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ABSTRACT -

This report describes the application and evaluation of

four primary statistical models in the forecasting of hori- . -

zontal marine visibility over selected physically homogeneous 0

areas of the North Atlantic Ocean. The main focus of this

study is to propose an optimal model output statistics (MOS)

approach to operationally forecast visibility at the 00-hour I

model initialization time and the 24-hour and 48-hour model

forecast projections. The technique utilized involves the

manipulation of observed visibility and Navy Operational

Global Atmospheric Prediction System (NOGAPS) model output

parameters. The models employ the statistical methodologies

of maximum conditional probability, natural regression and

minimum probable error linear regression threshold tech-

niques. Additionally, an evaluation of the 1983 predictive

arrays/equations using 1984 NOGAPS data fields and a maximum-

likelihood-of-detection threshold model were accomplished.

Results show that two statistical approaches, namely a maxi-

mum conditional probability strategy utilizing linear

regression equation predictors and the minimum probable

error threshold models, produce the best results achieved in

this study.
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I. INTRODUCTION AND BACKGROUND

One of the most significant advances in objective weather

prediction, since the introduction of numerical weather

prediction in the 1950's and satellite remote sensing capa-

bilities in the 1960's, has been the development of Model

Output Statistics (MOS) weather forecasting method by Glahn

and Lowry (1972). In general, this technique is the deter-

mination of a statistical relationship between an operational

weather element (predictand), which may or may not be fore-

cast by numerical methods, and numerical model output varia-

bles (predictors), usually via linear regression methods.

The resulting predictand/predictor regression equations

provide the basis for generating a statistical weather pre-

diction. The National Weather Service (NWS) has included MOS

as an integral part of their weather forecasting operations

since the early 1970's. Currently, the NWS maintains MOS

prediction equations for approximately 15 weather elements

(e.g. ceiling, visibility, obstructions to vision, precipi-

tation, etc.) at forecast times ranging from 6 to 48 hours.

These forecasts are routinely provided to approximately 295

civilian and 190 military locations throughout the continental

United States (CONUS) and Alaska [Glahn, 1983).

Based on the impressive results achieved with the NWS

MOS program, the Department of Defense (DOD), through the Air

13
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Weather Service (AWS), implemented and operated a quasi-

global version of the NWS MOS system at the Air Force Global

Weather Center (AFGWC), Offutt AFB, Nebraska [Best and Pryor,

19831. The first operational forecasts obtained from the AWS

MOS system were produced by AFGWC in December 1980 and the

system ran operationally for a period of approximately 18

months. Regions for which operational MOS forecasts were

produced included Europe, Asis (including Korea and Japan),

the South China Sea (including the Philippines and Taiwan),

the near and middle east and northern Africa. The AWS MOS

program was terminated with the recent decision to replace the

current hemispheric primitive equation (PE) model with a

spectral global dynamic model [Klein, 1981].

Throughout its tenure as an operational forecast scheme,

the AWS MOS system provided the U.S. Air Force with a rela-

tively low cost, flexible and responsive prediction network.

Further development of the AWS MOS system has been postponed

until sufficient spectral model output is archived.

The U.S. Navy, by virtue of its unique marine forecast-

ing responsibilities, has a keen interest in applying MOS

forecasting schemes to global oceanic regions. Through the

research and development efforts of the Naval Environmental

Prediction Research Facility (NEPRF) in Monterey, California,

the Navy has sponsored a limited amount of research into naval

applications of MOS. In particular, statistical studies have

been done into forecasting Levante winds in Spain [Godfrey and

1
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Lowe, 19791, ceiling and visibility prediction in the southern

California (SOCAL) naval operating area [Lewit, 1980], marine

fog and visibility predictability in the North Pacific Ocean

[Renard et al., 1983 and Renard and Thompson, 1984]. Presently,

a program is in operation which provides MOS forecasts for

selected U.S. Navy and Marine Corps CONUS locations. These

services, which are made available from NWS, are based on the

National Meteorological Center (NMC) limited fine mesh model

predictions. This MOS program was initiated on 10 November

1982 and provides forecasts for twelve weather parameters

which include visibility, obstructions to visibility and

cloud amount [Naval Environmental Prediction Research

Facility, 19821.

The results of these limited studies along with the

encouraging performances of both the NWS and AWS MOS programs

and the implementation of the Navy Operational Global Atmos-

pheric Prediction System (NOGAPS) dynamical primitive equation

(PE) model at the Fleet Numerical Oceanography Center (FNOC),

in Monterey, California prompted the decision in September

1982 for the Navy to pursue its own MOS program.

Fig. 1 is an overview of the currently proposed milestones

for the Navy MOS program. The first operational weather

parameter being investigated in this proposed ten-year Navy

effort is horizontal visibility at sea, with the initial goal

of this project being the investigation and development of

statistical predictive schemes for forecasting horizontal

visibility over the North Atlantic Ocean.

15 -
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The impact of fog and other impediments to visibility on

naval operations is well documented throughout maritime

history. Records show countless catastrophes and accidents

which were directly attributable to poor visibility at sea.

For example, on 29 May 1914, the Canadian liner Empress of

Ireland collided with the Norwegian vessel Storstad in dense 0

fog on the Saint Lawrence River resulting in 1,024 fatalities

and similarly, the legendary "North Sea haze" was a critical

element in the World War I tactics employed at Jutland in 0

1916. Also, one of the most spectacular maritime disasters

in the U.S. Navy's history took place on 9 September 1923

when seven Pacific fleet destroyers struck the rocks and ran

aground in dense fog off of Point Arguello, California.

Research into predicting marine visibility via traditional

linear regression methodologies has taken place at the Naval

Postgraduate School (NPS) since the early 1960's. Generally,

early visibility forecasting experiments identified potential

physical air/ocean mechanisms [Schramn, 1966] and emphasized

the inherent likelihood of human error in at-sea visibility

observations [Nelson, 19721. Later experimentation by

Aldinger (1979), Yavorsky (1980) and Selsor (1980) concen- S

trated on various modifications to multiple linear regression

schemes and the analysis of prediction skill measurements.

This study presents a direct follow-on to the research

presented by Karl (1984), in which statistical methodologies

presented by Preisendorfer (1983a,b,c) and multiple linear

1
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regression techniques presented by Lowe (1984a) were compared

and contrasted. In Karl's preliminary study, Preisendorfer's

three strategies, two based on maximum conditional proba-

bility and one based on natural regression, as well as

Lowe's linear regression threshold models were tested and

applied to sets of FNOC model output parameters (MOPs) from

both the North Pacific and North Atlantic Ocean areas. The

North Atlantic Ocean study was separated into effective

physically homogeneous areas [Lowe, 1984b]. Karl's study

specifically dealt with an evaluation of the MOS scheme

applied to oceanic regions for the TAU-00 model output

during the period 15 May to 07 July 1983.

This study concerns itself with a continued evaluation

and further refinement of statistical methods proposed by

Preisendorfer as well as the linear regression threshold

models presented by Lowe. With reference to Karl's study,

other North Atlantic Ocean areas and model forecast projections

(e.g. TAU-24 and TAU-48) are addressed.

17
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II. OBJECTIVES AND APPROACH

The primary objectives of this study are to continue the

previous NPS horizontal marine visibility prediction re-

search initiated by Karl (1984) and to continue the search

for an optimal Model Output Statistics (MOS) prediction

scheme to operationally forecast coastal and open ocean

visibility over the North Atlantic Ocean. The approach

employed in meeting the stated objectives is listed below:

A. Apply and evaluate the Preisendorfer maximum proba-

bility and natural regression strategies (1983a,b,c) to addi-

tional North Atlantic Ocean homogeneous areas [Lowe, 1983b] .

using May through July 1983, NOGAPS predictand/predictor

data.

B. Expand the Model Output Predictor (MOP) data sets to

include the NOGAPS model TAU-00, and the TAU-24 and TAU-48

prognostic times defined in Chapter III.

C. Investigate specific two-stage, equal variance and

quadratic multiple linear regression threshold models pro-

posed by Lowe (1984a) for the oceanic areas and model output

periods addressed in A. and B. above.

D. Compare and contrast the individual results of the

Preisendorfer statistical methodologies to those of the Lowe 0

approach.

E. Conduct a limited series of experiments in which a

1984 data set, 15 May to 23 June, is utilized as an

18
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independence evaluation of the predictive models constructed

with 1983 NOGAPS data.

F. Based on A. to E. above, present an interim recommenda-

tion for an optimal statistical approach to forecast North

Atlantic Ocean horizontal visibility as a function of pre- -'.

diction time and homogeneous area.
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III. DATA

A. VISIBILITY OBSERVATIONS AND SYNOPTIC CODES

Horizontal visibility observations taken from seagoing

platforms are reported as values of ten standardized World S

Meteorological Organization (WMO) synoptic weather codes.

These codes range in value from 90, which corresponds to

visibility less than 50 meters, to 99, which corresponds to S

visibility equal to or greater than 50 kilometers. Human

observational error and inexactness in measuring visibility

at sea necessitates a generalization of visibility classifi- .

cation for prediction purposes, as follows:

Visibility Category Synoptic Code Visibility Range

I 90-94 < 2 km

II 95-96 > 2 km to < 10 km

III 97-99 > 10 km

The above scheme coincides with the classification scheme

proposed by Karl (1984) and is based upon the below listed .

U.S. Navy operational criteria. S

1. 10 km (5 n mi)--U.S. Navy aircraft carrier at-sea

flight recovery operations change from visual (VFR) to

controlled (IFR) approach guidelines [Department of the S

Navy, 19791.

2. 2 km (1 n mi)--the sounding of reduced visibility

signals for all vessels operating in international waters. S
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The term "reduced visibility" is not specifically defined in

the International Regulations for Preventing Collisions at

Sea, 1972. The distance of 1 n mi is generally considered

to be the governing operational distance.

B. NORTH ATLANTIC OCEAN DATA

1. Area

The North Atlantic Ocean, from 0-800 N latitude,

was divided into homogeneous oceanic areas by Lowe (1984b)

using a statistical cluster analysis technique. The specific

homogeneous areas evaluated in this study are identified as

areas 2, 3W and 4 on Fig. 2. These areas were selected be-

cause they individually represent a range of different rela-

tive frequencies of poor visibility observations. Area 3W,

which was used by Karl (1984) for his preliminary experimen-

tation, represents an area of relatively frequent occurrence

of poor visibility, while area 4 represents an area of rela-

tively sparse occurrence of poor visibility and area 2

represents an intermediate case.

2. Time Period

Data from mid-May 1983 to mid-July 1983 were combined

to form a more extensive data set, hereafter referred to as

FATJUNE 1983. FATJUNE 1983 was selected as the initial data

set for statistical experimentation because of the high fre-

quency of occurrence of poor visibility observations for

many areas of the North Atlantic Ocean during this period.
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1200 GMT synoptic ship report data were used exclusively in

this study. This time corresponds to general daylight condi-

tions over the North Atlantic Ocean during FATJUNE. In

addition to FATJUNE 1983, a limited May 15 to June 23 1984

data set, possessing the same geographical coverage and day-

light characteristics of FATJUNE 1983, was utilized in an

independent test of the predictive arrays and equations

generated in this study.

For the purpose of this study, TAU-00 generally

represents six-hour model forecast fields valid at 1200 GMT.

Three specific fields, namely temperature, geopotential

height and wind, are model initialization fields valid at p

1200 GMT. TAU-24 and TAU-48 are defined as 24-hour and

48-hour model forecast fields, valid at 1200 GMT. TAU-00,

TAU-24 and TAU-48 model output parameters (predictors) are

employed in the 00, 24 and 48 hour forecast schemes, respect-

fully. Summaries of the visibility frequencies for each

visibility category, as a function of homogeneous area

and prediction time, for FATJUNE 1983 and the 15 May to 23

June 1984 data set, are contained in Tables I through III

and Table VI respectively. p

3. Synoptic Weather Reports

All synoptic visibility observations (predictand data)

for this study were provided by the Naval Oceanography Com- S

mand Detachment (NOCD), Asheville, North Carolina which is

co-located with the National Climatic Data Center (NCDC).

p
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The observations which contained systematic observer error

or were obviously erroneous, as determined from the data

quality indicators provided with the data, were deleted

from the working data sets.

4. Predictor Parameters

Fifty TAU-00, fifty-four TAU-24 and fifty-four TAU-48

model output predictors (MOP's) were provided by the Fleet

Numerical Oceanography Center (FNOC), Monterey, California.

These parameters are generated by their current operational

atmospheric prediction model, the Navy Operational Global

Atmospheric Prediction System (NOGAPS). All MOP's were

interpolated from model grid coordinates to synoptic ship

report position using a linear interpolation scheme. In

addition to the initial group of model output parameters,

ten derived parameters representing calculated quantities,

such as parameter gradients and products, were included as

potential predictors. Of the entire group of potential

predictor parameters, only forty TAU-00 and forty-seven

TAU-24 and TAU-48 MOP's were actually used to develop the

various Preisendorfer (1983a,b,c) and linear regression

threshold models [Lowe, 1983a]. The remainder of the NOGAPS

model output parameters were dropped from consideration because

1) the MOP lacked a physical linkage to the visibility pre-

dictand and/or 2) a lack of significant digits (lost during

the transfer of FNOC data to the main computer center's

mass storage system) rendered the particular MOP useless.
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A list of all available TAU-00, TAU-24 and TAU-48 MOP's are

included in Appendix B.

For each homogeneous area and model forecast projec-

tion, a set of three linear regression equations, in addition

to the aforementioned MOP's, were included as potential

MOP's for a separate evaluation of the Preisendorfer methodology

(the PR+BMD model). These three predictor equations were

obtained from two standardized linear regression software

packages, namely P2R--stepwise regression and P9R--all

possible subsets regression, as addressed in the BMDP Sta-

tistical Software [University of California, 1983]. The

P2R was initially employed in the evaluation of areas 2 and

4, TAU-00 data, while the P9R program was employed in the

remainder of the cases studied. The change to the P9R

program was initiated as a safeguard against any potential

predictor selection bias incorporated in the P2R software.

Specific details concerning these statistical software

packages are addressed in Appendix A.

C. DEPENDENT/INDEPENDENT DATA SETS

Due to the limited amount of data available to tl.is S

study for each of the North Atlantic Ocean homogeneous areas,

it was necessary to withhold a significant amount of the

observations from the developmental model to use as an

independent data set. That amount was set as one-third for

the experiments reported here. This was accomplished by the .
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use of a counter and transfer statement in the computer

programs which prevented every third observation from enter-

ing the developmental computations. To ensure that the

dependent and independent data were representative of the

same population, a 95% confidence interval for proportions

[Miller and Freund, 1977] was established from the entire

data set, for each visibility category, and the dependent

and independent data sets were constrained to have visibility

frequencies within these established confidence intervals.

Table IV summarizes the dependent and independent data for

the North Atlantic Ocean data set.
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IV. PROCEDURES

A. TERMS AND SYMBOLS

The terms and statistical symbols defined below will . "

be used throughout the remainder of this report. The 0

formal mathematical definitions are described in Karl (1984).

1. Maximum probability strategy--choosing forecast

visibility category based upon the highest conditional

probability of visibility within a predictor interval.

a. MAXPROB I--designation of the maximum probability

strategy in which ties of the highest conditional probabili- 0

ties in a predictor interval are resolved by the generation

of a random number.

b. MAXPROB II--designation of the maximum probability S

strategy in which ties of the highest conditional probabili-

ties in a predictor interval are resolved by assigning the

lowest visibility category, of those tied, as the forecast

category.

2. Natural regression strategy--choosing forecast visi-

bility categories based upon the statistical average of the

conditional probabilities of visibility within a predictor

interval.

3. AO--the probability of a zero-class visibility cate-

gory forecast error (e.g., if visiblity category I is

forecast and observed). -
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4. Al--the probability of a one-class visibility category

forecast error (e.g., if visibility category I is forecast

and category II is observed).

5. CE--class error parameter defined as AO+2AI, used as

the primary aid in identifying the first predictor.

6. PP--the potential predictability of visibility by any

given predictor.

7. Functional dependence. This is a measure of the

stochastic dependence of one predictor upon another. Func-

tional dependence is the probability that one of the predic-

tors will change when the other does. High functional

dependence values between one already selected predictor and

another potential predictor, indicates that little addi-

tional information beyond the selected predictor is possible.

