generalizing mixing rules for atomic
and molecular mixtures.

We expect to be able to continue to make significant advances in
treating mixtures of diatomic and monoatomic species as well as
mixtures containing other simply shaped rigid symmetrical molecules,
such as those of tetrahedral structure.

' - ! . 1
_.-i.u'- ; A!Lg‘. A!‘Ll" st

e a9




vvvvvvv — — s Sl S T Rt A o i BMAn e ~R e e J /e e Ul SR A A el el A e Gl Sl At el Sl e S

5. REFERENCES

1. Waisman, E. M,, "Equation of State and Two-Body Correlations for
Fluids of Non-Spherical Molecules," S-CUBED Annual Report,
SSS-R-84-6456, December 1983.

2. Lebowitz, J. L. and J. K. Percus, J. Chem. Phys. 79, 443 (1983);
M. S. Shaw, J. D. Johnson and B. L. Holian, Phys. Rev. Lett. £0,
1141 (1¢83).

3. MacGowan, D., J. Chem. Phys. (to be published).

4, MacGowan, D., J. Chem. Phys., 81, 3224 (1984).

5. Notice there is a slight change of nomenclature with respect to
our 1984 proposal, $SS-P-84-8520212, "Equation of State and
Two-Body Correlations for Fluids of Non-spherical Molecules,"
where we called the procedure MED (6,12).

€. Henderson, D., Annu. Rev. Phys. Chem. 25, 461 (1974).

7. Williams, G. 0., J. L. Lebowitz and J. K. Percus, J. Phys. Chem.
(to be published).

8. Ree, F. H., J. Chem. Phys. 78, 409 (1¢83).
S. Fincham, D., N. Quirke and D. J. Tildesley (to be published).
10. Ross, M., J. Chem. Phys. 71, 1567 (1579).

11. Nakanishi, K. and H. Tanaka, Fluid Phase Equilibria 13, 371
(1983). -

10




FUPPN VW

}

E

APPENDIX A ﬂ

VAN DER WALLS ONE-FLUID THEORY: JUSTIFICATION AND GENERALIZATION :

11

. ey 4




DRI S b ge i 3 Ay

Cllpn FLLID AFRRCAIMATION FCR JIATOMIC FLUIL MI07LRES

s}

{hE MOL

Ecuarcoc M. waisman
S-CLEEC, ~ Civisicn cf Maxwell Laccratcries, Irnc.
P. C. Ecx 162G, La ocila, CA CZCZE
Jcel L. Lebowitz
Cepartments cf Mathematics ara Physics
RKutcers University, New Erunswick, NG CESCS
Lavid MacGewan*
Lepartment cf Mathenmatics
kKutcers University, New brunswick, Mg CEGGCE

rbstract

ke investigate a one component molecular fluic approximaticn for
cenformally similar molecules. we test this scheme on {twc) mixtures
cf rigic¢ homenuclear giatomic Lennarc-Jones (LJ) fluics for which a
imrited amount of information from molecular cynamics simulaticns is
available. For two compcnents c¢f approximately equal becrc length tut
cifferent LJ paremeters cur results ccmpare favorably with the macrine
cemputations. Frem the very few simulation cata aveilable fer
equirolar mixtures of mclecules differing cnly in their benc lenctrs
w€ cannct reach any firm conclusion. Alternative proceaures for
treating aeneral mclecular fluid mixtures are discusSec.

