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ABSTRACT

This investiga tion develops an axisymmetric heat transfer-

combustion model of a porous medium within a circular cylin-

der. System flow is governed by Darcy's law. Carbon and

air properties are treated as variables of temperature. A

combined continuity-Darcy equation, an oxygen mass balance

equation, and energy balance equations (one each) for air

and carbon, describe the conservation laws of the system.

Transport mechanisms for oxygen mass transfer are molecular

diffusion and convective transport, and an oxygen consumption

term to account for combustion is included. Heat transfer

mechanisms included in the model are conduction and convec-

tion. Radiation is accounted for at applicable boundaries

only. Nonvolatile combustion is accounted for in the carbon

energy and oxygen mass balance equations as a heat generation

term of Arrhenius type. The numerical solution of four

coupled, nonlinear, transient partial differential field

equations is accomplished using the Galerkin formulation of

the Finite Element Method. The effect of porosity on system

behavior is examined. /
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increase with increasing Reynolds numbers. Boffa [Ref. 12]

has shown that for a fixed Reynolds number, inertial effects

diminish with increasing air temperature. Darcy's law for

two-dimensional flow is,

-m dP dP
( - r +(dz - p: g)Z) (3.3)

where Q is the filter velocity or the volumetric flow rate

per unit cross-sectional area; m is the specific permeability;

g is the gravitational acceleration; r and z are the

unit vectors in the r and z directions, respectively; and

dP/dr and dP/dz are the pressure gradients in the r and z

directions, respectively. The assumption here is that the r

(radial) and z (axial) velocity components each react to the

pressure independent of the other. The specific permeability

of the porous medium used in the model is,

m = _P_( ) (3.6)96 "

Expression 3.6 is based on a cappilaric-serial model given

by Scheidegger (Ref. 10]. Expressions for permeability vary

with the physical assumptions of the flow paths incorporated

into the model. Permeability also varies with ne oore size

distribution assumed. Physically, permeability and porosity

are not related [Ref. 9]. Porosity is a quantifiable

property of the porous medium, whereas permeability is a

25



as 0.99. Changes in particle diameter are incorporated in

the model and are discussed in Section III.D with carbon

combustion.

B. DARCY'S LAW AND PORE VELOCITY

The Reynolds number for porous media is defined by

s sd
Re a (3.4

where s is the local pore velocity, -, is the mass density of

air, and is the dynamic viscosity. The magnitude of the

Reynolds number indicates whether fluid motion is dominated

by molecular, viscous, or inertial effects. Most investi-

gations of flow through porous media indicate flow regimes

of viscous and inertially dominated flows. The Navier-

Stokes equations apply to fluid motion possessing such

Reynolds numbers. Because of the geometry involved in a

consolidated (rigid) porous medium and the no-slip boundary

condition (i.e., s = 0 at a solid-fluid interface), solution

of the Navier-Stokes equations is difficult for a porous

medium. Scheidegger [Ref. 101 points out that extensive

experimental work with porous media indicates fluid flow is

governed by Darcy's law for the range of Reynolds numbers

where viscous effects dominate. The upper limit (velocity)

Reynolds number in these investigations is subject to dis-

agreement and varies from 0.1 to 75. Inertial effects

24



for spherical particles. Equation 3.3 is sometimes used

and assumes one-half of the total internal surface area

is effective for convective heat transfer. The fractional

amount of total area is an estimate based on Fontenot's [Ref. 37]

experimental results and does not generally apply to porous

media [Ref. 9]. The Kozeny relations, alternate expressions

of the specific internal area, are discussed by Scheidegger

[Ref. 10]. Advantages of the Kozeny relations are fair

agreement with experimental values and calculations that are

independent of particle shape. A disadvantage is the

failure of the relations to predict accurate values of Z at

high values of porosity [Ref. 9]. For the geometric

configuration of Figure 3.1, the tortuosity depends on the

ratio d/D. Carman [Ref. 11] presents a table of measured

tortuosity factors of various materials and geometries, and

points out differences between analytical determinations of

tortuosity. In this study, his recommended value of 1.4 is

used. Particle size decreases with consumption. As a

result, thermophysical properties which depend on particle

diameter, as well as temperature, are functions of time and

space. The numerical model presented assumes matrix

rigidity as particle diameter decreases. This assumption

gives rise to an increase in porosity during combustion.

Although Scheidegger [Ref. 10] in his discussion of the

packing theory of spheres, reports .875 porosity as the

threshold for stability in a porous matrix, Carman [Ref. 11]

reports on investigations performed on porosities as high

23



path to the straight (line) path displacement of the

particle. Permeability, a measure of hydraulic conductivity,

is a property of the porous medium that depends upon the

four characteristics mentioned above. Scheidegger [Ref. 101

presents methods used to measure the properties of porous

media. Methods discussed are essentially experimental in

nature.

The porous medium was modelled as shown in Figure 3.1.

In Figure 3.1, D is the particle center-to-center distance,

and d is the particle diameter. From the idealized geometry,

the porosity for spherical particles is,

p 31 - (3.1)
T D

The pore diameter is obtained from an expression proposed

by Carman [Ref. 111,

4p (3.2)Z

Equation 3.2 is analogous to a more familiar form of mean

hydraulic diameter, 4v/A, where v is the void volume and A

is the wetted surface area. The specific internal area, Z,

based on the idealized geometry of Figure 3.1 may be expressed

as,

= 1 d (3.3)

D

22



III. THEORY AND BACKGROUND

A. DESCRIPTION OF THE POROUS MEDIUM

In this work, a porous medium is considered to be a

solid containing interconnecting pores that allow fluid to

permeate and flow through the solid. Either of two classes

of porous media, consolidated (solid and rigid) and uncon-

solidated (comprised of discrete particles as found in

granular beds) may be considered. Each class of porous

media may have isotropic nonhomogeneous properties.

The common characteristics of all porous media are:

(1) porosity, (2) specific internal area, (3) pore diameter,

and (4) tortuosity. Porosity, p, is defined as the ratio of

void volume to total volume. "he specific internal area, z,

is the ratio of internal surface area to bulk volume. In

general, the distribution of pore size in a porous medium is

random (nonhomogeneous) and dynamic (subject to small

strains induced by the transient pressure field). The situa-

tion motivates the investigator to treat the porous medium

as a continuum possessing idealistic geometrical properties

of porosity and pore diameter. The specific internal area

is obtained from the porosity model. Though many conventions

exist for the definition of a conceptual pore diameter, in

this study a hydraulic diameter analogy is employed. The

tortuosity, T, of a porous medium is the ratio of the flow

21



transfer mechanism of: (1) molecular diffusion, and

(2) convective transport of species. An oxygen consumption

term due to combustion is included.

The fourth field equation involves the system pressure

gradient. The equation is a combined Darcy's law and air

mass continuity equation for the system.

The conservation equations describing the system field

are four transient, coupled, nonlinear partial differential

equations. The four equations are solved by a two-dimensional

Galerkin formulation of the Finite Element Method. The inte-

gration scheme used for this highly stiff system is one

presented by Gear and modified by Franke [Ref. 301. The

scheme is especially suited to systems of implicit and stiff

differential equations. The integration scheme is used in

conjunction with an optimal compact storage scheme proposed

by Franke and Salinas [Ref. 29].

20



II. PROBLEM DESCRIPTION

The problem under investigation is that of combustion

of a porous fuel (carbon) imbedded in a cylindrical container.

Pressure gradients induce convective currents through the

medium. The air flow produces two opposing effects:

(1) internal convective heat transfer, and (2) a supply of

oxygen to promote heat generation through combustion.

Extinguishment or sustained combustion of the porous medium

depend on the interaction of these effects. If heat transfer

dominates, the combustion will proceed to extinguishment,

otherwise combustion will continue. A mathematical model was

developed to provide an understanding of this interaction

and its effect on thermal behavior.

The mathematical model is formulated as follows. Energy

balances on the carbon and convected air provide heat

transfer equations for each. The heat transfer mechanisms

incorporated in the model are: (1) conduction, (2) convection

and (3) radiation (where applicable, at boundaries). In

.0 addition, nonvolatile combustion is included in the carbon

heat transfer equation as a fractional order heat generation

term of Arrhenius type.

The conservation of species law is applied to the oxygen

molecule concentration to yield a third equation. The

resulting oxygen mass transfer equation includes the

19
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U

medium. The heat transfer mechanisms included were conduc-

*tion, convection and radiation. One problem considered was

a porous mat subject to Arrhenius combustion in which all

properties were temperature dependent. The capillary serial

*(permeability) model introduced by Scheidegger [Ref. 10] was

employed.

The current investigation considers the effects of

porosity on system behavior for a two-dimensional (axi-

symmetric) model of combustion in a porous medium. A great

part of the following analysis may be found in Vatikiotis

[Ref. 9]. The pertinent parts are repeated here for conven-

6 ience to the reader. Deviations are cited and are for the

most part due to the axisymmetric two-dimensional aspect of

the present model vice the previous one-dimensional model.

The storage scheme employed by the numerical model warrants

the reader's attention. The savings in computer storage

realized by utilizing the method of Franke and Salinas

[Ref. 29], is substantial and is addressed in the Numerical

Section of this work. The nonlinear combustion term is

treated as a bilinear spatial operator of carbon temperature

and oxygen concentration, in contrast to the Vatikiotis treat-

ment of the term as an excitation vector. The idea behind

the present treatment was to capture the effects of the non-

linear combustion term on both of these dependent variables.

It was felt that this would alleviate some numerical diffi-

culties. A numerical model is formulated and results are

presented.

186t
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7.

The boundary configuration for this work was a two-dimensional

region with a line of vertical symmetry, enclosed on both

sides by impermeable, insulated sidewalls, and heated along

half of the base. The convective flow of fluid through

porous media heated from below has applications in the study

of behavior of geothermal systems. Hickox studied convection

as an application to sub-seabed disposal of nuclear waste.

The problem was a two-dimensional transient analysis of free

convection produced by a concentrated heat source (implanted

container of waste material) in the subsurface sedimentary

layer of a seabed. The porous medium was assumed to be rigid,

O0 homogeneous and isotropic. Density changes of the fluid were

accounted for only in the buoyancy term of Darcy's law.

Permeability, viscosity and thermal conductivity were assumed

to be constant. Chan and Banerjee conducted a transient

three-dimensional analysis of natural convection in porous

media. In addition to convective heat transfer, conduction

was also considered between solid spherical particles that

comprise the porous medium. The porous medium was considered

homogeneous and isotropic in its physical properties including

permeability and thermal conductivity, both of which were

assumed to be constant with temperature. Fluid density was

considered to be constant except in the buoyancy term of

* Darcy's law.

In 1982, Vatikiotis (Ref. 91 considered a transient one-

dimensional heat transfer and combustion model of a porous

17



Ignition parameters in porous solid fuels have been

analyzed by Kim and Chung [Ref. 4]. They investigated

three porous solid fuel geometries (a semi-infinite slab, an

infinitely long circular cylinder and a sphere) with con-

stant energy and gaseous oxidant fluxes at the fuel surface.

