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ABSTRACT

Lizza, Carl Steven. M.S., Department of Computer Science, Wright State
University, 1984. Aircraft Route Planning in a Hostile Enemy Environment
Using Heuristic Search.

This thesis examines a solution to the problem of developing an effective,
computer algorithm to route aircraft through hostile enemy defenses. The

problem was proposed to assist in studies of the impact of varied, on-board

countermeasures upon pre-planned aircraft routes. The quality of a route

can be defined In terms of the cost of Interaction between the aircraft and

threats encountered along the path, and the length of the path. Current

methods of automated routing are either inefficient or produce unsatisfactory

results. Given a more general description of the problem, this thesis details

a solution for developing routes by using the artificial intelligence technique

of heuristic search in an A* algorithm. The algorithm uses heuristics based

upon estimates of the degree of threat interactivity and distance from a point

to the goal. Due to the nature of the heuristic, the A* algorithm cannot

guarantee development of a least-cost path. However, the heuristic may be

adjusted to Insure reasonably good results in most cases. Test cases confirm

improvements in efficiency while maintaining solution quality comparable to

previous methods. The flexibility of the algorithm allows applicability to the

specific aircraft routing problem and to other route planning applications.

lit
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I. INTRODUCTION

This thesis topic was proposed by Mr. William McQuay of the Air Force

Wright Aeronautical Laboratories, Wright Patterson AFB, Ohio. The proposal

was to develop a system that would create aircraft penetration routes

through a hostile enemy environment. Given the ability of an aircraft to carry

various configurations of threat-countering devires, the system would enable

a planner to evaluate the effect of different configurations upon route length,

threat interaction, fuel consumption, etc. Clearly, this problem is

characteristic of a general class of problems involving developing routes

through obstacles. For example, building a road as short as possible while

trying to avoid hills, lakes, etc. Or, If the obstacles can be considered 0

impenetrable, a robot moving around a room of furniture. Therefore, it was

decided to attempt to develop a solution to a more general problem

description while maintaining applicability to the specific task of aircraft

routing.

This paper describes methods currently used to solve the specific

problem of aircraft routing, proposes alternative solutions using artificial

intelligence techniques, defines a generalized problem space, then presents

the Implementation of a heuristic search algorithm. Finally, the algorithm Is

tested with the results analyzed and conclusions presented.

"S
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node to node n is known when node n is generated if n is not the successor of

any other nodes. However, the actual cost of the path from node n to the goal

node can only be estimated. It is the function of the heuristic to estimate this

cost, designated h*(n). A new evaluation function, f*, can now be defined as:

f*(n) = g*(n) + h*(n).

A 6RAPHSEARCH algorithm which employs this evaluation function is

called algorithm A. The term g* is the cost of the current best path from the

start node to node n. The h* term represents the estimate of the cost from S

node n to the goal. If h*(n) = 0 for all n, and g*(n) = cost of n for all n, then

algorithm A is a breadth-first search. Further, if h*(n) i h(n) for all n (h*

Is optimistic), then algorithm A will find an optimal, or least cost, path to

the goal. This algorithm is called an A* (A-star) algorithm. It has been

proven (Nilsson[3]) that the A* algorithm is admissible, that Is, it always

finds an optimal path when the heuristic is optimistic.

The Importance of the heuristic function can now be examined. If the

heuristic function h*(n) = h(n) for all n, then the function is a perfect

estimator and the algorithm will perform as a depth-first search along the

optimal path. And, as stated above, if h*(n) - 0 for all n, then the algorithm

performs as a breadth-first search. So, the closer h*(n) estimates h(n), I

the closer the algorithm will act as a depth first search over minimum

breadth. That is, fewer nodes will need to be expanded.

A heuristic estimate which improves as successors are generated along

the same path Is called consistent. With a consistent heuristic, the A*

algorithm will be optimal in terms of efficiency, I.e. it expands the fewest
ppossible nodes. When the heuristic is inconsistent, i.e. the estimate does not
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of artificial intelligence techniques. Heuristics are utilized in step 8 of

GRAPHSEARCH to 'intelligently' order the OPEN list, where the most

promising node Is placed at the head of the list. These heuristics are a means

of estimating the 'solution potential' of a problem state. For example, Figure

3.3 depicts the familiar fifteen-puzzle. The problem is to arrange the tiles in

sequential order, left-to-right, top-to-bottom. A simple heuristic may be:

count the number of tiles already In the correct position. A more complicated

Figure 3.3
15-Puzzle

heuristic may be : estimate = (C1I * count of the number of tiles already in

the correct position) + (C2 * the distance of tiles from their correct position)

+ (C3 * the count of the sets of adjacent tiles whose correct locations are

reversed), where Cn are weighted coefficients. !

An evaluation function, f, Is defined as:

f(n) ,, g(n) ~ h(n)

where g(n) Is the actual cost of the best path from the start node tn node n,

and h(n) is the actual cost of the least cost path from node n to the goal

node. So, f(n) is the actual cost of the path from the start node to the goal

node which passes through node n. The least cost of the path from the start

3 11 a
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solution, if one exists, but the solution with the least cost. Due to the nature

of the tree structure, the number of nodes at each level increases

exponentially. This search scheme is therefore extremely expensive In terms

of memory and CPU requirements.

In an exhaustive, breadth-first search, as outlined above, every terminal

node that is a goal node will yield a solution path. Essentially the technique of

SNOOPER is goal directed, breadth-first search. It is 'goal-directed' since the

goal node is the root of the tree. It is an exhaustive search in that every node

generated Is expanded. Consider a problem presented to SNOOPER with a grid

100 by 50 units In size. SNOOPER generates 16 possible moves at every point

(eight directions, two altitudes), except for edges. Therefore, there are

slighty fewer that 100 * 50 * 16, or 80 000, nodes generated. And, many of

these node are duplicates requiring the associated overhead of step 7 in the

6RAPHSEARCH algorithmi Granted, an optimal solution is found for every

point on the grid as a starting point. Indeed, in the route planning

application, multiple starting points to a single goal may be desireable. But If

only a single, best path Is required, A* search provides a more efficient

alternative.

A* SEARCH

The A* algorithm Is an artificial Intelligence technique that attempts to

combine the benefits of depth-first and breadth-first searches by guiding the

direction of the search pattern using heuristics. Heuristics may be defined as

the application of task-dependent knowledge to minimize the size of the tree

which must be created. In this sense, heuristics are part of the 'Intelligence'

S
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7 Order these members of I according to some arbitrary scheme or

according to heuristic merit.

8 Add the 'best' member of M to OPEN.

This modification will produce the same solution as the FPG model. That

is, the FPG model is essentially a depth-first search where the first iteration

always terminates in a solution.

In general, though, depth-first searching can spend a great amount of

effort exploring fruitless paths if few paths lead to a goal node. An

alternative method is breadth-first search.

BREADTH-F IRST SEARCH

The breadth-first search is characterized by a search pattern that

expands the least cost nodes at a level, before proceeding downward to the

next level. The 6RAPHSEARCH procedure can be modified to perform as a

breadth-first search with the following modifications:

3 Set K-co.

LOOP: If OPEN Is empty, exit with best as solution

5 If n is a goal node and its cost is the lowest yet found, save n as

best and set K to the cost of best.

7 Add members of IM with cost less than K to OPEN. i

8 Reorder OPEN according to cost.

IIt can be shown that breadth-first search is not only guaranteed to find a



-K 2  30(3.
D (5) E (5)

1 -_3 2 3

F(6) 67) 118)

Figure 3.2

Ancestor Pointers Following B-node Insertion

DEPTH-F IRST SEARCH

The depth-first search technique is characterized by a search pattern

through the tree that proceeds downward along a single path until a terminal

node is encountered (or an arbitrary 'depth bound' is reached). If that

terminal node Is a goal node then the solution is found. Otherwise, the

pattern 'backs up' a level, selects the most promising choice, and proceeds

down that path until a terminal node Is reached. This process continues until

a goal node Is reached (success), or all nodes have been examined

(failure).

In this aircraft route planning application, one can determine by

Inspection that every path in the graph will terminate in a goal node. This can

be guaranteed by not generating nodes which themselves cannot generate

successors. Given this, and not considering duplicate generation of a node,

steps 7 and 8 of GRAPHlSEARCH can be modified as follows:

". o
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D is not the parent of G in the search tree (although 6 is a successor of D)

since its cumulative cost is higher than that of node E. Assume that node B is

expanded with a cumulative cost of two and successors D and E (Figure 3.2).

Node B represents a 'better' path to node D than does node A. Therefore, the

parent pointer from node 0 must be changed to node B. But since node 0 has

successors, the new cost must be propogated likewise. This process

continues recursively until all successors of B are updated. Figure 3.2

shows the new costs and a pointers after propogating all cost changes.

A(6) C(3)

2 3

D(8) E()

-.2. 
2 , 3

H(9)

Figure 3.1

Ancestor Pointers Prior to B-node Insertion
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already in 6 (i.e., not already on either OPEN or CLOSED).

Add these members of M to OPEN. For each member of M that
was already on OPEN or CLOSED, decide whether or not to

redirect its pointer to n. For each member of M already on

CLOSED, decide for each of Its descendants In 6 whether or

not to redirect its pointer. (See following discussion

regarding redirection of pointers.)

8 Reorder the list OPEN, either according to some arbitrary scheme

or according to heuristic merit.

9 Go LOOP

The OPEN list contains those nodes that have been generated as

successors of previous nodes, but not yet selected for expansion. The

CLOSED list contains those nodes which have already been expanded. The

explicit search tree, 6, collects each possible path to a generated node. A

single distinguished path can be traced backwards from any node through

single ancestor pointers maintained in step 7. Therefore, when the algorithm

terminates successfully by selecting the goal node from OPEN, the generated

solution path can be traced backwards from that node along Its distinguished

path.

In a search graph, a single node may be reached by different paths (with

different costs) from the start node. When this occurs, it is necessary to

decide whether the parent pointer should be changed to select a parent with a

lower cost. For example, Figure 3. 1 shows a graph with cumulative cost

from the start node indicated in parenthesis and the arc cost between nodes

indicated beside the arc. The dashed line between nodes 6 and D Indicate that S

" : . ... ' ' ' '.. . . m, " ,, m ,,,, ,- ,,, .. ,,, ,,.., ,, ."1 "..: m ,,,, ,-,..,'. .
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successors. Each successor may have successors and so itself be the root of

another graph. If a node has no successors, then it is a terminal node. This°

terminal node Is a goal node if Its state matches the goal state. Otherwise, it

represents a path through the graph which failed to terminate at a solution.

Each node points to that single parent node which represents the 'best' path to

that node from the start node.

A search tree is a specific case of a search graph where a node can only

be the successor of a single node.

A general, graph searching procedure, as outlined by Nllsson[3], is as

follows:

procedure GRAPHSEARCH

1 Cre.ate a search graph, 6, consisting solely of the start node, s.

Put a on a list called OPEN.

2 Create a list called CLOSED that is initially empty.

3 LOOP: If OPEN Is empty, exit with failure.

4 Select the first node on OPEN, remove It from OPEN, and put it on

CLOSED. Call this node n.

5 It n Is a goal node, exit successfully with the solution obtained by

tracing a path along the pointers from n to 9 In 6.

6 Expand node n, generating the set, M, of Its successors that are

not ancestors of n. Install these members of M as

successors of n In 6.

7 Establish a pointer to n from these members of M that were not



III. REVIEW OF SEARCH TECHNIQUES

STATE SPACE SEARCH

A state space Is a formal description of a problem which consists of all

possible configurations of the relevant objects. It is not necessary to

enumerate all possible configurations explicitly. These configurations, or

states, can be described by defining the set of objects within the problem

space, and a set of operators or rules which, when applied to one or more of

the objects, creates a new state. It is necessary to define one or more of

these states as Initial states, and likewise as define goal states. The notion

of state space search Is a process that begins with an initial state, and

Iteratively applies rules to move through the state space until a goal state is

reached.

