12 .

GENERATION OF FLIGHT PATHS USING HEURISTIC SEARCH(U)
AIR FORCE INST OF TECH NRIGHT-PRTTERSON AFB OH

C S LIZZA 1984 AFIT/CI/NR-85-17T

AD-A151 949

UNCLASSIFIED

F/G 1274

o

L o - gnih 4 L,y ey

ﬁ,_ v
AL S S (LS g

P P ———

.

S
o
\“"

I' .

Rl '

R R DR WP,

- -~ ™ bk st o it S S ICL A
v L hadia A v B adn 8o e Aa it e ~aie \aiie “A R N B Sl te it W A& <
bl ™) > - A L .

Rl

ooz jas

o

= !,;f; 122
T

!HH-

! llLe
Hi2S flee e

MICROCOPY RESOLUTION TEST CHARF
NATNAL BURLAY 01 STANGARDS - 4

LR SINENPEY 2N

- UNCLASS

St ('UNITV rl ASSIFICATION OF THIS PAGE (When liate § ntersa)
e

AR AN hatts St Jhain Sesus il Skt s 3

e s oty g T

A Zhalt e}

DO " . sntirteapad’

REPORT’DOCUMENTATKL FAGE

4

7

RE PO - UAttst W GOV AC
AMAT/C

177 |

READ INSTRUCTIONS
HFI ORE COMPLETING FORM

N vy ~r-yvf1-1v'g-.'f{

KIS
Ta

————— e
TGN 9G] 4 RELUENT S CATALGNG M ABER

‘ [/I‘IJ (ST
V)
TIYLt rand Subltitle)

Generation of Flight Paths UUsing Heuristic
Search

5. TYPE OF REPORY & PERIOD COVERED

THES 1 S/DLSSERTATION

5. PERFORMING ORG. REPORYT NUMBER

ALUTHOR(S)

Carl Steven Lizza

CONTRACT OR GRANT NUMBER(s)

i3

A“PROVED FOR PUBLIC RELEASE; DISTRIBUTION UMLIMITLD

t7

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMEANT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
AFIT STUDENT AT: Wright State Univ
11, CONTROLLING OFFICE NAME AND ADDRESS B 12. REPORT DATE -
AFIT/NR 1984
WPAFB OH 45433 13. NUMBER OF PAGES
100
14 MONITORING AGENCY NAME & ADDRESS(1f ditferent from Controlling Olfice) 15 SECURITY CLASS. (of thia report)
| UNCLASS
T15a DECLASSIFICATION DOWNGRADING
SCHEDUL "

"DISTRIBUTION STATEMENT (of this Report)

L)I.)T RIUUTION ST ATEMENT (ul the ahstrac! entered tn u'J k 20 i‘

ll Horerd Lrom keport)

e

PY

/
18. SUPFLEMENTARY NOTES - L%_ Co UL -
APFOOVED FOR PUBLIC RELEASE: IAW AFR 190-1 LYWN E. WOLAVER 2¥fsl¥?

Dean for Research and
Professional Jevelopment
AFIT Wright-Patterson AFB

FtY WOHDS fContinue on reverse side tf necessary and tdentity by bloc

N DT\C

i C:TF .
VAR 2 T 198D

a"’n.r"

St I'Iar.(T;;.' bv tlat

Lonomter)

& £

L ATTACHED

__Il]l(LH

) 'JA\ n 1473 L

89

T VNG,

03 .L 1

05%

OH

i CASS

L AL ICATION OF THIS PAGE (When Data Entered)

GENERATION OF FLIGHT PATHS

USING HEURISTIC SEARCH

A thesis submitted in partial fufiliment

of the requirements for the degree of
Master of Science

By

CARL STEVEN LI1ZZA
B.S., Ohio State University, 1977

1984
Wright State University

Accession For

Unannounced R
Justification .]

By .]

pDistribution/

.‘_.A,.‘*;- '.- .."u."‘." ...]

NTIS GRA&I T
DTIC TAB

Digt (.l, Clid
|
Al
4-""‘a \\‘
- ."b’ '

P P T e T PO S

C oot
I RV

s

H
Py

X O

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

November, 1984

| HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Carl Steven Lizza ENTITLED _Generation Of Flight Paths Using Heuristic

Search BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF _MASTER OF SCIENCE

/ o

N|

Thesis Director

Chairman of Department

Committee on
Final Examination

S e
//g Ty
SO bAoA\ gyt

v

Dean of the School of Graduate Studies

'

VT T e T A Pafial MR i, Seis e St et it et S B A it S s - AT S 4 S e ite S R0 A A Y- I A N e B A

,""V')r.

Py "
-] e,

)~~~ AR —

Lo agh an 4

L] FLLRIP

[DR S

ABSTRACT

Lizza, Carl Steven. M.S., Department of Computer Science, Wright State [
University, 1984. Aircraft Route Planning in a Hostile Enemy Environment ‘
Using Heuristic Search.

This thesis examines a solution to the problem of developing an effective,

computer algorithm to route aircraft through hostile enemy defenses. The

problem was proposed to assist in studies of the impact of varied, on—-board

.} VAR R VR

countermeasures upon pre-planned aircraft routes. The quality of a route
can be defined in terms of the cost of interaction between the afrcraft and
threats encountered along the path, and the length of the path. Current

methods of automated routing are either inefficient or produce unsatisfactory '1
results. Given a more general description of the problem, this thesis details
8 solutfon for developing routes by using the artificial intelligence technique

of heuristic search in an A% algorithm. The algorithm uses heuristics based

ENEL ORI,

upon estimates of the degree of threat interactivity and distance from a point

to the goal. Due to the nature of the heuristic, the A® algorithm cannot
guarantee development of a least—cost path. However, the heuristic may be
adjusted to insure reasonably good results in most cases. Test cases confirm
improvements in efficiency while maintaining solution quality comparable to
previous methods. The flexibility of the algorithm allows applicability to the

specific aircraft routing problem and to other route planning applications.

11

- . y O B - . S A
S eSS Y G A T WY WP AT PP W Y PP W Y S A a

. - f

TABLE OF CONTENTS

{. INTRODUCTION
ii. BACKGROUND .
Flight Path Generation (FPG) Model

Strategy Needed Over Optimum Penetration Routes
(SNOOPER) Model e e e e e

Proposed Solution Techniques .
111. REVIEW OF SEARCH TECHNIQUES .
State Space Search
Depth-First Search
Breadth-First Search
Ax Search .
IV. PATH-FINDER SYSTEM IMPLEMENTATION
Language and Hardware .
Path-Finder Algorithm« . . .+ .+ . .
Leg Generation .
Computation of Actual Leg Costs .
Computation of Estimated Cost to Goal
Actual Threat Cost Computation
Heuristic Threat Cost Computation

Y. USER’'S GUIDE FOR PATH-FINDER

hal il At Rall Il BN A A A e
B . A Loan e . ‘.T

. 26

Page

11
12
13
18
19
19
19
21
22
22
24

r ——— . T PP — SRt geun v

TABLE OF CONTENTS (Continued)

Vi. PATH-FINDER TEST RESULTS .
Description of Tables and Graphs
Discussion of Test Grids 1 and 2 .
Discussion of Test Grid 3
Discussion of Test Grid 4
Orientattion of Test Grids 5 - 10
Discussion of Test Grid 5
Discussion of Test Grid 6
Discussion of Test Grid 7
Discussion of Test Grid 8
Discussion of Test Grid 9
Discussion of Test Grid 10 .

V11, CONCLUSIONS

APPENDIX A .

APPENDIX B .

. APPENDIX C .

BIBL IOGRAPHY

Page

30
30
31
37
42
44
44
54
59
64
68
73
79
81
96
99

101

S ™

PR

Ao s
e e

PR

rV] , .

Foly SO ay s Wy PR v

Figure

Rl T S 83 T 2 R T et /i R AN Sl AT ‘et e T BTl s e el

LIST OF FIGURES

Penalty Matrix vs. Tree Representation .
Ancestor Pointers Prior to B-node Insertion
Ancestor Pointers Following to B-node Insertion .
15-Puzzle

Leg Generation Diagram .

Leg Generation Boundaries .

Intersection of aLeg by a Threat .
Path-Finder Input Formats .

Sample Path-Finder input

Threat Grid from Sample Input

Sample Path-Finder Output Listing

Path Generated - Test Grid 1

Path Generated - Test Grid 2

Path Generated ~ Test Grid 3.1

Path Generated - Test Grid 3.2

Path Generated - Test Grid 3.3

Path Generated - Test Grid 3.4

Path Generated - Test Grid 4

Path Generated - Test Grid 5.1

vi

T T T T oYY

Page

Y. N SRS} SRR

10
11
14
20
21

24

I_L_'LLA_‘L! 'L_s._“_s_r‘_‘_‘_‘.A L.LA_ alal e

27
28
28

29

36
36
40
40
41

41

@, . .. e

[

S

43

31

a J'.LJ“J‘_‘A_.._

. & i a4 b

(&)

N NN .
PR . W S Y A, it B B N

Lo A vn-Bine e tam v o et el e i aad Sl G A A IR AL i A - i AR ARt i S AR A A A S A A SRR AN N A 4 OuICalaem Ay Pl Ty v

LIST OF FIGURES (Continued)
Figure Page
6.9 Path Generated~-TestGrid3.2 Sl
6.10 Path Generated- TestGrid5.3 92

6.11 Path Generated- TestGrid5.4 52

6.12 Path Generated - TestGridS5.5 353
6.13 Path Generated - TestGrid6.1 38
6.14 Path Generated - TestGrid6.2 58
6.15 Path Generated - TestGrid?7.1 63)
6.16 Path Generated - TestGrid?7.2 63

6.17 Path Generated- TestoOrid8.1 67

K N

6.18 Path Generated - TestGrid8.2 67

6.19 Path Generated - Test Grid9.1 71 b
6.20 Path Generated-TestGrid9.2 T .L
6.21 Path Generated - Test GFrid9.3 T2 B
6.22 Path Generated - Test Grid 10.1 77]

6.23 Path Generated - TestGrid10.2 77

6.24 Path Generated - TestGrid10.3 78

ARV
L i!g e

vii

LRt atair s\D oML aSui s b couh SRR i Shh AMED SPub.avies al BASh e aean A B M St A S " g S AN o e it A e A S A A

6.10

6.11

6.15
6.16
6.17

LIST OF TABLES

Results from Threat Grid 1

Results from Threat Grid 2

Results from Threat Grid 3

Results from Threat Grid 4

Results from Threat Grid 5 — Improved Ax
Results from Threat Grid 5 ~ A* w/box

Results from Threat Grid 5 - Ax w/straight-line
Results from Threat Grid 6 ~ Improved Ax
Results from Threat Grid 6 ~ A* w/box

Results from Threat Grid 6 ~ Ax w/straight-line
Results from Threat Grid 7 ~ Improved Ax
Results from Threat Grid 7 - A* w/box

Results from Threat Grid 7 - A* w/straight-line
Results from Threat Grid 8 - improved A%
Results from Threat Grid 8 ~ A* w/box

Results from Threat Grid 8 ~ A% w/straight-line
Results from Threat Grid 9 - Improved Ax
Results from Threat Grid 9 -~ A% w/box

Results from Threat Grid 9 - As w/straight-line
Results from Threat Grid 10 - Improved Ax

viii

Page

34
35
39
42
48
49
30
33
36
37
60
61
62
64
65
66
68
69
70
. 74

O O

Ak dd A

R, 1

b @

1
it s

LIST OF TABLES (Continued)

Table

65.21 Results from Threat 6rid 10 - A* w/box

6.22 Results from Threat Grid 10 - Ax w/straight-line .

Page

. 75

76

A

T

(" BN e e 2 A - te e Jsie "R A0 A0 A0 i/t S it i el WA D S sl Sl S S A PN SR g NG R ary i i |

ol

e

To Gretchen and Tony @

For their loving tolerance and invaluable support

during these long hours and each passing year. %

LA Batt e 20 e il 2o AU A A I

. INTRODUCTION

This thesis topic was proposed by Mr. William McQuay of the Air Force
wright Aeronautical Laboratories, Wright Patterson AFB, Ohio. The proposal
was to develop a system that would create aircraft penetration routes
through a hostile enemy environment. Given the ability of an aircraft to carry
various configurations of threat-countering devices, the system would enable
a planner to evaluate the effect of different configurations upon route length,
threat interaction, fuel consumption, etc. Clearly, this problem is
characteristic of a general class of problems involving developing routes
through obstacles. For example, building a road as short as possible while
trying to avoid hills, lakes, etc. Or, if the obstacles can be considered
impenetrable, a robot moving around a room of furniture. Therefore, it was
decided to attempt to develop a solution to a more general problem
description while maintaining applicability to the specific task of aircraft
routing.

This paper describes methods currently used to solve the specific
problem of aircraft routing, proposes alternative solutions using artificial
intelligence techniques, defines a generalized problem space, then presents
the implementation of a heuristic search algorithm. Finally, the algorithm is

tested with the results analyzed and conclusions presented.

PR S S S

node to node n is known when node n is generated if n is not the successor of
any other nodes. However, the actual cost of the path from node n to the goal

node can only be estimated. It is the function of the heuristic to estimate this

cost, designated hx(n). A new evaluation function, fx, can now be defined as:

fx(n) = gx(n) + hx(n),

A GRAPHSEARCH algorithm which employs this evaluation function is
called algorithm A. The term gx is the cost of the current best path from the
start node to node n. The h* term represents the estimate of the cost from
node n to the goal. If hx(n) = 0 for all n, and gx(n) = cost of n for all n, then
algorithm A is a breadth—first search. Further, if h*(n) < h(n) for ali n (hx
is optimistic), then algorithm A will find an optimal, or least cost, path to
the goal. This algorithm is called an Ax (A-star) algorithm. It has been
proven (Nilsson[3]) that the A% algorithm is admissible, that is, it always
finds an optimal path when the heuristic is optimistic.

The importance of the heuristic function can now be examined. If the
heuristic function hx(n) = h(n) for all n, then the function is a perfect
estimator and the algorithm will perform as a depth-first search along the
optimal path. And, as stated above, if h*(n) = O for all n, then the algorithm
performs as a breadth—first search. So, the closer hx(n) estimates h(n),
the closer the algorithm will act as a depth first search over minimum
breadth. That is, fewer nodes will need to be expanded.

A heuristic estimate which improves as successors are generated along
the same path Is called consistent. With a consistent heuristic, the Ax
algorithm will be optimal in terms of efficiency, i.e. it expands the fewest

possible nodes. When the heuristic is inconsistent, i.e. the estimate does not

P P YO P S S e et o S o e B, P - B e B e A s i e B

P A.;A.‘

.

3y
-."!.u

.o s
ot e
PRI R Y)

) _J,L. o

T T YT T T, adaare. gu o Adiafi it S dadt sheh e B SR RS A SN e et Jaii R

14

of artificial intelligence techniques. Heuristics are utilized in step 8 of
GRAPHSEARCH to ‘intelligently' order the OPEN list, where the most
promising node is placed at the head of the list. These heuristics are a means
of estimating the ‘solution potential’ of a problem state. For example, Figure
3.3 depicts the familiar fifteen-puzzle. The problem is to arrange the tiles in
sequential order, left-to-right, top-to~bottom. A simple heuristic may be:

count the number of tiles already in the correct position. A more complicated

Figure 3.3
15-Puzzle

heuristic may be : estimate = (C, * count of the number of tiles already in
the correct position) + (Cz » the distance of tiles from their correct position)
+ (C3 » the count of the sets of adjacent tiles whose correct locations are

reversed), where C, are weighted coefficients.

