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1. INTRCDUCTION

We report here on the progress made in our work on the thermal

properties of fluids whose molecules interact via two-body

non-spherical potentials.

To avoid unnecessary repetition we refer the reader to our 1983

annual report[1 ] and concentrate here on the new developments that

took place this current year.

*0 During the present period we directed our efforts to extending

the sphericalization procedure of the median potential[2] to

calculate the thermodynamics of fluid mixtures of rigid diatomic

molecules.

Our approach in considering this type of fluid mixtures was to

obtain an equivalent single component spherical potential. In order

to do that we explored and generalized the van der Waals one fluid[3]
(vdWlf) mixing rules, originally introduced to treat atomic

mixtures interacting via conformal potentials. We describe this

subject in Section 2. The mixing rules were used in conjunction with

the modification of the median procedure that MacGowan developed for

Lennard-Jones (LJ) homonuclear diatomic fluids, [4 J which he calls

MED (12,6).[5] In Section 3 we give an account of this "mixing

rules plus medianization" procedure as applied to mixtures of diatomic

homonuclear LJ molecules, for which computer simulations were

available for comparison. In Section 4 we offer our conclusions.

3
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2. VAN DER WAALS ONE-FLUID MIXING RULES AND GENERALIZATIONS

The vdWlf model is a procedure that uses a simplified potential

to represent the mixture interatomic potentials. It was derived to be

applied to the case of conformal interatomic potentials, i.e.,

.ij = d ij (r/bij) (1)

where (P is a universal function (for example 4[E -12 - 1-6 ] for LJ

atoms) and Eij and bij define the well depth and the separation at

the minimum of Iij respectively for the interaction between species

i and j.

The prescription of the vdWlf approximation consists of defining

an equivalent single component fluid of potential

Sx(r) = Ex N(r/bx) (2)

where the x explicitly indicates the dependence on mixture composition,

and x and bx are given by

b3  b 0 (3)x xi
= . . (3)

3xj ij (4)

where xi are the fractional concentration of the components. This

equivalent potential is then used to calculate the thermodynamic of

the mixture. The results one obtains are very good if the spread of

values of the 2ij's and bij's is not too large. Indeed the vdW1f

theory does much better than much more elaborate techniques.
[6 ]

In the case of molecular mixtures of non-spherical rigid

molecules our goal is to jointly utilize mixing rules of the sort of

the vdWlf theory and the sphericalization procedure given by the

median and its extension. The objective is then to obtain a single

spherical "medianized" concentration dependent potential representing,

4



for the purpose of calculating the thermodynamics, the mixture. This

has certainly been our motivation in considering the mixing rules that

are the object of this description.

For the particular case of binary mixtures of diatomic

homonuclear LJ molecules described in Reference 1, one needs eight

parameters to describe the 1-1, 1-2 and 2-2 interactions; they are

Eij = Eji' bij = bji' and li , i = 1,2, which define entirely

the LJ site-site (atom-atom) potentials of the two species.

One has at least two ways to proceed, either: (i) "to

medianize" the 1-1, 1-2 and 2-2 potentials using the MED (12,6) and

then to construct mixing rules for the three resulting sphericalized

potentials; or (ii) to define mixing rules to obtain cx, bx and

1 which define a single component diatomic homonuclear LJ molecularx
fluid and the "medianize" it using MED (12,6).

Clearly, the results one would obtain by using (i) or (ii) will

not be the same. The advantage of procedure (i) is that, at least in

principle, one could extend this type of reasoning to treat mixtures

of molecules other than homonuclear diatomics. That one can do

provided one has a well defined medianization technique for such

potentials. One should bear in mind that this is not an obvious task

when the molecules do not possess a center of symmetry, and it has[7]
only been done for diatomic non-homonuclear hard dumbells.

Even in the simple case of homonuclear diatomics LJ mixture we

are describing, in which the site-site potentials are conformal, the

resulting medianized ones are not of the same shape. Therefore, one

must deal in general with non-conformal spherical potentials, i.e.,

ijP : i ( r / b i j ', aij) (5)
0.. = Cij3(5

where Cij and b have the same meaning as before as aij is a set ofij 1parameters introduced to characterize the difference Tnshapes of the
O's.

#ij IS
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An important realization of Eq. (5) is the exponential -6

(exp-6) potential where there is only a single parameter aij for

each 0 ij and

( ,a) = 6 exp[a(1- ) - a 6]/(a-6).

