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ABSTRACT

;o

This investigation develops an axisymmetric heat transfer-
combustion model of a porous medium within a circular cylin-
der. System flow is governed by Darcy's law. Carbon and
air properties are treated as variables of temperature. A
combined continuity-Darcy equation, an oxygen mass balance
equation, and energy balance equations (one each) for air
and carbon, describe the conservation laws of the system.
Transport mechanisms for oxygen mass transfer are molecular
diffusion and convective transport, and an oxygen consumption
term to account for combustion is included. Heat transfer
mechanisms included in the model are conduction and convec-
tion. Radiation 1s accounted for at applicable boundaries
only. Nonvolatile combustion is accounted for in the carbon
energy and oxygen mass balance equations as a heat generation
term of Arrhenius type. The numerical solution of four
coupled, nonlinear, transient partial differential field

equations is accomplished using the Galerkin formulation of

o the Finite Element Method. The effect of porosity on system
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increase with increasing Reynolds numbers. Boffa [Ref. 12]
has shown that for a fixed Reynolds number, inertial effects
diminish with increasing air temperature. Darcy's law for

two-dimensional flow 1s,

where Q 1s the filter velocity or the volumetric flow rate
per unlt cross-sectional area; m 1s the specific permeability;
g 1s the gravitational acceleration; ; and ; are the

unit vectors 1in the r and z directions, respectively; and

dP/dr and dP/dz are the pressure gradients in tle r and z

directions, respectively. The assumption here is that the r

(radial) and z (axial) velocity components each react to the
pressure independent of the other. The specific permeability
of the porous medium used in the model is,
2
= Bz

m 96(1) (3.6)
Expression 3.6 1is based on a cappilaric-serial model given
by Scheidegger [Ref. 10]. Expressions for permeability vary

with the physical assumptions of the flow paths incorporated

into the model. Permeability also varies with Lne opore size
distribution assumed. Physically, permeability and porosity
are not related [(Ref. 9]. Porosity is a quantifiable

property of the porous medium, whereas permeability 1is a

25




as 0.99. Changes in particle diameter are incorporated in
the model and are discussed 1in Section III.D with carbon

combustion.

B. DARCY'S LAW AND PORE VELOCITY

The Reynolds number for porous media is defined by

>_sd
a

U

where s 1is the local pore velocity, o is the mass density of
air, and . 1s the dynamic viscosity. The magnitude of the
Reynolds number indicates whether fluid motion is dominated
by molecular, viscous, or inertial effects. Most investi-
gations of flow through porous media indicate flow regimes
of viscous and ilnertially dominated flows. The Navier-
Stokes equations apply to fluid motion possessing such
Reynolds numbers. Because of the geometry involved in a
consolidated (rigid) porous medium and the no-slip boundary
condition (i.e., s = 0 at a solid-fluid interface), solution
of the Navier-Stokes equations 1is difficult for a porous
medium. Scheidegger [Ref. 10] points out that extensive
experimental work with porous media indicates fluid flow is
governed by Darcy's law for the range of Reynolds numbers
where viscous effects dominate. The upper limit (velocity)
Reynolds number in these 1lnvestigations is subject to dis-

agreement and varies from 0.1 to 75. Inertial effects

24
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for spherical particles. Eguation 3.3 1s sometimes used

and assumes one-half of the total internal surface area

is effective for convective heat transfer. The fractiocnal
amount of total area is an estimate based on Fontenot's [Ref. 37]
experimental results and does not generally apply to porous
media [Ref. 9]. The Kozeny relations, alternate expressions
of the specific internal area, are discussed by Scheidegger
[Ref. 10}. Advantages of the Kozeny relations are fair
agreement with experimental values and calculations that are
independent of particle shape. A disadvantage 1s the
failure of the relations to predict accurate values of 7z at
high values of porosity [Ref. 9]. For the geometric
configuration of Figure 3.1, the tortuosity depends on the
ratio 4/D. Carman [Ref. 1ll1] presents a table of measured
tortuosity factors of various materials and geometries, and
points out differences between analytical determinations of
tortuosity. In this study, his recommended value of 1.4 is
used. Particle size decreases with consumption. As a
result, thermophysical properties which depend on particle
diameter, as well as temperature, are functions of time and
space. The numerical model presented assumes matrix
rigidity as particle diameter decreases. This assumption
gives rise to an increase in porosity during combustion.
Although Scheidegger ([Ref. 10} in his discussion of the
packing theory of spheres, reports .875 porosity as the
threshold for stability 1in a porous matrix, Carman [Ref. 11]

reports on investigations performed on porosities as high

23
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path to the straight (line) path displacement of the
particle. Permeability, a measure of hydraulic conductivity,
is a property of the porous medium that depends upon the
four characteristics mentioned above. Scheidegger [Ref. 10]
presents methods used to measure the properties of porous
media. Methods discussed are essentially experimental in
nature.

The porous medium was mcdelled as shown in Figure 3.1.
In Figure 3.1, D is the particle center-to-center distance,
and d is the particle diameter. From the idealized gecmetry,

the porosity for spherical particles is,

o=
ol a.
©
‘,_l

The pore diameter is obtained from an expression proposed

by Carman (Ref. 11],

5 = 4p (3.2)

Equation 3.2 is analogous to a more familiar form of mean
hydraulic diameter, 4v/A, where v is the void volume and A

is the wetted surface area. The specific internal area, 2,
based on the idealized geometry of Figure 3.1 may be expressed

as,

2
1 4
7 = 2= (3.3)
27 p3
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III. THEORY AND BACKGROUND

A. DESCRIPTION OF THE POROUS MEDIUM

In this work, a porous medium is considered to be a
solid containing interconnecting pores that allow fluid to
permeate and flow through the solid. Either of two classes
of porous media, consolidated (solid and rigid) and uncon-
solidated {(comprised of discrete particles as found in
granular beds) may be considered. Each class of porous
media may have isotropic nonhomogeneous properties.

The common characteristics of all porous media are:
{1) porosity, (2) specific internal area, (3) pore diameter,
and (4) tortuosity. Porosity, p, is defined as the ratio of
void volume to total volume. The specific internal area, Z,
is the ratio of internal surface area to bulk volume. 1In
general, the distribution of pore size in a porous medium is
random (nonhomogenecus) and dynamic (subject to small
strains induced by the transient pressure field). The situa-
tion motivates the investigator to treat the porous medium
as a continuum possessing idealistic geometrical properties
of porosity and pore diameter. The specific internal area
is obtained from the porosity model. Though many conventions
exist for the definition of a conceptual pore diameter, in
this study a hydraulic diameter analogy is employed. The

tortuosity, 1, of a porous medium is the ratio of the flow

21
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transfer mechanism of: (1) molecular diffusion, and
(2) convective transport of species. An oxygen consumption
term due to combustion is included. |

The fourth field equation involves the system pressure
gradient. The equation is a combined Darcy's law and air
mass continuity equation for the system.

The conservation equations describing the system field
are four transient, coupled, nonlinear partial differential
equations. The four equations are solved by a two-dimensional
Galerkin formulation of the Finite Element Method. The inte-
gration scheme used for this highly stiff system is one
presented by Gear and modified by Franke [Ref. 30]. The
scheme is especially suited to systems of implicit and stiff
differential equations. The integration scheme 1is used in

conjunction with an optimal compact storage scheme proposed

by Franke and Salinas [Ref. 29].
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II. PROBLEM DESCRIPTION

The problem under investigation is that of combustion
of a porous fuel (carbon) imbedded in a cylindrical container.
Pressure gradients induce convective currents through the
medium. The air flow produces two opposing effects:
(1) internal convective heat transfer, and (2) a supply of
oxygen to promote heat generation through combustion.
Extinguishment or sustained combustion of the porous medium
depend on the interaction of these effects. If heat transfer
dominates, the combustion will proceed to extinguishment,

otherwise combustion will continue. A mathematical model was

developed to provide an understanding of this interaction
and its effect on thermal behavior.

The mathematical model is formulated as follows. Energy
balances on the carbon and convected air provide heat
transfer equations for each. The heat transfer mechanisms
incorporated in the model are: (1) conduction, (2) convection
and (3) radiation (where applicable, at boundaries). 1In
addition, nonvolatile combustion is included in the carbon
heat transfer equation as a fractional order heat generation

term of Arrhenius type.

. The conservation of species law is applied to the oxygen
molecule concentration to yield a third equation. The

resulting oxygen mass transfer equation includes the

19
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medium. The heat transfer mechanisms included were conduc-
tion, convection and radiation. One problem considered was
a porous mat subject to Arrhenius combustion in which all
properties were temperature dependent. The capillary serial
(permeability) model introduced by Scheidegger (Ref. 10] was
employed.

The current investigation considers the effects of
porosity on system behavior for a two-dimensional (axi-
symmetric) nodel of combustion in a porous medium. A great
part cf the following analysis may be found in Vatikiotis
[Ref. 9]. The pertinent parts are repeated here for conven-
ience to the reader. Deviations are cited and are for the
most part due to the axisymmetric two-dimensional aspect of
the present model vice the previous one-dimensional model.
The storage scheme employed by the numerical model warrants
the reader's attention. The savings in computer storage
realized by utilizing the method of Franke and Salinas
[Ref. 29], is substantial and is addressed in the Numerical
Section of this work. The nonlinear combustion term is
treated as a bilinear spatial operator of carbon temperature
and oxygen concentration, in contrast tc the Vatikiotis treat-
ment of the term as an excitation vector. The idea behind
the present treatment was to capture the effects of the non-
linear combustion term on both of these dependent variables.
It was felt that this would alleviate some numerical diffi-
culties. A numerical model is formulated and results are

presented.

18
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The boundary configuration for this work was a two-dimensional

region with a line of vertical symmetry, enclosed on both

sides by impermeable, insulated sidewalls, and heated along
half of the base. The convective flow of fluid through
porous media heated from below has applications in the study
of behavior of geothermal systems. Hickox studied convection
as an application to sub-seabed disposal of nuclear waste.

The problem was a two-dimensional transient analysis of free
convection produced by a concentrated heat source (implanted
container of waste material) in the subsurface sedimentary
layer of a seabed. The porous medium was assumed to be rigid,
homogeneous and isotropic. Density changes of the fluid were
accounted for only in the buovyancy term of Darcy's law.
Permeability, viscosity and thermal conductivity were assumed
to be constant. Chan and Banerjee conducted a transient
three-dimensional analysis of natural convection in porous
media. In addition to convective heat transfer, conduction
was also considered between solid spherical particles that
comprise the porous medium. The porous medium was considered
homogeneous and isotropic in its physical properties including

permeability and thermal conductivity, both of which were

assumed to be constant with temperature. Fluid density was
considered to be constant except in the buoyancy term of

) Darcy's law.

AL At Siaahe Sus BN e e S aund

In 1982, Vatikiotis [(Ref. 9] considered a transient one-

dimensional heat transfer and combustion model of a porous

y
S
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Ignition parameters in porous solid fuels have been

analyzed by Kim and Chung [Ref. 4]. They investigated

three porous solid fuel geometries (a semi-infinite slab, an
infinitely long circular cylinder and a sphere) with con-
stant energy and gaseous oxidant fluxes at the fuel surface.
Laplace transformation of the nondimensionalized oxidant mass
equation and fuel energy equation allowed for asymptotic
solution of a nondimensionalized transient temperature
equation which is valid in the neighborhood of the fuel
surface. Observations included shorter ignition times for

spheres compared to slabs. Times for ignition increased with

fuel size and approached values of semi-infinite slabs
asymptotically. Other effects of size and geometry of porous
solid fuels on ignition parameters are presented.