An evaluation function, f, is defined as:
f(n) =g(n) + h(n)
where g(n) is the actual cost of the best path from the start node to node n,
and h(n) is the actual cost of the least cost path from node n to the goal
node. So, f(n) is the actual cost of the path from the start node to the goal

node which passes through node n. The least cost of the path from the start

L AES auus Jaal o -2

@

NN

o Tos e, I N Y Ty o IR Bt AR Ragd SR e -l i b S R i S Al i el Sand

13

solution, if one exists, but the solution with the least cost. Due to the nature
of the tree structure, the number of nodes at each level increases
exponentially. This search scheme is therefore extremely expensive interms
of memory and CPU requirements.

In an exhaustive, breadth-first search, as outlined above, every terminal
node that is a goal node will yield a solution path. Essentially the technique of
SNOOPER is goal directed, breadth-first search. It is ‘goal-directed’ since the
goal node is the root of the tree. It is an exhaustive search in that every node
generated is expanded. Consider a problem presented to SNOOPER with a grid
100 by 50 units in size. SNOOPER generates 16 possible moves at every point
(eight directions, two altitudes), except for edges. Therefore, there are
slighty fewer that 100 * 50 = 16, or 80 000, nodes generated. And, many of
these node are duplicates requiring the associated overhead of step 7 in the
6RAPHSEARCH algorithm! Granted, an optimal solution is found for every
point on the grid as a starting point. indeed, in the route planning
application, multiple starting points to a single goal may be desireable. But if
only a single, best path is required, A* search provides a more efficient

alternative.

Ax SEARCH

The Ax algorithm is an artificial intelligence technique that attempts to
combine the benefits of depth-first and breadth-first searches by guiding the
direction of the search pattern using heuristics. Heuristics may be defined as
the application of task-dependent knowledge to minimize the size of the tree

which must be created. In this sense, heuristics are part of the 'intelligence’

a4

el

- i - S - . s .
A ISR N S S Somlen 3 A, Bt o Mrbes 8. A cbicms oo erscci b, W s G 1 v1ne B0 o o

B P VP S U S ROV YUPIEREPY S SN PRI WINPUPRPAI s et SO S FRORSSIV SR R 0 S SO SRRE RSN R

!
,_41
12 q

7 Order these members of M according to some arbitrary scheme or

WO

according to heuristic merit.

8 Add the 'best’ member of M to OPEN.

This modification will produce the same solution as the FPG model. That
is, the FPG model is essentially a depth-first search where the first iteration
always terminates in a solution.

In general, though, depth-first searching can spend a great amount of

effort exploring fruitless paths if few paths lead to a goal node. An

alternative method is breadth-first search.

. ¢
., o

BREADTH-F IRST SEARCH

The breadth—-first search is characterized by a search pattern that 1

expands the least cost nodes at a level, before proceeding downward to the
next level. The GRAPHSEARCH procedure can be modified to perform as a

breadth-first search with the following modifications:

3 Set K =00,
LOOP: if OPEN is empty, exit with best as solution

5 If nis a goal node and its cost is the lowest yet found, save n as
best and set K to the cost of best.

~
1
7 Add members of M with cost less than K to OPEN. ®
8 Reorder OPEN according to cost.
\
_.1
It can be shown that breadth-first search is not only guaranteed to find a

B e o .._.A, —_—

W W e S TN T T T T~ ——— s sy T MRS SRR UL AP ai i S AR AP AR SNl i ACE LN A Sl SN el i Sl Yo

A{6) B{2) c(3)
-2 3 3 3.
0(S) E(S)
L 2N
F(6) G(7) H(8)
P ™
Figure 3.2

Ancestor Pointers Following B-node Insertion

DEPTH-FIRST SEARCH

The depth-first search technique s characterized by a search pattern 4
through the tree that proceeds downward along a single path until a terminal '.
node is encountered (or an arbitrary ‘depth bound' is reached). If that
terminal node is a goal node then the solution is found. Otherwise, the v
pattern ‘backs up’' a level, selects the most promising choice, and proceeds k
down that path until a terminal node is reached. This process continues until : }
a goal node is reached (success), or all nodes have been examined o:
(fallure).

In this aircraft route planning application, one can determine by
inspection that every path in the graph will terminate in a goal node. This can .
be guaranteed by not generating nodes which themselves cannot generate 3
successors. Given this, and not considering duplicate generation of a node, j
steps 7 and 8 of GRAPHSEARCH can be modified as follows: .1‘

R
®
N e ST ST S LS N S B

Ty Y Shile "Rih i Ante St Al Sa R st And Ml Sall AT ARG Ai AN PR S A A S SR SRAna R A A A AR A

D is not the parent of G in the search tree (although G is a successor of D)
since its cumulative cost is higher than that of node E. Assume that node B is
expanded with a cumulative cost of two and successors D and E (Figure 3.2).
Node B represents a 'better' path to node D than does node A. Therefore, the
parent pointer from node D must be changed to node B. But since node D has
successors, the new cost must be propogated likewise. This process
continues recursively until all successors of B are updated. Figure 3.2

shows the new costs and a pointers after propogating all cost changes.

h
A(6) c(3)
/\ 3
D(8) E(6)
F(9) G(8) H(9)
N P
Figure 3.1

Ancestor Pointers Prior to B-node Insertion

e

.;A.'L

L.

" ‘!A.A e

o

PRGN LI =, i

OB St ShatincuivienC i Jian 4 T TS, T T YT T YT WY LW YW Y T Y e W W T VT W W OW T W W

already in G (i.e., not already on either OPEN or CLOSED).
Add these members of M to OPEN. For each member of M that
was already on OPEN or CLOSED, decide whether or not to
redirect its pointer to n. For each member of M already on
CLOSED, decide for each of its descendants in G whether or
not to redirect its pointer. (See following discussion
regarding redirection of pointers.)

8 Reorder the list OPEN, either according to some arbitrary scheme
or according to heuristic merit.

9 Go LOOP

The OPEN list contains those nodes that have been generated as
successors of previous nodes, but not yet selected for expansion. The
CLOSED list contains those nodes which have already been expanded. The
explicit search tree, G, collects each possible path to a generated node. A
single distinguished path can be traced backwards from any node through
single ancestor pointers maintained in step 7. Therefore, when the algorithm
terminates successfully by selecting the goal node from OPEN, the generated
solution path can be traced backwards from that node along its distinguished
path.

in a search graph, a single node may be reached by different paths (with
different costs) from the start node. When this occurs, it is necessary to
decide whether the parent pointer should be changed to select a parent with a
lower cost. For example, Figure 3.1 shows a graph with cumulative cost
from the start node indicated in parenthesis and the arc cost between nodes

indicated beside the arc. The dashed line between nodes G and D indicate that

,\.

I
a2 ‘4

successors. Each successor may have successors and so itself be the root of
another graph. If a node has no successors, then it is a terminal node. This
terminal node is a goal node if its state matches the goal state. Otherwise, it
represents a path through the graph which failed to terminate at a solution.
Each node points to that single parent node which represents the 'best’ path to
that node from the start node.

A search tree is a specific case of a search graph where a node can only
be the successor of a single node.

A general, graph searching procedure, as outlined by Nilsson[3], is as

follows:
procedure GRAPHSEARCH

1 Craate a search graph, G, consisting solely of the start node, 8.
Put 8 on a list called OPEN.

2 Create a list called CLOSED that is initially empty.
3 LOOP: if OPEN is empty, exit with failure.

4 Select the first node on OPEN, remove it from OPEN, and put it on
CLOSED. Call this node n.

) If nis a goal node, exit successfully with the solution obtained by
tracing a path along the pointers from nto 8 in G.

6 Expand node n, generating the set, M, of its successors that are
not ancestors of n. install these members of M as
successors of n in B.

7 Establish a pointer to n from these members of M that were not

" H 1
. R - . .
X JOUIN, . . 8. I YOO, Y

Q.

Sl A ACE ra SN At e Sre sy e Ma PR AN Rt - r— fAinat G s Jit M Bt e S A MR O A SR AR CS AR AR R e gAML Sl A S A A ML AV N e i

111, REVIEW OF SEARCH TECHNIQUES

STATE SPACE SEARCH

A state space is a formal description of a problem which consists of all
possible configurations of the relevant objects. It is not necessary to

enumerate all possible configurations explicitly. These configurations, or

states, can be described by defining the set of objects within the problem

! space, and a set of operators or rules which, when applied to one or more of

L.

r, the objects, creates a new state. [t is necessary to define one or more of
:' these states as initial states, and likewise as define goal states. The notion

of state space search is a process that begins with an initial state, and 1
:] iteratively applies rules to move through the state space until a goal state is .j

reached. 1
A search graph consists of nodes characterizing individual states within

the state space. These nodes consist of a single parent node pointer, and

multiple successor node pointers. The nodes of the graph are connected by

arcs which each have an associated cost. This cost may not be constant over

ERAED S An L/ G S — 21

o)
all arcs. For example, assume city @ is a node in a graph with cities b and ¢ 1
as successor nodes, and arc cost is based upon distance between cities.
Therefore it is possible to go from city a to cities b or ¢ in one move. Yet the °
g
distance, and hence the arc cost, to city b may be greater than the distance
to city c.
& The search graph consists of a root node, the starting state, and its ®
& B
q 7 8
1
3 1
@
1 1

'—_f_f_v-- PP ———

techniaue does, however, hold promise of perhaps being less costly than

heuristic search since the problem space may be significantly reduced

through planning. ')
Since the SNOOPER approach is essentially exhaustive search, and the FPG

approach resembles a depth-first search, it seemed feasible that a workable _ .f

solution could be developed using heuristic search. It is possible to construct

the heuristic search algorithm to guarantee finding an optimal solution given

an accurate heuristic. Therefore, since heuristic search is clearly related to — 4

previous techniques, and it might possibly build an optimum path, it is the

approach that was adopted for this solution and is described in detail in the

following chapter.]

B e e e ae bt e e o o ey

™

A Sol B 0t ng Sud Bt el B et At At Sadk el i it Bt A B Wadiuie adi M S M A S e R R

spectrum of computational efficiency. That is, the FPG model is
computationally very inexpensive since it examines a very limited number of
‘alternatives. While the SNOOPER model examines every possible alternative

at the expense of computer resources.

PROPOSED SOLUTION TECHNIQUES

Instead of building an entire search graph for a problem, artificial
intelligence techniques strive to build as small of a subset of that graph as
possible to locate a solution. Two techniques of ‘cutting-down' the size of the
graph are hierarchic planning and heuristic search.

A hierarchic planner, such as STRIPS[10], will iteratively develop
solutions at an abstract level of detail, then pass the solution to the next
level of detail where it can be used as an plan. This process continues until
all details of the problem space are incorporated into the solution. The
algorithm for this problem may begin by dividing the grid into several large
boxes. Use some scheme for assigning a value to each box. Select the ‘best’
boxes from start to goal as a first-level plan. Then, divide each box into
smaller boxes where each then becomes a separate problem space. This
would proceed iteratively until an arbitrary 1imit 1s reached. The sub-plan
may even be used to efficiently guide a heuristic search within sub—areas.
Or, if the sub—area is small enough, an exhaustive search may become
feasible. The single greatest drawback to this scheme is that the quality of
the solution will be extremely dependent upon that first-level plan. This may
necessitate developing and exploring alternate plans at the higher levels.

Likewise, there can be no guarantee of finding an optimal solution. This

T T TY

. u!‘ L ,_4!;; ‘ v_.!;l ‘ . 'L_AA'IA._L A‘.;‘!* A - L;A_J_'Ll 0

. . ,,..
A -','.;“_._A! Al ok

X 5

n Zhui Thage - CRat A} Treorwry Ol ~ IRl el N Badh N I A Y SIS S A S Ci .

distance travelled. For this model, a grid is established with a fixed goal
point but with an indefinite starting point. The aircraft is assumed to move
between points on the grid parallel to either axis or at a 45 degree angle.
Therefore, except for boundary points, there are eight possible directions of
travel from any point. SNOOPER also permits discrete changes in altitude,
high or low, to create 16 possible moves (except for boundary points).
Starting at the goal, the algorithm iteratively examines every possible move
from each point, calculating the cost of the move in terms of threat
interaction and length. The result of these cost assignments is a penalty
matrix from which an optimum route may be traced in a stepwise fashion
backwards from the goal to any starting point on the grid. That is, every
point on the grid, except for the goal, is a potential starting point. Figure 2.1
shows a simple example of a penalty matrix, and another representation of

the same information using a tree structure.

[
_')a\'d\‘h k
5] L) [ml
— =\
71T |-
¢ f) 6 nuun

Figure 2.1
Penaity Matrix vs. Tree Representation

This scheme has several distinct features. As stated before, it will locate
an optimum path from any starting point to a fixed goal. The cost of this
feature, in computing resources, will be extremely large compared with the

FPG model. In fact, these two models may represent the extremes of the

alala 4_4! PRI W 4_)_.;..;!

p——"w

v

e

Py

>

in the x-direction when the leg is projected on the nominal path. That is, each

possible leg from a given point maintains the same ‘forward progress’
towards the goal. This is due to the assumption that the aircraft will fly at
maximum speed on outward legs, and at minimum speed along the nominal
path. A fixed number of possible legs are generated at each point within this
path deflection angle. The algorithm then 'looks' outward along each proposed
teg to detect threat interactions. Once detected, the type of each threat can
be referenced in a table and the effect of each threat on the leg can be
accumulated. The algorithm continues, selecting the shortest leg at each
point with the least threat interaction until the goal is reached.

An extremely important feature of this technique is the existence of threats
1s ‘discovered by the algorithm only when they are encountered while
evaluating possible legs. Effectively, the threats 'pop—up in front of the
aircraft which then makes a path adjustment to avoid them. Therefore, this
scheme is especially applicable as an on—board flight path generator.Given
that only limited information is available, it develops as good a route as
possible. As a pre-flight planner though, assuming that the location of
threats 13 known, the FPG model will develop relatively poor routes compared

with other techniques which make effective use of the additional information.

STRATEGY NEEDED OVER OPTIMUM PENETRATION ROUTES (SNOOPER) MODEL

The SNOOPER model[4] makes use of the total knowiedge of the threat
environment to develop optimum routes using dynamic programmimg
techniques. As in the previous model, optimum primarily means the path with

the smallest cost interms of threat interaction, and secondarily in distance

. S . S A et e . CA e St
M AVt e im i m VNmtatal a St a B a B et omh e A e e B - - PR, SR, SO

" . . - - 14
! l SRR
BT) SR

ASaA el nitiE anl RS oWl - SLEreb i AP IS A A a A A S Sl S N e e T T I L P

1. BACKGROUND

The advent of computer generated aircraft routes has been severely
hampered by the computational complexity of the current algorithms and the
scale of the problem. As a result, routing is often done by 'hand’ using a
map, some pins, and a string. Perhaps the most useful advance has been in
the application of computer graphics to assist in this manual process. There
are two examples of aircraft route generation algorithms, which have

influenced the solution to be described in this thesis.

FLIGHT PATH GENERATION (FPG) MODEL.

The Flight Path Generation model[6] defines a problem space as a grid,
or corridor, aligned along an x-y axis. Given a starting point on the left edge
and a goal, or target, along the right edge, the FPG model ‘flys’ the aircraft
at a constant altitude within the corridor from the starting position to the
goal. The flight path is composed of a sequence of flight legs. A nominal
flight path is defined as a straight line from the start to the goal. The length
of a leg parallel to the nominal flight path is equal to the distance that the
aircraft can ‘look-ahead’ to detect threats. This ‘look ahead’' distance is
called the awareness radius. Given maximum and minimum speeds for the
aircraft, a path deflection angle is computed using the formuia:

(cos™! (minimum speed / maximum speed))

Within this angle a leg can deviate in direction, yet cover the same distance

PR T 0 L . RO : P . L PSS L U ot PRI, P

16

improve between a node and its successor, then the A* algorithm can search
exponentially. The goal of a proposed modification (Martelli [S]) to the A=
algorithm is to improve the efficiency with an inconsistent heuristic. The
essence of the technique is to recognize when the heuristic is inconsistent,

and to temporarily ignore it. This modified GRAPHSEARCH algorithm follows:

procedure MODIFIED_GRAPHSEARCH (* changes are underlined *)

1 Create a search graph, G, consistong solely of the start node, 8.
Put s on a list called OPEN. Set F = 0.

2 Create a list called CLOSED that is initially empty.

3 LOOP: if OPEN is empty, exit with failure.

4 | f - <
from OPEN with the smallest g-valye, Otherwise, select the
first node on OPEN, remove it from OPEN, and put it on
CLOSED. Call this node n and gset F = the f~valye of n,

5 If nis a goal node, exit successfully with the solution obtained by
tracing a path along the pointers from n to 8 in 6.