Introcucticon

Tre cevelcgmrert cf simple accurate apprcximation schemes for tre
trermcaynamics anc structure cf cense fiuias is a prctler cf great
cractice: ingportarce anc also a thecoretical challence. white tre

evicterce ¢t such appreximaticrs fer fluics ir cereral ~ . ' . rc nearc

cricr: ctvicus the results on sprerical sirgle cenponent Yluics arc

toore mixtures D17 streraly suceest tre pessitality. Thic metivates
Teretant OOress research Schecl ot Cremistry, Australlan fLaticral
et TP Fow 4y, Carterra ACT ZE0L, Australia,

27

vy

SR, J Tl

N




L v T T S e YO i A S . e e

APPENDIX B

A ONE MOLECULAR FLUID APPROXIMATION FCR DIATOMIC FLUID MIXTURES
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Table Caption
Thermodynamic results for binary mixtures of exponential-six fluids representing hydrogen-—
hehum mixtures [11]. The potential parameters are ‘11/ka=36'4K' b”=3.43f\. a, =11,
1. «,/k=15.5K, b, ,=3.37A, «,,=12.7, e, /k=10.57K, b,,=2.97A, a,,=13.6,
where the subscript 1 denotes hydrogen. In each row the upper resuits are pressures(GPa)
and the ftower results are excess internal energesikkJ/mol). Results in the columns headed
Mixture and Ree are from 256-particle Monte-Carlo simulations [11]. Results in the

columns headed |, Il and Il were obtained by using Ross' procedure [12] in the

perturbative manner described in the text.
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states simulated by Ree but inferior to both | and Ree's empirical rules at fow
temperatures. We do not, however, regard the small changes in accuracy between Ree, |
and Il as very significant. More important is our hope that our approach to the mixing
rules will prove useful for application in the manner indicated above to non—-conformal

potentials other than expénentnal-six.
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g = Gia rb) (12
x x x

Substituting these relattons in the compressibility and energy (or viriall equations yields the

MRs
1 <b3c-3> ’ <¢baa-3e-°/(a-6)> ’ <¢b3u4/(a-6)>

without any need to consider only the part of the potential near its minimum,
Unfortunately, (11) and {12) have the opposite effect to what is expected physicaily at high
pressures: they indicate a principal peak in gir) at larger r for softer potentials (i.e. lower

x).

Ideally one would like to test the MRs proposed above by simulations, as Ree did,
but another reliable method for the EPFs is Ross' semi—empirical variational procedure
[12], which we have used to obtain the tabulated results. Although Ross' procedure is
accurate to only 1-2% in absolute terms (and seems to deteriorate further at very high
pressures), we believe that it can accurately distinguish much smailer differences between
thermodynamic properties of similar potentials at the same temperature and density. Thus
the tbulated results are based on the assumption that the change in exact EPF
thermodynamics between Ree's MRs and |, Il or Il 1s equal to the corresponding change In

the Ross thermodynamics.

On the basis of these results we conclude that Il gives energies and pressures
which are consistently too high, | is (not unexpectedly)l best at low temperatures but

deteriorates as the temperature increases, and |l is on average best over the full range of

20
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important in determining the energy and virial equation integrals. We therefore use in the
energy (or viriall equation the Taylor expansion of ".,") about b., and demand only that EPF
and mixture resuits obtaned by integrating the first two non-vanishing terms of the
expansion shouid be identical. Apart from the exciuded volume MR <b3>. which s still
obtained exactly as before from consideration of the compressibility equations., ths

procedure leads to the MRs
f <eb>> , <ebala=-7)/(a-6)>
if the energy equation 1s used or
N <eb ala-71ia-6)> , <eb ala’-56ix-6)>

when the wvirial equation 1s used.

Rules | give the same € and b‘ as the vdW 1 rules and, since the « are all in the

range 11-14, an « very close to but slightly lower than the value obtained by Ree. The

(k) (k)

functions of « appearing in the MRs are just [& (¢=1,a)|, k=0,2,3, where denotes
the kth derivative with respect to $. A straightforward generalisation when there 1s more
than one shape parameter would be to obtan the extra MRs necessary in an analogous way

from higher derivatives.