Conversely, a low functional dependence value between the

same two pca _ctors, indicates that each predictor possesses

a high degree of linearly uncorrelated information concerning V

the predictand. Functional dependence range is 0.0 to 1.0

(1.0 = highest functional dependence). The specific deriva-

tion and mathematical description of the concept of "func-

tional dependence" is discussed in greater depth by

Preisendorfer (1983c).

8. Root-sum-squared functional dependence. The functional

dependence of a predictor on all predictors already included

in the developmental model. It is equal to the square-root
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of the sum of the squares of the individual functional

dependence values.

9. TSl--threat score for visibility category I, as 6

computed from a contingency table (see Appendix C).

10. ATSl--adjusted threat score for visibility category

I which removes the influence of the data set category 6

frequency (see Appendix C).

11. AAO--adjusted AO. A contingency table statistic

which removes the influence of the most frequent visibility 0

category in a set of data (similar to a normalized value)

(see Appendix C).

B. COMPUTER PROGRAMS

Four computer programs were developed to test the pro-

posed Preisendorfer (1983a,b,c) methodology. The programs

are on file in the Department of Meteorology, Naval Post-

graduate School, Monterey, California, 93943.

1. A program to compute AO, Al, CE and PP for all predic- -

tors, all strategies (MAXPROB I, MAXPROB II and natural

regression) for a particular number of equally populous

predictor intervals. Statistics for the three strategies

are based upon the same predictor(s) rather than the best

predictor(s) for each strategy.

2. A program to compute functional dependence values for

all predictors, on a given predictor, for a given number of

equally populous predictor intervals and to compute the
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associated 96% critical confidence interval value, referred

to as functional dependence(96) in this study, by Monte CarloI
means.f3. A program to construct contingency tables and to

compute skill and threat scores, for both the dependent and

independent data sets.

4. A program to generate 100 random data sets, from the

marginal probabilities of the predictor(s) in the develop-

mental model, and to compute upper and lower 5% critical

confidence interval values for AO and Al to be used for

testing the significance of the results from each of the

Preisendorfer mcdels against chance. These confidence

interval values are calculated via Monte Carlo means.

C. MODELS

1. Preisendorfer PR Model

This model represents the first of two different

applications of the basic Preisendorfer methodology

[Preisendorfer, 1983a,b,c]. Karl (1984), in his preliminary

research, provides a rigorous interpretation and results

associated with this statistical forecasting methodology.

Karl's study provides the necessary background for the con-

tinued investigation and evaluation of this model and readers

interested in specific details are advised to consult this

document.

The PR model utilizes the working set of NOGAPS

model output parameters (MOP's) and derived parameters

29
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(Appendix B) as potential predictors in constructing a

developmental model, based upon the dependent data set,

which provides the structure by which the independent data

set is tested and evaluated. In general, these potential

predictors have their range of values partitioned into

discretized equally populous predictor intervals ("cells")

and conditional probabilities of the predictand are calcu-

lated according to the three modified visibility categories

(VISCAT) I, II and III. Three separate strategies of deter-

mining the specific VISCAT which is to be identified with

each predictor value, are proposed. These strategies, two

based upon maximum probability and the third based on a

natural regression approach, are addressed as MAXPROB I,

MAXPROB II and natural regression in the remaining portions

of this study.

Initial evaluation of this model involves varying the

equally populous predictor intervals from sizes of four

through ten, and selecting an optimal first predictor which

provides one of the following requirements in the designated

order:

a. the lowest CE value of all the potential predictors

b. the highest PP value of all the potential predictors

Once a first predictor is identified for each of the

four through ten equally populous predictor intervals,

corresponding VISCAT I, II and III threat and AO skill

scores (Appendix E) are calculated for both the dependent
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and independent data sets. The practice of selecting an

optimal equally populous predictor interval from the eligible

grouping sizes of four through ten, was proposed by Karl

(1984) as a practical procedure which would permit the

realization of peak skill scores as well as maintain asso-

ciated computer storage requirements at a manageable level.

An unfortunate consequence of this range of potential group-

ing sizes is that certain statistical calculations associated

with equally populous predictor intervals of eight, nine

and ten are terminated before completion due to a two mega-

byte storage ceiling at the NPS W.R. Church Computer Center.

When considering potential predictor intervals, the size of

the interval is of obvious importance, with lower values

being the most desirable. The criterion for determining the

optimal equally populous predictor interval is to select the

smallest interval value which maximizes the dependent data

set adjusted AO and independent adjusted VISCAT I threat

score. For this study, this interval value was fixed for

all ensuing aspects of the model evaluation. In practice,

the selection of equally populous predictor intervals was

based upon the initial adjusted AG (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

MAXPROB II strategy. The MAXPROB II scores were routinely

found to be the highest for each case evaluated, at this

early stage in the evaluation process, and therefore used

as the basis for grouping selection. As the equally populous
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grouping interval remains constant throughout the Preisen-

dorfer models, the MAXPROB I and natural regression strate-

gies practically play no role in the predictor selection

process.

Once the first predictor and its associated equally

populous predictor interval have been identified, a func-

tional dependence test of the first predictor against those

remaining potential predictors is run. The second, third

and all subsequent predictors are selected only if both of

the following criteria are met:

a. subsequent predictors must increase AO over the
AO value attained at the preceding level, and

b. the selected predictor must have the lowest
functional dependence and root-sum-square
functional dependence of all the remaining
potential predictors.

After each predictor selection stage has been com-

pleted, significance tests are run upon the developmental

model to determine if the results are suitably significant

as compared to random chance. This testing is accomplished

via Monte Carlo testing methods using the conditional

probabilities of the selected predictors and assuming equal

probability of occurrence for the three modified visibility

categories. Functional dependence/root-sum-square functional

dependence, AO, and Al statistics are calculated for each of

100 randomly generated data sets. For the developmental

model to yield results which are significant at the speci-

fied confidence interval values, each one of the following

criteria must be met:
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a. AO must be equal to or greater than AO(96)

b. Al must be equal to or less than Al(05)

c. the functional dependence value for a selected
predictor must be less than functional
dependence(96)

As with the process of selecting equally populous

predictor intervals, the AO, AO(96), Al and Al(05) statistics

(Appendix G), reflect scores for the MAXPROB II strategy.

The AO statistics routinely were found to be the highest for

thir trategy and thus were used as the basis for ensuring

the aforementioned predictor selection criteria were met.

However, the MAXPROB I strategy often produced AO values

identical to MAXPROB II. The natural regression strategy

regularly lagged the two maximum probability strategies in

AO and Al scores and consequently played no real role in the

prediction selection process. Specific trends in AO/Al

scores can be seen in Appendix G.

From a practical standpoint, the model development

continues until computer storage limitations preclude further

addition of predictors. This generally occurred at the fifth

predictor level.

Once the developmental model is completed, contingency

tables of forecast visibility category versus observed visi-

bility category are constructed for both the dependent and

independent data sets, and threat and skill scores are

computed and compared.
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2. Preisendorfer PR+BMD Model

This model is still the PR model described above.

Now, sets of three linear regression equations (Appendix D)

are added to the list of potential NOGAPS model output and

derived predictor parameters. The inherent difference of
D

these predictors is evidenced in both the predictor selec-

tion process as well as in the resulting skill and threat

scores, as will be demonstrated in Chapter V.

3. Equal Variance Threshold Model (EVAR)

This model represents the first of two threshold

models, developed by Lowe (1984a), which were evaluated in S
this study. The model uses an algorithm which requires the

assumption that the variances of two normally distributed

populations which are to be separated by a threshold value

are equal, while their means are unequal. A detailed dis-

cussion of the theoretical background of this scheme is

addressed in Appendix A. p

A two-stage separation scheme was used to effectively

divide the visibility categories (VISCAT) I, II and III

into a first-stage VISCAT I versus a combined VISCAT II plus

VISCAT III separation, and subsequently VISCAT II versus

VISCAT III separation for each homogeneous area and model

output time. This separation was accomplished by setting

all VISCAT I observations equal to an arbitrary integer value

of zero and the combined VISCAT II plus VISCAT III observations

equal to an arbitrary integer value of one and generating
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a linear regression equation to suitably describe the

resulting two distributions. This linear regression equationIi
was then used in the graphical plotting program BMDP5D,

from the BMDP Statistical Software [University of California,

1983], to generate a set of histograms describing the first -

stage separation. Included with the graphical histogram

output is a listing of the individual frequency of observa-

tion (P), mean (W) and standard deviation (u) of each of the

specified visibility distributions. These statistics are

incorporated into the equal variance threshold algorithm

and a corresponding threshold value is calculated.

Following the first-stage threshold calculation, a

second linear regression equation is generated, based upon

only those VISCAT II plus VISCAT III observations which

exceed the previously calculated threshold value. This

effectively eliminates any VISCAT II plus VISCAT III obser-

vations less than the threshold value (i.e., those observa-

tions contained in the tail of the distribution), from being

included in the second-stage regression. The previous proce-

dure of generating corresponding histograms and statistics

is repeated, based upon all VISCAT II observations being

assigned an arbitrary integer value of zero and all VISCAT

III observations being assigned an integer value of one. A

second-stage equal variance threshold value is then calcu-

lated which separates VISCAT II from VISCAT III.
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With the two-stage separation complete, the indepen-

dent data set is processed through the governing equations

and thresholds to obtain a set of observed visibility value

results versus calculated "forecast" visibility value re-

sults. These results, in contingency table format for each . -

evaluated case, are presented in Chapter V and Appendix G.

4. Quadratic Threshold Model (QUAD)

This model represents the second of two threshold

models, developed by Lowe (1984a), which were evaluated in 0

this study. The model uses an algorithm which requires the

assumption that both the variances and the means of two

normally distributed populations, which are to be separated

by a threshold value, are equal. Similar to the EVAR model,

a detailed discussion of the theoretical background of this

scheme is addressed in Appendix A.

The general two-stage separation procedure employed

with this model is identical to that described for the EVAR

model in IV.C. above. The only difference between the QUAD

and EVAR model is the algorithm, based upon a solution to

a quadratic equation in this model, used to calculate the

appropriate threshold values.

5. Maximum-Likelihood-of-Detection Model

The maximum-likelihood-of-detection criteria (MLDC) . -

0is an additional threshold technique which is included in

this study as a possible alternative to the aforementioned

EVAR and QUAD minimum probable error threshold models. The
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MLDC involves calculating a threshold value based upon the

assumptions that the population frequencies and variances

of two normally distributed samples which are to be separated

are identical. This technique is particularly well suited

for cases where the threat frequency (i.e., number of

threatening events divided by the total number of threat and

non-threat events) approaches very small values (e.g.,

statistical rare events).

Unlike the EVAR and QUAD models, the two-stage

separation employed with this technique utilizes a first-

stage VISCAT I+II versus VISCAT III followed by a second-

stage VISCAT I versus VISCAT II separation. In calculating

the specific threshold values, the lowest frequency visibility

category (usually the VISCAT I threat category) is assigned

an arbitrary integer value of one. The remaining larger

visibility category/ies are assigned the arbitrary integer

value of zero. Proceeding in the same manner as described

with the EVAR and QUAD models, population means are calcu-

lated for each separation stage. The threshold value is

simply the mid-point between the two population means. A

detailed discussion of the theoretical background of this

scheme is addressed in Appendix A.
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V. RESULTS

The general procedures outlined in Chapter I were fol-

lowed in evaluating the statistical scoring techniques for

the oceanic homogeneous areas 2, 3W and 4. Certain slight 6

modifications were required to handle the relatively low

frequency of visibility category I, in area 4 for the TAU-

00, TAU-24 and TAU-48 model output data sets. Fig. 2 •

displays the individual oceanic homogeneous areas for FATJUNE

1983. Tables I through III identify the frequency of occur-

rence of visibility categories I, II and III at TAU-00, 6

TAU-24 and TAU-48 for each of the evaluated homogeneous

areas.

In discussing the results of this study, specific comment

is focused upon the optimal model for each case as well as

any significant finding observed by the author. Certain

characteristics of the evaluated cases are repetitious and 6

are considered adequately described by their associated

figures. Consequently, the entire assemblage of figures in

Appendix G are not individually addressed. These figures S

are nevertheless considered noteworthy, as they document the

performance of each tested model in this study, and are

included as a matter of record. The following presentation 0

of the results of this experimentation are arranged accord-

ing to the specific oceanic homogeneous area and model

output period. B
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In general, four models are evaluated for each of the

predefined homogeneous areas/model forecast projections. The

four models are: the Preisendorfer methodology utilizing

NOGAPS model output predictors and a limited number of

derived predictors (PR), the Preisendorfer methodology uti-

lizing both NOGAPS model output predictors, derived predic-

tors and linear regression equation predictors (PR+BMD), an

equal variance linear regression threshold model (EVAR) and

a quadratic linear regression threshold model (QUAD).

A. NORTH ATLANTIC OCEAN, AREA 2

Area 2 encompasses a geographic region that extends from

the southeastern tip of Newfoundland, across the North

Atlantic Ocean to the eastern coast of England, north to

the Five Fingers of Iceland and back to the Canadian coast

north of Newfoundland. Fig. 2 gives the pictorial repre-

sentation of the area.

1. Area 2, TAU-00

Fig. 3 shows the relationship of equally populous

grouping size to the adjusted A0 (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR model. For this case, a grouping size of eight was se-

lected. Results of the individual MAXPROB I, MAXPROB II

and Natural Regression strategies are shown in Figs. 4a

though 4c. The MAXPROB II strategy (Fig. 4b) produced the

largest overall independent data VISCAT I adjusted threat
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score, namely 0.23 (unadjusted, 0.30). This peak threat

score occurs with the inclusion of the first predictor,

E850, and declines marginally with the addition of the re-

maining four predictors. Of the three strategies, the

natural regression strategy (Fig. 4c), yields the poorest

overall threat scores with its peak threat score occurring

with the addition of the fourth predictor. The predictors

selected for this case are E850, ENTR, DVDP, U1000, and

STRTH.

The associated functional dependence and AO/Al sta-

tistics and 96%/05% confidence interval values for these

predictors are shown in Fig. 5. The trend of functional

dependence versus its 96% confidence interval shows that the

specific functional dependence values associated with the

chosen predictors never falls within the 96% confidence

interval. At the first predictor level, for example, the

functional dependence of ENTR upon E850 has a value of 0.1146

as compared to a 96% confidence interval value of 0.1039.

This infers that the corresponding scores (i.e., threat

scores, AO and Al) are not statistically significant at the

preselected 96% confidence interval level.

Fig. 6 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR+BMD model. For this case an equally populous grouping

size of seven was selected. Results of the three individual
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Preisendorfer strategies, along with the corresponding con-

tingency tables, can be seen in Figs. 7a through 7c. As

with the PR model, a maximum independent VISCAT I threat

score was obtained with the MAXPROB II strategy using the

first predictor selected, namely the linear regression equa-

tion predictor BMDI (Appendix D). The overall independent

adjusted VISCAT I threat score achieved with this model is

0.29 (unadjusted, 0.36), which is .06 greater than that for

the PR model. The natural regression strategy (Fig. 7c)

provides the poorest resultant threat scores and these reach

their peak with the inclusion of the fifth predictor. The

predictors selected for this case are BMDl, ENTR, DVDP,

PS and PBLD.

The functional dependence, Al/AO statistics and 96%/

05% confidence interval values for this model can be seen in

Fig. 8. As with the PR model, the specific functional

dependence values associated with the selected predictors

never fall below the calculated 96% functional dependence

confidence interval.

Figs. 9 and 10 show the contingency tables results

for the EVAR and QUAD threshold models. For each of these

models the independent adjusted VISCAT I threat scores have

identical values of 0.32 (unadjusted, 0.38).

The two-stage linear regression sequence employed

for both of these threshold models yields very similar basic

statistics. For the EVAR model, a threshold value of
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0.648497 was calculated for the first-stage VISCAT I versus

VISCAT II+III separation. This threshold was based upon a

VISCAT I sample size of 190 observations, a mean of 0.659 S

and standard deviation of 0.205 and a combined VISCAT II+III

sample size of 1722 observations, a mean of 0.927 and

standard deviation of 0.122. The second-stage VISCAT II S

versus VISCAT IIT separation was based on a calculated

threshold of 0.580128. Associated with this threshold value

were 311 VISCAT II observations with a mean of 0.708 and S

standard deviation of 0.142 and 1473 VISCAT III observations

with a. mean of 0.850 and standard deviation of 0.131.