6 Expand node n, generating the set, M, of its successors that are
not ancestors of n. Install these members of I as
successors of nin 6.

7 Establish a pointer to n from these members of M that were not
already in 6 (i.e., not already on either OPEN or CLOSED).
Add these members of M to OPEN. For each member of M that
was already on OPEN or CLOSED, decide whether or not to
redirect its pointer to n. For each member of M already on

-y ~r i v LN ane sus ses ans aaus and o T T . adaan T Rdban dhaes dhasy R Mhese ets Jnate dhatn Tt Sanfh Jadis A gt Jds 2oty - 4
r- B A "M Sl Nt & LA MM AT S . - . NS MR - . MBS e . .,

B JOP

¢ This modified Ax search algorithm is the method chosen for
¢

17

CLOSED, decide for each of its descendants in 6 whether or b

not to redirect its pointer. (See following discussion o
regarding redirection of pointers.) 'q‘

8 Reorder the 1ist OPEN according to f-value. In the case of ties,]
goal nodes are to be placed first.]

*

9 Go LOOP R
#

implementation as the Path-Finder program presented in the next chapter.

{ The advantage of the modified algorithm is that it: (1) can be proven to be

1 admissible with a consistent heuristic; (2) expands fewer nodes than the Ax .J.
{ algorithm when presented with an inconsistent heuristic. Regarding :
efficiency, the second claim is based upon an ordered search algorithm which o

:' differs slightly from the GRAPHSEARCH algorithm. The ordered search 014'

algorithm will return a duplicately generated node to the OPEN list. It will

therefore be counted as an expansion more than once. The GRAPHSEARCH

{' algorithm expands the node only once, choosing instead to recursively

propogate an improved path through the successors. The effect of this

difference will be noted during the discussion of test results.

,.
‘L44

T T ——

P GEEL on aon mm oms amn e o

v——r———p—

——— Y

o

L oas sha Sun s anes aen e aiet e et aan s geat ing St e e U A RN Sl A e i M 2t e e i i e e ML AME and are

IV. PATH-FINDER SYSTEM IMPLEMENTATION

The problem space is organized as a grid of arbitrary units and size,
with the origin of the axis in the lower left corner. A point on the y-axis is
designated as the starting point, and a point on the opposite boundary is
designated as the gnal. Threats are located throughout the grid and are
grouped by type. Each threat type is characterized by a radius, and a
probability of damage (Pd). The Pd value, normally 0 <Pd < 1.0, shall be
treated as a fractional part of a maximum threat cost rather than as a true
probability. This aspect is discussed in a later section. In previous
implementations, such as FPG and SNOOPER, the threats are modelled as as
series of concentric circies, each divided into various sections. Each section
can then be given a specific Pd which accounts for ‘time in threat’, area of
intersection, etc. Although this is a realistic model for actual aircraft route
planning, for simplicity, this problem will consider an entire threat with a
single Pd. Other threat modelling schemes are easily incorporated into the
design as needed by a particular problem domain. Another detail, changes in
altitude, is excluded from the problem, also for simplicity. Altitude changes
would simply multiply the number of possible legs at each point and require a
different threat model with altitude specific information. Again, these
features are easlly incorporated as domain specific requirements. The FPG

model used minimum and maximum speeds to compute the angle of path

18

RIS S, T

\ N
...!‘,"n¢

.’AJ.!AAA.

"V LAnit uandne® Bk 0 BE Saar s SPIL & e A A el Al G Sadiode A Bdr B A - i Al Sl S S Al AN A ARG Al e arVICARE At aRdl atul AACNNICRIMC SRS

19

deviation which will permit equivalent progress towards the goal for each
leg. Rather than include speed of the object as part of the problem domain,
the path deflection angle will be included as an input parameter. Also, all

legs will be of equal length (except for perhaps the 1ast one).

LANGUAGE AND HARDWARE

The nature of artificial intelligence programs makes a recursive language

a necessity for tree manipulation, etc. The language chosen for this

implementation is PASCAL, due to its wide acceptance and availability.]
PASCAL also lent itself to design and testing of program moduies on a)
micro—computer. Final implementation and testing were performed on a DEC .“
YAX 11/780 mini-computer. Off-line plots were produced on an APPLE |
MACINTOSH micro-computer. f .J
PATH-FINDER ALGORITHM.

The entire PASCAL source for PathFinder is presented in Appendix 1. The] .j
general program design and data structures closely follows the version of ' J
the GRAPHSEARCH algorithm presented in Rich{1] with the Martelli 1
modifications described in the previous chapter. The following sections detail _ 0}
some of the domain dependent details of the implementation. i 1

,]
LEG GENERATION 9

The information required to generate possible legs from a given point]

location is the path deflection angle, length of a leg, and the number of legs]

to be generated. These three factors are are all input by the user, and fixed

L o - e a e P N =g et PPN Gy WOy 1 PRI R D S L A— e et s i M o B Bhn i B s o

v

X

LT R S e SR JA AR e S iie S NI 20 H S A A SRS e S Bl Mial W A Siadh Sl Yiaf Sl i ik SR diNE AP AL R aun o alP A el Rt AL It S A]

=
4

d
F.
i

20

throughout the execution of a case. The path deflection angle describes the
deviation from the nominal flight path (a straight line from the start to the
goal). The path deflection angle is evenly subtended into the specified number
of leg deflection angles according to the number specified as legs-per—arc.

From this information, the coordinates of the endpoints are easily computed.

Leg Deflection Angle

Path Deflection Angle

parallel lo x-aqvis

Figure 4.1
Leg Generation Diagram

If the distance from the given point to the goal is less than the leg length,
then a single leg is generated joining the two points. This is the only case
where 3 leg is generated of length less than the leg length parameter.

Boundaries are established at the top and bottom edges of the grid, and
"looking backwards’ from the goal along the path deflection angle. The effect
of these boundaries is to eliminate the possibility of generating a leg either
going outside the grid, or whose successors could not reach the goal due to

the limitation of the path deflection angle.

T et o el e S o e DR i Pl MR 4 o F

21

< «————— Path deflection angle

Figure 4.2
Leg Generation Boundaries

COMPUTATION OF ACTUAL LEG COSTS

The computation of actual cost over a leg is determined by the formula:

g = g—coeff » ((g_length_coeff * leg_length) +
{g_threat_coeff » threat_cost_of_leg))

By adjusting these coefficients the definition of optimal path is altered since
these coefficients represent the relative importance of path length versus
threat avoidance. As a result, given the same problem domain with different
coefficients, the algorithm may produce different paths.

Three coefficients are somewhat redundant, though they facilitated early
testing. Usually, the g_coeff and g_length_coeff should be set to one and the
g-threat_coeff manipulated to define optimality. A description of the threat

cost assignment scheme is presented in a later section.

T e T s v
:
¢ 22
COMPUTATION OF ESTIMATED COST-TO-GOAL
‘ The heuristic estimate of cost-to—goal is computed over a direct path from
4 the given location to the goal by the formula:
hs = h_coeff * ((h_length_coeff * distance_to_goal) + 3
i) (h_threat_coeff » threat_cost_to_goal)) —.J}
where the distance_to_goal is the straight-line distance from the point to the ’
goal. This formula bases the heuristic estimate upon the same factors as 4
1‘ actual cost. The number of coefficients provides the flexibility to create new o
heuristics simply by alterering their relative values. The h_coeff coefficient,
[if set to zero, effectively disables the heuristic creating a breadth-first B
P search. Other values for h_coeff can alter the relationship between actual .14
E . and estimated costs, g* and hx, without affecting the relationship between :
“ length and threat costs in the heuristic. This relationship between g* and h* .'
' is important since it defines the accuracy of the heuristic at estimating actual
cost. As stated earlier, the more accurate the heuristic, the more efficient
F‘ the algorithm will be at finding a solution. .;.
; :
ACTUAL THREAT COST COMPUTATION ;
i Computation of actual threat cost involves accumulating the Pd's of all ﬂ
* threats intersected by a leg. This method, the arithmetic sum, assumes that ‘
E the Pd, in spite of the name, represents a fractional part of a maximum cost :
. (represented by the threat coefficient). The arithmetic sum method .1
[accumulates cost as:
cost = 2 Pd's of intersected threats .1‘
: It is quite generic since it assigns a simple cost to a threat, and it gives a 1
*, .
. _ D e i

L'_LL* N T

23

clear threat value that is easily traced in graphic output. In order to define a
‘solid’ threat, one that ‘'must’ be avoided, there are two methods. These solid
obstacles could represent terrain contours which an aircraft certainly should
attempt to avoid. One method is to simply assign a very high Pd to the solid
threat, such as 1000. The algorithm may still find a path that intersects a
solid threat, if no clear path exists, but the resultant threat cost for the path
will reflect the very high cost. An alternative is to assign a threat cost of
one and to modify the threat_cost evaluation routine to return a very high
value as a result of an intersection of a threat of Pd equal to one. Another
simple modification to the develop_path routine, recognizing this high value,
could discard the leg entirely. As a result, the algorithm will fail if it cannot
find a path.

Testing for the intersection of threats by a leg involves computing the
perpendicular distance from the center of the threat to a line defined by the
leg. If that distance is less than the radius of the threat then it must be
verified that the threat actually intersects the line segment (leg). If the
threat lies between the endpoints, yet intersects the leg, then the distance
from either endpoint to the threat center must be 1ess than the hypoteneuse
of a right triangle with sides equal to the length of the 1eg and the distance
from the opposite endpoint to the threat center. In Figure 4.3, the length of a
must be less than the length of a°, and likewise for the segments from the
opposite endpoint. Other tests must be performed to insure that a threat
intersection 18 not counted twice if it occurs over more than one leg of the

same route. This is done by excluding a threat intersection from the cost for

a leg if it covers the left-most endpoint since it must have been counted on

Y) X VORI, YU

.4‘11'__» .

Pl e Stk Sad Bath Zad At Jadbiinti- Ahh At S At Sha o d B ARE RN YA AN SUE RRERSsiAS A g AR AN SR Jhaf St S st Jaspe et eyt S o i S et -

24

the prior leg. This is not true for the initial leg, however, whose left-most
endpoint is the starting point which may lie within a threat which needs to be
counted. If an entire leg is within a single threat, the left-most exclusion

rule will also exclude the threat.

Figure 4.3 1
Intersection of a Leg by a Threat]
|
HEURISTIC THREAT COST COMPUTATION
The computation of heuristic threat cost also involves the same formula]
@

for the arithmetic sum of Pd's.

APTRI

The goal of the heuristic is to quantify the ‘'merit’ of proceeding along a

particular path. It must therefore measure expected interaction with threats

R

between the current location and the goal. One heuristic is to accumulate the
Pd's of all threats which actually intersect that direct path to the goal. The

idea is that this value may represent the worst case cost of the path to the

e . ..

goal from the given point. Therefore, since the actual cost will likely be

less, the h-threat coeficient should be less than the g-threat coefficient.

Another type of heuristic is to create a box around the projected path and
accumulate the Pd's of all threats within the box. The reasoning is to consider
all threats within some area of manueverability around a straight path to the

goal. Again, this value may be even greater than the first method, so it is

LS LA S L. PRI N SO) A P - R S Y VTSI ST T A W a A e .m " e dlmtaimimmie e s tatateonoa.w

25 -

N YOO

reasonable to assume that a larger difference between the two threat

coefficients will be necessary. A box width equal to twice the leg length was

19,

chosen for the test cases presented in the next chapter. Necessary code

changes for this heuristic are detailed in Appendix B.

A

- : : . ¢
: k .
Add 4__L.I.L et ediadhndd -A!‘M' . -A"_'nA,L e _..!A'_“

A ‘.LJ

-, W W - W T W T v W W T Wy —w — ¥ T TTE T e ST T T ey = oy

V. USER'S GUIDE FOR PATH-FINDER

A separate program has been created to facilitate creation of input data
sets for the Path-Finder program. A complete listing for this program,
Threat-Builder, is included as Appendix C. Threat-Builder queries the user
for input parameters to describe the threat domain, such as, grid size, start
and goal locations, threat characteristics and various threat densities. A
total threat density describes the fractional part of the total grid area to be
covered by threats. That is, after all threats are generated, the sum of their
areas is related to the total grid area by the total threat density. Since
threats may overlap, a density of 1.0, for example, does not imply that the
entire grid i3 covered. Each threat to be generated has an associated density
which describes its fractional part of the total threat density. The sum of
these individual threat densities must equal one.

Threat-Builder does not use a system random number generator.
Rather, it employs it's own random number generator to simplify reproducing
threat grids over various computer systems. The program outputs a file of
records formatted for input to Path-Finder. The format for these records
appears in Figure 5.1.

Path-Finder is structured to accept input parameters without regard to
order, and to allow multiple case executions against the same threat grid

using different parameters. A threat grid is defined by the 'G' (grid) and 'T'

26

-
. SRR

P

Lt k. A agt Set i AN T —— T T —— MI0 AU A aas o e s SO E LAty e St A —w—w—w .

(threat) records. These may not be aitered between multiple cases. The

remaining parameters may be altered between cases: ‘P’ (endpoints), 'L’ (leg

characteristics), ‘C' (coefficients). Distinct cases are delimited by an 'R’

27

(run case) record. Figure 5.2 illustrates a sample input data set. Figure 5.3

is a sample output plot from Path-Finder. Threats are shaded according to

the value of the Pd, i.e. higher Pd threats are slightly darker. Figure 5.4 is

a sample output listing from Path-Finder.

Record Formats for Path—-Finder Input:

6 O limit> <y_limit>

T <type> <radius> <Pd> <quantity>
(XI)(YI)

(Xz)(YZ)

<X <Yp?

P <(start) <goal>

-Define grid size

-Define threat

~Threat coordinates

-Start/goal y-coordinates

L <leg..length> <legs_per_arc> <path_arc(degrees)>

-Leg parameters

C <g> <g_threat> <g_length> <h> <h_threat> <h_length>

Figure 5.1

-Define g/h coefficients

-Run case

Path-Finder input Formats

T T Y B . Lt LN AV APl At A A T

28 —
*
G 100 SO]
T150.54 -
73.3343 16.0923 .‘
8.3552 23.0032]
10.0231 44.7446
81.0377 34.9732
]
T 210 0.25 4 °
20.7748 35.9103]
93.0213 17.4902
33.2993 9.2618
51.0289 21.7718 o]
P 12.5 12.5
L 7.5 35 90
C1501t 11]
R o
C1601 111
R .
Figure 5.2 {
Sample Path-Finder Input .
:
®
4
o,
b
‘ ."
]
)
1
.]
Figure 5.3 o
Threat Grid from Sample input 1
)
1
ol - U U DU SIS USAp W e S S S U I TR T— al e ‘L

29
##% Path Finder Results #x#
Grid limits: S0 25
Start coordinates: 0.00, 12.00
Goal coordinates.: 50.00, 12.00
Les seneration oPtions.
lLea lensth: 5.00 Leas per arc: S5 Path arc: 90.00
G coefficients (a — threat - lenath): 1.00 - 20.00 - 1.00
H coefficients (h - threat - lengath): 1.00 - 1.00 - 1.00
Threats.