For exponentiai—six potentials it might seem attractive, from a purely mathematical

viewpoint, to assume instead of (S) and (6i the scaings

g, n = G(a”r/b”) (11

and
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3. Generslisation

One generalisation of vdW 1 theory to mixtures of conformal diatomic molecules has
recently been proposed [8] but we shall be concerned here only with non-conformal
spherical molecules. There are at least two reasons why one may wish to study such
mixtures. First, real fluids are not satisfactorily represented by conformal potentiais [9]
and, second, the effective spherical potentiails which can be used to accurately reproduce
thermodynamics of some non-spherical molecules are not in general conformal even when

the original molecular potentials are [10].

We continue to scale the interactions according to therr minima, as in the conformal
case, but now aliow for differences between the shapes of the ¢” through the

introduction of a set of parameters N
plr)=¢ ¥rb , « ) {10
1 I iy =1}

The smpiest and, for present purposes, the most relevant realisation of (9) s the
exponential-six potential where there 1s only a single parameter « for each ¢” and ¢,
@)= {6explal1-t)]-at "%} /(a-6). Ree [11] has recently found quite empirically that for
exponentiai—six mixtures the MRs <b3>. <eb3> and <eb3a> lead to results as good as

those of vdW 1 theory for Lennard-Jones mixtures.

We wish to retan the assumptions (5) and (6), which are physically reasonable at
low pressures, but observe that with these assumptions and an exponential-six parr
potential no simple scaling of the energy and vrrial integrals occurs. At low temperatures

near to the triple point, however, we expect the region around the minmum of the

potential (coinciding with the man peak of the radial distribution function) to be most
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L 4 Here an ambiguity occurs: if A., is considered as an energy, vdW 1 yields the MR <A> but .
it can equally well be considered as (potential range)p leading to the MR <a3’V>, The latter ‘
rule was used by Evans and Hanley [7] for »=12 and gave good agreement with
simulations. |t was also used in [4] where the VdW]1 results for inverse power potentials .
were shown to be quite close to those aobtained from a first order expansion in 1/v about \
the Percus-Yevick equation of state for binary hard sphere mixtures. » _~‘
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term to gir) from Eqgs. (5) and (6) which is the first order of a formally exact series in

powers of fe:

gr) = Gir/b) { 1 + Be Hir/b) + +++ } ™

where H 1s assumed to be 'universal' in the same sense as G. Using (7), Leland et a/.
(2] clam to obtan both of Egs. (3) and (4) from consideration of the energy (or virial)

equation but in fact it seems clear that one obtains Eq. (4) together with the MR <eb>.

We believe that a more satisfactory way of obtamning (3) is by an appeal to

thermodynamic consistency. !f we substitute (5) and (6} in the compressibility equation

g~ 3p/3pl, = 1+ p L XX Joar { g”(r) -1} (8

B

for both the mixture and the EPF and demand that both give the same result, we obtain
Eq. (3)1. [We remark, incidentally, that substituting (7) in the compressibility equations
really does yield both (3) and (4)]. Thus we see that once we have decided to represent a
conformal mixture by a conformal EPF and made the assumptions (5) and (6), we are

naturally driven to choose the vdW 1 MRs for reasons of thermodynamic consistency.

For parr potentiais determined by a single parameter only one MR is needed. in such
cases the exciuded volume MR (3) seems to be more important than the energy MR (4).
This ts very natural for hard sphere mixtures where the potential has no energy scale and
the <d>> MR, which for hard spheres could arise from consideration of either the virial or
compressibility equations, is successful [6]. Less obviously, it also seems to be true for

inverse power law potentials

o= A" = ¢lon’ = elom’ . v»3 9
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2. Justification

Clearly ane cannot expect to 'derive’ VdWI theory but there have been various
attempts to understand its success. Leland et al. (4] note that it arises naturally from
the vdW equation of state by (hence the name VdWI1]} but emphasize that its applicability
is not confined to fluids satisfying the VdW equation of state. Smith [5] has given a general

. . . m n p. q
perturbation theory based on the reference EPF obtained with <€ b > and <"b’'> MRs,
which allows systematic corrections. but this gives no insight into why the chaice

(m.n.p.q}={0.3.1.3) should be especially accurate.

