
RD- A151 946	A MODERN CONTR THE CH-47 HELI WRIGHT-PATTERS	OL DESIGN ME Copter(U) Al	THODOLOGY N	ITH APPLICATI	ON TO 1/3
UNCLASSIFIED	AFIT/CI/NR-85-	330		F/G 1/	4 NL ⁻
					c i
				· · · · · · · · · · · · · · · · · · ·	

.

. . .

¢

•

•

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1961 4

REPORT DOCUMENTATION FAGE	READ-A151 946
REPORT NUMER	CLESSION NOT & RECEPT OF CATALO AND THE
AFIT/CI/NR 85-33D	
TITLE (and Subtrice)	5. TYPE OF REPORT & PERIOD COVERED
A Modern Control Design Methodology With Application To The CH-47 Helicopter	
	6 FERFORMING ORC. REPORT NUMBER
	8. CONTRACT OR GRANT NUMBER(1)
Richard D. Holdridge	
PERFORMING ORGANIZATION NAME AND ADDRESS	IL PROGRAM EL PANT, PROJECT, TAS: APEA & WORK WIT NUMBERS
AFIT STUDENT AT: Stanford University	
. CONTROLLING OFFICE NAME AND ADDRESS	2. REPORT DATE
AFIT/NR	Jan 1985
WPAFB OH 45433	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRES:	
	UNCLASS
	1 + DE - ASSIFIL ATION DOWNGRADING
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L	
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L	
5. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, B. SUPPLEMENTARY NOTES	if different from Report)
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L	LYNN E. WOLAVER ddrett) Dean for Research and
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 8. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1	LyNN E. WOLAVER doratio Dean for Research and Professional Development AFit, Uright-Patterson AFB OF
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 8. SUPPLEMENTARY NOTES	LyNN E. WOLAVER doratio Dean for Research and Professional Development AFit, Uright-Patterson AFB OF
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 8. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1	LyNN E. WOLAVER doratio Dean for Research and Professional Development AFit, Uright-Patterson AFB OF
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 8. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1	It different from Report) LYNN E. WOLAVER ddirection Dean for Research and Professional Development AF LT, Uright-Patterson AFP OF block number) DECTE MAR 2 7 1985
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 8. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 9. KEY WORDS (Continue on reverse side if necessary and identify by 1. Al (THAL) - itinue on reverse side if necessary and identify by	It different from Report) LYNN E. WOLAVER ddirection Dean for Research and Professional Development AF LT, Uright-Patterson AFP OF block number) DECTE MAR 2 7 1985
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 8. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 9. KEY WORDS (Continue on reverse side if necessary and identify by	It different from Report) LYNN E. WOLAVER ddirection Dean for Research and Professional Development AF LT, Uright-Patterson AFP OF block number) DECTE MAR 2 7 1985
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L 7. DISTHIBUTION STATEMENT (of the abstract entered in Block 20, 8. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 9. KEY WORDS (Continue on reverse side if necessary and identify by 1. At that is informed on reverse side if necessary and identify by 1. At that is informed on reverse side if necessary and identify by NTIACHED	It different from Report) LYNN E. WOLAVER ddirection Dean for Research and Professional Development AF LT, Uright-Patterson AFP OF block number) DECTE MAR 2 7 1985
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION L 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 8. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 1. KEY WORDS (Continue on reverse side if necessary and identify by A stract sidnue on reverse side if necessary and identify by	It different from Report) LYNN E. WOLAVER ddirection Dean for Research and Professional Development AF LT, Uright-Patterson AFP OF block number) DECTE MAR 2 7 1985

(7)

A MODERN CONTROL DESIGN METHODOLOGY WITH APPLICATION TO THE CH-47 HELICOPTER

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

NTIS GRA&I PTIC TAB Unannounced Justification By Distribution/ Availability Codes Avail and/or Dist opecial	Access	lon For	,
Unannounced [] Justification By Distribution/ Availability Codes Avail and/or	NTIS	GRA&I	X
By Distribution/ Availability Codes Avail and/or	DTIC T	AB	
By Distribution/ Availability Codes Avail and/or			4
Distribution/ Availability Codes Avail and/or	Justif	ication	1
Distribution/ Availability Codes Avail and/or			
Availability Codes			·
Aveil and/or	Distri	bution,	/
	Avail	stillt	y Codes
Dist operal		Aural a	ind/or
	Dist	spect	al
		i	
H -/	A-1	1	

by Richard D. Holdridge January 1985 I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

(Principal Adviser)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

ana

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

avil f

Approved for the University Committee on Graduate Studies:

(*

Dean of Graduate Studies & Research

A MODERN CONTROL DESIGN METHODOLOGY WITH APPLICATION TO THE CH-47 HELICOPTER

Richard D. Holdridge, Ph.D.

Stanford University, 1985

A control system design methodology is developed which produces robust, low-order optimal controllers for multiple-input multiple-output systems. The methodology attempts to focus the strengths of recent "Modern Control" design algorithms on the problems associated with real control system designs. The methodology is a set of procedures which aids the engineer in creating a realizable controller in either digital or analog form.

To demonstrate the usefulness of the methodology, two control augmentation systems (CAS) were designed and flight tested on a CH-47 helicopter at NASA Ames Research Center. The first design was a longitudinal cruise CAS giving the pilot decoupled control of forward velocity and climb rate. This design task demonstrated the low-order controller and robustness features of the methodology. It also demonstrated the use of modern control techniques in designing integralerror controllers. Flight test results are presented. The second controller is a translational velocity command/ precision hover hold system. This two mode controller demonstrates the methodology as applied to a more complicated design task which includes control law switching and inner loop/ outer loop considerations. Flight test results are also presented.

(

Acknowledgements

I am grateful to my adviser, Prof. A. E. Bryson, for suggesting this research topic and then providing the enthusiastic support needed to bring it to a successful conclusion. I am equally grateful to Mr. Bill Hindson who was tireless in his efforts to make the flight test such a success. I suspect I learned as much engineering from Bill while working on the flight control system as I did in the many courses I took.

Thanks also to the many people at Ames who made the flight research possible. It was really a team effort: Dr. Vic Lebacqz, Dr. Bob Chen, Ms. Katy Hilbert who helped in the engineering and the flight test; Lt. Col. Grady Wilson and Mr. George Tucker, the project test pilots; Mr. Jim Jeske and Mr. Dave Guevara who provided the computer support. At Stanford, Doug Bernard, Peter Chu, Bruce Gardner, and Dan Rosenthal were very helpful by providing software which I incorporated into the various programs.

I'm also grateful to Prof. R. Cannon and Prof. D. Debra for reviewing this thesis and making helpful comments.

Finally, I can never adequately express the gratitude I feel to my parents, Mr. and Mrs. Kenneth B. Holdridge, whose love and support have sustained me far more than they can know.

CONTENTS

. · ·

í

ſ

(

Abstract	iii
Acknowledgements	iv
Contents	v
Figures	ix
1. Introduction	1
1.1. Historical Background on Control System Design	1
1.2. A Modern Control Design Methodology	4
2. The Design Methodology	10
2.1. Model Derivation	10
2.2. Model Scaling	11
2.3. LQG Design	13
2.4. Compensator Order Reduction and Reoptimization	18
2.5. Command Inputs	23
2.6. Simulation and Test	25
2.7. Summary	30
3. Longtidinal CAS for the CH-47	31
3.1. Design Goals and Constraints	31
3.2. Linear Models and Basic Control Structure	34
3.3. Model Scaling	37

V

	3.4.	LQG Design of the Full Order Compensator	40
		3.4.1. Redesign Using Arbitrary Measurement Spectral Densities	41
		3.4.2. Redesign Using an Inverse Optimal Controller	43
	3.5.	Compensator Order Reduction	46
		3.5.1. Robust Longitudinal Third Order Compensator	49
		3.5.2. Longitudinal Output Feedback Controller	51
		3.5.3. Summary of Design Results	56
	3.6.	Flight Test Implementation	59
	3.7.	Flight Test Results	61
	3.8.	Summary of Results for the Longitudinal CAS Design	63
4.	Hov	ver Controller for the CH-47	71
	4.1.	Design Goals and Constraints	71
	4.2.	Linear Model and Basic Control Structure	73
	4.3.	Model Scaling	74
	4.4.	LQG Design and Compensator Order Reduction	78
	4.5.	Outer Loop Design	80
		4.5.1. Transfer Function Analysis for X Axis Outer Loop	82
		4.5.2. Outer Loop Simulation	84
	4.6.	Flight Test Implementation	85
		4.6.1. Inertial Velocity and Position Data	91
		4.6.2. Transient-Free Switching	93
	4.7.	Flight Test Results	93
		4.7.1. Support Systems Development Flying	97
		4.7.2. Preliminary Closed Loop Flight Test in Hover	97

I

ſ

vi

	4.7.3. Hover Controller Redesign	98
	4.7.4. Final Closed Loop Flight Test in Hover	107
4.8.	Summary of Results of the Hover Controller Design	111
5. Co	nclusions	117
5.1.	Methodology	117
5. 2 .	Flight Tests	118
5.3.	Lessons Learned	118
6. Re	commendations for Further Research	120
Re	ferences	122
A. En	gineering Scaling	125
B. Op	timal Compensator Design	129
C. Mi	nimal Realizations	132
0. 111		102
D. Set	t Point Design	136
E. Fi	ted Point Scaling	138
F. CE	I-47 Research Helicopter	141
		-
G. CE	I-47 Linear Models	144
H. Be	ssel Filters	161
I. Pli	ght Software	165

r

C

ł

vii

J.	ROPTSYS Computer Program	201
ĸ.	RSANDY Computer Program	205
L.	SETPNT Computer Program	209
М.	SIMPLOT Computer Program	219
N.	SCALEM1 and SCALEM2 Computer Programs	228

FIGURES

Figure 1.1. Classical Control	5
Figure 1.2. Modern Control	5
Figure 1.3. The Design Methodology	8
Figure 2.1. Navion Linear Model Before Scaling	12
Figure 2.2. Navion Linear Model After Scaling	14
Figure 2.3. Navion Full Order Compensator	19
Figure 2.4. Navion Full Order Compensator Performance	19
Figure 2.5. Navion Reduced Order Compensator Design Results	21
Figure 2.6. Commanding a Desired Output	24
Figure 2.7. Velocity Response for Full Order Compensator	26
Figure 2.8. Velocity Response for Reduced Order Compensator	26
Figure 2.9. Climb Rate Response for Full Order Compensator	27
Figure 2.10. Climb Rate Response for Reduced Order Compensator	28
Figure 2.11. Navion Full Order Compensator Performance in Turbulence .	28
Figure 2.12. Navion Reduced Order Compensator Performance in Turbulence	29
Figure 3.1. Sensors Available on the NASA CH-47	33
Figure 3.2. CH-47 Longitudinal Model	34
Figure 3.3. Controller Structure for The Longitudinal Cruise Autopilot	36
Figure 3.4. CH-47 Longitudinal Linear Model at 60 knots	38
Figure 3.5. CH-47 Scaled Longitudinal Linear Model at 60 knots	39
Figure 3.6. CH-47 Longitudinal Full Order Compensator	42
Figure 3.7. Time Responses using Nomimal Noise	43

•

Figure 3.8. Time Responses with Commands to the Compensator	44
Figure 3.9. Longitudinal CAS using Arbitrary Measurement Spectral Density	45
Figure 3.10. Time Responses using Arbitrary Noise	46
Figure 3.11. Longitudinal Compensator based on Inverse Optimal Solution	47
Figure 3.12. Time Responses using Inverse Optimal Controller	48
Figure 3.13. Performance Comparison of Full Order Compensators	48
Figure 3.14. Longitudinal Reduced Order Compensator	50
Figure 3.15. Reduced Order Compensator Time Responses	51
Figure 3.16. Longitudinal Reduced Order Compensator with Integral Control	52
Figure 3.17. Reduced Order Integral Controller Time Responses	53
Figure 3.18. Longitudinal Full Order Compensator with Integral Control .	54
Figure 3.19. Longitudinal Full Order Integral Controller Time Responses .	55
Figure 3.20. Longitudinal Output Feedback Controller	55
Figure 3.21. Output Feedback Controller Time Responses	56
Figure 3.22. Longitudinal Output and Integral Feedback Controller	57
Figure 3.23. Output and Integral Feedback Controller Time Responses	58
Figure 3.24. Performance Comparison of All Compensators	58
Figure 3.25. Flight Test Implementation	60
Figure 3.26. Comparison of Analytical and Flight Test Designs	61
Figure 3.27. Full Order Flight Response to Velocity Command	64
Figure 3.28. Third Order Compensator Flight Response to Velocity Command	65
Figure 3.29. Output Feedback Flight Response to Velocity Command	66
Figure 3.30. Full Order Flight Response to Climb Rate Command	67
Figure 3.31. Third Order Flight Response to Climb Rate Command	68

Figure 3.32. Output Feedback Flight Response to Climb Rate Command . 69	•
Figure 3.33. Third Order Climb Rate Flight Response, no Integral Control 70)
Figure 4.1. Hover Control System Coordinate System	2
Figure 4.2. CH-47 Hover Model 73	3
Figure 4.3. Hover Control System	5
Figure 4.4. CH-47 Hover Linear Model	5
Figure 4.5. CH-47 Scaled Hover Linear Model	7
Figure 4.6. Hover Full Order Compensator Design Results	3
Figure 4.7. Reduced Order Hover Compensator	1
Figure 4.8. Transfer Function Analysis	4
Figure 4.9. Hover Forward Velocity Step Command in Simulation 80	6
Figure 4.10. Hover Side Velocity Step Command in Simulation 8	7
Figure 4.11. Hover Vertical Velocity Step Command in Simulation 88	3
Figure 4.12. Hover Forward Position Step Command in Simulation 89	9
Figure 4.13. Hover Lateral Position Step Command in Simulation 90)
Figure 4.14. Second Order Complementary Filter	2
Figure 4.15. X Axis Transient-Free Switching Logic	4
Figure 4.16. Y Axis Transient-Free Switching Logic	5
Figure 4.17. Z Axis Transient-Free Switching Logic	6
Figure 4.18. Preliminary \dot{x} Flight Response with Pitch Oscillation 99	9
Figure 4.19. Preliminary \dot{x} Flight Response with Pitch Roll Coupling 100	C
Figure 4.20. Preliminary \dot{y} Flight Response	1
Figure 4.21. Preliminary ż Flight Response	2
Figure 4.22. Preliminary Forward Position Step Command in Flight 103	3

11.

xi

State Equations

$$\begin{bmatrix} \dot{u} \\ \dot{w} \\ \dot{q} \\ \theta \end{bmatrix} = \begin{bmatrix} -.045 & .036 & 0 & -32.2 \\ -.37 & -2.02 & 176.0 & 0 \\ .00191 & -.0396 & -2.98 & 0 \\ 0 & 0 & 1.0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ -28.2 & 0 \\ -11.0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_e \\ \delta_t \end{bmatrix} + \begin{bmatrix} .045 & -.036 \\ .37 & 2.02 \\ -.00191 & .0396 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_w \\ w_w \end{bmatrix}$$

Measurements

$$\begin{bmatrix} u \\ h \\ \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 176.0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_e \\ \delta_t \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_w \\ w_w \end{bmatrix} + \begin{bmatrix} v_u \\ v_h \\ v_\theta \end{bmatrix}$$
(2.3)

$$Q = \begin{bmatrix} 24.6 & 0\\ 0 & 9.98 \end{bmatrix}$$
(2.4)

$$\mathbf{R} = \begin{bmatrix} .318 & 0 & 0\\ 0 & .318 & 0\\ 0 & 0 & .00039 \end{bmatrix}$$
(2.5)

where:

u- forward velocity, ft/sec

w- vertical velocity, ft/sec

q- pitch rate, radians/sec

 θ – pitch angle, radians

 $\delta_{e^{-}}$ elevator, radians

- δ_t throttle, ft/sec^2
- u_w longitudinal gusts, ft/sec

 w_w - vertical gusts, ft/sec

 $v_{\theta}, v_{\dot{h}}, v_{\theta}$ - measurement noise, ft/sec. ft/sec. radians

Q- disturbance spectral density [2]

R- measurement noise spectral density(assumes standard deviations of 1 ft/sec for u and h and 2 deg for θ with .16 second correlation times (T_c)). The spectral densities come from the approximation $S.D. \approx 2\sigma^2 T_c$.[9]

Figure 2.1: Navion Linear Model Before Scaling. Nominal airspeed is 100 knots (100 ft/sec). Note the large order of magnitude differences in the elements of the system matrices. This is caused by the different units of the states.

needed is a linear system in state variable form:

$$\dot{x} = Fx + Gu + \Gamma w$$

$$y = Hx + Lu + Nw + v$$

$$\dot{z} = Az + By$$

$$u = Cz + Du$$
(2.1)

where:

x- system states, $n \times 1$

- z- compensator states, $r \times 1$
- u- controls, $m \times 1$
- w- plant disturbances, $m' \times 1$
- y- sensor measurements, $p \times 1$

v- sensor noise, $p \times 1$

Q- plant disturbance spectral density matrix, $m' \times m'$

R- sensor noise spectral density matrix, $p \times p$

This model is needed for all plant conditions for which the controller is expected to operate. Typically, the conditions include the nominal operating point and several off-nominal conditions for which the control system must also be stable and perform adequately. Figure 2.1 shows the Navion model at the sea level, 104 knot flight condition. No off-nominal flight conditions are included in the example. With the dynamic model now available, the methodology can continue with the scaling of the model.

2.2. Model Scaling

Model scaling is the systematic process of changing the units of the variables in the plant model. This process is described and used by Bryson(BR,sect 7.2) and is a necessary first step in the process of compensator order reduction. Since

Chapter 2.

The Design Methodology

From the discussion of Chapter 1, the need for a structured approach to using modern control methods to design control systems is apparent. This chapter describes a design methodology developed to take advantage of the strengths of the modern control techniques while eliminating or reducing their weaknesses. The methodology is a refinement and an expansion of design procedures described by Bryson and taught in the advanced flight control course at Stanford University.[1] Figure 1.3 shows a flow chart describing the methodology. This chapter describes each step and explains why it is necessary. To facilitate the description of the methodolgy, a simple design task is traced through the process, namely the design of a longitudinal autopilot for commanding aircraft airspeed and climb rate. The plant model represents the Navion general aviation aircraft at sea level and about 100 knots(176 ft/sec) airspeed. The objective is a dynamic compensator which could be implemented on a digital computer in the aircraft.