Saatdjian and Caltagirone [Ref. 5] investigated a transient
two-dimensional combustion model with natural convection.

A porous medium undergoing exothermic combustion was saturated
by a gas and bounded by two impermeable planes. Permeability,
fluid viscosity, thermal conductivity of the porous medium,
and the heat of reaction were assumed to be constants.

Horne and O'Sullivan [Ref. 6], Hickox [Ref. 7] and Chan
and Banerjee [Ref. 8], investigated the natural convection
phenomenon in porous media. Exothermic reactions were not
addressed in these investigations. Horne and 0O'Sullivan
considered the effects of variable viscosity on the stability

of a porous layer in a transient two-dimensional problem.
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Investigations by Kordylewski on the influence of aero-
dynamics on the critical parameters of thermal ignition
[Ref. 1], examined homogeneous combpustion in a two-dimensional
cylindrical reactor. The transient analysis involved
Arrhenius combustion of a solid fuel. Heat transfer mechanisms
considered were convection and conduction. Because the inves-
tigation dealt with thermal ignition theory, reactant con-
sumption was omitted. The flow field was assumed to be
steady prior to ignition and constant fluid properties were
assumed.

Safety dictates the assessment of the structural integrity
of a building after a severe fire. 1In order to predict
stresses due to fire in buildings, the thermal response must
be known. Sahota and Pagni [Ref. 2], formulated a transient
solution for two-phase, two-component flow in one-dimensional
porous concrete structures. The mechanisms considered in-
cluded: heat conduction, molecular diffusion of gaseous
components, and pressure-driven convective flow subject to
Darcy's law.

A sudden reduction in feed temperature in a packed-bed
reactor leads to the transient temperature rise known as
"wrong-way behavior." This behavior was investigated by
Mehté, Sams, and Luss [Ref. 3]. The work identifies the
important rate processes and parameters which cause the
behavior, and generates an expression for predicting the

magnitude of the maximum transient temperature.

15
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I. INTRODUCTION

A. PRIOR INVESTIGATIONS

The problem of characterizing physical systems involving
combustion and quantifying the accompanying thermal response
has received attention in recent years. The level of diffi-
culty encountered in a problem of this type precluded
analytical as well as numerical solutions. The difficulty
of the problem lies in the number of disciplines that encom-
pass it. The problem involves the kinetics of combustion,
heat and mass transfer mechanisms and fluid flow. Numerical
solutions with increased éfficiency in computation are now
possible with high speed computers.

The combustion problem has applications in the areas of
forest fire control, enexrgy conservation, underground
(nuclear) fuel storage and waste disposal, and natural gas
fire control. Major contributions may be made in the area
of energy production and conservation by the analysis of

heat generation and ignition characteristics of combustible

materials.
The characterization of combustion and heat transfer in

porous media has been of particular interest. A brief survey

_. of some of the investigations in the area of combustion and
heat transfer in porous media follows. The intent 1is to
acquaint the reader with work in the field that offered

;,- insight into the formulation of this investigation.

14
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3 -- Kronecker delta function

[\]
|
|

Thermal emissivity

Solution coefficient

IS8
]
|

A -- PField operator

U -- Dynamic viscosity
Z -- Local element coordinate
J -- Mass density

-- Stefan-Boltzman constant

i

—
]
|

Tortuosity, stress
P -- Oxygen concentration

J -- Particle shape factor, approximate solution

Subscripts

a -- Air
c -- Carbon
CO =-- Carbon monoxide
C02 -- Carbon dioxide
e -- Effective
fm -- Film
g -- Heat generation
i -~ At the current time or step
[ ig -- Ignition
.
L o == Cylinder dimension (i.e., r, is cylinder radius,
b z 1is cylinder length)
Y o
O2 -- Oxygen
P -- At constant pressure
r -- Radiation
@
. s -- Solid

12
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constitutive property (i.e., a property specified by a

constitutive relation, Darcy's law). The specific permea-
bility 1is proportional to the filter velocity induced by a
unit pressure gradient. Darcy's law 1s not derived from
first principles but through exhaustive experimental
analyses.

The Dupuit-Forcheimer assumption, addressed in Carman
(Ref. 11], relates the loca. pore velocity to the filter

velocity by,

The hypcthesis 1s that the local pore velocity 1is greater
than the filter velocity. The actual velocity in a single
pore is a function of the fluid element's location within
the pore. The Dupuit-Forcheimer assumption defines an
"average" velocity within the pore.

The continuity equation for two-dimensional flow in

porous media with nonconstant porosity distributions is,

D(pp,)

-——Dt——"'ppaDlVV = 0 (3.8)

Invoking the Dupuit-Forcheimer assumption and Darcy's law,

the continuity equation becomes,

D(po,) ~ ~
a . .—m dP oP _
—Bt ~ tPe PivisaT T+ (57 - pe 92 = 0 (3.9)




o

Eguation 3.9 f‘neglecting body forces) isone of four field equations

cast 1nto a finite element formulation later in this work. From the
pressure dilstribution, the pore velocity distribution is

obtained by 1nvoking Darcy's law and the Dupuit-Forcheimer
assumption. The Jderivation of Equatior 3.9 is presented in

Appendix A.

C. SEMENOV MODEL OF COMBUSTION

The model of Semenov described in Frank-Kamenetskii
[Ref. 13] and Vulis [Ref. 1l4], is the combustion model
employed herein. The basis of the model is the relation of
reaction rate to temperature and the interaction of heat
generation and heat transfer. The reaction rate expression
Rc’ is the Arrhenius expression for a simple n-th order

reaction,

) (3.10)

where A is the time constant of the chemical reaction, E 1is
the activation energy, Ru i1s the Universal G-s Constant,

%C 1s the absolute carbon temperature, and ¢ is the oxygen
concentration. In a simple reaction, the reaction rate
depends on the concentrations of reactants and not on the
oroducts. The heat generated by the reaction is obtained

by multiplying Expression 3.10 by the heat (enthalpy) of

combustion. As explained in [Ref. 13], a theory of combustion

27
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can be constructed only if certain reasonable assumptions
are made. For example, in order to regard the initial
states as stationary, one must neglect the reaction rates

at these states. The empirical law of chemical kinetics
embodied in the Arrhenius expression tells us that the reac-
tion rate never goes to zero but falls off exponentilally
with a decrease in temperature. XNeglect of the reactiocn
rate at the initial states 1s necessary %o achie.e nitlal
equilibrium. In a finite range of temperatures :o2ve
initial states, neglect of reaction rates 1s alsc -ustli.l:
[Ref. 13]. At room temperature the reaction rates are :>n
the order of 1.E-15 lbm—carbon/ftz—hr or smaller, vice

1.E+3 lbm—carbon/ftz—hr at 1500 °F.

D. ARRHENIUS LAW OF REACTION RATES

In 1934, Parker and Hottel [Ref. 15] proposed an
Arrhenius expression for the reaction rate of carbon reacting
in air. The expression assumed a simple first order reaction
for the combustion of carbon in air. Frank-Kamenetskii
(Ref. 13] has shown that the Parker and Hottel data is better
correlated by a fracticonal order reaction, n between 1/3

and 2/3. A reaction order of 1/2 yields,

6 /2

R, = 2.065x 10° (R, 5t

e , exp(—57,240/Ru-Tc) (3.11)

In Expression 3.11, R, is in units of lbm—carbon/ftz—hr,

RO i1s the gas constant for oxygen (48.29 ft-1bf/lbm-R),
2

28
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L 3 . L
3 1is in lbm/ft7, Ru is 1.986 Btu/i‘bmole-R, and 'I‘c 1s 1in
- Rankine. In order to determine the rate of heat generation
t and the rate of oxygen consumption, the chemical reaction

for the combustion process must be considered. Although many
complex chains in chemical kinetics generally describe
combustion, a simple two-product analysis is employed in this
formulation. For nonvolatile combustion of carbon and

oxygen, two reactions that describe the process are,

0 - CO (3.12)

c + O2 >~ CO, (3.13)

where O denotes oxygen; and C, CO and CO2 denote carbon,
carbon monoxide and carbon dioxide, respectively. The ratio
of the mass rates of carbon monoxide to carbon dioxide
produced increases with increasing temperature. Arthur

(Ref. 16] presents an expression for the rate ratio as a

function of temperature (in Kelvin).

B Al o o

L0 - 2500 exp(-6240/T ) (3.14)
e CO2 c
=
r - . . s y
[ - The expression is valid for temperatures between 790 and
[‘ 1170 K (1310-2110 degrees Fahrenheit). As a result of this
temperature dependency, the stochiometric ratio and the heat
h of reaction are functions of temperature. Defining the
F. fraction of carbon monoxide being produced by

29




FCO = (_CT);)/(l + (EO—')) (3.15)

and the fraction of carbon dioxide as,

e = 1/(1 + (z57)) (3.16)

the heat of combustion is then expressed as,

AHR = FCO ;HCO + FC02 Lﬂcoz (3.17)

Values for the heats of combustion, AHCO and &HCOZ' as
functions of temperature may be obtained from JANAF (Joint
Army, Navy, and Air Force) tables [Ref. 17]. For the range
of temperatures being investigated (80-2000 degrees Fahren-
heit), the heats of combustion are 3966.3 Btu/lbm for FCO
and 14,121. Btu/lbm for FCOz' Frank-Kamenetskii [Ref. 13]
points out that over narrow ranges of temperature it is
permissible to use an approximate expression which correctly

describes the reaction rate. The stochiometric ratio (fuel

to oxygen) of the overall reaction is,

fR = fCO fcoz/(fCO2 FCO + fCO FCOZ) (3.18)
}.
f. where fCO 1s the stochiometric ratio for the reaction 3.12
X and fCO 1s the stochiometric ratio for the reaction 3.13.
2
The rate of heat generation, Rg, and the rate of oxygen
@
3
!
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R = H, R (3.19)
R = f R (3.20)

Parker's and Hottel's work [Ref. 15] and Arthur's work

[Ref. 16] were conducted with specific types of carbon.
Tables and references exist in Smoot and Pratt [Ref. 18] and
Frank-Kamenetskii [(Ref. 13} for rate expressions using other
types of carbon. The present model ailows for any simple
fractional order rate expression of Arrhenius type to

account for carbon consumption with CO and CO, byproducts.

2
For this work the Parker and Hottel rate expression as modi-
fied by Frank-Kamenetskii (n = 1/2) is used.

Particle diameter decreases with progressive combustion.
The rate of decrease depends on the amount of carbon con-
sumed at a point over time. Observations have shown that
the effect of decreasing particle diameter is significant

when the reaction is concentrated in a small region of the

porous medium. To account for this, an expression for the

time rate of diameter change as a function of reaction rate
R is derived (Appendix B). For spherical particles the equation
8
. iS,
i.
* d = -2R_zD°/(ro d%) (3.21)
t o) o]

~ 4
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where S 1s the bulk mass density of carbon. The diameter

and the reaction rate are functions of time and space.