For the QUAD model, a threshold value of 0.642104 S

was calculated for the VISCAT I versus VISCAT II+III first-

stage separation, based upon the sample addressed above. A

second-stage quadratic threshold separating the VISCAT II .

and VISCAT III samples was calculated to be 0.580569. This

VISCAT II sample contained 358 observations with a mean of

0.643 and standard deviation of 0.142 while the VISCAT III .

sample contained 1402 observations with a mean of 0.846 and

standard deviation of 0.140.

While no significant difference appears to exist S

between the results of the two threshold models, the QUAD

model yields a slightly higher AO and slightly lower Al

values for both the dependent and independent data sets. S

Table V shows a synopsis of the key statistical

results for this case. The best models, as determined by

S
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independent adjusted VISCAT I threat scores, are the two

threshold models. Of these two models, the QUAD model

achieves the highest adjusted AO, namely 3.16% (unadjusted,

80.73%).

2. Area 2, TAU-24

Fig. 11 shows the relationship of equally populous

grouping size to the adjusted A0 (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR model. For this model, adjusted dependent AO values of

-0.03 and adjusted independent threat score of -.01 were

obtained for grouping sizes four through nine. At the

grouping size of ten, a jump in scores was realized and

thus ten is identified as the only possible selection. An

associated difficulty in utilizing a grouping size of eight,

nine or ten, is that local computer storage resources are

limited to two megabytes. This decreases the usual five

predictor array to only four predictors as witnessed in this

case. The results of the three Preisendorfer strategies are

shown in Figs. 12a through 12c. For this model, the MAXPROB

I and MAXPROB II strategies yield identical maximum independent

adjusted VISCAT I threat scores of 0.21 (unadjusted, 0.27).

For each of the maximum probability strategies, an initial

threat score of 0.19 (unadjusted, 0.25) was achieved with

the first predictor, E850, solely. The slight increase to

the overall peak threat score was obtained with the inclusion

of the second predictor, ENTR, with subsequent independent
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VISCAT I threat scores decreasing at the third and fourth

predictor levels. Of the three strategies, natural regression

(Fig. 12c) yielded the poorest overall threat score and per-

cent correct values. These relative peak scores for the

natural regression strategy occur with the inclusion of the

fourth and final predictor. The predictors selected for this

model were: E850, ENTR, DVDP and DIV925.

The associated functional dependence, AO/Al statis-

tics and 96%/05% confidence intervals for this model are

shown in Fig. 13. For this case, the third and fourth pre-

dictors' root-sum-square functional dependence values exceed

the associated 96% confidence interval values, indicating

significant statistical interdependence of these predictors

at this confidence interval level.

Fig. 14 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR+BMD model. The dramatic increase in independent threat

score at grouping size of seven identifies it as the optimal

selection. The results of the three Preisendorfer strategies

are shown in Figs. 15a through 15c. For this model, the

MAXPROB I and MAXPROB II strategies yield identical maximum

independent adjusted VISCAT I threat scores of 0.26 (unad-

justed, 0.32). This peak score was achieved with the inclu-

sion of the first predictor. In this case, the first selected

predictor is the second generated linear regression equation
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predictor, BMD2 (Appendix D). Following the initial threat

score maxima, the scores decreased with the addition of the

subsequent four predictors. While some fluctuation in the

threat score trend was observed with the MAXPROB II strategy,

independent VISCAT I threat scores never surpassed their

initial maximum value. Of the three strategies, natural

regression (Fig. 15c) provides the poorest overall indepen-

dent VISCAT I threat score of 0.21 (unadjusted, 0.28). This

score was achieved with the addition of the fifth and final

predictor. The predictors selected for this model were:

BMD2, VRT925, ENTR, U1000 and RH.

The associated functional dependence, AO/Al statis-

tics and 96%/05% confidence intervals are shown in Fig. 16.

For this model, a comparison of functional dependence and

functional dependence 96% confidence interval values indi-

cates that the final three predictors have root-sum-square

functional dependence values which are too large to ensure

significant statistical independence at the 96% confidence

interval level.

Figs. 17 and 18 show the contingency tables and

associated statistics for the EVAR and QUAD threshold models.

For each of the models, the independent adjusted VISCAT I

threat scores have identical values, namely 0.29 (unadjusted,

0.24). The two-stage linear regression sequence employed

for both of these models yields fairly similar statistical

results. For the EVAR model, a threshold value of 0.674932
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was calculated for the first-stage VISCAT I versus VISCAT

II+III separation based upon a VISCAT I sample size of 180,

a mean of 0.682 and a standard deviation of 0.227 and a

VISCAT II+III sample size of 1580, a mean of 0.938 and a

standard deviation of 0.109. The second-stage VISCAT II

versus VISCAT III separation was based upon a calculated

threshold value of 0.601717. Associated with this threshold

were 300 VISCAT II observations with a mean of 0.733 and

standard deviation of 0.149 and 1339 VISCAT III observations

with a mean of 0.857 and standard deviation of 0.121.

For the QUAD model, a threshold value of 0.675210

was calculated for the first-stage VISCAT I versus VISCAT S

II+III separation based upon the sample statistics addressed

above. The second-stage threshold separating the VISCAT II

and VISCAT III samples was calculated to be 0.617455. The .

VISCAT II sample contained 300 observations with a mean of

0.739 and a standard deviation of 0.125. The VISCAT III

sample contained 1339 observations with a mean of 0.885 and

standard deviation of 0.118.

While the VISCAT I threat scores for both the dependent

and independent data sets are identical for the two models, S

differences in other statistics are apparent. The EVAR model

(Fig. 17), for example, has the higher independent adjusted .

AO scores, namely 2.96% (unadjusted, 81.34%), as comnared to

scores of -63.31% (unadjusted, 68.60%) for the QUAD model

(Fig. 18).
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In general, for area 2, TAU-24, the threshold models

again provide the highest independent VISCAT I threat scores

(Table V). Of the two threshold models, the EVAR model has

a slight edge in A0 scores.

3. Area 2, TAU-48

Fig. 19 shows the relationship of equally populous

grouping size to the adjusted A0 (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR model. For this model, the initial peak values of dependent

AO and independent VISCAT I threat score at the grouping

size of four did not sufficiently ascertain four as the

optimal grouping selection. For this grouping size, the

second selected predictor ENTR had a functional dependence

of 0.2952 as compared to the calculated functional dependence

96% confidence interval value of 0.1932. The large dis-

parity between the two functional dependence values indicates

a significant statistical correlation between E850 and ENTR

at a grouping size of four and thus grouping size four was

dropped from consideration. The selected grouping size of

nine, which unfortunately carries with it the requirement

of a very large computer storage forecast array at the fifth

predictor level, had a functional dependence value 0.0930

as compared to a functional dependence 96% confidence interval

value of 0.0970 and thus was selected as the optimal grouping

size. The associated functional dependence, AO/Al statistics

and 96% confidence intervals are shown in Fig. 20. The first
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three predictors selected have functional dependence values

sufficiently low enough to ensure no significant predictor

interdependence.

The results of the three Preisendorfer strategies

are shown in Figs. 21a through 21c. The maximum independent

UVISCAT I threat score achieved for the three strategies was

0.17 (unadjusted, 0.26) and was obtained with the MAXPROB II

strategy with the addition of the fifth predictor. It should

be noted that the independent adjusted VISCAT I threat

scores achieved by both the MAXPROB I and MAXPROB II strate-

gies reached near peak values of 0.16 (unadjusted, 0.24)

with the addition of the second predictor, thus greatly mini-

mizing the size of the associated forecast array. Of the

three strategies, natural regression (Fig. 21c) yielded the

4poorest overall adjusted independent VISCAT I threat score,
namely 0.09 (unadjusted, 0.18). This score was achieved

with the inclusion of the fourth predictor in the forecast

array. The predictors selected for this model were E850,

ENTR, DVDP, DRAG and DIV925.

Fig. 22 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR+BMD model. For this model a grouping size of nine was

selected. The results of the MAXPROB I, MAXPROB II and

natural regression strategies are shown in Figs. 23a through

23c. For this model, MAXPROB I and MAXPROB II provide
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identical maximum independent adjusted VISCAT I threat scores

of 0.31 (unadjusted, 0.37). These scores were achieved with

the inclusion of the second linear regression equation pre-

dictor BMD2 (Appendix D). For each of these strategies, the

independent VISCAT I threat scores decrease with the addi-

tion of the second and subsequent predictors. While a slight

upward progression is noticed with the MAXPROB II strategy,

the peak score observed at the first predictor level is

never surpassed. Of the three Preisendorfer strategies,

natural regression (Fig. 23c), yields the poorest overall

independent VISCAT I threat score, namely 0.18 (unadjusted,

0.26). This score occurs with the inclusion of the fifth

predictor and culminates in a slow increase in threat score

as each predictor is sequentially added to the forecast array.

The predictors selected for this model were BMD2, VRT925,

ENTR, U500 and DRAG.

Fig. 24 shows the functional dependence, AO/Al sta-

tistics and 96%/05% confidence interval values for the

selected predictors. For this model, the second and third

predictors' functional dependence values fall below the 96%

confidence interval and thus are not significantly inter-

dependent upon one another. This trend changes with the

fourth and fifth predictors which have functional dependence

values greater than the calculated 96% confidence interval

values.

Figs. 25 and 26 show the contingency table results

for the EVAR and QUAD threshold models. For each of these
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models, the independent adjusted VISCAT I threat scores

have identical values of 0.21 (unadjusted, 0.29).

The two-stage linear regression sequence used to

separate the three visibility categories yield very similar

results for the two threshold models. For the EVAR model,

a threshold value of 0.652554 was calculated for the first-

stage VISCAT I versus VISCAT II+III sample separation.

This threshold value is based upon a VISCAT I sample size

of 182 observations with a mean of 0.686 and a standard

deviation of 0.267 and a combined VISCAT II+III sample of

1670 observations with an associated mean of 0.930 and

standard deviation of 0.106. The second stage VISCAT II

versus VISCAT III regression separation yielded a threshold

value of 0.572257 based upon 355 VISCAT II observations, with

a mean of 0.711 and standard deviation 0.135, and 1408

VISCAT III observations with a mean of 0.834 and a standard

deviation of 0.130.

For the QUAD model, a very similar threshold value

of 0.652554 was calculated for the first-stage VISCAT I

versus VISCAT II+III separation based upon the sample first-

stage statistics addressed above. A second-stage threshold

value of 0.564579 was calculated based upon 330 VISCAT II

observations with a mean of 0.724 and standard deviation of

0.128, and 1407 VISCAT III observations with a mean of 0.833

and a standard deviation of 0.127.
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In general, the results of these two threshold models

are nearly identical. The EVAR model shows a very slight

advantage in adjusted independent A0 scores, namely 7.07%

(unadusted, 80.11%) as compared to 5.05% (unadjusted,

79.68%) for the QUAD model. Similarly, the EVAR model yielded

a slightly higher independent adjusted threat score for VISCAT

I combined with VISCAT II of 0.02 (unadjusted, 0.23) versus

an adjusted score of 0.01 (unadjusted, 0.22) for the QUAD

model.

For Area 2, TAU-48 the PR+BMD model provides the

highest overall independent VISCAT I threat score (Table V).

The difference between the independent adjusted VISCAT I

threat scores for the PR+BMD model and the two threshold

models is minimal, namely 0.02, while the PR model is 0.14

lower.

B. NORTH ATLANTIC OCEAN, AREA 3W

Area 3W was the North Atlantic homogeneous area selected

by Karl (1984) for his initial TAU-00 MOS experimentation.

This area borders the United State's eastern seaboard from

the vicinity of Cape Charles, Virginia to the southeastern

tip of Newfoundland. The area encompasses a large portion

of the Georges Banks region and extends to approximately

450 W longitude. The specific detail and proximity of this

area can be seen in Fig. 2.

Area 3W constitutes the homogeneous area with the highest

relative frequency of VISCAT I observations with approximately
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19% of the total number of visibility observations being less

than 2 kilometers in the TAU-00, TAU-24 and TAU-48 periods.

The TAU-24 and TAU-48 prognostic periods will be addressed

in this document. The reader is advised to consult Karl

(1984) for detailed information concerning area 3W, TAU-00.

1. Area 3W, TAU-24

Fig. 27 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR model. For this case a grouping size of six was selected.

Results of the three Preisendorfer strategies are shown in

Figs. 28a through 28c. The MAXPROB II strategy achieves a

slightly higher independent adjusted VISCAT I threat score

of 0.21 (unadjusted, 0.36) as compared to a score of 0.20

(unadjusted, 0.35) for the MAXPROB I method. For each of

these strategies, the maximum threat score is reached with

the inclusion of the fifth and final predictor in the fore-

cast array. The general trend of these two strategies is

nearly identical and show an initial rise in threat score

at the first predictor level, a slight decrease with the

addition of the second and third predictors and a secondary

rise at the fourth and fifth predictor levels. The poorest

results for this case were achieved with the natural regres-

sion strategy (Fig. 28c) , for which an independent adjusted

VISCAT I threat score of 0.16 (unadjusted, 0.32) was achieved.

This score was similarly reached with the addition of the
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fifth and final predictor. The predictors selected for this

model were DTDP, SHWRS, ENTR, U1000 and DUDP.

Fig. 29 shows the functional dependence, A0/Al

statistics and 96%/05% confidence intervals for this model.

For this case only the second predictor has a functional

dependence value which falls below the corresponding 96%

confidence interval and thus meets the requisite conditions

regarding predictor interdependence. Consequently, the

greatest independent threat score achieved, which coinci-

dently meets the functional dependence criteria, occurs with

the MAXPROB II strategy at the inclusion of the second pre-

dictor. The threat score achieved in this particular instance

has a value of 0.13 (unadjusted, 0.30).

Fig. 30 shows the relationship of equally populous

grouping size to the adjusted A0 (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR+BMD model. For this case a grouping size of five was

selected. Results of the MAXPROB I, MAXPROB II and natural

regression strategies are shown in Figs. 31a through 31c.

For this model, the two maximum probability strategies pro-

vide identical peak independent adjusted VISCAT I threat

scores of 0.28 (unadjusted, 0.42) at the first predictor

level. For both of these strategies, the addition of subse-

quent predictors produces a steady drop off in threat score

values. The poorest overall results for this case are

achieved with the natural regression strategy (Fig. 31c).
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This method yields an independent adjusted VISCAT I threat

score of 0.17 (unadjusted, 0.33) which was obtained with the

addition of the fifth and final predictor. The predictors

selected for this model were BMD1, D500, DVDP, ENTR and

U850.

Fig. 32 shows the associated functional dependence,

AI/AO statistics and 96%/05% confidence interval values for

the predictors chosen for this model. The functional depen-

dence versus the 96% confidence interval follows a peculiar

trend where the second predictor is significantly dependent

upon the first predictor but the third and fourth predictors

are conversely sufficiently uncorrelated with the prior

predictors to ensure no significant functional dependence.

The final predictor returns to being functionally dependent

upon the previous predictors. This trend indicates that the

relative contribution of the second and subsequent predictors

is statistically not significant at the preselected 96%

confidence interval level.

Figs. 33 and 34 show the contingency table results

for the EVAR and QUAD threshold models. The results of these

models are very similar with the EVAR model yielding an

independent adjusted VISCAT I threat score of 0.17 (unad-

justed, 0.33) as compared to a corresponding threat score

of 0.16 (unadjusted, 0.32) for the QUAD model.

For the EVAR model, a first-stage threshold value of

0.561855 was calculated based upon 270 VISCAT I observations
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with a mean of 0.590 and standard deviation of 0.203 and

1145 VISCAT II+III observations with a mean of 0.861 and

standard deviation of 0.168. The second-stage VISCAT II

versus VISCAT III separation was based upon a calculated

threshold value of 0.542363. Associated with this threshold

were 299 VISCAT II observations with a mean of 0.647 and

standard deviation of 0.146 and 938 VISCAT III observations

with a mean of 0.794 and standard deviation of 0.153.