Cateaagorvy. 1 Radius: 4,00 Pd: 0.30 Quantity: 9
27.0782, 0.6397 18.1473, 15.9954 15.3320, 6.8843
11.1130, 3.7563 26.8768, 15.5170 31.6666-. 1.5026
10.9314, 18.3048 35.2768: 16.6561 29.2145, 13.3045

Categorv. 2 Radius: 3.00 pPdg: 0.10 Quantity: 16
39.9124, 12.8887 5.9448g, 4.8130 26.0422, 10.1223
27.8412, 3.3772 36.6348., 9.5287 44 1223, 2.7938
27.1891, 18.5299 16.3070, 20.1099 15.5838, 0.7977
19.2139, 15.822 32.3776, 1.2539 38.9618, 22.8779
20.5093, 21.070S 24.386895, 8.6735S 35.4477, 17.66893
38.9557, 21.0560

Path from Qoal:
D0.0000, 12.0000
45.9293, 10.0866
42.3937, 6.3510
37.7743, 4.6376
33.1549, G6.3510
28.1549, 5.5510
23.1549, G.5510
19.6194, 10.08G6
15.0000, 12.0000
10.0000, 12.0000

5.0000, 12.0000
0.0000, 12.0000

Statistics:

Nodes expanded . 75
CPU time (msecs): 8740
Conflict cost : 0.10
Path length 54.50
Martelli count . S
Figure 5.4

TR TR T T T TR TR TR T Y TR TR W LR) L m, .

Sample Path-Finder Output Listing

- ma. A . .a’a’a'.as

S NUUPIGIN SR U ST O U PSR TOR

RN (NI

J._JURA

.9

= =S T Sl WY

.

b sl dandie 2 A e bdalks Yadiiind v - AR i A i -~ Lad

Path Length = 54.50

Leg Length = 5.00

Conflict Cost = 0.10
Figure 6.7

Path Generated - Test Grid 4

43

.9,

42 5
h
3
DISCUSSION OF TEST GRID 4

This grid was developed to test the program against a different size grid 1
)
and threat configuration. Note the jagged path near the goal due to the '

inability of the leg generator to create a leg at the exact angie necessary for
a straight path, Table 6.6 reveals that the same path, with approximately the ;j
same node expansions, was developed by each coefficient configuration. This '
would seemi to indicate that the solution was relatively ‘easy’ for the 1
algorithm to find. Examining the output plot, Figure 6.7, bears out this o_1
statement since the solution path is rather obvious and an alternative path, :
with the same costs, is not readily apparent.]
¢
.4
SEED: 31583 o)
TOTAL THREAT DENSITY: 0.75 ;
THREAT DATA: (radius / Pd / density) ;
4/0.3/0.5 3/70.1/70.5 .
LEG LENGTH: 5 LEGS-PER-ARC: 5 PAT CTION ANGLE: 90 1
COEFFICIENTS CONFLICT PATH 1
G I L H T L NODES CPY COST LENGTH W
)
1 20 1 | I T 75 9 0.10 54,50 .
1 30]]] 1 72 9 0.10 54.50 .
1 40] i 1 1 71 8 0.10 54.50 !
1 S0 1 I I 73 9 0.10 54.50
1 60]]] 1 73 9 0.10 54.50 4
170 | B 73 9 0.10 54.50 ®
1 80] I 1 1 73 9 0.10 54.50 -

Table 6.4

)
Results for Test Grid 4 !

2 z P a a e " & a VWV I S B - e W LI W i

Path Length = 115.46

Leg Length = 7.50

Conflict Cost = 0.20
Figure 6.5

Path Generated — Test Grid 3.3

Path Length = 114,96

Leg Length = 5.00

Conflict Cost = 0.20
Figure 6.6

Path Generated — Test Grid 3.4

41

R . T e e AN e

40

Path Length = 111.92
Leg Length = 10.00
Conflict Cost = 0.60

Figure 6.3
Path Generated - Test Grid 3.1

i

Path Length = 120.62

Leg Length = 10.00

Conflict Cost = 0.20
Figure 6.4

Path Generated — Test Grid 3.2

PR B SR I

@

P PGP TP

SEED: 46137

IOTAL THREAT DENSITY: 0.75

THREAT DATA: (radius / Pd / density)

57/70.4/0.4 7.5/0.25/70.3 10/0.1/70.3
LEG LENGTH: LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90
COEFFICIENTS CONFLICT PATH

¢ I L H I L NODES CPU COST LENGTH
1 20 1 | 1 | 436 89 0.50 111.92
1 30 | 1 1 1 468 94 0.20 120.62
1 40 1 1 1 | 312 52 0.20 120.62
1 50] |]] 269 41 0.20 120.62
1 60 1 1] | 343 57 0.20 120.62
1 70 1 1 1 1 357 59 0.20 120.62
1 30 1 1 1 0 1238 260 0.20 120.62
1 70 1 ! | 0 1058 225 0.20 120.62
I S0 1 0 0 0 1253 243 0.20 120.62
0 0 0 1t 50 1 12 0. 1.90 108.57

LEG LENGTH: 7.5
1 50 | 1 1 1 923 333 0.20 115.46

LEG LENGTH: S
1 50 1 1 1 1 6189 9185 0.20 114.96

Table 6.3

Results for Test Grid 3

St b S

[
AL.L'

A Sad Il 2 M A S A B S B lie S Al Aadiadl St il MG EAE Sl Et S N A T DA A AR N N S A T M e T SR

38

Figures 6.4 best solution path created with a 1eg length of 10. Notice that j j
the path is more circuitous than Figure 6.3 as path length is sacrificed to .J‘
avaoid threat encounters. Figures 6.5 and 6.6 represent the paths '
discovered using the coefficients 1-50~1-1-1-1 and leg length of 7.5 and S,
respectively. Note the significant increse in node expansions, 269 to 923 to 7
6189, as the leg length is decreased from 10to 7.5to S. These increased]
expansions reflect the exponential growth in the size of the search tree. The 1

4

solution improved, though, by avoiding a 1arge threat which could not be !f

avoided with a longer leg length. The advantage, intuitively, is that the 1

shorter leg lengths increase the maneuverability. Also, the length S solution R

o

must never be worse than length 10 solution. This is true because every 1
length 10 leg can be duplicated by two, length 5 legs.

®

A

9

o}

)

1

]

4

o,

B

o

ARt Bt it Coent i Miafit At S 2 e e Tl < e M T o ‘S e A N IR A Y A

37

DISCUSSION OF TEST GRID 3

This test followed the first examples with the suggestion that the
coefficient configuration, t-n-1-1-1-1, where n is a multiple of ten,
produces reasonably good results. This trend serves as the foundation for all
the remaining tests.

Several interesting points can be made about this test series. it is obvious
that the length component of the heuristic estimate is quite beneficial to
reducing the size of the search. The cases where the heuristic estimate is
‘turned-off' (h—coefficients set to zero) gives some idea of the maximum
search length. This is because the search becomes breadth-first without the
heuristic. This is the approximate size of the effort that the SNOOPER model
will invest in a solution. The number of nodes expanded are not equal since
each case will not necessarily expand the same nodes in the same order due
to the value of the g—coefficients. Also, unlike SNOOPER, the algorithm
terminates on the first solution encountered. The breadth-first search with
the g-coefficients, 1-50-1, is 1249 nodes. The improved Ax algorithm only
required 269 nodes to discover the same solution. This clearly demonstrates
the benefit of heuristic search over uninformed search. Finally, the case
with the g-coefficients set to zero gives an idea of the effort that the FPG
model would invest in its solution. The path found by this case is not the same
as would be found by FPG, however. The similarity is in the number of nodes
expanded and therefore, the relative effort expended. Figure 6.3 illustrates
the path discovered using a 1ow threat-1ength ratio. Using an algorithm
similar to the FPG method (built during the early stages of this thesis),

exactly the same path is discovered|

A] .
IA!L _._;!‘LJ" .‘A_A.J,,LIILI-

. .‘".v

" '_A,

o A..LL-

Path Length = 113.80
Leg Length = 10.00
Conflict Cost = 0.20

Figure 6.1
Path Generated — Test Grid |

T ——— -

36

Path Length = 115,54

Leg Length = 10.00

Conflict Cost = 0.45
Figure 6.2

Path Generated — Test Grid 2

D N Sy U P A Y, S PR S oo U P o UL Sy S T Y S S L

@

35

SEED: 31583
| TOTAL THREAT DENSITY: 1.0
THREAT DATA: (radius / Pd / density)
5S/0.1/0.4 7.5/0.25/0.3 10/0.4/0.3
LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90
COEFFICIENTS CONFLICT PATH .‘?
6 I L H I L NODES CPY €OST LENGTH
1 30 1 ! 1 352 73 0.55 109.00)
1 40 1 | | 1 967 241 0.55 109.00
1 S0 | 1 1 1 473 108 0.55 109.00 4
1 60]]]] 449 101 0.55 109.00 L
170 1] 1 . 396 85 0.45 115.54
1 30 2 1 ! ! 1465 314 0.60 107.48
1 50 2] ! ! 1403 322 0.55 109.00
170 2 ! ! ! 1236 302 0.55 109.00 J
1 30 3 ! 1 1 1809 343 6.7n 106. 14 ol
1 soO 3)] } 1633 335 0.60 107.48 1
170 3 ! ! | 1600 341 0.55 109.00 S
S 110 247 46 0.60 107.48)
| S50 1 30 1 305 41 0.55 109.00]
1 50 I 50 991 164 0.55 109.00 O
1 5 ! ! 720 1 1231 242 0.55 109.00 [
-
Table 6.2]
Results for Test Grid 2]
Y
.
°

L. o

SEED: 31583

TOTAL THREAT DENSITY: 1.0
THREAT DATA: (radius / Pd / density)
57/70.4/0.4 7.5/0.25/70.3 10/0.1/70.3
LEG LENGTH: LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90
COEFFICIENTS CONFLICT PATH
6 I L H I L NODES cPy COST LENGTH
1 30 1 1 | 1 100 16 0.20 113.80
1 40] | 1 ! 82 12 0.20 113.80
1 50 | 1 | } 80 12 0.20 113.80
1 60 1 ! 1 | 89 14 0.20 113.80
1 70 1 1 1 1 81 12 0.20 115.24
1 30 2 1 1 1 1157 266 0.20 113.80
1 S0 2 | 1 1 742 171 0.20 113.80
1 70 2 1 i 1 510 109 0.20 113.80
1 30 3 1 1 | 1516 320 0.75 106.56
1 50 3]] 1 1235 280 0.20 113.80
1 70 3 I | ! 1011 233 0.20 113.80
1 S0 1 I 10 1 27 3 0.20 116.13
I 50 1 1 30 1 128 15 0.20 116.13
1 S0 | 1 50 1 43 4 i.10 109.00
1 50 1 1 70 | 143 18 0.45 116.13
1 50 1] 1 0 793 182 0.20 113.80
I 50 1 1 10 0 666 147 0.20 113.80
1 S0 | 1 30 O 337 56 0.20 113.80
1 S0 | 1 S0 0 638 7 0.20 116.13
1 S0 1 1 70 0 66 6 0.85 113.32
Table 6.1

Results for Test Grid |

.

N J

N

Al ¢ ~ g - - - - . YT Y LW RS TR N N iy Sl A Al Wl il Sl Sl el i Y AR RSN) i

33

‘jaggies’ is introduced. That is, due to the fixed length of each leg, the path is
often jagged where it ‘sets itself up' to maneuver through an opening. For
example, the jagged path through the first, small threat is l1ikely necessary
to penetrate the next opening in preparation for the final manuevers. This
problem might be reduced by using shorter legs, or increasing the number of
legs and the path deflection angle.

As stated earlier, test grids 1 and 2 are identical in 1ayout but different in
Pd assignments. Note that in test grid !, the solution path favored the larger,
lower Pd threats. And, in grid 2, the smaller threats were selected since

they have the smaller Pd values.

Tpy——

® . ..

o .

. N 1

T
.JA_J_!L:-A

T B i A A i T A Bt S G Sl AR A g L L s st ands SEME AER AEAMESEC atul et i i i A

coefficients, the more threat avoidance will be favored over short paths.
Likewise, the less this ratio, the more the algorithm is likely to ‘sacrifice’ a
threat interaction in favor of a shorter path. This behavior, though, is not
indicative of every case tested.

There is a marked decrease in efficiency when the g—-length coefficient is
increased relative to the g—threat coefficient such that the same solution is
discovered. This change demonstrates the sensitivity of the algorithm to the
relationship between these two coefficients.

Some rather curious results occured when the heuristic coefficient for
threat is increased while the leg coefficient is held to one. The algorithm
seems to be misguided into selecting a poor solution. This shows the
importance of the accuracy of the heuristic relative to both efficiency and
quality of solution. Finally, it would seem reasonable to consider a heuristic
that does not consider length as a factor. This is tested by setting the
h-length coefficient to zero. The quality of the solutions are consistent with
their counterparts of h—-length equal to one. However, there is still an
increase in the number of nodes expanded.

The results for test grid 2 again illustrate the lower bound upon the
threat-length coefficient ratio which will produce results consistent with the
primary goal of minimal threat interaction. Also the upper threshold is
demonstrated by the improvement in the solution path as the coefficients
increase to 1-90-1-1-1-1, When the h~threat coefficients are manipulated as
they were in the previous example, this test does not have as marked
fluctuations in solution quality.

In examining the output plots, especially Figure 6.2, the problem of

PV N S PP a1

P f’j!.—_‘ talataatat

BN

L aiaar st T T T e Ty e woygwoweoe w e

VAX PASCAL ‘'clock’ function. Conflict cost is the sum of the Pd's of threats
intersected along the path. Finally, path length is expressed in grid units.

Coordinate reference lines are drawn in each output plot every five units.
Each of the output plots is related by path length and leg length to a set of
coefficients associated results table. For example, the output plot in Figure
6.1, Path Generated - Test Grid 1, represents every case in Table 6.1,

Results for Test Grid 1, with a path length of 113.80.

DISCUSSION OF TEST GRIDS 1 AND 2

These threat grids are identical except for the Pd values assigned to the
threats. Grid 1 used the Pd values, 0.4 - 0.25-0.10, for the small, medium
and large radius threats, respectively. 6rid 2 reversed the Pd values of the
small and large threats.

The results for test grid 1 illustrate a couple of trends that were evident
in many later tests. Examining the results in Table 6.1, the balance in
importance represented by the g_threat and g_length coefficients, clearly
affect the solution. For example, coefficients 1-60—1~1-1-1 produce the
apparent ‘best’ solution of path length 113.80 with a conflict cost of 0.20.
However, a slight shift of the relationship to 1-70-1-1-1-1, produces a
slightly longer path, 115.24, with the same conflict cost. A similar case
exists between coefficients 1-30~-3-1-1-1 and 1-40-3-1-1-1. In this second
case, the higher g-threat coefficient caused an improvement in the solution in
terms of conflict cost, the primary goal. This behavior is quite explainable
intuitively. These coefficients represent the relative importance of conflict

cost vs. path length. The greater the ratio between the g-threat and g-length

@

R . T v 5. aniC o L EER-aaaC A Babar ey

N

]
-d
VI. PATH-FINDER TEST RESULTS
The test results presented in this chapter can be divided into to sets. -.‘
The first set, test grids | through 4, were the developed during the second
phase of system testing using the 'straight-line’ heuristic in the improved A*
algorithm. The primary goal of this phase of testing was to examine the effect q
of coefficients upon the overall goal of minimum conflict cost over the
shortest possible path length. A second set of test results, test grids 5
through 10, were run as a final series of tests using a reasonable set of '
coefficients. This series of tests were run using both heuristics mentioned in
the previous chapter. The details will be discussed in the applicable E
sections. -4
DESCRIPTION OF TABLES AND GRAPHS o
Each table includes the necessary data to recreate the threat grid using
the Threat-Builder program. The coefficients, G T L, represent the
g—coeff, g_threat_coeff, and the g_length_coeff, respectively. Simtlarly for K
the h—coefficients. In the following text these coefficients will be expressed
as: G-T-L-H-T-L (for example: 1-50-1-1-1-1). The nodes column represents
the total number of nodes expanded during the execution of the case. The CPU e
time listed, in seconds, is an approximation of the elapsed CPU time
following data input, until the results are output. It is computed using the
e
30
e

44

ORIENTATION OF TEST GRIDS S - 10

This series of tests were run as ‘final’ test cases against the algorithm.
The results for each test were compiled using three, different heuristics.
The first heuristic is the same ‘straight-line’ heuristic and improved As
algorithm of the previous tests. This heuristic will be termed "Improved A»’
in the result tables. The second heuristic is the ‘box’ heuristic discussed in
the last chapter. Early tests against this heuristic produced the same results
as the first heuristic. Believing this to be due to the effects of the Martelli
improvement, this heuristic is run using the standard A* algorithm and
identified as 'A* w/box in the resuilts tables. Finally, in order to ccmpare the
results with the straight-line method, the last heuristic is the straight-line
heuristic, also without the Martelli improvement to the algorithm. This will
be listed as 'A* w/straight-line’ in the tables.