Laplace transformation of the nondimensionalized oxidant mass

equation and fuel energy equation allowed for asymptotic

solution of a nondimensionalized transient temperature

equation which is valid in the neighborhood of the fuel

surface. Observations included shorter ignition times for

spheres compared to slabs. Times for ignition increased with

*fuel size and approached values of semi-infinite slabs

asymptotically. Other effects of size and geometry of porous

solid fuels on ignition parameters are presented.

Saatdjian and Caltagirone [Ref. 5] investigated a transient

two-dimensional combustion model with natural convection.

A porous medium undergoing exothermic combustion was saturated

by a gas and bounded by two impermeable planes. Permeability,

fluid viscosity, thermal conductivity of the porous medium,

and the heat of reaction were assumed to be constants.

Horne and O'Sullivan [Ref. 6], Hickox [Ref. 7] and Chan

and Banerjee [Ref. 8], investigated the natural convection

phenomenon in porous media. Exothermic reactions were not

addressed in these investigations. Horne and O'Sullivan

considered the effects of variable viscosity on the stability

of a porous layer in a transient two-dimensional problem.

16
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Investigations by Kordylewski on the influence of aero-

*' dynamics on the critical parameters of thermal ignition

[Ref. 11, examined homogeneous combustion in a two-dimensional

cylindrical reactor. The transient analysis involved

Arrhenius combustion of a solid fuel. Heat transfer mechanisms

considered were convection and conduction. Because the inves-

tigation dealt with thermal ignition theory, reactant con-

sumption was omitted. The flow field was assumed to be

steady prior to ignition and constant fluid properties were

assumed.

Safety dictates the assessment of the structural integrity

* of a building after a severe fire. In order to predict

stresses due to fire in buildings, the thermal response must

be known. Sahota and Pagni [Ref. 2], formulated a transient

solution for two-phase, two-component flow in one-dimensional

porous concrete structures. The mechanisms considered in-

* cluded: heat conduction, molecular diffusion of gaseous

components, and pressure-driven convective flow subject to

Darcy's law.

A sudden reduction in feed temperature in a packed-bed

reactor leads to the transient temperature rise known as

"wrong-way behavior." This behavior was investigated by

Mehta, Sams, and Luss [Ref. 3]. The work identifies the

important rate processes and-parameters which cause the

behavior, and generates an expression for predicting the

magnitude of the maximum transient temperature.

15



I. INTRODUCTION

A. PRIOR INVESTIGATIONS

* The problem of characterizing physical systems involving

combustion and quantifying the accompanying thermal response

has received attention in recent years. The level of diffi-

culty encountered in a problem of this type precluded

analytical as well as numerical solutions. The difficulty

of the problem lies in the number of disciplines that encom-

pass it. The problem involves the kinetics of combustion,

heat and mass transfer mechanisms and fluid flow. Numerical

solutions with increased efficiency in computation are now

possible with high speed computers.

The combustion problem has applications in the areas of

forest fire control, energy conservation, underground

(nuclear) fuel storage and waste disposal, and natural gas

fire control. Major contributions may be made in the area

of energy production and conservation by the analysis of

heat generation and ignition characteristics of combustible

materials.

The characterization of combustion and heat transfer in

porous media has been of particular interest. A brief survey

of some of the investigations in the area of combustion and

heat transfer in porous media follows. The intent is to

acquaint the reader with work in the field that offered

insight into the formulation of this investigation.

14
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st -- Starting

u -- Universal

-- Ambient conditions



-- Kronecker delta function

- - Thermal emissivity

- Solution coefficient

A - - Field operator

- Dynamic viscosity

- Local element coordinate

-- Mass density

- Stefan-Boltzman constant

- Tortuosity, stress

-- Oxygen concentration

-- Particle shape factor, approximate solution

Subscripts

a -- Air

c -- Carbon

CO -- Carbon monoxide

CO2 -- Carbon dioxide

e -- Effective

fm -- Film

g -- Heat generation

O i -- At the current time or step

ig -- Ignition

o -- Cylinder dimension (i.e., r is cylinder radius,
z is cylinder length) 0

02 -- Oxygen

p -- At constant pressure

r -- Radiation
S

s -- Solid

12
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constitutive property (i.e., a property specified by a

constitutive relation, Darcy's law). The specific permea-

bility is proportional to the filter velocity induced by a

unit pressure gradient. Darcy's law is not derived from

first principles but through exhaustive experimental

analyses.

The Dupuit-Forcheimer assumption, addressed in Carman

[Ref. il], relates the lc1:z pore velocity to the filter

velocity by,

Q pV (3.7)

0

The hypothesis is that the local pore velocity is greater

than the filter velocity. The actual velocity in a single

pore is a function of the fluid element's location within

the pore. The Dupuit-Forcheimer assumption defines an

average" velocity within the pore.

The continuity equation for two-dimensional flow in

porous media with nonconstant porosity distributions is,

D(ppa )
Dt + p PaDiV = 0 (3.8)

Invoking the Dupuit-Forcheimer assumption and Darcy's law,

0 the continuity equation becomes,

D(poa) -m (P 9P
t Pa aDiv[ - r + ( - - a g)z)j 0 (3.9Dt2

[ 26



Eouation 3.9 ineglecting body forces) isone of four field equations

cast into a rinite element formulation later in this work. From the

pressure distribution, the pore velocity distribution is

obtained by invoking Darcy's law and the Dupuit-Forcheimer

assumption. The derivation of Equation 3.9 is presented in

Appendix A.

C. SEMENOV MODEL OF COMBUSTION

The model of Semenov described in Frank-Kamenetskii

[Ref. 131 and Vulis [Ref. 14], is the combustion model

employed herein. The basis of the model is the relation of

reaction rate to temperature and the interaction of heat
0

generation and heat transfer. The reaction rate expression

Rc, is the Arrhenius expression for a simple n-th order

reaction,

Rc A nexp( - (3.10)
R T
uc

where A is the time constant of the chemical reaction, E is

the activation energy, R is the Universal G-s Constant,u

Tc is the absolute carbon temperature, and 0 is the oxygen

concentration. In a simple reaction, the reaction rate

depends on the concentrations of reactants and not on the

products. The heat generated by the reaction is obtained

by multiplying Expression 3.10 by the heat (enthalpy) of

combustion. As explained in [Ref. 13], a theory of combustion
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can be constructed only if certain reasonable assumptions

are made. For example, in order to regard the initial

states as stationary, one must neglect the reaction rates

at these states. The empirical law of chemical kinetics

embodied in the Arrhenius expression tells us that the reac-

tion rate never goes to zero but falls off exponentia?.v

with a decrease in temperature. Neglect of the reaction

rate at the initial states is necessary to achie.c ,ac

equilibrium. In a finite range of temperatures

initial states, neglect of reaction rates is also -sf:

[Ref. 13]. At room temperature the reaction rates are n

* the order of 1.E-15 lbm-carbon/ft 2-hr or smaller, vice

l.E+3 lbm-carbon/ft 2-hr at 1500 IF.

D. ARRHENIUS LAW OF REACTION RATES

In 1934, Parker and Hottel [Ref. 15] proposed an

Arrhenius expression for the reaction rate of carbon reacting

in air. The expression assumed a simple first order reaction

for the combustion of carbon in air. Frank-Kamenetskii

[Ref. 13] has shown that the Parker and Hottel data is better

correlated by a fractional order reaction, n between 1/3

and 2/3. A reaction order of 1/2 yields,

6 1/2SRc 2.065 x 10 (Ro 0) exp(-57,240/Ru-T c ) (3.11)

In Expression 3.11, Rc is in units of lbm-carbon/ft 2-hr,

R 0 is the gas constant for oxygen (48.29 ft-lbf/lbm-R),
* 02
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is in ibm/ft 3 , R is 1.986 Btu/lbmole-R, and T is in
u c

Rankine. In order to determine the rate of heat generation

and the rate of oxygen consumption, the chemical reaction

for the combustion process must be considered. Although many

complex chains in chemical kinetics generally describe

combustion, a simple two-product analysis is employed in this

formulation. For nonvolatile combustion of carbon and

oxygen, two reactions that describe the process are,

C + 1 0 CO (3.12)

C + 02 - CO2  (3.13)

where 0 denotes oxygen; and C, CO and CO2 denote carbon,

carbon monoxide and carbon dioxide, respectively. The ratio

of the mass rates of carbon monoxide to carbon dioxide

* produced increases with increasing temperature. Arthur

[Ref. 16] presents an expression for the rate ratio as a

function of temperature (in Kelvin).

CO 2500 exp(-6240/T c ) (3.14)
CO c

2

The expression is valid for temperatures between 790 and

1170 K (1310-2110 degrees Fahrenheit). As a result of this

temperature dependency, the stochiometric ratio and the heat

of reaction are functions of temperature. Defining the

fraction of carbon monoxide being produced by,
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F =(-2 + (C)) (3.15)CO CO 2  CO 2

and the fraction of carbon dioxide as,

FCO 1/(l + (C2-)) (3.16)CO 2  CO 2

the heat of combustion is then expressed as,

', F -'H + F -H ( . 7
R  CO CO CO Hco (3.17)

Values for the heats of combustion, 'H and , H , as
C2

* functions of temperature may be obtained from JANAF (Joint

Army, Navy, and Air Force) tables [Ref. 17]. For the range

of temperatures being investigated (80-2000 degrees Fahren-

heit), the heats of combustion are 3966.3 Btu/lbm for FCO

and 14,121. Btu/lbm for FCO2 . Frank-Kamenetskii [Ref. 13]

points out that over narrow ranges of temperature it is

permissible to use an approximate expression which correctly

describes the reaction rate. The stochiometric ratio (fuel

to oxygen) of the overall reaction is,

f = fco f co2 /(fC O 2 FCO + fco F CO) (3.18)

where f RCO is the stochiometric ratio for the reaction 3.12

and fco 2 is the stochiometric ratio for the reaction 3.13.

The rate of heat generation, Rg, and the rate of oxygen
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consumption may now be expressed by,

R = -'H RC (3.19)

R = f RC (3.20)

Parker's and Hottel's work [Ref. 151 and Arthur's work

[Ref. 16] were conducted with specific types of carbon.

Tables and references exist in Smoot and Pratt [Ref. 181 and

Frank-Kamenetskii [Ref. 131 for rate expressions using other

types of carbon. The present model allows for any simple

fractional order rate expression of Arrhenius type to

account for carbon consumption with CO and CO2 byproducts.

For this work the Parker and Hottel rate expression as modi-

fied by Frank-Kamenetskii (n = 1/2) is used.

Particle diameter decreases with progressive combustion.

The rate of decrease depends on the amount of carbon con-

sumed at a point over time. Observations have shown that

the effect of decreasing particle diameter is significant

when the reaction is concentrated in a small region of the

*porous medium. To account for this, an expression for the

time rate of diameter change as a function of reaction rate

is derived (Appendix B). For spherical particles the equation

* is,

d= -2R cZ D 3/(7 d 2 ) (3.21)
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where -c is the bulk mass density of carbon. The diameter

and the reaction rate are functions of time and space.