Other expianations have been based upon the assumption that the suitabiy scaled

radial distribution functions of both the mixture and the EPF have the same form, i.e.

g, ir G(r/b”) 5

and

g,(r) G(r/bx). 6)

! and the total number

where the function G can depend on the temperature T=(kaﬁ)'
density p although these arguments are not shown explicitly. If relations (1), (2}, (5) and
{6) are substituted in the energy (or viriall equations for both the mixture and EPF, then the
requirement that both expressions be equal leads to Eq. (4) [2,3]. This seems to be as

satisfactory a justification of Eq. (4) as one can hope to get, but the arguments used by

these authors for Eq. (3) seem flawed by comparison.

Henderson and co-workers [3] merely take over Eq. (3) from the similar <d3> MR
(d represents sphere diameter) arising from consideration of the wvirial equation for hard

sphere mixtures [6]. Leland et a/. [2], on the other hand, in effect use a correction
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1. Introduction

Flud mixtures are of great practical importance but theoretical calculations for them
are generally much harder than for single spec : [1]. An exception is mixtures of

conformal spherical molecules not too different in size having pair interactions of the form
e Ir)=¢ $rib) {1)
0 1y J]

where ¢ i1s a universal function and ‘., and b” define the well depth and the separation at

its mimimum respectively for the interaction between species i and j. For such mixtures,

the van der Waals one-fluid (vdwW 1) theory [2] is belleved to be much better for

predicting thermodynamics than many more complicated approximations although this has

admitiedly only been tested for Lennard-Jones mixtures with ¢(E)=£'12-2£'6 [3J. In

vdW 1 theory, the mixture is replaced by an equivalent pure fluid (EPF) with pair interaction

oirN= e &r/b). (2)
x x x

Here the EPF parameters are defined by

bx3 =7 xlx’b”3 (3

and

eb? =T xxeb* (4)
x X T

where x are the fractional concentrations of the components. We shall have occasion to
refer to many different mixing rules (MRs) of this general form and so for brevity we

refer 1o (3) and {4) in an obwvious notation as the MRs <b3> and <cb3>.

14
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VAN DER WAALS ONE-FLUID THEORY:
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David MacGowan'Ib
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Abstract
We describpe an approach to van der Waals one-flud theory based on
thermodynamic consistency and propose a method for generalising it to non—conformal

fivids .
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the search for similar proceaures for non-spherical fluids where the
situation is less satisfactory at the present time, although a certain
amount of progress has been made in recent years - especially for
non-polar one component diatomics [2]. It is the purpose of this note

to investigate a simple scheme for mixtures of such molecules.

2. Formulation of the Problem

The interactions in a n-component mixture of symmetric ciatomic

molecules interacting via site-site pair potentials have the form

Vig(Re01,20) =Z¢ v (IR Lz = Lz e sp )y

where R is the vector between the centers of molecule 1 of species i

and molecule 2 of species j, and Q> k=1,2, is a unit vector alcng

the axis of molecule k. Ly and mj are the bondlengths of the

molecules of species i and j respectiveiy, and :%J(r) is the
site-site potential between a site cf species i ang a site cf species

J. The summation in Eq. (1) is over all possible +, - pairs in tne
argument of wij'

We shall focus here on the particular case

-12 -&-
’bij(r) =€]‘J' “PLJ(Y'/U.U)’ WLJ(.Y) =4[.y ".YCJ {e,

for which there are now some machine computaticns availal e fcr

comparison with theory. One of these computaticns ccrresgercs tc

parareter values of this system usea for the moceiirc ot 2 (. -

CoHg mixture around zero pressure {3]. The other cerrespercs tc

mixtures of N, with molecules having the same « erc e as N <
[

cut either half or twice its bond Tlenath [S:. Tc te specific, «¢, - *or
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N. denotea in [5] by N-N is 0.3252 while /o = 0.l€de anc i/o =
I4

C.6584 respectively for the molecules denoted in 5] ty N.M ana h-=N.