A series of coefficients, known to produce reasonable results, are run
against each heuristic for a test grid to examine performance. Additional
cases are run where results appear interesting. Both heuristic (informed)

search, and a limited, breadth-first (uninformed) search are tested.

DISCUSSION OF TEST GRID S

This test case is extremely interesting due to the threat density of 2.0.
This density, with the given threat characteristics, create a grid with 75,
ocverlapping threats. Examining the output graph, Figure 6.8, clearly shows
the impact of this threat density. It is also apparent that determining a 'good’
path manually might be very difficult in this case.

Table 6.5 displays the results using the improved Ax search and

T T T T NI DU T v T SO U SO S U SUNTURT SUPUIT

Pl

vy v oo w Ty

[N MO

—— T v hd - - PariCatiUAtcairal Al e :']
Dt 20 aF 2 S Rl S Bl B SR ARTEE SediC A S C H T vy DI R AC D AP A MDA AREA A L - TN

45

straight-line heuristic. Notice that all of the coefficients tested with a leg
length of 10 ylelded exactly the same solution with only slightly different
numbers of node expansions. This pattern will prevail in all the test cases
which follow. A couple of cases were tested with relatively high g-threat
values, 100 and 500, to see if a slightly longer path might be produced as it
was in test grid 1. However, the characteristics of this grid are such that

this phenomena does not occur. Another interesting feature is that the

informed search, coefficients 1-x-1-1-1~-1, expanded more nodes as the
g-threat coefficient increased. And, the uninformed search, h—coefficients
set to zero, expanded fewer nodes as the g—-threat coefficient increased. :J
Again, this pattern will dominate in the following test grids. in all the tests,
only the improved A* algorithm was selected for a run with leg length of 5

due to the large CPU requirement. in this test, the length 5 case required

O,

only 1630 seconds, or slightly more than 27 minutes. This is relatively fast
compared with some of the tests which follow.

Comparing the results in Tables 6.6 and 6.7 show that the box heuristic,

,. ...
A
P ‘4‘ Adood s

provides a slightly better estimate of actual cost than the straight-line

heuristic. This is evident from the decrease in nodes expanded in the box

e

heuristic cases.

The claim was made in the discussion of the Martelli improvement to the
Ax algorithm, that the improvement would guarantee that fewer nodes are
expanded when an inconsistent heuristic is used, compared with the standard
As algorithm. That the heuristics used here are inconsistent can be seen

intuitively or be verified by a non—zero 'Martelli count’ in the output listing. A

question is raised, then, concerning this claim when the node count of the leg

;
E

Y

P —

LA e B AT A AN I e e A e A e e T i Tl Pl A AR L AR I R)

46

length 7.5 cases are checked in Tables 6.5 and 6.7. Remember that these are
the same straight-line estimates, with and without the Martelll improvement,
respectively. The same coefficients and therefore the same heuristc
estimator is used in each case. The node count for the improved algorithm is
slightly greater than for the standard algorithm, a violation of the claim!
This happens since nodes are not doubly counted as ‘expanded’ when
duplicates are discovered. The algorithm should still be more efficient,
based upon claim, although this node count may be misleading.

This test included cases run with different leg generation parameters for
number of leqgs and path deflection angle. The first cases tested were
generating seven legs over 110 degrees, and generating nine legs over 130
degrees. Neither of these cases includes the same possible legs generated by
the original, length-five test. It is a bit surprising that there is not a
significant improvement in the solution quality in either case. In fact, while
the seven-leg case is a slight improvement in conflict cost, the nine-leg case
fails to improve the conflict cost at all. And, it builds a longer path than the
original solution set! In addition, the nine-leg test used almost four hours of
CPU time finding a solution worse than the five—leg test did in 1ess than a
minute! In order to test for improvement when the original 1egs are included,
a case was run with seven legs over 135 degrees. This seven—leg test
generated exactly the same path as its five-leg counterpart and, it used ten
times the CPU timel Also, it failed to find a path as ‘good’ as the other
seven—leg case. This indicates that there is a great deal of sensitivity to leg
generation characteristics relative to solution quality.

The output graphs, Figures 6.8 , 6.9, and 6.10, depict the solution paths

P J N, ®L®l. @

L. 4.._L

_Q

v " - v
L A S B A S s ai ol ue -0 Se Samacen et St S i SR T e N At T e A S aiad v - A e . R R AL i A * i

generated at leg lengths 10, 7.5 and 5, respectively. Of interest is how the
}n increased maneuverability of shorter leg lengths aliow the algorithm to
discover paths which 'squeeze through the cracks'. There is an especially
g significant improvement in the conflict cost when the 1eg length is changed
p . from 10 to 5. The last two graphs, Figures 6.11 and 6.12, reflect the paths

generated with the seven and nine—-leg characteristics described above.

v

- r B G 20 S g S
. .

vy

L

!r"'“ T T T W L gt el MLEN
48 i{
SEED: 143954 :
TOTAL THREAT DENSITY: 2.0 4
THREAT DATA: (radius / Pd / density)]
5/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3 :
¢
LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90]
y
COEFFICIENTS CONFLICT PATH 1
¢ I L H I L NODES CPY COST LENGTH -
13 1 1 1 1 181 46 2.15 108.87 |
1 40 t 1 1 1 185 47 2.15 108.87 -
1 SO 1 1 1 1 189 48 2.15 108.87
1 60 1 1 1 1 193 49 2.15 108.87
170 1 1 1 1 196 50 2.15 108.87 '
1 30 1 0 0 0 756 192 2.15 108.87
1 S0 I 0 0 0 498 118 2.15 108.87
1 70 1 0 0 0 420 95 2.15 108.87 i
LEG LENGTH: 7.5 ;
1so 1 1 1 1 623 233 1.95 115.43 ;
LEG LENGTH: S q
1 S0 1 t 1 1 2310 1650 1.65 112.58 ;
LEG LENGTH: 10 LEGS-PER-ARC: 7 PATH DEFLECTION ANGLE: 110 :
>
, S0 1 1 1 1 597 392 2.00 109.77 ’
LEG LENGTH: 10 LEGS-PER-ARC: 7 P LON ANGLE: 135
+ 150 1+ 1 1 792 597 2.15 108.87]
q
P—'
LEG LENGTH: 10 LEGS-PER-ARC: 9 PATHDEFLECTION ANGLE: 130 :
3
| 1 SO 1 1 1 1 3625 13303 2.15 119,33 ;
| ¢)
;]
| Table 6.5]
’ Results for Test Grid 5 - improved A% ‘
0 "
"
1

PO S o B i a e e e e s e RSO C R T T *.-.t'-'.v*ﬁ-.‘ﬁ‘-fws-‘

o
’ 49 .
\ -
: SEED: 143954
A TOTAL THREAT DENSITY: 2.0 e
THREAT DATA: (radius / Pd / density) !
| 5/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3 |
i .
-
F . LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANGLE: 90 .
! COEFFICIENTS CONFLICT PATH K
; 6 I L H T L NODES CPU COST LENGTH |
2 13 1 1 1 1 17 45 2.15 108.87 X
| 1 4 1 1 1 1 18 47 2.15 108.87
150 1 1 1 1 188 48 2.15 108.87
i 60 1 1 1 1 189 49 2.15 108.87
170 1 1 1 1 195 50 2.15 108.87
[LEG LENGTH: 7.5 {
S0 1 1 1 1 603 225 1.95 115.43
b N
»]
A Table 6.6 :
(Results for Test Grid 5 — A* w/box e
g]
3 -
| 1
[_
(v
.
b,
f
}.
4 .,
{]
} l
) 1
D
‘t 1
! |
| |
;;
1

&t

50

.., w4

SEED: 143954
TOTAL THREAT DENSITY: 2.0

THREAT DATA: (radius / Pd / density)
5/0.5/0.4 7.5/70.25/70.3 10/0.1/70.3

w. . .

LEG LENGTH: 10 LEGS-PER-ARC: S PATHODEFLECTION ANGLE: 90
COEFFICIENTS CONFLICT PATH
G I L H I L NODES CPY COST LENGTH
1 30 I 1 1 1 181 46 2.15 108.87
1 40] 1 1 1 185 47 2.15 108.87
1 50 1 1)] 189 48 2.15 108.87
1 60 | 1 1 | 193 49 2.15 108.87
1 70 1 1 1] 196 S0 2.15 108.87
LEG LENGTH: 7.5

1 50 1 ! 1 | 619 232 1.95 115.43

1

Table 6.7]

Results for Test Grid 5 — A* w/straight-line)

»

i}

Y

]

4

E

)

]

k

¥

AP

85 2
2t B g!:z.
: HiHR
$REHT $53sdsty
aateff $RiRY T
IR i tHHIR
B i i
tidd 1 il
i 31

Path Length
Leg Length
Conflict Cost

108.87
10.00
2.135

Figure 6.8
Path Generated ~ Test Grid 5.1

k 5 iis
i

HEt ey
d iR RN

th
HHH
H

Bt

Path Length
Leg Length
Conflict Cost

115.43
7.50
1.95

Figure 6.9
Path Generated - Test Grid 5.2

S1

ke

]
L

1 Lo
3 R N
ad Ot

‘ c o o P .
B NPT . NUSRINTE. FAV IR

B YIS0

. . .A_‘qll P

ek

P P T

DL, U D ST SRS PSRRI WP S ST IEDASPPEP IRy S SRR IR S PR S SRS ST RS i i i

52

1igt
-l.
318
il
i

Path Length = 112.58
Leg Length = 5.00
Conflict Cost = 1.65

Figure 6.10
Path Generated - Test Grid 5.3

Path Length = 109.77
Leg Length = 10.00
Conflict Cost = 2.00

Figure 6. 11
Path Generated — Test Grid 5.4

PR\ N

L

"*‘!&'

L YON

dh

.

. ST

DIt A Soil Soul SEARall

119.33
10.00
2.15

Path Length
Leg Length
Conflict Cost

Figure 6.12
Path Generated — Test Grid 5.5

i,

YR XV

etk WA

. SO

DISCUSSION OF TEST GRID 6

This test grid is generated using a total threat density of 1.S. Though this
density is less than the previous test, the nodes expanded in each case is
more than five times greater. This is an indication that the ‘difficulty’ of the
problem is related to the arrangement rather than the quantity of threats. In
fact, the CPU requirements are so extensive that the length 5 case could not
execute within the four—hour CPU limit imposed upon test cases. Where the
length 7.5 case of test grid 5 required only 23 seconds, the same case in this
test required over 63 minutesl

Figures 6.13 and 6. 14 represent the solution paths created at leg length
10 and 7.5. Notice the radical difference in the early part of the paths. A
careful examination of the length 10 plot will reveal how the length of the leg

would not permit an equivalent ‘southern’ route chosen for length 7.5.

R A o e P S

54

- “‘!4-—‘4—' " ll Fev)

. A Bune e ~ S BT At B AR e i SHL N e anhi At A S JMIun e hdne A0 AN Se InB Ol b Ak dn i i A SR A Lo S T SR T

35

SEED: 21738
T THR ENSITY: 1.5

THREAT DATA: (radius / Pd / density)
570.5/0.4 7.5/70.2570.3 10/0.1/70.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH

G T L H I L NODES CcPU COST LENGTH
1 30 1 1 1 1 gq91 287 2.20 113.40
I 40 1 1 1 1 1008 286 2.20 113.40
1 S0 1 1 1 | 1020 286 2.20 113.40
1 60 1 1 1 | 1024 285 2.20 113.40
1 70 1 1 1 1 1021 282 2.20 113.40 .
1 30 | 0 0 0 1750 434 2.20 113.40
1 SO 1 0 0 0 1601 422 2.20 113.40
1 70) 0 0 0 1475 399 2.20 113.40
LEG LENGTH: 7.5

1 50 1 1 1 1 4782 4102 2.10 111.91

Table 6.8

Results for Test Grid 6 — Improved Ax

e L

.

PRSI ST QU W P S LRSS P WP S SRS S) - 2 u Nt sl mm A ala”ala .- I I] S e m A P e St

e WL T T W Y w s TS P A . AP AR AN A A A A

.....

56

SEED: 21738
TOTAL THREAT DENOITY: 1.5

THREAT DATA: (radius / Pd / density)
57/0.5/0.4 7.5/0.25/70.3 10/0.1/70.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH

6 I L H I L NODES CPU COST LENGTH
I 30 1 1 1 1 968 280 2.20 113.40
1 40 1 ! ! 1 984 280 2.20 113.40
t 50 1 ! ! ! 1000 282 2.20 113.40
1 60 ! 1] 1 1019 288 2.20 113.40
170 ! 1 | 1 1018 285 2.20 113.40
LEG LENOTH: 7.5

1 50 ! 1 1 1 4749 4123 2.10 111.91

Table 6.9

Results for Test Grid 6 — A*x w/box

rTop e R T ol . Chalii e - L 2Rt il avh - adSh -aaAth abd T R y— -1

B

57 .

SEED: 21738 :

IOTAL THREAT DENSITY: 1.5 }

THREAT DATA: (radius / Pd / density) o,

S/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3 .
LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90

1

COEFFICIENTS CONFLICT PATH °

¢ I L H I L NODES CPU COST LENGTH ¥

=)

130 IR B 991 286 2.20 113.40 .

1 40 1 11 1 1008 285 2.20 113.40 -f

i 50 11 1 1018 284 2.20 113.40 i

160 11 1 1 1024 284 2.20 113.40 e,
170 4 111021 281 2.20 113.40

LEG LENGTH: 7.5

1 50 | I 1 1 4749 4123 2.10 111.91 ®

2

Table 6.10 B

Results for Test Grid 6 — Ax w/straight-line ;

L

]

®

]

.4

.:I

T T T AT T T T W T T T T T T T T T T oM T S e e e T e T T W T W TTe Ty T s e

Path Length = 104.57
Leg Length = 10.00
Ccnflict Cost = 0.10

Figure 6.19
Path Generated — Test Grid 9.1

Path Length = 104.57

Leg Length = 7.50

Conflict Cost = 0.10
Figure 6.20

Path Generated - Test Grid 9.2

e R s A Aa~ m - a

71

) .
)

PPN

S e

L

———— TP —————— e L T —— TR, Ao A A T T PR AN 1- O

SEED: 26547
IQOTAL THREAT DENSITY: 0.50

THREAT DATA: (radius / Pd / density)
5/70.5/0.4 7.5/0.25/70.3 10/0.1/0.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANGLE: 90

QEFFICIENT CONFLICT PATH
¢ I L H I L NODES CPU COST LENGTH
130 1 1 1 47 4 0.10 104.57
1 4 1 1 1 1 64 6 0.10 104,57
1 so 1t 1 1 74 7 0.10 104.57
1 60 I 1 1 1 85 8 0.10 104.57
P70 1 1 1 99 10 0.10 104.57
LEG LENGTH: 7.5
1 so 1 1t 1 1 293 44 0.10 104.57

Table 6. 19

Results for Test Grid 9 - Ax w/straight-line

70 .{

N_Bs

@)

Lk,

K.