E. CARBON HEAT TRANSFER EQUATION FOR POROUS MIEDIA

The heat transfer equations of the present investigation incor-

porate: (1) radiation (at boundaries where applicable), (2)internal

convection, (3) conduction, (4) internal combustion, (5) temperature

*dependency of properties, and (6) compressibility effects

of air into a two-dimensional (cylindrical coordinate)

formulation. The carbon energy conservation equation is,

T

(1-P).D C t = (l-p)(k )(,T c ) - hZ(T -T ) + R Z (3.22)
c c t e c c a

The derivation of Equation 3.22 is presented in Appendix A.

The effective conductivity, ke , of the porous solid was

proposed by Russel [Ref. 24],

k
,2/3 a 2/3
p_

ke k c k (3.23)e a *2/3 , a( _ 2/3 ,
p - p + k p + pI)

c

where k and k are bulk thermal conductivities of carbon
c a

and air respectively, and p' = 1-p. Russel's expression,

which is based on an electrical analogy, is valid for the

full range of porosities, 0.0 to 1.0.

Because of the difficulties encountered in a radiative

analogy to Fourier's law of conduction, the particle to
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particle radiative exchange in the porous medium is omitted.

The difficulties are: (1) thp geometry does not easily allow

one to derive an expression for a "sink" temperature to use in

a linearized approximation of the Stefan-Boltzman equation, and

(2) the multi-wavelength characteristics of the radiation

phenomenon are not easily incorporated.

F. HEAT TRANSFER EQUATION FOR AIR IN POROUS MEDIA

The internal convective heat transfer coefficient of

Yoshida, Ramaswami, and Hougen [Ref. 33], is given by,

h =C0.91 Re'-0 .51 C G(Ca /ka) - 2 / 3 If (3.24)

where is equal to 1 for spherical particles, G is a pseudo

mass velocity given by p p s and C is the specific heata a

of air at constant pressure. The f subscript indicatesm

properties are to be evaluated at film temperature. Re' is

a pseudo Reynolds number defined by,

Re' = G/z iU (3.25)

The air properties, as well as the internal convection coeffi-

cient, h, are temperature dependent. The reaction rate in

Equation 3.22 is given by Expression 3.19.

An energy balance on the air within the porous medium

obtains the second heat transfer equation,
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jT

L 7a (pk T a)+ hZ(T -Ta)P~~ t a a

p a (V-)T - (V(7)p (3.26)
a- a a

The density of air, Ca' is approximated by the ideal gas law.

Pressure terms are due to the compressibility of air. The

derivation of Equation 3.26 is presented in Appendix A. All

properties in Equation 3.26 are temperature dependent. The

properties of standard air were used in the model. Vatikiotis

[Ref. 91 points out that tolerable differences (average of

7% difference) between standtrd air properties and properties

accounting for the presence of byproducts CO and CO2, is

acceptable. Increased accuracy would introduce an additional

mass balance equation for either CO or CO2. Polynomial ex-

pressions used to calculate the thermophysical properties of

air are those presented by Vatikiotis [Ref. 9]. The expressions

are presented in Appendix B.

G. OXYGEN DIFFUSION EQUATION FOR POROUS MEDIA

The fourth field equation necessary to complete the

system of equations is provided by an oxygen species conser-

vation requirement. Transport mechanisms included in the

model are molecular diffusion (Fick's law), convective mass

flow and oxygen consumption due to combustion. Pressure and

temperature induced concentration gradients are considered

negligible. Vatikiotis [Ref. 9], provides examples for which
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diffusion arising from pressure and temperature gradients

is important. The oxygen mass balance equation is,

p = (p V 7 ) - 7.(p pV) z (3.27)
e 2

The derivation of Equation 3.27 is presented in Appendix A.

The effective diffusivity, 0 e proposed by Denbigh and

Turner [Ref. 31] for a porous medium is

V e D/T (3.28)e

Expression 3.28 accounts for the tortuosity encountered by

the oxygen molecules as they flow through the porous medium.

The semi-empirical expression proopsed by Gilliland [Ref. 34]

is used to obtain the diffusivity of oxygen into air. The

expression is,

435.7 T3/2(M +M ) 2 /[P(Va +V ) 1 (3.29)

a2 02

where V is in units of cm 2/s, P is the total pressure in Pa,

V a and V0 are the molecular volumes of air and oxygen,

respectively. Ma and M are the molecular weights of air

and oxygen. The values of Va and V may be obtained in

3
Holman [Ref. 35] as 29.9 and 7.4 cm , respectively. The

oxygen consumption term Ln Equation 3.27 is given by Expression

3.20.
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H. BOUNDARY CONDITIONS

Boundary conditions employed were as follows for the

carbon,

T
c r = 0 (3.30)

-r = 0
ir

0

(l-p) (k ) Ti = -q (3.31)
e jz z =0

z0

where qs is the starting heat flux.

T ^4 "4
(l-p) (k ) (TE -a (T - (

e --z =c (3.32)
0

( 0 (1-D problems)

(l-p) (ke) 
3r3

r 4 ^
h r (T c -T) +oE (T -T )

(2-D problems)

For air,

Ta
a = 0 (3.34)

r_0Lr

0

pka a -p 0a CaV(TT ) (3.35)
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T a T (3. 35a)
Z 0

z0

3Ta:
p k a - p a Ca v(Ta -T ) (3. 36)az z z l

0

T (1-D problems)

a,p ka I r = (3.37)a 3r i _ : i
r h r (Ta  T:) + a T4 DOT- T )

a T

(2-D problems)

For pressure,

=0 (3. 38);r r 0r

0

P = P1 (3.39)__z 1
-0z
0

P- = P2  (3. 40)

0

-rr 0 (3.41)

0
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Finally, for 02 concentration,

- = 0 (3.42)
r r 0

r
0

pL - = v(;- ) (3.43)e -z z =0
z

0

=3.43a)
zz-0
z

0

p v(z - (3.44)?e Z z -

z
0

P - = C (3. 45
e r'

r
0

Equations 3.35, 3.36, 3.43, and 3.44 correspond to convecti;e

flux conditions on air temperature and 02 concentration.

rAt the air inlet (- = 0.0), Dirichlet conditions, Equations
r

0
3.35a and 3.43a may be imposed on the air temperature and

oxygen concentration. The idea behind this treatment is that

in the presence of a semi-infinite medium (ambient air), the

air and 02 concentration may be considered, to a first

approximation, very near ambient conditions. Equations 3. "],

3.34, 3.38 and 3.42 correspond to symmetry conditions at
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r
r- 0.0. Equations 3.33, 3.37, 3.41 and 3.45 correspond
0

to impermeable boundaries and insulated boundaries at - = 1.0r
o

and are used in conjunction with one-dimensional problems.

The second cart of Equations 3.33 and 3.37 are the boundary

conditions that reDresent a relaxation of the radial insu a'c

of carbon and air temperatures which allow the system to

cecome a two-dimensional heat transfer problem. it must be

. wever that the heat transfer coefficients of

z:3a- -:.s 3.23 and 3.37 are not easily obtained. This work

-rcoeeo if the following assumptions were not made.

-was assumed that the air and carbon had near equal crofiles

- _. sD that the same heat transfer coefficient would apply

to botn ".ariables. If Equation 3.35 is used as a boundary

-onui~t n, the air temperature follows closely the carbon temoera-

re... F.0. Furthermore it was assumed for simclicitv cf

alc it-c t1-hat the heat transfer coefficient was constant.

he :i ........ is as follows. In order to determine the

r.ii ar .ser -ce :ic~ent for the impressed temperature

: _3 - " -- 1.0, the temperatures themselves must be
0

.or rect procedure would involve an initial esti-

-e the rrofile, calculation of the heat transfer coeffi-

-on of the problem for one integration and

"rL ica on the assumed and calculated temperature

.... e s. *r:7on suitable verification of the profiles, the

.i. me rocedureLs performed for the next integration. Other

croblems arise for example if the radial heat transfer at
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4 sin
Ci 23. +sin(2.) (4.14)

1 1

The constants 3 are the roots of zhe transcendental alge-1

braic equation,

tan B. h L/k (4.15)
1 1 0

Thus the solutions have the Biot number of the slab as a

parameter. The roots of Equation 4.15 are tabulated in

Appendix A to [Ref. 25].

3. The Cylinder

Consider the cylinder of Figure 4.1(b). The suddenly

immersed cylinder satisfies the equation,

T _ (r T (4.16)
-t r r 7r

subject to an initial condition,

T(r,O) = T- (4.17)1

and a convection condition at the surface: At r =r

T-k = h (T - T ) (4.18)
r 0

The solution is given as a Fourier series in [Ref. 23]:
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5.E-1 hr., and iterated about the given initial fields.

This sufficiently demonstrated the first of several tests

requisite to assure numerical code compatibility with the

integration scheme.

2. The Finite Slab

Consider the slab of thickness 2L in Figure 4.1(a).

One seeks the solution of the one-dimensional conduction

equation,

S(4.10)

!x --;X

subject to an initial condition,

T(x,0) T. (4.11)1

and uniform convection conditions at both surfaces: At

x = -L:

-k = - h(T -T ) (4.12)
x 0

The exact solution is given as a Fourier series in [Ref. 23],

T-T -2 2
0 C. t/L xo _ e cos(. x) (413

T.-T i L

where,
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22 22 nodal points. The solution changed 5% from a 12 -12

to a 22 .22 nodal point model. Next, a 17 17 point non-

-niform :rid model was investigated. It was found that

the solution changed approximately 2% from the 22 22 nodal

point model. At this point, it was determined that the

12 -12 non-uniform nodal point afforded the desired balance

between cost, computational effort and computer-run time.

grid size kmax clock runtime (min.)
(n - n)

12 6,398 70

17 13,223 100

22 22,498 110

D. MODEL VALIDATION TESTS

In order to validate the capabilities and accuracy of

the numerical code, several tests were conducted.

1. The Steady State Problem

First, it was necessary to ensure the model's ability

to recognize a steady state condition. This was the simplest

of all tests (and first to be) performed. Initial (ambient)

conditions were imposed uniformly throughout the system on

the four fields: carbon temperature and air temperature

(80 degrees F.), pressure (2,116.8 psf) and oxygen concen-

tration (0.0172 lbm/ft3 ). An initial integration time step

equal to the minimum time step allowable (user input) l.E-6 hr.,

was selected. In less than five integrations the algorithm

switched to the maximum allowable time step (user input)
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superior to uniform grids. In fact, for many problems,

computer storage limitations require that a non-uniform grid

be used to obtain reasonably accurate solutions. Non-

uniform grids allow the investigator to take advantage of

the knowledge of areas of severe combustion induced gradients.