Ree [8] has recently found that for mixtures of exp-6 atoms - he

modeled an He-H2 mixture at high temperatures and densities -, the

mixing rules of Eqs. (3) and (4) and the following extra mixing rule

for a x is very successful:

ba : b xi xj aji b (6axexb =~ ~(6)ax x x ai ij

With MacGowan and Lebowitz we researched the possibility of

making the formulation of mixing rules more systematic. We found that

for the case of conformal atomic LJ potentials we were able to clarify

how the rules of Eqs. (3) and (4) come about by use of approximate

scaling arguments on the radial distribution functions gij in the

compressibility, energy and virial equations. For the case of exp-6

potentials by expanding to second order the potential around its

minimum in a Taylor series and employing again approximate scaling

arguments on the gij's, we show how one can generate various

alternative mixing rules for cx bx and ax. One such set

produces thermodynamic results of accuracy equivalent to that of Ree's

work. The details of this work are contained in Appendix A, which is

a preprint of an article submitted and accepted for publication in

Chemical Physics Letters.

This is the present status on this approach. Up to now to have

not applied this procedure (i) to molecular mixtures. Before leaving

this section we remark that our work on mixing rules for non-conformal

spherical potentials is a contribution in its own right for such fluid

mixtures (as in the case of the exp-6), and not just an intermediate

step in "procedure (i)" for molecular mixtures. We explain procedure

(ii) next.

6



3. A ONE MOLECULAR FLUID APPROXIMATION FOR DIATOMIC FLUID MIXTURES *i.]

We considered a C02-C2H6 mixture, treated as rigid

homonuclear diatomic LJ molecules, for which computer simulations were

available.9 Because it happens in this case that the bond lengths

are very similar, 11 12 - 2.36 A, it occurred to us to apply

procedure (ii) as defined in Section 2. That is: We first find x'

bx abd 1x which define a single component equivalent homonuclear

diatomic LJ fluid and then apply to it MED (12,6). For Ex and bx

we used the mixing rules of Eqs. (3) and (4). For 1x any reasonable

rule would give essentially identical results, we chose

1= x _x i 1 i  (7)

The MED (12,6) 0 (r) potential was utilized then in Ross's

variational procedure[10  for obtaining the free energy and from it

the pressure and internal energies of the mixture. The results

compare favorably with those of the computer simulations, which is

remarkable considering the calculational simplicity of our

formulation. (It takes 1 second of CPU time of a DEC20 computer per

thermodynamic pT point.)

We also applied this technique to equimolar binary mixtures of

rigid homonuclear diatomic mixtures, of molecules denoted as N.N, N-N

and N--N by the researchers that did molecular dynamics calculations

employing them.[1 1 ] They all have Eij = EN , bij = bN

i,j = 1,2, where EN and bN are the parameiers used t9

represent N2. In t is nomenclature N-N is identical to N2 and has

an elongation 1/c of 0.3292 while N.N and N--N have half and twice

that elongation, respectively. Here a is the point at which the LJ

potential crosses the axis and is related to b by b = 2/6 c. The

mixing rules for Ex and bx obviously give EN and bw

while for this equimolar mixtures Eq. (6) gi~es the irithmetic mean of

11 and 12. The sparcity, and some errors we believe to exist in

the reported data by the authors of Reference 11, do not permit us to

draw definite conclusions in this case.

7



We also developed an alternative mixing rule to that of Eq. (6)

using the systematic approach described in Appendix A for atomic

systems, and in Appendix B for the system under consideration. By

employing arguments of approximate scaling for the gij's in the

virial equation for these diatomic mixtures we obtained

xx = x 1 x b . .. (8
,xb XXx = -Exi xi j b iIj X i (8)

where ij (li+l.)/2bij.

In the cases reported in this section the values of I

obtained with Eq. (8) are either identical or almost identical to that

of Eq. (6). To text the mixing rule of Eq. (8) one needs to compare

its results with computer simulations with 11 # 12 and x1 1 X2

which are not presently available.

We include in Appendix B a detailed account of the work

described in this section, which is a preprint of a paper with

Lebowitz and MacGowan scheduled for publication in the December 15,

1984 issue of Journal of Chemical Physics.

8



4. CONCLUSIONS

Very significant progress has been made in extending the idea of -0

the median potential to obtain the fluid thermodynamic property

mixtures of rigid diatomic homonculear molecules. Also we have made a

contribution in clarifying and generalizing mixing rules for atomic

and molecular mixtures.