LSRR St AR NS A A A A A S S R A S S - _'F.T

69 ‘i'

SEED: 28547 iﬁ

JOTAL THREAT DENSITY: 0.5 !

]

THREAT DATA: (radius / Pd / density) 4

5/70.5/70.4 7.5/0.25/0.3 10/0.1/70.3 -.J

T

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANGLE: 90 »

COEFFICIENTS CONFLICT PATH 0

6 I L H I L NODES CPU COST LENGTH "

@

1 30 1 1 1 1 43 3 0.10 104.57]
1 40 ! 1 1 1 50 4 0.10 104.57
1 50 1 1 i 1 68 6 0.10 104.57
1 60 | 1 i 1 80 7 0.10 104.57

1 70 1 1 1 1 90 9 0.10 104.57]

'1'

LEG LENGTH: 7.5 :

1 50 1 1 1 1 256 37 0.10 104.57

Table 6.18 0]

Results for Test Grid 9 — A*x w/box "y

1

,‘;‘

1

-

..1

[)

]

3

.4

[)

]

P A A e 4

Y - L G S At T, e Wy v w v Pl w B S o YN Ry B iy a3 A hadit} - . . Wy Y

68

DISCUSSION OF TEST GRID 9

The threat density of 0.50 creates only 18 threats in the grid. Given this,
and their position, solutions are found quite efficiently. For example, the
breadth—first search required 1506 nodes to find the same solution as the
heuristic search found in 47 nodes! There would aiso seem to be only one
‘good’ solution since the same one was found regardiess of 1eg length. That
is, without changes in the path deflection arc to permit the negotiation of the

last threat gap (see Figure 6.19), the solution found is likely the best.

SEED: 283547

TOTAL THREAT DENSITY: 0.5

THREAT DATA: (radius / Pd / density)
5/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
6 I L H I L NODES CPU COST LENGTH
130 1 1 1t 47 4 0.10 104.57
1 40 1 1 1 1 64 6 0.10 104.57
1 so 1 1 74 7 0.10 104.57
160 1 1 1 1 85 8 0.10 104.57
170 1t 11 99 10 0.10 104.57
1 30 1 0 0 0 1506 276 0.10 104.57
1 S0 1 0 0 0 1224 251 0.10 104.57
1 720 v+ 0 0 0 1050 218 0.10 104.57
LEG LENGTH: 7.5
1t S0 1+ 1 1 1 295 44 0.10 104.57
LEG LENGTH: S
150 1 1 1 1 1651 712 0.10 104,57

Table 6.17
Results for Test Grid 9 - Improved A*

NS TR . N

Py

PRI _

B, |

. e

T

Path Length = 110.43
Leg Length = 10.00
Conflict Cost = 0.60

Figure 6.17
Path Generated — Test Grid 8.1

Path Length = 115.46
Leg Length = 7.30
Conflict Cost = 0.60

Figure 6.18
Path Generated - Test Grid 8.2

a e m mo e z & . 'a

.9, .

A, A

.. e

SEED: 120775
TOTAL THREAT DENSITY: 0.75
THREAT DATA: (radius / Pd / density)
5/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3
LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90
COEFFICIENTS CONFLICT PATH
¢ I L H I L NODES CPU COST LENGTH
1 30 1 | I B 269 39 0.60 110.43
1 40 1 | I B 313 46 0.60 110.43
1 50 1 I B 315 46 0.60 110.43
1 60 1 | I B 316 46 0.60 110.43
1 70 1 | I 319 46 0.60 110.43
LEG LENGTH: 7.5
1 50 1 11 1 1938 810 0.60 106.82
Table 6. 16

Results for Test Grid 8 - Ax w/straight-line

66

A Y

P Co, .
'
4 Ad A L4 e

A JURHSU YU

L
[VD

SEED: 120775
TOTAL THREAT DENSITY: 0.75

THREAT DATA: (radius / Pd / density)
5/0.5/0.4 7.5/0.25/0.3 10/0.1/70.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
6 I L H I L NODES CPU COST LENGTH
1 30 1 1 1 1 255 37 0.60 110.43
1 40 1 1+ 1 1 325 49 0.60 110.43
1 SO 1t + 1 383 60 0.60 110.43
1 60 1 1 1 1 385 61 0.60 110.43
170 1 1 11 442 69 0.60 110.43 g
LEG LENGTH: 7.5 5
1 50 1 1 1 1 1844 765 0.60 115.46 :
J
Table 6.15 o
Results for Test Grid 8 - A* w/box R
]
..
L

- Ve

O SR i) Coliai A b A Sl Cadi D Al Ml M - D P e TETE TR TN TR TR A TN T AT e T e TN ET 4T T e T

DISCUSSION OF TEST GRID 8

This test is created with a threat density of 0.75. Executiontimes are
much less than in previous tests. The output plots are roughly identical paths
except for the ‘jaggies’ at the beginning of the length 7.5 path, Figure 6.18.
This is obviously due to the necessity for correct positioning prior to
maneuvering through the first pair of small threats. it is an interesting case
since it is the first to demonstrate that a shorter leg length (one not a subset

of the longer length) can be a detriment instead of an improvement.

SEED: 120775 _
]
TOTAL THREAT DENSITY: 0.75 ;J
© 1

THREAT DATA: (radius / Pd / density)

5/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3
LEG LENGTH: 10 LEGS-PER-ARC: S PATHDEFLECTION ANGLE: 90 N
ol
COEFFICIENTS CONFLICT PATH g
6 I L H T L NODES cPy COST LENGTH B
1 30 1 11 1 269 39 0.60 110.43 -
1 40 1 | I B 318 47 0.60 110.43 o
1 S0 1 I B 317 46 0.60 110.43 1
1 60 1 I B 318 46 0.60 110.43 ;
1 70 1 I I 321 46 0.60 110.43 g
1 30 1 o0 0 0 2007 337 0.60 110.43 ~
1 SO t+ o0 0 O 1809 352 0.60 110.43 R
1 70 1 0 0 O 1822 362 0.60 110.43 »
LEG LENGTH: 7.5

1 S50 1 1 1 1938 806 0.60 115.46 :'sJ
Table 6. 14]
Results for Test Grid 8 - Improved A* 3
[]
]
-

Y

- v v T v ¥ T

Ty

T Tw

W W T VUW T N W A e e e i Tk kel et et S

Path Length = 111.92
Leg Length = 10.00
Conflict Cost = 1.05

Figure 6.15
Path Generated — Test Grid 7.

Path Length = 106.82
Leg Length = 7.50
Conflict Cost = 1.05

Figure 6. 16
Path Generated — Test Grid 7.2

.V

o

Ll"- e

L)

PV Py

e

o,

ARt A BNt At S e Eaaw e doa Mt Jian e e r el e Jd S T~ B T e S S "RA TN S A A S v I Ae S T e

SEED: 89204
TOTAL THREAT DENSITY: 1.0

THREAT DATA: (radius / Pd / density)
3/0.5/0.4 7.5/0.25/0.3 10/0.1/70.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90
COEFFICI CONFLICT PATH
¢ I L H I L NODES CPU COJT LENGTH
13 1 1 1 1 846 244 1.05 111.92
1 40 1 1t 1 1 864 248 1.05 111.92
1 SO : 1t 1 1 886 258 1.05 111.82
160 1 1 1 1 900 262 1.05 111.92
170 1 1t ot 1 913 265 1.05 111.92
LEG LENGTH: 7.5
1 so 1 1 1 1 3287 2662 1.05 106.82
Table 6.13

Results for Test Grid 7 — Ax w/straight-line

" 10

,AAA.'.'-:

-"

.

XY

TETOTT I, W W W e i Aa kTt Sl Al ekl Sl S Mk &

SEED: 89204
JOTAL THREAT DENSITY: 1.0

THREAT DATA: (radius / Pd / density)
5/0.5/70.4 7.5/0.2570.3 10/0.1/70.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANGLE: 90

COELFFICIENTS CONFLICT PATH

¢ I L H I L NODES CPU COJT LENGTH
13 t+ 1t 1 817 231 1.05 111.92
1 40 1 1 1 1 846 240 1.05 111.92
1 s0 1 1 1 1 872 250 1.05 111.92
1 60 1 1 1 1 894 257 1.05 111.92
170 1 1 1 1 906 260 1.05 111.92
LEG LENGTH: 7.5

150 v 1 1t 1 325 @ 2734 1.05 106.82

Table 6.12

Results for Test Grid 7 - A% w/box

.

F Y

[

! I.

N. .

T
R
|
.

[N
RN By

.
Q. ..

.

M b B S Sn e Snd Ban B e

T e e Ty g Cafii- st e g LN N Tl LR PR T] .?.}

60 1
SEED: 89204 j
TOTAL THREAT DENSITY: 1.0 -6
THREAT DATA: (radius / Pd / density)
5/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3
LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90 "
COEFFICIENTS CONFLICT PATH

6 I L H T L NODES cPu COST LENGTH

1 30 T 846 237 1.05 111,82]

I 40 1 1 1 1 864 243 1.05 111,92 ¢
1 50 1 I I 886 252 1.05 111.92

1 60 1 I 800 256 1.05 111.92

170 1 I 913 258 1.05 111.92

1 30 1 0 0 0 1631 346 1.05 111.92

1 SO 1 0 0 0 1432 342 1.05 111.92 .
1 70 1 0 0 0 1391 349 1.05 111.92 4
LEG LENGTH: 7.5

1 30 1 P 2659 1933 1.05 106.82]
1 S0 1 111 3284 2656 1.05 106.82 L
Table 6. 11
Results for Test Grid 7 - Improved Ax -

1
)
]
]
@
I
1
|
|
J
«

oId It i Ihe IhAR A YA A AT AT A I A=A N IR S R M 29 200 A e e T e e N T P e e
'. ° 59
DISCUSSION OF TEST GRID 7

The results for this test are consistent with those of the previous tests.

C

'. Also consistent with the previous test is the inability to execute a case with
leg length of S within the four—hour CPU limit. This is true even though the

E threat density has decreased to 1.0! The output plots, Figures 6.15 and

6.16, are similar except for the more direct path the 7.5 route takes through
the threats prior to the goal. An additional execution of a 7.5 case is included

with the coefficients 1-30-1-1-1-1. A small improvement is evident between

this and the 1-50-1-1-1-1 case with a leg length of 10. A considerably

greater improvement is obtained when the leg length is 7.5, i.e. 2659 nodes

. with 1-30-1-1-1-1 vs. 3284 nodes with 1-50-1-1-1-1.

| et fedt Sadt RS Sas T Sad SR AAIN K Bt B N A S Rt S B SR 1 S S A B I A g A AL S e S ol MM AR R an SlaC st AR e A AP SPRNE SRR

[O

—®

{ Path Length = 113.40

- Leg Length = 10.00 j
1 Conflict Cost = 2.20 .11.
s Figure 6.13]

Path Generated — Test Grid 6.1

E
]
.9

.SV

i e
Hil BY

e @

1 H 35132
s BEHE HEEY

R - an 71rr‘s—T ~—

@,

111.91
7.50
2.10

F Path Length
: Leg Length
Conflict Cost

Figure 6. 14)
Path Generated - Test Grid 6.2

-
."." . L .
L._A‘A_‘_AQ AT 30 W

L;-». - P [Sy S SR S o N PP e JPYP RS I T S YR NPY. | va PR G W SN U YN]

Tv—?vv

NN T T e T W T W T ooy o g W T T T T R T, W ST YT T TR B

.......

72

Path Length = 104.57
Leg Length = 3.00
Conflict Cost = 0.10

Figure 6.21
Path Generated — Test Grid 9.3

S T S - -—

TTNTUTTT T
1

4

—d

Y A_A‘L.

——— N LANE s Sl dere arae A St S g S e R S T~ ~ Y T T TR T TR TN TR O T ST e e - -

DISCUSSION OF TEST GRID 10

This grid, like the previous one, is also a density 0.50 test. It also

develops roughly the same path regardiess of leg length. The significant]
difference with this test is that it behaves exactly the opposite of all previous
b : tests in this group (test grids S through 10) concerning the value of the ;‘W
L g-threat coefficient. in the previous tests, increasing the value of this]
: coefficient decreased the performance of the algorithm, i.e. it required 4
t‘ greater nodes. In this test, the performance improved as this coefficient i?

increased. Additional cases were run with g—threat coefficients of 100 and 1

500 with consistent resuits. This domain-dependent phenomenon hampers J
; efforts to discover the 'perfect’ set of coefficients. .‘I
E There may be some question about the merit of the heuristic if the jif
E‘ g-values are set very high, for example, using the g-coefficients 1-500-1. .i
: Wwhen the h—-coefficients are 1-1-1 with this set of g-values, the solution
': requires 72 nodes. Without a heuristic, h-values set to zero, the same
E‘ solution required 1130 nodes! A possible explanation may be that even though %’j‘
[the heuristic value is relatively small compared to actual cost, it may be]
E quite useful as a guidance tool by breaking ties. :
}_‘ The output plots, Figures 6.22 through 6.24, show that the cases with leg D'
F length less than 10 were able to mansuver a much more direct path around 1
g the 1ast mid-sized threat. This resuilts in a much shorter path length while J:
’ maintaining the same conflict cost. .
[

]
'i
|
|
| .
R e T A L R N J

74

SEED: 39306 .
F
T [TY: 0.5 |

THREAT DATA: (radius / Pd / density) g
5/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHODEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
G I L H T L NODES CPU COST LENGTH
1 30 1 1 1 1 226 26 0.00 115.54
1 40 1 1 1 1 196 20 0.00 115.54
1 S0 1 1t 1 1 181 18 0.00 115.54
1 60 1 1 1 1 89 7 0.00 115.54
170 1 1 1 31 6 0.00 115.54
1100 1 1 1 73 52 0.00 115.54 1
1500 1 1 1 1 72 49 0.00 115.54 i
1 30 1 0 0 0 1827 301 0.00 115.54)
1 SO 1 0 0 0 1739 320 0.00 115.54
1 720 1 0 0 0 1723 33] 0.00 115.54
1500 1 0 0 0 1130 195 0.0C 115.54
LEG LENGTH: 7.5 Y
1 sO 1 1 1 1 137 17 0.00 111.01 .
LEG LENGTH: 5

4 F 0 1t 1 1 1 298 54 0.00 109.49

3

[Table 6.20

¢ Results for Test Grid 10 ~ Improved A*

—

TP Y

PN
-

ekl
SN
S

\

. s, . .. L e e e L
R T U U W TV DR I T T P P I N S N o A Y S

e T S b in A Wy v e e T Y ey T W e TN Y AT TN W Ty s Ty T T e T e e
d G S A i Y Ve S e AN - ~ie B Yl "R NRile S b el il N A Sl Sk AaiE N A4 LA A . - DN AP vv*T -

!
IL L

g 75

(SEED: 39306 o]
IOTAL THREAT DENSITY: 0.5 ':
1
THREAT DATA: (radius / Pd / density) R
5/70.5/0.4 7.5/0.25/0.3 10/0.170.3 o
* 4
LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90 :
COEFFICIENTS CONFLICT PATH .f‘
6 I L H I L NODES CPU COST LENGTH J

1 30 1 | | 1 220 25 0.00 115.54

1 40 1 1 1 191 20 0.00 115.54

1 50 1 | 1 177 17 0.00 115.54

1 60 1 1 ! | 89 7 0.00 115.54
1 70 1 1 i | 81 6 0.00 115.54 "
'1'
LEG LENGTH: 7.5 '
1 50 1 1 i 1 136 17 0.00 111.01 *-_i
. |
Table 6.2} q
Results for Test Grid 10 - Ax w/box B
-1
B
o]
B
* .
= -1
b .
b
b -
' o
b <
. R
[1
’ of
8 3
i)

pe vy T B R W g g W WL WL Wy Wy WO W W L i
P AN . - . MBE i Al Nl Al Sl R -

76

BN) FOR

SEED: 39306
IOTAL THREAT DENSITY: 0.50

THREAT DATA: (radius / Pd / density)
5/7/0.5/0.4 7.5/0.25/70.3 10/0.1/70.3

. LEG LENGTH: 10 LEGS-PER-ARC: 5 PATHDEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH X
¢ I L H I L NODES CPU COST LENGTH R

226 26 0.00 115.54 _J
196 20 0.00 115.54

181 18 0.00 115.54
89 7 0.00 115.54
81 6 0.00 115.54

| I
A .