2.1. Model Derivation

The development of dynamic models for use in control system synthesis is an entire engineering discipline in itself. For this design methodology, the model 7

D

Z

dures is the lack of experience in real world application, Chapters 3 and 4 present the results of applying these techniques to a real world problem. The "real world" problem is the design of a control system for a Boeing-Vertol CH-47 "Chinook" helicopter operated by the NASA Ames Research Center. Chapter 3 shows the application of the methodology to the design of a longitudinal cruise control augmentation system(CAS). Specifically, the CAS is designed to give the pilot a velocity/climb rate command capability for cruise flight. The controller is MIMO with 4 measurements and 2 controls. Chapter 4 applies the techniques to the more difficult task of designing a position hold/velocity command controller for the CH-47 during hover and low speed operations. For this task there are two modes of operation(velocity command and position hold), switching logic for going between the modes, 11 measurements, and 3 controls which must be considered in the design. For both these designs, simulation and flight test results are presented.

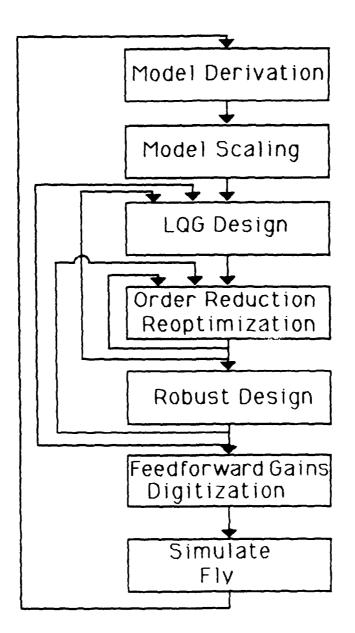


Figure 1.3: The Design Methodology. The many loops indicate the iterative nature of the process. The computer programs associated with each step are described in the appendices.

• The design and analysis tools for LQG techniques have only recently become easy to use in practical engineering applications.

These disadvantages provide a dilemma to the engineer faced with a difficult MIMO control design task. If he chooses to use LQG methods, he may be breaking new ground when he finally implements his system in actual operational hardware/software. On the other hand, if he uses classical techniques in his design procedure, he may end up with a design lacking in performance.

This report presents a control system design methodology which attempts to minimize the disadvantages of many modern control techniques, as described above, while taking advantage of the strengths of both modern and classical control techniques. Specifically, the methodology gives the engineer a structured approach to designing arbitrary order, robust, optimal controllers which can be implemented in digital or analog hardware. In this case, "arbitrary order" implies feedback compensation of any size, regardless of the plant model. This is an important consideration for high order plants. "Robust" is defined as insensitivity of the controller performance to changes in the plant. "Optimal" relates to the design methodology's attempt to minimize a quadratic performance index. This methodology is a refinement and expansion of techniques described by Bryson [2] and depends heavily on a robust-control design algorithm by Ly.[3] Figure 1.3 is a flow diagram showing the steps involved in the methodolgy. Chapter 2 of this report is a detailed description of this methodology. To clarify the description, a simple design is taken through all steps of the design procedures with explanations for design decisions made during the process.

Since one of the major disadvantages of using modern control design proce-

Modern (or LQG) design techniques are characterized by simultaneous closing of all loops from measurements to controls. Figure 1.2 shows the form of this type of controller. LQG design techniques offer several advantages to the designer of MIMO controllers:

- They ensure a stable design, if it exists, for the given measurements and controls.
- They result in coordinated, "graceful" controllers. In particular, the controls do not fight each other to satisfy the design requirements.
- For complicated systems, the design can be done fairly quickly.

Although these advantages make modern control design techniques very powerful, there are disadvantages which cannot be disregarded:

- The designs are often not robust to changes and uncertainties in the plant model, i.e. they are to "finely-tuned" to the plant model.
- For complex systems, the controller designs are complicated, making implementation difficult.
- Only a few designers have developed physical intuition for selecting performance indices.
- There is little physical intuition developed concerning the loops closed by the design process.
- There are relatively few examples of operational systems designed using these techniques. Practicing design engineers are therefore hesitant to use these techniques.

J

۰.

ſ

C

•

11.

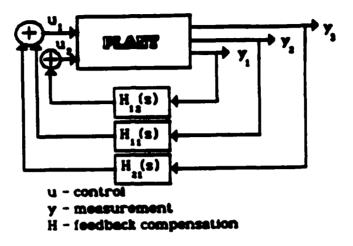


Figure 1.1: Classical Control. Characterized by incremental loop closures.

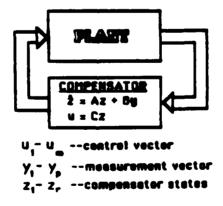


Figure 1.2: Modern Control. Characterized by simultaneous loop closures.

 ζ

1.2. A Modern Control Design Methodology

Classical control techniques are routinely applied to the design of MIMO systems. The process is characterized by successive loop closing. (Figure 1.1) Some of the advantages of using this approach are:

- The designs are simple with clear physical intuition for each loop closed.
- For uncomplicated or open loop stable systems, the procedure is fairly fast.
- There is a large experience base for applying these methods.
- Numerous design and analysis tools exist.
- Operational hardware/software implementation is well understood and straightforward.

However, there are also some disadvantages to using classical design techniques for MIMO systems:

- For complicated or highly unstable systems, one loop may not stabilize the system.
- It may be difficult to decide what loops should be closed. This is especially true in complicated systems(large space structures for example), or in unfamiliar systems where little physical intuition has been developed.
- Different loops can "fight" each other resulting in using more control than is necessary or available.
- Many of the design techniques(Root locus, frequency response, etc.) are difficult to apply to MIMO systems.

- Better Numerical Methods(HQR, HQZ, SVD, etc.)- 1960-present
- Singular Value Techniques- Doyle and Stein and others, 1970-present
- Gradient Design Methods- Ly and others, 1980-present

These techniques are often labeled "modern control" where the previously mentioned methods(Root locus, Frequencly Response, etc.) are often called "classical control" techniques. Perhaps the major difference between the two is that classical techniques are best suited to single input single output(SISO) dynamic systems where the modern control techniques are equally applicable to multiple input multiple output(MIMO) systems.

Virtually all control systems in operational use today, in numerous diverse applications, have been designed using classical control techniques. These techniques have been preferred over the modern control methods because most of the applications are fairly simple SISO systems. Even if the systems being controlled aren't truly SISO, acceptable SISO approximations can often be made. For instance, aircraft motions can be separated into longitudinal and lateral motions which can be approximated by fast and slow linear SISO systems. Design methodologies based on classical control use these SISO approximations for autopilot designs. As we might expect, this approach results in less performance than might be possible had we not made the simplifying assumptions (necessary to use the design techniques). This procedure is completely inappropriate if the system to be controlled cannot be adequately approximated by several uncoupled SISO systems.

engineers had the opportunity to build greatly improved control systems. However, the existing analytical tools were difficult to apply. More systematic analysis and design tools were needed to aid in developing control systems. Such techniques were developed in the early part of this century. A few of these techniques(applicable to linear systems) are listed below:

- Nyquist Stability Analysis- Nyquist, 1930's
- Frequency Response- Bode, 1940's
- Root Locus- Evans, 1940's

McRuer's Chapter 1 contains an excellent summary of these early analytical techniques and their applications.[1] All these techniques(plus others) provided the theory, and the signal processing devices existed to design sophisticated control systems which were installed in operational systems such as aircraft, missiles, rockets, ships, etc. The requirements of the military during World War II pushed the development and refinement of these techniques and of hardware capable of implementing the designs.

During the 1950's, the tools and hardware available to control engineers continued to expand. It was during this decade that the digital computer became a practical tool for designing and implementing control systems. With the digital computer, the control design engineer had much more signal processing capability. Analysis and design techniques soon developed which took advantage of the digital computer. A few of these techniques are:

- Kalman Filter- Kalman, 1960
- Linear Quadratic Gaussian(LQG) techniques- Bryson and others, 1960-present

Chapter 1.

 \mathbf{O}

Introduction

1.1. Historical Background on Control System Design

Control system design, as an engineering discipline, is relatively new. It has been coupled closely with the development of measurement devices(sensors), electronic signal processing capability(analog and digital hardware), and the development of mathematical techniques for the design and analysis of dynamic systems. Before electronic signal processing, ingenious mechanical devices were designed which incorporated simple feedback mechanisms. "Simple" here implies their analytical complexity; sometimes these devices could be quite compicated mechanically. Some simple examples of these mechanical feedback devices are:

- Water level control in a tank using float valves
- James Watts' centrifugal governor for steam engines

Conventional techniques for analyzing dynamic systems (Newtonian dynamics, Lagrangian dynamics, etc.) were adequate to study and design these mechanical devices.

With the development of electronic signal processing and electronic sensors,

Figure G.11. Linear Model, Airspeed 0 knots, Climb Rate 0 ft/min	155
Figure G.12. Linear Model, Airspeed 0 knots, Cli b Rate 500 ft/min	156
Figure G.13. Linear Model, Airspeed 0 knots, Climb Rate -500 ft/min	157
Figure G.14. Linear Model, Airspeed 20 knots, Climb Rate 0 ft/min	158
Figure G.15. Linear Model, Airspeed 20 knots, Climb Rate 500 ft/min	159
Figure G.16. Linear Model, Airspeed 20 knots, Climb Rate -500 ft/min	160
Figure H.1. Bessel Filter Analog Flow Diagrams	163
Figure H.2. Comparison of Filtered and Unfiltered Data in Flight	164

ļ

Figure 4.23. Preliminary Lateral Position Step Command in Flight 104
Figure 4.24. Redesigned Hover Compensator
Figure 4.25. Hover Forward Velocity Step Command in Simulation 108
Figure 4.26. Hover Side Velocity Step Command in Simulation 109
Figure 4.27. Hover Vertical Velocity Step Command in Simulation 110
Figure 4.28. Final \dot{x} Flight Response
Figure 4.29. Final ý Flight Response
Figure 4.30. Final Hover Forward Position Step Command in Flight 114
Figure 4.31. Hover Lateral Position Step Command in Flight 115
Figure B.1. Duality Between Regulators and Estimators
Figure F.1. Boeing-Vertol CH-47 Chinook Helicopter
Figure F.2. Cabin Layout
Figure F.3. Experimental Flight Systems
Figure G.1. Longitudinal and Lateral 4 th Order Models
Figure G.2. Coupled 8 th Order Model
Figure G.3. Linear Model, Airspeed 60 knots, Climb Rate 0 ft/min 147
Figure G.4. Linear Model, Airspeed 40 knots, Climb Rate 0 ft/min 148
Figure G.5. Linear Model, Airspeed 80 knots, Climb Rate 0 ft/min 149
Figure G.6. Linear Model, Airspeed 60 knots, Climb Rate 500 ft/min 150
Figure G.7. Linear Model, Airspeed 60 knots, Climb Rate -500 ft/min 151
Figure G.8. Linear Model, Airspeed -20 knots, Climb Rate 0 ft/min 152
Figure G.9. Linear Model, Airspeed -20 knots, Climb Rate 500 ft/min 153
Figure G.10. Linear Model, Airspeed -20 knots, Climb Rate -500 ft/min . 154

ſ

xii

many dynamic systems, including the example here, have parameters with different units, it is often difficult to compare control gains or estimator gains for states or measurements with differing units. In the Navion example, to determine the relative importance of velocity to elevator and pitch angle to elevator gains would be difficult since velocity has units of ft/sec and pitch angle has units of radians. Model scaling allows the engineer to select a new set of units which result in the plant model having variables with units having a sort of "equivalent" importance to the designer. Of course, selection of such a set of units requires an understanding of the dynamics of the process being controlled. For the Navion, the angle variables are changed from radians to .01 radians while the linear variables remain in units of ft/sec. Such a selection is reasonable since .01 radians and 1 ft/sec are similar in importance to a pilot flying the aircraft. For a supersonic aircraft, a suitable selection might be .01 radians and 10 ft/sec.

Figure 2.2 shows the scaled dynamic model. This change of scaling is accomplished analytically using similarity transformations based on the changes in units. Appendix A presents the derivation of the transformations and the equations used to transform all matrices of the dynamic model into the new units. The computer program ROPTSYS, described in Appendix J, implements these equations as the first step in calculating an optimal full order compensator. The next step in the design methodology uses this scaled dynamic system as a starting point.

2.3. LQG Design

During this step in the design procedure, the optimal regulator and estimator gains are calculated for the scaled dynamic system. Appendix B shows the deriva-

í

State Equations

$$\begin{bmatrix} \dot{u} \\ \dot{w} \\ \dot{q} \\ \dot{\theta} \end{bmatrix}_{scaled} = \begin{bmatrix} -.045 & .036 & 0 & -.322 \\ -.37 & -2.02 & 1.76 & 0 \\ .191 & -3.96 & -2.98 & 0 \\ 0 & 0 & 1.0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix}_{scaled} + \begin{bmatrix} 0 & 1 \\ -.282 & 0 \\ -11.0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_{e} \\ \delta_{t} \end{bmatrix}_{scaled} + \begin{bmatrix} .045 & -.036 \\ .37 & 2.02 \\ -.191 & 3.96 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ w \end{bmatrix}_{scaled}$$
(2.6)

Measurements

$$\begin{bmatrix} u \\ h \\ \theta \end{bmatrix}_{scaled} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1.76 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ w \\ \theta \end{bmatrix}_{scaled} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_{\theta} \\ \delta_{t} \end{bmatrix}_{scaled} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_{w} \\ w_{w} \end{bmatrix}_{scaled} + \begin{bmatrix} v_{u} \\ v_{h} \\ v_{\theta} \end{bmatrix}_{scaled}$$
(2.7)
$$Q_{scaled} = \begin{bmatrix} 24.6 & 0 \\ 0 & 9.98 \end{bmatrix}$$
$$R_{scaled} = \begin{bmatrix} .318 & 0 & 0 \\ 0 & .318 & 0 \\ 0 & 0 & 3.9 \end{bmatrix}$$
(2.8)

where:

u- forward velocity, ft/sec

w- vertical velocity, ft/sec

q- pitch rate, .01 radians/sec

 θ - pitch angle, .01 radians

 δ_{e^-} elevator, .01 radians

 δ_{t} - throttle, ft/sec^2

 u_w - longitudinal gusts, ft/sec

 w_w - vertical gusts, ft/sec

 v_u, v_h, v_{θ} - measurement noise, ft/sec, ft/sec, .01 radians

Q- disturbance spectral density, (From Bryson [2] sect 9.4)

R- measurement noise spectral density(assumes standard deviations of 1 ft/sec for u and h and 2 deg for θ with .16 second correlation times(T_e). The spectral densities come from the approximation, $S.D. \approx 2\sigma^2 T_e$.[9]

Figure 2.2: Navion Linear Model After Scaling. The results of the scaling are most noticeable in the F, G, and R matrices.

tion of the technique used to calculate these gains. The optimal gain calculation of this appendix is based on the eigenvector decomposition of the Hamiltonian matrix as described in Hall and Bryson.[17] A modification to the technique is the capability to weight the linear combination of states and controls, $y_o = H_o x + Du$, in determining regulator gains, and, by duality, to include plant noise in the measurement, $y_m = H_m x + Lu + Nw + v$, in determining estimator gains.¹ This modification is essential for aerospace applications since it allows acceleration to be used as a measurement for estimator design, and weighted in regulator design. The ROPTSYS computer program, described in Appendix J, calculates these regulator and estimator gains. It also calculates the compensator dynamic system based on these gains. One item of note is that the A and B matrices, used in the quadratic performance index($P.I. = \int_0^\infty (y_o^T Ay_o + u^T Bu) dt$), can start as the identity matrices since the system has been scaled in "equivalent" engineering units.

The compensator dynamic system is displayed in three formats:

Conventional Form

$$\dot{z} = (F - GC - KH)z + Ky$$

$$u = Cz$$
(2.9)

where:

(

- z- compensator states, $n \times 1$
- y- sensor measurements, $p \times 1$

u- controls, $m \times 1$

K- steady state Kalman filter gains, $n \times p$

C- optimal regualtor gains, $m \times n$

¹Franklin and Powell show this derivation for the direct digital design case.[6]

Modal Form

$$\dot{z} = F_{mod} \, z + K_{mod} \, y \tag{2.10}$$

$$u = C_{mod} \, z$$

where:

 F_{mod} modal form of (F - GC - KH)

 K_{mod} - modal form of K

 C_{mod} - modal form of C

÷,

$$F_{mod} = \begin{bmatrix} \sigma_1 & \omega_1 & 0 & \cdots \\ -\omega_1 & \sigma_1 & 0 & \cdots \\ 0 & \sigma_2 & \omega_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}, n \times n$$

$$K_{mod} = \begin{bmatrix} \star & \star & \cdots \\ \star & \star & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}, n \times p$$

$$C_{mod} = \begin{bmatrix} \star & \star & \cdots \\ \star & \star & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}, m \times n$$

$$(2.11)$$

Block Minimal Form

$$\dot{z} = F_{min} z + K_{min} y$$

$$u = C_{min} z$$
(2.12)

where:

 F_{min} minimal form of (F - GC - KH) K_{min} minimal form of K C_{min} minimal form of C

$$F_{min} = \begin{bmatrix} 0 & 1 & 0 & \cdots \\ a_1 & a_2 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ a_1 & a_2 & \cdots \\ \vdots & \vdots & \ddots & \ddots \end{bmatrix}, n \times n$$

$$K_{min} = \begin{bmatrix} \star & \star & \cdots \\ \star & \star & \cdots \\ \vdots & \vdots & \ddots & \ddots \\ 0 & 1 & \star & \star & \cdots \\ \star & \star & \star & \star & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}, m \times n$$
(2.13)

The modal form is calculated using the eigenvector matrix as a similarity transformation. Appendix C shows the equations needed to do this. The transformation to minimal form is derived in Appendix C. The modal and minimal realizations are important since they are unique realizations of the dynamic system. From the block minimal realization of the compensator, the designer can assess the relative importance of the different modes. To aid in this determination of modal importance, the ROPTSYS program also calculates two input/output measures, both based on work done by Bernard.[7] One measure is the singular value of the residue matrix associated with that mode. It is defined as:

$$M_1 = \overline{\sigma}(R_i) = \sqrt{g_1 g_1^T + g_2 g_2^T} \sqrt{h_1^T h_1 + h_2^T h_2}$$
(2.14)

where:

 g_1, g_2 - the two rows of K_{min} associated with the mode being analyzed h_1, h_2 - the two columns of C_{min} associated with the mode being analyzed $\overline{\sigma}(R_i)$ - the singular value of the residue matrix for the i^{th} mode

The second measure of merit, M_2 , is just the first weighted by the real part of the mode being evaluated:

$$M_2 = \frac{\overline{\sigma}(R_i)}{|\sigma_i|} \tag{2.15}$$

Г

1

 \bigcirc

The larger these measures are, the more important that mode is to the overall input/output characteristics of the compensator. In the case of unstable compensator modes, these should not be eliminated since they are usually required for stabilization of unstable plant modes. Figure 2.3 shows the results for the Navion control, which came from ROPTSYS. The input data required to get these results are shown in Appendix J.