For the QUAD model, a similar threshold value of

0.5559971 was calculated based upon the first-stage regres-

sion separation listed above. A second-stage threshold

value of 0.540874, separating VISCAT II from VISCAT III, was

calculated based upon 305 VISCAT II observations with a mean

of 0.639 and standard deviation of 0.157 and 940 VISCAT III

observations with a mean of 0.793 and standard deviation

of 0.154.

In general, the PR+BMD model produced the best overall

results for this case, followed by the PR model and lastly

the two threshold models (Table V). The independent adjusted

AO score of the PR+BMD model, which corresponds to the maxi-

mum independent adjusted VISCAT I threat score, is similarly

a maximum value for this case, namely 21.68% (unadjusted,

74.96%)

2. Area 3W, TAU-48

Fig. 35 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the
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adjusted VISCAT I threat score (independent data) for the PR

model. For this model, an equally populous grouping size of

six was selected. The results of the three Preisendorfer

strategies are shown in Figs. 36a through 36c. For this

case, the MAXPROB II strategy achieves the highest indepen-

dent adjusted VISCAT I threat score of 0.18 (unadjusted,

0.33) as compared to 0.17 (unadjusted, 0.32) for the MAXPROB

I strategy and 0.12 (unadjusted, 0.22) for natural regression.

The maximum score for each of the three methods was achieved

with the addition of the fifth and final predictor. The

statistical score trends for the two maximum probability

* strategies are very similar and reach identical near peak

independent VISCAT I threat scores of 0.15 (unadjusted, 0.30)

at the first predictor level. This is particularly note- .

worthy when considering that the computer forecast array

size may be of significant operational concern. The poorest

strategy for this case is natural regression. The predictors

selected for this case are DTDP, SHWRS, ENTR, U850 and

DIV925.

Fig. 37 shows the functional dependence, AO/Al sta-

tistics and 96%/05% confidence interval values for this

model. In this case, only the second predictor strictly

meets the requisite functional dependence criteria ensuring

no significant dependence of one predictor upon another. The

MAXPROB II independent adjusted AO score, which corresponds

to the peak independent VISCAT I threat score for this case,
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is -2.47% (unadjusted, 66.49%) as compared to AO scores of

4.94% (unadjusted, 68.91%) for MAXPROB I and -16.87% (unad-

justed, 61.78%) for natural regression.

Fig. 38 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR+BMD model. For this case a grouping size of five was

selected. The results of the three Preisendorfer strategies

are shown in Figs. 39a through 39c. For this case, the

MAXPROB II strategy provides the highest independent ad-

justed VISCAT I threat score of 0.30 (unadjusted, 0.43).

This peak score slightly surpasses the score of 0.29

(unadjusted, 0.42) achieved by the MAXPROB I method. The

trends for these two strategies are nearly identical, showing

only a slight oscillation in independent threat scores as

predictors are added. The peak score achieved by the MAXPROB

II scheme is at the fifth predictor level while the peak

value for MAXPROB I is obtained with the inclusion of the

first predictor. It should be noted that the results at

the first predictor level for the two maximum probability

strategies are identical. A forecast array predicated upon

a one predictor versus five predictor array size requires

four orders of magnitude less computer storage resources and

is therefore a desirable characteristic for an operational

forecast system. Additionally, the independent adjusted

AO scores, achieved by both schemes, have identical maximum
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values of 19.25% (unadjusted, 73.76%) at the first predictor

level as compared to a maximum value of 12.76% (unadjusted,

71.47%) for the natural regression strategy at the fifth

predictor level. The poorest strategy for this case is

natural regression (Fig. 39c). The independent VISCAT I

threat scores for this scheme initially yield very low threat

score values at the first and second predictor levels with a

subsequent rapid rise at the third, fourth and fifth predic-

tor levels. This rapid rise however produces a threat score

value of only 0.19 (unadjusted, 0.34) and a corresponding A0

of -1.65% (unadjusted, 66.76%) at the fifth-and final predictor

level. The predictors selected for this model are BMD2,

U1000, ENTR, DVDP and EAIR.

Fig. 40 shows the functional dependence, AO/Al sta-

tistics and 96%/05% confidence interval values for this model.

For this case, three of the five selected predictors do not

meet the 96% confidence interval criteria for functional

independence. This further justifies the use of a single

predictor forecast array for possible operational use.

Figs. 41 and 42 show the contingency table results

for the EVAR and QUAD threshold models. The results of these

two models are very similar with the EVAR model showing a

slight advantage in independent adjusted VISCAT I threat

score of 0.15 (unadjusted, 0.33) versus 0.14 (unadjusted,

0.31) for the QUAD model. Similarly, the EVAR model achieves

a slightly higher independent adjusted AO of 13.17%
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(unadjusted, 71.60%) versus 12.76% (unadjusted, 71.47%)

for the QUAD model.

For the EVAR model, a first-stage regression thres-

hold value of 0.577452 was calculated based upon a VISCAT I

sample size of 290 observations with a mean of 0.620 and

standard deviation of 0.211 and a combined VISCAT II+III

sample size of 1197 observations with a mean of 0.860 and

standard deviation of 0.153. A second-stage threshold value

of 0.548587 separating VISCAT II and VISCAT III was calcu-

lated based upon a VISCAT II sample size of 328 with a mean

of 0.654 and standard deviation of 0.142 and 971 VISCAT III

observations with a mean of 0.777 and standard deviation of

0.136.

The first-stage threshold value of 0.572592 for the

QUAD model was generated with the above VISCAT I versus

VISCAT II+III sample statistics. A second-stage threshold

value of 0.548717 was based upon 333 VISCAT II observations

with a mean of 0.649 and standard deviation of 0.138.

In general, the model which produces the highest

independent VISCAT I threat score for this case is the

PR+BMD model while the highest independent AO score is

achieved with the EVAR threshold model (Table V). The rela-

tively large independent threat score dominates the scores

however, and therefore the PR+BMD model is determined to be

the optimal model in this case.
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C. NORTH ATLANTIC OCEAN, AREA 4

Area 4 was selected for evaluation because of its rela-

tively low frequency (approximately 3% of the total) of 5

VISCAT I observations. It was hoped that this area would

statistically represent a region where there was an insuffi-

cient number of VISCAT I observations to allow for study of

a forecast region where results were anticipated to be poor,

yet enough VISCAT I observations to avoid any "rare event"

statistical entanglements.

This area encompasses a broad region of the North Atlantic

Ocean which is generally to the south of area 2 and east and

southeast of area 3W. Area 4's southern border reaches to

the northeastern tip of Portugal and extends northward through

the English Channel to encompass the southern portion of the

North Sea. S

1. Area 4, TAU-00

Fig. 43 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the 2
adjusted VISCAT I threat score (independent data) for the

PR model. Several unique characteristics were encountered

for this case which had not been previously been observed.

The previously observed variation of dependent AO and inde-

pendent threat scores, associated with the sequential varia-

tion in grouping size from four through ten, was not initially 5

achieved. For this case, non-zero values of dependent AO

and independent VISCAT I threat score were only achieved
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after three iterations of the predictor selection procedure.

The grouping size of four was deleted from consideration

in the third iteration because the associated AO value,

achieved at that predictor level, did not exceed the previous

AO value at the second predictor level. For this case, the

independent VISCAT I threat scores maintained indentically

low values, while a relative peak in AO was achieved at a

grouping size of eight. For this reason, eight was selected

as the optimal grouping size for this model.

Figs. 44a through 44c represent the results of the

three Preisendorfer strategies. For each of the schemes,

the independent VISCAT I threat scores at the first three

predictor levels reveal the near-zero scores encountered in

the grouping size selection process. The highest independent

adjusted VISCAT I threat score, namely 0.08 (unadjusted,

0.11) is achieved with the MAXPROB II strategy at the fifth

and final predictor level. For this model, the MAXPROB I

and natural regression strategies yield only slightly inferior,

identical independent adjusted threat scores of 0.04 (inad-

justed, 0.07) which are achieved at the fifth predictor

level. The MAXPROB I strategy yields the highest independent

adjusted AO score of -15.77% (unadjusted, 82.45%) as compared

to scores of -28.63% (unadjusted, 80.50%) for natural

regression and -34.85% (unadjusted, 79.56%) for the MAXPROB

II strategy. The predictors selected for this model are

V500, DVDP, STRTTH, E500 and ENTR.
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Fig. 45 shows the functional dependence, AO/Al sta-

tistics and 96%/05% confidence interval values for this model.

In this particular case, only the third predictor displays

a functional dependence value less than the 96% confidence

interval value. This renders the threat scores achieved by

this model, beyond the first predictor level, statistically

not significant, if strict adherence to the basic functional

dependence criteria is followed.

Fig. 46 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR+BMD model. For this case a grouping size of nine was

selected. The results of the three Preisendorfer strategies

are shown in Figs. 47a through 47c. Generally, the results

for this model differ very little from the previously dis-

cussed PR model. This case reflects the first and only

occurrence where the Preisendorfer methodology coupled with
S

linear regression equation predictors (PR+BMD model) did not

yield superior results to the PR model. The trends for

these three strategies are generally quite similar. The

MAXPROB II scheme provides the highest independent adjusted

VISCAT I threat score of 0.09 (unadjusted, 0.11), as com- .

pared to scores of 0.08 (unadjusted, 0.11) for MAXPROB I

and 0.07 (unadjusted, 0.10) for natural regression. For each

of these three strategies, the maximum independent VISCAT I

threat score was achieved with the inclusion of the fifth
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and final predictor. The independent AO scores associated

with the peak threat scores are near their lowest values at

the fifth predictor level with the MAXPROB I scheme yielding

the highest relative independent adjusted AO of -19.09%

(unadjusted, 81.95%) followed by natural regression with a

score of -26.56% (unadjusted, 80.82%) and lastly MAXPROB II

with a score of -39.42% (unadjusted, 78.87%). The predictors

selected for this model are BMD2, DUDP, ENTR, DEDP and

UI000.

Fig. 48 shows the functional dependence, AO/Al sta-

tistics and 96%/05% confidence interval values for this

model. Generally, the relative difference between the func-

tional dependence and 96% functional dependence confidence

interval values is much less severe than with the previously

discussed model. While only the third predictor's functional

dependence value meets the 96% confidence interval criteria

for significance, the other predictors are only marginally

insignificant.

The application of the EVAR and QUAD threshold models

to this case presented results which had not been previously

encountered. The first-stage VISCAT I versus VISCAT II+III

separation calculation results in a QUAD threshold value

which is imaginary and an unrealistic EVAR threshold value

of 209.588882. These thresholds were calculated based upon

a VISCAT I sample size of 85 observations with a mean of

-1.012 and standard deviation of 6.280 and a combined VISCAT
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II+III sample size of 3096 observations with a mean of

-1.864 and standard deviation of 7.092. These results are

linked to the preponderance of VISCAT III observations in

this area coupled with the fact that these employed threshold

models are designed to provide for a minimum error when

separating samples. These results indicate that a forecast

model predicated upon the dependent data set employed in this

case would strictly forecast VISCAT III.

2. Area 4, TAU-24

Fig. 49 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR model. This case required three iterations of the four

through ten grouping size calculations before any non-zero

dependent AO or independent VISCAT I threat score values were

achieved. Additionally, for the grouping size of four, no

increase in A0 was observed at the second predictor level

and therefore was deleted from consideration. A grouping

size of five was ultimately selected for this model.

Figs. 50a through 50c represent the results of the

three Preisendorfer strategies. Generally, the independent

VISCAT I threat scores yielded for these schemes are poor

with the highest independent adjusted VISCAT I threat score

of 0.05 (unadjusted, 0.07) being achieved by the MAXPROB II

strategy at the fifth predictor level followed by MAXPROB I

with a score of 0.02 (unadjusted, 0.05) and natural regression
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with 0.01 (unadjusted, 0.04). The A0 scores corresponding

to these values provide for a slightly different scoring

hierarchy. The highest independent adjusted A0 score,

namely 0.94% (unadjusted, 85.64%), is attained by the

MAXPROB I strategy as compared to scores of -30.05% (unad-

justed, 81.34%) for natural regression and -37.56% (unad-

justed, 80.05%) for MAXPROB II. The predictors selected for

this model are VRT925, DTDP, ENTR, V850 and DVRTDP.

Fig. 51 shows the functional dependence, AO/Al sta-

tistics and 96%/05% confidence interval values for this

model. For this case, each predictor following VRT925 proved

to be significantly functionally dependent on its predecessors

and therefore only a single predictor forecast array is

justifiable for this model.

Fig. 52 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR+BMD model. As in the previous case, three iterations of

dependent AO and independent VISCAT I calculations were

required before any non-zero scores were achieved. Addi-

tionally, in this case, the grouping sizes of four and five

were deleted from consideration as they did not provide an

increase of AO at the second predictor levels. The grouping

size ultimately selected for this model was nine.

Figs. 53a through 53c show the results of the three

Preisendorfer strategies for this model. The scores for
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this model, as in the previously described case, are quite

poor and show very little improvement over the PR model.
I

The highest independei.- adjusted VISCAT I threat score,

namely 0.06 (unadjusted, 0.09), was achieved by the MAXPROB

II strategy followed by scores of 0.05 (unadjusted, 0.07)
S

for the MAXPROB I strategy and 0.03 (unadjusted, 0.06) for

natural regression. The corresponding independent adjusted

A0 scores show a maximum score of -19.25% (unadjusted,

82.71%) for the MAXPROB I strategy followed by scores of

-30.05% (unadjusted, 81.14%) for natural regression and

-39.91% (unadjusted, 79.71%) for the MAXPROB II strategy.

Fig. 54 shows the functional dependence, AG/Al sta-

tistics and 96%/05% confidence interval values for this

model. For this case, the relative magnitude of the differ-

ence between the actual functional dependence and its 96%

confidence interval value is quite small. It is only at the

second predictor level, that the calculated values do not

exceed the corresponding 96% confidence interval value.

Fig. 55 shows the contingency table results for the

EVAR threshold model. The QUAD model provided an imaginary

threshold value at the second regression stage and therefore

did not allow completion of the entire separation sequence.

This represents the only occurrence where a valid equal
I

variance threshold was calculated but a corresponding quadratic

threshold proved to be imaginary.
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The results of the EVAR model were in keeping with

those of the previously described PR and PR+BMD models. An

independent adjusted VISCAT I threat score of 0.05 (nnad-

justed, 0.07), was achieved with a corresponding independent

adjusted A0 value of -13.15% (unadjusted, 83.59%).

The first-stage regression separation for this model

was based upon a calculated threshold value of 0.908275.

Associated with this threshold were 449 VISCAT I observations

with a mean of 0.953 and standard deviation of 0.030 and

2489 VISCAT II+III observations with a mean of 0.976 and

standard deviation of 0.027. The second-stage VISCAT II

versus VISCAT III separation was based upon a calculated

threshold value of 0.683569. Associated with this threshold

is a VISCAT II sample size of 69 observations with a mean of

0.831 and standard deviation of 0.066 and 887 VISCAT III

observations with a mean of 0.912 and standard deviation of

0.078.

For the QUAD model, an initial first-stage threshold

value of 0.908275 was successfully calculated with the

sample statistics addressed above. The second-stage regres-

sion attempt was based upon a VISCAT II sample size of 65

observations with a mean of 0.829 and standard deviation of

0.067 and VISCAT III sample size of 853 observations with a

mean of 0.905 and standard deviation of 0.079. These sample

statistics produced an imaginary threshold value.

In general Area 4, TAU-24 is characterized by very

poor independent VISCAT I threat scores. This indicates
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that there is very little skill in forecasting visibility

conditions of less than or equal to 2 kilometers in this

area. The evaluated models show little variation in scores

with the best relative model for this area and forecast

projection being the PR+BMD model (Table V).
P

3. Area 4, TAU-48

Fig. 56 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the PR

model. As in the TAU-00 and TAU-24 forecast projections for

this area, the calculation and evaluation of dependent AO

and independent VISCAT I threat scores had to be run through

three iterations before any non-zero statistics were obtained.

The grouping sizes of four and five were deleted from con-

sideration because the addition of predictors at those grouping

sizes did not provide for any increase in AO scores. Based

on an evaluation of the results as shown on Fig. 56, a group-

ing size of seven was selected.