E. CARBON HEAT TRANSFER EQUATION FOR POROUS MEDIA

T

The heat transfer egquations of the present investigation incor-
porate: (1) radiation (at boundaries where applicable), (2)internal
convection, (3) conducticon, (4) 1lnternal combustion, (5) temperature
dependency of properties, and (6) compressibility effects
of air into a two-dimensional (cylindrical coordinate)

formulation. The carbon eneryy conservation equation 1is,

3T
. S - T2 - _ -
(l-p)uccc e {(1-p) (ke) (’Tc) hZ(TC Ta) + RgZ (3.22)

«

The derivation of Equation 3.22 is presented in Appendix A.
Tne effective conductivity, ke’ of the porous solid was

proposed by Russel [Ref. 24},

kK = k < (3.23)

where kc and ka are bulk thermal conductivities of carbon
and air respectively, and p' = l-p. Russel's expression,
which is based on an electrical analogy, is valid for the
full range of porosities, 0.0 to 1.0.

Because of the difficulties encountered in a radiative

analogy to Fourier's law of conduction, the particle to
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particle radiative exchange in the porous medium is omitted.
The difficulties are: (1) the geometry does not easily allow
one to derive an expression for a "sink" temperature to use in
a linearized approximation of the Stefan-Boltzman egquation, and
(2) the multi~-wavelength characteristics of the radiation

phenomenon are not easily incorporated.

F. HEAT TRANSFER EQUATION FOR AIR IN POROUS MEDIA
The internal convective heat transfer coefficient of

Yoshida, Ramaswami, and Hougen [Ref. 33}, is given by,

_ ,-0.51 ‘ -2/3
h = 0.91 Re [v C G(C u/k,) Ve (3.24)

where ¢ 1s equal to 1 for spherical particles, G is a pseudo
mass velocity given by p 048 and Ca is the specific heat

of air at constant pressure. The fm subscript indicates
properties are to be evaluated at film temperature. Re' 1is

a pseudo Reynolds number defined by,

Re' G/z uy (3.25)
The air properties, as well as the internal convection coeffi-
cient, h, are temperature dependent. The reaction rate in
Equation 3.22 is given by Expression 3.19.

An energy balance on the air within the porous medium

obtains the second heat transfer equation,

33
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p:/aca -:?-E' = P (p ka /Ta) + hZ (TC -Ta)
: - Pp Qaca(v'«)Ta - (V- )pP (3.26)

]

The density of air, Sq is approximated by the ideal gas law.
Pressure terms are due to the compressibility of air. The
derivation of Equation 3.26 1s presented in Appendix A. All
propertles in Equation 3.26 are temperature dependent. The
properties of standard air were used in the model. Vatikiotis
[Ref. 9] points out that tolerable differences (average of

7% difference) between standcvrd air properties and properties

accounting for the presence of byproducts CO and CO

27 is
acceptable. Increased accuracy would introduce an additional
mass balance equation for either CO or COZ' Polynomial ex-

pressions used to calculate the thermophysical properties of
ailr are those presented by Vatikiotis [Ref. 9]. The expressions

are presented in Appendix B.

G. OXYGEN DIFFUSION EQUATION FOR POROUS MEDIA

The fourth field equation necessary to complete the
system of equations is provided by an oxygen species conser-
vation requirement. Transport mechanisms included in the
model are molecular diffusion (Fick's law), convective mass
flow and oxygen consumption due to combustion. Pressure and
temperature induced concentration gradients are considered

negligible. Vatikiotis [Ref. 9]}, provides examples for which

34
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diffusion arising from pressure and temperature gradients

is important. The oxygen mass balance equation is,

(o]

> = - =

P = Ve (p Deaﬁ) - (p2V) = Ry Z (3.27)

2
The derivation of Equation 3.27 is presented 1n Appendix A.
The effective diffusivity, De’ proposed by Denbigh and

Turner [Ref. 31] for a porous medium is

D = D/1 (3.28)

Expression 3.28 accounts for the tortuosity encountered by
the oxygen molecules as they flow through the porous medium.
The semi-empirical expression proopsed by Gilliland [Ref. 34]
is used to obtain the diffusivity of oxygen into air. The

expression 1is,

D = 435.7 T§/2(M;1+M—l) )< (3.29)

o . 2 . .
where 0 is in units of cm' /s, P is the total pressure in Pa,

Va and VO are the molecular volumes of air and oxygen,
2
respectively. Ma and MO are the molecular weights of air
2

and oxygen. The values of Va and V may be obtained in

9,

Holman [Ref. 35] as 29.9 and 7.4 cm3, respectively. The

oxygen consumption term 1n Eguation 3.27 is given by Expression

3.20.
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H. BOUNDARY CONDITIONS
Boundary conditions employed were as follows for the

carbon,

3T
— = 0 (3.30)
T L oo
r
o
(1-p) (k) = = -q" (3.31)
e’ 3z 2 -9 S
==
"“o
where dg is the starting heat flux.
3T - 44
(l—p)(ke) Tz z oe(Tc T.) (3.32)
= =
0
‘ 0 (1-D problems)
3T
- 2L = .33
(1 p)(ke) 7r{ r_, 1 (3.33)
r_ _ n4 4
7o hr(Tc T,) +0€(Tc T.)
(2-D problems)
For air,
9T _
-—3} = 0 (3.34)
3r | r _
l}'——o
o)
BTa
= - .35
p ka 57 z_, P oaCav(T T,) {3.35)
= =
o
36
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T, - = T (3.35a)
ER
o}
3Tas
p ka = ‘i_Z—_l = - p:aCa V(Ta—Tn) (3.36)
=
o
; 0 (1-D problems)
3T
a =
pka—:?i r _ = (3.37)
o) hr(Ta -T ) + O;(Ta -T.)
(2-D problems)
For pressure,
) = 0 (3.38)
5r) r )
— =
r
o}
P 2 _, = Pl (3.39)
z
o
P z_, = P2 (3.40)
2z
o}
3P _
ar‘_£=l = 0 (3.41)
r
o}
37
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Finally, for 02 concentration,

— r = 0 (3.42)
7 =0
o
PO, S e, T vi: =) (3.43)
z
O
= P (3.43a)
Z -9 ‘
z
o
el =, ) = vis=-2) (3.44)
2o
z
o
2z = SRER
pUe T or 0 (3.43)
L=
'r
o

Eguations 3.35, 3.36, 3.43, and 3.44 correspond to convective
flux conditlions on ailr temperature and 02 concentration.

At the air inlet (gi = 0.0), Dirichlet conditions, Egquations
3.35a and 3.43a mayobe imposed on the air temperature and
oxXygen concentration. The idea behind this treatment 1s that
in the presence of a semi-infinite medium (ambient ailr), the

air and O, concentration may be considered, to a first

2

approximation, very near ambient conditions. Eguations 3.°D,

3.34, 3.28 and 3.42 correspond to symmetry conditlions at

38
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]

:E = 0.0. guations 3.33, 3.37, 3.41 and 3.45 correspond

o
to impermeable boundaries and insulated boundaries at £ = 1.0
o

and are used 1in conjunction with one-dimensional problems.

The second part of Eguations 3.33 and 3.37 are the boundary
condltions that represent a relaxation of the radial insulat:icn

>f carbon and ailr temperatures which allow the system to

ceccme a zwo-dimensional heat transfer problem. It must be

2 tut however that the heat transtier ccefficients of
ZTieazions 3022 and 3.37 are not easily obtained. This work

"culd not proceed 1f the following assumptions were not made.

1% was assumed that the air and carbon had near egual prciiles

3t —— = _.2 505 that the same heat transfer coefficient would applyv

to both variables. If Equation 3.35 is used as a boundary

condition, the alr *temperature follows closely the carbon tempera-
cure at —- = L.0. TFurthermore it was assumed for simplicity ct

e
calculatizcn =—hat the heat transfier coefficient was constant.

Lcilrny 1s as follows. In order to determine the

weat otranstar ccefficient for the impressed temperature

roriLie3 2n o~ = 1.0, the temperatures themselves must be
>
LTUUNT e Torrect procedure would involve an initial esti-

mate i tne zrofile, calculation of the heat transfer coeffi-

1o, 33lution of the problem for one 1ntegration and
serification of the assumed and calculated temperature
crofirlaes.  Uzpon 3ultable verification of the profiles, the

same orocedure 13

erformed for the next lntegration. Other

o]

croblems arise for example 1f the radial heat transfer at
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4 sin .

- ) sin:;
i 2. +sin(2:2.)
i i

(4.14)

The constants Si are the roots of the transcendental alge-

bralic equation,

I
w
1
o
=
~
>
©
}_J
wn

Z. tan 3.
i i

Thus the soluticons have the Biot number of the slab as a
parameter. The roots of Eguation 4.15 are tabulated in
Appendix A to [Ref. 25].

3. The Cylinder

Consider the cylinder of Figure 4.1 (b). The suddenly

immersed cylinder satisfies the equation.,

5T _ % 5 5T
3t r Br(r gr) (4.16)
subject to an initial condition,
T(r,0) = Ti (4.17)
and a ccnvection condition at the surface: At r = ro,
»T
-k “=~ = h (T-T) (4.18)
'Y o} o)

The solution is given as a Fourier series in [Ref. 23]:
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5.E-1 hr., and iterated about the given initial fields.

This sufficiently demonstrated the first of several tests

NN

requisite to assure numerical code compatibility with the

integration scheme.

e Pkl

2. The Finite Slab

Consider the slab of thickness 2L 1n Figure 4.1 (a).

One seeks the solution of the one-dimensional conduction

equation,
T 21 ]
ST ; 41 1
< ¢ — (4.10) 1
2 X )
A
subject to an initial condition, a
1
T(x,0) = Ti (4.11)
and uniform convection conditions at both surfaces: At
X = :-L:
x 2L = s h(r-7) (4.12)
2X (@]

The exact solution is given as a Fourier series in [Ref. 23],

2 2
5 at/L cos (3,

‘ X
T. -T - 1 L
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- 22 nocdal points. The solution changed 5% from a 12 -12

[3W)

o a 22 - 22 nodal point model. VNext, a 17 <17 point non-

r

ey
daad

bty

orm grid model was investigated. It was found that

et

the solution changed approximately 2% from the 22 <22 nodal
colint model. At this point, 1t was determined that the
12 - 12 non-uniform nodal point afforded the desired balance

between cost, computational effort and computer-run time.

grid size kmax clock runtime {(min.)
(n ~n)
12 6,398 70
17 13,223 100
22 22,498 110

D. MODEL VALIDATION TESTS
In order to validate the capabilities and accuracy of
the numerical code, several tests were conducted.

1. The Steady State Problem

First, it was necessary to ensure the model's ability
to recognize a steady state condition. This was the simplest
of all tests (and first to be) performed. Initial (ambient)
conditions were imposed uniformly throughout the system on
the four fields: carbon temperature and air temperature
(80 degrees F.), pressure (2,116.8 psf) and oxygen concen-
tration (0.0172 lbm/ft3). An initial integration time step
equal to the minimum time step allowable (user input) l1l.E-6 hr.,
was selected. In less than five integrations the algorithm

switched to the maximum allowable time step (user input)
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superior to uniform grids. In fact, for many oproblems,
computer storage limitations require that a non-unifcrm grid
be used to cobtain reasonably accurate soluticns. ‘lion-
uniform grids allow the investigator to take advantage of
the knowledge of areas of severe combustion induced gradients.
"Stacking" elements in these areas asslists the algorithm in
producing more accurate and numerically stable results. For
similar degrees of accuracy with uniform grids, it is esti-
mated that grids on the order of 1000 <1000 nodal points
(and larger) would have been reguired. Nondimensionalized
length discretizations on the order of .001-.005 and smaller
near the air inlet boundary permit excitations on the system
boundaries to be propagated accurately through the medium.
Until discretizations on the order of non-dimensionalized
lengths of 0.001 were employed, numerical instability was
encountered in the carbon temperature field. This instability
was manifested by severe overshoot, leading to negative
temperatures in close proximity to severe thermal gradients.
For non-uniform grids it was found that grids below 10

nodal points in each direction were not adequate. The

temperatures obtained from these models were lower due to the
relatively low degree of grid refinement or discretization
possible with such few points. Grid refinement in this type
of problem 1is essential to capture the high activity (large
gradients) that 1s inherent in the combustion phenomenon.