From these results, we note that the open loop Navion has a well damped short period (the fast open loop mode) but the phugoid (the slow open loop mode) is only lightly damped. The regulator design improves these dynamics by forcing the two phugoid roots onto the real axis and speeding them up. The resulting compensator is fairly fast (as fast as the aircraft response itself) and well damped. This design was also analyzed using the RSANDY program, described in Appendix K, to evaluate the compensator performance in the presence of plant disturbances (vertical and longitudinal wind gusts) and measurement noise. The wind gust data come from a turbulence model described by Bryson.[1] The performance is tabulated in Figure 2.4.

Using these data, Figures 2.3 and 2.4, we can proceed to the next step of the design, simplification of the full-order compensator.

2.4. Compensator Order Reduction and Reoptimization

As with each step in this methodology, the subject of compensator order reduction and simplification is an engineering discipline in itself. For this methodology, the compensator mode measures, M_1 and M_2 , are the criteria for deciding which

Section 2.4

1

T

[(

System	Eigenvalues	Damping
Open Loop(F)	$-2.51 \pm j 2.59,017 \pm j.21$.7, .08
Regulator(F-GC)	$-2.43 \pm j 3.05, -1.03, -2.43$.62, 1, 1
Estimator(F-KH)	$-11.3, -2.98,84 \pm j.43$	1, 1, .89
Compensator(F-GC-KH)	$-11.3, -3.04 \pm j2.34, -1.82$	1, .8, 1

Mode	Real	Imag	M_1	M_2	
1	-11.34	0	2.62	.23	
2	-3.04	2.34	1.86	.61	
3	-3.04	-2.34		-	
4	-1.82	0	.83	.46	

Compensator Dynamic System Matrices

$$F_{min} = \begin{bmatrix} -11.342 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -14.686 & -6.0721 & 0 \\ 0 & 0 & 0 & -1.8155 \end{bmatrix}$$

$$K_{min}(scaled) = \begin{bmatrix} -.0133 & -2.6218 & .0244 \\ -.278 & -.0886 & .0652 \\ 1.49 & .872 & -.337 \\ .771 & -.0464 & -.101 \end{bmatrix}$$

$$K_{min}(unscaled) = \begin{bmatrix} -.0133 & -2.6218 & 2.44 \\ -.278 & -.0886 & 6.52 \\ 1.49 & .872 & -33.7 \\ .771 & -.0464 & -10.1 \end{bmatrix}$$

$$C_{min}(scaled) = \begin{bmatrix} 1.0 & 0 & 1.0 & -.36 \\ -.0344 & .198 & .0216 & 1.0 \\ .0344 & -.198 & -.0216 & -1.0 \end{bmatrix}$$

$$(2.16)$$

Figure 2.3: Navion Full Order Compensator. The unscaled matrices are in units of the physical system.

		Stand	lard Devia	tions		
C	ontrols	States				
δε	δι	u	w	q	θ	h
(deg)	(deg/sec^2)	(ft/sec)	(ft/sec)	(deg/sec)	(deg)	(ft/sec)
.153	.284	.5	2.25	.66	.47	1.32

Figure 2.4: Navion Full Order Compensator Performance. This statistical performance is based on the noise characteristics described in Figure 2.1.

C

modes of a compensator can be eliminated. The M_2 term seems to be most useful in the work here on flight vehicles. A mode can probably be eliminated with little performance impact if its value of $M_2/M_{2largest}$ is .1 or less. When this ratio is greater than .1, that mode may still be neglectable but the decision must rest on reduced order analysis results. In addition to eliminating modes, a compensator can also be simplified by eliminating unimportant measurements. This is desirable since it would lower the cost of the control system. The scaled K_{min} matrix provides the data which are used to decide if a specific measurement is necessary. If the magnitudes of the elements of a specific column of K_{min} are smaller than the other column elements, the measurement associated with that column may be neglectable. Of course, the final decision must be based on the simplified compensator analysis results.

Applying these design guidelines to the Navion example, Figure 2.3, we note the two real modes have an M_2 smaller than the single complex mode so we eliminate these modes and the associated rows of K_{min} and columns of C_{min} . Examining the values of scaled K_{min} , we note the column associated with the θ (pitch angle) measurement is smaller than the other so we try eliminating this measurement. The importance of the scaling process is evident here since the θ column elements in the unscaled K_{min} matrix have large magnitudes due to the radian units. Thus, without scaling, the θ measurement would have seemed more important than it was. The compensator is now second order, 2 input, and 2 output, a significant simplification from the fourth order, 3 input, and 2 output full order compensator.

The next step is to analyze and reoptimize the reduced order compensator

Simplified Compensator before Reoptimisation

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -14.69 & -6.072 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} -.278 & -.0886 \\ 1.485 & .873 \end{bmatrix} \begin{bmatrix} u \\ \dot{h} \end{bmatrix}$$

$$\begin{bmatrix} \delta_e \\ \delta_l \end{bmatrix} = \begin{bmatrix} 0 & -.01 \\ -.1978 & -.0216 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

$$(2.17)$$

Simplified Compensator after Reoptimisation

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -13.59 & -16.93 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} -.1366 & .2124 \\ 2.676 & -3.241 \end{bmatrix} \begin{bmatrix} u \\ \dot{h} \end{bmatrix}$$

$$\begin{bmatrix} \delta_e \\ \delta_t \end{bmatrix} = \begin{bmatrix} 0 & -.01 \\ -13.14 & -1.228 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

$$(2.18)$$

Full Order vs Reduced Order Performance

		Standard Deviation							
System	δe	δι	u	w	q	θ	ĥ		
	(deg)	(deg/sec^2)	(ft/sec)	(ft/sec)	(deg/sec)	(deg)	(ft/sec)		
Full Order	.153	.284	.5	2.25	.66	.47	1.32		
Reduced Order	.2	.31	.57	2.39	.77	.58	1.23		

Figure 2.5: Navion Reduced Order Compensator Design Results. The reduced order compensator was unstable before the reoptimization. The performance is based on the disturbance and noise properties of Figure 2.1

using the RSANDY computer program. The RSANDY program, described in Appendix K, is a modified version of a design and analysis code written by Ly.[8] The program designs robust, low order compensators using a gradient search technique based on a quadratic performance index. The results of using this code on the Navion simplified compensator are shown in Figure 2.5.

The reduced order compensator resulted in an unstable closed loop system. This points to the necessity of the reoptimization step after compensator simplification. The utility of Ly's code is also evident here since it allows unstable initial guesses when reoptimizing the compensator. Another important feature,

not used in this example, is the capability of including several plant conditions in the optimization to ensure compensator stability robustness to changes in plant parameters. The selection of weighting matrices in the quadratic performance index, used by the RSANDY program, was based on "Bryson's Rule" as applied to the scaling parameters. Briefly, "Bryson's Rule" suggests that the outputs and controls be weighted by the inverse square of their scale factors. For this example, the outputs were u(velocity) and \dot{h} (climb rate), and the controls were δ_{e} (elevator) and δ_{t} (throttle), with units of ft/sec, ft/sec, radians, and ft/sec^{2} , respectively. The scaled units were ft/sec, ft/sec, .01 radians, and ft/sec^{2} . The performance index is then:

$$P.I. = \int_0^{t_f} (y^T Q y + u^T R u) dt \qquad (2.19)$$

where:

$$y = \begin{bmatrix} u \\ \dot{h} \end{bmatrix}$$

$$u = \begin{bmatrix} \delta_e \\ \delta_t \end{bmatrix}$$

$$Q = \begin{bmatrix} \frac{1}{1^2} & 0 \\ 0 & \frac{1}{1^2} \end{bmatrix} or \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{1}{(.01)^2} & 0 \\ 0 & \frac{1}{1^2} \end{bmatrix} or \begin{bmatrix} 10000 & 0 \\ 0 & 1 \end{bmatrix}$$
(2.20)

For more complicated problems, these weighting terms may need to be adjusted to get the desired performance. The input file for RSANDY used to get the results of Figure 2.5 is listed in Appendix K.

The results of Figure 2.5 show what might be expected. The simplified compensator has slightly degraded performance in that both the aircraft motion and control activity is slightly larger than the full order compensator. These statistical

performance parameters are important since they indicate the disturbance rejection properties of the design but we recall the design objective was a velocity and climb rate *command* system for the Navion. Since the designs thus far are only regulators, we still need to d sign the command capability for the controller.

2.5. Command Inputs

Generally, control systems are expected to do more than regulate the outputs of a process to some nominal value. We need the ability to change the output of the compensated system to any selected realizable value. To accomplish this end, the desired outputs are used to determine actuator commands which are the steady state controls for the desired outputs. Figure 2.6 shows this concept. The maximum number of outputs which can be commanded is the same as the number of independent controls in the system. This means that the feedforward matrix is square. An additional constraint is that the desired outputs must be physically realizable. For instance, velocity and position cannot be decoupled, i.e. you cannot command a steady velocity while holding position. Appendix D derives the algorithm which calculates this decoupling feedforward matrix for the case of equal numbers of controls and desired outputs. This algorithm is implemented in the SETPNT computer program described in Appendix L.

To complete the Navion autopilot design, we need to include the climb rate and forward velocity command capabilities required by the specifications. For this aircraft, these two outputs can be decoupled (controlled independently) with the two controls, elevator and throttle. Using the SETPNT program with the Navion data(shown in Appendix L), the feedforward matrix for the full order compensator

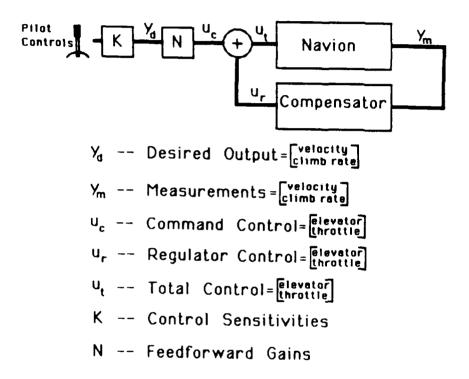


Figure 2.6: Commanding a Desired Output. The K matrix is diagonal and based on human factor considerations. The N matrix comes from an analysis of the system in steady state; the derivation is described in Appendix D.

is:

$$N = \begin{bmatrix} .002165 & -.001578 \\ .4505 & .1398 \end{bmatrix}$$
(2.21)

For the reduced order controller, the result is:

$$N = \begin{bmatrix} .002243 & -.002124 \\ .5354 & .2653 \end{bmatrix}$$
(2.22)

where:

$$\begin{bmatrix} \delta_{e}(radians) \\ \delta_{t}(ft/sec^{2}) \end{bmatrix} = N \begin{bmatrix} u_{desired}(ft/sec) \\ \dot{h}_{desired}(ft/sec) \end{bmatrix}$$
(2.23)

One item to note here is the fact that the feedforward matrices are dependent on both the plant and the controller. The correctness of these decoupling feedforward matrices becomes clear when the Navion designs are evaluated in simulation.

2.6. Simulation and Test

The final step of any design methodology is the demonstration of performance. The first step in such a demonstration is the use of a simple linear simulation. Once the design is validated in linear simulation, the simulation might be expanded to model some of the important nonlinearities in the physical system. In this methodology, the RSANDY program, described in Appendix K, includes the option of creating a linear simulation model. This model is then used by the SIMPLOT program (described in Appendix M) to simulate the closed or open loop system with or without the random disturbances. Using these RSANDY and SIMPLOT programs the Navion full and reduced order compensators can be compared.

The results of step commands in velocity and climb rate are shown in the following figures. Comparing Figures 2.7 and 2.8 we note the performance is

Section 2.6

D

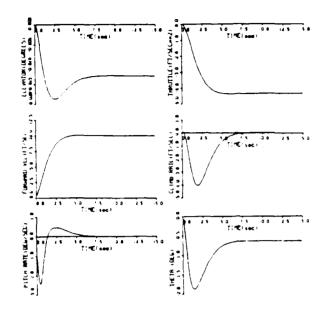


Figure 2.7: Velocity Response for Full Order Compensator. The system has a rise time of about 2.5 seconds and near critical damping.

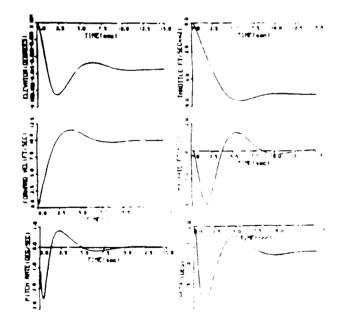


Figure 2.8: Velocity Response for Reduced Order Compensator. The rise time is about 2.5 seconds but the damping is only about .5.

۶,

unscaled model q and θ appear much less noisy than the u and \dot{h} measurements indicating the possibility that u and \dot{h} may not even be necessary. After scaling, the spectral densities are closer in magnitude but θ is still more accurate. With the scaling accomplished, the methodology continued with the design of the full order compensator using the ROPTSYS program.

3.4. LQG Design of the Full Order Compensator

The design of the full order compensator is straightforward since we have all the data necessary to run the design program ROPTSYS. Since we have the system scaled, the first choices for output and control weighting matrices in the regulator design are identity matrices. With this selection, the compensator is calculated and shown in Figure 3.6. Examining the closed loop roots (the estimator and regulator roots) we note the very slow estimator pole at -.0088. The slow estimator pole results from having a very accurate measurement of θ (low noise spectral density) but relatively noisy measurements of u and \dot{h} . The fast filter roots estimate mostly θ and q while the slow mode estimates mainly u. If we had introduced \dot{h} and ucommands into the compensator(Equation 3.9), the slow estimator mode would not have affected the response to commands, since the estimator would have been "tracking" closely before the commands. For perfect tracking, the estimator modes are not excited at all. This need to include the command in the compensator was not recognized until later so the responses of Figure 3.7 show the poor performance when commands are *not* properly fed forward to the compensator. Figure 3.8 shows

State Equations

ú ÷ ÷ ÷ ÷ ÷ ÷	=	$ \begin{array}{c}0204 \\0663 \\42 \\ 0 \\ 0 \\ 0 \end{array} $.0377 551 1.76 0 0	.0236 .9902 -1.682 1.0 0	3217 0186 0 0 0 0	.0127 .0467 3.91 0 -40.0 0	.0426 936 1.53 0 0 -40.0	$\begin{bmatrix} u \\ w \\ q \\ \theta \\ \delta_{\bullet} \\ \delta_{e} \end{bmatrix}$	+ 0 0 40.0 0	0 0 0 0 40.0	$\begin{bmatrix} \delta_{\bullet} \\ \delta_{c} \end{bmatrix} +$.0205 .0663 .42 0 0	$\begin{bmatrix}037\\.5512\\-1.76\\0\\0\\0\end{bmatrix}$	$\begin{bmatrix} u_{w} \\ w_{w} \end{bmatrix}$
---------------------------------	---	---	--------------------------------	--------------------------------------	----------------------------------	---	---	---	--------------------------	--------------------------	--	---------------------------------	--	--

Measurements

$$\begin{bmatrix} q \\ \theta \\ h \\ u \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 100.0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_e \\ \delta_e \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_w \\ w_w \end{bmatrix} + \begin{bmatrix} v_q \\ v_\theta \\ v_h \\ v_u \end{bmatrix}$$
(3.7)

$$Q = \begin{bmatrix} 24.6 & 0 \\ 0 & 9.98 \end{bmatrix}$$

$$R = \begin{bmatrix} .323 & 0 & 0 & 0 \\ 0 & 8.1 \times 10^{-4} & 0 & 0 \\ 0 & 0 & 16.0 & 0 \\ 0 & 0 & 0 & 1.1 \end{bmatrix}$$
(3.8)

where:

P)

u forward velocity, ft/sec

w vertical velocity, ft/sec

q pitch rate, .01 radians/sec

 θ pitch angle, .01 radians

 δ_e pitch control, .1 inches

 δ_e collective lever, .1 inches

 u_w longitudinal gusts, ft/sec

 w_w vertical gusts, ft/sec

$$v_q, v_{\theta}, v_{h}, v_{u}$$
 measurement noise, .01 radians/sec, .01 radians, ft/sec , ft/sec

Q disturbance spectral density, [1]

R measurement noise spectral density(assumes standard devations shown in Figure 3.1 with 3 Hz bandwidth) The spectral densities come from the approximation $S.D. \approx 2\sigma^2 T_e$. [9]

Figure 3.5: CH-47 Scaled Longitudinal Linear Model at 60 knots. Even after scaling, the θ measurement is much more accurate than the others.