"Stacking" elements in these areas assists the algorithm in

producing more accurate and numerically stable results. For

similar degrees of accuracy with uniform grids, it is esti-

mated that grids on the order of 1000 xi000 nodal points

(and larger) would have been required. Nondimensionalized

length discretizations on the order of .001-.005 and smaller

near the air inlet boundary permit excitations on the system

boundaries to be propagated accurately through the medium.

Until discretizations on the order of non-dimensionalized

lengths of 0.001 were employed, numerical instability was

encountered in the carbon temperature field. This instability

was manifested by severe overshoot, leading to negative

temperatures in close proximity to severe thermal gradients.

For non-uniform grids it was found that grids below 10

nodal points in each direction were not adequate. The

temperatures obtained from these models were lower due to the

relatively low degree of grid refinement or discretization

possible with such few points. Grid refinement in this type

of problem is essential to capture the high activity (large

gradients) that is inherent in the combustion phenomenon.

A convergence study was done on several nodal points at

various times for non-uniform grids at 12 - 12, 17 x 17, and
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combustion occurring within the element. An element loop is

performed to account for combustion terms in an elementally

averaged sense over the entire system spatial domain.

B. OPTIMAL COMPACT STORAGE (OCS)

The optimal compact storage scheme, presented by Franke

and Salinas [Ref. 29], employed in the solution of the

combustion problem, allowed the computational effort to

proceed with substantial savings in computer storage,

computer-run time, and ultimately dollar cost per run. In

the optimal compact storage scheme, only the non-zero coeffi-

cients are stored in a vector array. This results in a

very significant reduction of the storage area compared to

banded storage. One might encounter problems on the order

of 1000 '1000 DOF. (In this problem there are fcar degrees

of freedom at each nodal point. A 17 x 17 grid requires a

1156 x1156 matrix if full storage is employed.) For banded

storage the bandwidth might be 200. The storage ratio for

bandwidth to full storage would be 0.2. Using OCS, a con-

servative estimate of the average number of equation entries

in this model is 20. The ratio of OCS to banded storage

is 0.1. Thus in this example, the savings realized by OCS

vice full storage is 98%!

C. GRID CONVERGENCE

A convergence study was done on the response field for

several grids. It was found that non-uniform grids were far
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3. Bilinear Operator Treatment of 02 and T

The bilinear operator treatment of the reaction rate

is the present method of treatment. The reaction rate term

is rearranged as follows,

n--
, exp(-E/RTc ) *t

c n-i [T 2] (4.6)C ~TC
c

Letting

Tc i , i = 1,3 (4.7)

and

, i = 1,3 (4.8)

and invoking natural coordinates [Ref. 281, an elementally

averaged contribution results in the following area integral,

f .T T e dA (4.9)
A
e

The double subscript permutation of carbon temperature and

02 concentration results in a 3 x9 elemental matrix that is

distributed into the system equations. In this scheme at

each nodal point within an element, carbon temperature and

02 concentration equations receive nine terms arising from
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In the carbon equation, Expression 4.1 appears as,

R H R (4.2)

In the oxygen concentration equation, Expression 4.1 appears

as,

R f- 1  R (4.3)0 2 R c

The term that is to be evaluated at the last time step and

to be held constant over the next time step is,

e

I *t

R = {A nexp(-E/RT } n- (4.4)

where the superscript *t 1 indicates evaluation occurring

at the previous time step.

2. Linear Operator Treatment of 02 Concentration

In order to realize an improvement over the first

treatment one may retain a portion of the reaction expression

as an operator by making the following rearrangement:
0

^ *t
n-i n-IR = {An exp(-E/RTc)} - [] (4.5)

c c

where [7] denotes a spatial operator treatment of the

response variable.
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4 IV. NUMERICAL CONSIDERATIONS

A. TREATMENT OF NONLINEAR COMBUSTION TERM

The treatment of the nonlinear combustion term is now

discussed in brief detail highlighting the advantages of

each treatment. A more comprehensive discussion is presented

in Appendix C. The interested reader is encouraged to

review the detailed analysis. There are several ways to

treat the Arrhenius reaction rate expression.

i. Excitation (Force) Term Treatment

Perhaps the simplest method for incorporating the

combustion term is to evaluate it at each time step and use

the evaluated value (held constant) as an estimate of the

mean value during the next integration. It is realized that

in fact, the value is not constant in real time. This treat-

ment, however, provides a means of incorporating the term

into the system of equations as a first approximation with

relatively little computational effort. Averaging techniques

exist for improving upon this method. In this scheme the

excitation vector is modified at each nodal point in the

carbon temperature and oxygen concentration equations to

include the combustion terms. The exponential reaction rate

term that appears in both the porous solid and oxygen diffu-

sion equation is,

n^

R = A n exp(-E/RT (4.1)c c
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T

(l-p) (k - q (3.46)
e jz z =0

- 0

Expression 3.46 is incorporated into the numerical formula-

tion as Neumann boundary condition for carbon temperature.

The initial heat flux may be turned off at any specified

time. The boundary condition of Expression 3.46 then

switches to a Cauchy (mixed) boundary condition to account

for radiative heat transfer from the carbon particles at the

boundary to the ambient air. Convective heat transfer from

the carbon particles to the air is treated through the

• internal heat transfer coefficient. The above procedures

for treating problem initiation obviate the need of trying

to specify initial conditions which may in general be

arbitrary for each problem.

0

0
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analog sense (Figure 3.3) and thus affects the temperature

profile and ultimately the heat transfer coefficients. Of

r necessity then, the material's inherent ability to absorb

energy is denied. No attempt is made here to conjecture as

to how physically one may impose the radial boundary conditions

implemented below. If it were possible to rigorously apply

the heat transfer boundary condition described above, the

numerical model would be capable of obtaining a solution.

The model was tested at various values of constant heat trans-

fer coefficient: 0, 1, 5, 50, 100, 500, to determine the

effect of the heat transfer coefficient on the solution. It

was found that until the heat transfer coefficient gets

significantly large compared to the start flux applied to

the carbon at the air inlet boundary (in this case above

100 Btu/ft 2-hr compared to 1500 flux applied to carbon), the

two-dimensional effects on the temperature profile were

localized in the r 0.85 to 1.0 region. The temperature
r0

profiles for -Lless than 0.85 were essentially one-dimensionalr
0(constant value independent of r).

I. INITIAL CONDITIONS

The model is developed so each problem begins at a

uniform initial temperature. A heat flux applied to the

carbon along a boundary provides a means of bringing the

system to a temperature level where reaction terms are

sufficiently high to generate combustion. The heat flux is

treated as follows,
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0r
1.0 is of natural convective type. At the exit 1.0,

r z
0 0
functional and derivative continuity must be demonstrated

for pressure, oxygen concentration and air temperature at

the vertical boundary separating the stream of exiting air

and the convective boundary layer. This is known as a conju-

gate problem. The above method is a realistic method for

zhe treatment of this problem but admittedly it is beyond the

scope of this work. The numerical code has provisions for

incorporating an average of isoflux and isothermal natural

convective Nusselt number formulations (Churchill correlations)

for vertical cylinders obtained from [Ref. 36]. Although the

subroutine has been written there has been no attempt to

date to implement it. It is known that physically heat

transfer coefficients lie between those generated from iso-

thermal and isoflux considerations. However, simply having

empirical correlations for evaluating the heat transfer

coefficients does not eliminate the need of the iterative

scheme described above. Additional considerations must be

addressed in this context. In order to effect an impermeable

vertical boundary at -= 1.0, the system must be enveloped

by a cylindrical container fabricated of some type of material.

This material has an inherent potential to absorb internal

energy that transits from the initial system to the boundary

where some flowing medium is able to convect energy away

(Figure 3.2). The material's ability to absorb energy adds

a thermal resistance to the heat transmission in an electical

40
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2, 2T -T YO _£ t/r 2

0 0T._ T _ '[ C.e 1 oj (.r/r (4 .19)
1 0 i=l

where,

J ( )2 __ _ _ __ _ _ _

C 2 2 (4.20)
i + J1 i

The constants Z. are the roots of the algebriac equation,

(3.) B = h r /k (4.21)

The functions J and J are the Bessel functicns of the first0 1

kind whose numerical values are tabulated in most advanced

engineering mathematics texts. For a limited range of

interest, numerical values of J and J are tabulated in

Appendix A of [Ref. 25]. The roots of Equation 4.21 are

tabulated in [Ref. 23].

4. Multidimensional Solutiins by the Product Method

The classic solutions for semi-infinite- and finite-

thickness bodies (slabs, cylinders and spheres) may be used

to generate solutions for multidimensional bodies.

Use of the product solution technique is illustrated

by Figure 4.2. The problem chosen to validate the heat

transfer portion of the current model is the "sudden immer-

sion" problem for a finite-length cylinder subjected to
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uniform convection conditions (h,T) on all sides and

initial uniform temperature T . The differential equation
.1

to be solved is,

2
(r- .t (4.22)

r jr ir I

where a = (T -T )/(Ti -T ). The initial condition is

S(r,x,O) = 1 (4.23)

The convection boundary conditions are,

0

At top and bottom: -k - h 6 (4.24)
x 0

On the sides: -k = h (4.25)
3o

The solution is the product of the two simpler analyses:

the semi-infinite slab and the infinite cylinder. Let

-)(x,r,t) = eslab(Xt) * 9cyl(rt) (4.26)

= P(x,t) C(rt)

Substituting Equation 4.26 into Equations 4.22, 4.23 and

4.24 and separating the variables, reduces the two-dimensional

problem into two one-dimensional problems:
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s .s

Slab: 2 t (es e-x z s slab€X
I

s (x,0) = 1~S

-k s, h - (-L,t)

Cylinder: r r r 4 It c cyl

e (r,0) = 1

-k - - h°-c (rO It)

0

Thus Equation 4.26 is the exact solution to the sudden

immersion problem of a right circular cylinder.

5. Validation Problem

The validation problem is Example 4.9 in [Ref. 25].

The problem is stated here for the convenience of the reader.

The short cylinder in Figure 4.3 is initially at 400 C

and then plunged into a fluid with h = 300 W/m-K and T = 2000 C.

The material is bronze, k = 26 W/m-K and a = 8.6 -10 - 9 m 2/s.

Find the temperature at the center of the cylinder after

5 minutes.
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Solution: 1760 C (348.80 F). The details of the solu.tion

". .."are found on pages 186-187 of [Ref. 25]. The product solution

technique was utilized in obtaining a 5-term approximation

2
of the series solution for Fourier moduli (F0 = At/L

equivalent to a nondimensionalized time) less than 0.2. For

Fourier moduli greater than 0.2, a two-term approximation of

the exact solution was used. Heisler [Ref. 26] points out

- . that a one-term approximation of the exact series solution

yields an accuracy to within 1% of the exact value for

Fourier moduli greater than 0.2. Various values (5, 10, 20

and 30 seconds) corresponding to values of Fourier moduli

less than 0.2 were used in comparing model solutions with

the exact (five-term approximations to the exact) solution.