Figs. 57a through 57c show the results of the three

Preisendorfer strategies for this model. In general, the

near-zero statistical scores encountered in the grouping

selection process, can be seen through the third predictor

level, along with a noticeable increase in scores at the

fourth and fifth predictor level. The MAXPROB I strategy

yields the highest independent adjusted VISCAT I threat

score, namely 0.18 (unadjusted, 0.20), for this model
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followed by a natural regression score of 0.16 (unadjusted,

0.19) and lastly by MAXPROB II with a score of 0.13 (unad-

justed, 0.16). This is the first and only encountered case

where the natural regression strategy effectively achieved a

maximum independent VISCAT I threat score which is higher

than either of the two maximum probability strategies. The

independent AO scores associated with these peak independent

VISCAT I threat scores, adhere to this same scoring sequence,

with MAXPROB I achieving a value of -14.94% (unadjusted,

81.86%) followed by natural regression with a score of

-27.80% (unadjusted, 79.83%) and MAXPROB II with an indepen-

dent adjusted AO of -43.98% (unadjusted, 77.78%).

Fig. 58 shows the functional dependence, AO/Al sta-

tistics and 96%/05% confidence interval values for this model.

In this case, only the third predictor's functional dependence

value falls below the associated 96% confidence interval

value. The predictors selected for this model are VRT925,

DVRTDP, ENTR, DUDP and RH.

Fig. 59 shows the relationship of equally populous

grouping size to the adjusted AO (dependent data) and the

adjusted VISCAT I threat score (independent data) for the

PR+BMD model. As in the previous area 4 cases, three com-

plete iterations of the four through ten grouping size calcu-

lations had to be performed before any non-zero dependent

AO or independent VISCAT I values were achieved. The

grouping size ultimately selected for this model was nine.
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Figs. 60a through 60c represent the results of the

three Preisendorfer strategies. A unique result of this

model is that for the first time, the PR+BMD model did not S

achieve independent VISCAT I threat scores which exceed those

achieved by the PR model. The peak independent adjusted

VISCAT I threat score of 0.17 (unadjusted, 0.20) is achieved S

by the MAXPROB II strategy at the third predictor level.

The predictors selected for this model are BMD1, DDVDP,

DUDP, ENTR and PRECIP. 0

Fig. 61 shows the functional dependence, AO/Al sta-

tistics and 96%/05% confidence interval values for this

model. Only the second predictor sufficiently meets the 96% 0

confidence interval significance criteria. Based upon a

strict adherence to the preselected 96% confidence interval

significance requirements, these functional dependence S

values provide cause for uncertainty in the representative-

ness of the scores achieved after the second predictor level.

Figs. 62 and 63 show the contingency table results

for the EVAR and QUAD threshold models. The results of these

models are very similar and generally quite poor. The QUAD

model achieves the highest relative independent adjusted

VISCAT I threat score of 0.01 (unadjusted, 0.04) as compared

to a score of -0.01 (unadjusted, 0.02) for the EVAR model.

The QUAD model similarly achieves the highest independent 0

adjusted AO score of -2.07% (unadjusted, 83.89%) versus a

score of -7.88% (unadjusted, 82.97%) for the EVAR model.
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For the EVAR model, a first-stage regression thres-

hold value of 0.847203 was calculated based upon a VISCAT I

sample size of 109 observations with a mean of 0.918 and

standard deviation of 0.052 and 2947 VISCAT II+III observa-

tions with a mean of 0.967 and standard deviation of 0.037.

The second-stage VISCAT II versus VISCAT III separation was

based upon a calculated threshold value of 0.629338. Asso-

ciated with this threshold is 495 VISCAT II observations with

mean of 0.861 and standard deviation of 0.103.

For the QUAD model, a first-stage separation thres-

hold value of 0.847203 was calculated upon the associated

sample statistics addressed above. A second-stage threshold

value of 0.613739 was calculated based upon 481 VISCAT II

observations with a mean of 0.770 and standard deviation of

0.089 and 2522 VISCAT III observations with a mean of 0.862

and standard deviation of 0.100.

The overall results associated with the area 4, TAU-

48 case are particularly unique. The independent adjusted

TAU-48 VISCAT I threat score represents the highest area 4

independent VISCAT I threat score (by a minimum of 0.09)

achieved, as compared to TAU-00 or TAU-24. The maximum

independent VISCAT I threat score is achieved by the PR

model.

Following the completion of the testing and evaluation

of the FATJUNE 1983 data set, a series of preliminary experi-

ments were performed with the May 15 to June 23 1984 data
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set for the TAU-24 model forecast projection. These experi-

ments consisted of evaluating the TAU-24, 1983 forecast

arrays and equations (generated with FATJUNE 1983 data)

with training and testing cases of TAU-24, 1984 data. In

performing this evaluation, the 1984 data set was divided
0

into "dependent" and "independent" portions. This data

separation is a function of the specific mechanics of the

computer programs utilized in this study and is not associated
S

with the generation of additional forecast arrays or equations.

Two homogeneous areas were evaluated, namely area 2 and area

3W. This essentially provided an independent verification

of the utility of the 1983 forecast arrays and equations in

predicting observed 1984 visibility in these areas.

In general, the skill and contingency table results
S

for these experiments compare very favorably to those achieved

with the FATJUNE 1983 data. A summary of the results of

each of the evaluated models is provided in Table VII. For

area 2, a peak independent adjusted VISCAT I threat score

(1984 data), namely 0.27 (0.33 unadjusted), was achieved

with each of the two threshold models. This compares to a

peak independent adjusted VISCAT I threat score (1983 data)

of 0.29 (0.34 unadjusted) achieved by the same two models.

For area 3W, a peak independent adjusted threat score (1984

data) of 0.28 (unadjusted, 0.42) similarly compares to a

peak independent adjusted threat score (1983) of 0.13

(unadjusted, 0.36).
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The overall results of the 1984 data experiments can

be seen in Table VII and are represented by Fig. 64 which

illustrates the results of the PR+BMD model, MAXPROB II

strategy, for area 2, TAU-24.

A review of the results associated with area 4 for

TAU-00, TAU-24 and TAU-48 indicates that none of the models

evaluated achieved very encouraging skill and threat scores.

Consequently, the maximum-likelihood-of-detection criteria

(MLDC) was proposed as an alternative technique to increase

threat scores in area 4.

A series of experiments involving an arbitrarily

selected population of two hundred normally distributed

events, partitioned into eight separate threat/non-threat

samples, were performed to demonstrate the theoretical utility

of the MLDC at low threat frequencies. Threshold values

were calculated, for various threat frequencies, using the

EVAR minimum probable error and MLDC techniques and two by

two contingency tables were constructed to tabulate the asso-

ciated threat score, percent correct and false alarm rate

results. Fig. 65 shows the resulting plot of threat score

versus threat frequency which illustrates the amount of in-

crease in threat score associated with the MLDC model. Asso-

ciated with these higher threat scores are correspondingly

higher "costs," namely higher false alarm rates, illustrated

in Fig. 66, and lower percent correct scores, illustrated in

Fig. 67.
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A set of two experiments was performed, utilizing

FATJUNE 1983, TAU-24 data and the two-stage separation

scheme outlined in Chapter IV (MLDC model), to evaluate the

relative performance of the MLDC and EVAR models on area 4.

In general, the results of these two experiments were consis- .

tent with the results predicted by the aforementioned

theoretical experiments. The most obvious area of agreement

is the significantly lower independent adjusted VISCAT I

and VISCAT II threat scores (both are considered threatening

events in this study), namely 0.01 (unadjusted, 0.04) and

-0.14 (unadjusted, 0.00), achieved by the EVAR model, Fig.

68, as compared to the corresponding scores of 0.04 (unad-

justed, 0.07) and 0.03 (unadjusted, 0.15) achieved by the

MLDC model, Fig. 69.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The primary objective of this study was to expand upon

the initial research and experimentation presented by Karl

(1984) and to propose a viable statistical forecasting scheme

suitable for eventual employment in an operational U.S. Navy

marine visibility MOS forecasting system. In general,

while the results of linear regression and the evaluated

Preisendorfer models are roughly comparable, it has been

shown that two specific statistical approaches, namely the

PR+BMD model's MAXPROB II strategy and the linear regression

models, yield the best results (as measured by independent

VISCAT I threat score) achieved in this study. The PR+BMD

model achieved the best results for six of the eight evaluated

cases: area 2, TAU-48; area 3W, TAU-24 and TAU-48; and area

4, TAU-00, TAU-24 and TAU-48. The nearly identical results

of both the equal variance and quadratic linear regression

threshold models provided the best skill and threat scores

for area 2, TAU-00 and TAU-24. A common characteristic of

each of the evaluated cases is that the predictability of

visibility category II is relatively very poor and nearly

always poorer than that for visibility categories I or III.

This pattern affirms the findings of similar Pacific Ocean

visibility studies [Renard and Thompson, 19841 as well as -
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those documented by Karl (1984) and further supports Karl's

recommendation to change from a three-category to a two-

category visibility forecasting scheme.

An evaluation of the overall results of this study shows

that no real connection between individual model/strategy

and either the homogeneous oceanic area (2, 3W and 4) or

model output time (TAU-00, TAU-24 and TAU-48) can be made.

The linear regression threshold models performed best for

area 2, the intermediate poor visibility oceanic area, while

the Preisendorfer methodology incorporating linear regression

equation predictors proved the best in the evaluated homogene-

ous areas with the greatest and lowest relative concentration

of poor visibility observations. The trend of visibility

category I skill and threat scores, for each homogeneous area

and model output time, seems to contradict the preliminary

supposition that peak skill scores would be associated with

the area containing the greatest frequency of poor visiblity

observations and the TAU-00 model output time. This result

is most apparent with area 4, where threat scores increase

with increasing model forecast projections until they achieve

values at TAU-48, which are nearly identical to those for the

other two homogeneous areas. This type of trend in skill

and threat scores most likely reflects the overall strength

of the statistical relationships for the predictand/predictors

involved irrespective of the frequency of specific visibility

observations.
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In several cases, the maximum independent visiblity

category I threat score achieved by the PR+BMD model was

reached at the first predictor level. In several additional

cases, threat score values which were only marginally lower

than peak value, were similarly achieved at the first pre-

dictor level. Forecasting arrays involving only one predic-

tor drastically reduce required computer storage and

consequently such arrays are a desirable attribute to any

operational MOS forecasting system. A MOS-type forecasting

system predicatedupon such a small number of predictors

would prove extremely beneficial in an independent single

station forecasting scenario such as that experienced by an

aircraft carrier based U.S. Navy Oceanography Officer.

The concept and practical employment of functional

dependence, associated with the Preisendorfer methodology,

provides a greater restriction on the statistical significance

of the skill and threat score results achieved in this study,

as compared to that which was previously experienced by

Karl (1984). It was shown that the calculated functional

dependence values for each respective predictor or group of

predictors often exceeded the associated 96% confidence

interval value at the first or second predictor level and

rarely met the requirements for significance for an entire

array of selected predictors. This restriction further

indicates that any operational forecasting scheme should

most likely be composed of only a minimal number of select

predictors.
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The difference between the equal variance and quadratic

threshold models was shown to be very minimal. The two-stage

visibility category separation approach is designed to

handle cases with distinct separability between categories

while providing for minimal error in the calculated threshold

values. This condition was not met in the area 4, TAU-00

and TAU-24 cases and subsequently lead to unrealistic thres-

hold values.

The preliminary independent evaluation of the 15 May to

23 June 1984 data set provided a crucial test and verifica-

tion of the utility of the forecast arrays and equations

presented in this study.

The introduction and initial evaluation of the maximum-

likelihood-of-detection threshold model offers another

technique to the pool of visibility prediction schemes.

This method appears to be most beneficial in areas of low

threat frequency.

B. RECOMMENDATIONS

The following recommendations are offered to future

researchers:

1. Remove the MAXPROB I and natural regression strategies

of the Preisendorfer methodology from further consideration

in the forecasting of marine horizontal visibility.

2. Delete one of the two threshold models evaluated

in this study, and investigate additional thresholding
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techniques based on the Beta distribution and the maximum-

likelihood-of-detection criteria.

3. Revise the current three-category visibility scheme

to a two-category scheme where visibility categories I and

II are combined. This should be particularly beneficial in

those homogeneous areas with extremely low frequencies of

visibility category I and II observations.

4. Expand the initial set of potential predictors to

include air-sea temperature differences as well as additional

derived predictors such as the advections and gradients of

temperature, vorticity and moisture in order to more fully

simulate the physical processes associated with poor marine

visibility. Additionally, include TAU-00 and TAU-24 model

output parameter fields as potential predictors in future

evaluations of TAU-24 and TAU-48 MOS forecasts.

5. Evaluate OOOOGMT data sets to determine the effect

of nighttime conditions on both visibility observations and

NOGAPS model output parameters.

6. Investigate new procedures to determine the number

of equally populous predictor intervals. The following

procedure [Preisendorfer, 1984] is proposed:

a. To establish the number of equally populous predic-

tor intervals for any predictor, consider a bivariate

predictand/predictor [Preisendorfer, 1983a]. Start with

m = 1 and find the potential predictability (PP) for the

resultant plot, call it "PP(l)." In general, PP(m) is the
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PP for the general case of m. Successively, find PP(m)

for m = 1,2,..., and continue to subidivde the predictor

range as long as PP increases: PP(m) < PP(m+l). Stop at

PP(m) if PP(m+l) < PP(m) or if PP(m+l) < PP(m+196), where

the later is defined by Preisendorfer (1983a) and denoted

by "PP(96)." This last condition avoids sparse bivariate data

plots, caused by too large an m. It was Karl's 1984 experi-

ence that five to eight equally populous predictor intervals

are sufficient for all predictors. Hence m, for each pre-

dictor, is expected to be in this neighborhood.

b. Order the set of available predictors in descending

value of potential predictability (PP). Break ties with

AO (PP and AO are defined by Preisendorfer (1983a)). AO

is the actual skill, after the prediction has been made.

c. The first predictor is that with the greatest

PP. Compute associated AO and Al. Call them A0 0 ) and Al(0)

7. Associated with recommendation 6. above, improve

the predictor selection procedure as follows:

a. Suppose k-l predictors have been chosen, let

them be X1 ,..., Xkl. Let Y be a new predictor candidate.

Admit Y as the kth predictor if the three following conditions 0

are satisfied:

(1) Functional dependence (YIX i) < functional

dependence u (YIXi;05) for i = ,... ,k-l

(i.e., the functional dependence of X.

and Y is not significantly large for each
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i = 1,...,k-l. Find functional dependence

(YIX i ) and functional dependence (YjXi;05)i1 1

as described by Preisendorfer (1983c)).

(2) AO(k) > AO(k-i) and Al(k) > A1(kl)

(3) AO(k) > AO(96) and Al (k) > Al(05)

All three conditions must hold for admittance of Y to the

predictor set.

b. A less stringent predictor selection process

would be to form functional dependence (Yj IXi), where Xi,

i = l,...,k-1 are the selected predictors, and the Y.,

j = 1,...,q are the as-yet unselected predictors. Here

(k-l)+q = p, the original number of potential predictors.

Next, form Iminimax functional dependence (Y. Ix) i 1. This
j i

fixes that Y. for which functional dependence (YjX i) is

the least possible of the maximum functional dependence

values over the present X set. This makes the best out of

the worst case of functional dependence (i.e., select the

Y. farthest from the set of X.).J 1

c. Continue to repeat step 7a. above until all

potential predictors are used up (the critical values of

AO(96) and Al(05) are as defined by Preisendorfer (1983b).

Another reason for stopping may be that allotted CPU time is

used up before the predictors.

8. Investigate a further and more complete verification

of the forecast arrays and equations presented in this study

81

0



utilizing available 1984 data sets. Specifically, utilize

the 1984 data set as an entire independent test case without

first removing a portion of the data for use as a dependent

forecast array/equation training set. Additionally, gener-

ate an additional set of forecast arrays and equations

based on combined 1983 and 1984 FATJUNE data and evaluate

the statistical stability of the equations as different

years of data are merged into a larger data base.
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APPENDIX A

LINEAR REGRESSION AND THRESHOLD MODELS

A. LINEAR REGRESSION

The linear regression techniques used in this study

expand upon and slightly modify those first presented by

Karl (1984). In this study, two separate least-squares,

multiple linear regression software programs; referred to

as the BMDP2R--Stepwise Regression and BMDP9R--AlI Possible

Subsets Regression computer programs in the BMDP Statistical

Software [University of California, 1983], were used.