A search graph consists of nodes characterizing individual states within

the state space. These nodes consist of a single parent node pointer, and

multiple successor node pointers. The nodes of the graph are connected by

arcs which each have an associated cost. This cost may not be constant over

all arcs. For example, assume city a Is a node in a graph with cities b and c

as successor nodes, and arc cost is based upon distance between cities.

Therefore It Is possible to go from city a to cities b or c In one move. Yet the

distance, and hence the arc cost, to city b may be greater than the distance

to city c.

The search graph consists of a root node, the starting state, and Its

7
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techniaue does, however, hold promise of perhaps being less costly than

heuristic search since the problem space may be significantly reduced

through planning.

Since the SNOOPER approach is essentially exhaustive search, and the FPG

approach resembles a depth-first search, it seemed feasible that a workable

solution could be developed using heuristic search. It is possible to construct

the heuristic search algorithm to guarantee finding an optimal solution given

an accurate heuristic. Therefore, since heuristic search is clearly related to

previous techniques, and it might possibly build an optimum path, it is the

approach that was adopted for this solution and is described in detail in the

following chapter.
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spectrum of computational efficiency. That is, the FPG model Is

computationally very inexpensive since it examines a very limited number of

alternatives. While the SNOOPER model examines every possible alternative

at the expense of computer resources.

PROPOSED SOLUTION TECHNIQUES

Instead of building an entire search graph for a problem, artificial

intelligence techniques strive to build as small of a subset of that graph as

possible to locate a solution. Two techniques of 'cutting-down' the size of the

graph are hierarchic planning and heuristic search.

A hierarchic planner, such as STRIPS[10], will iteratively develop

solutions at an abstract level of detail, then pass the solution to the next

level of detail where it can be used as an plan. This process continues until

all details of the problem space are incorporated into the solution. The

algorithm for this problem may begin by dividing the grid into several large

boxes. Use some scheme for assigning a value to each box. Select the 'best'

boxes from start to goal as a first-level plan. Then, divide each box into

smaller boxes where each then becomes a separate problem space. This

would proceed Iteratively until an arbitrary limit Is reached. The sub-plan

may even be used to efficiently guide a heuristic search within sub-areas.

Or, if the sub-area is small enough, an exhaustive search may become

feasible. The single greatest drawback to this scheme is that the quality of

the solution will be extremely dependent upon that first-level plan. This may

necessitate developing and exploring alternate plans at the higher levels.

Likewise, there can be no guarantee of finding an optimal solution. This
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distance travelled. For this model, a grid is established with a fixed goal

point but with an indefinite starting point. The aircraft is assumed to move

between points on the grid parallel to either axis or at a 45 degree angle.

Therefore, except for boundary points, there are eight possible directions of

travel from any point. SNOOPER also permits discrete changes in altitude,

high or low, to create 16 possible moves (except for boundary points).

Starting at the goal, the algorithm iteratively examines every possible move

from each point, calculating the cost of the move in terms of threat

interaction and length. The result of these cost assignments is a penalty

matrix from which an optimum route may be traced in a stepwise fashion

backwards from the goal to any starting point on the grid. That is, every

point on the grid, except for the goal, is a potential starting point. Figure 2. 1

shows a simple example of a penalty matrix, and another representation of

the same information using a tree structure.

- -- 6

d\\"h ~k i

Sd e h k

c a b c

Figure 2.1

Penalty Matrix vs. Tree Representation

This scheme has several distinct features. As stated before, it will locate

an optimum path from any starting point to a fixed goal. The cost of this

feature, in computing resources, will be extremely large compared with the

FPG model. In fact, these two models may represent the extremes of the

. .. . .. -.. . . ..
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in the x-direction when the leg is projected on the nominal path. That is, each

possible leg from a given point maintains the same 'forward progress' -I

towards the qoal. This is due to the atsumption that the aircraft will fly at

maximum speed on outward legs, and at minimum speed along the nominal

path. A fixed number of possible legs are generated at each point within this I

path deflection angle. The algorithm then 'looks' outward along each proposed

leg to detect threat interactions. Once detected, the type of each threat can
I

be referenced in a table and the effect of each threat on the leg can be

accumulated. The algorithm continues, selecting the shortest leg at each

point with the least threat interaction until the goal is reached.

An extremely important feature of this technique is the existence of threats

is 'discovered' by the algorithm only when they are encountered while

evaluating possible legs. Effectively, the threats *pop-up' in front of the

aircraft which then makes a path adjustment to avoid them. Therefore, this

scheme is especially applicable as an on-board flight path generator.Given

that only limited information is available, it develops as good a route as

possible. As a pre-flight planner though, assuming that the location of

threats is known, the FPG model will develop relatively poor routes compared

with other techniques which make effective use of the additional information.

RIATEGY NEEDED OVER OPTIMUM PENETRATION ROUTES (SNOOPER) MODEL

The SNOOPER model[4] makes use of the total knowledge of the threat

environment to develop optimum routes using dynamic programmimg

techniques. As in the previous model, optimum primarily means the path with

the smallest cost in terms of threat interaction, and secondarily in distance
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II. BACKGROUND

The advent of computer generated aircraft routes has been severely

hampered by the computational complexity of the current algorithms and the

scale of the problem. As a result, routing is often done by 'hand' using a

map, some pins, and a string. Perhaps the most useful advance has been in

the application of computer graphics to assist in this manual process. There

are two examples of aircraft route generation algorithms, which have

influenced the solution to be described in this thesis.

FLIGHT PATH GENERATION (FPG) MODEL.

The Flight Path Generation model[61 defines a problem space as a grid,

or corridor, aligned along an x-y axis. Given a starting point on the left edge

and a goal, or target, along the right edge, the FPG model 'flys' the aircraft

at a constant altitude within the corridor from the starting position to the

goal. The flight path Is composed of a sequence of flight legs. A nominal

flight path is defined as a straight line from the start to the goal. The length

of a leg parallel to the nominal flight path is equal to the distance that the

aircraft can 'look-ahead' to detect threats. This 'look ahead' distance is

called the awareness radius. Given maximum and minimum speeds for the

aircraft, a path deflection angle is computed using the formula:

(cos- (minimum speed / maximum speed))

Within this angle a leg can deviate In direction, yet cover the same distance

2
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improve between a node and its successor, then the A* algorithm can search

exponentially. The goal of a proposed modification (Martelli [5]) to the A*

algorithm is to improve the efficiency with an Inconsistent heuristic. The

essence of the technique is to recognize when the heuristic is inconsistent,

and to temporarily ignore it. T!Vs modified 6RAPHSEARCH algorithm follows:

procedure MODIFIED_6RAPHSEARCH (* changes are underlined *)

1 Create a search graph, 6, consistong solely of the start node, s.

Put s on a list called OPEN. Set F = 0.

2 Create a list called CLOSED that is initially empty.

3 LOOP: if OPEN is empty, exit with failure.

4 If the first node on OPEN has an f-value < F then select the node

from OPEN with the smallest u-value. Otherwise, select the

first node on OPEN, remove It from OPEN, and put It on

CLOSED. Call this node n and set F - the f-value of n.

5 If n is a goal node, exit successfully with the solution obtained by

tracing a path along the pointers from n to s In 6.

6 Expand node n, generating the set, M, of its successors that are

not ancestors of n. Install these members of M as

successors of n In 6.

7 Establish a pointer to n from these members of M that were not

already In 6 (I.e., not already on either OPEN or CLOSED).
Add these members of M to OPEN. For each member of M that

was already on OPEN or CLOSED, decide whether or not to

redirect its pointer to n. For each member of M already on
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CLOSED, decide for each of its descendants in 6 whether or

not to redirect Its pointer. (See following discussion
regarding redirection of pointers.)

8 Reorder the list OPEN according to f-value. In the case of ties,

goal nodes are to be placed first.

9 Go LOOP

This modified A* search algorithm is the method chosen for

implementation as the Path-Finder program presented in the next chapter.

The advantage of the modified algorithm is that it: (I) can be proven to be

admissible with a consistent heuristic; (2) expands fewer nodes than the A*

algorithm when presented with an inconsistent heuristic. Regarding

efficiency, the second claim is based upon an ordered search algorithm which

differs slightly from the GRAPHSEARCH algorithm. The ordered search

algorithm will return a duplicately generated node to the OPEN list. It will

therefore be counted as an expansion more than once. The 6RAPHSEARCH

algorithm expands the node only once, choosing Instead to recursively

propogate an improved path through the successors. The effect of this

difference will be noted during the discussion of test results.
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IV. PATH-FINDER SYSTEM IMPLEMENTATION

The problem space is organized as a grid of arbitrary units and size,

with the origin of the axis in the lower left corner. A point on the y-axis is

designated as the starting point, and a point on the opposite boundary Is

designated as the goal. Threats are located throughout the grid and are

grouped by type. Each threat type is characterized by a radius, and a

probability of damage (Pd). The Pd value, normally 0 < Pd < 1.0, shall be

treated as a fractional part of a maximum threat cost rather than as a true

probability. This aspect Is discussed in a later section. In previous

implementations, such as FPG and SNOOPER, the threats are modelled as as

series of concentric circies, each divided into various sections. Each section

can then be given a specific Pd which accounts for 'time in threat', area of

intersection, etc. Although this is a realistic model for actual aircraft route

planning, for simplicity, this problem will consider an entire threat with a

single Pd. Other threat modelling schemes are easily incorporated into the

design as needed by a particular problem domain. Another detail, changes In

altitude, Is excluded from the problem, also for simplicity. Altitude changes

would simply multiply the number of possible legs at each point and require a

different threat model with altitude specific Information. Again, these

features are easily Incorporated as domain specific requirements. The FPO

model used minimum and maximum speeds to compute the angle of path
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deviation which will permit equivalent progress towards the goal for each

leg. Rather than include speed of the object as part of the problem domain,

the path deflection angle will be included as an input parameter. Also, all

legs will be of equal length (except for perhaps the last one).

LANGUAGE AND HARDWARE

The nature of artificial intelligence programs makes a recursive language

a necessity for tree manipulation, etc. The language chosen for this

implementation is PASCAL, due to Its wide acceptance and availability.

PASCAL also lent itself to design and testing of program modules on a

micro-computer. Final Implementation and testing were performed on a DEC

VAX 11/780 mini-computer. Off-line plots were produced on an APPLE

MACINTOSH micro-computer.

PATH-F INDER ALGORITHM.

The entire PASCAL source for PathFinder Is presented in Appendix 1. The

general program design and data structures closely follows the version of

the 6RAPHSEARCH algorithm presented in Rich(l] with the Martelli

modifications described In the previous chapter. The following sections detail

some of the domain dependent details of the implementation.

LEG GENERATION

The Information required to generate possible legs from a given point

location Is the path deflection angle, length of a leg, and the number of legs

to be generated. These three factors are are all Input by the user, and fixed
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throughout the execution of a case. The path deflection angle describes the

deviation from the nominal flight path (a straight line from the start to the

goal). The path deflection angle is evenly subtended into the specified number

of leg deflection angles according to the number specified as legs-per-arc.

From this information, the coordinates of the endpoints are easily computed.

Leg Deflection Angle,

Path Deflection Angle

parallel to x-axis

Figure 4. 1

Leg Generation Diagram

If the distance from the given point to the goal Is less than the leg length,

then a single leg Is generated joining the two points. This Is the only case

where a leg is generated of length less than the leg length parameter.

Boundaries are established at the top and bottom edges of the grid, and

looking backwards' from the goal along the path deflection angle. The effect

of these boundaries Is to eliminate the possibility of generating a leg either

going outside the grid, or whose successors could not reach the goal due to

the limitation of the path deflection angle.