Values (3, 5, 7 and 9 minutes) corresponding to Fourier

moduli greater than 0.2 were used to compare model solutions

with the exact (one-term approximations with 1% accuracy)

solutions. Figures 4.4 through 4.8 show: (1) the effects

of time on the solution of various grids, and (2) effects

of grid refinement at equal values of time. Values plotted

on the ordinate scales are deviation (percentage error) from

the exact solutions versus time. Observation yields that for

small values of time, grid refinement obtains more accurate

results and obtains a faster convergence to steady state.

6. Testing the Model's Ability to Accept and Reject
Heat

An equivalent simple test in model validation is the

model's ability to accept heat from a boundary flux and

57



. ,

reject it at a later time to its environment via convection.

The applied heat flux at -0 is 1500 Btu/ft2-hr.
0

Figures 4.9-4.12 illustrate system response. Figure 4.13

is the input data set used.

7. The One-Dimensional Problem

Another step in the validation of the two-dimensional

problem is an examination of a one-dimensional problem. One

might infer that a two-dimensional model includes the one-

dimensional model as a subset. This was demonstrated in a

separate test. A one-dimensional problem may be imposed on

the model in two ways. One way is to make the length to

diameter ratio very large. (No restrictions on excitations

is implied.)

Another method for eliciting one-dimensional behavior

is to "excite the system in a one-dimensional fashion,"

i.e., apply boundary conditions at z= 0.0 and 1.0
z z

0 0independent of radius and insulate radial boundaries at

r - 0.0 and r 1.0. The insulated boundary at r = 0.0r r r

arises from an axisymmetric formulation of the problem. The

rzero gradient (completely insulated) boundary at - 1.0

4 0corresponds to a completely (all four variables) impermeable

vertical boundary. For this problem, an adiabatic restriction

is sufficient. In general, an adiabatic condition means an

insulation of heat. In this problem, the implication is far

greater because of the coupling between system fields. An

adiabatic restriction at = 1.0 prohibits non-zero radialr
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-7.-1 -K I -W"

pressure gradients. Unconstrained radial pressure gradients

at 1.0 imply radial convection of air enthalpy and in aar 0

non-isothermal fluid, this convection undermines the initial

adiabatic assumption at - .0. Oxygen gradients are alsor 0
0

negated by an adiabatic condition since oxygen convection

by air must occur under the presence of nonzero pressure

gradients at r= 1.0.r0
The two methods described above distinguish one-dimen-

sional behavior arising from geometrical conditions and one-

dimensional behavior resulting from restrictions on excitations.

Figures 4.14-4.16 depict model one-dimensional solutions to

"one dimensional excitations." Figure 4.17 is the input data

set used.
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Figure 4.5 Grid Effects at Point B, (0,1)
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F in the first minute) at the - = 0.0 boundary. Due toz
0

the steep gradients, further system behavior could not be

analyzed since output data consisted of a single output

(T = 5-20 S., problem time, depending on porosity value)

in 15 minutes of CPU time.

E. CONCLUSIONS

The combustion analysis program (CAP) is a viable tool

for the analysis of heat transfer in porous media. The

model constructed provides the user with the flexibility to

solve problems with or without combustion. The role of

the permeability model must not be underestimated. For it

is the physical assumptions in this aspect of the model that

govern the flow, heat transfer and in the end the evolution

of the combustion problem.

F. RECOMMENDATIONS

Follow-on work is recommended in the following areas:

1. Develop a restart capability for the program which

will allow for a problem to begin at any point in

time with initial conditions and rate information

being identical to previous timestep values.

2. Nondimensionalize equations in terms of other system

quantities in addition to spatial dimensions.

3. Flex the model under other system parameters to examine

effects on system behavior.
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0.000417 ft. (0.005 in.). Values of d (ft.) equal to

0.000417, 0.000411, 0.000396, 0.000385 and 0.000370 were

used to give values of porosity of 0.476, 0.5, 0.55, 0.60,

and 0.65, respectively. The results are graphically pre-

sented in Figures 5.1--5.4. Figures 5.1 and 5.2 show the

carbon temnerature profile and the oxygen concentration

profiles for porositv c 0.476 (D = 0.000417 ft. = 0.005

in.). In all cases, excitations for these runs are 1500

Btu/ft 2-hr (in) at z = 0.0 and 50 Btu/ft 2-hr (out) atz
0r = 1.0; the pressure is 14.65 psi at z = 0.0 and 14.55

r prez " a
0 0zat - = 1.0; the cylinder length to diameter ratio is 0.5

0

(length = 1.0 ft.). Figures 5.1 and 5.2 represent typical

graphical results for carbon temperature and oxygen concen-

tration profiles. Figures 5.3 and 5.4 are a tabular summary

of the results of the carbon temperature profile and the

oxygen concentration profiles, respectively, for varying

porosities. Profiles with higher values of initial porosity

are observed to have accelerated development of temperature

profiles (i.e., as the fuel diameters decrease (increasing

porosity), the carbon temperature responds at a faster rate

to system excitations). The oxygen concentration response

is as expected (i.e. as reaction rate goes up, the oxygen

concentration goes down). In the runs made for porosity

values of 0.70, 0.75, 0.85 and 0.90, numerical difficulties

were encountered. The temperature profiles were observed to

increase sharply compared to lower values of porosity (300-400'
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problems discussed here the transport zropert-es

m/V, e and the Arrhenius reaction rate term are . .

factors in the respective field equations in which they-

appear. As previously discussed, the net balance between

heat transfer rates and heat generation dictate whether a

reaction will proceed to extinguishment or combustion.

There are two time constants to be considered in a combustion

problem of this type: a time constant for the Arrhenius

reaction and a time constant associated with momentum

transport. The momentum time constant affects the rate at

which heat is convected (removed) out of a differential

volume. The reaction time constant affects the rate at

which heat is generated (added into) within a differential

volume.

D. POROSITY ANALYSIS

In this problem there are many parameters one might vary

in order to examine resultant system behavior. Due to time

limitations this investigation examines the effect of one

parameter, porosity, on system behavior. The observed

effect of porosity values ranging from 0.476 to 0.90 is

dis d. Of the nine runs attempted, only five had suffi-

cient it data that allowed for comparative analyses.

Employi uation 3.1 for the porosity associated with

spherical u_.rticles, the carbon diameter, d, was varied to

achieve various values of porosity while holding the parti-

cle center-to-center distance D (Figure 3.1), fixed at
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Similarly, in place of Equation 3.44, a zero flux boundary

condition at 1.0 could have been imposed on the oxygen
0

concentration. The zero flux condition implies an impermeable

boundary with respect to oxygen concentration fluxes. This

boundary condition would apply to a very long cylinder (i.e.,

a regularity condition). In this investigation, a Cauchy

(convective flux) boundary condition on the oxygen concentra-

tion is imposed at - = 0.0 and 1.0. As oxygen is locally
z
0consumed in the interior of the system, oxygen gradients are

created. According to Fick's Law of Diffusion, a depleted

oxygen region is replenished by the diffusion of oxygen from

regions of relatively high concentration to regions of low

concentration. Thus a convective flux boundary condition

on oxygen causes the depletion of oxygen concentration to be

retarded through the diffusion mechanism.

B. EXCITATIONS

The effects of high and low values of the heat flux

applied at -= 0.0, are predictable. High values of heatz
0flux lead to an accelerated development of both the carbon

and air temperature profiles and 02 concentration depletion

within the system. For high values of heat flux at --L 0.0,
zo

the numerical integration scheme eventually slows noticeably

as a result of steep gradients observed at this boundary.

C. PHYSICAL CHARACTERISTICS OF THE SYSTEM

The physical characteristics of the system generate a

significant effect in field problem solutions. In the
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V. DISCUSSION AND CONCLUSIONS

Field problem behavior depends on three major factors:

(1) Boundary conditions, (2) System excitation, and (3) The

physical characteristics of the system.

Time limitations did not permit this investigator to

conduct an exhaustive analysis of each of these factors.

Some preliminary analyses were performed to obtain some

understanding of the effect of boundary conditions, and

excitation on system behavior.

There are a variety of physical parameters which govern

system response, such as permeability, porosity, and the

cylinder length-to-diameter ratio. Here only a brief

investigation of the effect of porosity on system behavior

was undertaken, and is reported.

A. BOUNDARY CONDITIONS

The boundary conditions used in the present investiga-

tion were presented in Chapter III. Other boundary conditions

are possible. For example, if in place of Eqs. 3.32 and 3.36, an

insulated boundary condition at - = 1.0 is imposed on the
z

0
carbon and air temperatures, then preliminary results indi-

cate temperature response is higher for equal values of time.

This behavior is due to the buildup and storage of energy

within the system associated with an insulated boundary.
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tI t2  t3  t4

P 207.0 466.0 *554.0 720.0

P2  216.4 488.4 603.3 *765.0

p 3  239.2 563.0 695.0 905.0

p 4  266.0 632.0 *757.0 1034.0

P 5  294.6 724.8 898.0 -

MAX Carbon Temp. (OF)

* - interpolated

Figure 5.3 Maximum Carbon Temperature Summary Porosity:
P1 = 0.476, P 2 = 0.5, P3 

= 0.55, P 4 = 0.60,
p5  0.65. Time: t 0.1 minute,

t = 1 minute, t3 = minutes, t4 = 4 minutes
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t t t 3t4

P1  172.0 172.0 *171.5 168.0

P2  172.0 172.0 172.0 *156.0

P3  172.0 172.0 171.0 118.0

P4  172.0 172.0 *157.0 26.6

P 5  172.0 171.0 *98.0 -

MIN 02 % ((X 104) 1 i/ft3

*-interpolated

Figure 5.4 Oxygen Concentration Profile Summary
Porosity: p, = 476, p = 0.5, P3 =0.55,

p4  0.0, = 0.65. ime t1  0.1
minute, t 2 =- minute, t3 =2 minutes,
t4 4 minutes
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APPENDIX A

FORMULATION OF FIELD EQUATIONS

A. PRESSURE DISTRIBUTION EQUATION

Darcy's law for two-dimensional flow is,

Q (= -m( p g ) (A.1)

r+ o Z a-. oz - Wa

where Q r and Qz are expressed as follows,

Q = m p (A.2)
r r

Q m 9P
= '- l (:z- - p  0a g) (A.3)

Invoking the Dupuit-Forcheimer relation, and solving for the

pore velocity components u (radial velocity) and v (axial

velocity), Equation A.1 becomes,

u -M 3 (A.4)pw 3r

-m (3P - g) (A.5)

The continuity relation (derived in Appendix B) is,

D(ppa

D + p p aDivV = 0 (A.6)
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Substituting Equation A.2 and Equation A.3 into Equation A.6

yields,

-P 
I aP

a7  (- r + (' - p zg)Z)

+ -L- r + - p P g)ZP) *7P (A.7)pi -r 7- - a a

Expanding terms, Equation A.7 becomes,

32 +2p 1 P a 1 3m 1 + 1 )Pr- +  - + (Pa r- +- Tr-.1T--
rm3r .3r r ar

+ (1 Pa +1 am 1 3P HP PP g
Pa 3+ mz m W 9z az + p qag) ' a(A'8)apam 3t

Equation A.7 with associated boundary conditions (presented

in Section II.B) is cast into a finite element formulation

and becomes one of four field equations. Pressure gradient

information is then substituted into Equation A.4 and Equation

A.5 to obtain the pore velocity components.