The independent variable selection procedure employed in

the BMDP2R program is referred to as a forward, step-wise

selption process where predictors are selected from a large

group of available potential independent variables based

upon the highest correlation with the dependent predictand

(visibility in this study). This correlation is calculated

based upon certain F-to-enter and F-to-remove limits, where

F is a ratio which tests the significance of the coefficients

of the predictors in the regression equation.

The regression model fitted to the data is

y = a b+b 1 + 2b2x2 + ... n+ x n+

where:
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y = the dependent variable (predictand) which
can be either a continuous function or a
discrete value

Xl,...,xn = the independent variables (predictors)

bl,...,b n  = the regression coefficients

a = the intercept

p = the number of independent variables

£ = the error with mean zero

The predicted value y, and the general form of the resulting

equation, is

y = a + blx 1 + b2x 2 + ... + bnxn

The step-wise selection of predictors continues until there

are no predictors remaining which meet the requisite F-to-

enter criteria. The regression equation generated by the

BMDP2R program is outputted at each regression step where

variables are selected as independent predictors, along with

its corresponding R value (the correlation of dependent

2variable y with the predicted value y) and R value. The

resulting equation sets are reviewed, and that equation con-

taining only those predictors which increased R by at least

0.01 are retained for application.

The procedure employed with the BMDP9R program varies

from that of the BMDP2R, in that a "best" possible subset,

derived independently of variable or variable sequence, is

calculated from the group of potential predictors. Once this
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"best" subset is identified, a linear regression equation is

fitted to the data, based only upon those selected predic-

tors, in a fashion identical to that for the BMDP2R program.

The "best" possible subset is calculated by a Furnville-

Wilson algorithm which provides the user with a variety of

subordinate subsets in addition to the "best" subset. Three

criteria are available to define the "best" possible subset

as a function of independent variables (predictors) and a

2
dependent variable (predictand): the sample R the adjusted

R2and Mallow's Cp. For this study, the Mallow's Cp criteria

is defined as:

Cp = RSS/S - (N - 2P')

where:

RSS = the residual sum of the squares for the
new subset being tested

S the residual mean square based on the
linear regression using all independent
variables

P' = the number of variables in each subset

N = the total number of cases

For this method, "best" is defined as the smallest Cp value. K

Independent variable selection for the BMDP9R program

begins with a general screening of the entire set of potential

predictors. Variables which are identified as redundant,
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linear combinations of other variables, with respect to the

predictand, in this general screening are deleted from further

consideration. The t statistics for the coefficients which

minimize the Cp value for each reviewed subset identifies "

the "best" subset. The number of predictors assigned to each

subset can be predefined and for this study each subset

equation was required to have six predictors.

The role of regression, once appropriate predictor varia-

bles have been selected, is simply that of dimension reduction

(representing a multivariate structure by a univariate

proxy which constitutes a classificatory or predictive

index). This proxy takes the form of a polynomial, linear

in its coefficients, of the components of the multivariate

structure. The problem now becomes one of determining the

form of the state conditional distributions (one for each

group of interest; e.g., one, two and three for visibility

categories I, II and III, as used in this study). Once an

appropriate form has been selected, it remains, then, to

determine the parameters of the class conditional distribu-

tions (e.g., means and variances) and then apply an appro-

priate decision criterion or threshold model.

B. THRESHOLDS [Lowe, 1984a]

1. Notation S

E E an event; this is an indicator variable which
when E = 1, the threatening event occurs, and
when E = 0, the non-threatening event occurs.
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C Ethe classification of an unknown event wh4 ch
when C = 1, the event is classified as a
threat, and when C = 0, the event is classi-
fied as a non-threat.

P[E =] unconditional probability of occurrence of
threat.

P[E =01 - unconditional probability of occurrence of

non-threat.

Error of the 1st kind (false alarm) [C =lfnE =0].

Error of the 2nd kind (miss) [C =0 n E =] .

P[C =1 n E =01 - joint probability of an error of the 1st
kind.

P[C =0 nE =1] joint probability of an error of the
2nd kind.

P[C =liE =0] - class conditional probability of misclassi-
fying a non-threat.

P[C =OIE=i] - class conditional probability of misclassi-

fying a threat.

P[C =1 nE =0] = P[C =lIE =0] P[E =0].

P[C =0 n E =i = P[C =OE =1] P[E =0]

z = a value of the predictive index (equivalent
to y, above).

Z = range of the predictive index on the real line.

For a dichotomous problem, Z is into two parts Z0 , Zl,

C = 0 if z Z0

C = 1 if z Z

The decision regions are mutually exclusive and exhaustive

(i.e., Z0 rZ 1 =0 and Z = Z0 uZ I).
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Thresholds boundary(s) between decision regions.

p(zjE =0) class conditional density of z given
that E = 0.

p(zIE =1) Eclass conditional density of z given
that E =1.

A(z) =p(zLE 1) /p (z E 0) =the maximum likelihood

ratio (i.e., the ratio of class conditional
densities).

= p{[C In E = 0I u [C =On E =j} 1 the total
probability of error.

2. Minimum Probability of Error Criterion

p = probability of an incorrect classification.

p p[C1E=0i p [E 0] + p[C 0 E 1] p [E 1]

where p[E =1] + p[E =01 1. NOte that the events E =1

and E = 0 are mutually exclusive and exhaustive. The objec-

tive is to select decision regions (thresholds) so as to

minimizep

p[C =0JE=1I f p(zIE =l)dz =the probability of
Z EZ

misclassifying E =1.

p[C =1E=11 f p(zIE =l)dz + f p(zjE =l)dz
Z 0  Z1

-f p(zIE =l)dz

p [C 01E~ 11 1- f p(zjE =1)dz these are
Z EZ 1  substituted

into the
expression

p (C 1E 0] f p(zIE =0)dz forp e
zZZ
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then,

Pe pIE =0] f p(z IE O)dz + p[E 1) [1 f p(zIE =l)dz]
ZEZ 1  zEZ1

and algebraic rearrangement yields,

=e pilE =1] - f {p[E =0] p(zIE =0) -p[E =1) p(zIE =1) dz}

In order to minimize pe , Z (the decision region for C = 1)

will include all those values of z for which the integrand

in the expression for p e will be negative. The decision

regions can be symbolically represented as follows:

Z ={z: pilE 0] p (zE =0) p piE p p(zE =1) > 010

Z {z: p[E =0] p(zjE =0) -p[E =11 p(zIE =1) < 0)

An alternative representation is given by,

Z tz: p[E =0I p(zIE =0) > p[E =1] p(zjE =1)}
0

-{z: p[E =0lI/p[E =11 > p(zIE =l)/p(zlE =0)1

Likewise,

Z {z: p [E 0/p[E1I <p(z E 1) /p (zIE 0)
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S

These statements can be combined to give,

c=1

p(zjE =l)/p(zlE=0) = A(z) > p[E =0]/p[E ]
c=o

Thresholds are the value(s) of z for which
p

A(z) = piE =0]/p[E =i

This equation can be solved for z either analytically or

numerically depending on the forms of the density functions.

3. Threshold Cases

In order to examplify the model, the assumption is

made that the class conditional distributions are Gaussian.

There are essentially three distinct cases that can arise.

a. Case I: Equal variances; different means
(Referred to as the equal variance model (EVAR)
in the text)

p(zIE =1) k exp{(-i/2)(z -I) 2/02}

p(zIE =0) = k exp((-i/2) (z -I )2/2
D

where:

(2 )- /2o - 1
k = 2Tr)1 a 1

2 2 c=lexp{(-l/2) (z -Pi) /a I > pA(z) =- -""2 2l ""'"
exp{ (-1/2) (z 0) /a c=O 1
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where A is the likelihood ratio and p0  p[E =0] and

P = p [E =11. Thus, the threshold value is

12

z*= (. 0 + i)/2 + 02 ln (p0/Pl)/( I - 0

21 E = O E =

C

Classification Index (z)

The position of the threshold depends on the relative values

of p1 and p0 . The threshold moves toward the group with the

smallest pi. If p1 = p0 the threshold will be the value of

z where the densities intersect (i.e., where the densities
1 .

are equal).

b. Case II: Equal means; different variances

a0 exp{(-I/2) (z - 2i /2 2 = Pc

A(z) 2 2 >

alexp{ (-1/2) (z -p0 )2 /02 < P1 /0 }c=O -

with the threshold

2 2 1/2
20001ln

(0 2_02 P1 O0)
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Note that in this situation there are two thresholds. The

group having the smaller variance will lie between the two

thresholds.

E.

~E=OoT

E0

Classification index (z)

The thresholds shown are typical of a situation where p1 < P0.

Note that these thresholds lie between the two intersections

of the densities. If the inequality of prior probabilities

were reversed, the thresholds would lie outside of the

region between the two density intersections. Further note

that the decision region for the group having the lesser

variance lies between the thresholds.

c. Case III: General Solution (Referred to as the
Quadratic Model (QUAD) in the text)

2 2p(zlE =1) = k/a I exp{(-i/2) (z -pl ) /a I }

p(zlE =0) = k/o exp{(-1/2) (z - 022
0 0
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A(z) =exp{l/2 La~ 2 0 - 12JPi0

where k =(
2Tr) 12 Algebraic manipulation produces

(2 Cy2z2 +2a2 2 )
a1 0az 2( 0 11  11' 0 )

c=l

+ [(ap 2 2 2 2 2a 2 a ln (poa /pJG0 ) >

c=0

which is recognizable as a quadratic equation in z.

-* -b (b b2  4ac) 1 /2/2a

where:

2 2a = 1  a 0

b = 2(a 2 2

2 2 2 2 2 2C = (api -P a0i 11 2a 1I 0 ln (p 0aCy1 /pJ 0 )
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E=1Tj

,T2

0

Classification index (z)

The remarks given for the figures in cases I and II are also

applicable here. More often than not, only one of a pair of

thresholds induced by differing variances will be of real

interest. If the variances of the two groups are radically

different, then both members of the threshold pair become

important.

4. The-Maximum-Likelihood-of-Detection Criteria

For this specific model the following background is

provided:

event space: 2' mutually exclusive populations

70' T1 forecast decision space: 2 possible forecasts

do, d1

d is a correct forecast if 70 actually occurs

d is a correct forecast if n actually occurs

Problem: select the decision rule d(z) which maps

the observation space Z into some forecast space

in some optimal manner.
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Z may be an observed variable or it may be an

univariate index derived from a number of variables.

For this two decision problem, Z is partitioned

into two parts, Z and ZI

Hd(z) = do  if z E Z0 l

d(z) = d if z E Z0
d~) 1 1

where Z0 n Z1 = 0 and Z0 U = Z

The maximum-likelihood-of-detection criteria repre-

sents the simplest decision model. The basic involves

selecting the forecast (decision) corresponding to the obser-

vation (signal) which is the most likely symptom of the event

subsequently observed. Consider the following example:
e-I I

problem: diagnose disease A or disease B.

The observed symptoms occur with probability 0.75

for A and 0.1 for B. By the maximum-likelihood-of-detection

criteria (MLDC), diagnose disease A because A is the most

likely cause of the observed symptoms (if there is no more

information). But if we know that A is rare and B is common,

the above decision may not be optimal and MLDC may not be

appropriate. MLDC requires only that we know the event S

conditional probability density functions of the observations.

That is:
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p(Z 7T0) and p (z I1

decision rule: ifpzIi) z)zi 0

dif p(zlii1 <~ p(zjI0

In the following development the Gaussian density

is used to exemplify the model.

p z I T 0  l//2Tro 0exp{-l/2( a )

0

definition: likelihood ratio A(z) P(lr1

for convention sake we assume 2>Z

2 2f

2 > 2
1 0

zo 0iz
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2 2
1 0

*note the class having the largest variance has a

bifurcated decision region.

In the case where the variances are equal, the

situation simplifies considerably.

2- 2 -2 -2 <2 o (Z 1 -z 0  +0 (Z 0 -z) > 0

d
2- 2 -2 -2 12(j (Z-z) -a (Z 1 -z) > 0

2 z < (z1 +Zo0)

(z +Z)
2 Z*
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2 2o 0  = o I
0 1

7ri0 1ii!i

It is obvious that z* is simply the average of the

means of the class-conditional distributions and is found

at the intersections of the two density curves.

In the foregoing, normal class conditional distribu-

tions were assumed. This was done because the Gaussian form

admits of a rather clean analytical solution. However, the
S

general concept of the minimum probable error decision

criteria may be applied to any form of density function.

Indeed, the density function of one group need not even be

the same form as that for another group (one might be exponen-

tial and the other Gaussian). The difficulty with most non-

Gaussian forms is that they seldom admit of closed analytical

forms and require numerical means in determination of

thresholds.
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jAPPENDIX B

NOGAPS PREDICTOR PARAMETERS AVAILABLE FOR
NORTH ATLANTIC OCEAN EXPERIMENTS

I. Area: Entire North Atlantic Ocean and Mediterranean Sea

Model output time: 1200GMT (TAU-00)
15 May--7 July 1983

A. Model output Descriptive name of parameter
parameter

D1000 1000 mb geopotential height

D925 925 mb geopotential height

D850 850 mb geopotential height

D700 * 700 mb geopotential height

D500 500 mb geopotential height

D400 * 400 mb geopotential height

D300 * 300 mb geopotential height

D250 * 250 mb geopotential height

TAIR Surface air temperature

TI000 1000 mb temperature

T925 925 mb temperature

T700 * 700 mb temperature

T500 500 mb temperature

T400 * 400 mb temperature

T300 * 300 mb temperature

T250 * 250 mb temperature

EAIR Surface vapor pressure

E1000 1000 mb vapor pressure

E925 925 mb vapor pressure

E850 850 mb vapor pressure

E700 * 700 mb vapor pressure

E500 500 mb vapor pressure

UBLW Boundary layer zonal wind component
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Ul000 1000 mb zonal wind component

U925 925 mb zonal wind component

U850 850 mb zonal wind component

U700 * 700 mb zonal wind component

U500 500 mb zonal wind component

U400 * 400 mb zonal wind component

U300 * 300 mb zonal wind component -

U250 * 250 mb zonal wind component 0

VBLW Boundary layer meridional wind
component

V1000 1000 mb meridional wind component

V925 925 mb meridional wind component

V850 850 mb meridional wind component

V700 * 700 mb meridional wind component

V500 500 mb meridional wind component

V400 * 400 mb meridional wind component S

V300 * 300 mb meridional wind component

V250 * 250 mb meridional wind component

VOR925 ** 925 mb vorticity

VOR500 ** 500 mb vorticity

PS Surface pressure

SMF Surface moisture flux

PBLD Planetary boundary-layer depth

STRTFQ Percent stratus frequency

STRTTH Stratus thickness

SHF Surface heat flux

ENTRN Entrainment at top of marine
boundary-layer 0

DRAG ** Drag coefficient (CD)

B. Derived parameters

DTDP Vertical gradient of temperature 0
(1000-925 mbs)

DEDP Vertical gradient of vapor pressure
(1000-850 mbs)

DUDP Vertical gradient of zonal wind
(1000-850 mbs)
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DVDP Vertical gradient of meridional wind
(1000-850 mbs)

RH Surface relative humidity

TV Virtual temperature

DDVDP Vertical gradient of geopotential
height (1000-850 mbs)

DVRTDP Vertical gradient of vorticity
(500-925 mbs)

ESUM Sum of vapor pressures
(1000-850 mbs)

EPRD Product of vapor pressures
(1000-850 mbs)