We expect to be able to continue to make significant advances in

treating mixtures of diatomic and monoatomic species as well as

mixtures containing other simply shaped rigid symmetrical molecules,

such as those of tetrahedral structure.

0
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APPENDIX A

VAN DER WALLS ONE-FLUID THEORY: JUSTIFICATION AND GENERALIZATION
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Table

Mixture Equivalent pure fluids

T(K) V(cm3/mol) x Ree I II III

50 20.0 0.50 0.047 0.048 .0.048 0.049 0.055
-0.755 -0.736 -0.737 -0.725 -0.669

100 14.0 0.50 0.338 0.337 0.336 0.339 0.365
-0.354 -0.334 -0.336 -0.318 -0.202

300 10.0 0.50 1.856 1.858 1.850 1.872 2.001
2.79 2.91 2.90 2.94 3.28

0.75 2.309 2.315 2.307 2.327 2.472
3.49 3.65 3.64 3.68 4.07

0.25 1.424 1.417 1.413 1.425 iM84
2.08 2.11 2.10 2.12 2.27

1000 9.0 0.50 4.510 4.416 4.397 4.452 4o734
8.86 8.85 8.82 8.91 9.52

0.75 5.255 5.172 5.155 5.202 5.504
1o.88 1o.86 10.83 10.91 11.6o

0.25 3.715 3.643 3.634 3.665 3.8o
6.79 6.70 6.69 6.73 7.01

4000 8.o 0.50 12.43 12.15 12.10 12.26 12.98
25.12 24.82 24.74 24.96 26.31

4000 7.0 0.50 16.33 15.96 15.89 16.13 17.21
31.4 31.1 31.0 31.3 33.2

7000 4.5 0.50 54.Ol 52.53 52.15 53.39 58.48
84.7 85.3 84.8 86.1 92.5

0.75 56.21 54.54 54.18 55.26 60.58
97.2 98.2 97.8 98.8 105.1

0.25 48.83 47.52 47.32 48.o6 50.65
68.0 66.6 66.4 67.1 70.4

24
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Table Caption

Thermodynamic results for binary mixtures of exponential-six fluids representing hydrogen-

helium mixtures [11]. The potential parameters are q 1 1/ke=36.4K, b =3.43 &, 11=11.

1, 12/kB=15.5K, b 1=3.374, 12=12.7, 22 /kB=10.57K, b 22=2.97A, =22=13.6,

where the subscript 1 denotes hydrogen. In each row the upper results are pressures(GPa)

and the lower results are excess internal energies(kJ/mol). Results in the columns headed

Mixture and Ree are from 256-particle Monte-Carlo simulations [11] Results in the

columns headed I, II and III were obtained by using Ross' procedure [12] in the

perturbative manner described in the text.

2
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states simulated by Ree but inferior to both I and Ree' s empirical rules at low

V temperatures. We do not, however, regard the small changes in accuracy between Ree, I

and II as very significant. More important is our hope that our approach to the mixing

rules will prove useful for application in the manner indicated above to non-conformal

potentials other than exponential-six.
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8

gx(r) = a,, rib }) (12)
xx x

Substituting these relations in the compressibility and energy (or virial) equations yields the

MRs

III <b3 3-3 > , <b 3 a- 3 e -/(a-6)> , <cb3a4/(a-6)>

without any need to consider only the part of the potential near its minimum.

Unfortunately, (11) and (12) have the opposite effect to what is expected physically at high

pressures: they indicate a principal peak in g(r) at larger r for softer potentials (i.e. lower

€(i.

Ideally one would like to test the MRs proposed above by simulations, as Ree did,

but another reliable method for the EPFs is Ross' semi-empirical variational procedure

[12), which we have used to obtain the tabulated results. Although Ross' procedure is

accurate to only 1-2% in absolute terms (and seems to deteriorate further at very high

pressures), we believe that it can accurately distinguish much smaller differences between

thermodynamic properties of similar potentials at the same temperature and density. Thus

0 the tabulated results are based on the assumption that the change in exact EPF

thermodynamics between Ree's MRs and I, II or III is equal to the corresponding change in

the Ross thermodynamics.