A
| |

1
N

,.
‘a

30
40
30
60
70

— et =t m— —
- and w=t s et
- e ——t -t -
-t - et —h -

LEG LENGTH: 7.5
1 50 1 1 1 ! 137 17 0.00 111.01

Table 6.22
Results for Test Grid 10 - A* w/straight-line

L
o

JMQALJ_A. .

[JRTIRn

o1

s
M o)

S FUEN

R |

h,-f p——y

‘a

77

Path Length = 115.24
Leg Length = 10.00
Conflict Cost = 0.00

Figure 6.22
Path Generated — Test Grid 10.1

Path Length = 111.01
Leg Length = 7.50
Conflict Cost = 0.00

Figure 6.23
Path Generated - Test Grid 10.2

. . - ‘. e . St . -
. N« L U W STy I T W W N . S S Y T S S T S Y T, S

T

;ji

.A!L " ¢1L_l !

-

DR,

B A v A S e A e Ve T A e P S T R B e i R A e T

78 o)

Q.

Path Length
Leg Length
Conflict Cost

109.49
5.00
0.00 ®

Figure 6.24
Path Generated — Test Grid 10.3

L

~0

Vil. CONCLUSIONS

r . This thesis has clearly demonstrated the applicability of artificial
intelligence techniques in the area of automated route planning. Certainly,

;i' these techniques have long been applied to route planning. For example,

5 moving robots through a room or solving the travelling salesman probiem of
finding the shortest route which permits him to visit all cities, but only once.

One benefit of this thesis is the application of these techniques to a

‘real-world problem where current solutions are less than successful. In
that sense, this thesis is quite successful. It is especially attractive in a

strategic route planning arena where routes are created, using complete

4
knowledge bases, prior to the execution of the route. In a tactical situation,
where the immediate problem of avoiding the obstacle immediately ahead is
u paramount, then the FPG solution Is most desireable, due to its speed of

execution. An interesting alternative to this tactical problem would be to
combine the two methods. Certainly threats or obstacles that weren't known &

) prior/ are going to be encountered, for example, a thunderstorm during an
aircraft flight. The FPG model can quickly determine avoidance procedures
based upon ‘'seeing’ the new obstacle, while the more time—consuming
Path-Finder model could re-route the remainder of the path given the new
information and prior knowledge of future obstacles.

It is difficult to justify the expense of the SNOOPER model in virtually

79

T PR ACn S T A E i St A g Sad Sl i Jendts A Sl - (i e e e~ S s -t st Svan “iten b0 —— —— - ASh JouE g 9 Sacen amn ana

every situation. Only if it is a necessary feature of the problem that a
starting point, or even a few starting points, not be defined. An aspect of the
Ax search that has not been mentioned before is that it can be allowed to
continue to find paths beyond the first success. The Path-Finder program
could be easily modified to find all paths from a given starting point to a
goal. The method would be to continue letting it expand goal nodes, saving the

pointers so the path may be traced, until some desired condition is reached.

And, it will generate these paths in order of least cost! Certainly, though,
most of these paths will be partially coincident or intersecting. But, another
algorithm might be employed to discard undesireable paths. The point is, the
Ax gearch provides the flexibility to attune the algorithm to specific *
requirements. This includes the inclusion of requirements such as altitude
changes, complex threat modelling, and counter-threat capabilities.

This implementation is not without fault, though. During the initial tests,]
it was sincerely hoped that a ‘'magic’ set of coefficients could be discovered. ‘
Unfortunately, that hope was not fulfilled. Yet, it is clear that there is a #
reasonably small set of coefficients that will give credible results in at least 4
all the cases tested here. Given that the primary goal of minimum threat]
interaction is probably of paramount importance compared to path length, a &
very high value of the g-threat coefficient will ‘guarantee’ a solution of

minimum conflict cost. This method, as the results indicate, may resuilt in

DRTY .Y I

missing a shorter path with the same conflict cost. This problem of
coefficients is a drawback to the current implementation, though not a
serious one. Perhaps an idea for a different heuristic could eliminate the

problem entirely.

DR SN S . e A e L e T A Y O e B e I A . D "D i

R
Al .

APPENDIX A

program path_finder (input, output);

const
max_threat_cats = 5;
max_threats = 100;
max_legs = 15;
pi = 3.141592654;
deg_rad = 0.01745329252;

type
list_type = (open_list, closed_list);

coord_pair = record
x_coord, y_coord: real;
end;

threat_rec = record

category, n_centers : integer;

radius, pd: real;

center : array[1..max_threats] of coord_pair;
end;

node_ptr = “node_rec;
node_rec = record
endpt : coord_pair;
g-value, h_value, f_value : real;
link, parent : node_ptr;
child : array[)..max_legs] of node_ptr;
end;
var
(* global variables x)

x_limit,y_limit,legs_per_arc,nr_threats, nodes_exp, cpu_time,
Martelli_count : integer;

path_arc, leg_arc, leg_length, g_coeff, g_threat_coeff, g_length_coeff,
h_coeff, h_threat_coeff, h_length_coeff : real;

first_run: boolean;
start, goal : coord_pair;

threat : array[l..max_threat_cats] of threat_rec;

81 q

.

Lot

- |
Tt Lt T .
PPN ‘.L“.J‘IAJ'AL_‘A.A_“-" N

0.

T

WU T ey B aaan e dnrc

v 8 sl A i e M s “ng _oon dndh n Sebal e i snbi AL it aENES o
Pl B A P - e

82

open, closed, path_ptr : node_ptr;

function distance (point_a, point_b : coord_pair) : real;
(» compute the distance between the given points *)

begin
distance := sqrt((point_a.x_coord - point_b.x_coord) *x 2 +
(point_a.y_coord - point_b.y_coord) x* 2);
end;

function fit_eq (a, b: real) : boolean;
(* evaluate approximate equality of two real numbers x)

begin
it abs(a - b) < 0.00001 then
flt_eq := true
else
fli_eq := false;
end;

procedure clear_lst(1ist : node_ptr);
(= destroy given list)

var
next, old : node_ptr;

begin
next := list;
while next <> nil do
begin
old := next;
next := next”. link;
dispose(old);
end;
end;

function threat_eva) (point_a, point_b: coord_pair) : real;

Db,

PR

PRSCREWS, V)

v - - T W e T Y W WL Y Y
Al Mg v BN v LA S T S DR R A i A A A0 e A R A A S

(» evaluate threat cost between given points »)

label
10003

var
i, categ : integer;
cost, point_to_line, a, b, w, z, dist_ab, dist_ac, dist_bc : real;

begin
cost := 0.0;
dist_ab := distance(point_a, point_b);

if dist_ab = 0.0 then (= true when goal node generated %)
goto 1000;

(* compute coefficients for distance from a point to a line x)
a := point_a.x_coord - point_b.x_coord;

b := point_a.y_coord — point_b.y_coord;

z:=3qrt(axx 2+ b *x2);

w:= a3 ¥ point_a.y_coord - b x point_a.x_coord;

for categ := 1 to nr_threats do
with threat{categ] do
for i:=1 to n_centers do

begin

point_to_line := abs(b * center[i).x_coord - a %
center[i]l.y_coord+ w) / z;

dist_ac := distance(point_a, center{i]);

dist_bc := distance(point_b, center{i]);

if point_to_line < radius then

(x doe. threat cover an endpoint %)
If ((dist_bc < radius) and (dist_ac > radius)) or

((point_a.x_coord = 0.0) and (dist_ac < radius)) then

cost = cost + pd

(% is it within a box around the line segment *)

else if (dist_bc <= sqrt(dist_ac *x 2 + dist_ab *x 2)) and
(dist_ac <= sqrt{dist_bc »» 2 + dist_ab *» 2)) and

(dist_ac > radius) then
cost := cost + pd;
end;

1000:
threat_eval := cost;

end;

-~ 3 ek o PPV S A S) . g oo fidbresdibnecd

. . Te e .
- PR W O PN T e |

Y

procedure input_data;
(* no input editing is performed in this version... x)

var
ch: char;
point : real;
i:integer;
execute_flag : boolean;

beqin
execute_flag := false;
while (not eof) and (not execute_flag) do
begin
read{(ch);

if (ch ='G") and (first_run) then
readin(x_limit, y_limit)

else if (ch ="P') and (first_run) then
begin
read(point);
start.x_coord := 0.0;
start.y_coord := point;
readin(point);
goal.x_coord := x_limit;
goal.y_coord := point;
end

else if (ch ='T") and (first_run) then
begin
nr_threats := succ(nr_threats);
with threat{nr_threats] do
begin
readin(category, radius, pd, n_centers);
fori:=1 to n_centers do
with center[i] do
readin(x_coord, y_coord);
end

else if ch =L’ then
begin
readin(leg_length, legs_per_arc, path_arc);

(* convert input to radians =)

path_arc := path_arc * deg_rad;

leg_arc := path_arc / (1egs_per_arc - 1);
end

- . N
. L. - . -
Al [Py . PP SR PR LA UL Py Lo s o a s o 3 A s - 2 ..

84

9|, ®; .

W T S

L‘L.- b

N

1
..

—— 4 4k

N A el aar it Lt A Rt gt S AN A Rt I

else if ch = 'C' then
readin{g_coeff, g_threat_coeff, g_length_coeff,
h_coeff, h_threat_coeff, h_length_coeff)
end

else if ch = 'R’ then
begin
readin;
execute_flag := true;
end;
end;

procedure develop_path;
(» main driver for path finding algorithm =)

label
999;

var
f_limit : real;
child_ctr : integer;
on_open, on_closed, failure: boolean;
best, sucr, old : node_ptr;

function generate_legs (point : coord_pair) : node_ptr;
(» return list of successor legs from given point *)

label
1000;

var
i:integer;
leg_angle : real;
first, next, prev: node_ptr;

begin
if distance(point, goal) <= leg_length then

begin

new(first);

with first” do
begin
endpt.x_coord = goal.x_coord;
endpt.y_coord := goal.y_coord;

PP U SV S W W PRI W, S L A S

RV A "l

85

AQLM . 'Lﬂ’ S

. USRI PO

)

. .__g;-.' .

,
.

~A151 949 GENERATION OF FLIGHT PATHS USING HEURISTIC SEARCH(U) 2/2
AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
. € S LIZZA 1984 AFIT/CI/NR-85-17T
UNCLRSSIFIED F/G 12/1 NL

Fiuneo
orc

—T-

——r T Ty

"""""""""

o
4=

Il
o

w

2

Mﬂl-

%f‘ 2

=

=3

2

n22

2

lllllé it e

MICROCOBY RESULUTION TEST CHART

link := ni);
goto 1000;
end;

prev := nil;
first := nil;
leg_angle := —(path_arc / 2.0) - leg_arc;

for i:=1to legs_per_arc do

begin

new(next);

with next”.endpt do
begin
leg_angle := leg_angle + leg_arc;
x_coord := point.x_coord + leg_length * cos(leg_angle);
y—coord := point.y_coord + leg_length * sin(leg_angle);

(% is the new point within the boundaries?)
it (y_coord < 0.0) or (y_coord > y_limit) or
(abs(arctan((goal.y_coord - y_coord) /
(goal.x_coord - x_coord))) > path_arc / 2.0) then
dispose(next)

else
begin
if first = nil then
first := next
else
prev”.link := next;
next”.link := nil;
prev := next;
end;
end;
end;

1000 :
generate_legs := first;
end;

function global_est (point : coord_pair) : real;
(* compute estimate of global cost between given point and goal *)

begin
if h_threat_coeff <» 0 then
global_est := h_coeff * (h_threat_coeff * threat_eval(point, goal) +
h_length_coeff * distance(point, goal))
else

PR Y

-
i

.,.,.‘ . e s -.A
- . L. ' H '
A‘_AL.‘_L’_.J{-A.;AJ J_LJA_‘A.H-A’_A‘A“'A.A““A_A

9.

J-L'_;-_‘......“J s

s

Y —"

PP P

87

global_est := h_coeff » h_length_coeff » distance(point, goal);
end;

function local_cost (point_a, point_b: coord._pair) : real;
(x compute actual cost along the leg from point atob =)

begin
if g_threat_coeff <> 0 then
local_cost := g_coeff * (g_threat_coeff * threat_eval(point_a, point_b)
+ g_length_coeff * distance(point_a, point_b))
else
local_cost := g_coeff x g_length_coeff * distance(point_a, point_b);
end;

procedure insert_node_into_open (new : node_ptr);

var
prev, next : node_ptr;
inserted : boolean;

begin
if open = nil then
begin
(* put it ontop *)
new”.link := open;
open := new;
end

else if open”.f_value >= new".f_value then
begin
(* put it ontop x)
new”.link := open;
open := new;
end

else
begin
(* search through list for correct spot x)
inserted := false;
next := open”.link;
prev := open;
while (not inserted) and (next <> nil) do
if next®.f_value >= new”™,f_value then
begin
new”. link := next;

- L - B . . < . A e . e . P IR
| LT W T WL W, S VY DU WY WAE TSt UPRD U I T S JpNl § < . e

o P
N JRRESR

Lst R A 2t st R

88

"
‘
R DD

prev”.link := new;
inserted := true;
end

else
begin
prev := next;
next := prev”.link;
end;

if not inserted then
begin
new” . link := nil;
prev”.link := new;
end;
end;
end;

'1
]
i
i

procedure reorder_open_list;

(* reorder open list following propogation of better parent #)

var
prev, curr, reorder_list : node_ptr;

begin
prev := open;
curr := open~.link;
reorder_list := nil;

(= remove all out-of-place entries to reorder_list x)
while curr <> nil do
begin
if curr~.f_value < prev".f_value then
begin
prev~.link := curr~. link;
curr®.link := reorder_list;
reorder_list := curr;
end
else
_ prev i= curry
. curr := prev”. link;
end;

Y ey

VT

while reorder_list <> nil do
begin
curr := reorder_list;
reorder_list := curr”, link;

Ll

- o daah e oy
s .
T
' o
]

]

3

]

1

»

J

P T S P L B N o I

e T e e T LT T T TG

89

insert_node_into_open(curr);
end; p
end; :
-4
-
]
procedure propogate_new_g (old : node_ptr; difference : real); V.A_j
(= propogate improved g-value through successors of old *) : ’]
o
var -]
it integer; o
\::_4
begin R
fi=1 Y
while old”. child[i] <> nil do -
begin
if old".child[i]*.parent = old then
(= old is this child's parent *) J
with old*.child[i]”* do J
begin]
g_value := g_value — difference;
f_value := g_value + h_value;
propogate_new_g(old"~.child[i], difference);
end . 1
-
else if old*.g_value < old".child[i]*.parent”.g_value then 1
(= old is an improvement over current parent of this child =)
with old~. child(i]* do
begin
g-_value = g_value - parent”.g_value + old".g_value; 2
f_value := g_value + h_value;
: (* propogate to successors with difference in values =) .
L’ propogate_new_g(old”.child[i], parent~.g_value - .
{ 0ld*.g._value); K.
{ parent := old; . 1
r end; . ‘;
i:= succ(i); ;Lfi
end; R
end; .1'
<
4
procedure select_best_g;]
o
{ (s search open for node with lowest g_value node within f_limit bound) : 1
L . 11
4
o
E

R AR AT ke

RO e st s il S SO S S gPuL g bl SN SIS M CAMEMA A o M- SRS 2 Sl IS Wl Aol A Sad Sk

(» -part of the Martelli improvement

var
prev, next : node_ptr;
best_g : real;
within_limit : boolean;

begin
Martelli_count := succ(Martelli_count);
best := open;
next := open;
prev := nil;
within_limit := true;
best_g := open~.g_value;

while (next”.link <> nil) and (within_limit) do
if next*.link"~.f_value < f_limit then
begin
if next™.link~.g_value < best_g then
begin
prev := next;
best := next™.1link;
best_g := best”.g _value;
end;
next := next”.link;
end
else
within_limit := false;

if prev = nil then (= top of open was best x)

open = open”. link
else

prev~.link := best*.link; (* remove best from open list *)

end;

procedure update_old_node (new, old: node_ptr; mode : list_type);

(= clean—up values/pointers for duplicate node, then trash it x)

var
difference : real;

begin

best~.childlchild_ctr] := old;

child_ctr := succ(child_ctr);

if new”.g_value < old”.g_value then
begin
old".parent := pest;
difference := 0ld”.g_value - new".g_value;
old*.g._value := new".g_value;

LSl ek 2t nd gudl adt Sed ek sl Aok Sl Sl b

90

rp———

PP ——
. , .