0, ,,.. -", . , . . . _• ", . -
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*-- Path deflection angle

Figure 4.2

Leg Generation Boundaries

COMPUTIAT ION OF ACTUAL LEG COSTS

The computation of actual cost over a leg is determined by the formula:

g = g-coeff * ((g-length-coeff * leg-length) +

(g..Ahreat-coeff * threat-cos-of-leg))

By adjusting these coefficients the definition of optimal path is altered since

these coefficients represent the relative importance of path length versus

threat avoidance. As a result, given the same problem domain with different

coefficients, the algorithm may produce different paths.

Three coefficients are somewhat redundant, though they facilitated early

tebting. Usually, the g...coeff and g...length-..coeff should be set to one and the

g...threat-coeff manipulated to define optimality. A description of the threat

cost assignment icheme is presented in a later section.
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COMPUTATION OF ESTIMATED COST-TO-GOAL

The heuristic estimate of cost-to-goal is computed over a direct path from

the given location to the goal by the formula:

h* = h.coeff * ((h-length-coeff * distance.to-goal) +

(h.threaLcoeff * threaLcosLtogoal))

where the distanceto.goal is the straight-line distance from the point to the

goal. This formula bases the heuristic estimate upon the same factors as

actual cost. The number of coefficients provides the flexibility to create new

heuristics simply by alterering their relative values. The h.coeff coefficient,

if set to zero, effectively disables the heuristic creating a breadth-first

search. Other values for h.coeff can alter the relationship between actual

and estimated costs, g* and h*, without affecting the relationship between

length and threat costs in the heuristic. This relationship between g* and h*

is important since it defines the accuracy of the heuristic at estimating actual

cost. As stated earlier, the more accurate the heuristic, the more efficient

the algorithm will be at finding a solution.

ACTUAL THREAT COST COMPUTATION

Computation of actual threat cost Involves accumulating the Pd's of all

threats Intersected by a leg. This method, the arithmetic sum, assumes that

the Pd, in spite of the name, represents a fractional part of a maximum cost

(represented by the threat coefficient). The arithmetic sum method

accumulates cost as:

cost = X Pd's of Intersected threats

It is quite generic since It assigns a simple cost to a threat, and It gives a
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clear threat value that is easily traced in graphic output. In order to define a

solid' threat, one that 'must' be avoided, there are two methods. These solid

obstacles could represent terrain contours which an aircraft certainly should

attempt to avoid. One method is to simply assign a very high Pd to the solid

threat, such as 1000. The algorithm may still find a path that intersects a

solid threat, if no clear path exists, but the resultant threat cost for the path

will reflect the very high cost. An alternative is to assign a threat cost of

one and to modify the threat-cost evaluation routine to return a very high

value as a result of an intersection of a threat of Pd equal to one. Another

simple modification to the develop-path routine, recognizing this high value,

could discard the leg entirely. As a result, the algorithm will fail if it cannot

find a path.

Testing for the intersection of threats by a leg involves computing the

perpendicular distance from the center of the threat to a line defined by the

leg. If that distance Is less than the radius of the threat then it must be

verified that the threat actually intersects the line segment (leg). If the

threat lies between the endpoints, yet intersects the leg, then the distance

from either endpoint to the threat center must be less than the hypoteneuse

of a right triangle with sides equal to the length of the leg and the distance

from the opposite endpoint to the threat center. In Figure 4.3, the length of a

must be less than the length of a*, and likewise for the segments from the

opposite endpoint. Other tests must be performed to insure that a threat

Intersection is not counted twice if it occurs over more than one leg of the

same route. This Is done by excluding a threat intersection from the cost for

a leg if it covers the left-most endpoint since It must have been counted on
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the prior leg. This is not true for the initial leg, however, whose left-most :1
endpoint is the starting point which may lie within a threat which needs to be

counted. If an entire leg Is within a single threat, the left-most exclusion

rule will also exclude the threat.

a

Figure 4.3

Intersection of a Leg by a Threat

HEURISTIC THREAT COST COMPUTATION

The computation of heuristic threat cost alio involves the same formula

for the arithmetic sum of Pd's.

The goal of the heuristic is to quantify the 'merit' of proceeding along a

particular path. It must therefore measure expected Interaction with threats

between the current location and the goal. One heuristic is to accumulate the

Pd's of all threats which actually intersect that direct path to the goal. The

idea is that this value may represent the worst case cost of the path to the

goal from the given point. Therefore, since the actual cost will likely be

less, the h-threat coeficient should be less than the g-threat coefficient.

Another type of heuristic is to create a box around the projected path and 0

accumulate the Pd's of all threats within the box. The reasoning is to consider

all threats within some area of manueverability around a straight path to the

goal. Again, this value may be even greater than the first method, so it is
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reasonable to assume that a larger difference between the two threat :j

coefficients will be necessary. A box width equal to twice the leg length was

chosen for the test cases presented In the next chapter. Necessary code

changes for this heuristic are detailed in Appendix B.

S

S
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V. USER'S GUIDE FOR PATH-FINDER

A separate program has been created to facilitate creation of input data

sets for the Path-Finder program. A complete listing for this program,

Threat-Builder, is included as Appendix C. Threat-Builder queries the user

for input parameters to describe the threat domain, such as, grid size, start

and goal locations, threat characteristics and various threat densities. A

total threat density describes the fractional part of the total grid area to be

covered by threats. That is, after all threats are generated, the sum of their

areas is related to the total grid area by the total threat density. Since

threats may overlap, a density of 1 .0, for example, does not imply that the

entire grid is covered. Each threat to be generated has an associated density

which describes Its fractional part of the total threat density. The sum of

these individual threat densities must equal one.

Threat-Builder does not use a system random number generator.

Rather, it employs it's own random number generator to simplify reproducing

threat grids over various computer systems. The program outputs a file of 0

records formatted for input to Path-Finder. The format for these records

appears In Figure 5. 1.

Path-Finder is structured to accept input parameters without regard to 0

order, and to allow multiple case executions against the same threat grid

using different parameters. A threat grid is defined by the G (grid) and 'T'

26
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(threat) records. These may not be altered between multiple cases. The

remaining parameters may be altered between cases: P (endpoints), V (leg

characteristics), 'C' (coefficients). Distinct cases are delimited by an 'R'

(run case) record. Figure 5.2 illustrates a sample Input data set. Figure 5.3

is a sample output plot from Path-Finder. Threats are shaded according to

the value of the Pd, i.e. higher Pd threats are slightly darker. Figure 5.4 is

a sample output listing from Path-Finder.

Record Formats for Path-Finder Input:

0 (x_limit> (y-limit> -Define grid size

T <type> <radius> <Pd> (quantity> -Define threat

<Xl> <Yl > -Threat coordinates

x2 > <Y2>

<Xn> <Yn>

P (start> (goal> -Start/goal y-coordinates

L (leglength> <legs.per-arc> <path_arc(degrees)>

-Leg parameters

C <g> <g.threat) <g-length> h <hLthreat> <hlength>

-Define g/h coefficients

R -Run case

Figure 5.1

Path-Finder Input Formats
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G 100 50

T 1 5 0.5 4

73.3343 16.0923

8.3552 23.0032

10.0231 44.7446

81.0377 34.9732

T 2 10 0.25 4

20.7748 35.9103

93.0213 17.4902

33.2993 9.2618
51.0289 21.77180

P 12.5 12.5

L 7.5 5 go

C 1 50 1 1 1 1

R0

C 1 60 1 1 1 1
R

Figure 5.2
Sample Path-Finder Input

Figure 5.30

Threat Grid from Sample Input
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*** Path Finder Results ***

Grid limits: 50 25

Start coordinates: 0.00, 12.00
Goal coordinates: 50.00, 12.00

Les seneration options:
Les lensth: 5.00 Less Per arc: 5 Path arc: 90.00

G coeFficients (9 - threat - lensth): 1.00 - 20.00 - 1.00
H coeFFicients (h - threat - lensth)" 1.00 - 1.00 - 1.00

Threats:
Cateory: I Radius: 4.00 Pd: 0.30 Quantity: 9

27.0782, 0.6397 18.1473, 15.9954 15.3320, 6.8943
11.1130, 3.7563 2G.8768, 15.5170 31.6666, 1.5026
10.9314, 18.3048 35.2768, 16.6561 29.2145, 13.3045

Category: 2 Radius: 3.00 Pd: 0.10 Quantity: 16

39.9124, 12.8887 5.9448, 4.8130 26.0422, 10.1223
27.8412, 3.3772 33.6348, 9.5287 44.1223, 0.7938
27.1591, 18.5299 16.5070, 20.1099 15.5838, 0.7977
19.2139, 15.6223 32.3776, 1.2539 38.9618, 22.8779
20.5093, 21.0705 24.9695, 8.6735 35.4477, 17.G63
38.9557, 21.0560

Path From soal"
50 0000, 12.0000

45.9293, 10.086G
42.3937, G.5510
37.7743, 4.6376
33.1549, 6.5510
28.1549, 6.5510
23.1549, 6.5510
19.6194, 10.08GG
15.0000, 12.0000
10.0000, 12.0000
5.0000, 12.0000
0.0000, 12.0000

Statistics:
Nodes expanded : 75
CPU time (msecs): 8740 0
Conflict cost 0.10
Path lensth " 54.50
Martelli count 5

Figure 5.4

Sample Path-Finder Output Listing
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Path Length = 54.50
Leg Length 5.00
Conflict Cost = 0.10

Figure 6.7
Path Generated - Test Grid 4

S

S'

S

S

S
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DISCUSSION OF TEST GRID 4

This grid was developed to test the program against a different size grid
S

and threat configuration. Note the jagged path near the goal due to the

inability of the leg generator to create a leg at the exact angle necessary for

a straight path. Table 6.6 reveals that the same path, with approximately the

same node expansions, was developed by each coefficient configuration. This

would seem to indicate that the solution was relatively 'easy' for the

algorithm to find. Examining the output plot, Figure 6.7, bears out this S

statement since the solution path is rather obvious and an alternative path,

with the same costs, is not readily apparent.

5U: 31583

TOTAL THREAT DENSITY: 0.75

THREAT DATA: (radius / Pd / density )
4/0.3/0.5 3/0.1 /0.5

S

LLNGTH: 5 LEGS-PER-ARC 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
G L H NODES CPU COST LENGTH

1 20 1 1 1 1 75 9 0.10 54.50
1 30 1 1 1 1 72 9 0.10 54.50
1 40 1 1 1 1 71 8 0.10 54.50
1 50 1 1 I 1 73 9 0.10 54.50
1 60 1 1 1 1 73 9 0.10 54.50
1 70 1 1 1 1 73 9 0.10 54.50
1 80 1 1 1 1 73 9 0.10 54.50

Table 6.4

Results for Test Grid 4
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Path Length = 115.46
Leg Length = 7.50
Conflict Cost = 0.20 5

Figure 6.5
Path Generated - Test Grid 3.3

Path Length = 114.96
Leg Length = 5.00
Conflict Cost = 0.20

Figure 6.6 
Path Generated - Test Grid 3.4
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Path Length 111.92
Leg Length 10.00
Conflict Cost = 0.60 0

Figure 6.3
Path Generated - Test Grid 3. 1

Path Length = 120.62
Leg Length - 10.00
Conflict Cost = 0.20

Figure 6.4
Path Generated - Test Grid 3.2

- -- - - - - - - -S
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SED' 46137

TOTAL THREAT DENSITY: 0.75

THREAT DATA: (radius / Pd / density )
5/0.4/0.4 7.5/0.25/0.3 10/0.1 /0.3

L LNGT: 10 LEGAR-: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
Q I L 11 I L NODES mu LENGTH

1 20 1 I 1 1 436 89 0.50 111.92
1 30 1 1 1 1 468 94 0.20 120.62
1 40 1 1 1 1 312 52 0.20 120.62
I 50 1 1 1 I 269 41 0.20 120.62
1 60 1 1 1 1 343 57 0.20 120.62
1 70 1 1 1 1 357 59 0.20 120.62
I 50 1 1 1 0 IZ38 260 O.ZO 120.6Z
1 70 1 1 1 0 1058 225 0.20 120.62
I 50 1 0 0 0 1253 243 0.20 120.62

0 0 0 1 50 1 12 0.6 1.90 108.57

LEGENT: 7.5

1 50 I 1 1 1 923 333 0.20 115.46

LEG LENGTH: 5

1 50 1 1 1 1 6189 9185 0.20 114.96

Table 6.3 0

Results for Test Grid 3

0

i' -
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Figures 6.4 best solution path created with a leg length of 10. Notice that

the path is more circuitous than Figure 6.3 as path length is sacrificed to

avaoid threat encounters. Figures 6.5 and 6.6 represent the paths

discovered using the coefficients 1-50-1-1-1-1 and leg length of 7.5 and 5,

respectively. Note the significant increse in node expansions, 269 to 923 to

6189, as the leg length is decreased from 10 to 7.5 to 5. These increased

expansions reflect the exponential growth In the size of the search tree. The

solution improved, though, by avoiding a large threat which could not be

avoided with a longer leg length. The advantage, intuitively, is that the

shorter leg lengths increase the maneuverability. Also, the length 5 solution

must never be worse than length 10 solution. This is true because every

length 10 leg can be duplicated by two, length 5 legs.