A convergence study was done on several nodal points at

various times for non-uniform grids at 12 <12, 17 x17, and
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combustion occurring within the element. An element lcop is

performed to account for combustion terms in an elementally

—tamtaa a_x_m

averaged sense over the entire system spatial domain.

B. OPTIMAL COMPACT STORAGE (OCS)

The optimal compact storage scheme, presented by Franke
and Salinas [Ref. 29], employed in the solution of the
combustion problem, allowed the computational effort to
proceed with substantial savings in computer storage,

computer-run time, and ultimately dollar cost per run. In

the optimal compact storage scheme, only the non-zero coeffi-
cients are stored in a vector array. This results in a

very significant reduction of the storage area compared to

I e oo dond e

banded storage. One might encounter problems on the order

of 1000 <1000 DOF. (In this problem there are four degrees
of freedom at each nodal point. A 17 x17 grid requires a
1156 <1156 matrix if full storage is employed.) For banded
storage the bandwidth might be 200. The storage ratio for
bandwidth to full storage would be 0.2. Using 0OCS, a con-
servative estimate of the average number of equation entries
in this model is 20. The ratio of OCS to banded storage

1s 0.1. Thus in this example, the savings realized by OCS

vice full storage is 98%!

C. GRID CONVERGENCE
A convergence study was done on the response field for

several grids. It was found that non-uniform grids were far
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3. Bilinear Operator Treatment of 9, and T

The bilinear operator treatment of the reaction rate
is the present method of treatment. The reaction rate term

is rearranged as follows,

A :n—lexp(—E/RTc) *t -1
R, = - (T 1] (4.6)
T c
c
Letting
_T. _
TC ;ivli ’ 1 l,3 (4 7)
and
T _
5 = ;i:’4i ’ 1 = l,3 (4 8)

and invoking natural coordinates [Ref. 28], an elementally

averaged contribution results in the following area integral,

c = ¢/ { 5gTalgTs4 da (4.9)
< A -~ T ~ T
e

The double subscript permutation of carbon temperature and
o, concentration results in a 3 x9 elemental matrix that 1is
distributed into the system equations. In this scheme at

each nodal point within an element, carbon temperature and

o, concentration equations receive nine terms arising from
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In the carbon eguation, Expression 4.1 appears as,

In the oxygen concentration equation, Expression 4.1 appears

as,
R = f . R {(4.3)

The term that 1s to be evaluated at the last time step and

to be held constant over the next time step is,

~ *t
R. = (A exp(-E/RT )} °7%
c c

where the superscript *tn_l indicates evaluation occurring
at the previous time step.

2. Linear Operator Treatment of 0, Concentration

In order to realize an improvement over the first
treatment one may retain a portion of the reaction expression

as an operator by making the following rearrangement:

*t
R, = (a1 n=lo e (4.5)

c exp(-E/Réc)}

where [?] denotes a spatial operator treatment of the

response variable.
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IV, NUMERICAL CONSIDERATIONS

A. TREATMENT OF NONLINEAR COMBUSTION TERM

The treatment of the nonlinear combustion term 1s now

.
-‘-z
j

discussed in brief detail highlighting the advantages of

each treatment. A more comprehensive discussion is presented
in Appendix C. The interested reader 1s encouraged to

review the detailed analysis. There are several ways tc¢
treat the Arrhenius reactlion rate expression.

1. Excitation (Force) Term Treatment

Perhaps the simplest method for incorporating the
combustion term is to evaluate it at each time step and use
the evaluated value (held constant) as an estimate of the
mean value during the next integration. It is realized that
in fact, the value 1s not constant in real time. This treat-
ment, however, provides a means of incorporating the term
into the system of equations as a first approximation with
relatively little computational effort. Averaging techniques
exist for improving upon this method. In this scheme the
excitation vector is modified at each nodal point in the

carbon temperature and oxygden concentration equations to

include the combustion terms. The exponential reaction rate

term that appears in both the porous solid and oxygen diffu-

t

sion eqguation 1is,

- n —E /R
Rc = A exp!l E/RTC) {(4.1)
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Expression 3.46 is incorporated into the numerical formula-

tion as Neumann boundary condition for carbon temperature.
The initial heat flux may be turned off at any specified
time. The boundary condition of Expression 3.46 then
switches to a Cauchy (mixed) boundary condition to account
for radiative heat transfer from the carbon particles at the
boundary to the ambient air. Convective heat transfer from
the carbon particles to the air is treated through the
internal heat transfer coefficient. The above %rocedures
for treating problem initiation obviate the need of trying

to specify initial conditions which may in general be

arbitrary for each problem.
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analog sense (Figure 3.3) and thus affects the temperature
profile and ultimately the heat transfer coefficients. Of
necessity then, the material's inherent ability to absorb
energy 1s denied. ©No attempt 1s made here to conjecture as

to how physically one may impose the radial boundary conditions
implemented below. If it were possible to rigorously apply
the heat transfer boundary condition described above, the
numerical model would be capable of obtaining a solution.

The model was tested at various values of constant heat trans-
fer coefficient: 0, 1, 5, 50, 100, 500, to determine the
effect of the heat transfer coefficient on the solution. It
was found that until the heat transfer coefficient gets
significantly large compared to the start flux applied to

the carbon at the air inlet boundary (in this case above

100 Btu/ftz-hr compared to 1500 flux applied to carbon), the

two~dimensional effects on the temperature profile were

localized in the gi = 0.85 to 1.0 region. The temperature
o
profiles for gi less than 0.85 were essentially one-dimensional
o

(constant value independent of r).

I. INITIAL CONDITIONS

The model is developed so each problem begins at a
uniform initial temperature. A heat flux applied to the
carbon along a boundary provides a means of bringing the
system to a temperature level where reaction terms are
sufficiently high to generate combustion. The heat flux is

treated as follows,

' . m . m. s = o



L._: ._

E£-= 1.0 1s of natural convective type. At the exit éi = 1.0,
finctional and derivative continulty must be demonstraied

for pressure, oxygen concentration and air temperature at

the vertical boundary separating the stream of exiting air
and the convective boundary layer. This is known as a conju-
gate problem. The above method is a realistic method for

“he treatment of this problem but admittedly it is beyond the
scope of this work. The numerical code has provisions for
incorporating an average of isoflux and isothermal natural
convective Nusselt number formulations (Churchill correlations)
for vertical cylinders obtained from [Ref. 36]. Although the
subroutine has been written there has been no attempt to

date to ilmplement it. It is known that physically heat
transfer coefficients lie between those generated from iso-
thermal and isoflux considerations. However, simply having
empirical correlations for evaluating the heat transfer
coefficients does not eliminate the need of the iterative
scheme described above. Additional considerations must be
addressed in this context. 1In order to effect an impermeable
vertical boundary at gi = 1.0, the system must be enveloped
by a cylindrical container fabricated of some type of material.
This material has an inherent potential to absorb internal
energy that transits from the initial system to the boundary
where some flowing medium is able to convect energy away
(Figure 3.2). The material's ability to absorb energy adds

a thermal resistance to the heat transmission in an electical
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T —To f —5l;t/r2
= e = )} C.e J (s.xr/r ) (4.19)
'I‘i To iZ1 1 o "1 o)
where,
J.(3.)
c, = = LR (4.20)
“LJ%(20) o+ I (3L
1
The constants =. are the roots of the algebriac equation,
;iJl(;i)/Jo(si) = Bi = horo/k (4.21)

The functions Jo and J, are the Bessel functicns of the first

1
kind whose numerical values are tabulated in most advanced
engineering mathematics texts. For a limited range of

interest, numerical values of JO and J, are tabulated in

1
Appendix A of [Ref. 25]. The roots of Equation 4.21 are
tabulated in [Ref. 23].

4, Multidimensional Solutlions by the Product Method

The classic solutions for semi-infinite- and finite-
thickness bodies (slabs, cylinders and spheres) may be used
to generate solutions for multidimensional bodies.

Use of the product solution technique is illustrated
by Figure 4.2. The problem chosen to validate the heat
transfer portion of the current model is the "sudden immer-

sion" problem for a finite-length cylinder subjected to
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uniform convection conditions (ho,Tm) on all sides and
initial uniform temperature Ti' The differential equation

to be solved is,

2.
15 57 E T .
E5_r(r 3_') +—2-. = T3 (4.22)
3X
where ¢ = (T -To)/(Ti -TO). The initial conditicn is
3(r,x,0) = 1 (4.23)
The convection boundary conditions are,
At top and bottom: -k 32 = = h 5 (4.24)
EP o
. 38 _
On the sides: -k == = h_98 (4.25)
ar o
The solution is the product of the two simpler analyses:
the semi-infinite slab and the infinite cylinder. Let
7(X,rlt) aslab(xlt) ‘ ecyl(r,t) (4-26)

1

P(x,t) - Cl(r,t)

Substituting Equation 4.26 into Equations 4.22, 4.23 and
4.24 and separating the variables, reduces the two-dimensional

problem into two one-dimensional problems:




. s 127s L L,
Slab: ?;7_ T T3t (‘s “slab)
- (x,0) = 1
*:s )
-k — = h = (-L,t)
‘XIX=:L O s
3= 33
) 1l 5 C 1 C
1 . - = = Pl = = =
Cylinder: - Br(r Br) T ( c chl)
ac(r,O) = 1
aﬁc;
-k 7;?1r = hocc(ro,t)

)

Thus Equation 4.26 is the exact solution to the sudden
immersion problem of a right circular cylinder.

5. Validation Problem

The validation problem is Example 4.9 in [Ref. 25]}.
The problem is stated here for the convenience of the reader.
The short cylinder 1n Figure 4.3 1is initially at 40° C
and then plunged into a fluid with h = 300 W/m-K and T = 200° C.

- 2
The material is bronze, k = 26 W/m-K and o = 8.6 - 10 2 m/s.

Find the temperature a* the center of the cylinder after

5 minutes.
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Solution: 176° C (348.8° F). The details of the solution

are found on pages 186-187 of [Ref. 25]. The product solution
technique was utilized in obtaining a S5-term approximation
of the series solution for Fourier moduli (Fo = At/LZ,
equivalent to a nondimensionalized time) less than 0.2. For
Fourier modull greater than 0.2, a two-term approximation of
the exact solution was used. Heisler [Ref. 26] points out
that a one-term approximation of the exact series solution
yields an accuracy to within 1% of the exact value for
Fourier moduli greater than 0.2. Various values (5, 10, 20
: and 30 seconds) corresponding to values of Fourier meduli
*. less than 0.2 were used in comparing model solutions with

& the exact (five-term approximations to the exact) solution.

values (3, 5, 7 and 9 minutes) corresponding to Fourier

moduli greater than 0.2 were used to compare model solutions
with the exact (one-term approximations with 1% accuracy)
solutions. Figures 4.4 through 4.8 show: (1) the effects
of time on the solution of various grids, and (2) effects

of grid refinement at equal values of time. Values plotted

on the ordinate scales are deviation (percentage error) from
the exact solutions versus time. Observation yields that for
small values of time, grid refinement obtains more accurate
results and obtains a faster convergence to steady state.