B. POROUS SOLID HEAT TRANSFER EQUATION

In performing energy balances on both the porous solid

and on the air, a differential volume of porous medium may

be partitioned into respective volumes, dV5 = (l-p)dV for

the solid, and dVa = pdV for the air (shown in Figure A.1).

The convention used for the energy balance of an arbitrary

differential volume, dV, is,
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Heat into DV + Heat generation = Heat out of DV

+ Increase in internal energy (A.9)

The beat transfer mechanisms considered for the carbon

are conduction, radiation heat transfer between particles,

convection heat transfer from the particles to the air,

and heat generation. Applying the above convention, the

energy balance on a differential volume of porous solid is

(invoking Tayler Series expansions and neglecting higher

order terms),

I ((l-p)r) - ((1-p)zr-- rqcond,r z qcond,z

I (- - (1 p q - 1 p )]dVr ( (( -p r rad, r )  - z - ( - rad, z

q conv dA ' + q gen d~ -~ n V(A.10)

In vector form, Equation A.10 becomes,

-7'(qcond + q rad)dV - q convdA' + q gendA' (l-p)q int d V

(A. 11)

Substituting the following expressions into Equation A.10,

qTcond k e 7T Fourier's law (A.12)
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q k 'T Fourier analogy (A.13)
rrad r'c (radiative)

qconv= h(Tc -Ta) Newton's Cooling Law (A.14)

qgen = Rg Heat generation (A.15)

q = P Cc -t Internal energy (A.16)

yields,

--I--(r(1-p) (k c-) + 2-((l-p) (ke) -. )}dV
r'- r e ;r e) z

- h(T -T )dA' + R dA' = (l-p) P Cc dV (A.17)
c a g c c t

Dividing through by dV, and defining dA'/dV as Z, the specific

internal area (i.e., surface area per unit volume), Equation

A.17 becomes,

7((l-p) (k )T c ) 7 hZ(T -T ) + R Z (-p)p C
e C c a g ccT (A.18

The expressions used to obtain values of the properties and

parameters in Equation A.18 are presented in Section III.E.

C. AIR HEAT TRANSFER EQUATION

The formulation of the air heat transfer equation begins

with the general two-dimensional energy balance equation,

The difficulty in obtaining an expression for kr is
addressed in Section III.E. Throughout this work, one may
keep in mind that ke should really be (ke +kr) to account
for conduction as well as radiation within the porous medium.
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aD(U +K)

Dt = - 'pq - 7pPV - (7.(p-'- ))

+ hZ(Tc -T a) + p pa (V'g) (A.19)

where U is the internal energy, K is kinetic energy, 7 is

the dissipation function, and g is the gravitational acceleration.

Expansion of Equation A.19 yields,

p a -(e +.I(u2 +v2)) = *"(-Pka7Ta - (p p V)
aDt 2 2

- p T. .V. + hZ(T -Ta)a 'j 3 J a
i3 i J

+ p aV g (A.20)

where

-+* .Vj = (PT rrVr +PTrz V

+ PT zrVr+ PT V

= (PT rru +PT rzv) + -P-(pTzr u +Prv) (A.21)

And so Equation A.19 becomes,

De + D 1 2 2T
a -Dt +2 a a -r(Prru+p rzV)

(pTzrU +pTzzV) - (7pP.V +pP- V)

+ hZ(T -T a ) + pp v g (A.22)
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As in the porous solid heat transfer equation, the time and

position dependent porosity appears inside the differential.

Expanding terms, the air energy equation becomes,

pc Re- a-D-(u 2+v 2 7- (p k ?T )-[7pP-V+pP 7-VI
aDt 2 Dt a a

- -T--p-rru +PTrzV)

- -(pt ru +pTZV) + hZ(T. -Ta

+ p Q V g .(A.23)

Consider the momentum equation for the r-direction,

R Momentum

3 1 32 3pP
-(pp U) =-- -(rp _ u -Y(Pauv) - 3
3t a r 3 r *aa3

- 1L (p rt )i + e L ( (A.24)
(r 'ori rr - +z *(Prz)

Consider the momentum equation for the z-direction,

Z Momentum

y(p ~aV) P -(r p o uv) _-_( T P1 aV2 -(

15 t 3

- r + -- (p r )+ p p a (A.25)
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and the continuity equation,

Continuity

) (p a p P a U  ;PQa
d= - u (pp -D 9+ a) -v
_ta Ur a ar 3z

3v
- P 0a - (A.26)

Multiplying the continuity equation through by u, and substi-

tuting this into Equation A.24, the r-momentum equation

becomes,

3u _ 7u 3u -pP=%3 - P ~uY7--a~t Pa or a Iz

13 PT:.
(pr + -(p )) (A.27)r 3( rr r d rz

Multiplying Equation A.26 by v, and substituting this into

Equation A.25, the z-momentum equation becomes,

Q _ 0 v 3v -pp 13 (
a - a a - p aV z - ( r (p r Trz

+ ---(PT )) + p P g (A.28)
;z zz a

Multiplying Equation A.27 by u and noting that,

Du u 2 3u 3u
p 'au- = a + p Pa  7UV- (A.29)
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Equation A.27 becomes,

Du 3pP 1_ P Dp u = U - u(- (p rr) + +Z._(p-a Dt - r r r rr r Z rz
(A.30)

Multiplying Equation A.28 by v and noting that,

Dv jv 2 3v-- 0vP v + P Du v -- + p v 2 = A.10T T V+p V----p (A.31)
a Dt a -t a or a jz

Equation A.28 becomes

Dv pP 1 3
p -v v( (p rT )) + ---(pT )+ p g

a Dt 3z r jr rz Oz zz a

(A. 32)

Expanding Equation A.30 yields,

3pT upT~ -.

Du upP PT rr u + -
a Dt 3r 3r r PT rr+ r u z (prz

(A.33)

Expanding Equation A.32 yields,

Dv P(PT rz) v- =D V-v - - v - - ( - V g
a Dt 3z 3r r p rz dz zz a

(A. 34)

The energy Equation A.23, after substituting and expanding

terms, is,
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De D u Dv -I , u
a t + p 2a u 5- + a = (ka7T -(P rr Jr

rr +v

+ v +~-p )) 7-p

~r r z z r j z

+ u (p r + PTz

+ v !r(Prz))- (PVrz

+ pP7rV) + p ga

+ hZ(T c - T a) (A.35)

Substituting Equation A.33 arid Equation A.34 into Equation

A.35 yields,

De ==_T
a D-t 7(pka7Ta - p PDiv V + hZ(T c -T

(p- v u v
L rr P-- rz r zr 3z zz -)

+ p P9 + + C (A.36)

r r rr r p  rz

The viscous dissipation terms in Expression A.36 are

neglected because the fluid is a gas flowing at low velocity

(see [Ref. 91). Therefore, the energy equation for the air

in the porous medium is,
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De _ T.pk TT ) - p PDiv V + hZ(T -T ) (A.37)
P aDt a a c a

With specific enthalpy for a gas defined by,

; = + -P (A. 38)P

De/Dt can be expressed as,

De DA 1 DP P a+ (A.39)
Dt Dt Dt 2 Dt

aa

where h is the specific enthalpy, and e is the specific

energy (internal plus kinetic). Multiplying the continuity

equation through by P/(pQ ) obtains,
a

P 3 P 13 P 3St + (p par u) +-- 2- ( p P v) = 0. (A.40)22tp r ar aP2 a ar aa P a
a

Expanding yields,

a (P 'Pa + P t P UI(PPa) 2 r -r(ru)

P a a a

Pv 3 p av
7 -(PQa P Pa z (A.41)

Ppa Ppa

In vector notation, Equation A.41 becomes,
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p a + - ) Q P-(" '
'O (V 7)V~ q

- 5t pp a 2( PPa po a

a a

- Div V (A.42)
a

Employing Stokes (substantial) derivative notation, Equation

A.42 becomes,

DP Dt _ Div V (A.43)Dt P p--a Dt Pa
a aa

Substituting Equation A.43 into Equation A.39 yields,

De Dht IDP PP E= - DP - Div V - (A.44)
5 Dt Pa Dt Pa PPa Dt

Substituting Equation A.44 into Equation A.37 yields,

Eh DP P = (p k 7T a ) + hZ(T -T a ) (A.45)
Ppa Dt P D-t Dt a a c a

Simplification yields,

Rh ___ -

D p = t D(p k VT ) + hZ(T -T ) (A.46)P aD-t Dt a a c a"

Invoking the Maxwell relations for a simple compressible

substance,

dh = T ds + dP (A.47)
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ds = C T PdP (A. 48)

pT 

and recalling that,

8 = 1 p (A.49)p ) p

the equation of state for a perfect gas,

P p RT (A. 50)

simplifies Equation A.49 such that,
I

- R )T P 1 (A.51)

RT

Thus, Equation A.48 becomes,

ds = C!T dP (A.52)
P T pT

Substituting Equation A.52 into Equation A.47 and cancelling

terms yields.

dh = C dT (A. 53)p

or

DT
Dh D a.... Ca Dt (A. 54)Dt Ca Dt
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Substituting Equation A.54 into Equation A.45 yields,

aT
Saa = t (pka7Ta) _ P aCa(V) Ta

+ hZ(T c _Ta) + D(pP) (A.55)Dt

Making the assumption that pP changes very little with time

[Ref. 91, (this assumption was subsequently confirmed by the

model), i.e.,

DpP (V7)pP = u (pP) + v (pP) (A.56)Dt dr z"

The final air heat transfer (energy conservation) equation

is,

3T a - (pk 7Ta) - P C (V*7)T + u 3p P + v 2Pp a C a a a a a a r

+ hZ(T c -T a ) (A.57)

In vector form, Equation A.57 becomes,

3 TP Ca a (pk VT - p C (V ' 7)T

a ta a a a a

+ (V.V)pP + hZ(Tc -Ta) (A.58)

The expressions used to obtain the properties and parameters

in the coefficients of Equation A.57 are presented in

0 Section III.E.
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D. OXYGEN MOLECULE DIFFUSION EQUATION

The final consideration in formulating the field equations

for the model is the transport of oxygen molecules. The

oxygen molecule transport equation is obtained by a conser-

vation of species balance on the differential volume of air,

dV = pdV. The convention used for the species balance into

a differential volume is,

02 in 0 02 out + 02 consumed + 02 accumulated (A.59)