0
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DISCUSSION OF TEST GRID 3

This test followed the first examples with the suggestion that the

coefficient configuration, 1-n-1-1-1-1, where n Is a multiple of ten,

produces reasonably good results. This trend serves as the foundation for all

the remaining tests.

Several interesting points can be made about this test series. It is obvious

that the length component of the heuristic estimate is quite beneficial to

reducing the size of the search. The cases where the heuristic estimate is

'turned-off' (h-coefficients set to zero) gives some Idea of the maximum

search length. This is because the search becomes breadth-first without the

heuristic. This Is the approximate size of the effort that the SNOOPER model

will Invest in a solution. The number of nodes expanded are not equal since

each case will not necessarily expand the same nodes in the same order due

to the value of the g-coefficients. Also, unlike SNOOPER, the algorithm

terminates on the first solution encountered. The breadth-first search with

the g-coefficients, 1-50-1, is 1249 nodes. The improved A* algorithm only -

required 269 nodes to discover the same solution. This clearly demonstrates

the benefit of heuristic search over uninformed search. Finally, the case

with the g-coefficients set to zero gives an idea of the effort that the FPO

model would invest in its solution. The path found by this case is not the same

as would be found by FPG, however. The similarity is in the number of nodes

expanded and therefore, the relative effort expended. Figure 6.3 illustrates

the path discovered using a low threat-length ratio. Using an algorithm

similar to the FPG method (built during the early stages of this thesis),

exactly the same path is discoveredl
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Path Length = 113.80
Leg Length = 10.00
Conflict Cost = 0.20

Figure 6. 1
Path Generated - Test Grid 1

Path Length , 115.54
Leg Length = 10.00
Conflict Cost = 0.45

Figure 6.2
Path Generated - Test Grid 2
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SEED: 31583

TOTAL THREAT DENSITY: 1 .0

THREAT DATA: (radius / Pd / density )
5/0.1 /0.4 7.5 / 0.25 / 0.3 10/0.4/0.3

L E.TU: 10 RE:A: 5 PATH DEFLECTION ANGILE: 90

COEFFICIENTS CONFLICT PATH
I L t I L NODESL CPU COST LENGTH

1 30 1 1 1 1 352 73 0.55 109.00
1 40 1 1 1 1 967 241 0.55 109.00
1 50 I 1 I 1 473 108 0.55 109.00
1 60 1 1 1 1 449 101 0.55 109.00
1 70 1 1 1 396 85 0.45 115.54
1 30 2 1 I 1 1465 314 0.60 107.48
I 50 2 1 1 1 1403 3ZZ 0.55 109.00
1 70 2 1 1 1236 302 0.55 109.00
1 30 3 1 1 1 1809 343 0." 106.14
1 50 3 1 1 1 1633 335 0.60 107.48
1 70 3 1 1 1 1600 341 0.55 109.00
1 50 1 1 10 1 247 46 0.60 107.48
1 50 1 1 30 1 305 41 0.55 109.00
1 50 I I 50 1 991 164 0.55 109.00
1 50 I 1 70 1 1231 242 0.55 109.00

Table 6.2

Results for Test Grid 2

,S

"S
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SEED: 31583

TOTAL THREAT DENSITY: 1.0

THREAT DATA: (radius / Pd / density )
5/0.4/0.4 7.5/0.25/0.3 10/0.1 /0.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANQLE: 90

PQEII ~ ~ ~ ~ ~ ATH
G 1 L E T L NODES CPU COST LENGTH

1 30 1 1 1 1 100 16 0.20 113.80
1 40 1 1 1 I 82 12 0.20 113.80
1 50 1 1 1 1 80 12 0.20 113.80
1 60 1 1 1 1 89 14 0.20 113.80
1 70 1 1 1 1 81 12 0.20 115.24
1 30 2 1 1 1 1157 266 0.20 113.80
1 50 2 1 1 1 742 171 0.20 113.80
1 70 2 1 1 1 510 109 0.20 113.80
1 30 3 1 1 I 1516 320 0.75 106.56
1 50 3 1 1 I 1235 280 0.20 113.80
1 70 3 1 1 1 1011 233 0.20 113.80
I 50 I 1 10 1 27 3 0.20 116.13
1 50 I 1 30 1 128 15 0.20 116.13
1 50 1 1 50 1 43 4 1.10 109.00
1 50 1 1 70 1 143 18 0.45 116.13
1 50 1 1 1 0 793 182 0.20 113.80
1 50 I 1 10 0 666 147 0.20 113.80
1 50 I 1 30 0 337 56 0.20 113.80
1 50 1 1 50 0 68 7 0.20 116.13
1 50 I 1 70 0 66 6 0.85 113.32

Table 6. 1

Results for Test Grid I S

L
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'Jaggies' Is Introduced. That is, due to the fixed length of each leg, the path is

often jagged where it 'sets itself up' to maneuver through an opening. For

example, the jagged path throuqh the first, small threat is likely necessary

to penetrate the next opening in preparation for the final manuevers. This

problem might be reduced by using shorter legs, or Increasing the number of

legs and the path deflection angle.

As stated earlier, test grids 1 and 2 are identical in layout but different in

Pd assignments. Note that in test grid I, the solution path favored the larger,

lower Pd threats. And, in grid 2, the smaller threats were selected since

they have the smaller Pd values.

4.
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coefficients, the more threat avoidance will be favored over short paths.

Likewise, the less this ratio, the more the algorithm 13 likely to 'sacrifice' a

threat Interaction in favor of a shorter path. This behavior, though, is not

indicative of every case tested.

There is a marked decrease in efficiency when the g-length coefficient is

increased relative to the g-threat coefficient such that the same solution is

discovered. This change demonstrates the sensitivity of the algorithm to the

relationship between these two coefficients.

Some rather curious results occured when the heuristic coefficient for

threat is increased while the leg coefficient is held to one. The algorithm

seems to be misguided into selecting a poor solution. This shows the

importance of the accuracy of the heuristic relative to both efficiency and

quality of solution. Finally, it would seem reasonable to consider a heuristic

that does not consider length as a factor. This is tested by setting the

h-length coefficient to zero. The quality of the solutions are consistent with

their counterparts of h-length equal to one. However, there Is still an

increase in the number of nodes expanded.

The results for test grid 2 again illustrate the lower bound upon the

threat-length coefficient ratio which will produce results consistent with the

primary goal of minimal threat Interaction. Also the upper threshold is

demonstrated by the improvement in the solution path as the coefficients

Increase to 1-90--i-I--I. When the h-threat coefficienti are manipulated as

they were In the previous example, this test does not have as marked

fluctuations in solution quality.

In examining the output plots, especially Figure 6.2, the problem of
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VAX PASCAL 'clock' function. Conflict cost is the sum of the Pd's of threats

intersected along the path. Finally, path length is expressed in grid units.

Coordinate reference lines are drawn in each output plot every five units.

Each of the output plots is related by path length and leg length to a set of

coefficients associated results table. For example, the output plot in Figure

6. 1, Path Generated - Test Grid 1, represents every case in Table 6. 1,

Results for Test Grid 1, with a path length of 113.80.

DISCUSSION OF TEST GRIDS 1 AND 2

These threat grids are identical except for the Pd values assigned to the

threats. Grid 1 used the Pd values, 0.4 - 0.25 - 0.10, for the small, medium

and large radius threats, respectively. Grid 2 reversed the Pd values of the

small and large threats.

The results for test grid 1 illustrate a couple of trends that were evident

In many later tests. Examining the results In Table 6.1, the balance In

importance represented by the g-threat and g-length coefficients, clearly

affect the solution. For example, coefficients 1-60-1-1-1-1 produce the

apparent 'best' solution of path length 113.80 with a conflict cost of 0.20.

However, a slight shift of the relationship to 1-70-1-1-1-1, produces a

slightly longer path, 115.24, with the same conflict cost. A similar case

exists between coefficients 1-30-3-1-1-1 and 1-40-3-1-1-1. In this second

case, the higher g-threat coefficient caused an improvement in the solution in @1

terms of conflict cost, the primary goal. This behavior Is quite explainable

Intuitively. These coefficients represent the relative Importance of conflict

cost vs. path length. The greater the ratio between the g-threat and g-length



VI. PATH-FINDER TEST RESULTS

The test results presented In this chapter can be divided into to sets.

The first set, test grids I through 4, were the developed during the second

phase of system testing using the 'straight-line' heuristic in the Improved A*

algorithm. The primary goal of this phase of testing was to examine the effect

of coefficients upon the overall goal of minimum conflict cost over the

shortest possible path length. A second set of test results, test grids 5

through 10, were run as a final series of tests using a reasonable set of

coefficients. This series of tests were run using both heuristics mentioned in

the previous chapter. The details will be discussed in the applicable

sections.

DESCRIPTION OF TABLES AND GRAPHS

Each table includes the necessary data to recreate the threat grid using

the Threat-Builder program. The coefficients, Q I L , represent the

gcoeff, g-threat-coeff, and the g-length-coeff, respectively. Similarly for

the h-coefficients. In the following text these coefficients will be expressed

as: G-T-L-H-T-L (for example: 1-50-1-1-1-1 ). The nodes column represents

the total number of nodes expanded during the execution of the case. The CPU

time listed, in seconds, is an approximation of the elapsed CPU time

following data input, until the results are output. It is computed using the

30



44

ORIENTATION OF TEST GRIDS 5 - 10

This series of tests were run as 'final' test cases against the algorithm.

The results for each test were compiled using three, different heuristics.

The first heuristic is the same 'straight-line' heuristic and improved A*

algorithm of the previous tests. This heuristic will be termed 'Improved As'

in the result tables. The second heuristic is the 'box' heuristic discussed in

the last chapter. Early tests against this heuristic produced the same results

as the first heuristic. Believing this to be due to the effects of the Martelli

improvement, this heuristic is run using the standard A* algorithm and

Identified as 'A* w/box" In the results tables. Finally, in order to cempare the

results with the straight-line method, the last heuristic is the straight-line

heuristic, also without the Martelli improvement to the algorithm. This will

be listed as 'A* w/straight-line' in the tables.

A series of coefficients, known to produce reasonable results, are run

against each heuristic for a test griJ to examine performance. Additional

cases are run where results appear interesting. Both heuristic (informed)

search, and a limited, breadth-first (uninformed) search are tested.

DISCUSSION OF TEST GRID 5

This test case is extremely interesting due to the threat density of 2.0.

This density, with the given threat characteristics, create a grid with 75,

overlapping threats. Examining the output graph, Figure 6.8, clearly shows

the Impact of this threat density. It Is also apparent that determining a 'good'

path manually might be very difficult in this case.