6. Testing the Model's Ability to Accept and Reject
Heat

An equivalent simple test in model validation is the

model's ability to accept heat from a boundary flux and




reject 1t at a later time to its environment via convection.
The applied heat flux at ;> = 0 is 1500 Btu/ft’-hr.

o
Figures 4.9-4,12 illustrate system response. Filgure 4.13

is the input data set used.

7. The One-Dimensioconal Problem

Another step 1n the validation of the two-dimensional
problem is an examination of a one-dimensional problem. One
might infer that a two-dimensional model includes the one-
dimensional model as a subset. This was demonstrated in a
separate test. A one-dimensional problem may be imposed on
the mcdel in two ways. One way is to make the length to
diameter ratio very large. (No restrictions on excitations
is implied.)

Another method for eliciting one-dimensional behavior

is to "excite the system in a one-dimensiocnal fashion,"

i.e., apply boundary conditions at éi = 0.0 and éi = 1.0
o o
independent of radius and insulate radial boundaries at

= 0.0 and gi = 1.0. The insulated boundary at ?5 = 0.0
aiises from anoaxisymmetric formulation of the prob?em. The
zero gradient (completely insulated) boundary at 51 = 1.0
corresponds to a completely (all four variables) i;permeable
vertical boundary. For this problem, an adiabatic restriction
is sufficient. In general, an adiabatic condition means an
insulation of heat. 1In this problem, the implication is far

greater because of the coupling between system fields. An

adiabatic restriction at éi = 1.0 prohibits non-zero radial
o
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pressure gradients. Unconstrained radial pressure gradients

at E£-= 1.0 imply radial convection of air enthalpy and in a
o

non-isothermal fluid, this convection undermines the initial

adiabatic assumption at ?5 = 1.0. Oxygen gradients are also
o
negated by an adiabatic condition since oxygen convection

by air must occur under the presence of nonzero pressure

gradients at ?5 = 1.0.
o)

The two methods described above distinguish one-dimen-

sional behavior arising from geometrical corditions and one-

dimensional behavior resulting from restrictions on excitations.

Figures 4.14-4.16 depict model one-dimensional solutions to
"one dimensional excitations." Figure 4.17 is the input data

set used.
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F in the first minute) at the éﬁ = 0.0 boundary. Due to

o)
the steep gradients, further system behavior could not be

analyzed since output data consisted of a single output
(T = 5-20 S., problem time, depending on porosity value)

in 15 minutes of CPU time.

E. CONCLUSIONS

The combustion analysis program (CAP) is a viable tocol
for the analysis of heat transfer in porous media. The
model constructed provides the user with the flexibility to
solve problems with or without combustion. The role of
the permeability model must not be underestimated. For it
is the physical assumptions in this aspect of the model that
govern the flow, heat transfer and in the end the evolution

of the combustion problem.

F. RECOMMENDATIONS
Follow-on work is recommended in the following areas:

1. Develop a restart capability for the program which
will allow for a problem to begin at any point in
time with initial conditions and rate information
being identical to previous timestep values.

2. Nondimensiocnalize equations in terms of other system
quantities 1in addition to spatial dimensions.

3. Frlex the model under other system parameters to examine

effects on system behavior.
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0.000417 ft. (0.005 in.). Values of d (ft.) egual to
0.000417, 0.000411, 0.000396, 0.000385 and 0.000370 were
used to give values of porosity of 0.476, 0.5, 0.55, 0.60,
and 0.65, respectively. The results are graphically pre-
sented in Figures 5.1--5.4., Figures 5.1 and 5.2 show the
carbon temperature profile and the oxygen concentration
profiles for porosity 2, = 0.476 (D = 0.000417 ft. = 0.005
in.). In all cases, excitations for these runs are 1300

Btu/ftz-hr (1n) at éi = 0.0 and 50 Btu/ftz—hr {out) at
o)

— = 1.0; the pressure is 14.65 psi at -zz— = 0.0 and 14.55

o o

at éi = 1.0; the cylinder length to diameter ratio is 0.5
o]

{length = 1.0 ft.). Figures 5.1 and 5.2 represent typical

graphical results for carbon temperature and oxygen concen-
tration profiles. Figures 5.3 and 5.4 are a tabular summary
of the results of the carbon temperature profile and the
oxygen concentration profiles, respectively, for varying
porosities. Profiles with higher values of initial porosity
are observed to have accelerated development of temperature
profiles (i.e., as the fuel diameters decrease (increasing

porosity), the carbon temperature responds at a faster rate

to system excitations). The oxygen concentration response
1s as expected (i.e. as reaction rate goes up, the oxygen
concentration goes down). In the runs made for porosity

values of 0.70, 0.75, 0.85 and 0.90, numerical difficulties
were encountered. The temperature profiles were observed to

increase sharply compared to lower values of porosity (300-400°
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problems discussed here the transgort groperties

wn

m/ ., De and the Arrhenius reaction rate term are scverning
factors in the respective field eguations in which they
appear. As previously discussed, the net balance between
heat transfer rates and heat generation dictate whether a
reaction will proceed to extinguishment or combustion.
There are two time constants to be considered in a combustion
problem of this type: a time constant for the Arrhenius
reaction and a time constant associated with momentum
transport. The momentum time constant affects the rate at
which heat is convected (removed) out of a differential
volume. The reaction time constant affects the rate at
which heat is generated (added into) within a differential

volume.

J. POROSITY ANALYSIS

In this problem there are many parameters one might vary
:n crder to examine resultant system behavior. Due to time
limitations this investigation examines the effect of one
carameter, porosity, on system behavior. The observed

effect of porosity values ranging from 0.476 to 0.90 1is

dis- rd. Of the nine runs attempted, only five had suffi-
cientc 1t data that allowed for comparative analyses.
Employ1 'uation 3.1 for the porosity associated with

spherical c.rticles, the carbon diameter, d, was varied to
achieve various values of porosity while holding the parti-

cle center-to-center distance D (Figure 3.1), fixed at
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Similarly, in place of Equation 3.44, a zero flux boundary

condition at éi = 1.0 could have been imposed on the oxygen
concentration.o The zero flux condition implies an impermeable
boundary with respect to oxygen concentration fluxes. This
boundary condition would apply to a very lcng cylinder (i.e.,
a reqgularity condition). 1In this investigation, a Cauchy
(convective flux) boundary condition on the oxygen concentra-

tion is imposed at éﬁ = 0.0 and 1.0. As oxygen is locally

consumed in the integior of the system, cxygen gradients are
created. According to Fick's Law of Diffusion, a depleted
oxygen region is replenished by the diffusion of oxygen from
regions of relatively high concentration to regions of low
concentration. Thus a convective flux boundary condition

on oxygen causes the depletion of oxygen concentration to be

retarded through the diffusion mechanism.

B. EXCITATIONS

The effects of high and low values of the heat flux
applied at éi = 0.0, are predictable. High values of heat
o
flux lead to an accelerated development of both the carbon

and air temperature profiles and O, concentration depletion

2

within the system. For high values of heat flux at éﬁ = 0.0,
o
the numerical integration scheme eventually slows noticeably

as a result of steep gradients observed at this boundary.

C. PHYSICAL CHARACTERISTICS OF THE SYSTEM
The physical characteristics of the system generate a

significant effect in field problem solutions. In the
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V. DISCUSSION AND CONCLUSIONS

Field problem behavior depends on three major factors:
(1) Boundary conditions, (2) System excitation, and (3) The
physical characteristics of the system.

Time limitations did not permit this investigator to
conduct an exhaustive analysis of each of these factors.
Some preliminary analyses were performed to obtain some
understanding of the effect of boundary conditions, and
excitation on system behavior.

There are a variety of physical parameters which govern
system response, such as permeability, porosity, and the
cylinder length-to-diameter ratio. Here only a brief
investigation of the effect of porosity on system behavior

was undertaken, and is reported.

A. BOUNDARY CONDITIONS

The boundary conditions used in the present investiga-
tion were presented in Chapter III. Other boundary conditions
are possible. For example, if in place of Egs. 3.32 and 3.36, an
insulated boundary condition at éﬁ = 1.0 is imposed on the
carbon and air temperatures, thenopreliminary results indi-
cate temperature response is higher for equal values of time.

This behavior is due to the buildup and storage of energy

within the system associated with an insulated boundary.
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4. Consider an interna. (particle-to-particle) radiative

heat transfer aralysis.

5. Consider other fuels and more detailed chemical

kxinetics chains.
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207.0 266.0 *554.,0 720.0
216.4 488. 4 603.3 *765.0
239.2 563.0 695.0 905.0
266.0 632.0 *757.0 1034.0
294.6 724.8 *298.0 | -

MAX Carbon Temp. (°F)

* - interpolated

Maximum Carbon Temperature Summary Porosity:

pl = 0.476, p, = 0.5, p, = 0.55, p, = 0.60
Pg = 0.65. T%me: t =30.l minute? '
t2 = 1 minute, t3 = % minutes, t4 = 4 minutes
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t1 t2 t3 t4

P1 172.0 172.0 *171.5 168.0
Py 172.0 172.0 172,0 *156.0
P3 172.0 172.0 171.0 118.0
Pa 172.0 172.0 *157.0 26.6
Ps 172.0 171.0 *98.0 -

MIN 0, % ((X 10%) 1bm/ftd)

* . interpolated

Figure 5.4 Oxygen Concentration Profile Summary

Porosity: Py = .476, p% = 0.5, Py = 0.55,
i

Py = 0.60, pr = 0.65. me: t, = 0.1
minute, t, =1 minute, t3 = 2 minutes,
t4 = 4 minutes
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APPENDIX A

FORMULATION OF FIELD EQUATICNS

A. PRESSURE DISTRIBUTION EQUATION

Darcy's law for two-dimensional flow is,

- _ mop _ 9P _ . )
9 - p(Br Lo+ (52 P pag)z)

where Qr and Qz are expressed as follows,

- . Mm3dp
Qr L or
m,dP

QZ - E(az poag)

Invoking the Dupuit-Forcheimer relation, and
pore velocity components u (radial velocity)

velocity), Equation A.l becomes,

_ -mop
U T pusr

. -m P _
v = pu(az p oag)

(A.1)

(A.3)

solving for the

and v (axial

The continuity relation (derived in Appendix B) is,

D(ppa)

—_——— 1 v =
5t p paDlV v 0
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Substituting Equation A.2 and Equation A.3 into Equation A.6

yields,
ip o ~ ~
"a  _ ., m 9P P
3t = PR,V (pu 5t T3 Po,9)2)
m 3P cP C.
+ P—U(E + (32 p pag)z) vp 0, (A.7)

Expanding terms, Equation A.7 becomes,

o2, 3%p 1 Pa  1am 1w, 1 8P
Bri azz Pa ar m Jdr U 3r r’° sr
p(Lfa, Lom_Low P o b PPy g
o dz m 3z u 9z’ ‘3z Ppy9l= p.m 3t ’

Equation A.7 with associated boundary conditions (presented

in Section II.B) is cast into a finite element formulation

and becomes one of four field equations. Pressure gradient
information is then substituted into Equation A.4 and Equation

A.5 to obtain the pore velocity components.