The transport mechanisms considered were diffusion due to

concentration gradients (Fick's law), convection, and air

consumption by combustion. The species balance on oxygen

becomes,

pmd +dAj + p+ PmonvdA' + p c dA,
mi r z 'r z

+p dAj + pmdpm dA,
diff r+dr diff z+dz + con r+dr

+ I + m dA' + pm dV (A. 60)
+ pmconvdA z+dz cons acc

Representing terms on the right side by Taylor series expan-

sions (neglecting higher order terms), i.e.,

PmkdA = pm kdA +i + T(pmkdA)dE. (A.61)
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where,

k =conv, E. = r or z dA = r dedZ (A.62)1 r

and dA = r drd6 (A. 63)z

Then Equation A.61 becomes,

3 (
-(p dA dr -- (r pu ¢de dz) dr

r

J7 pu ( ) r dedZ dr (A.64)

and

7z (p mdAz)dZ = -- (p v¢ rdr de)dz3 z

= -(p v )r dedz dr (A.65)

Substituting Equations A.64 and A.65 into Equation A.60,

cancelling terms and rearranging, Equation A.61 becomes,

-- (P(mdiff + con)dA )dr - - (P(mdiff + conv)dAz)dZ

- n dA' = pn dV (A.66)
cons acc

Substituting the following expressions into Equation A.66,
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POROUS ME DIUIM AIR SOLID

d V

I

Figure A.1 Separating A Differential Volume of

Porous Medium into Respective Volumes
of Solid and Air
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.7-

: mdiff = - Ve 7 (A.67)

m up, m = vp (A. 68)

conv,r conv, z

mcons= R (A.69)
02

-m (A. 70)acc

dividing both sides by dV, and letting dA'/dV equal the

specific internal area, z, the oxygen molecule diffusion

equation becomes,

7 -(pV 7) - "(p pV) - R Z -P 3 (A.71)
e 0 2

The methods and expressions for obtaining the properties and

parameters in the coefficients of Equation A.71 are presented

in Section iii.G.
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APPENDIX B

AUXILIARY EQUATION FORMULATION

A. CONTINUITY EQUATION

The continuity equation for a fluid in a porous medium

is expressed by,

Dt + p a Div V 0 (B.1)

or in equivalent form,

E(Pc~aJ ) + (V'7)P0 + pa (7'V) 0 (B.2)

-nd

_Pa (PCa) 1 D(ru) +v
-(pC ) + u + v z + Pp (- +z) (B.3)'t a r a r Dr (B3

B. LAGRANGE POLYNOMIAL APPROXIMATIONS FOR THERMAL PROPERTIES

Relations for calculating the dynamic viscosity, thermal

conductivity, and specific heat at constant pressure of air

at different temperatures were required. Second order

Lagrange polynomial fits to empirical data provide a simple

method fi obtaining the relations required. Vatikiotis

(Ref. 9] gives the details for arriving at the resulting set

of polynomials,
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, . . • -' 7 1- -. . *

-3. 308 x 10 - 9 2 4.633 0-5 T + 4 427 x 10 - 2 (B.12)
A a

k -2. 608 xl1 T2 + 1.930 x00  T + 1.361 -1 0- 2

a  a a  .B.13

C = -1.293 x 10- 9  T 2  + 2.758 x 10- 5  T + .238 (B.14)a a a

Each expression obtains property values within two percent

of the data presented in [Ref. 9] for temperatures up to

3000 degrees Fahrenheit.

C. CARBON PARTICLE SURFACE RECESSION

The following analysis of particle diameter consumption

assumes that the fuel particle surface recedes uniformly.

This assumption is reasonable if the particle diameter is

small in comparison to the cylinder geometry, i.e., negligi-

ble boundary effects. In addition, since the velocities are

low, the hydrodynamic effects on the uniformity of the

particle surface recession are negligible. The analysis also

assumes there are no significant thermal gradients within

the particle, i.e., an isothermal carbon particle. This is

also reasonable for the small particles examined in this

analysis. A mass balance must be performed on the particle

and equated with the reaction rate. This equivalence yields

the following expression,

dm R Z (B.15)
dt c
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or equivalently,

d (l-p)
C= RZ (B.15a)

dt c

Simplification of Equation B.15a yields,

R Z
d_ RC ( B.16)
dt

Substituting the porosity expression for spherical particles

yields,

R Z

d d )3 c (B.17)-- () ) : -

c

Application of the time operator yields,

3 d2c c
3 7d 2 a c (B.18)

D c

Isolating the diameter time derivative yields,

-2R ZD 3

d c 2 (B. 19)

c T
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APPENDIX C

GALERKIN FEM FOR.MULATION

A. FINITE ELEMENT METHOD

The solution of the system of coupled, nonlinear partial

differential equations give by Equations 3.9, 3.22, 3.26

and 3.27 - subject to boundary and initial conditions, was

obtained by a Galerkin formulation of the Finite Element

Method.

1. Galerkin Formulation

A Galerkin formulation of the Finite Element Method

was used to obtain solutions of the porous solid and air

energy equations, the oxygen diffusion equation, and the

continuity (pressure--Darcy's law) equation. A convenient

form of Equations 3.9, 3.22, 3.26 and 3.27 was used in the

formulation where the spacial coordinates, r and z were

nondimensionalized by c = z/z and n = r/r .

The closed domain defined in (r,z) space by (0,0),

(0,1), (1,1), and (1,0) was partitioned into NEL

(2*(NRNP-l)*(NZNP-l)) contiguous area elements obtained

from a NSNP model. NSNP, NRNP and NZNP are the number of

system nodal points, radial points, and axial points,

respectively. The four field variables Tc T , P and

were approximated by,
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-3 -2- .2 -2. - 2 -2-
l 'l12 1l-3 i' 2 'l 2 l -2 3 ' 'iP3 '1-2 3 1i' 3

- 2- -2 2 -3 -2- -2- 2
C C l'2 1'2 'l 2 3 * i2 -2 '273 ' l'2-3 '2 '3 '22

S l 2 '3 1 _ .l '23 ' .. '3 '27 3 , 1 2 _ 2 .2

,C. 49)

Invoking the integral formula of natural coordinates [P2f.

28],

a bI !2A
a b .c e

- -2 -3 (a+b+c+2)! (C.50)
e

results in,

6 2 2 12 2 1 '2 1
60e 2 1 2 6 2 2 2 (T (C.51)

C - 60 L 1 2 1 2 2 2 2 (

where,

n n-l
A Z R 0 exp(-E/Ru TC )

C2 T ("HR or fR (C.52)

The asterisk denotes as applicable for T or * equations.
C

4. Implementation of Reaction Term in the Numerical
Me thod

Franke's (modified Gear) integration routine requires

a calculation of (or an approximation to) the Jacobian matrix
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term is rearranged as follows,

A Rn n-l exp(-E/RuTc ) 

R = 2 [T ] (C.44)
c

Letting

T - C.45)

and

-T-= - (C.46)
4

and invoking natural coordinates [Ref. 28], an elementally

averaged contribution results in the following area integral,

T T (C.47)

A
e

Expanding yields,

- , ( T < : % _-l >2 % - (C.48)
CC l'j t 2- j : '3-j li 4j '

i = 1,3, j = 1,3

A final explicit expansion of the integral looks like,
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The reaction rate term may be treated in various ways.

a. Treatment as an Excitation (Force Term)

This treatment is the easiest of all schemes.

The term is merely evaluated at the last time step and is

assumed to be constant over the next integration time step,

i.e.,

n*
Rc = ARn0 2 exp(E/Ru T ) (C.42)

The superscript * indicates evaluation occurring at the

previous time step. The value of the term is evaluated

at the ith nodal point and inserted as a factor in the

corresponding carbon energy or the oxygen diffusion equation

of the ith nodal point.

b. Linear Operator Treatment of 02 Concentration

In order to realize an improvement over the first

treatment, one may retain a portion of the reaction expression

as an operator by making the following rearrangement:

R c  {A n  n-1
R = 02A R 0 exp(-E/R Tc ) } • ] (C.43)

where [p.] denotes a spatial operator treatment of the response

variable.

c. Temperature and 0 Concentration Bilinear
Operator Treatmeni of the Reaction Rate Term

The bilinear operator treatment of the reaction

rate is the present method of treatment. The reaction rate
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Cauchy boundary conditions is as follows,

Ske dZ k(X X(z) - ke 3 []
e e

scattered into 3 and - KL a

F(l) and F(2) at the element nodal points

(C.38)

For a complete development of the theory for incorporating

boundary conditions, see [Ref. 28].

3. Treatment of the Reaction Rate Term

An exponential reaction rate term appears in both

the porous solid and oxygen diffusion equation. The reaction

expression is,

Rc  A n exp(-E/Ru T c) (C.39)

In the carbon equation, Expression C.39 appears as,

RgZ =(RcAH R ) Z (C.40)

In the oxygen concentration equation, Expression C.39

appears as,

R Z = (R f l )Z (C.41)
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2. Implementation of Boundary Conditions

Having formulated the system matrices for the field

equations, treatment of the boundary conditions is now dis-

cussed. Each field equation is treated individually.

a. Porous Solid Energy (Heat Transfer) Equation

There are three types of boundary conditions that

can occur: Dirichlet, Neumann and Cauchy (mixed) boundary

conditions. The treatment of each is as follows. For

Dirichlet boundary conditions, one may specify an equation

to be a linear equation (i.e., independent of time) by placing

a 1 on the diagonal of the system stiffnes's matrix correspond-

ing to the particular degree of freedom at hand and setting

each time derivative matrix coefficient for the same equation

equal to zero. An alternative scheme involves setting the

time derivative diagonal term equal to one and setting all

stiffness coefficients (in the same equation) equal to zero.

In this manner one specifies the Dirichlet value as an initial

condition whose residual is identically zero and thus is

invariant with time. Treatment of Neumann boundary conditions

is as follows,

k7Xd = pd - T added to local F(l)

Ze Ze 2

and local F(2) at the element

nodal points (C.37)

In the above expression, X is a response variable and p is

an average value of flux across an element. Treatment of
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,1.

"j t) dA = -- [bib ]  (C. 31)

A 4A jelt

e e

f Nz = [ci c ] (C 32
A 4Ae ei

A
r r e

N- ekt' k 1, i j (C. 33)
A
e 2, i = j

kN) di = $ kN(") dr- kN() dz (C.34)
e n er Z z

where a(i,j) coefficients of the element matrices A(3 3) are

given by,

a(i,j) [g] g = g(ij) (C.35)

and the vector e is given by

t = (C.36)-elt 2

3
L.J

The derivations of these operators are presented in Section

A.5 of this appendix.
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To formulate these operators, the global linear

shape function, N., are defined on the local level by,

N T - C.25)

- where the natural coordinates and -3 are defined by

Figure C.2,

A.