Table 6.5 displays the results using the improved A* search and
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straight-line heuristic. Notice that all of the coefficients tested with a leg

length of 10 yielded exactly the same solution with only slightly different

numbers of node expansions. This pattern will prevail in all the test cases

which follow. A couple of cases were tested with relatively high g-threat

values, 100 and 500, to see if a slightly longer path might be produced as it

was In test grid 1. However, the characteristics of this grid are such that

this phenomena does not occur. Another interesting feature is that the

informed search, coefficients 1-x-1-1-1-1, expanded more nodes as the

g-threat coefficient increased. And, the uninformed search, h-coefficients

set to zero, expanded fewer nodes as the g-threat coefficient Increased.

Again, this pattern will dominate in the following test grids. In all the tests,

only the improved A* algorithm was selected for a run with leg length of 5

due to the large CPU requirement. In this test, the length 5 case required

only 1650 seconds, or slightly more than 27 minutes. This is relatively fast

compared with some of the tests which follow.

Comparing the results in Tables 6.6 and 6.7 show that the box heuristic,

provides a slightly better estimate of actual cost than the straight-line

heuristic. This Is evident from the decrease In nodes expanded In the box

heuristic cases.

The claim was made In the discussion of the Martelli improvement to the

A* algorithm, that the improvement would guarantee that fewer nodes are

expanded when an inconsistent heuristic Is used, compared with the standard

A* algorithm. That the heuristics used here are Inconsistent can be seen

intuitively or be verified by a non-zero 'Martelll count' in the output listing. A

question is raised, then, concerning this claim when the node count of the leg
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length 7.5 cases are checked In Tables 6.5 and 6.7. Remember that these are

the same straight-line estimates, with and without the Iartelli Improvement,

respectively. The same coefficients and therefore the same heurlstc

estimator is used in each case. The node count for the improved algorithm is

slightly greater than for the standard algorithm, a violation of the claim!

This happens since nodes are not doubly counted as 'expanded' when

duplicates are discovered. The algorithm should still be more efficient,

based upon claim, although this node count may be misleading.

This test included cases run with different leg generation parameters for

number of legs and path deflection angle. The first cases tested were

generating seven legs over 110 degrees, and generating nine legs over 130

degrees. Neither of these cases includes the same possible legs generated by

the original, length-five test. It is a bit surprising that there is not a

significant improvement in the solution quality In either case. In fact, while

the seven-leg case is a slight improvement in conflict cost, the nine-leg case

fails to improve the conflict cost at all. And, it builds a longer path than the

original solution set! In addition, the nine-leg test used almost four hours of

CPU time finding a solution worse than the five-leg test did in less than a

minutel In order to test for improvement when the original legs are included,

a case was run with seven legs over 135 degrees. This seven-leg test

generated exactly the same path as its five-leg counterpart and, it used ten

times the CPU timel Also, It failed to find a path as 'good' as the other

seven-leg case. This indicates that there is a great deal of sensitivity to leg

generation characteristics relative to solution quality.

The output graphs, Figures 6.8 , 6.9, and 6.10, depict the solution paths
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generated at leg lengths 10, 7.5 and 5, respectively. Of interest is how the

increased maneuverability of shorter leg lengths allow the algorithm to

discover paths which 'squeeze through the cracks'. There is an especially

significant improvement in the conflict cost when the leg length is changed

from 10 to 5. The last two graphs, Figures 6.11 and 6. 12, reflect the paths

generated with the seven and nine-leg characteristics described above.

,S
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D. 143954

TOTAL THREAT DENSITY: 2.0

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5/0.25/0.3 10/0.1 /0.3

LE jLNG[: 10 LE R :ARC 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
I L d I L NODES M LENGTH

1 30 1 1 1 1 181 46 2.15 108.87
1 40 1 1 1 1 185 47 2.15 108.87
I 50 1 1 1 1 189 48 2.15 108.87
1 60 1 1 1 1 193 49 2.15 108.87
1 70 1 1 1 1 196 50 2.15 108.87
1 30 I 0 0 0 756 192 2.15 108.87
1 50 I 0 0 0 498 118 2.15 108.87
1 70 1 0 0 0 420 95 2.15 108.87

LEG LENGTH: 7.5

1 50 1 1 1 1 623 233 1.95 115.43

LEG LENGTH: 5

1 50 1 1 1 1 2310 1650 1.65 112.58

LEG LENGTH: 10 LEGS-PER-ARC: 7 PATH DEFLECTION ANGLE: 110

1 50 1 1 1 1 597 392 2.00 109.77

LEG LENGTH: 10 L -GSPER : 7 PATH DEFLECTION ANGLE: 135

I 50 1 1 1 I 792 597 2.15 108.87

fL: 10 L.GS _lR-_RC 9 PATH DEFLECTION ANGLE: 130

1 50 1 1 1 1 3625 13303 2.15 119.33

Table 6.5

Results for Test Grid 5 - Improved A*
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SEED: 143954

TOTAL THREAT DENSITY: 2.0

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5 / 0.25/0.3 10/0.1 /0.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CQNFLICT PATH
G T L H T L NODES CPU COST LENGTH

1 30 1 1 1 1 176 45 2.15 108.87
1 40 1 1 1 1 181 47 2.15 108.87
1 50 1 1 1 1 188 48 2.15 108.87
1 60 1 1 1 1 189 49 2.15 108.87
1 70 1 1 1 1 195 50 2.15 108.87

LEG LETH: 7.5

1 50 1 1 I 1 603 225 1.95 115.43

Table 6.6

Results for Test Grid 5 - A* w/box

L. .
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EED: 143954

TOTAL THREAT DENSITY: 2.0

THREAT DATA: (radius / Pd / density)

5/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
G IT L H I L NODES CPU COST LENGTH

I 30 1 1 1 1 181 46 2.15 108.87
1 40 1 1 1 1 185 47 2.15 108.87
1 50 1 1 1 1 189 48 2.15 108.87
1 60 1 1 1 1 193 49 2.15 108.87
1 70 1 1 1 1 196 50 2.15 108.87

LEG LENGTH: 7.5

1 50 1 I I 1 619 232 1.95 115.43

Table 6.7

Results for Test Grid 5 - A* w/straight-line
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Path Length -108.87

Leg Length =10.00

Conflict Cost - 2.15

Figure 6.8
Path Generated - Test Grid 5. 1

Path Length -115.43

Leg Length = 7.50
Conflict Cost = 1.95

Figure 6.9
Path Generated - Test Grid 5.2
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Path Length =112.58

Leg Length = 5.00
ConflIict Cost 1.65

Figure 6. 10
Path Generated - Test Grid 5.3

Path Length - 109.77
Leg Length - 10.00
Conflict Cost = 2.00

Figure 6. 11
Path Generated - Test Grid 5.4
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Path Length 11llg33
Leg Length =10.00

Conflict Cost = 2.15

Figure 6. 12
Path Generated - Test Grid 5.5

. L&
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DISCUSSION OF TEST GRID 6

This test grid is generated using a total threat density of 1.5. Though this

density Is less than the previous test, the nodes expanded In each case Is

more than five times greater. This Is an indication that the 'difficulty of the

problem is related to the arrangement rather than the quantity of threats. In

fact, the CPU requirements are so extensive that the length 5 case could not

execute within the four-hour CPU limit imposed upon test cases. Where the

length 7.5 case of test grid 5 required only 23 seconds, the same case in this

test required over 63 minutesi

Figures 6. 13 and 6. 14 represent the solution paths created at leg length

10 and 7.5. Notice the radical difference In the early part of the paths. A

careful examination of the length 10 plot will reveal how the length of the leg

would not permit an equivalent 'southern' route chosen for length 7.5.

S

S
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SEED: 21738

TOTAL THREAT DENSITY: 1.5

THREAT DATA: (radius / Pd/ density )
5/0.5/0.4 7.5 / 0.25 / 0.3 10/0.1 /0.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
_ T_ L H T_ L NODES CPU COST LENGTH

1 30 1 1 1 1 991 287 2.20 113.40
1 40 1 1 1 1 1008 286 2.20 113.40
1 50 1 1 1 1 1020 286 2.20 113.40
1 60 1 1 1 I 1024 285 2.20 113.40
1 70 1 1 1 1 1ZI Z8Z Z.20 113.40
1 30 1 0 0 0 1750 434 2.20 113.40
1 50 1 0 0 0 1601 422 2.20 113.40
1 70 1 0 0 0 1475 399 2.20 113.40

LEG L : 7.5

1 50 1 1 1 1 4782 4102 2.10 111.91

Table 6.8

Results for Test Grid 6 - Improved A*

'S

S
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SEED: 21738

TOTAL THREAT DENSITY: 1.5

THREAT DATA: (radius /Pd / density )
5/0.5/0.4 7.5 / 0.25 / 0.3 10/0.1 /0.3

LEGLENGTH: 10 jGj-: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
-Q T L Ii I L NODES 2PU LENGTH

1 30 1 1 1 1 968 280 2.20 113.40
1 40 1 1 1 1 984 280 2.20 113.40
1 50 1 I 1 1 1000 282 2.20 113.40
1 60 1 1 1 1 1019 288 2.20 113.40
1 70 1 1 1 1 1018 285 2.20 113.40

LEG L GTH.: 7.5

1 50 1 1 1 1 4749 4123 2.10 111.91

S

Table 6.9

Results for Test Grid 6 - A* w/box

Si
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SEED: 21738 5

TOTAL THREAT DENSITY: 1.5

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5/0.25/0.3 10/0.1 /0.3

LG L : 10 ~E:EAR: 5 PATH DEFLECTION ANGLE: 90

COEFF IC IENTS CONFL ICT PATH
I L dt I L NODES 2U cO LENGTH

1 30 1 1 1 1 991 286 2.20 113.40

1 40 1 1 1 1 1008 285 2.20 113.40
1 50 1 1 1 1 1018 284 2.20 113.40
1 60 1 1 1 1 1024 284 2.20 113.40 .
1 70 1 1 1 1 1021 281 2.20 113.40

LEG.LENTH: 7. 5

1 50 1 1 1 1 4749 4123 2.10 111.91

Table 6.10

Results for Test Grid 6 - A* w/stralght-line

OS
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0000

Path Length = 104.57
Leg Length = 10.00
Ccnflict Cost = 0.10

Figure 6.19
Path Generated - Test Grid 9.1

Path Length = 104.57
Leg Length = 7.50
Conflict Cost = 0. 10

Figure 6.20 0

Path Generated - Test Grid 9.Z
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SEED: 28547

TOTAL THREAT DENSITY: 0. 50

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5 / 0.25 / 0.3 10/0.1 /0.3

L NGTH: 10 LEGS:ERARC 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
I T L d I L NODES MPU £OST LENGIH

1 30 1 1 1 1 47 4 0.10 104.57
1 40 1 1 1 1 64 6 0.10 104.57
1 50 1 1 1 1 74 7 0.10 104.57
1 60 1 1 1 1 85 8 0.10 104.57
1 70 1 1 1 1 99 10 0.10 104.57

LEG fLNGTH: 7.5

1 50 1 1 1 1 2g3 44 0.10 104.57

Table 6.19

Results for Test Grid 9 - A* w/straight-line

S
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SEED: 28547

TOTAL THREAT DENSITY: 0.5

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5 / 0.25 / 0.3 10/0.1 /0.3

L: 10 LGS: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
I L t I L NODES mPu C LENGTH

1 30 1 1 1 1 43 3 0.10 104.57
1 40 1 1 1 1 50 4 0.10 104.57
1 50 1 1 1 1 68 6 0.10 104.57
1 60 1 1 1 1 80 7 0.10 104.57
1 70 1 1 1 1 90 9 0.10 104.57

LEGLNH: 7.5

1 50 1 1 1 1 256 37 0.10 104.57

Table 6.18

Results for Test Grid 9 - A* w/box

0
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DISCUSSION OF TEST GRID 9

The threat density of 0.50 creates only 18 threats in the grid. Given this,

and their position, solutions are found quite efficiently. For example, the

breadth-first search required 1506 nodes to find the same solution as the

heuristic search found in 47 nodesl There would also seem to be only one

good' solution since the same one was found regardless of leg length. That

is, without changes in the path deflection arc to permit the negotiation of the

last threat gap (see Figure 6.19), the solution found is likely the best.