1 P
RS RN

he are motivatea to investigate this system at the present time
by a desire to find the "best" extension of the recently ceveloped
sphericalization procedure, the meaian potential [2,6,8,9], tc

mixtures. The median potential, which has been modified in various

L@

ways [7], has been found to give gooa results for single component
aiatomics with relatively littie labor [2,6-9]). The analysis is

1

particularly simple and accurate for one component L-J molecules where

_4-... alala‘alela

MacGowan [7] found that the best modified median is obtained ty
splitting the potential in (2) into its power law components. This
gives a median with a universal dependence on e, o and &.

There are various ways that one can imagine generalizing the
median prescription to mixtures. One of the simplest is to

sphericalize all angle dependent potentials Vi about the centers

._M. M-A_J‘_A;._._L'_‘LL, o aa

(or some other suitable points) of each molecule and then use existing

theories of spherical fluia mixtures. This is the path followea in

(1C] for "hard" mixtures of dumbells, spherocylinc:rs and spheres.
For the available simulation results on such systems the resultinrg
mixtures of "meaian" hard spheres turned out to te very nearly
adaitive - for which the Manscori-Carnahan-Starlina-Lelanc
apprcxiration is known to be quite accurate.

Fcr softer interactions there is no simple theory even for

sprerical mixtures except for the case of van cer haals' tyge

interacticns oij(r) =iy @(r/oij). For such mixtures the "vck

l1-fluic thecry" in which a mixture with densities Py = X0 is

L .... . e Y . - e a PP P U T AT U S Y Sy [ SN L S - DY
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representea bty a one component fluid with censity ¢ anc pctential

ed(ria),
-3 _ « 3 .
o -E X; i 01.] s (3)
- 3 =3
€ =E xixJ. cij eijlo s (4)

is at least as accurate as much more elaborate procedures. This
mixing rule has been extended recently by Ree [11] to mixtures of
particles interacting via exponential-six potentials where ¢1j(r) is
i °1j)’ ¢(y,a) = (6 expa(l-y)] -

a/y6)/(a-6). [t was found there, by trial and error, that aading to

of the form eiJQ(r/c

(3) and (4) the rule

- 3
a =Z:X].Xj eijc‘ij aiJ/(e o) (5)

gave very good results cver a wige range of densities and
tenperatures. This is encouraging as it shows again that suitable
simple schemes do work.

Unfortunately the spherical potentials “ij(R) cbtained by
“necianizing" the angle dependent potentials Vij(R’gl’QZ) are
not generally given by a simple formula for which (3) and (4) can te
used directly. This is true even for the case in Eq. (1)-(¢). It
therefore occurred to us that since the site-site potentials in (Z)
are of simple form it is worth trying a molecular l-fluic¢ theory in

which ¢ and ¢ would still te given by (3) and (4), and ¥ woulc be

given by a suitable mixing rule. In the present work we exclusively

use the simple rule
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f =EX1 ’L.i (6)

for the equivalent bondlength.

A plausibility argument is given in the Appendix for a more
complicated rule (A.l6) for E, similar to (5), but for all mixtures
where simulations are available the L's obtained from (6) ana (A.16)
are almost identical (in many cases exactly so). For the computer
simulations of the CO2 - C2H6 mixture treated as rigid diatomics
[3], the two lengths 21 and £2 are very close to each other ana so
any reasonable mixing rule will give essentially the same L. For the
mixtures of [5], on the other hand, one is just testing the mixing
rule (6) for £. Unfortunately the number of available results is not
sufficient to permit, at this time, testing of aifferent possibilities
for ¥ and indeed there appears to be at least one misprint among the
published data in [5]. Additional computer simulations systematically
varying the parameters eij’ °1j’ 1i and Xi would be most

useful.