0
On the basis of these results we conclude that III gives energies and pressures

which are consistently too high, I is (not unexpectedly) best at low temperatures but

deteriorates as the temperature increases, and It is on average best over the full range of

20
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important in determining the energy and virial equation integrals. We therefore use in the

energy (or virial) equation the Taylor expansion of , Jr) about b and demand only that EPF
I.i

and mixture results obtained by integrating the first two non-vanishing terms of the

expansion should be identical. Apart from the excluded volume MR <b >, which is still

obtained exactly as before from consideration of the compressibility equations, this

procedure leads to the MRs

1 <,b 3 > , <cb 3 a(a-7)/(a-6)>

if the energy equation is used or

II <eb 3d,-7)/(a-6> , <fb 3 ai2 -56)l/(a-6)> 1

when the virial equation is used.
W

Rules I give the same # and b as the vdWl rules and, since the a are all in the

range 11 -14, an a very close to but slightly lower than the value obtained by Ree. The
X

functions of a appearing in the MRs are just lt(k)(Q= 1 ,a), k=0,2,3, where (k) denotes

the kth derivative with respect to 1. A straightforward generalisation when there is more

than one shape parameter would be to obtain the extra MRs necessary in an analogous way

from higher derivatives.

For exponential-six potentials it might seem attractive, from a purely mathematical

viewpoint, to assume instead of (5) and (6) the scalings

g (r) = r/b,) (1 1)

and

19
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3. Generelietion

One generalisation of vdW1 theory to mixtures of conformal diatomic molecules has

recently been proposed [8] but we shall be concerned here only with non-conformal

spherical molecules. There are at least two reasons why one may wish to study such

mixtures. First, real fluids are not satisfactorily represented by conformal potentials [9]

and, second, the effective spherical potentials which can be used to accurately reproduce

thermodynamics of some non-spherical molecules are not in general conformal even when

the original molecular potentials are [10].

We continue to scale the interactions according to their minima, as in the conformal

case, but now allow for differences between the shapes of the 0 through thei

introduction of a set of parameters a

, *(r) = e 4q r/b . ) (10)

The simplest and, for present purposes, the most relevant realisation of (9) is the

exponential-six potential where there is only a single parameter a for each o and 4Mj,

a)={6exp[a(1-t)3]-at-6}/Il-6). Ree [11] has recently found quite empirically that for

exponential-six mixtures the MRs <b3>, <eb3> and <b 3 a> lead to results as good as

those of vdW1 theory for Lennard-Jones mixtures.

We wish to retain the assumptions (5) and (6), which are physically reasonable at

low pressures, but observe that with these assumptions and an exponential-six pair

potential no simple scaling of the energy and virial integrals occurs. At low temperatures

near to the triple point, however, we expect the region around the minimum of the

potential (coinciding with the main peak of the radial distribution function) to be most

18



5

U Here an ambiguity occurs: if Aij is considered as an energy, vdW 1 yields the MR <A> but

it can equally well be considered as (potential range) leading to the MR <A 3/>. The latter

rule was used by Evans and Hanley [C7] for P=12 and gave good agreement with

simulations. It was also used in [41 where the VdW1 results for inverse power potentials

were shown to be quite close to those obtained From a first order expansion in I/v about

the Percus-Yevick equation of state for binary hard sphere mixtures.

W
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4

term to g(r) from Eqs. (5) and (6) which is the first order of a formally exact series in

powers of Ae:

g(r) = Gir/b) 1 + . H(r/b) + *.. } (7)

where H is assumed to be 'universal' in the same sense as G. Using (7), Leland et al.

[2] claim to obtain both of Eqs. (3) and (4) from consideration of the energy (or virial)

equation but in fact it seems clear that one obtains Eq. (4) together with the MR <f 2 b3>.

We believe that a more satisfactory way of obtaining (3) is by an appeal to

thermodynamic consistency. If we substitute (5) and (6) in the compressibility equation

+(Ep/p=1 xix f dr { g, (r)-1} (8)

for both the mixture and the EPF and demand that both give the same result, we obtain

Eq. (3). [We remark, incidentally, that substituting (7) in the compressibility equations

really does yield both (3) and (4)]. Thus we see that once we have decided to represent a

conformal mixture by a conformal EPF and made the assumptions (5) and (6). we are

naturally driven to choose the vdW1 MRs for reasons of thermodynamic consistency.

For pair potentials determined by a single parameter only one MR is needed. In such

cases the excluded volume MR (3) seems to be more important than the energy MR (4).