Y vy

rr—r.v Ve TV, Y, VY, VY
oo

LAat s Segh ek gk Sad s Mg e g andl Wad dad Sall Sl Sl Ao S Sl fed- Al At Bt bl M Al S SANLAFE A" I SN el s el A S BN Sl NI R

if mode = closed_list then
begin
propogate_new_g(old, difference);
reorder_open_list;
end;

with old” do
f_value := g_value + h_value;
end;
end;

procedure search_list (mode : list_type;

var sucr : node_ptr; var

: found : boolean);

(» search named list for duplicate of sucr node #)

var
indx : node_ptr;

begin
if mode = open_list then
indx := open
else
indx := closed;
found := false;

while (indx <> nil) and (not found) do

if (fit_eq(sucr~.endpt.x_coord, indx".endpt.x_coord)) and
(fit_eq(sucr~.endpt.y_coord, indx".endpt.y-coord)) then

begin

found := true;
update_old._node(sucr, indx, mode);
old := sucr;

sucr := sycr”. link;

dispose(old);
ond
else
fndx := indx™. link;
end;

begin (* main section of develop path «)

(= create start node on open x)
new(open);
with open” do

P R Y |

PRI SR IR I

91

-

—

Laficamecy

.

) I L.
!A‘--hA‘A JJJ):AA

. 1
ey

~)
[.

N

B " A A s o Rdn St Jen e b St “anciie S i Shlin Y0 S et uan Sl aih Sl andh Al Snd Sed AMEEC A AR AAR S S I At i

.......

begin

endpt.x_coord := start.x_coord;
endpt.y—_coord := start.y_coord;
g—value := 0, 0;

h_value := 0.0;

f_value := 0.0;

link := nil}

end;

failure := true;

closed := nil;

f_limit := 0.0;

nodes_exp := 0;

cpu_time := clock; (* system dependent *)
Martelli_count := 0}

repeat
if open = nil then (x failed =)
goto 999;

nodes_exp := succ(nodes_exp);
if open™.f_value < f_limit then
select_best_g (* Martelli improvement #)
else (% best node is on top x)
begin
best := open;
open := best”. link,
f_limit := best™.f_value;
end;

best~.link := closed;
closed := best;
if best”~.endpt.x_coord = x_limit then (* at goal x)
begin
fallure := false;
goto 999;
end;

child_ctr := 13
sucr := generate_legs(best".endpt);
while sucr <> nil do
begin
sucr”,parent := best;
sucr”.g _value := best*.g _value +
local_cost(best~.endpt, sucr”.endpt);

(= search open list for duplicate node =)
search_list(open_list, sucr, on_open);

(s if not on open, check closed... *)

92

0.

.

hadi il

*2faat At A St Mg B S/l Radl S Jibr i S g T T W T r—_—— .~

search_list(closed_list, sucr, on_closed);
if (not on_open) and (not on_closed) then
begin
best~.child[child_ctr] := sucr;
child_ctr := succ(child_ctr);
with sucr” do
begin
h_value := global_est(endpt);
f_value := g_value + h_value;
chitd{ 1] := nil;
end;
old := sucr”.link;
insert_node_into_open{(sucr);
sucr := old;
end;

best~.childlchiid_ctr] := nil;
end;
until false; (% forever *)

999 :
cpu_time := clock - cpu_time; (* system dependent x)
if failure then
path_ptr := nil
else
path_ptr := best;
end;

procedure output_results;

var
iy jy k, indx : integer;
path_length, conflict_value: real;
prev, curr : node_ptr;

begin
page;
writeln('*xx Path Finder Results *xx’);
writeln;

writeln('Grid limits: *, x_limit : 4, y_limit : 4);
writeln;

writeln('Start coordinates: ', start.x_coord: 6:2, start.y.coord:6:2);
writeln('Goal coordinates: ‘, goal.x_coord :6:2, goal.y_coord :6:2);
writeln;

writein('Leg generation options: *);

B NSO,

. SV

[ST

K YO W e N 1

i - A!

T

A aE 1aad sk el SR pess aw i am a2 PIMA Sk A gt Andh e aell And aadh s e DRI B S Zhii Biiec s T Jiecinns i Subed

94

writeln(’ ' : 5, 'Leg length: ', leg_length:5:2, ' Legs per arc:’,
legs_per_arc : 2, ' Path arc:’, path_arc / deg_rad:5:2);
writeln;

writeln('G coefficients (g - threat — length):‘, g_coeff:6:2, '-",
g_threat_coeff:6:2, ' -', g_length _coeff:6:2);
writeln('H coefficients (h ~ threat — length): ', h_coeff:6:2, '-',
n_threat_coeff: 6:2, '- ', h_length_coeff: 6:2);
writeln;

writein('Threats:');
for i:=1to nr_threats do
with threat[i] do
begin
writeln(’ ‘' : 5, ‘Category: °, category: 3, ' Radius: ', radius:5:2,
“Pd:’, pd:S:2, Quantity:', n_centers:4);
writeln;
for j:=1to (n_centers div3) + 1 do
begin
for k := | to 3 do
begin
indx:i=(j- 1) x3+k;
if indx <= n_centers then
with center(indx] do
write(' "2 3, x_coord:8:4,"',’, y_coord:8:4);
end;
writeln;
end;
writeln;
end;

writeln(‘Path from goal:');
prev = nil;
curr := path_ptr;
conflict_value := 0.0;
path_length := 0.0;
while curr <> nil do
begin
with curr”.endpt do
writeln(*: 3, x_coord:8:4,",", y_coord: 8:4);
if prev <> nil then
begin
path_length := path_length + distance(curr~.endpt, prev".endpt);
conflict_value := conflict_value + threat_eval{curr~.endpt,
prev”.endpt);
end;
prev i= curr;
curr := curr”,parent;
end;
writeln;

——— - ot b S Mo S Sl S e St S AL " AR e S e e e T/ SR I A Yh A e A M e Al R

95

writeln('Statistics:');

writeln(’ " : 3, 'Nodes expanded : ', nodes_exp);
writein(’ ' :
writeln(" ' :
writein(' ' :
writeln("*
writeln;
writeln;

end; '11

begin (* main section of path_finder &)

, 'CPU time(msecs): ', cpu_time);

, 'Conflict cost :', conflict_value: 10:2);
, 'Path length ', path_length: 10:2);

, 'Martelli count :', Martelli_count);

WL WW

first_run := true; 3

while not eof do
begin
Input_data;
develop_path;
output_results;
clear_list(open);]
clear_list(closed);
first_run := false;
end;

end. (= end of path_finder x)

e

@

P I SRR, W I - S - 2 ‘ ol - - s i ol e 2 LY, . 2 .. 2 - PRSI N S SN ...J

AAiafh s Rat Jiem ahes | A et At M Bhfs ~ 8 el 2hanh ol S Wi a4 i S Y Aa SN /b A b i A A il AT L i)

S

96

o T

.
a1

APPENDIX B

(* define a main-level TYPE: *)

N

mode = (LOCAL, GLOBAL);

(* a) following code changes are underlined... *)

function threat_eval (point_a, point_b: coord_pair; eval.mode : mode) : real;
(* evaluate threat cost between given points *)

label
1000;

var
i, categ: integer;
cost, point_to_line, a, b, w, 2, dist_ab, dist_ac, dist_bc : real;
prox_dist : real;

begin
cost :=0.0;
dist_ab := distance(point_a, point_b);

if dist_ab = 0.0 then (x true when goal node generated *)
goto 1000;

(* compute coefficients for distance from a point to a line x)
8 := point_a.x_coord - point_b.x_coord;

b := point_a.y_coord - point_b.y_coord;
2:=sqrt(asxx2+bxx2);

wi= a % point_a.y_coord - b % point_a.x_coord;

for categ := 1 to nr_threats do
with threat[categ] do

begin
if mode = LOCAL then
r .=
else
prox_dist := Jeg_length:

for i:= 1 to n_centers do
begin
point_to_line := abs(b * center(i].x_coord - a *
center{i].y_coord + w) / 2;

.S i PR, S S WA MY L A - - a . e o m’ e e B - . . L N P N R P U S U SIPUL YRPVRNY PRI SRy

dist_ac := distance(point_a, centerli]);
dist_bc := distance(point_b, centerli]);

if point_to_line < prox_dist then

(* does threat cover an endpoint *)
if ((dist_bc < prox.dist) and (dist_ac > prox_dist)) or
((point_a.x_coord = 0.0) and (dist_ac < prox_dist)) then
cost := cost + pd

(* 13 it within a box around the line segment *)

else if (dist_bc <= sqrt(dist_ac ** 2 + dist_ab ** 2)) and
(dist_ac <= sqrt(dist_bc *x 2 + dist_ab *»x 2)) and
(dist_ac > prox_dist) then

cost := cost + pd;
end;
end;
1000:
threat_eval := cost;

end;

function global_est (point : coord_pair) : real;
(* compute estimate of global cost between given point and goal *)

begin
if h_threat_coeff <> 0 then
global_est := h_coeff * (h_threat_coeff
r ev nt, go LO +
h_length_coeff * distance(point, goal))
else
global_est := h_coeff * h_length_coeff * distance(point, goal);
end;

function local_cost (point_a, point_b: coord_pair) : real;
(x compute actual cost along the leg from point atob *)

begin
if g_threat_coeff <> 0 then
local_cost := g _coeff * (g_threat_coeff
+

threat_eval(point.a, pointb, LOCAL)
g-length_coeff * distance(point_a, point_b))

else

|

e b Sanat i St ke et Ahats ket SathTobafh ARadn Miads 3 -
. B

local_cost := g_coeff » g_length_coeff » distance(point_a, point_b);
end;

(* Modify the output_results subroutine: =)

conflict_value := conflict_value +

threat_eval(curr™.endot,prev”, endot, LOCAL)

(» End of changes... *)

R
VS SN O W W W W Wy

98

LA, WO WO S o .

YW ELT

hd v -
m,._ g Rl e Siete 2ge Mgk M a i aren o Balaaben 4 e e € v L AT S A i 27 A A ZNe 008 AR S g D A Dl A A Dl et {
CRRR A et e S it A ORI < . e A N Mt .

99

RO AR B SRR

APPENDIX C

a0

program threat_bldr (input, output, datafil);

]
const }
pi = 3.1415927; -

4

var
i, §, nr_threats, count,legs_per_arc : integer;

seed, total_density, threat_density,
radius, pd, x_coord, y_coord, j
g_coeff, g_threat_coeff, g_length_coeff, -
h_coeff, h_threat_coeff, h_length_coeff, +
x_limit, y_limit, grid_area, start, goal,]
path_angle, leg_length : real;

datafil : text;

function rand (var seed : real) : real;

begin

seed := ((25173 x seed) + 13849) mod 65536;

rand := seed / 65536;]

end; L |
1

g — - T——Y v Py e Y Y T Ty Y Y VY WY YW OOTZW v oa
-~
1 t
N N 1

begin (* main section of threat_bldr x)
rewrite(datafil); ‘

writeln(‘Enter seed:');]
readin(seed);

writein(‘Enter x and y grid limits...');
readin(x_limit, y_)imit);

grid_area := x_limit ® y_limit;
writein(datafil, ‘G', x_limit, y_limit);

writein(’'Enter number of threat categories...’);

readin(nr_threats);

writeIn(’Enter total threat density...");

4 readin(total_density);

{ for 1:= 1 to nr_threats do

b begin

! writeln(‘For threat category:’, i: 3, ' enter radius, pd, density...’);
readin(radius, pd, threat_density);

wliar it S e cacatiar

hé

count := trunc(total_density * threat_density # grid_area /
(pi * radius #» 2));
writeln(datafil, 'T’, 1, radius, pd, count);
for j:= 1 to count do
begin
x_coord := x_limit * rand(seed);
y_coord := y_limit * rand(seed);
writeIn(datafil, x_coord, y_coord);
end;
end;

writein('Enter start and goal coordinates...');
readin(start, goal);
writeln(datafil, 'P', start, goal);

writeln(‘Enter leg length, legs per arc, and path deflection angle...

readin(leg_length, legs_per_arc, path_angle);
writeln(datafil, ‘L', leg_length, legs_per_arc, path_angle);

writeIn(’Enter g coefficients (g — threat — length):');
readin(g_coeff, g_threat_coeff, g_length_coeff);

write(datafil, 'C’, g_coeff, g_threat_coeff, g_length_coeff);
writein('Enter h coefficients (h - threat - length):');
readin(h_coeff, h_threat_coeff, h_length_coeff);

writeln(datafil,h_coeff, h_threat_coeff, h_length_coeff);

writeln(datafil, R');

end.

PH

A

e

-

lel e ey

vl

e e e

—

.v‘. b . fe e

S M- o ob AN S i v Aan de aom 4 AR S A s AN A R AR B I 8 e B e M T AR Rt IR S YT TR TN AT T Ta s

BIBL IOGRAPHY]

A

(1] Rich, E., Artificial Intelligence, McGraw-Hill, 1983 ’
(2] Barr, A. &E.A. Fiegenbaum, Handbook of Artificial Intelligence,]
Kaufman, 1981]

[3] Nilsson, N., Principles of Artificial Intelligence, Tioga, 1980
[4) McLaughlin R.G., "Description and Use of SNOOPER I1I, A Model for

Determining the Strategy Needed Over Optimum PEnetration
Routes”, Cornell Aeronautical Laboratory, 1971

[S] Martelli, A., “On the Complexity of Admissible Search Algorithms",
Artificial Intelligence, Vol 8, 1877

[6] Grove, D., "Documentation for the FPG Model", University of Dayton, 1980
(7] Gelperin, D., “On the Optimality of Ax*, Artificial Intelligence, Yol 8, 1977
(8] Hart, P.E., N.J. Nilsson & B. Raphael, A Formal Basis for the Heuristic

Determination of Minimum Cost Paths", JEEE Transactions on SSC,
Vol 4, 1068

[9] Hart, P.E., N.J. Nilsson & B. Raphael, "Correction to 'A Formal Basis
for the Heuristic Determination of Minimum Cost Paths’ *, SIGART

Newsletter, Vol 37,1972 E
(10] Fikes, R.E. & N.J. Nilsson, “STRIPS: A New Approach to the Application)
of Theorem Proving to Problem Solving®, Artificial intelligence, !’

Yol 2, 1971

101

“u N
K o e .- . X . ~ N . -
L U U VPSR PN T WS IS TSP PP P T 3 SRR SRR St L e B et e, Rt I e, B e A O, 0]

T

A uh N S T Sk St A A A K A

T

e ‘A 3
Aol) . A Sk A

L Anat e Bia Seuk Shess SRah 2 e “Shedy 3
DA - DU
N - - v

| e

Rl

mh ek A &

5—-85

A LA LA e

S
i

SR ST U U Y

.

- - - - v e

' ' Ly« . Lttt
~ . RSN . AN) FSPIP Pt DN e s