3. Results

With the ¢, ¢ and % given by Egs. (3), (4), and (6), we
sphericalize using MacGowan's procedure [7] for diatomic Lennard-Jones
potentials and use the resulting spherical potential in Ross'
semi-empirical variational procedure [12] to obtain the Helmhcltz free
energy, and from it by numerical differentiation the reported
pressures. We also calculate the excess internal energy wherever it
is available from the simulation . We remark that our calculations
are very quick, requiring less than one second of CPU time cn a DEC 20

computer per thermodynamic point.
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ke compare the available results cf molecular aynamics

:(7 and I1I. Since the molecular dynamics calculations for C02—62h6 '

simulations of CCZ-CZHE[S] with cur calculatiors in Tatles I, II

. have as one of their purposes to obtain the set of IPTRLI
) J

i,j=1,2, that gives the best intermolecular potential for that system;
we see entries in Tables I through III corresponding to aifferent
values of those parameters, at a few different thermodynamic points.

Cur results for the COZ—CZH6 mixture are promising. The
compressibility factors pV/NkT, which are near zero, agree witt the
molecular dynamics calculations within about C.2 which correspencs tc
differences in pressures of about 10 MPa, and the excess internal
energies per molecule in units of kT, U/NkT to within 0.2 which
ccrresponds to differences in excess internal energy of about C.G
Kj/mol. These discrepancies are about a factor of 2 larger for the
pressures and about the same for U than those observed when using the
median procecure for the pure C02 and C2H6 fluids. Also the
tencencies for our calculatea values are the same as for the
simulations.

We show in Table IV the comparison tetween this l-molecular
fluid apprcach plus "medianization" with the results availatle for
pure fluids and mixtures of molecules of elongations /o of C.tEE4,
C.22%Z and 0.164€, respectively [5]. As alreaay menticnec these
mclecules are denotea in [5] by N—=N, N-N ang M.N anc all have tre
same ¢ and ¢ as NZ. The few results available co not allow us tc
araw any firm conclusion. we believe that the excess internal erercgy

reported in [5] for the pure N-N fluid is in error (see Table IV).
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Cur results show that the approach taken coula te fruitful.

Fowever, more data from computer simulations are needea tefore cne can

opt on a firm basis for one of the possible routes to an extension of -
the vdw-1-fluid approximation now in use for mixtures of spherical

molecules to mixtures of non-spherical molecules.
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Table 1

_ [ Q o] ° ]
nurter | Concentra- L (A) oZZ(A) oln(A) el”/k( k) || Cempress- 1
Censity | tion of (O, ¢ € itility Facter !

o . PV/NKkT
oA 1 This )
; work

2.370% -0.54
0.01082 0.50 2.360% 3.506 | 3.248 150.0 -0.58  -0.376

2.349% -0.61 |
¢.01082 0.50 2.360 | 3.506 | 3.300 145.0 -0.35 C.Czd
0.00865 0.35 2.356 | 3.550 | 3.300 145.0 -1.02  -C.647
€.01037 0.35 2.356 | 3.550 | 3.300 145.0 -0.08 C.074

Comparison between the molecular dynamics (MD) calculations [3]
ana the "medianized" 1-f moleculir approximation explained in the text

for a mixture of C02 (subindex 1) - C2H6 treated as rigid

| = 2.370 A and L, = 2.349 A. The

compressibility factors are near zero so that small absclute

Lennard-Jones diatomics with &

a1fferences are large in relative terms. The temperature was

°

T =241 K, o

°

Ik = 163.6 °K, e../k = 137.5 °K.

= Z. A
2.989 A, ¢ 27

11 11

*Trese three values are ¢, (%l+‘2)/2 and i? respectively.