B. POROUS SOLID HEAT TRANSFER EQUATION

In performing energy balances on both the porous solid
and on the air, a differential volume of porous medium may
be partitioned into respective volumes, st = (l-p)dVv for
the solid, and dva = pdV for the air (shown in Figure A.1l).
The convention used for the energy balance of an arbitrary

differential volume, 4V, 1is,
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S W e T e e e - Y CAR 1 v W e TP e Ty =

Heat into DV + Heat generation = Heat out of DV

+ Increase in internal energy (A.9)

The heat transfer mechanisms considered for the carbon
are conduction, radiation heat transfer between particles,
convection heat transfer from the particles to the air,
and heat generation. Applying the above convention, the
energy balance on a differential volume of porous solid is
(invoking Tayler Series expansions and neglecting higher

order terms),

1l 3 - _ 93 -
(- r 3;((1 p)rqcond,r) az((l p)qcond,z)
1,3 e
- f(g?((l—p)rqrad,r) 35((l—p)qrad,z)]dv
= deonvd®' * qgendA' - (l—p)éintdv (A.10)

In vector form, Equation A.l0 becomes,

_T,- . 1 ]
7 (qcond * qrad)dv qconvdA * qgendA

(l-p)qintdv

(A.11)

Substituting the following expressions into Equation A.10,

q = - keVTC Fourier's law (A.12)

cond
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R A S i 4 B B e i B s b e oaraie - o v m
N . - - - - '.',‘.v'_w' o ol -_‘- R A N - . - - . -~
k 7T * F i 1 3)
q = - 7 ourier analogy (A.1
rad r c (radiative)
— - ' 1
Yeony = h(Tc Ta) Newton's Cooling Law (A.14)
dgen = Rg Heat generation (A.15)
= a5 C oT Internal ene (A.16)
9int "¢ Tc ot @ t9Y )
yields,
1,5 ST 3 °Te
{2 - < 2 _((1~ —53
sisE(rll-p) (k) =) + S5 ((1-p) (k) —7) jav
- h(T_-T_ )dA' + R dA' = (l-p)o.cC_ 2L qv (3.17)
c a g c coat :

Dividing through by 4V, and defining dA'/dV as Z, the specific
internal area (i.e., surface area per unit volume), Equaticn

A.l17 becomes,

5

(A.18)

Q

t

Ve ((1l-p) (ke)VTC) - hZ(TC—Ta) + RgZ = (l—p)occc

The expressions used to obtain values of the properties and

parameters in Eguation A.18 are presented in Section III.E.

C. AIR HEAT TRANSFER EQUATION
The formulation of the air heat transfer equation begins

with the general two-dimensional energy balance equation,

*

The difficulty in obtaining an expression for k_ is
addressed in Section III.E. Throughout this work, one may
keep in mind that k, should really be (kg +ky) to account
for conduction as well as radiation within the porous medium.
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RSl R st R JAshl Ra® St S ek T g QG QU N e,

O = =V+'pg = V.pPV = (V:(p1-V))
+ hz('I‘c —Ta) +p °a (V-qg) (A.19)
where U is the internal energy, K is kinetic energy, T is

the dissipation function, and g is the gravitational acceleration.

Expansion of Equation A.19 vields,

. D 2 2 - 7. _ . -
P o —D?(e+2<u +v)) = Ve (-pk, VT,) V' (pPV)
-Zzg—x— V. + hz(T_-T,)
ij i l] J
+ P OaV g (A.20)
where
T T - N i}
(pT*V) = ]} 5 P Tijv] = V(pt__V_ +pT
1]
* Pl F pTzzvz)
= S (pr_u+pt__v) + T(pt__u+pr__v) (A.21)
or rr rz dz zr 22z
And so Equation A.19 becomes,
De 2 2 - 3
Po,lpe * dt(5(u +vi)l = Ve(pk VT_) -s7(pT  u+p T _,V)
Sy u+ v) = (VpP-V +pPV-V)
3z Plzr Plz2zV 3 p
+ hZ(Tc -Ta) + p Pav9 - (A.22)
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As in the porous solid heat transfer equaticon, the time and
position dependent porosity appears inside the differential.

Expanding terms, the air energy equation becomes,

po
De a D 2 2 - F. - : .-P —,’._’
p;)a—DT:'*'—Z——E(u +v) =V (pkaVTa) [VpP*V +p PV V]

)
- E(pl’rru +pTer)

5
- 2 Z -
az(pTrzu'+pTzzv) + h (Tc Ta)

tpoyv9I . (A.23)
Consider the momentum equation for the r-direction,

R Momentum

> C = L - —3——- o) 2 - L - BEP
st P rau) = gl gp(rpe, u) 52 (P Py uv) or
PT
12 _Flee 3
(}.'_ g;(p rtrr) > + 3Z(p Trz)) (A.24)

Consider the momentum equation for the z-direction,

Z Momentum

g I _ 3 2, _ 3
W(p oaV) = ;(— E;(r poauv), az(p oaV) az(pP)
- A o )y +2pr )) +po.q (A.25)
r ar rz 3z 2z a
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and the continuity equation,

Continuity
y _ 3 _ 3u , PPa¥ 9PY,
at(ppa) UH(an) (p Oa'a"f + = ) v 52
ov
- P, 37 (A.26)

Multiplying the continuity equation through by u, and substi-

tuting this into Equation A.24, the r-momentum equation

becomes,
3u | L du_ . su_ 3pp
P o335t Prg U3T PV 3z 3T
. PT. . .
l 3 . _ 23 I .
(P —,:)?(p r \rr) T + az(p ‘rz)) (A.27)

Multiplying Equation A.26 by v, and substituting this into

Equation A.25, the z-momentum equation becomes,

3

PPa 3t PYsy Y37 P a 3z 3z r ar'F rz
r o )+ (A.28)
3z P ‘22 P Qag .
Multiplying Equation A.27 by u and noting that,
Du _ du 2 Jdu Ju
P qau 5¢ - P pau It +p oau 3T + p pauv Tz (A.29)
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e N Sl Sndl S it Madh - SRt B i~ st s ah A dhe g Y T N B B aren g sugs meen

. . PT .-
T L TS -2 B S A - 35,3 (o
P 23" bt Y TY u(r Sr(pr'rr) r +52(p “rz”
(A.30)
Multiplying Eguation A.28 by v and noting that,
Dv _ o, 3V, oo, g2 ,
p“avﬁ - pan 3t+puauv\7 * waV 3z (a.31)
Egquation A.28 becomes
D_V = - Spp— l'.a_.. .3—_. -V
P “av Dt M Iz V(r ar(p rTrz)) * ‘z(p zz)) TP a9
(A.32)
Expanding Egquation A.30 yields,
Eheks upT ., -
g - _ o 3PP _ rr _ 4 IR
PoyY pe T Y r Pley ¥ 71 v 5z (PTL )
(A.33)
Expanding Equation A.32 yields,
ooV oo _, 3P _ 3(pT.,) v - v §_< )+ LoV
P 23" Dt vV Tz 3r rPrz 3z \Plzz Pog’ 9
(A.34)

The energy Equation A.23, after substituting and expanding

terms, 1is,
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Py g% +p c u g% + p S v g% = 7 '(pka7Ta) _(ptrr %%
. a(prrr) . o s
T rz sr
T %;(pfrz)) - (ptzr 32
tu ; (pTzr) TP, iz

+ hZ(T —Ta) (A.35)

Substituting Equation A.33 and Equation A.34 into Equation

A.35 yields,

. Dt = 7 (pk \/Ta) - pPDiv V + hZ(Tc -T_ )
Ju 3v ju _ 3
(p ‘rr dr PTry3r Pl,r 32 7 P 1,57
up T, u "
- - DT - 2
r F T PTer T ¥ PTpy (A.26)

The viscous dissipation terms in Expression A.36 are
neglected because the fluid is a gas flowing at low velocity
(see (Ref. 9]). Therefore, the energy equation for the air

in the porous medium is,
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~ Qg = T =7 - 1 v -
P, bt ) (pka’Ta) pPDiv V + hZ(Tc Ta) (A.37)
With specific enthalpy for a gas defined by,
o= e + g (A.38)
De/Dt can be expressed as,
De DA 1 DP p D~
2 - 2. - 2=, = 8 (A.39)
Dt Dt “a Dt 2 Dt
Ta

where 1 is the specific enthalpy, and e is the specific

energy (internal plus kinetic). Multiplying the continuity

equation through by P/(poi) obtains,

P 3 3 P 3
— %E(poa) + 2 % g;(p o, T u) + — 3;(9 oaV) = 0. (A.40)
PO, 2 pe
PDa a
Expanding vyields,
ap PP
P a By - _ _B_ 3 _ P _PPas
7P 5T * 0, 3! —z uzzpey) 5 7 3p(ruw)
PO, PO, pPey
Pv 9 P v
- __7 —a-E-(ppa) - -——z-p Oaﬁ (A.41)
POy PO,

In vector notation, Equation A.41 becomes,
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P ""a, P 3p _ _ P p.c - P
a o a
a a
- = piv ¥ (A.42)
a

Employing Stokes (substantial) derivative notation, Equation

A.42 becomes,

P = - B Dp_ P piv ¥
7 Dt poa Div V (A.43)
“a

De = =2 e I - = i +——P EE
Dt bt ~ 5, bt o, >V VT po_ bt (A.44)

Substituting Equation A.44 into Equation A.37 yields,

Ch - DP _ [_)E - > _
PP, Dt ¢ - P Bt Ve (p kaVTa) + hz (T, Ta) (A.45)
Simplification yields,

Dh. - DEP _ > _
P °, Dt DE. Ve (p kaVTa) + hZ(T, Ta) (A.46)

: Invoking the Maxwell relations for a simple compressible

substance,

. 1
- dh = T ds + > 4ap (A.47)
@
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as = ¢ 9T . % ap (A.48)

and recalling that, i

20, (A.49)

8 = - a—T'p j‘

vVl

' ' T
4 . ".‘ -'.v.'. 1
—

1, A

E L o
. W .

the eguation of state for a perfect gas,
P = (pRT (A.50)

simplifies Equation A.49 such that,

3 o= -2 - % (A.51)

RT

Thus, Equation A.48 becomes,

_ dr _ 1
ds = ¢, S5 - ox dP (A.52)

. Substituting Equation A.52 into Equation A.47 and cancelling

terms yields.