(3.6)

Section 3.3

State Equations

$\begin{bmatrix} \dot{u} \\ \dot{w} \\ \dot{q} \\ \dot{\theta} \\ \dot{\delta}_{e} \\ \dot{\delta}_{c} \end{bmatrix} =$	$\begin{bmatrix}0204 \\0663 \\0042 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.0377 551 .0176 0 0	2.36 99.02 -1.682 1.0 0	-32.17 -1.86 0 0 0	.127 .467 .391 0 -40.0 0	.426 -9.36 .153 0 0 -40.0	$\begin{bmatrix} u \\ w \\ q \\ \theta \\ \delta_{\bullet} \\ \delta_{c} \end{bmatrix}$	+ 0 0 40.0 0 0	0 0 0 0 40.0	$\begin{bmatrix} \boldsymbol{\delta}_{\bullet} \\ \boldsymbol{\delta}_{c} \end{bmatrix} + \begin{bmatrix} .0205 \\ .0663 \\ .42 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	037- .5512 -1.76 0 0] [ປະ ສະສີ] 3.3)
---	--	---------------------------------	-------------------------------------	--------------------------------	---	--	---	-------------------------------	--------------------------	---	----------------------------------	---------------------------

Measurements

$$\begin{bmatrix} q \\ \theta \\ \dot{h} \\ u \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 100.0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ q \\ \theta \\ \delta_e \\ \delta_e \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_e \\ \delta_e \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_w \\ w_w \end{bmatrix} + \begin{bmatrix} v_q \\ v_\theta \\ v_h \\ v_u \end{bmatrix}$$
(3.4)

$$Q = \begin{bmatrix} 24.6 & 0 \\ 0 & 9.98 \end{bmatrix}$$

$$R = \begin{bmatrix} 3.23 \times 10^{-5} & 0 & 0 & 0 \\ 0 & 8.1 \times 10^{-8} & 0 & 0 \\ 0 & 0 & 16.0 & 0 \\ 0 & 0 & 0 & 1.1 \end{bmatrix}$$
(3.5)

where:

u forward velocity, ft/sec

q pitch rate, radians/sec

 θ pitch angle, radians

 δ_e pitch control, inches

 δ_e collective lever, inches

 u_w longitudinal gusts, ft/sec

 w_w vertical gusts, ft/sec

 $v_q, v_{\theta}, v_{\dot{h}}, v_u$ measurement noise, radians/sec, radians, ft/sec, ft/sec

- Q disturbance spectral density, [1]
- R measurement noise spectral density(assumes standard devations shown in Figure 3.1 with 3 Hz bandwidth) The spectral densities come from the approximation $S.D. \approx 2\sigma^2 T_c$. [9]

Figure 3.4: CH-47 Longitudinal Linear Model at 60 knots. The highly accurate θ measurement comes from the inertial navigation system(INS), the pitch rate from a body mounted rate gyro, the velocity from the pitot-static system, and the climb rate from an instantaneous vertical speed indicator (IVSI).

other consideration in the development of a linear model for this design is the need to avoid "nuisance disengages" of the experimental control system in the CH-47. These automatic disengages are a safety feature of the modified control system which cause the experimental control system to be tripped off when the control rates exceed a known rate. The approach used to eliminate the possibly of these problems was to include simple first order actuator models:

$$\dot{u}_{actual} = -40 \, u_{actual} + 40 \, u_{desired} \tag{3.2}$$

By weighting \dot{u}_{actual} in the performance index, the control rates should not get large, hence eliminating the nuisance disengages.¹ Before starting the control design, the linear model was scaled to help in compensator order reduction.

3.3. Model Scaling

The selection of units for the CH-47 at a 60 knot flight condition is dependent on our understanding of the aircraft dynamics. In this case, 1 *ft/sec* of velocity or climb rate is about as important to the pilot as .01 *radian* of pitch angle or .01 *radian/sec* of pitch rate. Similarly, the pilot would feel comfortable using .1 *inch* of either control to command the 1 ft/sec of velocity. Another way of looking at this scaling is to note that a .01 *radian* pitch angle would result in a 1 *ft/sec* climb rate at the nominal airspeed of 60 knots($\approx 100 ft/sec$). Figures 3.4 and 3.5 show the linear model at 60 knots both before and after scaling the system into the units above.

The usefulness of the scaling step is again evident if we look at the measurement noise spectral density matrix for the scaled and unscaled models. In the ¹Flight test later confirmed that the experimental system seldom had these type disengages.

0

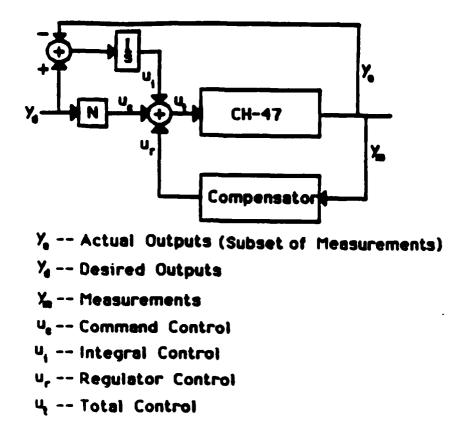


Figure 3.3: Controller Structure for The Longitudinal Cruise Autopilot. Flexibility comes from making the controls, outputs, and measurements vectors rather than scalars.

Í

The form of the controller to be used for the design depends on its function. For this design, the controller must give the pilot a command capability. From Section 2.4, we recall that the command capability comes from the feedforward matrix which decouples the desired outputs. Appendix D shows that this matrix results from inverting the steady-state dynamic system. In flight, this matrix would exactly decouple the two desired outputs only if the helicopter were actually linear and had the same parameters as the model. Of course, this can never happen for several reasons:

- The helicopter dynamics are not linear.
- The helicopter has dynamics which were not modeled.
- The atmosphere is never "standard".
- The helicopter burns off fuel during flight, changing its inertia properties.
- The sensors have biases and scale factor errors.

The list could go on but it is clear we need to correct for differences between the model and the actual aircraft. One obvious solution is to use integral-error control. Figure 3.3 shows a form of the controller which includes this capability.

An interesting difference between this type of controller and more conventional flight control systems is the presence of off-diagonal terms in the integral-error feedback. Normally, the integral feedback is from desired output to the primary actuator for that output. For instance, a classically designed integral controller would use integral of velocity error for pitch control and integral of \dot{h} error for collective. These off diagonal gains would be difficult to find using classical techniques since four transfer functions would be used to calculate the four integral gains. Finding these gains is straightforward using the RSANDY program. Aní

$$\begin{bmatrix} \dot{u}(ft/sec) \\ \dot{w}(ft/sec) \\ \dot{q}(radians/sec) \\ \dot{\theta}(radians) \end{bmatrix} = F \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix} + G \begin{bmatrix} \delta_{\epsilon}(inches \ of \ longitudinal \ stick) \\ \delta_{\epsilon}(inches \ of \ collective \ lever) \end{bmatrix}$$

$$y_m(measurements) = \begin{bmatrix} q \\ \theta \\ \dot{h} \\ u \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1.0 & 0 & 100.0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix}$$
(3.1)

Figure 3.2: CH-47 Longitudinal Model. This is a conventional longitudinal model found in most textbooks. The climb rate measurement is based on the approximation, $\dot{h} = -w + u_{nominal}\theta$.

the need for a fairly rigid control structure. This was necessary since the controller was to be programmed in fixed point assembly language on the aircraft's Sperry 1819A flight control computer. Since major controller structural changes would be difficult and time consuming, the baseline controller had to have a broad control structure which would allow design flexibility to come from changes in the compensator order or in the matrices themselves. With these goals and constraints in mind, the application of the methodology began.

3.2. Linear Models and Basic Control Structure

The models used for these designs come from Reference 11. This reference gives the aerodynamic coefficients at several different flight conditions and a general form of the "F" and "G" matrices based on these coefficients, the inertia properties of the aircraft, and the nominal airspeed. Appendix G shows this general form as well as the resulting linear models used for this research. Figure 3.2 shows the parameters of the longitudinal model. Section 3.1

ľ

Measurement	Units	Approx. Noise	Approx. Correlation	Spectral Density
ĺ		Standard Deviation	Time in Seconds	$S.D.\approx 2(\sigma^2)T_c$
$ heta_{vertical \ gyro}$	degrees	.1	.053	1.061×10^{-3}
<i>pvertical gyro</i>	degrees	.1	.053	1.061×10^{-3}
ψ directional gyro	degrees	1.0	.05 3	.1061
θ_{INS}	degrees	.05	.053	2.653×10^{-4}
<i>øins</i>	degrees	.05	.053	2.653×10^{-4}
ψ_{INS}	degrees	.1	.053	1.061×10^{-3}
р	degrees/sec	2.0	.053	.424
q	degrees/sec	1.0	.05 3	.106
r	degrees/sec	.5	.05 3	2.653×10^{-2}
a.,	ft/sec^2	3.22	.053	1.1
a _y	ft/sec^2	3.22	.05 3	1.1
a.	ft/sec^2	3.22	.053	1.1
hbarometric	ft	2.0	.318	2.546
h _{radar}	ft	.5	.053	2.653×10^{-2}
velpitot statie	ft/sec	3 .0	.318	5. 73
aboom vane	degrees	2.0	.053	.424
Bboom vane	degrees	2.0	.053	.424

Figure 3.1: Sensors Available on the NASA CH-47. The standard deviations are estimates based on flight test data from the CH-47 instrumentation system. The .053 second correlation times corresponds to a 3 hz bandwidth.

Section 3.1

(

ſ

Similarly, to establish a constant speed climb, the pilot must add collective thrust to begin climbing but simultaneously adjust pitch attitude to hold airspeed. In a sense, the pilot (through his extensive training) becomes an inner-loop decoupling controller, needed to give good speed and climb rate performance, the ultimate goal in cruising flight. The design goal, in terms of human factors, can be restated as reducing the pilot's workload in cruise flight by taking him out of the aircraft inner loops and giving him a direct velocity command system.

With the design goal stated, the physical hardware and flight software constraints must also be considered. Appendix F briefly describes the nighly modified CH-47B flight research helicopter flown and maintained at the NASA Ames Research Center. The Langley Report gives a more detailed description of this particular helicopter, which has been modified to include a full authority fly-bywire flight control system and extensive instrumentation.[10] Figure 3.1 shows the list of sensors available on the aircraft. Unfortunately, many of these sensors were guite noisy in the sense that they contained frequencies associated with the rotor motion. Rather than attempt to use the noisy measurements directly in the digital compensator, the TR-48 analog computer on the aircraft was programmed to filter several of the important aircraft motion sensor outputs. Specifically, fourth order Bessel filters were used on the longitudinal, lateral, and vertical accelerometers; a third order Bessel filter was used on the roll rate gyro; and second order Bessel filters on pitch rate, yaw rate, altitude, and pitot-static airspeed measurements. The filters were designed with 5 Hertz breakpoints to eliminate the "3 per rev" and "6 per rev" main rotor harmonics at 11 and 22 Hz. A brief description of these filters is included in Appendix H. A further constraint on the design process was

Chapter 3.

7

(

Longtidinal CAS for the CH-47

3.1. Design Goals and Constraints

The first example of an application of the methodology in Chapter 2 is the design of a longitudinal cruise autopilot for the CH-47. The goal was to synthesize a controller which gave the pilot independent control of airspeed and climb rate using separate pilot controls. For this design, the pilot longitudinal stick was used for the airspeed control and his collective lever was used for climb rate control. This implementation is unconventional since most helicopter control systems, even the highly augmented ones, give the pilot either pitch rate or pitch angle command from longitudinal stick and direct collective thrust command from the collective lever. Some of the more modern helicopters (CH-47D, HH60, CH-53) do close outer loops such as altitude or speed-hold around the collective thrust and pitch rate inner loops, but these are usually implemented as additional pilot-selectable autopilot modes. One trouble with pitch-angle, collective-thrust controllers is the coupling between the two. To increase speed in level flight, the pilot must pitch down, add collective thrust to maintain altitude and accelerate, then pitch up and reduce to a thrust slightly higher than the original to hold the new airspeed.

CI

the compensator and then further simplifies the discrete compensator by putting it back into block minimal form. The SETPNT program uses an algorithm which finds the exact digital representation of a 2×2 compensator subsystem. One advantage of having the digital compensator in block minimal form is the reduction of arithmetic operations required by the computer. Specifically, the minimal form reduces the number of multiplies and adds, required by the compensator, by r(r-1)where r is the order of the compensator. For large order compensators, such as required by systems controlling structural modes, the reduction can be important. The SETPNT program calculates this digital compensator in a form immediately usable in a floating point digital controller.

2.7. Summary

This chapter has shown an approach to designing control systems based on "modern control" methodologies. The approach is especially useful for MIMO systems of large order where compensator order reduction is essential. The Navion autopilot design was a simple example chosen to illustrate the design methodology. In applying this methodology to real control systems, problems will surface requiring the designer to modify and iterate the design to achieve the desired performance specifications. The next two chapters show this methodology applied to a real design problem. They illustrate the usefulness of the approach applied to a fairly complicated design task. They also show the type of problems which surface in real design applications.

 \subset

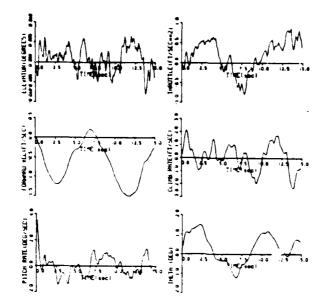


Figure 2.12: Navion Reduced Order Compensator Performance in Turbulence. The performance is nearly identical to the full order compensator (Figure 2.11) and is shown numerically in Figure 2.5

could be "tuned" by changing the weighting matrices and disturbance properties in the RSANDY program.

Eventually, the control system may be put into the physical system and tested. Since these compensator designs can be computationally intensive, it is unlikely to see any analog or continuous implementations for anything other than the simplest designs. Since the entire design process has been in the continuous domain, the final compensator must therefore be discretized to be useful in a digital computer based control system. The process of discretization is simple since the compensator is in a block minimal form. If the control is assumed to be a zero order hold (ZOH), i.e. step commands over the cycle time, then the discrete form can be solved exactly for the 2×2 and 1×1 blocks which make up the compensator dynamic system. The SETPNT program does this exact ZOH discretization for

Section 2.6

ſ

K

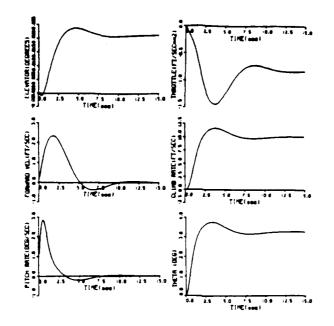


Figure 2.10: Climb Rate Response for Reduced Order Compensator. As with the velocity responses of Figures 2.7 and 2.8, the reduced order compensator has slightly reduced stability with a damping of about .6.

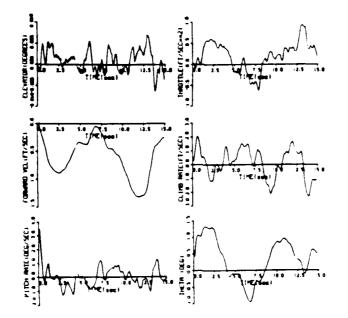


Figure 2.11: Navion Full Order Compensator Performance in Turbulence. The primary difference between the full order performance and reduced order performance (this figure and Figure 2.12) is in the control response which is smoother here.

Section 2.6

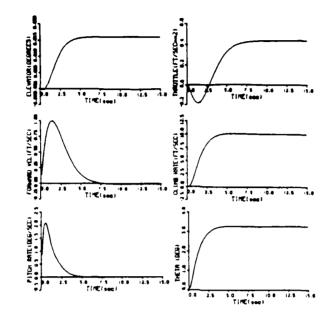


Figure 2.9: Climb Rate Response for Full Order Compensator. The rise time is 2 seconds with critical damping.

as we might expect. The velocity is better damped and faster using the full order compensator. Also, with the elimination of the θ measurement, we note the reduced order compensator has greater pitch angle excursions due to the velocity command. Comparing the climb rate responses of Figures 2.9 and 2.10, we note similar performance between the full and reduced order compensators. To compare the disturbance rejection characteristics of the two designs, we use the SIMPLOT program with plant disturbances and measurement noise. Figures 2.11 and 2.12 show the system performance in response to an initial pitch rate of 5 degrees in the presence of identical disturbances. As expected the full order compensator does a better job, as seen earlier in Figure 2.5. At this point, the design could be iterated by eliminating more modes or measurements, or by adding modes or measurements to improve performance. Alternately, the reduced order design

Section 3.4

G

the responses when the commands are correctly accounted for in the compensator.

$$\dot{z} = A z + B y_m + T_{min}^{-1} T_{mod}^{-1} G u_{command}$$

$$(3.9)$$

 $u_{regulator} = 0$

where:

- A: the block minimal form of the compensator dynamics matrix (F GC KH) which already includes the regulator control effects (the GC term)
- B: The minimal form of the Kalman gain matrix from ROPTSYS
- C: The minimal form of the optimal regulator gain matrix from ROPTSYS
- G: the control distribution matrix for the physical system
- T_{min}^{-1} : the similarity transformation from the modal form to the block minimal form described in Appendix C
- T_{mod}^{-1} : the similarity transformation from the nominal form to the modal form, composed of the eigenvectors of F GC KH

At this point in the process, alternative approaches to the design were used. (Still before we realized how to implement Equation 3.9 above.) Two such alternatives are shown below:

- Pick noise spectral density matrices independent of the actual noise but which give good time responses.
- Use an inverse optimal solution as described by Bernard to establish the performance index weighting matrices and noise spectral density matrices.[7]

3.4.1. Redesign Using Arbitrary Measurement Spectral Densities

The first intermediate approach to improving the poor time response in the velocity channel required selecting noise spectral densities which give an adequate time response. This approach violates the assumptions of the LQG estimator design procedure where the Kalman filter gains are calculated to minimize the estimate errors in the presence of the given noise. However, the noise properties are

1

1

$$F_{min} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -260.43 & -20.31 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -14.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -27.3 & -6.8 & 0 \\ 0 & 0 & 0 & 0 & 0 & -4.86 \end{bmatrix}$$
(3.10)
$$K_{min}(scaled) = \begin{bmatrix} -.58 & -12.1 & -.011 & .0078 \\ 6.98 & 226.5 & .0411 & .058 \\ -.72 & -100.7 & -.154 & .233 \\ -1.99 & -8.5 & .355 & -.75 \\ 9.12 & -3.78 & -2.36 & 4.35 \\ -11.34 & -49.3 & 2.44 & -4.44 \end{bmatrix}$$
(3.11)
$$K_{min}(unscaled) = \begin{bmatrix} -58 & -121 & -.011 & .0078 \\ 69.8 & 22649 & .0411 & .058 \\ -72 & -10070 & -.154 & .233 \\ -199 & -850 & .355 & -.75 \\ 912 & -378 & -2.36 & 4.35 \\ -1134 & -4930 & 2.44 & -4.44 \end{bmatrix}$$
(3.12)
$$C_{min}(scaled) = \begin{bmatrix} 4.05 & .74 & .75 & -.506 & -.46 & -.25 \\ 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}$$
(3.13)
$$C_{min}(unscaled) = \begin{bmatrix} .405 & .074 & .075 & -.0506 & -.046 & -.025 \\ 0 & -.1 & -.1 & 0 & -.1 & -.1 \end{bmatrix}$$

System	Eigenvalues	Damping
Open Loop(F)	$-40.0, -40.0, -2.54, .503,105 \pm j.276$	1, 1, 1, unstable, .35
Regulator(F-GC)	$-4.64 \pm 5.82, -5.04 \pm 1.2, -2.94 \pm 4.01$.62, .98, .59
Estimator(F-KH)	$-40.0, -40.0, -11.55 \pm 8.69, -3.74,0088$	1, 1, .79, 1, 1
Compensator(F-GC-KH)	$-10.15 \pm 12.54, -14.5, -3.39 \pm 3.97, -4.86$.63, 1, .65, 1

Mode	Real	Imag	M_1	M_2
1	-10.15	12.54	277.9	27.4
2	-10.15	-12.54	-	-
3	-14.54	0	126	8.66
4	-3.4	3.97	68	20
5	-3.4	-3.97		-
6	-4.87	0	52	10.8

Figure 3.6: CH-47 Longitudinal Full Order Compensator. Notice the highly unstable open loop mode at s = .503. According to the test pilots, the 60 knot flight condition is the most unstable in the envelope.