II. Area: Entire North Atlantic Ocean and Mediterranean Sea

Model forecast projection: 1200GMT (TAU-24)
15 May--7 July 1983

A. Model output Descriptive name of parameter
parameter

D1000 1000 mb geopotential height

D925 925 mb geopotential height

D850 800 mb geopotential height

D700 *700 mb geopotential height

D500 500 mb geopotential height

D400 400 mb geopotential height

D300 * 300 mb geopotential height

D250 * 250 mb geopotential height

TAIR Surface air temperature

T1000 1000 mb temperature

T925 925 mb temperature

T700 700 mb temperature

T500 500 mb temperature

T400 * 400 mb temperature

T300 * 300 mb temperature

T250 * 250 mb temperature

EAIR Surface vapor pressure
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El000 1000 mb vapor pressure

E925 925 mb vapor pressure

E850 850 mb vapor pressure

E700 * 700 mb vapor pressure

E500 500 mb vapor pressure

UBLW Boundary layer zonal wind component

UI000 1000 mb zonal wind component

U925 925 mb zonal wind component

U700 * 700 mb zonal wind component

U500 500 mb zonal wind component

U400 * 400 mb zonal wind component

U300 * 300 mb zonal wind component

U250 * 250 mb zonal wind component

VBLW Boundary layer meridional wind
component

VI000 1000 mb meridional wind component

V925 925 mb meridional wind component

V850 850 mb meridional wind component

V700 * 700 mb meridional wind component

V500 500 mb meridional wind component

V400 * 400 mb meridional wind component

V300 * 300 mb meridional wind component

V250 * 250 mb meridional wind component

VOR925 925 mb vorticity

VOR500 500 mb vorticity

PS Surface pressure

SMF Surface moisture flux

PBLD Planetary boundary-layer depth

STRTFQ Percent stratus frequency

STRTTH Stratus thickness

SHF Surface heat flux

ENTRN Entrainment at top of marine
boundary-layer

DRAG Drag coefficient (CD)

PRECIP Total amount (mm.) of model
precipitation in the last six hours
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SHWRS Total amount (mm.) of model precipita-
tion associated with cumulus convection
in the last six hours

INSTAB Boundary layer inversion instability

DIV925 925 mb Divergence

B. Derived parameters

DTDP Vertical gradient of temperature
(1000-925 mbs)

DEDP Vertical gradient of vapor pressure
(1000-850 mbs)

DUDP Vertical gradient of zonal wind
(1000-850 mbs)

DVDP Vertical gradient of meridional wind
(1000-850 mbs)

RH Surface relative humidity

TV Virtual temperature

DDVDP Vertical gradient of geopotential height
(1000-850 mbs)

DVRTDP Vertical gradient of vorticity
(500-925 mbs)

ESUM Sum of vapor pressures
(1000-850 mbs)

EPRD Product of vapor pressures
(1000-850 mbs)

III. Area: Entire North Atlantic Ocean and Mediterranean Sea

Model forecast projection: 1200GMT (TAU-48)
15 May--9 July 1983

A. Model output Descriptive name of parameter
parameter

D1000 1000 mb geopotential height

D925 925 mb geopotential height

D850 850 mb geopotential height

D700 * 700 mb geopotential height

D500 500 mb geopotential height

D400 * 400 mb geopotential height
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D300 * 300 mb geopotential height

D250 * 250 mb geopotential height

TAIR Surface air temperature

T1000 1000 mb temperature

T925 925 mb temperature

T700 * 700 mb temperature

T500 500 mb temperature
T400 * 400 nib temperature

T300 * 300 mb temperature

T250 * 250 mb temperature

EAIR Surface vapor pressure

E1000 1000 m-b vapor pressure

E925 925 mb vapor pressure

E850 850 mb vapor pressure

E700 * 700 mb vapor pressure

E500 500 mb vapor pressure

UBLW Boundary layer zonal wind component

Ul000 1000 mb zonal wind component

U925 925 mb zonal wind component

U850 850 mb zonal wind component

U700 * 700 mb zonal wind component

U500 500 mb zonal wind component

U400 * 400 mb zonal wind component

U300 * 300 mb zonal wind component

U250 * 250 mb zonal wind component

VBLW Boundary layer meridional wind
component

VI000 1000 mb meridional wind component B

V925 925 mb meridional wind component

V850 850 mb meridional wind component

V700 * 700 mb meridional wind component

V500 500 mb meridional wind component B

V400 * 400 mb meridional wind component

V300 * 300 mb meridional wind component

V250 * 250 mb meridional wind component
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VOR 925 925 mb vorticity

VOR500 500 mb vorticity

PS Surface pressure

SMF Surface moisture flux

PBLD Planetary boundary-layer depth

STRTFQ Percent stratus frequency

STRTTH Stratus thickness

SHF Surface heat flux

ENTRN Entrainment at top of marine
boundary-layer

DRAG Drag coefficient (CD)
PRECIP Total amount (mm.) of model precipitation

in the last six hours

SHWRS Total amount (mm.) of model precipitation
associated with cumulus convection in
the last six hours

INSTAB Boundary layer inversion instability

DIV925 925 mb Divergence

B. Derived parameters

DTDP Vertical gradient of temperature
(1000-925 mbs)

DEDP Vertical gradient of vapor pressure
(1000-850 mbs)

DUDP Vertical gradient of zonal wind
(1000-850 mbs)

DVDP Vertical gradient of meridional wind
(1000-850 mbs)

RH Surface relative humidity

TV Virtual temperature

DDVDP Vertical gradient of geopotential height
(1000-850 mbs)

DVRTDP Vertical gradient of vorticity
(500-925 mbs)

ESUM Sum of vapor pressures
(1000-850 mbs)

EPRD Product of vapor pressures
(1000-850 mbs)
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Parameters which were not used due to their
being considered as physically unimportant
in forecasting marine visibility.

** Parameters which were not used due to loss of
significant digits during transfer from tape
to mass storage.
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APPENDIX C

SKILL AND THREAT SCORES, DEFINITIONS [Karl, 1984]

3 R S T
o) V W

0
LL1 X Y

1 2 3
OBSEVED

Total =R+S+T+U+V+W+X+Y+ Z

P1 = (R+U+X)/Total P3 = (T+W+Z)/Total

p2 = (S+V+Y)/Total PN = greatest of P1, P2 or P3

Raw Scores

AO = % correct = (X+V+T)/Total

Al =one-class error = (U+S+Y+W)/Total

TSl Threat score for visibility category I

=X/(R+U+X+Y+Z)

TS2 = Threat score for visibility category II

* = V/(S+V+Y+u+W)

TS12 =Threat score for visibility categories I and II

=(X+V)/(Total-T)
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TS12 is designed to represent the skill of forecasting
visibility categories I and II as separate categories,
rather than their skill as a combined category, which
would be (U+V+X+Y)/(Total-T).

Adjusted scores

AAO =(AO-PN)/(l-PN)

ATS1 =(TS1-Pl)/(l-Pl)

ATS2 = (TS2-P2)/(l-P2)

ATS12 = (TS12-(Pl+P2))/(l-(Pl+P2))
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APPENDIX D

BMDP LINEAR REGRESSION EQUATION PREDICTOR SETS,
NORTH ATLANTIC OCEAN EXPERIMENTS (PR+BMD MODEL)

I.Area 2, TAU-00 (BMDP P2R)

BMD1 =2.842 - 0.21767*E850 + 0.837882E-05*D50Q

+ 0.03293*SHF + 7.057*DTDP + 0.05872*ESUM *

BMD2 =-10.4469 + 0.11854*EAIR + 0.10124*SMF

- 0.07409*T925 - 0.16481*E925

BMD3 =3.47713 - 0.22482*EM + 45.06116*DEDP

+ 0.00521*EPRD

I.Area 2, TAU-24 (BMDP P9R)

BMD1 =-20.9733 - 0.20905*E850 -0.078694*T925

" O.0533674*SHF - 0.0316725*INSTAB

+ 0.0862939*TV + 0.0862983*ESUM

BMD2 =2.68106 + 0.0356103*TM + 0.53048E-04*V500

-0.141302*E925 + 22.0764*DEDP

+ 0.0125618*DDVDP + Q.00563327*EPRD *

BMD3 =-35.2882 + 0.0381891*PS + 0.0273575*T500

+ O.00449538*PBLD -0.00625203*STRTFQ .-

-0.0083686*STRTTH + 0.00272894*DTDP

III. Area 2, TAU-48 (BMDP P9R)

BMD1 =-37.7157 - 0.147084*E500 -0.0897567*T925

- 0.128407*E925 + 0.022881*SHF + 0.00860574*RH

+ 0.145537*TV

109



BMD2 =1.85487 + 0.0777253*TM -0.0266753*E850

- O.0000390116*U500 - 0.0000366663*V500

+ 0.0240246*DDVDP + 0.105648*ESUM **

BMD3 =-13.9637 + 0.0160572*PS + O.00308705*PBLD

-0.0031323*STRTFQ - 0.00846443*DTDP

+ 25.6871*DEDP - O.00296342*EPRD

IV. Area 3W, TAU-24 (BMDP P2R)

BMD1 = 2.673 - O.09363*E850 - O.05101*T925

- O.20451*E925 + 0.0305*SHF + O.15111*ESUM *

BMD2 = 1.15536 + O.16326*EAIR + O.01509*SMF

+ 0,13014E-.04*DM + 8.08795*DEDP

+ 0.02091*DDVDP - 0.00788*EPRD

BMD3 =-18.55031 + 0.02089*pS - 0.3Q643E-O3*VBLW

- 0.01151*STRTFQ + 0.02772*STRTTH

- 0.05736*DUDP

V. Area 3W, TAU-48 (BMDP P9R)

BDM1 =1.92874 - 0.0719817*T925 - .201663*E925

+ O.0376905*SHF + 7.66796*DEDP + 0.182705*ESUM

- 0.00585094*EPRD

BMD2 =-33.2574 - 0.1459*E850 - 0.000205441*V925

" 0.325802*SHWRS + 0.0168064*RH + 0.124434*TV

+ O.0247277*DDVDP *

BMD3 =-10.1316 + 0.0126085*PS - 0.00032403*VM

+ Q.000112099*U500 - 0.00880168*STRTFQ

+ 0.0159356*STRTTH -0.00174911*DRAG
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VI. Area 4, TAU-00 (BMDP P2R)

BMD1 2.86828 + 0.4877E-04*U5O0

- 0.64632E-O4*V5O0 - 0.3O475E-02*STRTFQ

BMD2 =2.70156 + 0.14946E.-04*DM - O.00904*STRTTH

+ O.01888*SHF + 4.09377*DTDP *

BMD3 =2.84881 + O.24549E-O3*VBLW - 0.10113*E850

- 0.25666E-3*V850 + 0.03273*ESUM

b VII. Area 4, TAU-24 (BMDP P9R)

BMD1 =3.00017 + 0.0773367*TM - 0.0000464491*V500

- 0.103205*T925 - 3.76267*VRT925

* - 0.000477853*DTDP + 9.51302*DEDP

BMD2 =3.05949 - 0.088302*E500 + 0.00372204*PBLD

- 0.00492842*STRTFQ + 0.0154289*SHF

- 1.89J.05*VRT500 + 0.0143745*DVDP *

BMD3 =-24.6366 + 0.00275966*PS - 0.0549077*E850

+ 0.195977*T500 + 0.0140852*INSTAB

+ 0.0886378*TV + 0.0231264*DDVDP

VIII. Area 4, TAU-48 (BMDP P9R)

BDM1 =-27.0959 - 0.0732462*E850 + 0.01616*T500

- 0.117787*T925 + 0.287098*SHWRS

- 4.13253*VRT925 + 0.111855*TV *

BMD2 =-3.1619 + 0.00678538*PS - 0.0850887*E500

- 0.0000502297*U500 - 0.0000396501*V500

- 0.00389051*STRTFQ - 0.00917554*RH



0

BMD3 2.08319 + O.0771067*TM -0.0282767*E925

- l.5829*VRT925 -0.00114379*DTDP

+ 13.2073*DEDP + 0.0289832*DDVDP

**Equation selected as predictors in the PR+BMD model
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APPENDIX E

BMDP LINEAR REGRESSION EQUATION PREDICTOR SETS
FOR TWO-STAGE THRESHOLD MODELS

I.Area 2, TAU-00 Threshold Equations (BMDP P2R)

a. VISCAT I vs. VISCAT I1+III separation

VIS =0.87475 - 0.11042*E850 + 0.01173*SHF

+ 2.61984*DTDP + 0.03863*ESUM

b. VISCAT II vs. VISCAT III separation (EVAR model)

VIS =1.03838 + O.03668*EAIR - 0.10423*E850

+ 0.01560*SHF

C. VISCAT II vs. VISCAT III separation (QUAD model)

VIS =1.03730 + 0.03727*EAIR - 0.10505*E850

+ 0.01552*SHF

I.Area 2, TAU-24 Threshold Equations (BMDP P9R)

a. VISCAT I vs. VISCAT 11+III separation

VIS =0.792157 - 0.00404602*SMF + 0.0271941*TM

- 0.0767329*E850 - 0.0385021*T925

- 0.0656522*E925 + 0.0683159*ESUM

b. VISCAT II vs. VISCAT III separation (EVAR model)

VIS =-13.9955 - 0.0612856*E850

+ 0.0478582*SHF - 0.0303761*INSTAB

- .585*VRT925 + 0.0539318*TV

+ 0.0102962*DDVDP
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C. VISCAT II vs. VISCAT III separation (QUAD model)

VIS =-13.1384 - 0.107716*E850

+ 0.00002923*V500

+ 0.0122899*SHF + 0.0498382*TV

+ O.0105859*DDVDP + 0.0232983*ESUM

III. Area 2, TAU-48 Threshold Equations (BMDP P9R)

a. VISCAT I vs. VISCAT 11+111 separation

VIS =-18.0327 - 0.0569882*E850

- 0.104458*T925 - 0.00116092*PBLD

+ 0.0957819*PRECIP - 0.0705180*TV

- .0118901*DVDP

b. VISCAT II vs. VISCAT III separation CEVAR model)

VIS =-14.4404 - 0.0670910*E850 - 0.11931*ESOO

+ 0.0157788*SHF -0.023835*DUDP

+ 0.0551551*TV + 0.00761201*DDVDP

C. VISCAT II vs. VISCAT III separation (QUAD model)

VIS =-56.9191 - O.168467*TM - O.116816*E500 *

+ 0.0201013*SHF + 0.000599864*DTDP

+ 0.210713*TV -0.0487371*ESUM

IV. Area 3W, TAU-24 Threshold Equations (BMDP P2R)

a. VISCAT I vs. VISCAT 11+111 separation

VIS =0.88319 - 0.04039*E850 - O.03385*T925

- 0.11313*E925 -0.02692*DVDP

+ 0.0843*ESUM
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b. VISCAT II vs. VISCAT III separation (EVAR model)

VIS =0.59606 + 0.000012576*DM

+ 0.0151*INSTAB + 10.23334*DEDP

-0.0019117*EPRD

C. VISCAT II vs. VISCAT III separation (QUAD model)

VIS =0.73427 - 0.12863*E850 + 0.0015056*PBLD

+ 0.02073*SHF + 0.04270*ESUM

V. Area 3W, TAU-48 Threshold Equations (BMDP P9R)

a. VISCAT I vs. VISCAT 11+111 separation

vis 0.424612 - O.0000997789*VM

+ 0.0000403063*U500 - 0.0360747*T925

- 0.132972*E925 + 0.114795*ESUM

- 0.00286176*EPRD

b. VISCAT II vs. VISCAT III separation (EVAR model)

VIS =-7.19287 - Q.000788627*PS

-0.0685555*E850 - 0.0579988*E500

+ 0.0222827*SHF + 0.195715*SHWRS

+ 0.0208835*ESUM

c. VISCAT II vs. VISCAT III separation (QUAD model)

S VIS =-7.28759 - O.000797890*PS

- 0.701888*E850 - 0.0547155*E500

+ 0.0226117*SHF + 0.202564*SHWRS

+ 0.0212283*ESUM

VI. Area 4, TAU-00 Threshold Equations (BMDP P2R)

a. VISCAT I vs. VISCAT 11+111 separation

VIS =0.98483 - 0.7528lE-03*STRTFQ

+ 0.70578*DTDP
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VII. Area 4, TAU-24 Threshold Equations (BMDP P9R)

a. VISCAT I vs. VISCAT 11+111 separation

VIS =-3.02386 - 0.200326*T925

- 0.000654475*STRTFQ - 0.000295813*DRAG

- 0.466227*VRT925 - 0.00192255*RH

+ O.0153547*TV0

b. VISCAT II vs. VISCAT III separation (EVAR model)