= i 1,2,3 (C.26)
e

and A is the area of the elemnet and the A. are the arease 1

(in Figure C.2) subtended by lines from a point P(r,z)

inside the triangle to the triangle's vertices (rj,zj,

* j =1,2,3). The local shape functions (i.e., the elements)

have the following properties,

iij 9ij . ; i = 1,4, j = 1,3 (C.27)

i(NPj) ; ij i = 1,3, j = 1,3 (C.28)

Having defined the local shape functions, the ele-

mental matrix operations C.19 through C.24 are,
1

ff N( dA =  1[b ] (C.29)
A r A[b e l t

e

ff N(- ) dA = [c Iet (C.30)
Ae

115

I



Implementation of the boundary conditions is presented in

Section 2 of this appendix. The coefficients in Equations

C.15, C.16, C.17 and C.18 are temperature dependent properties,

and were taken as the average values of the properties over

an element. In the limit, as the elements get smaller (i.e.,

NSNP - -), the average values of the coefficients converge

to the exact values Inspection of expressions C.15, C.16,

C.17 and C.18 yields the six operators,

Jf N(') dA (C.19)
A re

ff N( ) dA (C.20)
A Z

e

f ('p) dA (C.21)
A r r

e

ff N ('P) dA (C.22)
A -Z z

e

ff N: dA and ff N~dA (C.23)
A A
e e

N(,D) dZ (C.24)

Ze1 n
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Um
,N RdA N(P)d +. N(P)rdA

-mI n ff - N

- fJ r -N(P)NdA)-dZ
A re e ~ n
eS+ff -N(P dAP ' a

+ H m N (P) dA + ff p a-- N(P) rdA
A -z z A pi

e

+ ff m Ppa N(P) dA + ff T N PdA (C. 17)App z z A RT a

ffRd = - .e PoeN ($)n dk + ff Poe Nr (t) rdA

AA' Aa

e e

-Aff PD eN() rdA -f pD N( ) dA + ff pDeN dA

A A Ze A

e e

- ff - (~) -r N ()dA

ff puN() rdA + ff pN() dA + ff r
A e A e A e

ee e

+ ff (pv) zNdA + ff Ro ZNdA + ff pNdA (C.18)
A eA e 2 Aee ee

The line integral terms in each expression above are boundary

terms which permit incorporation of natural boundary conditions.
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jJNR~A <pk aN(T ) dA + ff PkN (T ) dA
era an r ara

AA A
e e

- f N(T )dA - If pkN(T )dA
Z - a r A eza

A A 9

Ae z Aez

+ If pa a( )N( aZ r ff hNI pT p)dCa NTa

A e A

ee

- ffupN() d - f U 112d



Adopting the convention,

T N N * ,i 1,4 (C. 14)

j=1 '

and performing an integration by parts on the second order

derivatives yields,

k'fT z NI, 1p) N(k e HT c ndZ + ff (l-p) (k e)Nr (T c rdA
e e

.40- ff C1 -P) N (k ) dA + f f (1-p) (k ) N (T ) dA
A r -e A e -z c z

e e

-~(1-p) (k e)N(T ) dA +ff hZN(T T a)dA
Ze e~ c A ~

e

-ff R ZNdA + ff p c N T cdA (C.15)
A g A ce *e
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where the coefficients of the response variables are them-

selves functions of the response variables, and thus, the

equations are nonlinear. In accordance with the Galerkin

method, the final system of ordinary differential equations

was obtained by setting each residual, Ri , orthogonal to

each basis function, Nj, that is,

f N R dA = 0 (C.12)
Ae

The 4*NSNP ordinary differential equations given by Equations

* C.12 retain the character of the original set of partial

differential equations, i.e., self-adjoint operators yield

symmetric matrices and non self-adjoint operators yield

nonsymmetric matrices. Thus, linear field operators trans-

form to matrix operators and nonlinear, coupled algebraic

operators. Incorporation of the boundary conditions resulted

in 4*NSNP nonlinear coupled ordinary differential equations,

F(',iA,t) = A P + B - F + Cij[ Tc (C.13)

subject to initial conditions, where A is a (4*NSNP)*(4*NSNP)

matrix, B is the matrix associated with the linear field

operators in Expression C.5, F is an excitation vector,

Ci is a 3 x9 matrix arising from a bilinear operator treat-

ment of the reaction terms in Expressions C.8 and C.11.
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where \. denotes the spatial operator of the ith equation

. I and the asterisk denotes that this term appears in the carbon

temperature and oxygen concentration equations only. The

term arises from the reaction terms and is developed in

subsection 3 of this section. The following notational

*] convention for differentiation is adopted,

- a (C.6)

- 3t (C.7)at

For field equations 3.9, 3.22, 3.26 and 3.27, the residuals

are,

RT (l-p)P C T - -(l-p) (k eVTc ) + hZ(T c -T a
ccc-e c CC

c

- R Z (C.8)
g

RT A = P a Ca Ta - 7(pk aVTa ) - hz (T c -T a

+ p a C a(V-)T - (V.7)pP (C.9)

* = V - 7. (.-p) _ _(Vp. )ppp (C.10)

R =p - (p e 7 ) + 7 (p V) + R 2Z (C.ll)
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N SNP
Tc ij h ~(~t) N t)(.1

NSNP
T = ) 2j(n/Eft) = 7 N (n, E 1 2 (t) (C. 2)

.- c j ' i l J 2 J"

j=l

NSNP
T 32 (n cr't) = j=l N . ' E 23 (t) (C.3)

NSNP
= 3j ( n '  t) = N ( E) e j (t) (C. 4)j=l J

where N. for j = 1,...,NSNP is a set of specified linear basisJ

functions with local support, and the sets elj' e2 j ' e3j'

and &4j; i = I,...,NSNP, are the solution coefficients to be

determined. The N. were selected to satisfy the conditionJ

Nj(NP i) = 5ij where the Kronecker delta, 6ij, is defined by

i -i = I for i = j, and 6.. = 0 for i € j. As a result, e

, 3j and 9 are the values and at the nodal2j ' '3j 4j ' 3 4

points (i.e., p.j(r, ,t) = .i(t)).

4 Area interpolation functions (shown in Figure C.1)

were used as the linear basis functions which provide the

necessary function continuity. As a measure of error, a

residual, Ri, is defined for each field equation by,

R. 'P + Ai(') - F + C[Tc ]*(C.5)
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from the system matrices, A(t), B(t) and C(t). In order

to include effects of T and arising from reaction ratec

terms in the Jacobian vector, and thereby improve the effi-

ciency of the integration routine, the combustion terms are

incorporated inito the residual equations (in DIFMOD).

Modifications to the Jacobian matrix are accomplished in the

JACMOD and NUITSL routines. Reaction rate terms of Expres-

sions C.40 and C.41 contribute nine terms to the respective

residual equations and twenty-seven terms to the Jacobian

vector. Reaction terms are generally expressed as,

3 3
RT z 7 C.k( ) k 1,9 (C.53)

i=l j~l 
k  ii4

The Jacobian is defined as,

j _ F(p,,,t) + 2F (53 P ( , , t ( C .5 4 )

Contributions arising from RT as a result of ;F/3y are,

3
.RT = - Cik* '4j (C.55)

li j=l

where the k* are compatible with the column locations in the

C matrix of the li products, and
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3
CRT - ( v1l C. 56)

i=l

where the k* are compatible with the column locations in the

C matrix of the '4j products. Terms from Equation C.55

may be incorporated into the PW Jacobian vector (containing

contributions to the Jacobian from the linear spatial

operators) as contributions from Equation C.6 with combustion.

Similarly, terms from Equation C.56 may be incorporated into

PW for terms arising from the 02 residual equations with

combustion. The remaining contributions to the Jacobian

vector, Equation C.56 for the carbon equations and terms

arising from Equation C.55 for the 02 equations are stored

in the PWMOD (NDOF/2,9) matrix. The column number or variable

of differentiation array, INMOD (NDOF/2,9) and PWMOD array

are communicated to the NUITSL routine so additional Jacobian

terms not assimilated into the PW array (by virtue of the

storage scheme selected) may be taken into account during

the convergence sequence for the new iterates. The iterating

scheme is of Newton-Raphson type. Thus, the final synthesis

of the Jacobian including effects of all terms arising from

combustion is consummated.

5. Derivation of the FEM Operators

In the section on the finite element formulation,

the following six differential operators were identified,
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N dA (C. 57)
Ae r

ff N(,) dA (C.58)
A ze

ff N ( dA (C.59)
A -r re

ff N (',) dA (C.60)
A -z ze

ff N(p) dA and ff N p dA (C.61)
A A

e e

kN(y) dZ (C.62)
Ze

where N. are the global basis functions. These operators

are constructed on the element level by introducing the

corresponding element basis functions, The global and

element basis functions are related by,

= NT 6  (C.63)

The derivation of the local elemental matrices (using

the local coordinate system depicted in Figure C.3) according
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to the Galerkin method for the global operations proceeds

as follows:

For Operator C.29(also C.57),

Global Local

ff N() dA fJ e dA (C.64)
A A r
e e

Noting that,

b.e . c.e .
= 3 3 and 13 1 1 j 1,3 (C.65)

3r 2Ae  2z 2A e

where the repeated index implies Einsteinian notation, the

elemental matrix becomes,

T

b .

ff e--dA (C.66)
A e
e ---

Expanding,

b.T 1 b2

f L2 ( ) 8dA = b b2  (C.67)

J3 1 b2 b3

For Operator C.30 (also C.58),

Global Local

ff N(p) dA ff OdA (C.68)
A Ae e
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Substituting the local shape functions gives,

C. T
I ) dA (C.69)

A e
e

the elemental matrix becomes,

SC1 C2 C3
C. T 1

C1  C23f U 1 C 3J ~ (.0

For Operator C.31(also C.59)

Global Local

N ( dA ff T 8 dA (C.71)
A Nr r e A r-Ae e

Substituting the local shape functions gives,

S2 T bb blb3
b. b. T 1 1 2 13*

ff _ - dA - 1 f blb 2  b2  b2 b3  8dA (C.72)2A e 2A e ~4A 2 Aef 1 2 3

Ae ... .e e blb3  b 3 b I  b3

the elemental matrix becomes,

SJ

1b b1b2  b1 32

ff N (p) dA b 1 bb b2  bb e (C.73)
A -r r 4A Lb2
e e bb bb b2
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For Operator C.32 (also C.60),

Global Local

ff N (>) dA ff z T  dA (C.74)
A -Z z A z

e e

Substituting the local shape functions gives,

c T [c 1 2 1 3C. -J.d 1 rr I 2  I OA (.
/f f __I2.A

2A 2A A2 ff ClC 2 C 2C 3  edA C.75)
Ae -.- e--e Ae A e LC3 c~ c cC J

.. ...

the elemental matrix becomes,

Cl 12 1 3
8 T dA = 1 I 2

fc Cz z C- c 2  (C3  C.76)

A 4A
e e 2

L 1C3 C 2 C3  C 3

For Operator C.33 (also C.61)

Global Local

ff N dA ff e dA (C.77)
A e A ee e

Substituting the local shape functions gives,
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2

T l2 ;7S
f f T dA = S2 2 23 dA (C.78)
Ae Ae 2

1fi 3 2 3 3

the elemental matrix becomes,

2 1 1
A._

T 1 2 1 (C.79)

Ae 11 2
e e

The last operator C.34 (also C.62) is incorporated into the

excitation vector as described in the FEM formulation and

has been addressed in Subsection 2, Implementation of

Boundary Conditions.
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Figure C.1. Area Interpolation Functions
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