This is very natural for hard sphere mixtures where the potential has no energy scale and

the <d3> MR, which for hard spheres could arise from consideration of either the virial or

compressibility equations, is successful [6]. Less obviously, it also seems to be true for

inverse power law potentials

o'j(r) =AI/ri = /O 1 0o(Oi/r)v P>3 (9)
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2. Justification

Clearly one cannot expect to 'derive' VdWI theory but there have been various

attempts to understand its success. Leland et al. [4] note that it arises naturally from

the vdW equation of state by (hence the name VdW1) but emphasize that its applicability

is not confined to fluids satisfying the VdW equation of state. Smith (5] has given a general

perturbation theory based on the reference EPF obtained with <Cm b n> and <cPbq> MRs.

which allows systematic corrections, but this gives no insight into why the choice

(m.n.p.q)-(O.3.1.3) should be especially accurate.

Other explanations have been based upon the assumption that the suitably scaled

radial distribution functions of both the mixture and the EPF have the same form. i.e.

g,(r = G(r/b I (5)

and

g,(r) = G(r/b ) , (6)

where the function G can depend on the temperature T=(kB0) - 1 and the total number

density p although these arguments are not shown explicitly. If relations (1). (2), (5) and

(6) are substituted in the energy (or virial) equations for both the mixture and EPF. then the

requirement that both expressions be equal leads to Eq. (4) [2,3]. This seems to be as

satisfactory a justification of Eq. 41 as one can hope to get, but the arguments used by

these authors for Eq. (3) seem flawed by oomparison.

0

Henderson and co-workers [3] merely take over Eq. (3) from the similar <d 3 > MR

(d represents sphere diameter) arising from consideration of the virial equation for hard

sphere mixtures [6). Leland et al. [2), on the other hand, in effect use a correction

15
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1. Introduction

Fluid mixtures are of great practical importance but theoretical calculations for them

are generally much harder than for single spec _ [1]. An exception is mixtures of

conformal spherical molecules not too different in size having pair interactions of the form

(lr) 4r/b) (1)
gJ IJ Ii

where 0 is a universal function and e and b define the well depth and the separation at
IJ IJ

its minimum respectively for the interaction between species i and j. For such mixtures,

the van der Waals one-fluid lvdWl) theory [2) is believed to be much better for

predicting thermodynamics than many more complicated approximations although this has

admittedly only been tested for Lennard-Jones mixtures with *(J)=t-12-24 - ' [3. In

vdW1 theory, the mixture is replaced by an equivalent pure fluid (EPF) with pair interaction

* (r) = Vr/b ). (2)
x X x

Here the EPF parameters are defined by

b 3 xxb 3 (3)x I J I]

and

a b 3= xx b (4)

where x are the fractional concentrations of the components. We shall have occasion to

refer to many different mixing rules (MRs) of this general form and so for brevity we

refer to (3) and 14) in an obvious notation as the MRs <b3 > and <eb 3>.

14
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the search for similar proceoures for non-spherical fluids where the

situation is less satisfactory at the present time, although a certain

amount of progress has been made in recent years - especially for

non-polar one component diatomics [2]. It is the purpose of this note

to investigate a simple scheme for mixtures of such molecules.

2. Formulation of the Problem

The interactions in a n-component mixture of symmetric diatomic

molecules interacting via site-site pair potentials have the form

v (R, .pqQ 2 ) i (R ± 1/2 z Q 1/2 Y _ 22 4 )
S 2 i2

where R is the vector between the centers of molecule I of species i

and molecule 2 of species j, and Qk' k=1,2, is a unit vector alone

the axis of molecule k. t. and Y. are the bondlengths of the1 3

molecules of species i and j respectively, and 4,j (r) is the

site-site potential between a site of species i ano a site of species

j. The summation in Eq. (1) is over all possible *, - pairs in the

argument of Pij

We shall focus here on the particular case

,-. .(r) = E U (r/ai.), "p (y) = 4[y- y -6 j

for which there are now some machine computaticns avaic: r

0 comparison with theory. One of these computations ccrres'crcs tC

parameter values of this system used fcr the moceli-c c, a .Y. -

C2H6 mixture around zero pressure [3]. The other ccrrespcrcs 'c

0 mixtures of N2 with molecules having the sane- arc 3 3s r -

but either half or twice its bond leneth ]7. Tc te specific, ,-r

28



N. enotea in [5] by N-N is 0.3292 while /o = G.I4 anc 4ia =

C.6584 respectively for the molecules denoted in '5] by N.tL ano N--N.