> dh = c, ar (A.53)
«
or
DT

bh  _ a
. oo ¢, 2 (A.54)
: 98
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Substituting Equation A.54 into Equation A.45 yields,

aT >
Po,C 7?? = V(Pk VT, = P o G (VeVIT,
i D (pP)
+ hZ(Tc Ta) + Dt (A.55)

Making the assumption that pP changes very little with time

[Ref. 9], (this assumption was subsequently confirmed by the
model), 1i.e.,
%5? : (V-T)pP = u _Q%EEL + v éiggl (A.56)

The final air heat transfer (energy conservation) equation

is,

- 3 B} 5. 3pP ,  3pP
= v (pkaVTa) p oaCa(V V)Ta + u e + v

+ hZ(Tc —Ta) (A.57)

In vector form, Equation A.57 becomes,

Ve (pk VT,) - p o, C (V' U)T,

+ (V-V)pP + h2(T_~T,) (A.58)

The expressions used to obtain the properties and parameters

in the coefficients of Equation A.57 are presented in

Section III.E.
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D. OXYGEN MOLECULE DIFFUSION EQUATION

The final consideration in formulating the field equations
for the model is the transport of oxygen molecules. The
oxygen molecule transport equation is obtained by a conser-
vation of species balance on the differential volume of air,
dv = pdv. The convention used for the species balance into

a differential volume is,

O, in = O2 out + O2 consumed + O2 accumulated (A.59)
The transport mechanisms considered were diffusion due to
concentration gradients (Fick's law), convection, and air

consumption by combustion. The species balance on oxygen

becomes,

phdiffdA’r + PMg; redA T pr.“convd‘”’ér * pﬁconvdA'z
p’;‘diffdAIHdr + Py ¢ pdA rds pﬁconvdA’r*dr
* prhconvdAlz+dz mconsdA' * prhaccdv (A.60)

Representing terms on the right side by Taylor series expan-

sions (neglecting higher order terms), i.e.,

. _ . a .
pmde = pmde + ng(pmde)dei (A.61)
e:i+dei € 1
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where,

k = conv, g, = ror z dAr = r dodz (A.62)

and dAz = r drds (A.63)

Then Equation A.61 becomes,

3 . )
——(pxndAr)dr S?Wr pu ¢db dz) dr

ar

13
r

g;(r pu $) r dedzZ dr (A.64)

and

) . 3
gzip mdAz)dz 3;(p v¢ rdr d6)dz

= %E(p vo)r d6dz dr (A.65)

Substituting Equations A.64 and A.65 into Equation A.60,
cancelling terms and rearranging, Equation A.61 becomes,

+ m )ydAa )dr -
r

3 . .
dg;(p(mdiff conv + mconv)dAz)dz

S (p(x
3z P'Maife

- m dA' = pm__ dv (A.66)
cons acc

Substituting the following expressions into Equation A.66,
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mdiff = - De ) (A.67)
conv,r T udy mconv,z A (A.68)
Moons = R02 (A.69)
m = 22 (A.70)
acc at :

dividing both sides by dV, and letting dA'/dV equal the
specific internal area, z, the oxygen molecule diffusion
equation becomes,

T (pP 79) = T (poV) - Ro,? = R3¢ (A.71)

The methods and expressions for obtaining the properties and
parameters in the coefficients of Equation A.71 are presented

in Section III.G.

102

[T

LTt

. e T ’ . o ) ) * )
. e B - . N * T : " b '
P . . . ., B . A . N " - ' . * N v
- - n - L L L - a o by e - M = ° = y \ . g § N sl S, “ *
tebestnkenbesfiontinmantnttiondng i LA A T R P S VT P T R L

v Ty M PRl Sl G Al e et stk 2o At hd e Lo ew Lt ooy
M St =0t T Pt U tadt St A . <. i
N - A SalL el s o DA R S SO a0 - @ ar ol aveis avie o - Bk P .

-1



. e e 47 0 W N W Y Y AT Y " - 2

o G A TR s ou o i or R A e i e

APPENDIX B

AUXILIARY EQUATION FORMULATION

A. CONTINUITY EQUATION
The continuity equation for a fluid in a porous medium

is expressed by,

D(poa)

—5t — t po,DivVv = 0 (B.1)

or in equivalent form,

N - o>
j —
gg(poa) + (V-V)p,ua + poa(V-V) =0 (B.2)
and
Ipe s{pr.)
J . a a 1l 3(ru) ov
5t(p”a) *u 5r v 2 * ppa(r or M Bz) (B.3)

B. LAGRANGE POLYNOMIAL APPROXIMATIONS FOR THERMAL PROPERTIES
Relations for calculating the dynamic viscosity, thermal
conductivity, and specific heat at constant pressure of air
at different temperatures were required. Second order
Lagrange polynomial fits to empirical data provide a simple
method f«:- obtaining the relations required. Vatikiotis

(Ref. 9] gives the details for arriving at the resulting set

of polynomials,
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. = =3.308 <1077 Ti +4.633 <107° T, + 4.427 <1072 (B.12)

<, = -2.608 10770 12 + 1.930 x107° T_ + 1.361-107% (3.13)
_ -9 2 -5

C, = -1.293x1077 T, + 2.758 x10 " T_ + .238 (B.14)

Each expression obtains property values within two percent
of the data presented in [Ref. 9] for temperatures up to

3000 degrees Fahrenheit.

C. CARBON PARTICLE SURFACE RECESSION

The following analysis of particle diameter consumption
assumes that the fuel particle surface recedes uniformly.
This assumption is reasonable if the particle diameter is
small in comparison to the cylinder geometry, i.e., negligi-
ble boundary effects. In addition, since the velocities are
low, the hydrodynamic effects on the uniformity of the
particle surface recession are negligible. The analysis also
assumes there are no significant thermal gradients within
the particle, i.e., an isothermal carbon particle. This is
also reasonable for the small particles examined in this
analysis. A mass kalance must be performed on the particle
and equated with the reaction rate. This equivalence yields

the following expression,

-— = RCZ (B.15)
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or eguivalently,

Simplification of Eguation B.l5a yields,

(B.16)

[
4
1

R 2
;JC

Substituting the porosity expression for spherical particles

yvields,
d -
(5) ) = — (B.17)

Application of the time operator yields,

. R VA
B L M- (B.18)
D c

Isolating the diameter time derivative yields,

- 2R ZD3
c

d = —— {(B.19)
P nd

106

. . L N - - - - B - . . '.._'A L. an .
L VIR TV TR TR EET VS SR G N S LSRN 2 B data on




A T e LA et N i e ik a

DY T N N e S e B S e N T v HA A e ae aergy |

APPENDIX C

GALERKIN FEM FORMULATION

A. FINITE ELEMENT METHOD

The solution of the system of coupled, nonlinear partial }
differential equations givea by Eguations 3.9, 3.22, 3.26
and 3.27 — subject to boundary and initial conditions, was
obtalined by a Galerkin formulation of the Finite Element
Method.

1. Galerkin Formulation

A Galerkin formulation of the Finite Element Method
was used to obtain solutions of the porous solid and air
energy equations, the oxygen diffusion equation, and the
continulty (pressure--Darcy's law) equation. A convenient
form of Equations 3.9, 3.22, 3.26 and 3.27 was used in the
formulation where the spacial coordinates, r and z were
nondimensionalized by £ = Z/QDand n o= r/ro

The closed domain defined in (r,z) space by (0,0),
(0,1), (1,1), and (1,0) was partitioned into NEL
{2* (NRNP-1) * (NZNP-1)) contiguous area elements obtained
from a NSNP model. NSNP, NRNP and NZNP are the number of
system nodal points, radial points, and axial points,

respectively. The four field variables Tc’ Ta, P and

were approxlmated by,
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Invoking the 1integral formula of natural coordinates
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(C.50)

(C.51)

(C.52)

The asterisk denotes as applicable for Tc or 9 equations.

4. Implementation of Reaction Term in the Numerical

Method
Franke's

a calculation of

(modified Gear)

integration routine reguilres

(or an approximation to)
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term 1s rearranged as follows, !
|

n
A R02 exp(—E/RuTc) %
RC = T [Tc:] (C.44)
c
Letting
T
TC = 57 (C.4535)
and
VT

and invoking natural coordinates [Ref. 28], an elementally

averaged contribution results in the following area integral,

T
c = T[]z = 5,2 3, aa (C.47)
~ ~ A
e
Expanding yields,
-z (f 7T - I - - 4 . .
C - c )‘J > < al@j :'-,-25,] :aBﬁj (ll 4]) H (C.48)

A final explicit expansion of the integral looks like,
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The reaction rate term may be treated in various ways.
a. Treatment as an Excitation (Force Term)
This treatment 1s the easiest of all schemes.
The term is merely evaluated at the last time step and is
assumed to be constant over the next integration time step,
i.e.,
R. = (AR® exp(E/R.T )} (C.42)
02 u c
The superscript * indicates evaluation occurring at the
previous time step. The value of the term is evaluated
at the ith nodal point and inserted as a factor in the
corresponiing carbon energy or the oxygen diffusion equation
of the ith nodal point.
b. Linear Operator Treatment of O2 Concentration
In order to realize an improvement over the first
treatment, one may retain a portion of the reaction expression

as an operator by making the following rearrangement:
R. = {aRr? ¢n-lexp(-E/R % )}*'[¢] (C.43)
0] uc

where [¢] denotes a spatial operator treatment of the response
variable.

c. Temperature and O, Concentration Bilinear
Operator Treatmen% of the Reaction Rate Term

The bilinear operator treatment of the reaction

rate 1s the present method of treatment. The reaction rate
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Cauchy boundary conditions is as follows,

, _ e |2 on A1
o kTxdf = $  kix=~x,) * k,, 7T
Le Le 1 2 X
2
scattered into 2 and - Ele %; added to

F(l) and F(2) at the element nodal points
(C.38)

For a complete development of the theory for incorporating

boundary conditions, see [Ref. 28].

Treatment of the Reaction Rate Term

3.
An exponential reaction rate term appears in both

the porous solid and oxygen diffusion equation. The reaction

expression is,

- n _ ,
RC = A p expl E/RuTc) (C.39)
In the carbon equation, Expression C.39 appears as,
Rgz = (RCQHR)Z (C.40)
In the oxygen concentration equation, Expression C.39
appears as,
A (R_£24) 2
Ry = cir (C.41)
2
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2. Implementation of Boundary Conditions

Having formulated the system matrices for the field
equations, treatment of the boundary conditions is now dis-
cussed. Each field equation 1s treated individually.

a. Porous Solid Energy (Heat Transfer) Equation

There are three types of boundary conditions that
can occur: Dirichlet, Neumann and Cauchy (mixed) boundary
conditions. The treatment of each is as follows. For
Dirichlet boundary conditions, one may specify an equation
to be a linear equation (i.e., independent of time) by placing
a 1 on the diagonal of the system stiffness matrix correspond-
ing to the particular degree of freedom at hand and setting
each time derivative matrix coefficient for the same equation
equal to zero. An alternative scheme involves setting the
time derivative diagonal term equal to one and setting all
stiffness coefficients (in the same equation) equal to zero.
In this manner one specifies the Dirichlet value as an initial
condition whose residual is identically zero and thus is
invariant with time. Treatment of Neumann boundary conditions

is as follows,

]
¢ kixde = ¢ pdf - ——-2%3 added to local F(1)

ie ile
and local F(2) at the element

nodal points (C.37)

In the above expression, y 1is a response variable and o is

an average value of flux across an element. Treatment of

117

B e Ao o




T

-

-~
’

PR . S ‘.- . A - T " T - h
P PR W VN S S S S A an e s

1
‘ = ——|b.b.}3 C.31
AJ ’jr(«)rdA ia [blbj]~elt ( )
e e
[N (4 = a C.32
AI YZ(J)ZdA 4A [ch]]~elt ( )
e e
[/ N.dA = Ae[k]Q k =1, i : (C.33)
A = 12 KlTe1er K E L 1A .
e k = 2’ 1= 3
; - s - ¢ . C.34)
o ku(«)nd ® ky(d)rdr o) k@( )Zdz ) (
e e le

where a(i,j) coefficients of the element matrices A(3 x 3) are

given Dby,

a(i,3iy = (gl : g = g(i,3) (C.35)
and the vector ?elt is given by,
]
8
1
q = al
Jelt EP) (C.36)
3
3
|

The derivations of theseoperators are presented in Section

A.5 of this appendix.
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To formulate these cperators, the global linear

shape function, Nj’ are defined on the local level by,

(C.25)

tZ
[ Xe %
¥
[ )

gt

where the natural coordinates 51' %) and £3 are defined by

Figure C.2,

.= =, i=1,2,3 (C.26)

and Ae is the area of the elemnet and the Ai are the areas
(in Figure C.2) subtended by lines from a point P(r,z)
inside the triangle to the triangle's vertices (rj,zj,
j =1,2,3). The local shape functions (i.e., the elements)

have the following properties,

wlj = eij-gj ; 1i=1,4, Jj=1,3 (C.27)
E:l(NPJ) = 613 ; 1 = 1131 J = 1,3 (C.28)
.
e Having defined the local shape functions, the ele-
E;‘ mental matrix operations C.19 through C.24 are,
..
- 1
}{f Ny dA = plbils g (C.29)
e
d 1
( J = = a
_ Aj N(v), dA 6[Cj]~elt (C.30)
e
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Section 2 of this appendix.

c.15, C.16, C.17 and C.18 are
and were taken as the average
an element. In the limit, as

NSNP -~ =), the average values

p f L !
A‘f N(y) _dA

r e

[/ ny) _daa
A ~ 4
e

°
: [/ Nyda and /] Nypda
A - A -
. e e
Py
$ N(v)_di
iLe~
°
®

P - - . . o o . P
e . et . . . . ST - P
W L R - L e T et . IR
PR RPN

=i T S gy oy

Implementation of the boundary conditions is presented in

The coefficients in Eguations

temperature dependent properties,

values of the properties over

the elements get smaller

of the coefficients converge

C.17 and C.18 yields the six operators,
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to the exact values Inspection of expressions C.15, C.ls6,

(C.