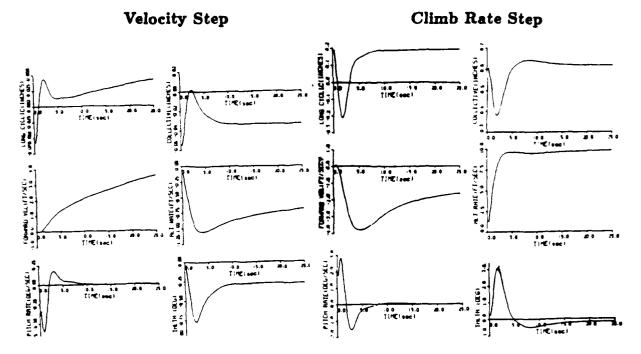
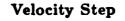


Figure 3.7: Longitudinal CAS Time Responses using Nomimal Noise. The poor velocity command response is dominated by the slow estimator mode (s = -.0088).

fairly uncertain and furthermore, the goal of this design was not a good estimator, but a good compensator. The selection of Q and R matrices which give "good" performance is an iterative process. Figure 3.9 shows the compensator when the spectral densities of all the measurements are set to .2. The very slow estimator pole is eliminated. Figure 3.10 shows the improved velocity response and the unchanged climb rate response.

3.4.2. Redesign Using an Inverse Optimal Controller


The second intermediate approach uses Bernard's "inverse optimal controller" technique.[7] This technique computes A, B, Q and R matrices which, if used in an LQG design, give a closed loop system with desired poles. Figure 3.11 shows this compensator including the A, B, Q and R provided by Bernard. The time

Ē

ľ

Ì

Climb Rate Step

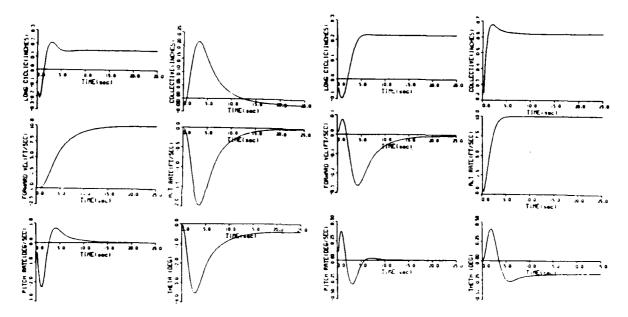


Figure 3.8: Longitudinal CAS Time Responses with Commands to the Compensator. With the command correctly fed to the compensator, the response is identical to a full-state feedback controller. The climb rate response is unchanged from Figure 3.7.

Section 3.4

ſ

1

e

G

11.

$$F_{min} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -14.715 & -7.43 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -4.27 & -1.61 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2.7 & -3.16 \end{bmatrix}$$
(3.15)

$$K_{min}(scaled) = \begin{bmatrix} .00014 & .00048 & -.009 & -1.12 \\ -.001 & -.0018 & -2.40 & 3.99 \\ -.0076 & -.00093 & -.18 & .99 & 0.012 & .0018 & 3.11 & -3.66 \\ -.000093 & 1.1 \times 10^{-4} & -.15 & -.24 & 0.0015 & .0018 & -.026 & -.20 \end{bmatrix}$$
(3.16)

$$K_{min}(unscaled) = \begin{bmatrix} .014 & .048 & -.009 & -1.12 \\ -.10 & -.18 & -2.40 & 3.99 & 0.12 & .0018 & -.026 & -.20 & 0.018 & 0.018 & -.026 & -.20 \end{bmatrix}$$
(3.17)

$$K_{min}(unscaled) = \begin{bmatrix} .014 & .048 & -.009 & -1.12 \\ -.10 & -.18 & -2.40 & 3.99 & 0.015 & .0018 & -.026 & -.20 & 0.018 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.015 & .0018 & -.026 & -.20 & 0.015 & .0018 & -.026 & -.20 & 0.018 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.018 & 0.011 & -.15 & -.24 & 0.015 & .0018 & -.026 & -.20 & 0.011 & -.15 & -.24 & 0.015 & .0018 & -.026 & -.20 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.011 & -.15 & -.24 & 0.015 & .018 & -.026 & -.20 & 0.011 & 0.01$$

$$C_{min}(unscaled) = \begin{bmatrix} 0.0 & -.1 & 0.0 & -.1 & -.165 & -.117 \\ -.026 & -.040 & -.023 & -.038 & 0.0 & -.1 \end{bmatrix}$$
(3.19)

System	Eigenvalues	Damping
Open Loop(F)	$-40.0, -40.0, -2.54, .503,105 \pm j.276$	1, 1, 1, unstable, .35
Regulator(F-GC)	$-2.62,866 \pm j.913, -1.035 \pm .384,281$	1, .69, .94, 1
Estimator(F-KH)	$-40.0, -40.0, -4.45, -1.0 \pm j.721, -1.31$	1, 1, 1, .81, 1
Compensator(F-GC-KH)	$-3.72 \pm j.947,803 \pm j1.90, -1.58 \pm j.445$.97, .39, .96

Mode	Real	Imag	M_1	M_2
1	-3.72	.947	11.33	3.05
2	-3.72	947	-	-
3	803	1.90	5.24	6.53
4	803	-1.90	-	-
5	-1.58	.45	.254	1.61
6	-1.58	45	-	_

Figure 3.9: Longitudinal CAS using Arbitrary Measurement Spectral Density. The slow estimator mode of Figure 3.6 is eliminated.

F

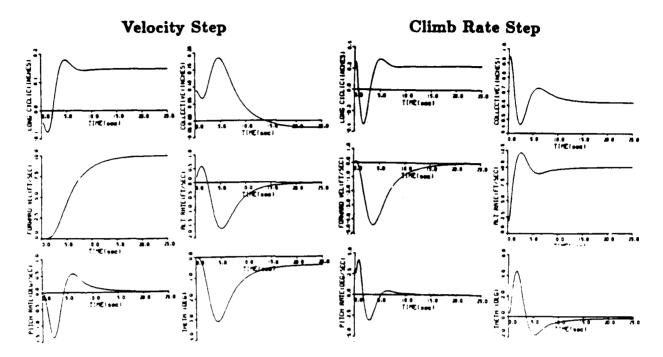


Figure 3.10: Longitudinal CAS Time Responses using Arbitrary Noise. The poor velocity response of Figure 3.7 is eliminated.

responses of Figure 3.12 confirm the improved performance.

Figure 3.13 shows the statistical performance of the original design and the two alternate designs. As expected, the nominal design has the lowest errors. The inverse optimal controller is nearly as good but the other is clearly the worst. Based on the combination of statistical performance and the time responses, the inverse optimal design was the best of the full order compensators. With the full order compensator in hand, the process of order reduction began.

3.5. Compensator Order Reduction

Using the M_2 criterion of section 2.3, both the nominal and the inverse optimal compensators indicate reduction to third order is feasible. From a more practical

ł

$$F_{min} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -205.73 & -22.68 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3.73 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1.55 & -2.33 & 0 \\ 0 & 0 & 0 & 0 & 0 & -.68 \end{bmatrix}$$
(3.20)

$$K_{min}(scaled) = \begin{bmatrix} -.013 & -.87 & -.34 & -.0015 \\ -.17 & 4.95 & .17 & -1.03 \\ .37 & -.84 & .01 & 1.84 \\ -.011 & -.43 & -.12 & .88 \\ .022 & .34 & .069 & -.57 \\ .014 & .63 & .16 & -1.40 \end{bmatrix}$$
(3.21)

$$K_{min}(unscaled) = \begin{bmatrix} -1.29 & -86.68 & -.033 & -.0015 \\ -16.62 & 494.75 & .17 & -1.03 \\ .37.28 & -84.30 & .01 & 1.84 \\ -1.132 & -42.52 & -.12 & .88 \\ 2.16 & 33.85 & .069 & -.57 \\ 1.44 & 63.12 & .16 & -1.40 \end{bmatrix}$$
(3.22)

$$C_{min}(scaled) = \begin{bmatrix} 0.0 & 1.0 & 1.0 & 1.61 & .33 & 1.0 \\ .10 & .25 & .21 & 0.0 & 1.0 & -.42 \end{bmatrix}$$
(3.23)

$$C_{min}(unscaled) = \begin{bmatrix} 0.0 & -0.1 & -.1 & -.16 & -.033 & -.1 \\ -.01 & -.025 & -.021 & 0.0 & -.1 & .042 \end{bmatrix}$$

System	Eigenvalues	Damping
Open Loop(F)	$-40.0, -40.0, -2.54, .503,105 \pm j.276$	1, 1, 1, unstable, .35
Regulator(F-GC)	$-2.13 \pm j.78,56 \pm j.23,82 \pm j.33$.94, .93, .93
Estimator(F-KH)	$-40.0, -40.0, -11.54 \pm j8.70, -1.01,52$	1, 1,80, 1, 1
Compensator(F-GC-KH)	$-11.34 \pm j8.78, -3.73, -1.17 \pm j.44,68$.79, 1, .94, 1

Mode	Real	Imag	M_1	M_2
1	-11.34	8.78	15.33	1.35
2	-11.34	-8.78	-	-
3	-3.73	0.0	2.11	.56
4	-1.17	.44	2.59	2.22
5	-1.17	44	-	-
6	68	0.0	1.67	2.46

Figure 3.11: Longitudinal Compensator based on Inverse Optimal Solution. The slow estimator mode of the nominal design, Figure 3.6, is gone.

i

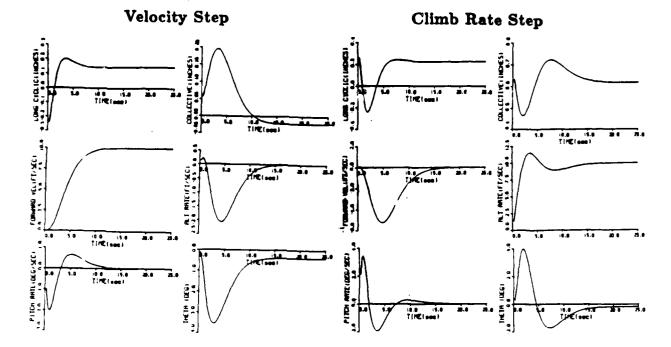


Figure 3.12: Longitudinal CAS Time Responses using Inverse Optimal Controller. The velocity reponse is much improved from Figure 3.7.

		Stan	dard Devi	ation	· · · · ·		·
System	δe	δε	u	w	9	θ	h
	(inches)	(inches)	(ft/sec)	(ft/sec)	(deg/sec)	(deg)	(ft/sec)
Nominal	.12	.06	1.01	1.51	0.84	0.78	1.49
Arbitrary Noise	.39	.21	4.24	3.96	3.46	3.34	2.65
Inverse Optimal	.16	.07	1.43	2.90	1.24	1.29	1.72

Figure 3.13: Performance Comparison of Full Order Compensators. These data are based on the measurement noise shown in Figure 3.1 and disturbance noise of Figure 3.4.

48

standpoint, using output feedback of the measurements is also a possibility. This is appropriate if we recall from section 3.1 that all the measurements were being analog filtered before entering the flight control computer. The next two sections show these two designs.

3.5.1. Robust Longitudinal Third Order Compensator

Using the nominal compensator reduced to third order as a starting guess, the RSANDY program was used to optimize the low order compensator using its robust design feature. The following flight conditions were used with the weightings shown.

Condition	Airspeed(knots)	Climb Rate(ft/min)	Weighting
Nominal	60	0	.8
Off Nominal 1	60	500	.05
Off Nominal 2	60	-500	.05
Off Nominal 3	40	0	.05
Off Nominal 4	80	0	.05

Stability is ensured by the RSANDY program for each of these flight conditions. Figure 3.14 shows the results including the closed loop roots at the nominal flight condition. There is still a slow mode (s = -.059) which is shown in the time responses of Figure 3.15 indicating the need for integral control.

When the integral control loop is added to the third order controller, the RSANDY program was again used to set the four gains in the K_I matrix of Figure 3.3. The program did not converge with only the four gains of K_I allowed to vary in the optimization. By releasing both the K_I and the compensator gains, the compensator of Figure 3.16 emerged. Figure 3.17 shows the associated time responses. The same approach was used to set the integral gains for the full-order compensator when the integral control loop was added. Figures 3.18 and 3.19

$$F_{min} = \begin{bmatrix} 0.0 & 1.0 & 0.0 \\ -226.3 & -78.49 & 0.0 \\ 0.0 & 0.0 & -1.397 \end{bmatrix}$$
(3.25)

$$K_{min} = \begin{bmatrix} -22.17 & -121.7 & -.35 & -.11 \\ 53.14 & 3527. & .87 & .24 \\ -31.38 & -84.46 & -.90 & -.38 \end{bmatrix}$$
(3.26)

$$C_{min} = \begin{bmatrix} 0.0 & -.10 & -.10 \\ -.11 & -.056 & .012 \end{bmatrix}$$
(3.27)

Real Part	Imag Part	Damping	Freq(rad/sec)	Freq(Hz)
-75.45	0.0	1.0	75.45	12.01
-40.00	0.0	1.0	40 .00	6. 37
-40.18	0.0	1.0	40.18	6.40
-3.12	0. 0	1.0	3.12	.50
96	1.36	.58	1.67	.27
96	-1.36	.58	1.67	.27
059	0.0	1.0	.059	.0094
42	0.0	1.0	.42	.068
96	0.0	1.0	.96	.15

Figure 3.14: Longitudinal Reduced Order Compensator. Reducing from 6^{th} to 3^{rd} order decreases the number of independent gains in the compensator from 36 to 18.

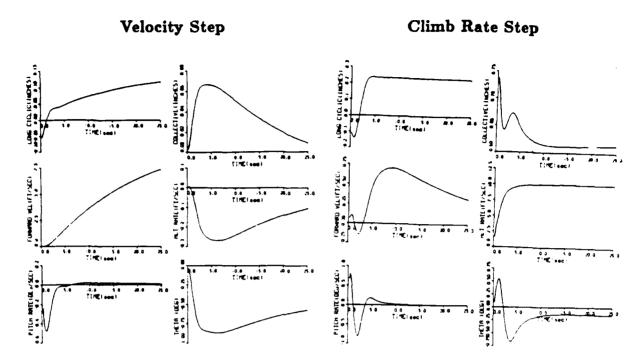


Figure 3.15: Longitudinal Reduced Order Compensator Time Responses. The velocity response is still quite slow but climb rate is adequate.

show the resulting compensator and time responses.

3.5.2. Longitudinal Output Feedback Controller

Since the measurements available $(q\theta uh)$ are nearly the same ² as the states of a fourth order model, the gains of a regulator design are a good starting point in using RSANDY to compute output feedback gains. In fact, using these gains with no further optimization gave quite impressive performance as shown in Figures 3.20 and 3.21.

As with the reduced order compensator, an integral control loop is necessary to ensure that the actual commands are achieved in flight. Using the K_I gains from the reduced order design(Figure 3.16) and the output feedback controller of ²The fourth order model has states ($uwq\theta$) and $\dot{h} \approx u_{nominal}\theta - w$.

. .

Section 3.5

り

$$A_{min} = \begin{bmatrix} 0.0 & 1.0 & 0.0 \\ -229.5 & -16.82 & 0.0 \\ 0.0 & 0.0 & -2.48 \end{bmatrix}$$
(3.28)

$$K_{min} = \begin{bmatrix} -22.83 & -190.9 & -.07 & .059 \\ 57.00 & 3528. & .044 & -.33 \\ -18.57 & -59.93 & -1.37 & -.67 \end{bmatrix}$$
(3.29)

$$C_{min} = \begin{bmatrix} 0.0 & -.1 & -.1 \\ .45 & -.071 & .041 \end{bmatrix}$$
(3.30)

$$I = \begin{bmatrix} -.0054 & .0098\\ -.00823 & .047 \end{bmatrix}$$
(3.31)

Closed Loop Eigenvalues

Real Part	Imag Part	Damping	Freq(rad/sec)	Freq(Hz)
-39.75	0.0	1.0	39.75	6.32
-40.03	0.0	1.0	4 0.0 3	6.37
-7.61	11.46	.55	13.75	2.19
-7.61	-11.46	.55	13.75	2.19
-1.81	2.17	.64	2.83	.45
-1.81	-2.17	.64	2.83	.45
-1.77	0.0	1.0	1.77	.28
044	.092	.44	.10	.016
044	0 92	.44	.10	.016
53	.37	.82	.65	.10
53	37	.82	.65	.10

Figure 3.16: Longitudinal Reduced Order Compensator with Integral Control. The A_{min} , K_{min} , and C_{min} matrices are not the same as in Figure 3.14.