We are motivated to investigate this system at the present tiae

by a desire to find the "best" extension of the recently aeveloped

sphericalization procedure, the mecian potential [2,6,8,9], tc

mixtures. The median potential, which has been modified in various

ways [7], has been found to give good results for single component

aiatomics with relatively little labor [2,6-9]. The analysis is

particularly simple and accurate for one component L-J molecules where

NacGowan [7] found that the best modified median is obtained by

splitting the potential in (2) into its power law components. This

gives a median with a universal dependence on E, a and 4.

There are various ways that one can imagine generalizing the

median prescription to mixtures. One of the simplest is to

sphericalize all angle dependent potentials vi, about the centers

(or some other suitable points) of each molecule and then use existing

theories of spherical fluid mixtures. This is the path followed in

[I0] for "hard" mixtures of dumbells, spherocylinLrs and spheres.

For the available simulation results on such systems the resulting

r ixtures of "mecian" hard spheres turned out to be very nearl

adoitive - for which the Nlansoori-Carnahan-Starling-Lelanc

approximation is known to be quite accurate. 1
For softer interactions there is no simple theory even for

spherical mixtures except for the case of van cer kaals' type

irteractions 0 ij.(r) = £ (r/a .). For such mixtures the "vcV.

I-fluid thecry" in which a mixture with densities = x c is



representec by a one component fluid with censit) anc pctential

-3 3o = xx ij , (3)

3 13
S xix j oij Cij/0

3  (4)

is at least as accurate as much more elaborate procedures. This

mixing rule has been extended recently by Ree [11] to mixtures of

particles interacting via exponential-six potentials where 0 i(r) is
13

of the form cij.(r/.ij, aij), v(y,a) = (6 exp[a(Z-y)] -

a/y 6)/(a-6). It was found there, by trial and error, that adding to

(3) and (4) the rule

3 -- 3
a a xxj x ijxij ij/(E ) (5)

gave very good results over a wide range of densities and

tenperatures. This is encouraging as it shows again that suitable

simple schemes do work.

Unfortunately the spherical potentials wi (R) obtained by
13

"necianizing" the angle dependent potentials v ij(R, l,2) are

not generally given by a simple formula for which (3) and (4) can bc

usea directly. This is true even for the case in Eq. (1)-( ). It

therefore occurred to us that since the site-site potentials in (2)

are of simple form it is worth trying a molecular 1-fluid theory in

which a and Cwould still be given by (3) and (4), and 7woulo be

given by a suitable mixing rule. In the present work we exclusively

use the simple rule

30



=. x (6)

for the equivalent bondlength.

W A plausibility argument is given in the Appendix for a more

complicated rule (A.16) for Z, similar to (5), but for all mixtures

where simulations are available the 's obtained from (6) and (A.16)

are almost identical (in many cases exactly so). For the computer

simulations of the CO2 - C2H6 mixture treated as rigid diatomics

[3], the two lengths I and X are very close to each other ano so
2

any reasonable mixing rule will give essentially the same X. For the

mixtures of [5], on the other hand, one is just testing the mixing

rule (6) for it. Unfortunately the number of available results is not

sufficient to permit, at this time, testing of different possibilities

for 7 and indeed there appears to be at least one misprint among the

published data in [5]. Additional computer simulations systematically

varying the parameters £, a.., and x. would be mostvyin th aaees j ij' I

useful.

3. Results

With the c, a and 4 given by Eqs. (3), (4), and (6), w-

sphericalize using MacGowan's procedure [7] for diatomic Lennard-Jones

potentials and use the resulting spherical potential in Ross'

semi-empirical variational procedure [12] to obtain the Helrnhcltz free

energy, and from it by numerical differentiation the reported

pressures. We also calculate the excess internal energy wherever it

is available from the simulation . We remark that our calculations

are very quick, requiring less than one second of CPU time on a DEC 20

computer per thermodynamic point.
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We compare the available results cf molecular dynamics

simulations of C02-C2h6[3] with cur calculations in Tables I, II

and III. Since the molecular dynamics calculations for C 2-C2 6

have as one of their purposes to obtain the set of a' Eij'

i,j=1,2, that gives the best intermolecular potential for that system;

we see entries in Tables I through III corresponding to different

values of those parameters, at a few different thermodynamic points.