ZEE. 28547

TOTAL THREAT DENSITY: 0.5

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5/0.25/0.3 10/0.1/0.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
3 N L H T L OCPU COST LENGTH

1 30 1 1 1 1 47 4 0.10 104.57
1 40 1 1 1 1 64 6 0.10 104.57
1 50 1 1 1 1 74 7 0.10 104.57
1 60 1 1 1 1 85 8 0.10 104.57
1 70 1 1 1 1 99 10 0.10 104.57
1 30 1 0 0 0 1506 276 0.10 104.57
1 50 1 0 0 0 1224 251 0.10 104.57
1 70 1 0 0 0 1050 218 0.10 104.57

LGfLNH: 7. 5

1 50 1 1 1 1 295 44 0.10 104.57

EG fLT: 5

1 50 1 1 1 1 1651 712 0.10 104.57

Table 6.17

Results for Test Grid 9 - Improved A*
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Path Length = 110.43
Leg Length = 10.00
Conflict Cost = 0.60

Figure 6.17
Path Generated - Test Grid 8. 1

Path Length 115.46
Leg Length 7.50
Conflict Cost - 0.60

Figure 6.18
Path Generated - Test Grid 8.2
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SEED 120775

TOTAL THREAT DENSITY: 0.75

TH A .DATA: (radius / Pd / density )
5/0.5/0.4 7.5 / 0.25 / 0.3 10/0.1 /0.3

LEGLEGT: 10 LE A R: 5 PATH DEFLECTIONANGLE: 90

COEFFICIENTS CONFLICT PAM
I L I L NODES 2U LENGTH

1 30 1 1 1 1 269 39 0.60 110.43
1 40 1 1 1 1 313 46 0.60 110.43
1 50 1 1 1 1 315 46 0.60 110.43
1 60 I 1 1 1 316 46 0.60 110.43
1 70 1 1 1 1 319 46 0.60 110.43

1 50 1 1 1 1 1938 810 0.60 106.82

Table 6.16

Results for Test Grid 8 - A* w/straight-line

0-
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SEE~: 120775

TOTAL THREAT DENSITY: 0.75

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5 /0.25/ 0.3 10/0.1/0.3

LE L : 10 L: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
I L 1i I L NODES mPU £OST LENGTH

1 30 1 1 1 1 255 37 0.60 110.43
1 40 1 1 1 1 325 49 0.60 110.43
1 50 1 1 1 1 383 60 0.60 110.43
1 60 1 1 1 1 385 61 0.60 110.43
1 70 1 1 1 1 442 69 0.60 110.43

LEG LENGTHj: 7.5

1 50 1 1 1 1 1844 765 0.60 115.46

Table 6.15

Results for Test Grid 8 - A* w/box
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DISCUSSION OF TEST GRID 8

This test is created with a threat density of 0.75. Executiory times are

much less than in previous tests. The output plots are roughly Identical paths

except for the 'jaggies' at the beginning of the length 7.5 path, Figure 6. 18.

This is obviously due to the necessity for correct positioning prior to

maneuvering through the first pair of small threats. It is an interesting case

since it is the first to demonstrate that a shorter leg length (one not a subset

of the longer length) can be a detriment instead of an improvement.

SEED: 120775

TOTAL THREAT DENSITY: 0.75

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5 / 0.25 /0.3 10/0.1 /0.3

LEG LENGTH: 10 LEGS-PER-AR: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
T_. L H T L NO CPU COST LENGTH

1 30 1 1 1 1 269 39 0.60 110.43
1 40 1 1 1 1 318 47 0.60 110.43
1 50 1 1 1 1 317 46 0.60 110.43
1 60 1 1 1 1 318 46 0.60 110.43
1 70 1 1 1 1 321 46 0.60 110.43
1 30 1 0 0 0 2007 337 0.60 110.43
1 50 1 0 0 0 1809 352 0.60 110.43
1 70 1 0 0 0 182? 362 0.60 110.43

LG LT: 7.5

1 50 1 1 1 1 1938 806 0.60 115.46

Table 6.14
Results for Test Grid 8 - Improved A*
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Path Length 111.92
Leg Length 10.00
Conflict Cost 1.05

Figure 6. 15
Path Generated - Test Grid 7. 1

Path Length 106.82
Leg Length = 7.50
Conflict Cost = 1.05

Figure 6.16
Path Generated - Test Grid 7.2
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SEED: 89204

TOTAL THREAT DENSITY: 1.0

TE D : (radius / Pd / density )
5/0.5/0.4 7.5 / 0.25 / 0.3 10/0.1 /0.3

LGEG: 10 LEGS-PERA: 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
I L H I L NODL mPuS LENGTH

1 30 1 1 1 1 846 244 1.05 111.92
1 40 1 1 1 1 864 248 1.05 111.92
1 50 : I 1 1 886 258 1.05 111.92
1 60 11 1 1 900 262 1.05 111.92
1 70 1 I 1 1 913 265 1.05 111.92

LE ENT: 7.5

I 50 1 I 1 1 3287 2662 1.05 106.82

Table 6.13

Results for Test Grid 7 - A* w/straight-line

-0
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SEED: 89204

TOTAL THREAT DENSITY: 1.0

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5 / 0.25 / 0.3 10/0.1 /0.3

LE ENT: 10 LESPE-R 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
I L I I L NOES PU COST LENGTH

1 30 1 1 1 1 817 231 1.05 111.92
1 40 1 1 1 1 846 240 1.05 111.92
1 50 1 1 1 1 872 250 1.05 111.92
I 60 1 1 1 1 894 257 1.05 111.92
1 70 1 1 1 1 906 260 1.05 111.92

LEGLG: 7.5

1 50 1 1 1 1 3256 2734 1.05 106.82

Table 6.12

Results for Test Grid 7 - A* w/box

A1
i
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aEX 89204j

TOTAL THREAT DENSITY: 1 .0

THREAAT (radius /Pd / density)

5/0.5/0.4 7.5 /0.25 /0.3 10/0.1 /0.3
LEG LENGTHi: 10 LSPER-ARC 5 PATH DEFLECTION ANGLE: 90

COEFF ICIENTS CONFLICT PATH

~ L H T k NODES CPU COST HENGI

1 30 1 1 1 1 846 237 1.05 111.92
1 40 1 1 1 1 864 243 1.05 111.92
1 50 1 1 1 1 886 252 1.05 111.92
1 60 1 1 1 1 900 256 1.05 111.92
1 70 1 1 1 1 913 258 1.05 111.92
1 30 1 0 0 0 1631 346 1.05 111.92
1 50 1 0 0 0 1432 342 1.05 111.92
1 70 1 0 0 0 1391 349 1.05 111.92

LEG J~LENT: 7. 5

1 30 1 1 1 1 2659 1933 1.05 106.82

1 50 1 I 1 1 3284 2656 1.05 106.82

Table 6. 11
Results for Test Grid 7 - Improved A*

:1
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DISCUSSION OF TEST GRID 7

The results for this test are consistent with those of the previous tests.

Also consistent with the previous test is the Inability to execute a case with

leg length of 5 within the four-hour CPU limit. This is true even though the

threat density has decreased to i .01 The output plots, Figures 6.15 and

6.16, are similar except for the more direct path the 7.5 route takes through

the threats prior to the goal. An additional execution of a 7.5 case is included

with the coefficients 1-30-1-1-1-1. A small improvement is evident between

this and the 1-50-1-1-1-1 case with a leg length of 10. A considerably

greater improvement is obtained when the leg length is 7.5, i.e. 2659 nodes

with 1-30-1-1-1-1 vs. 3284 nodes with 1-50-1-1-1-1.

H"

i



Path Length 113.40
Leg Length =10.00

Conflict Cost = 2.20

Figure 6. 13
Path Generated - Test Grid 6. 1

A

Path Length =111.91

Leg Length = 7.50
Conflict Cost = 2.10

Figure 6.14
Path Generated - Test Grid 6.2



72

Path Length =104.57

Leg Length = 5.00
Conflict Cost = 0.10

Figure 6.21
Path Generated - Test Grid 9.3
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DISCUSSION OF TEST GRID 10

This grid, like the previous one, is also a density 0.50 test. It also

develops roughly the same path regardless of leg length. The significant

difference with this test is that it behaves exactly the opposite of all previous

tests in this group (test grids 5 through 10) concerning the value of the

g-threat coefficient. In the previous tests, increasing the value of this

coefficient decreased the performance of the algorithm, i.e. it required

greater nodes. In this test, the performance improved as this coefficient

increased. Additional cases were run with g-threat coefficients of 100 and

500 with consistent results. This domain-dependent phenomenon hampers

efforts to discover the 'perfect' set of coefficients.

There may be some question about the merit of the heuristic if the

g-values are set very high, for example, using the g-coefficients 1-500-1.

When the h-coefficients are 1-1-1 with this set of g-values, the solution

requires 72 nodes. Without a heuristic, h-values set to zero, the same

solution required 1130 nodes! A possible explanation may be that even though

the heuristic value is relatively small compared to actual cost, it may be

quite useful as a guidance tool by breaking ties.

The output plots, Figures 6.22 through 6.24, show that the cases with leg

length less than 10 were able to maneuver a much more direct path around

the last mid-sized threat. This results in a much shorter path length while

maintaining the same conflict cost.

:I
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SEED." 39306

TOTAL THREAT DENSITY: 0.5

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5/0.25/0.3 10/0.1 /0.3

LEG LENGTH: 10 LEGS-PER-ARC: 5 PATH DEFLEC FION ANGLE: 90

COEFF IC IENTS CONFLICT PATH
G T L H T L NODES CPU COST LENGTH

1 30 1 1 1 1 226 26 0.00 115.54
1 40 1 1 1 1 196 20 0.00 115.54
1 50 1 1 1 181 18 0.00 115.54
1 60 1 1 1 1 89 7 0.00 115.54
1 70 1 1 1 1 81 6 0.00 115.54
1 100 1 1 1 1 73 52 0.00 115.54
1 500 1 1 1 1 72 49 0.00 115.54
1 30 1 0 0 0 1827 301 0.00 115.54
I 50 1 0 0 0 1739 320 0.00 115.54
1 70 1 0 0 0 1723 331 0.00 115.54
1 500 1 0 0 0 1130 195 O.O0 115.54

L GTH.j.: 7.5

1 50 1 1 1 1 137 17 0.00 111.01

LEQLEGT: 5

1 50 1 1 1 1 298 54 0.00 109.49

Table 6.20

Results for Test Grid 10 - Improved A*

*
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SEED. 39306

TOTAL THREAT DENSITY: 0.5

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5/0.25/0.3 10/0.1 /0.3

LEGlENGTH: 10 L P 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
1. L I 1" L NODES PU O LENGTH

1 30 1 1 1 220 25 0.00 115.54
1 40 1 1 1 1 191 20 0.00 115.54
I so I I 1 I 177 1 7 0.00 1 15.54

1 60 1 1 I 1 89 7 0.00 115.54
1 70 1 1 1 1 81 6 0.00 115.54

LEG LE H: 7.5

1 50 1 1 1 1 136 17 0.00 111.01

Table 6.21

Results for Test Grid 10- A* w/box

at
° . - ... - , . , . . •
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E, 39306

TOTAL THREAT DENSITY: 0. 50

THREAT DATA: (radius / Pd / density )
5/0.5/0.4 7.5 / 0.25 / 0.3 10/0.1 /0.3

L.EGLENGTH: 10 L E 5 PATH DEFLECTION ANGLE: 90

COEFFICIENTS CONFLICT PATH
I L I I L NODES PU OS LENGTH

1 30 1 1 1 1 226 26 0.00 115.54
1 40 1 1 1 1 96 20 0.00 5.54
I 50 I I 1 1 181 18 0.00 115.54
1 60 1 1 I I 89 7 0.00 115.54
1 70 1 1 1 1 81 6 0.00 115.54

LE._LENTl: 7.5

1 50 1 1 1 1 137 17 0.00 111.01

Table 6.22

Results for Test Grid 10 - A* w/straight-line

.0



Path Length =115.24

Leg Length =10.00

Conflict Cost = 0.00

Figure 6.22Z
Path Generated - Test Grid 10. 1

Path Length I 111.01
Leg Length = 7.50
Conflict Cost = 0.00

Figure 6.23
Path Generated - Test Grid 10.2
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Path Length =109.49

Leg Length = 5.00
Conflict Cost = 0.00

Figure 6.24
Path Generated - Test Grid 10.3
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VII. CONCLUSIONS

This thesis has clearly demonstrated the applicability of artificial

intelligence techniques in the area of automated route planning. Certainly,

these techniques have long been applied to route planning. For example,

moving robots through a room or solving the travelling salesman problem of

finding the shortest route which permits him to visit all cities, but only once.