IJ

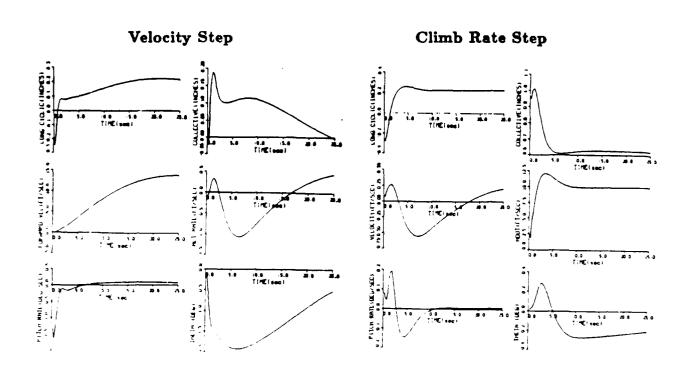


Figure 3.17: Longitudinal Reduced Order Integral Controller Time Responses. Although the velocity response is still fairly slow, this design was selected for evaluation in flight.

53

$$F_{min} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -205.7 & -22.67 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1.781 & -2.661 & 0 & 0 \\ 0 & 0 & 0 & 0 & -4.279 & 0 \\ 0 & 0 & 0 & 0 & 0 & -.263 \end{bmatrix}$$
(3.32)
$$K = \begin{bmatrix} -1.96 & -86.7 & -.148 & -.0213 \\ -16.62 & 494.8 & .166 & -.81 \\ -1.11 & -42.6 & -.437 & .475 \\ 2.171 & 33.8 & .727 & -.174 \\ 37.3 & -84.3 & .148 & 1.09 \\ 1.33 & 63.1 & .0823 & -.395 \end{bmatrix}$$
(3.33)
$$C = \begin{bmatrix} 4.932 & .122 & .477 & 1.01 & -.068 & -.44 \\ -.0105 & -.025 & 0 & -.1 & -.021 & .042 \end{bmatrix}$$
(3.34)
$$I = \begin{bmatrix} -.00003 & -.01 \\ .000157 & .053 \end{bmatrix}$$
(3.35)

Closed Loop Eigenvalues

Real Part	Imag Part	Damping	Freq(rad/sec)	Freq(Hz)
-40.01	.0022	1.0	40.01	6.37
-40.01	00 22	1.0	40.01	6.37
-11.43	8.21	.81	14.07	2.239
-11.43	-8.21	.81	14.07	2.239
543	2.87	.185	2.93	.466
543	-2.87	.185	2.93	.466
-3.38	0.0	1.0	3.38	.537
-2.86	0.0	1.0	2.86	.455
299	.90	.315	.947	.151
299	90	.315	.947	.151
561	.334	.86	.65	.104
561	334	.86	.65	.104
2 06	0.0	1.0	.206	.0329
-4.24×10^{-5}	0.0	1.0	4.24×10^{-5}	6.75×10^{-6}

Figure 3.18: Longitudinal Full Order Compensator with Integral Control. As with the third order design, the A, K, and C matrices are different from the full order design without integral control (Figure 3.11).

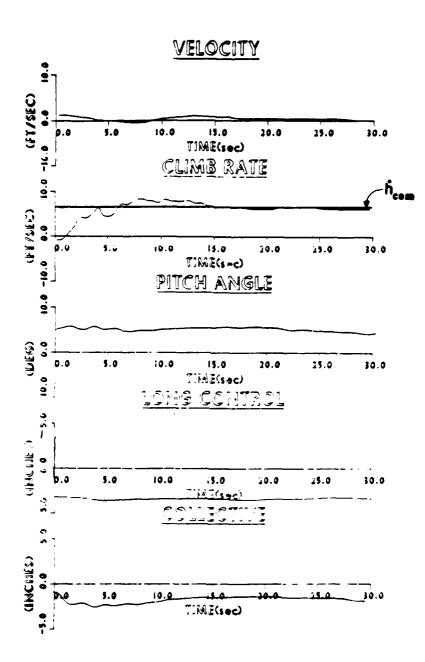


Figure 3.31: Third Order Compensator Flight Response to Climb Rate Command. Atmospheric turbulence masked the transient portion of the response but steady state was achieved in about 10 seconds, similar to the simulation of Figure 3.17.

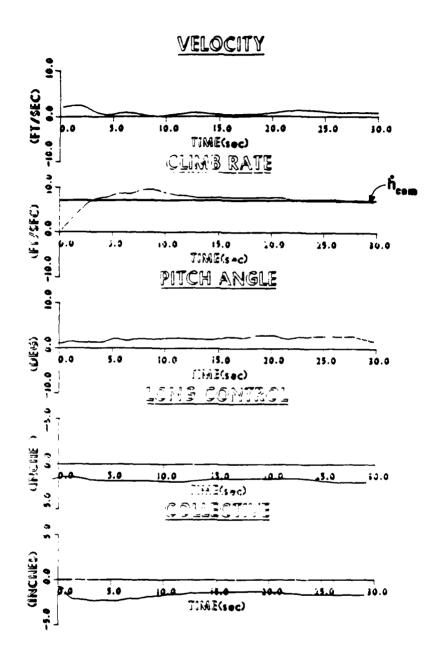


Figure 3.30: Full Order Compensator Flight Response to Climb Rate Command. As in the velocity response of Figure 3.27, the h command response was well predicted by the simulation results of Figure 3.19. This response also shows the decoupling between velocity and climb rate.

1.

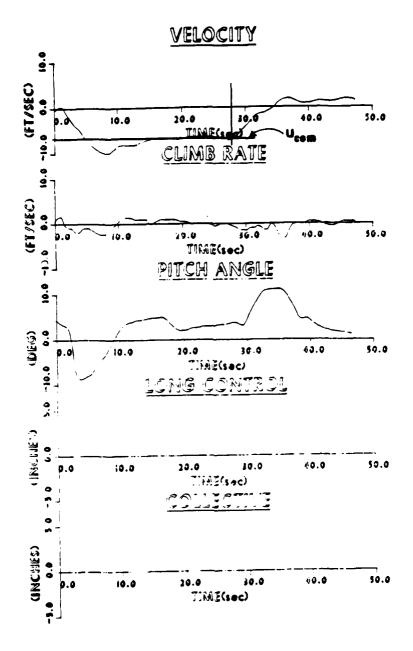


Figure 3.29: Output Feedback Compensator Flight Response to Velocity Command. As in the responses of Figures 3.27 and 3.28, this flight response agrees with the simulation predictions. In this case, however, the overall loop gain (final gain to the actuator) was reduced by half.

ッ

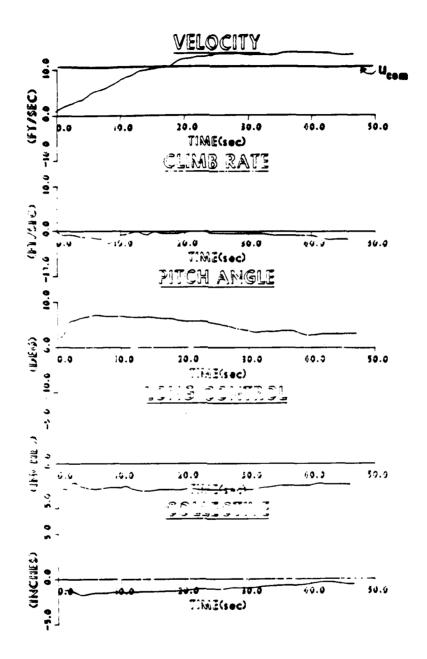


Figure 3.28: Third Order Flight Response to Velocity Command. This reponse to a command of approximately 10 ft/sec follows closely the simulation results of Figure 3.17.

ر م

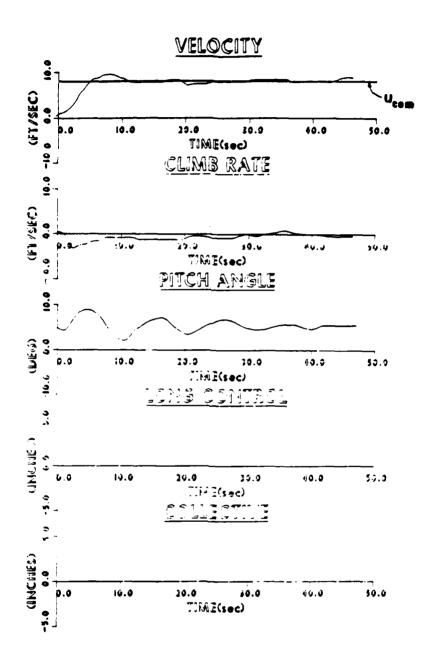


Figure 3.27: Full Order Compensator Flight Response to Velocity Command. The rapid velocity response and poorly damped pitch angle were also evident in the simulation response of Figure 3.19.

Section 3.8

in a realistic task such as flying a precision approach.

3.8. Summary of Results for the Longitudinal CAS Design

The results of this section can be separated into two categories:

- the design task
- the flight test results

The design task was important because it established an experience base for use of the design methodology. This task showed that use of integral-error feedback in a state variable based controller eliminates the effects of an inaccurate plant model in achieving commanded outputs. It also showed the difficulty encountered when using LQG design techniques with specified time domain properties. In this example, three methods of setting weighting matrices and spectral density matrices were compared. From a practical standpoint, this first design task was very important since an accurate way of scaling the analytical design for use in the fixed point flight computer was developed. An equally important result of this task was the coding and testing of a general form of a modern controller for the Sperry 1819 flight computer.

The flight test results showed the technical feasibility of decoupled control using a "modern" controller. The test system had adequate handling qualities but, due to time constraints, no attempt was made to iterate the designs for "good" handling qualities. Also, the disturbance rejection capabilities were not thoroughly investigated.

took place at the Crows Landing test facility (in the San Joaquin valley) to avoid the heavy traffic of the South San Francisco Bay Area near Ames Research Center. The purpose of the flight test was to validate the performance of the different controllers rather than "tune" the system for maximum pilot acceptance. Step commands from the computer or the pilot were used to evaluate the different systems. The nominal airspeed was 60 knots but stability and performance were checked from 40 to 80 knots. Figures 3.27, 3.28 and 3.29 show the responses of the full-order, third-order, and direct feedback compensators to velocity step commands of about 10 ft/sec. All three of these systems show good decoupling between velocity and climb rate. Their velocity responses are similar to the simulation results of figures 3.12, 3.17, and 3.23 but the pitch angle behavior is less damped than the simulation results. Chen has shown that unmodeled dynamics, especially rotor dynamics, are the probable cause for the lower achievable control bandwidth in flight.[12] In fact, the output feedback flight implementation had the overall pitch and collective loop gains reduced by half to achieve an acceptable response. Figures 3.30, 3.31 and 3.32 show similar results for climb rate commands. The importance of integral control is demonstrated in figure 3.33 which shows the response to a climb rate command for the third order controller without integral control. Although a steady climb rate is achieved, an unwanted velocity change of similar magnitude is also present.

Pilot opinion was mixed concerning the system. They were impressed at how well it held airspeed and climb rate but the transient behavior was not totally acceptable and the system was "sloppy" in response to gusts. This is valid criticism based on the pitch angle responses. Unfortunately the system was not evaluated

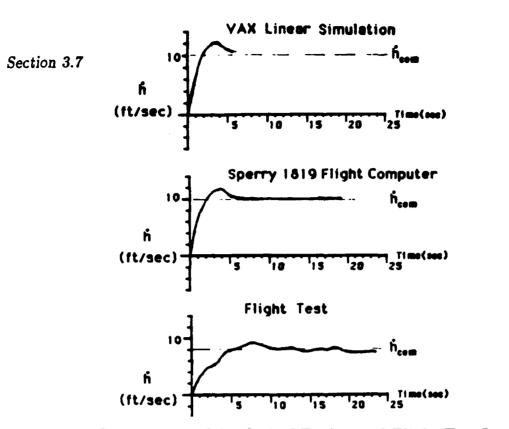


Figure 3.26: Comparison of Analytical Design and Flight Test Implementation of the Controller. This figure confirms the correctness of the steps needed to go from the analytical design to flight. These responses are for the 3rd order compensator with integral control.

tinuous designs were digitized and scaled correctly. The OBS was also useful in preliminary pilot evaluation of the control laws and in initial setting of the stick sensitivities and other pilot-related items. Figure 3.26 shows a comparison of the time responses for a climb rate command for the third order system. This confirmed the accurate digitization and scaling of the analytical design. All flight controllers were similarly checked prior to each flight.

3.7. Flight Test Results

ſ

Ĉ

Once the designs had been implemented and checked out in the flight hardware, the flight testing began. Since the controller was designed for cruise, the testing í

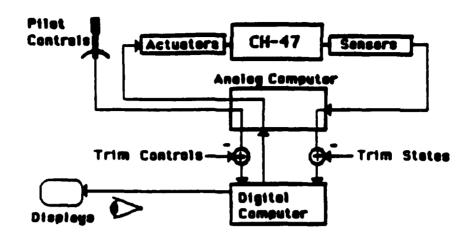


Figure 3.25: Flight Test Implementation. Sensor outputs and actuator commands were filtered in the analog computer while the control laws were executed in the digitial computer.

pose matrix multiply routine was programmed to take advantage of the minimal form of the compensator dynamics matrix.

- The existing instrumentation output subroutines were modified to send internal compensator data to the ground support station.
- Since the Sperry 1819A flight computer is an 18 bit fixed point machine, the matrices from the previous section were scaled to avoid numerical overflow during program execution. Appendix E describes this "fixed point scaling" technique and lists the SCALEM computer programs which accomplish this.

The actual assembly code implementing the controller is shown in Appendix I.

One important capability of the research system was onboard simulation(OBS). The OBS allowed the real-time flight software to be checked in the closed-loop system prior to actual flight. It was especially useful in confirming that the concould work without integral assistance. This would determine how well the design models compared with the real aircraft. Using the SETPNT program, the digital block minimal forms of each of these compensators were computed for flight implementation.

3.6. Flight Test Implementation

Once the analytical designs were complete, the tedious task of actual flight implementation began. Figure 3.25 shows a block diagram of the control structure on the research vehicle. The TR-48 analog computer was used to filter the sensor outputs and the digital actuator commands from the Sperry computer. The digital commands from the computer were filtered to avoid possible actuator wear caused by the 20 Hz chatter. The control laws were implemented in the Sperry 1819A digital flight control computer. Before the designs of the previous sections could be tested, the flight control computer software had to be modified to use them. In order to implement design changes more quickly, the flight software was set up to use the compensator matrices directly. Some of the considerations involved in programming the general form of the compensator in assembly language (shown in Figure 3.3) are listed below:

- Since the design was based on a linear perturbation model, the measurement and control trim values were approximated as the values at engage time; these were subtracted from their sensed values for use by the controller. This had the added advantage of eliminating engage transients.
- The compensator states were initialized to zero before system engage.
- To minimize time required for the compensator calculations, a special pur-

K

(

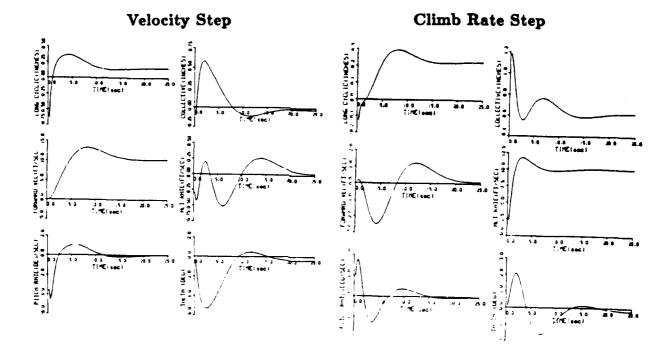


Figure 3.23: Longitudinal Output and Integral Feedback Controller Time Responses. This design was selected for flight evalualtion.

	St	andard De	viation				_
System	δe (inches)	δ _c (inches)	u (ft/sec)	w (ft/sec)	q (deg/sec)	0 (deg)	h (ft/sec)
Nominal	.12	.06	1.01	1.51	0.84	0.78	1.49
Arbitrary Noise	.39	.21	4.24	3.96	3.46	3.34	2.65
Inverse Optimal	.16	.07	1.43	2.90	1.24	1.29	1.72
Inv Opt w/Int Cntrl	.34	.18	.82	1.53	2.0	1.1	1.64
3rd Order	.08	.08	2.83	0.83	0.67	0.78	1.39
3rd Order w/ Int Cntrl	.10	.14	0.72	0.83	0.55	0.38	0.86
Output Feedback	.32	.19	.82	1.58	1.29	0.80	0.80
Output Feedback w/Int Cntrl	.32	.21	.93	1.54	1.30	0.84	0.81

Figure 3.24: Performance Comparison of All Compensators. The boldbaced systems were selected for flight evaluation.

Section 3.5

٢

 \mathbf{O}

•

.

$$D = \begin{bmatrix} -5.74 & -12.51 & .041 & .103 \\ -1.23 & -10.44 & -.057 & .013 \end{bmatrix}$$
(3.37)

$$I = \begin{bmatrix} -.017 & .054 \\ -.013 & .084 \end{bmatrix}$$
(3.38)

Closed Loop Eigenvalues

Real Part	Imag Part	Damping	Freq(rad/sec)	Freq(Hz)
-37.52	0.0	1.0	37.52	5.97
-39.42	0.0	1.0	39.42	6.27
-2.39	0.0	1.0	2.39	.38
-1.17	.58	.89	1.30	.21
-1.17	58	.89	1.30	.21
13	0.0	1.0	.13	.0 21
23	.36	.54	.43	.068
23	36	.54	.42	.068

Figure 3.22: Longitudinal Output and Integral Feedback Controller. As with the full order and 3^{rd} order designs, the use of integral control reduces damping slightly.

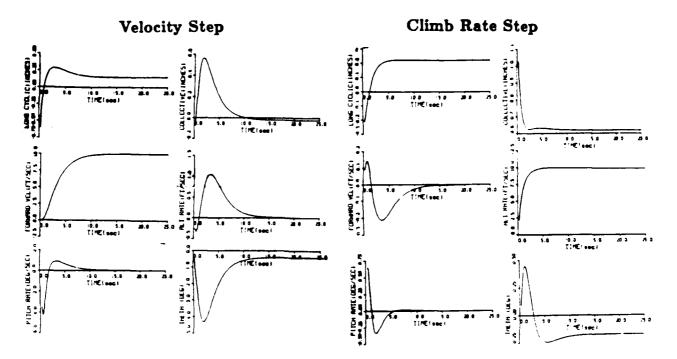


Figure 3.21: Longitudinal Output Feedback Controller Time Responses. These responses are critically damped and typical of full-state feedback designs.