[s¥)
-
M

They are 1ncluced teo see how our results in a particular case

alterea ty varying ¢ from ¢ tC Lo
[~
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Table I1I
- Number Concentra- ¢ (A) elz/k Compress- Excess Internal Energy
Oensity { tion of CO2 ibility Factorl per dolecule in Units |
. °K PV/NKT voof kT U/NkT | ]
oA Xy This v ! oThis M
Work Work ]
- 0.00833 0.00 2.349 149.85|)| 0.02 G.C59 | -4.55 -4.,421 l j
0.01302 1.00 2.370 149.85||-0.13 0.066 | -5.11 -5.324 ' 'J
0.01023 0.70 2.364 149.85(-0.54 -0.2¢6 | -4.41 4,572
. 0.C1023 0.70 2.364 120.0 ||-0.08 0.09S | -3.9¢ -4.149 ‘ .3
Same as Table I. T = 265.3 °K, o,y = 3.035 A, o, = 3.592 A,
. . 11 22 .Ji
01y = 3.3135 A, eu/k = 163.3 K, szz/k = 137.5 K. 1
k
hd .
A2 ]
*
E
)
-
[
®
s
-
. 35
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Table 111

- r;;mber Concentra- I(;) Cempressibility Factor |Excess Internal Energy !
'Density tionof CO2 FV/NKT rer Po]ect)ik;n Units of kﬂ
L o[ATI] X This werk M0 | This work v
-
- ;0.01369 1 2.370 0.33 C.411 | -5.3¢ -5.566 | .
’ | €.01303 1 2.370 || -0.13 C.066 - -
!0.01232 1 2.370 -0.48 -0.186 -4.79 -5.02¢8
' c.01172 | 0.7 2.364 || 0.64 0.723 | -4.53 ~4.816
' 0.01021 0.7 2.364 -0.15 G.12% -3.88 -4.166
| 0.00869¢€ C.7 2.364 -u.42 -0.102 -3.21 -3.5646
0.008914 | " 0.4229 | 2.358 -0.12 0.124 -3.60 -3.8¢¢ f i
. €.008478 0.1656 | 2.352 -0.13 0.127 -3.68 -4.098C |
C.009014 0 2.349 0.27 0.445 -4.63 -4.800
1 0.008313 0 2.349 -0.20 0.058 - - i
€.007812 0 2.349 -0.40 -0.072 -3.93 -4.166
C.C07€08 0 2.349 -0.46 -0.120 -3.81 -4.05%
ﬂ Same as Table 1. T = 269.25 °K. The Lennard-Jones parameters are ~
sy = 3035 A, o, = 3.520 A, o, = 3.2775 A, and ¢ [k =

1€3.29 °k, €50k = 137.49 °K, e../k = 120 °K. The uncertainty in

12
) the MO compressibility factors is estimated to te *C.Cl. -
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Table [V ‘
— y
Terperature System Lo Compressibility Excess Internal trergy }
, T Factor per Melecule ir Lnits -
| K PV/NKT of kT L/MkT N
This Work MD This work vC )

' 10z.6 pure N=N 0.3292 2.28 1.91f -&.8¢ -3.67 7
99.1 pure N—N 0.6584 19.47 14,561 -=3.77 -3.79 J
1C1.¢C pure N.N 0.1646 || -1.66 -0.92] -6.€0 -6.z¢ ?
equimolar ’ ]

108.2 N—=N/N.N 0.4150 5.40 4,451 -5.13 -£.02

equimolar é
110.9 N~~N/N=N 0.4938 G.05 6.86| -4.5C -4.38 ;

" Comparison between MD results of [5] with the 1-f molecular plus

"medianization" proceaure explaine¢ in the text.

are those for N, (4], o = 3.31 A, e/k = 37.3

The density for all cases is p = 0.01776 A3,

the L/o's for N.N, N-N ana N--N are C.1646, 0.3292 and C.65¢4

respectively.

we telieve this result to be in error.
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°K for all molecules.