Our results for the C02-C2H6 mixture are promising. The

compressibility factors pV/NkT, which are near zero, agree with the

molecular dynamics calculations within about 0.2 which corresponcs tc

differences in pressures of about 10 IvPa, and the excess internal

energies per molecule in units of kT, U/NkT to within 0.2 which

ccrresponds to differences in excess internal energy of about C.5

Kj/mol. These discrepancies are about a factor of 2 larger for the

pressures and about the same for U than those observed when using the

median procedure for the pure CO2 and C2H 6 fluids. Also the

tendencies for our calculated values are the same as for the

simulations.

We show in Table IV the comparison between this 1-molecular

fluid apprcach plus "medianization" with the results available for

pure fluids and mixtures of molecules of elongations Z/c of O.6EE4,

C.32S2 and 0.1646, respectively [5]. As alreaoy menticnec these

molecules are denoted in [5] by N--N, N-N ano N.N ano all have the

same E and c as N,. The few results available co not allow us to

draw any firm conclusion. We believe that the excess internal ererc

reported in [5] for the pure N-N fluid is in error (see Table II).

*
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Our results show that the approach taken coula be fruitful.

However, more data from computer simulations are needed before one can

W opt on a firm basis for one of the possible routes to an extension of

the vOW-l-fluid approximation now in use for mixtures of spherical

molecules to mixtures of non-spherical molecules.
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Table I

.uILer Ccncertra- (A) c 22 (A C12A)t12a/kctKr Ccrpress-

E ensity Lion of CO2  i Li I)i t, Factor

Thi PV/NkT1[-]x Th is N L

Work

2.370* -0.54

0.01082 0.50 2.360* 3.506 3.248 150.0 -0.58 -0.376

2.349* 1 -0.61

0.01082 0.50 2.360 3.506 3.300 145.0 -0.35 0.024

0.00865 0.35 2.356 3.550 3.300 145.0 j -1.02 -0.647

C.01037 0.35 2.356 3.550 3.300 145.0 -0.08 C.074

Comparison between the molecular dynamics (MD) calculations [3]

and the "medianized" 1-f moleculIr approximation explained in the text

for a mixture of CO2 (subindex C) - C2H 6 treated as rigid
0 0

Lennard-Jones diatomics with = 2.370 A and z 2 = 2.349 A. The

compressibility factors are near zero so that small absolute

]ifferences are large in relative terms. The temperature was

7 241 K, i 2.989 A, /llk = 163.6 °K, E 2k = 137.5 K.,11 = 22/ 1 7.

*Tese three values are 41, (4 1+ 4)12 and Z, respectively.

They are ircluced to see hew cur results in a particular case are

alterec L' var21ng from I tc 41.
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Table II

Number Concentra- Z(A) E12/k Compress- Excess Internal Energy
Density tion of CO2  ibility Factori per olecule in Unitsl

0 K PV/NkT of kT U/NkT

[A-  ] 1 T r k This C
WorkWork

0.00833 0.00 2.349 149.85 0.02 0.059 -4.55 -4.421

0.01302 1.00 2.370 149.85 -0.13 0.066 -5.11 -5.324

0.01023 0.70 2.364 149.85 -0.54 -0.226 -4.41 -4.573

0.C1023 0.70 2.364 120.0 -0.08 0.099 -3.98 -4.149

0 0

Same as Table I. T = 269.3 °K, Oll = 3.035 A, 022 3.592 A,

012 = 3.3135 A, E1l/k = 163.3 OK, E22/k = 137.5 °K.

wI

0

1
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Table III

Number Concentra- T(A) Compressibility Factor Excess Internal Energy

Density tionof CO- PV/NkT per Nolecule in Units of kT
U/NkT

3] x This Wcrk YD This Work NC
4I

C.C1369 i 1 2.370 0.33 C.411 I -..39 -5.596

C.01303 1 2.370 -0.13 C.066 - -

0.01232 1 2.370 -0.48 -0.186 i -4.79 -5.028

0.01172 0.7 2.364 0.64 0.723 -4.53 -4.818

0.01021 0.7 2.364 -0.15 0.129 -3.88 -4.166

0.008696 0.7 2.364 -u.42 -0.102 -3.21 -3.599

0.008914 0.4229 2.358 -0.12 0.124 -3.60 -3.898

C.008478 0.1656 2.352 -0.13 0.127 -3.88 -4.09C0

0.009014 0 2.349 0.27 0.445 -4.63 -4.800

0.C08313 0 2.349 -0.20 0.058 - -

C.007812 0 2.349 -0.40 -0.072 -3.93 -4.166

C.007608 0 2.349 -0.46 -0.120 -3.81 -4.059

Same as Table 1. T = 269.25 *K. The Lennard-Jones parameters are
a 0 a

'III= 3.035 A, a 22 = 3.520 A, a12 = 3,2775 A, and E 11/k =

163.29 'K, E22/k = 137.49 "K, E12 /k = 120 'K. The uncertainty in

the MO compressibility factors is estimated to te +C.C1.
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Table IV