Figure 3.20, good results were achieved with no further optimization. Figures 3.22 and 3.23 show these results.

3.5.3. Summary of Design Results

A number of controllers have been presented to show the iterative nature of the design methodology and to show an application of several methods to meeting the requirements. Selecting designs for flight test implementation required a review of these results. Figure 3.24 shows a comparison of all the designs. The controllers shown in boldface in Figure 3.24 were selected as candidates for flight. The three designs with integral-error control show a comparison of three sizes of compensators (full-order, reduced order and output feedback). The 3^{rd} order controller without integral control was included to see if the decoupling matrix

E

•) •

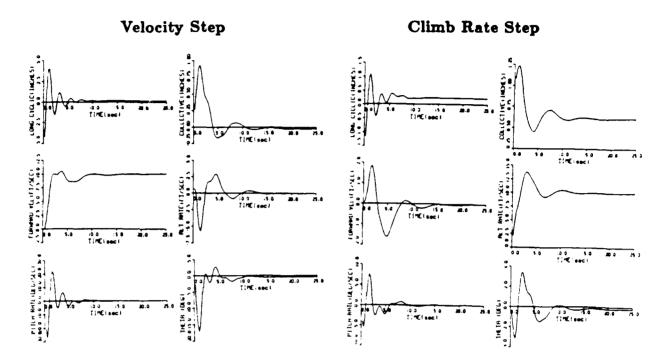


Figure 3.19: Longitudinal Full Order Integral Controller Time Responses. This design was also selected for flight evaluation.

n	-5.74	-12.51	.041	.103]	(2.26)
D =	-1.23	-12.51 -10.44	057	.013	(3.36)

System	Eigenvalues	Damping
Open Loop(F)	$-40.0, -40.0, -2.54, .503,105 \pm j.276$	1, 1, 1, unstable, .35
Closed Loop $(F - G D H_m)$	$-39.4, -37.52, -2.07 \pm j.213,72,47$	1, 1, .99, 1, 1

Figure 3.20: Longitudinal Output Feedback Controller. Since the measurements $(q, \theta, \dot{h}, \text{ and } u)$ are almost the same as the states of a 4^{th} order aircraft model (u, w, q, and theta), the output gains were set to the full-state feedback gains from a 4^{th} order regulator design.

(

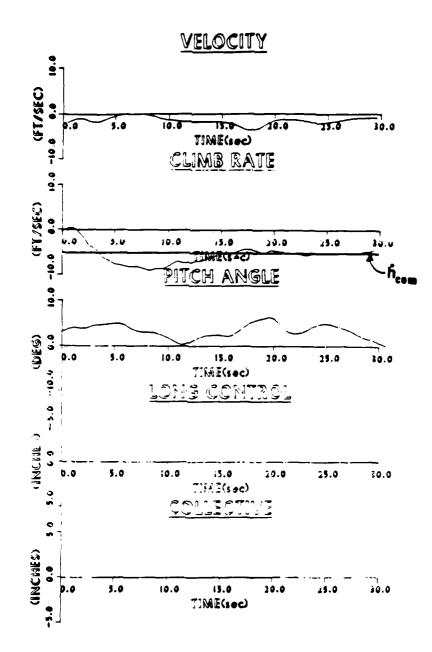
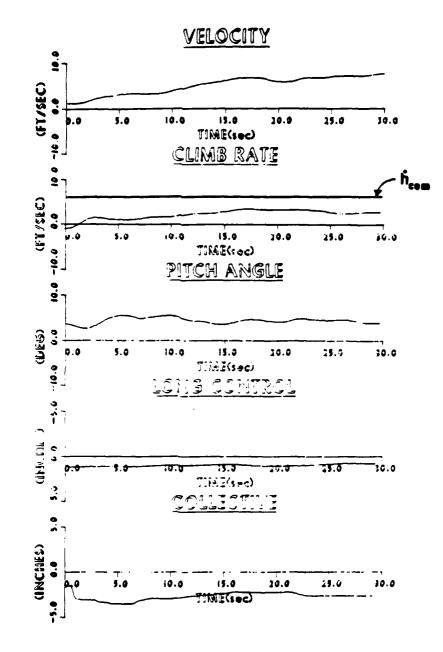
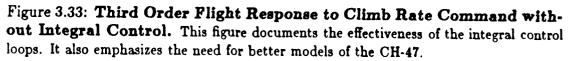


Figure 3.32: Output Feedback Compensator Flight Response to Climb Rate Command. As in Figure 3.29, the overall loop gains to the actuators were decreased by half from the analytical design.




(7)

 \mathbf{O}

2.4

O.

Chapter 4.

ŭ L

Hover Controller for the CH-47

4.1. Design Goals and Constraints

With the experience gained in the design of the longitudinal CAS, a more difficult task was selected for the next flight experiment. The second application of the methodology was the design of a translational velocity command, precision hover hold control system for the CH-47. This system was to provide the pilot with "split-axis" control of translational velocity in an heading-oriented inertial coordinate frame. "Split-axis" here means the pilot could select either a velocity command or position-hold control mode in each of the three translational degrees of freedom of the aircraft. As in Chapter 3, this design required decoupling of the three axes of interest. Figure 4.1 shows the coordinate system used for the design. As in Chapter 3, this control law is somewhat unconventional since the pilot's workload is reduced by removing him from inner loop attitude control tasks. For this system, forward velocity is controlled by longitudinal stick displacement, side velocity by lateral stick, and vertical velocity by the collective lever. If a particular pilot control is within a small distance of the neutral position (the detent), then the system enters a position-hold mode for that axis. Yaw rate control, using the

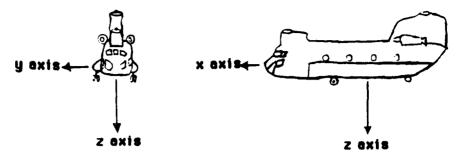


Figure 4.1: Hover Control System Coordinate System. The x, y, and z coordinates are in a heading-oriented inertial system.

standard CH-47 SAS, comes from the pedals. No operational helicopter control systems have this type of capability although the concept was tried on a modified CH-47 helicopter during early work on the Army's Heavy Lift Helicopter(HLH) concept.[13] This type of control law has numerous advantages with potential applications such as:

- Search and rescue
- Shipboard operations
- Slung load operations

Before proceeding with the description of how the design methodology was applied, the design constraints must be mentioned. As in the longitudinal CAS design, the TR-48 was used to filter the aircraft motion sensor data. The inertial velocity and position measurements came from either a laser or radar tracker on the ground. This was necessary since the onboard inertial navigation system(INS) had a drift of several knots ($\approx 5ft/sec$) and provided only position data (no velocities). To avoid major changes in the flight software, a general form of the controller was programmed in the flight computer which provided for a flexible control structure.

٥

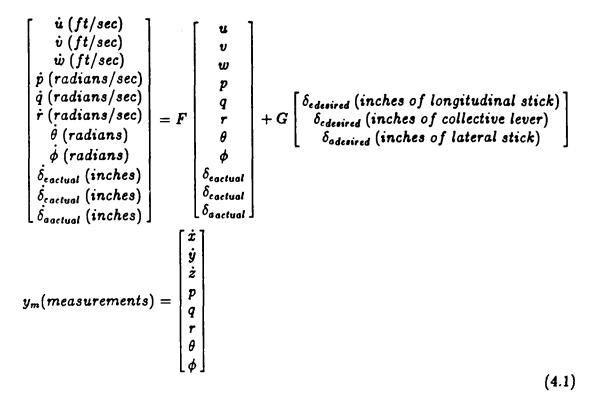


Figure 4.2: CH-47 Hover Model. This is the conventional 8th order model described in Appendix G.

4.2. Linear Model and Basic Control Structure

The 8th order basic airframe model is described in Appendix G. This model was augmented with three actuator states as shown in Equation 3.2. These actuator states allow the the designer to penalize control rate, a necessary step to avoid nuisance disengages of the research control system during flight. Figure 4.2 shows this model as it was used for the control law synthesis. One item to note is that there is no yaw control in the model. The yaw SAS was approximated by adding -1 to the $N_{\delta r}$ element of the "F" matrix of Figure 4.2 and Appendix G.

Since the longitudinal CAS showed the necessity of integral-error control, the hover control structure had to accommodate this capability. Figure 4.3 shows the hover controller. Unlike the longitudinal CAS, integral control decoupling is not done in the inner loop. Instead, *PID* (Proportional Integral Derivative) outer loops are closed separately to $\dot{x}_{command}$, $\dot{y}_{command}$, and $\dot{z}_{command}$, which act as controls for these outer loops. The velocity command system is the inner loop. Setting up the control structure in this way had several advantages:

- The inner loop and outer loop designs, both fairly complicated, could be separated.
- By using the desired outputs as controls, the magnitude of the outer loop gains became physically meaningful. This proved to be important later when these gains were adjusted during flight to achieve good performance.
- Keeping the inner loop separate made the mode switching between pilot velocity command and *PID* control easier.

Before the full-order design began, the system was scaled in equivalent units.

4.3. Model Scaling

The hover model was scaled into the same units as used in the longitudinal CAS design. Ft/sec remained ft/sec; radians and radian/sec became .01 radians and .01 radians/sec; and inches of control became .1 inches of control. Figures 4.4 and 4.5 show the model before and after scaling. The ROPTSYS computer program did this scaling.

P)

Figure 4.3: Hover Control System. The control system is divided into a distinct inner loop (velocity command) and outer loops which provide position hold using *PID* control.

지수는 지역 문화가 가지 않는 것 같아요.

State Equations

$$\dot{x} = F x + G u$$

F =	$\begin{bmatrix} -0.021 \\ -0.00019 \\ 0.0248 \\ -0.00013 \\ 0.00925 \\ 0.00039 \\ 0.0 \\ 0.$	0.00374 -0.00652 0.00017	0.0326 0.020 0.00265 -1.43 -0.296 0.041 0.00058 -0.71 0.00234 0.042 0.00027 -0.05 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	04 0.00414 9 0.435 16 0.0382 17 -1.23 14 -0.158 1.0 0.00091 0.0 0.0	-0.165 0	31.986 0.0 .0292 31.99 -3.71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35 1.159 162 .00002 142 .432 19 0.0 1037 .0425 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
G =	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
Q =	$\begin{bmatrix} 24.6 & 0 \\ 0 & 24.6 \\ 0 & 0 \end{bmatrix}$	0 0 9.98						
R =	$\left[\begin{array}{c} 2.6 \times 10^{-2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 2.6 × 10 ⁻ 0 0 0 0 0	$ \begin{array}{c} 0 \\ 2 \\ 0 \\ 2.6 \times 10^{-2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 1.293 × 10-4 0 0 0	0 0 3.232 × 10 ^{-−} 0 0	0 0 5 8.079 × 10 ⁻⁷ 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 3.232 \times 10^{-7} \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 3.232 \times 10^{-7} \end{bmatrix}$

Figure 4.4: CH-47 Hover Linear Model. The last 3 states are 40 radian actuator models.

76

State Equations

 $\dot{x}_{\text{scaled}} = F_{\text{scaled}} x_{\text{scaled}} + G_{\text{scaled}} u_{\text{scaled}}$

Focaled =	0.0 0.0 0.0	$\begin{array}{c} -0.00085\\ -0.137\\ 0.00374\\ -0.652\\ 0.017\\ -0.112\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	0.00285 -0.296 0.0 0.058 0.234 0. 0.027 -0 0.0 0.0 0.0 0.0 0.0	00419 0.716 0427 0.0544 0.0	$\begin{array}{c} .02585\\ .0000414\\ 0.00435\\ 0.0382\\ -1.23\\ -0.158\\ 1.0\\ 0.00091\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0 \end{array}$	$\begin{array}{c} -0.00106\\ -0.00165\\ 0.00362\\ -0.0708\\ -0.00433\\ -1.0\\ 0.00788\\ 0.116\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$	$\begin{array}{c}31986\\ 0.000292\\0371\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	0.0 .3199 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0114 0.00118 0.0303 -0.0596 3.29 0.461 0.0 U.U -40.0 0.0 0.0	$\begin{array}{c} 0.0939\\ 0.00635\\8062\\ -0.142\\ 0.19\\ -0.0037\\ 0.0\\ 0.0\\ 0.0\\ -40.0\\ 0.0\\ \end{array}$	0.0 .1159 .000002 4.32 0.0 .425 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G _{acaled} =	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0									
Qocaled =	24.6 0 0 24.6 0 0	0 0 9.98									
Rocaled =	$\begin{bmatrix} 2.6 \times 10^{-3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 2.6 × 10 ⁻⁷ 0 0 0 0 0	2 0 2.6 × 10 ⁻ 0 0 0 0 0	0 0 1.293 0 0 0 0	0 0 3.232 × 1 0 0 0	.0 ⁻¹ 8.07	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 9 \times 10^{-2} \\ 0 \\ 0 \end{array} $	0 0 0 0 0 0 3.232 × 0	10 ⁻³ 3.2	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 232 \times 10^{-3} \end{array} $	

Figure 4.5: CH-47 Scaled Hover Linear Model. After scaling, the weak coupling terms in the F matrix become very obvious.

,•

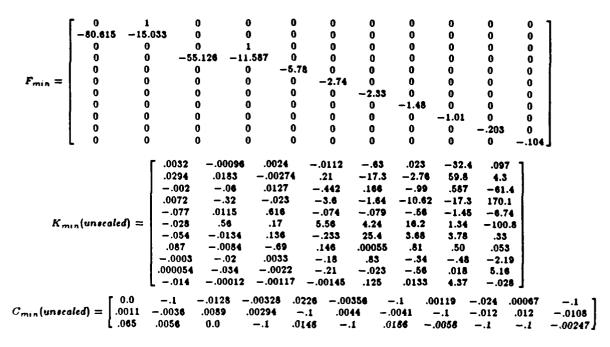
り

4.4. LQG Design and Compensator Order Reduction

The scaled 11^{th} order model shown in Figure 4.5 was used by the ROPTSYS program to calculate the full-order compensator. At this point, an important simplification should be emphasized. The system was to control \dot{x} , \dot{y} , and \dot{z} which are inertial velocities. The model as used included u, v, and w which are body axis airmass velocities. The implicit assumption, needed to facilitate the design, was that the two sets of velocities were equal:

$$\dot{x} = u$$

$$\dot{y} = v \tag{4.2}$$


$$\dot{z} = w$$

This assumption is reasonable only if θ and ϕ remain small, which they must for safe hover in a large helicopter such as the CH-47. The outputs, y_o , weighted in the performance index:

$$P.I. = \int_0^\infty (y_o^T A y_o + u^T B u) dt \qquad (4.3)$$

were the three velocities (u, v, and w) and the three control rates. Since the system had been scaled, the weighting matrices, A and B, were just 6×6 and 3×3 identity matrices. Using these assumptions and criterion, the resulting full-order compensator is shown in Figure 4.6.

Based on these data, especially the modal cost M_2 , the 11th order compensator was reduced to 5th order. This represents a significant reduction of complexity in the resulting compensator. The 11th order design had 121 independent gains while the 5th order compensator had only 55. After the order reduction, the compensator

					Syst	em Eigenva	lues			
	Open I	100p(F)	Regula	tor(F.GC)	Estimat	tor(F·KH)	Compens	ator(F-GC-KH)	Compen	sator Measures
Mode	Real	Imag	Real	Imag	Real	Imag	Real	Imag	M_1	M ₂
1	-1.41	0	406	.085	-7.63	4.85	-7.52	4.91	4.47	.59
2	-1.07	0	~.406	085	-7.63	-4.85	-7.52	-4.91	_	_
3	902	0	382	.072	-6.04	4.6	-5.79	4.64	5.58	.96
4	297	0	382	072	-6.04	-4.6	-5.79	4.64	-	-
5	.079	.46	839	.4	-5.88	0	-5.78	0	.65	-11
6	.079	46	839	4	975	0	-2.73	0	1.18	.43
7	.062	.46	-1.2	.33	11	0	-2.32	0	.3	.13
8	.062	46	-1.2	33	12	0	-1.48	0	.69	.47
9	-40.0	0	-1.3	.11	-40.0	0	-1.01	0	.032	.032
10	-40.0	0	-1.3	11	-40.0	0	20	0	.063	.31
11	-40.0	0	98	0	-40.0	0	10	0	.046	.45

Figure 4.6: Hover Full Order Compensator Design Results. The open loop has two unstable modes which are divergent pitch and roll oscillations. Figure 4.7 is the reduced and reoptimized compensator based on this full order design. Order reduction was based on the M_2 terms shown here.

79

was optimized using the RSANDY program. Figure 4.7 shows the optimal reduced order compensator including the closed loop roots. This optimization step was difficult since the initial guess (the original 11^{th} order compensator reduced to 5^{th}) was quite unstable. This caused numerical overflows on the VAX computer used to run the RSANDY program. Convergence to a stable 5^{th} order compensator was finally achieved after numerous iterations of the outputs and the output weightings of Equation 4.3. Figure 4.7 shows these outputs, y_o , and the elements of the diagonal A and B matrices. This figure also shows another aspect of the difficulty of this optimization. The entire C matrix was allowed to vary which meant that there were 60 gains being adjusted by the RSANDY program, 5 more than the 55 independent gains of a minimal realizaton.

The simulation step responses are shown in Figures 4.9, 4.10, and 4.11. All three velocity responses look good but the pitch angle damping has several overshoots. A modal analysis later confirmed this by showing the mode at $-.50\pm j2.03$ of Figure 4.7 to be strongest in θ . With the velocity inner loop regulator designed, the feedforward matrix was calculated for direct command of \dot{x} , \dot{y} , and \dot{z} . The *PID* outer loop gains could now be designed.