One benefit of this thesis is the application of these techniques to a

real-world' problem where current solutions are less than successful. In

that sense, this thesis is quite successful. It is especially attractive in a

strategic route planning arena where routes are created, using complete

knowledge bases, prior to the execution of the route. In a tactical situation,

where the Immediate problem of avoiding the obstacle immediately ahead Is

paramount, then the FPG solution Is most desireable, due to its speed of

execution. An Interesting alternative to this tactical problem would be to

combine the two methods. Certainly threats or obstacles that weren't known a

priori are going to be encountered, for example, a thunderstorm during an

aircraft flight. The FP6 model can quickly determine avoidance procedures

based upon 'seeing' the new obstacle, while the more time-consuming

Path-Finder model could re-route the remainder of the path given the new

Information and prior knowledge of future obstacles.

It is difficult to justify the expense of the SNOOPER model in virtually

79
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every situation. Only if it is a necessary feature of the problem that a

starting point, or even a few starting points, not be defined. An aspect of the

As search that has not been mentioned before is that it can be allowed to

continue to find paths beyond the first success. The Path-Finder program

could be easily modified to find all paths from a given starting point to a

goal. The method would be to continue letting it expand goal nodes, saving the

pointers so the path may be traced, until some desired condition is reached.

And, it will generate these paths In order of least cost! Certainly, though,

most of these paths will be partially coincident or intersecting. But, another

algorithm might be employed to discard undesireable paths. The point is, the

A* search provides the flexibility to attune the algorithm to specific

requirements. This includes the inclusion of requirements such as altitude

changes, complex threat modelling, and counter-threat capabilities.

This implementation is not without fault, though. During the initial tests,

it was sincerely hoped that a 'magic' set of coefficients could be discovered.

Unfortunately, that hope was not fulfilled. Yet, it is clear that there is a

reasonably small set of coefficients that will give credible results in at least

all the cases tested here. Given that the primary goal of minimum threat

interaction is probably of paramount Importance compared to path length, a

very high value of the g-threat coefficient will *guarantee' a solution of

minimum conflict cost. This method, as the results indicate, may result in

missing a shorter path with the same conflict cost. This problem of

coefficients Is a drawback to the current implementation, though not a

serious one. Perhaps an Idea for a different heuristic could eliminate the

problem entirely.
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APPENDIX A

program path-finder (input, output);

const
max-threaLcats = 5;
max-threats = 100;
max-legs = 15;
pi = 3. 141592654;
deg-rad= 0.01745323252;

type

listtype = (open-list, closed-list);

coord-pair = record
xcoord, y-coord : real;

end;

threatrec = record
category, ncenters : integer;
radius, pd : real;
center: array[ 1.. max-threats] of coordpair;

end;

node-ptr - ^node-rec;
node-rec = record

endpt : coordpair;
g.value, h.value, fLvalue: real;
link, parent: node.ptr;
child: array[ I.. max-legs) of node-ptr;

end;

var

(s global variables s)

x-limit,y-limit, legs-per-arc,nrthreats,nodes-exp,cputime,
MartellLcount: integer;

path-arc, leg-arc, leg-length, g-coeff, g-threaLcoeft, g.length.coeff,
h.coeff, h-threaLcoeff, h-length-coeff: real;

first-run: boolean;

start, goal : coord-pair;

threat : array[ I . . max-threaLcats] of threaLrec;
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open, closed, pathptr : node.ptr;

function distance (pointa, pointLb: coordcpatr) : real;

(* compute the distance between the given points *)

begin
distance := sqrt( (point.a.xcoord - polnLb.x.coord) *2 2 +

(point-a.y-coord- polnLb.y-coord) ** 2);
end;

function fiLeq (a, b : real) : boolean;

(* evaluate approximate equality of two real numbers *)

begin
if abs(a - b) < 0.00001 then

flteq true
else

fl-._eq := false;
end;

procedure clearist(list: nodeptr);

(* destroy given list *)

var
next, old : nodeptr;

begin
next := list;
while next (> nil do

begin
old :- next;
next := next". link;
dispose(old);
end;

end;

function threaLeval (poinLa, pointb: coord-pair) : real;
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(s evaluate threat cost between given points *)

label
1000;

var
i, categ : integer;
cost, poinLto-line, a, b, w, z, dist-ab, disLac, disLbc : real;

begin 0
cost := 0.0;

dist-ab := distance(poinLa, point-b);

if disLab = 0.0 then (* true when goal node generated *)
goto 1000;

(* compute coefficients for distance from a point to a line *)
a point-a.x-coord- poinLb.x._coord;
b polnLa. y-coord- pointb.y.coord;
z :u sqrt(a ** 2 + b ** 2);
w a * poinLa.y-coord - b * point-a.x-coord; 0

for categ := I to nrthreats do
with threat[categ] do

for i := I to n.centers do
begin
point-to-line := abs(b * center[I].x.coord - a * S

center[i].ycoord + w) / z;
disLac distance( poinLa, center[i]);
dlsLbc := distance(point-b, center[I]);

if poinLto-line < radius then

(* doe- threat cover an endpoint *)
If ((dlsLbc < radius) and (dist-ac > radius)) or

((poinLa.xcoord - 0.0) and (distac < radius)) then
cost := cost + pd

(* is it within a box around the line segment *)
else If (dIsLbc <= sqrt(dlsLac se 2 + disLab *, 2)) and

(dist-ac <= sqrt(dlstbc ** 2 + disLab ** 2)) and
(dist-ac > radius) then

cost := cost + pd;
end;

1000:
threaLeval :- cost;

end;
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procedure input-data;

(* no input editing is performed in this version...

var
ch : char;
point : real;
i : integer;
execute-flag boolean;

begin
execute-flag := false;
while (not eof) and (not execute-flag) do

begin
read(ch);

If (ch = V) and (first-run) then
readln(x-limit, y-limit)

else if (ch = P) and (first-run) then
begin
read(point);
start.xcoord := 0.0;
start. y.coord point;
readln(point);
goal.x.coord := xlimit;
goal.y-coord point;
end

else if (ch = T') and (first-run) then
begin
nr.threats := succ(nr.threats);
with threat[nrthreats] do

begin
readln(category, radius, pd, n-centers);
for I := I to ncenters do

with center[l] do
readln(x.coord, y.coord);end

else If ch = L then -.
begin
readln(leg-length, legsper.arc, path.arc);

(* convert input to radians e)
path-arc := path.arc deg.rad;
leg-arc := path-arc / (legsperarc - I);
end
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else if cli V then
readln( g-..coeff, g-.threa-coeff, g-length-coeff,

h-..c oeff , h-.threa-coeff, h-iength-.coeff)
end

else if ch - R then
begin
readin;
execute-flag :=true;
end;

end;

procedure develop-.path;

(smain driver for path finding algorithm *

label
999;0

var
f..iimit :real;
child..ctr : integer;
on-.open, on-~closed, failure: boolean;
best, sucr, old : node...ptr;

function generate-legs (point : coorc-pair) :node...ptr;

(*return list of successor legs from given point *

label
1000;

var
i:integer;

leg-.angle : real;
first, next, prey: node...ptr;

begin
if dlstance( point, goal) <aleg-length then

begin
new( first);
with firstA do

begin
endpt.x..coord :=goal. x-.coord;
endpt.y..coord: goal. y..coord;
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link := nil;

goto 1000;
end;

prey := nil;
first := nil;
leg-angle :- -(path-arc / 2.0) - leg-arc;

for I := 1 to legs.per.arc do
begin
new( next);
with next̂ .endpt do

begin
leg-angle := leg-angle t leg-arc;
x-coord := point.x.coord + leg-length * cos(legangle);
y.coord := point.y.coord + leg-length * sin(legangle);

(* is the new point within the boundaries? *)

If (ycoord < 0.0) or (ycoord y-limit) or
(abs(arctan( (goal. ycoord - y-coord) /
(goal.x_.coord - x.coord))) > path-arc / 2.0) then

dispose(next)

else
begin
if first = nil then

first := next
else

pre ^.link := next;
next. link := nil;
prey - next;
end;

end;
end;

1000:
generate-legs := first;

end;

function global-est (point: coord._pair) : real;

(a compute estimate of global cost between given point and goal a)

begin
if h.threat-coeff o 0 then

global-est :- h.coeff a (h__threat-coeff * threat-eval(polnt, goal) +
h.length.coeff a distance(point, goal))

else

I

L
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global-est :=h..coeff *h-iength.coeff *dlstance(polnt, goal);
end;

function local-cost (poInt-a, pot-b coord-pair) :real;

(scompute actual cost along the leg from point a to b s

begin
If g...threat-coeff 0 0 then

local-cost =g-coeff * (g...threat-coeff * threat-eval(point-a, point-b)
+ g-iength..coeff * distance(point-a, polnt-b))

else
local-cost :=g..coeff * g-length..coeff * distance(point-a, point-b);

end;

procedure insertnode.into..open (new: node..ptr);

var
prey, next : node..ptr;
inserted : boolean;

begin
if open = nil then

begin
(*put it on top *

new^. link := open;
open :- new;o
end

else if open". .Lvalue >- now". fvalue then
begin
(* put It on top *
new",.link := open;
open := new',
end

else
begin
(* search through list for correct spot e
Inserted :- false;
next :=open". link;
prey :=open;
while (not Inserted) and (next o nil) do

if nextA.Lfva Iue >- new". fvaiue then
begin
new". link :=next;
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prevA. llnk := ew;
Inserted := true;
end

else
begin
prev :- next;
next := prevA. link;
end;

if not inserted then
begin
new ^.link := nil;
prev. link new;
end;

end;
end;

procedure reorder-open-list;

(* reorder open list following propogation of better parent *)

var
prey, curr, reorder-list: node-ptr;

begin
prey:= open;
curr := open. link;
reorder-list :- nil;

(* remove all out-of-place entries to reorder-list *)
while curr (> nil do

begin
if curr. f-value ( prev". f-value then

begin
prey", link := curr. link;
curr". link := reorder-list;
reorder-list := curr;
end

else
prev:. curr;
curr : prev". link;
end;

while reorder-list (> nil do
begin
curr := reorder-list;
reorder-list: curr". link;
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ins e rtnode-intoopen( curr );
end;

end;

procedure propogate-newg (old: node-ptr; difference: real);

(* propogate improved g-value through successors of old *)

var
i : integer;

begin
I :=I1;

while old".childfi] > nil do
begin
if old ^ .child[i ] ^ . parent = old then

(* old is this child's parent *)
with old^.child[] ^ do

begin
gvalue := gvalue - difference;
f-value := gvalue + hvalue;
propogatenew.g( old". child[i], difference);
end

else if oldA.9_value < oldA.child[iJ. parent . g..value then

(* old Is an Improvement over current parent of this child *)
with old. child[il" do

begin
g._value := g.value - parentA. gvalue + old".g -value;
fLvalue := g-value + h.value;

(* propogate to successors with difference in values ,)
propogate.-newg(old. child[i], parent". gvalue -

old.g-value);
parent :- old;
end;