Temperature System Cla Compressibility Excess Internal Enerqy

T Factor per N'elecule ir Lnits
K PV/NkT of kT L/NkT

This Work VD This Werk V

102.6 pure N-N 0.3292 2.28 1.91 -5.89 -3.67

99.1 pure N-N 0.6584 19.47 14.59 -3.77 -3.79

101.0 pure N.N 0.1646 -1.66 -0.92 -6.60 -6.22

equi'olar
108.2 N--N/N.N 0.4150 5.40 4.45 -5.13 -5.03

equimolar

110.9 N--N/N-N 0.4938 9.05 6.89 -4.5C -4.38

Comparison between MD results of [5] with the 1-f molecular plus

"medianization" procedure explained in the text. The L-J2 pararreters0i
are those for N2 [4], a = 3.31 A, c/k = 37.3 °K for all molecules.

0-3

The density for all cases is p = 0.01779 A . As explainec in text,
p4

the /'s for N.N, N-N ano N--N are C.1646, 0.3292 and C.6584

respectively.

1We Lelieve this result to be in error.
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APPENDIX

NIXING RLLES FCR HONONUCLEAR CONFORNAL CIATC iCS

For one-ccrrponent homonuclear diatorrics, the energy,

corrpressibility and virial equations are respectively

Uex/N 2ofdr g (r) (r) A.)

kT(ap/ap)T = I + p fdr [g (r) - 1 A.2)

p = NT - 2 p d [r g0(r) - (z//) g (r)] o/cr (A.3)

with the following analogous results for mixtures:

Uex /N = 2-xxj for gOO(r) q*ij(r) (A.4)

kT(ac/ap)T r+  x: Lgij~ (r) - 1] .

_2 coo5 a1c

p "kT - P x xj for [rg 0(r) - ( .I/7)g (r)3 d I/r
i ij ij

Here i is the total number density, x. the fractional concentra-
8CC

tlcrs, ),.(r) the site-site potential enercies, aiCD (r) the

site-site racial distribution functions with g6 the

ccrrespcrninc 1CC spherical harrrcnics and

wrere 4. are the bcnalenaths.

,e ncw restrict attention to site-site potential enercies hairc

the simple scaling property

r) : (r/.ii ij " i '
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Clearly it is poss i te tc obtan ra sirple cre-f luic rrccC- I 'a-na ICC.cus

tc van cer W.aals one-fluic for atomic licuics) if ,.e assumre that the

aj.satisfy the simple scalines

g. . (r) = G (rio..j) 9;

gO(r) = G 10(r/o..) ~~C

E oth of these may be inclucec in the single statement

o. .(rJ21 2-) = G(rlc. 2 (.J1
~i2 -L~ i ' -2

for the full angle-aepencient site-centerea correlation function, We

assumre the samre types of scaling for the equivalent one-comrponent

homonuclear diatomic fluid, that is

g(r, ~)=G(rlo, 1 2)~(A

InsertiflQ (A.12) ana (A.13) in (A.l)-(A.3) ano (A.8) dnr (A.11)

in (A.4)-(A.6) followed by eouating (A.1) with (9.4), (A.2) with

anc (A.3) with (A.6) yields the following mixing rules:

E C =E E (. 14

12

C E X i 7i
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c . A anc - .-TI are icertical to the atomic vc . if rules arc,

rterestincl), '.it) is Just Ree's rule (5) for expcnential-sx

rTcraton cs with a replacea by 0. 0

'Ae rerark that, in the context of atomic fluias, (A.14) has

usuall} been justified by using the energy equation, or alternatively

the virial equation, in a manner analocous to that cescribec above. .

On the ctrer hand, the argunent leading from the compressibility

equation to (A.I) does not seem to have been given previously for

atcnic fluids. Although one cannot of course "aerive" approximate

mixing rules, we feel that our use of the compressibility equation is

somewhat mere satisfying than previous approaches. Cnce we aecice to

seek an equivalent pure fluid and make the scaling assumption for the

correlation functions then reauiring thermodynamic consistency leads

raturally to Eas. (A.14) and (A.15) [and, in the diatomic case,

0
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