As explainec in text, 1

The L-J parameters
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APPENDIX

MIXING RULES FCR FOMONUCLEAR CONFORMAL CIATCMICS
For one-ccmponent homonuclear aiatomics, the erergy,

compressibility and virial equations are respectively

n = 25 far g%C(r)u(r) (h.1)
KT(30/2p); fdr %90y - 13 (4.2
p = pkT - % o ‘fdr [r gooo(r) - (4/V3) gloc(r)] ap/ar (A.3)

with the following analogous results for mixtures:

ex 00
/N = 292:x1xJ or g; (r) wij(r) (A.4)
(ao/ap =1+ z:x X . Jhr [gOO(J (r) - 1] (R.5)
OOO 1C0
p = okT - 3’0 Z:x1xJ ar [rg (r) - (% //?),13 (r)] d wijlcr
(A.e)
Fere ¢ is the total number agensity, X5 the fractional concentra-
tiens, uii(r) the site-site potential enercies, g?go(r) the
o
site-site racial distribution functions with 910 the
ccrrespenaing 100 spherical harmenics and
Lo = % (L. * L) o7

wrere L. are the tcnalengths.
we ncw restrict attenticn to site-site pctential enercies havirce
tre sirple scaling preoperty

u..fir‘“:g,,‘? r/ic. .} ELE
iie ij ( i3 o
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Clearly it is possitie tc ottair a sinple crne-fluic mccel (eanalcecus
tc van ger waals cne-fluic for atomic liguics) 1f we assume trat the

gij satisfy the simple scalinas

cee cce

Sy (r) = G (rlcij) (A.G)
1C0 100 A,
933 (r) =G (rloij) . (A.1C)

Zoth of these may be inclucec in the single statement

oY = ) . .
gi\j(r,gzl, ‘:}ZI = G(r/c.i\j’ Ezlv 5.,2) (H'll)

for the full angle-dependent site-centerea correlation functicn. e
assume the same types of scaling for the equivalent cne-ccmponent

hemenuclear diatomic fluid, that is

glr, @) = G(r/a, i, ) (A.12)

o
—_—
-

~—
i

€ ?(r/?) (A.13)

Inserting (A.12) ana (A.12) in (A.1)-(A.3) and (A.&) anc (A.l1/
r (A.4)-(A.6) followed by eaquating (A.1) with (A.4), (A.Z) with (A.E)

anc (A.3) with (A.€) yields the following mixing rules:

-~ b}
- =3 3 n
=) X.X. £..0%. A.14
€ C 2: i*5 €1J01J ( )
7 7
v _ - 4
g .Z)(]T G‘q Vol

- 3= 3 o
e T A =) XX PR TAV1E,
; 2%y ey Tt
where
A = o= | + < s
i3 ¢1J/r]J ) ¢J)/Lc13 ;

A Ay e -——*

NN ] e

A2 T

d ™ itk YOO, e e -

P




TR T e T T T e ™, ML T e S S T R

1

Z<. o~ zapc ALIEY are 1certical to the atemic vek 1f rules arc,

rry

irterestingly, (A.16) 1S Just kee's rule (3) fcr expcnential-six
ncratemics with o replacea by .

we remark that, in the context of atomic fivias, (A.ld) has
usually teen justified by using the energy equaticn, or alternatively
the virtal equation, in a manner aralcgous to that cescritea abcve.
Cn the cther hanc, the argument leaging from the compressibility
equaticn tc (A.1l5) aces not seem to have been given previcusly for
atcmic fluigs. Although cne cannot of course "“derive" approximate
mixing rules, we feel that our use of the compressibility equaticn is
screwhat more satisfying than previous approaches. (nce we decige tc
seek an equivalent pure fluid and make the scaling assumptior fcr the
ccrrelation functions then reauiring thermodynamic consistency leads
rnaturally tc Eas. (A.14) and (A.15) [and, in the diatomic case,

(A.16)].
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