I := succ(I);
end;

end;

procedure select-best-g;

(S search open for node with lowest 9.value node within f-ltmit bound a)



90

(*-part of the Martelli improvement

var
prey, next : node-..ptr;
bes-g : real; -
withtn..lflt : boolean;

beg in
MarteliLcount :=succ (MartellJLcount);
best :=open;
next :=open;
prey : nil;
withinj-imit := true;
best-g := open.g...value;

while (next". link o nil) and (within-limit) do
if next". link,".Lfvalue < Lilmit then

begin
If next^. link^. g-.value < best-g then

begin
prey := next;
best := next^. link;
best-g :- best"'. g.value;
end;

next :=next^. link;
end

else
within-limit :-false;

If prey = nil then (stop of open was best *
open :- open". link

else
prev'. link := best". link; (* remove best from open list *

end;

procedure update-..od-node (new, old : node-ptr; mode : list-type);

(sclean-up values/pointers for duplicate node, then trash It s

var
difference : real;

begin
best". chlld~chld-ctrl :- old;
chlld..ctr :- succ(chil&..ctr);
If newA. g..value <oldA. g..value then

begin
old". Parent :- best;
difference :- oldA.g...value - newA*.g-value;
oldA.g...value :=neWA g...value;
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if mode =closed-..list then
begin
propogate..new..g(old, difference);
reorder-opeL-list;
end;

with old^ do
f-value g...value +h-..value;

end;
end;

procedure search-list (mode: list-type;
var sucr : node...ptr; var :found: boolean);

(*search named list for duplicate of sucr node s

Yar
indx : node...ptr;

begin
if mode = open-.list then

indx := open
else

mndx:= closed;
found :- false;

while (mdx o nil) and (not found) do
if (flt-eq(sucr.ndpt.x.coord, indxA*.endpt.x.coord)) and

(flt-eq(sucrA.endpt.y-coord, lndx-.endpt.y..coord)) then
begin -
found :- true;
update...ol-node(sucr, Indx, mode);
old :- sucr;
sucr :-sucrA .link;
dIspose( old);
end

else
Indx: indx*%. link;

end;

begin (smain section of develop path C

(screate start node on open *
new( open);
with open" do
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endpt. x.coord :=start. x-.coorct '
endpt.y-coord :=start. ycoord;
g...value :-0.0;
tL-value :=0.0;
L-val ue :=0. 0;
link :-nil;
end;

failure :=true;
closed :=nil;
f-limit :-0.0;
nodes..exp :=0;
cpu.Alme :=clock; (ssystem dependent s
MarteliLcount :- 0;

repeat
if open = nil then (* failed a

got o 999;

nodes..exp := succ(nodes..exp);
if opWn.Lvalue <flimit then

select-best-g (aMartelli improvement a
else (abest node is on top a

begin
best :=open;
open :=best%. link;
L-limit :-best^. fvalue;
end;

best". link -closed;
closed := best;
If best". endpt. xcoord =x-Jimit then (aat goal a

begin
failure :- false;
goto 999;
end;

child...ctr :- 1;
sucr :- generate-lJegs (best". endpt);
while 3ucr (> nil do

begin
sucr*. Parent :- best;
sucr".g..value :- best".g..value +

local-cost(bestA.endpt, sucr'.endpt);

(asearch open list for duplicate node a
search...list(open-Jist, sucr, on-.open);

(aIf not on open, check closed... a
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sea rch-i13t( c1osed-list, sucr, orL..cloed);
if (not on-.open) and (not on-.closed) then

begin
bestA. chi]ld[chl d..ctr] :- 3ucr;
chlld..ctr :- succ(chl&.ctr);
with sucr- do

begin
h...value :=globaL-est(endpt);
L-value :=g...value + h...value;
child[ 11 nil1;
end;

old := sucrA. link;
ins ert-node-into-open( s uc r);
sucr :=old;
end;

best^. child[child..ctrJ := nil;
end;

until false; (* forever*s)

999:
cpu..time := clock - cpu...time; (ssystem dependent s
if failure then

path-ptr nil
else

pattL-ptr :=best;
end;

procedure output-results;

var
i, j, k, ndx : Integer;
path-.length, conflict-value: real;
prev, curr : node...ptr;

begin
page;
wrIteinC*** Path Finder Results s;
writel n;

wrlteinC'Grid limits: ', x..JImIt : 4, y..iImIt: 4);
writeln;

writeln(CStart coordinates:, start.x..coord: 6: 2, start.y-coord: 6: 2);
wrltein('Goal coordinates:, goal. x.coord :6:2, goal. y.coord :6: 2);
wrIteln;

wrIteln(Leg generation options: )
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writeln(' ': 5, 'Leg length:', leg-length : 5: 2, Legs per arc: ,

legs-per-arc : 2, Path arc: , path-arc / deg-rad : 5: 2);
wrlteln;

writeln('G coefficients (g - threat - length): ', gcoeff : 6 : 2,
9...threatcoeff : 6 : 2, ' - ', g-length._coeff . 6 : 2);

writelnCH coefficients (h - threat - length): ', hcoeff: 6: , -,

h-threat-coeff : 6 : 2, - , hlength-coeff : 6: 2);
writeln;

wrlteln("Threats:');
for i := I to nr.threats do
with threat[i] do

begin
writeln(' : 5, 'Category: ', category: 3, ' Radius: , radius : 5: 2,

Pd: ', pd: 5:2, Quantity:', n.centers :4);
writeln;
for j := I to (n.centers div 3) + I do

begin
for k :- I to 3 do

begin
indx := (j- 1) 3 + k;
if indx <= ncenters then

with center[Indx] do
write( :3, x..coord: 8: 4, ,, y.coord: 8: 4);

end;
wrlteln;
end;

writeln;
end;

writeln('Path from goal:');
prev nil;
curr := path.ptr;
conflict-value := 0.0;
path-length :- 0.0;
while curr > nil do

begin
with currA..endpt do

writeln('': 3, x.coord: 8: 4, ,, y.coord: 8: 4);
If prey 0 nil then

begin
path-length :- path-length + distance(curr%" endpt, prev ^ . endpt);
conflict-value :- conflict-value + threat-eval (curr ^ . endpt,

prev". endpt);
end;

prev :- curr;
curr := curr^.parent;
end;

writeln;
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writeIn CSt ati st c s:');
writelnC :3. 'Nodes expanded :,nodes...exp);

writelnC 3, 'CPU time(msecs): ', cpu..,time);
wrltelnC : 3, 'Conflict cost :', conflict-value : 10 2);
writelnC : 3, 'Path length V, path-length : 10 : 2);
writelnC 3, 'Martelli count :', Martel i-count);
write In;
writein;

end;

begin (* main section of path-..finder *

firsL-run :=true;
while not eof do

begin
lnpuL-data;
devel op-path;
output-results;
c I ear-..list ( open);
clear..Jist( closed);
first.run :=false;
end;

end. (send of path-finder *
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APPENDIX B

(*define a main-level TYPE: s

mode - (LOCAL, GLOBAL);

(*all following code changes are underlined...

function threat-eval (point-a, poin-b : coord-.pair; eval-mode: mode) :real;

(*evaluate threat cost between given points *

label
1000;

var
i, categ : integer;
cost, poln-to-line, a, b, w, z, dist-ab, dist-ac, dist-bc real;
Drox...dist : real:

begin
cost :=0.0;
dist-ab :=distance( point-a, point-b);

if dist-ab = 0.0 then (*true when goal node generated s
goto 1000;

(*compute coefficients for distance from a point to a line *
a =poln-a. xcoord - point-b. x.coord;
b :=polna.y-coord - poinLb.y-coord;
z :=sqrt(a ** 2 + b ** 2);
w :-a * point-a. y-.coord - b * point.a. x.coord;

for categ :- 1 to nr...threats do
with threat~categJ do

if mode - LOCAL then
Drox..dist :=radius

Dr x.d13t :-lea..lenath;,

for i :- I to n-centers do
begin
point-to..llne: abs(b * centeril].x-coord - a S

centerl].y-.coord + w) /z;



distac distance( pointa, center[i]);
distbc distance(pointb, center[i));

if pointto-line < Rrox-dist then

(s does threat cover an endpoint s)
if ((disLbc < prox-dist) and (distac >p cox.__isit)) or

((pointa.x-coord = 0.0) and (distac < prox-dist)) then
cost := cost + pd

(s is It within a box around the line segment *)
else if (dist-bc <= sqrt(distac ** 2 + distab ** 2)) and

(disLac <= sqrt(distbc ** 2 + distab ** 2)) and
(distac > prox-dist) then

cost := cost + pd;
end;

end;
1000:

threateval := cost;

end;

function global-est (point coord-pair) real;

(* compute estimate of global cost between given point and goal *)

begin
if h-threat-coeff (> 0 then

global-est := h-coeff * (h-threatcoeff *
threaLtevall(point, aoaI.GLOBAL) + S
h-length.coeff * distance(point, goal))

else
global-est :- h.coeff * h-lengthcoeff * distance(point, goal);

end;

function local-cost (point-a, poinLb : coord.pair) : real;

(* compute actual cost along the leg from point a to b *)

begin
If g.threaLcoeff <> 0 then

local-cost ;= g.coeff * (g.threat-coeff *
threaLeval(oolnt-a. DonLb. LOCAL) +
g9lengthcoeff * distance(polnLa, pointb)) 0

else
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local-cost := gcoeff * glength-coeff * distance(point-a, point-b);
end;

(* Modify the output-results subroutine: *)

conflict-value := conflict-value +
threaLeval(curr ^ .endpt.Drev ^ .endot. LOCAL);

(* End of changes... *)

- -- .--- - - - 'LXh ....................................... .
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APPENDIX C

program threat-bidr (input, output, datafil;

const
pi =3. 1415927;

Ir J. nrthreats, count, legs..per..arc :Integer;A

seed, tota Ldensity, threat-density,
radius, pd, x...coord, y...coord,
g...coeff, g-t.hrea-coeff, gilength..coeff,
h...coeff, k..threaLcoeff, I-length..coeff,
x..Jimit, y-limit, grid-..area, start, goal,
path-..angle, leg-liength : real;

dotafil : text;

function rand (var seed: real) :real;
begin
seed :=((25173 * seed) + 13849) mod 65536;
rand seed / 65536;
end;

begin (*main section of threaLbldr *

rewrite(datafil;

writein('Enter seed:);
readln( seed);

writeln(Enter x and y grid limits...');
readln(x.llmlt, y..Ilmit);
grid-..area :- x..iimit * y..Jimit;
writeln(datafil, V, x...limit, y-..limit);

writeln( Enter number of threat categories.. .;
readln( nr...threats);
writelnCEnter total threat density...)
readin(total-density);
for I :- 1 to nr...threats do

begin
writeln(Tor threat category, I : 3, 'enter radius, pd, density.. .;
readln( radius, pd, threat-density);
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count := trunc(total-densty * threat-density * grid-area / -.

(pi * radius ** 2));
writeln(datafl, T, 1, radius, pd, count);
for j -ito count do

begin
xcoord .= xlImlt * rand(seed);
ycoord :- y-limit * rand(seed);
writeln(datafil, x.coord, y.coord);
end;

end;

writelnCEnter start and goal coordinates...);
readln(start, goal);
writeln(datafil, P, start, goal);

writelnCEnter leg length, legs per arc, and path deflection angle...);
readln(leg.length, legs3per-arc, path-angle);
writeln(dataftl, V, leg-length, legs.per.arc, path-angle);

writeln('Enter g coefficients (g - threat - length):');
readln(g.coeff, gthreat-coeff, g-length-coeff);
write(datafil, C', g.coeff, g._threatcoeff, g-length-coeff);
writelnCEnter h coefficients (h - threat - length):');
readln(h.coeff, h-threat-coeff, h-length-coeff);
writeln( datafil, hcoeff, hthreaLcoeff, hlength-coeff);

writeln(dataftl, 'R');

end.
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