VIS =1.19369 - 0.0709575*E500

- 0.000617273*V500 + 0.193681*SHWRS

- 0.000551506*DRAG - 2.96306*VRT925

- 0.0180048*DUDP

c. VISCAT II vs. VISCAT III separation (QUAD model)

VIS =1.36198 - Q.0737982*E500

- 0.000061033*V500 + 0.185475*SHWRS

- 3.05142*VRT925 0.0184565*DUDP

- 0.00185381*RH

VIII. Area 4, TAU-48 Threshold Equations (BMDP P9R)

a. VISCAT I vs. VISCAT 11+111 separation

VIS =-8.24765 - 0.0085996*T500

- Q.0333863*T925 - 0.0177121*E925

- 0.00059629*STRTFQ + 0.000128675*DTDP

+ 0.0343295*TV

b. VISCAT II vs. VISCAT III separation (EVAR model)

VIS =1.20788 - 0.026601*E850

- 0.0000310346*3500 - 0.0000480308*V500

" 0.203575*SHWRS -3.2719*VRT925

" 4.10651*DEDP
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C. VISCAT II vs. VISCAT III separation (QUAD model)

VIS -12.5384 - O.0397823*E850

- O.0000388604*V500 - O.043269*T925

+ O.201266*SHWRS -3.46254*VRT925

+ O.0500493*TV
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APPENDIX F
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TABLE IV. Number of observations of three visibility
categories and 95% confidence intervals for
the dependent and independent FATJUNE 1983

ri data for the North Atlantic Ocean homogeneous
areas 2 and 4, for TAU-00, TAU-24 and TAU-48
and area 3W for TAU-24 and TAU-48

TAU) 00

Area 2 Total VISCAT I VISCAT II VISCAT III

DEP 1912 190 (.099) 214 (.112) 1508 (.789)

IND 955 87 (.091) 103 (.108) 765 (.801)
95% C.I. (.086-.107) (.099-.122) (.778-.808)

Area 4 Total VISCAT I VISCAT II VISCAT III

DEP 3181 85 (.027) 400 (.126) 2696 (.848)

IND 1590 44 (.028) 197 (.124) 1349 (.848

95% C.I. (.022-.032) (.116-.135) (.838-.858)

TAU) 24

Area 2 Total VISCAT I VISCAT II VISCAT III

DEP 1760 180 (.102) 206 (.117) 1374 (.781)

IND 879 71 (.084) 98 (.111) 710 (.808)

95% C.I. (.081-.106) (.103-.127) (.774-.805)

Area 3W Total VISCAT I VISCAT II VISCAT III

DEP 1415 270 (.191) 173 (.122) 972 (.687)

IND 707 137 (.194) 89 (.126) 481 (.680)

095% C.I. (.173-.205) (.109-.137) (.665-.705)

Area 4 Total VISCAT I VISCAT II VISCAT III

DEP 2938 81 (.028) 368 (.125) 2489 (.847)

IND 1469 38 (.026) 175 (.119) 1256 (.855)

95% C.I. (.022-.032) (.114-.133) (.839-.860)
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TABLE IV (CONTINUED)

TAUJ48

Area 2 Total VISCAT I VISCAT II VISCAT III

DEP 1852 182 (.098) 230 (.124) 1440 (.778)

IND 925 91 (.098) 107 (.116) 727 (.786)

95% C.I. (.087-.109) (.109-.133) (.765-.796)

Area 3W Total VISCAT I VISCAT II VISCAT III

DEP 1487 290 (.195) 186 (.125) 1011 (.680)

IND 743 132 (.178) 111 (.149) 500 C.673)

95% C.I. (.173-.205) (.119-.147) (.658-.697)

Area 4 Total VISCAT I VISCAT II VISCAT III

DEP 3056 109 (.036) 406 (.133) 2541 (.831)

IND 1527 45 (.029) 196 (.128) 1286 (.842)

95% C.I. (.028-.039) (.122-.141) (.824-.846)
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APPENDIX G

FIGURES

OPERATIONAL U.S. NAVY

MODEL OUTPUT STATISTICS (MOS)

DEVELOPMENT SCHEDULE

VISIBILITY SIG WnVE HT SFC WND F2RLCIP OCCUR
WCEILING IND WAVES SFC I.MP PRECIP HMT

?o. CLOUD AMOUNT OCEAN SWELL SFC ULv4FOINT TRW OCCUR
, OBSTR TO VIS

NORTH ATLANTIC 1987 1988

'MED I TERRANEAN 1990 1991

1988 1989
NORTH PACIFIC

INDIAN

SOUTH ATLANTIC 1989 1990 1991 1992

SOUTH PACIFIC

Figure 1. Proposed U.S. Navy Model Output Statistics
(MOS) development schedule
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DEPENDENT DATA

3 78 169 1417 AD 80.07% AAO z5.69%
- A1=14.02%

U231 33 56 TS1=0.34 ATS1=O.27

0 - TS20.ll. ATS2=0.00

* 81_ 1_ -2 .5 TS12-0.23 ATS2= 0.02
1 2 3

OB0SERVED

INDEPENDENT DATA

AO.80.63%AAO= 2.63%
3. 34 86 719

In A1= 14.66%

LU2 13 11 35 TS1=0.38AS103

0 - ,S~
TS2= 0.07 AS -0.04

1 40 6 1
___ __ _ ___ TS12'.022 ArSI2- 0.02
1 2 3

OBSERVED

Figure 9. Contingency table results for the area 2,
TAU-00 equal variance threshold model
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DEPENDENT DATA

AO z80. 13%AAO 5.94%
3j 80 169 1420

Al =13.96%

33_1 3 55 TSD0O.34 ATS1 0. 26

1 1 TS2 0.l1 ATS2= 0.00
'79 12 3 -. 3AS1-001 .TS120.3AS2 .2

1 2 3
OBSERVED

INDEPENDENT DATA

3 34 6 720 AO.80.73%AAO= 3.16%
b.A ~ ~ ~ l 34 8 2 114.55%

W213 11 34 TSI-0.38 ATS1z 0.32
0 - TS20.07 ATS2= -0.04

40 6 11
___ I T120.22 ATS12- 0.02

1 2 3
OBSERVED

Figure 10. Contingency table results for the area 2,
TAU-00 quadratic threshold model
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DEPENDENT DATA

AO =78.18%o~o 0O.52%
3~ 80 172 1278

- ~ ___Al 15-28%

LU2 25 23 61 TSI= 0.33 ATSl= 0.26

0 TS2z 0.08 ATS2 -00 4

1 351 TS12= 0.20 .ATS12= -002
OBSERVED

INDEPENDENT DATA

AO..81.34%AAOz 2.96%
331 74 668

____ A113.42%

0

0011 TS2- 0. 11 ATS2 -0.03311..

___2 TS12- 0.22 ATS12= 0.04
OBSERVED

* . Figure 17. Contingency table results for the area 2,
TAU-24 equal variance threshold model
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DEPENDENT DATA

-33 1 Ao =68.64%AAo -43.01%33 1115 110531
A1= 27.50%

L)2 72 80 286 TS1'0.33 ATS=0.26

o - S

1 75 11 35 TS2=0. 1 4  ATS2=0.03

- I TS12- 0.22 ATS1:2= 0.0
1" 2 3
OBSERVED

INDEPENDENT DATA 0

AO-68.60% AAO= -63.31%.93 19 57 539
A1-27.53%

M2 19 31 156 TS1-0.34 ATS1-:0.29

- 11 T-52-0.11 ATS2= 0.0

3 33 10 15
TSl2- 0.19 ATS12. 0.0 "

I 2 3
OBSERVED

Figure 18. Contingency table results for the area 2,
TAU-24 quadratic threshold model
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DEPENDENT DATA

3 89 197 351AO=77.59%AAO. -0.73%

.1 ___- A115.87%

0-2 28 21 57 Tsi= 0
. 2 9  

ATS1= 0.21
0

LL65 12 32 S=.7ASz07

___ , TS12= 0.17 ATS12= -0.07

OBSERVED

INDEPENDENT DATA

AO8O.1 1%AAO=7.07%
3 40 88 1685

(A_ A1 13.62%
.4

2 10 15 24 TS 1 0.:36 ArSIz 0.29

0TS2- 0.11 ATS2= -0.0 1

,F41T 4T512- 0.23 ATS12- 0.02
1 2 3

OBSERV/ED

Figure 25. Contingency table results for the area 2,
TAU-48 equal variance threshold model
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DEPENDENT DATA

AO=77.43% AAO 1.46%3101 197 1348
I-A1=15.39%

U2 -
4
02 16 21 60 TS1=0. 2 9  ATS1 0.21

0 32 T2=0.07 ATS2= -0.06
S65 12 32

I TS12= 0.17 ATS12= -0.07
1 2 3
OBSERVED

INDEPENDENT DATA

AO.79.68%AAO= 5.05%
3 44 91 684

A 1 13.62%

0
= 2 6 12 25 rsi.0.36 ATS1: 0.29

[4° TS2- 0.09 ATS2- -0.03

1 Ts12-0.22 ATS2- 0.01

1 2 3
OBSERVED

Figure 26. Contingency table results for the area 2,
TAU-48 quadratic threshold model
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DEPENDENT DATA

3 105 120 878 AOz73.00%AAO13.77%

ii~ A1z 17.17%
4 202 3 60 TS1=0.38 ATS1= .2

0 23 2 TS2a 0.12 ATS2-0.0l

F__ I__ TS12- 0.29 ATS12= -0.04

1 2 3
OBSERVED

INDEPENDENT DATA

AO.7 1.00% AAO= 9.29%
3 58 62 431

W Al148.67%

0

0. TS2= 0.11 ATS2.-O.Ol

1 54 10 15
TSl2-O.2 6 ATS12- -0.09

1 2 3
OBSERVED

Figure 33. Contingency table results for the area 3W,
TAU-24 equal variance threshold model
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DEPENDENT DATA

AO 73.22%AAO z14.45%-i 98 121 886

Al = A117.60%
5'-) 2 54 32 54 Ts1=0.37 ATS1=0. 2 2

U. 118 20 32 TS2= 0.11 ATS2=-0.01

___ _TS12- 0.28 ATS2=-0.04
t 2 3

OBSERVED

INDEPENDENT DATA

AO-71.43% AAO= 0.62%
3 54 62 436

____ A1=18.95%

o2 31 17 31 TsI=0.32 ATSlz0.16
0 TS2= 0.11 ATS2- -0.02

S52 10 14
SL2 10 1 14 TS12= 0.25 ATS12--0.10

1 2 3
OBSERVED S

S

Figure 34. Contingency table results for the area 3W,
TAU-24 quadratic threshold model
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DEPENDENT DATA

AD =7 1.49% AAO =1 0.9 2%
3 125 125 920

-- Al =17.42%

Uj 50 28 51 TS1= 0.32 ATS1 = 0. 15

TS2L 0.10 ATS2-0.03
-1 1 2 TS12=0.25 ATS12=-O.10

OBSERVED

INDEPENDENT DATA

AO-71.60% AAO13.l7%
357 73 461

- A1'18.17%

uj2 21 17 20 TS1O .3 1 ATS=0. 17
0LL TS2-0O1 1 ATS2-0.04

-TS12= 0.25 ATS12= 0.11I
1 2 3

OBSERVED

Figure 41. Contingency table results for the areat 3W,
TAU-48 equal variance threshold model
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DEPENDENT DATA

3 124 1124 j918 AO 71.22% AAO~ 10.08%
____ -A1=17.82%

55 30 5 TSI= 0. 3 1 A TS1 z0.14

I ill 32 39 TS2=0. 10 A TS2 -0.03
- ~ TS12= 0.25 A TS 12 -0. 11

1 2 3
OBSERVED

INDEPENDENT DATA

A0-71.47% AAO1l 2.76%
3 54 74 459

- -Al- 18.7 1%

,224 18 22 TS1.O.32 ATS1 z. 17

0. TS2- 0.11 ATS2- -0.04

54, 19 19 s..2 T1-0.1

1 2 3
OBSERVED

Figure 42. Contingency table results for the area 34,
TAU-48 quadratic threshold model
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DEPENDENT DATA

3 65 299 386AO =82.85% AA0 z12.2 5%

(A _ __ A113.85%

O 2 5 37 71 TSI-0.08 ATSI=.05

o - TS2- 0.08 ATS2-O.OS
1 11 32 32

I TS12-O.OB ATSI2=-0.09
OBSERVED

INDEPENDENT DATA

AO 83.59% AAO 13. 16%
3 31 145 1207 l1.%

L"2 16 34 TSI- 0 0 7  ATS I z.05

O -TS2-O0.08 ATS2-'O.OS
1 5 14 15

I __ TS12- 0.08 ATS12 -0.08
1 2 3
OBSERVED

Figure 55. Contingency table results for the area 4,
TAUJ-24 equal variance threshold model
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DEPENDENT DATA

3__ 92 3326 AO 82.59% AAO -3.30%

____ Al = 12.73%

'2 14 53 73 TSl1 0.03 ATS1 =-0.01
0

0TS2= 0.11 ATS2z -0.03

1 TS12= 0.10 A TS12= -0.09
1 2 3

OBSERVED

INDEPENDENT DATA

3 39 175 1245 O8.7A=7,%
U4 75_ A.14.41%

w 21 40 TSI- 0.02 ATS1-0.01

0. TS2 (.09 ATS2= -0.05
1i 0 1

TS12-..8 ATS12-0.09
1 2 3

* OBSERVED

Figure 62. Contingency table results for the area 4,
TAU-48 equal variance threshold model
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DEPENDENT DATA

3 96 368 2511 Ao =83.54% AAO 2.33%

_ _Al 1 3.32%
Q- 2 8 37 30 TS1=O.05 ATS1= 0.01

STS2= 0.08 ATS2=-0.06

'5 1 0
TS12- 0.08 ATS12= . 1 1

1 2 3

OBSERVED

INDEPENDENT DATA

AO-83.89% AAO= -2.07%
42 181 1266

U' ____,-___ ____ A1-13.23%
U

U2 1 13 18 TSI-0.04 ATSI 0.01

0 TS2-0.06 ATS2- -0.08
' 2 2 2 -...

TS12- 0.06 ATS12--0.12
1 2 3
OBSERVED

Figure 63. Contingency table results for the area 4,
TAU-48 quadratic threshold model
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DEPENDENT DATA

3 3511331662AD58.13% AAO 0.0 1%

Al = 12.53%
1. 0 0 0 0 TS1=0.04 ATS1 =0.0 1

0 623 2 TS2= 0.0 ATS2= -0.14

1 -1 TS12 0.05 ATS2-0.04
1 2 3

OBSERVED

INDEPENDENT DATA

AO.59.84% AAO' 0.01%
3.. 16 58 857

-- Al- 11.9 1%

,U2 0 0 Q TS I -0.04 ATS1=001

0 TS2- .0 ATS. 0 1 4

1 22 117 1399 S-0. T2

TS12-0.04 ATS12- 0.0
1 2 3

OBSERVED

Figure 68. Contingency table results for the minimum
probable error threshold model (EVAR) for
area 4, TAU-24. The contingency tables reflect
VISCAT 1+11 versus VISCAT III and VISCAT I
versus VISCAT II separations
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%I

DEPENDENT DATA

AO=61.95%AAOz 0.01%
a35 133 1662

-A 1_z 40.78%

2
U2 22 134 659 Ts1=0.07 ATS1=0.04
0

11 TS2z0.13 ATS2z 0.0'124 101 168
TS12=0.05 ATS12=0.01

1 2 3
OBSERVED

INDEPENDENT DATA

AO-64.19% AAOz 0.01%
3 16 58 857

____ A1- 29.27%
UUj 2 11 75 319 TS1- 0.07 ATS1=0.0 4

0 TS2-0. 1 5  ATS2- 0.03
S11 42 80 "

1 TS12- 0.14 ATS12- 0.04
1 2 3
OBSERVED

Figure 69. Contingency table results for the maximum-
likelihood-of-detection threshold model for
area 4, TAU-24. The contingency tables
reflect VISCAT I+II versus VISCAT III and
VISCAT I versus VISCAT II separations
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