(C.

(C.

(i.e.,

.19)

.20)

21)

22)

.23)

24)
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o_m
. m ‘ "a
f/gf%ﬁA =-9 §E§(P)nd2 + [/ 9 gr(p)rdA
A, e Ay

a o m
- [f —=(p) aa - ¢ a
R r te o §(P)ndl
e
)y ey aa [[ B "Poa N(P)_dA
A, v o~z 'z A pu 3 -
3pp .
m a P
* }{I pu  dz [:I(P)sz + {\[ RTa N pda (C.17)
e e

AJE]R(bdA = - ép‘e PDte(dJ)ndZ + 1{‘[ pDeI:Ir(gp)rdA
e

e
Pl
- — N(#) da - b PO N (D) (At + /] PO N, (9) ,da
A Le A
e e
(rpu)r
. + [f puN(¢) da + I8! pvN(¢) dA + /| —5— Noaa
r" A - A ¥ A ¥
e e e
[p
] + [f (pv) ,NedA + [f R, ZNdA + [[ pNodA (C.18)
: A ~ A 2 - A b
' e e e
@
The line integral terms in each expression above are boundary
terms which permit incorporation of natural boundary conditions.
e
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A -
LN

R

[ da
IJ\J I?_’R'ra
e

+

= ¢ Pk N(T ) di + ;{J Pty (Ty) A

Pk,

~ a

J
Ae Ae

[ == N(T,) A + /] Pk N_(T ) dA

$ Pk NI(T ) d2 - [/ hZN(T_-T,)dA

e A
e

[f upN(P)_dA - £f u %% NPdA

Ae e

3
Jf veN(P) dA - [[ v 3% NPdA

Ae e

{\f pp,C,uN(T,) dA + [/ po,C,vN(T,) dA

e e

[f poaCoT, O
e
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Adopting the convention,
T NSNP
! = = 3. . 1 = .
vy N™3 j£1 No3jy 0 1= 1.4 (C.14)

and performing an integration by parts on the second order

derivatives yields,

i];ngdA==-¢ze(1-p>§(ke>(TC>ndz + [/ (1-p) (kN (T ) dA
! € e
}
° - {1-p) -
| @ g[ —— N(k_)dA + g[ (1-p) (k )N (T ) dA
- e e
s

-4 (1-p) (k IN(T ) dA + {f hZN(T_ - T,)dA

le A
e

- [/ R, zNan + [f p o N T_ da (C.15)
] N
e ‘e
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where the coefficients of the response variables are them-
selves functions of the response variables, and thus, the
equations are nonlinear. In accordance with the Galerkin
method, the final system of ordinary differential equations
was obtained by setting each residual, Ri’ orthogonal to

each basis function, Nj’ that 1is,

j / NR da = 0 (C.12)
A

e

The 4*NSNP ordinary differential equations given by Equations
C.12 retain the character of the original set of partial
differential equations, i.e., self-adjoint operators yield
symmetric matrices and non self-adjoint operators yield
nonsymmetric matrices. Thus, linear field operators trans-
form to matrix operators and nonlinear, coupled algebraic
operators. Incorporation of the boundary conditions resulted
in 4*NSNP nonlinear coupled ordinary differential equations,

~ ~ o~ -~

- * *
F("\UIWIt) = ? Y o+ B‘P - F + glJ[chwa] (C-l3)

subject to initial conditions, where A is a (4*NSNP)* (4*NSNP)

matrix, B is the matrix associated with the linear field

e operators in Expression C.5, F is an excitation vector,
' *
Cij is a 3 x9 matrix arising from a bilinear operator treat-
ment of the reaction terms in Expressions C.8 and C.ll.
e
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where Ai denotes the spatial operator of the ith equation

and the asterisk denotes that this term appears in the carbon
temperature and oxygen concentration equations only. The
term arises from the reaction terms and is developed in
subsection 3 of this section. The following notational

convention for differentiation is adopted,

e )
C )y = 33

(C.6)

a( )

( ) = =t (C.7)

For field equations 3.9, 3.22, 3.26 and 3.27, the residuals

are,

(1-plo, C T, = V- ((1-p) (k )VT) + hZ (T  -T,)

Rp

C
- R Z c.8
g ( )
* <>
RTA = p oaCa T, - V'(pkaVTa) - hz(Tc-'I‘a)
> T > >
+ P p,CV-V)T, = (V-V)pP (C.9)
= 5 ) = T (Mop) - B(yp.T C.10
o Pp (poa) (pu P) pu( )PO, ( )
: R® = p¢ - V- (p De T79) + V- (popV) + ROZZ (C.11)
[
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NSNP
TC = l](ﬂrart) = )L N](H,E)Blj(t) (C 1)
i=1
NSNP
T, = uzj(n,a,t) = ‘Z N.(w,a)ﬁzj(t) (C.2)
j=1
NSNP
P = 43J(n,€,t) = 'él Nj(W,E) 3J(t) (C.3)
J
NSNP
b = ‘#4j(ﬂ,€,t) = ﬁl Nj(ﬂ_l€)84j(t) (C.4)
]
where Nj for 3 = 1,...,NSNP is a set of specified linear basis

functions with local support, and the sets elj’ ezj, 63j'
and %4.; j=1,...,NSNP, are the solution coefficients to be
determined. The N, were selected to satisfy the condition

Nj(NPi) = Sij where the Kronecker delta, 6ij’ is defined by

?ij =1 for i = j, and 6ij =0 for i # j. As a result, elj,
4 ~ ~
E sz, '35 and 94j are the values wl, wz, w3 and w4 at the nodal
E points (i.e., wij(n,e,t) = eij(t)).
! Area interpolation functions (shown in Figure C.1)
o
3 were used as the linear basis functions which provide the
-
r necessary function continuity. As a measure of error, a
i
[‘ residual, R;, is defined for each field equation by,
E R, = ’L + A (Y) - F + C[T.9]* (C.5)
} 1 < 1 < Mo
[ﬁ
¢
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from the system matrices, A(t), B(t) and C(t). In order

~ ~

~ ~ -~

to include effects of Tc and b arising from reaction rate
terms in the Jacobian vector, and thereby improve the effi-
ciency of the integration routine, the combustion terms are
incorporated into the residual equations (in DIFMCD).
Modifications to the Jacobian matrix are accomplished in the
JACMOD and NUITSL routines. Reaction rate terms of Expres-
sions C.40 and C.41 contribute nine terms to the respective

residual equations and twenty-seven terms to the Jacobian

vector. Reaction terms are generally expressed as,
3 3
= v i H =
RT = 'g Lo Cyplwyi¥ey) » k= 1.9 (C.53)
i=1 j=1

The Jacobian is defined as,

3F (9,0, t)

+ %ﬁ(@,w,t) (C.54)
50 v

Contributions arising from RT as a result of 53F/3y are,

(C.55)

ik* Va3

where the k* are compatible with the column locations in the

C matrix of the Y1i products, and
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C
1

ik* Y11 (C.56)

{
Ho~1 0

where the k* are compatible with the column locations in the

C matrix of the v4j

may be incorporated into the PW Jacobian vector (containing

products. Terms from Equation C.55

contributions to the Jacobian from the linear spatial
operators) as contributions from Equation C.8 with combustion.
Similarly, terms from Equation C.56 may be incorporated into

PW for terms arising from the O, residual equations with

2
combustion. The remaining contributions to the Jacobian
vector, Equation C.56 for the carbon equations and terms
arising from Equation C.55 for the 02 equations are stored

in the PWMOD (NDOF/2,9) matrix. The column number or wvariable
of differentiation array, INMOD (NDOF/2,9) and PWMOD array

are communicated to the NUITSL routine so additional Jacobian
terms not assimilated into the PW array (by virtue of the
storage scheme selected) may be taken into account during

the convergence sequence for the new iterates. The iterating
scheme is of Newton-Raphson type. Thus, the final synthesis
of the Jacobian including effects of all terms arising from

combustion is consummated.

5. Derivation of the FEM Operators

In the section on the finite element formulation,

the following six differential operators were identified,
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A/ N(y) dA (C.57)
(=3
[/ w(,) _da (C.58)
A -~ 2
e
Z{I M_(v) dA (C.59)
e
. C.6
1{[ N () ,dA (C.60)
-
C
9 /[ N(y) dA and Jf N v da (C.61)
{ A" A"
}_ e e
$  kN(y) da (C.62)
e 7

where Nj are the global basis functions. These operators
are constructed on the element level by introducing the
corresponding element basis functions, Ei' The global and

element basis functions are related by,

b, = N8 - g6 (C.63)

The derivation of the local elemental matrices (using

the local coordinate system depicted in Figure C.3) according




L =) C W T W Ty

LR e -3 v""'-'ﬂ'"-"‘"‘i"L".'{"?"-""tm

to the Galerkin method for the global operations proceeds

as follows:

For Operator C.29(also C.57),

Global Local
T
[f N(p) . aa [/ € £78 da (C.64)
AT S

e e
Noting that,

aa. b.g. € . c.9.

——lar = —l—lZAe and _laz = —J—J—ZA ;o jJ =1,3 (C.65)
where the repeated index implies Einsteinian notation, the
elemental matrix becomes,

be
/] ¢ —J——zA 6dA (C.66)
A e
e -~~~
Expanding,
51 b o b, b, by
—a = 1
Z{I £, (ZAe) 8dA = |py b, byl 8 (C.67)
e
b b b
§3] 1 "2 3
For Operator C.30 (also C.58),
Global Local
T
Jf N)_ aa /f ¢ 6dA (C.68)
A - z a7 z-~
e e
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Substituting the local shape functions gives,

cC. T
[/ £z =aa
A e
e o~
the elemental matrix becomes,
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For Operator C.32 (also C.60),
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the elemental matrix becomes,

T

[f2sfsan = &5 J1 o2 1| @ (C.79)

The last operator C.34 (also C.62) is incorporated into the
excitation vector as described in the FEM formulation and
has been addressed in Subsection 2, Implementation of

Boundary Conditions.
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Figure C.1 Area Interpolation Functions
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