4.5. Outer Loop Design

As discussed in Section 4.2, the velocity command inner loop and the *PID* outer loop were separate. With the inner loop velocity controller set, the outer loop design began. This approach (inner loop first then outer loop) is common in the development of operational aircraft autopilots except that the inner loops are normally designed classically using incremental loop closure. Initially, these *PID*

$$F_{min} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -17.93 & -4.90 & 0 & 0 & 0 \\ 0 & 0 & -1.98 & 0 & 0 \\ 0 & 0 & 0 & -5815 & 0 \\ 0 & 0 & 0 & 0 & -6.31 \end{bmatrix}$$

$$K_{min} = \begin{bmatrix} -.035 & -.050 & -.040 & -.56 & 1.96 & .216 & 3.22 & -74.7 \\ -.037 & -.74 & .071 & -.28 & -1.6 & -7.63 & -19.7 & 169.0 \\ -.58 & .140 & -.23 & .19 & 28.9 & 16.05 & 1.35 & -100.3 \\ -.45 & .0079 & 1.45 & .068 & 6.5 & 1.20 & 2.64 & 7.16 \\ .018 & -.0058 & -.003 & -.029 & -.36 & -.66 & 13.7 & 8.32 \end{bmatrix}$$

$$C_{min} = \begin{bmatrix} -.092 & .0080 & -.13 & -.020 & -5.14 \\ .026 & -.0045 & -.029 & .022 & -.52 \\ .44 & -.021 & -.062 & .00078 & -.42 \end{bmatrix}$$

	071	0001	.013
N = 1	.0070	.0021	079
	012	.059	0034

	Closed Loop Eigenvalues							
Real Part	Imag Part	Damping	Freq(rad/sec)	Freq(Hz)				
-39.99	.0085	1.0	39.99	6.37				
-39.99	0085	1.0	39.99	6.37				
-40.01	0.0	1.0	40.01	6.37				
-7.14	0.0	1.0	7.14	1.14				
-2.37	2.77	.65	3.65	.58				
-2.37	-2.77	.65	3.65	.58				
50	2.03	.24	2.09	.33				
50	-2.03	.24	2.09	.33				
54	1.59	.32	1.68	.27				
54	-1.59	.32	1.68	.27				
55	.50	.74	.74	.12				
55	50	.74	.74	.12				
61	.43	.82	.75	.12				
61	43	.82	.75	.12				
90	0.0	1.0	.90	.14				
22	0.0	1.0	.22	.0035				

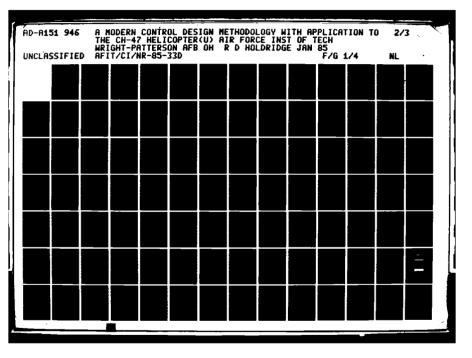
Performance Index Data						
Outputs or Controls	Units	Weighting				
u	ft/sec	5×10^{3}				
v	ft/sec	5 × 10 ⁸				
17	ft/sec	5×10^2				
p	rad/sec	1×10^{5}				
g	rad/sec	1×10^{5}				
ŕ	rad/see	1×10^{5}				
ð,	inches/sec	1×10^{8}				
6 c	inches/sec	1 × 10 ⁵				
ó.,	inches/sec	1×10^{5}				
ů	ft/oec2	5×10^3				
v	ft/sec ²	5 × 10 ³				
ŵ	ft/sec ³	5×10^8				
ð.	inches	1 × 10 ²				
ð.	inches	1 × 10 ²				
8.	inches	1 × 10 ³				

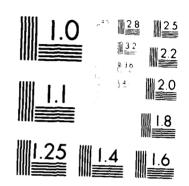
Figure 4.7: Reduced Order Hover Compensator. The poorly damped modes $(s = -.5 \pm j2.03)$ dominate the pitch angle response as Figure 4.9 shows.

outer loop gains were set using the RSANDY program. This approach did not work well as the convergence was very slow. The alternative was to set the gains intuitively. This approach was actually quite reasonable if one recalls the control structure of Figure 4.3. The gains were set by determining how much velocity would be reasonable to use to correct a given position error. For instance, if the aircraft were 10 feet from the desired hover point and a pilot would be willing to use 5 ft/sec of \dot{y} then $K_{\dot{y}\delta y}$ would be .5 $\frac{ft/sec}{fterror}$. This approach worked well for the y and z axes but failed for the x axis. For this axis, a conventional transfer function analysis was used to set the 5 outer loop gains which were then adjusted in simulation.

4.5.1. Transfer Function Analysis for X Axis Outer Loop

The first step in the process required a transfer function from $u_{command}$ to u_{actual} for the helicopter with velocity inner controller. This came from use of Bernard's code for calculating the matrix of transfer functions for any MIMO linear dynamic system.[7] These transfer functions were 11th order so to make the process tractable, the NAVFIT program at NASA Ames simplified them to 3rd order. The following transfer function resulted:


$$\frac{u_{actual}}{u_{command}} = \frac{.94}{(s+.24) \left[(s+.5)^2 + 1.87^2 \right]}$$
(4.4)


To justify the use of θ and q as second and third derivatives of x, consider the longitudinal equation of motion from Etkin: [14]

$$F_{z} - mg \sin\theta = m \left[\dot{u} + (q_{B}^{E} + q) w - (r_{B}^{E} + r) v \right]$$

$$(4.5)$$

where if the following assumptions are made:

1

(

MICROCOPY RESOLUTION TEST HAVE NATIONAL BURGLESS MUSIC IN

ſ

(

- $q_B^E \approx 0$ Earth rotation negligible
- $r_B^E \approx 0$ Earth rotation negligible
- $qw \approx 0$ Second order effect
- $rv \approx 0$ Second order effect
- $\sin \theta \approx \theta$ Small angle assumption
- $F_x \approx 0$ Reasonable for a helicopter in hover
- $\dot{u} \approx \ddot{x}$ Small angle assumption(θ)

then these simplications result:

$$\dot{x} \approx -g\theta$$

 $\ddot{u} \approx -g\dot{\theta} \approx -gq$

(4.6)

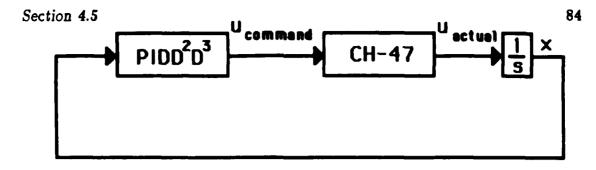
The actual gain setting is done by including the following for the $PIDD^2D^3$ controller in Figure 4.8.

$$PIDD^{2}D^{3} = K_{P}x + K_{I}\frac{x}{s} + K_{D}xs + K_{D}xs^{2} + K_{D}xs^{3}$$
(4.7)

where

$$K_{P} = K_{i\delta z}$$

$$K_{I} = K_{i\int z}$$


$$K_{D} = K_{ii}$$

$$K_{D^{2}} = K_{iq}$$

$$K_{D^{3}} = K_{iq}$$
(4.8)

Rewriting Equation 4.7 as:

$$PIDD^{2}D^{3} = K_{D^{3}}\left(s^{4} + \frac{K_{D^{3}}}{K_{D^{3}}}s^{3} + \frac{K_{D}}{K_{D^{3}}}s^{2} + \frac{K_{P}}{K_{D^{3}}}s + \frac{K_{I}}{K_{D^{3}}}\right)\frac{1}{s}$$
(4.9)

u- forward velocity

Figure 4.8: Transfer Function Analysis. The $PIDD^2D^3$ compensation was calculated to cancel the two lightly damped poles of Equation 4.4 and move the two poles at the origin to the left.

then the four numerator zeros of the $PIDD^2D^3$ controller were selected to cancel the lightly damped poles of Equation 4.4 and to draw the two poles at the origin to the left. The gain K_D^3 was selected for good speed of response. Following are the gains calculated:

$$K_{P} = K_{XP} = -1.085 \frac{fps}{(ft \ error)}$$

$$K_{I} = K_{XI} = -.131 \frac{fps}{(ft \ sec \ error)}$$

$$K_{D} = K_{XD} = -2.94 \frac{fps}{fps}$$

$$K_{D^{2}} = K_{X\theta} = .551 \frac{fps}{deg}$$

$$K_{D^{2}} = K_{XQ} = .393 \frac{fps}{(deg/sec)}$$
(4.10)

4.5.2. Outer Loop Simulation

Ţ

í

With these gains as a starting point, the time responses were improved using the onboard simulation in the flight computer. Although this approach ("tweeking" the gains) may seem somewhat unscientific, it was appropriate for several reasons:

- Extensive use of the onboard simulation had the added advantage of helping discover many errors in the flight software before actual flight.
- Pilot comments concerning the performance and response characteristics could be better incorporated into the design.
- Working directly with the fixed point digital computer avoided the additional time and effort required to digitize and scale the continuous design.

• The transient-free switching between the velocity command and position hold modes could be developed. This is discussed in the next section. The PID gains coming from this simulation are shown below:

$$K_{XP} = -.75 \frac{f_{P}}{(f \ error)} \qquad K_{YP} = -1.0 \frac{f_{P}}{(f \ error)} \qquad K_{ZP} = -2.0 \frac{f_{P}}{(f \ error)}$$

$$K_{ZI} = -3.8 \times 10^{-4} \frac{f_{P}}{(f \ eec \ error)} \qquad K_{YI} = -7.6 \times 10^{-4} \frac{f_{P}}{(f \ eec \ error)} \qquad K_{ZI} = -1.9 \times 10^{-3} \frac{f_{P}}{(f \ eec \ error)}$$

$$K_{XD} = -3.0 \frac{f_{P}}{f_{P}} \qquad K_{YD} = -.18 \frac{f_{P}}{f_{P}} \qquad K_{ZD} = -4.5 \frac{f_{P}}{f_{P}}$$

$$K_{XQ} = 2.0 \frac{f_{P}}{(deg/sec)} \qquad K_{YP} = 0.0 \frac{f_{P}}{(deg/sec)} \qquad (4.11)$$

Time responses from simulation are shown in Figures 4.9 to 4.13. These figures show the results of both the inner and outer loop designs.

4.6. Flight Test Implementation

The flight implementation of the hover control system was based on the software and flight procedures developed for the longitudinal CAS flight test. As before, the sensor data were filtered by the TR-48 analog computer before being digitized and sent to the Sperry digital computer. There were two areas where the hover controller was quite different from the longitudinal system and required new flight capabilities. The first was the inertial position and velocity data and the second was the transient-free switching required to make the transition from

C

1

U١

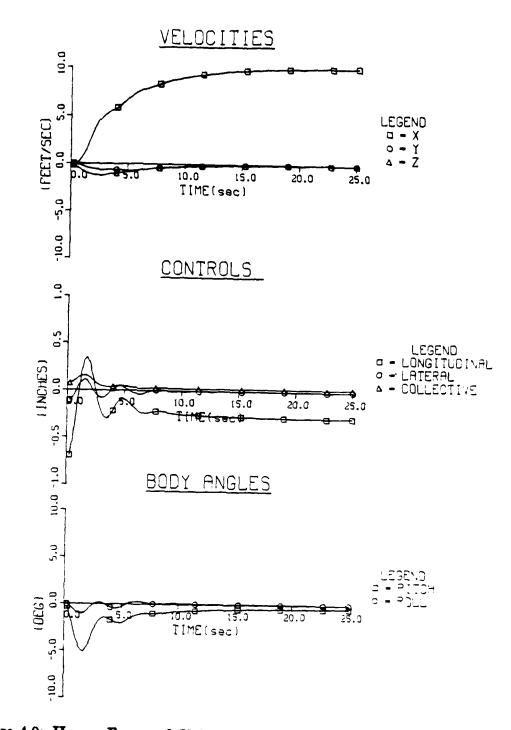


Figure 4.9: Hover Forward Velocity Step Command in Simulation. The poor damping is evident in the pitch angle response.

(7)

0

(....

Ō

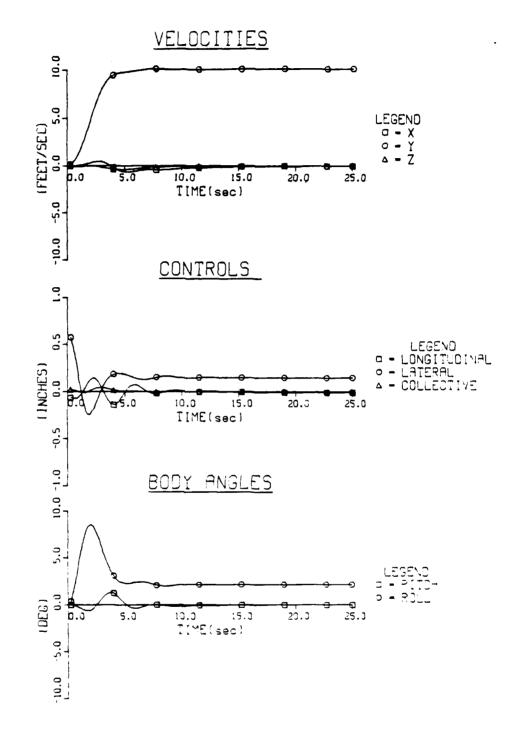


Figure 4.10: Hover Side Velocity Step Command in Simulation. Side velocity performance is adequate but the poorly damped pitch mode is also excited.

C

ſ

(a

×

Ο

10

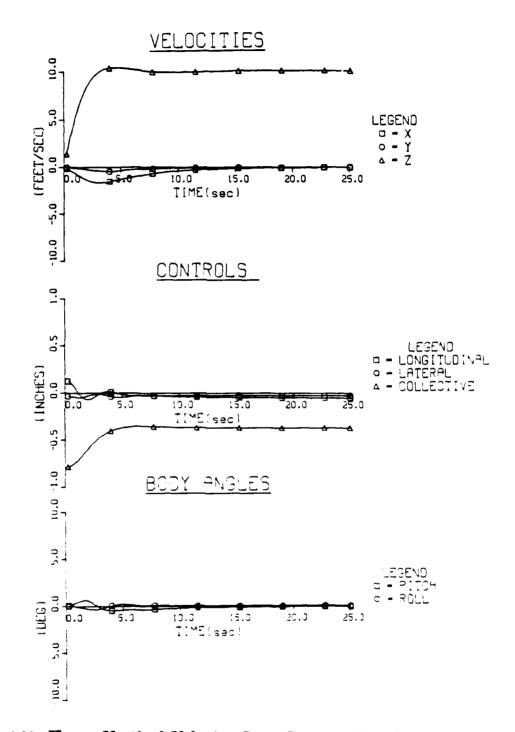


Figure 4.11: Hover Vertical Velocity Step Command in Simulation. The heave response is adequate and does not excite the pitch modes as strongly as the lateral velocity response of Figure 4.10

Ĵ

.

6

1

1

ł

1

1

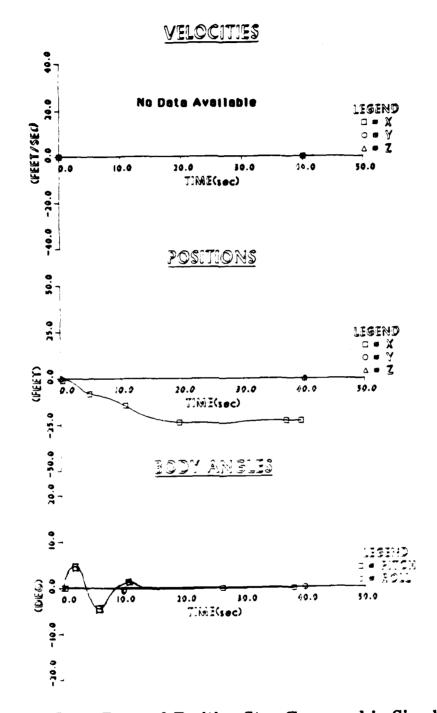


Figure 4.12: Hover Forward Position Step Command in Simulation. This response came from the onboard simulation and shows the the outer loop performance using the flight software.

į

-

D

D

)

)

)

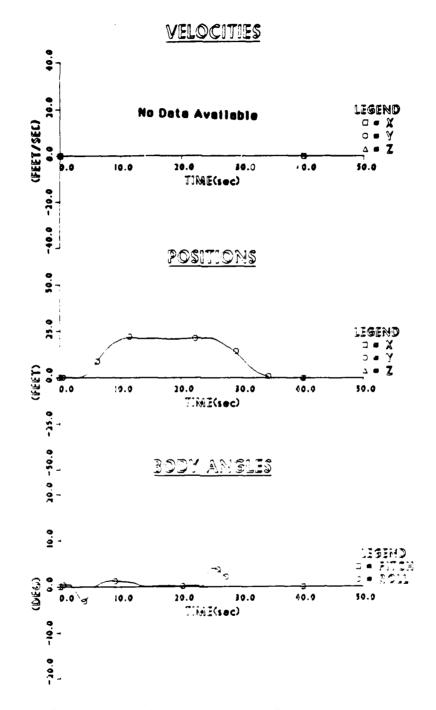


Figure 4.13: Hover Lateral Position Step Command in Simulation. Again, the flight software shows good outer loop performance.

D

pilot velocity command to automatic position hold.

4.6.1. Inertial Velocity and Position Data

Although the hover controller uses the inertial data $(x, \dot{x}, y, \dot{y}, z, \text{ and } \dot{z})$ as it does the other measurements, a considerable effort was required to get these data.¹ Since the INS positions drifted so quickly and there were no inertial velocities available from the INS, an alternative source for these data was needed. The ground based tracker at Crows Landing was able to provide these data using a ground-to-air telemetry link that was specially developed for this program. The steps required to make these ground based position measurements usable by the control laws are described below:

- The laser or radar tracker measured position of the aircraft in a runway based polar coordinate system.
- These measurements of azimuth angle (Az), elevation angle (El), and range (r) were telemetered from the ground tracking station to the helicopter.
- These data, as well as tracker status information, were decoded and scaled into units common to the rest of the flight software.
- The Az, El, and range data were converted to a runway based rectangular coordinate system with a new origin located over the runway.
- These data were used with aircraft accelerometer data (rotated into the runway coordinate frame) in a second order complementary filter to estimate x, \dot{x} , y, \dot{y} , z, and \dot{z} . Figure 4.14 shows the block diagram of this complementary filter.

¹This work was done primarily by Bill Hindson of NASA Ames

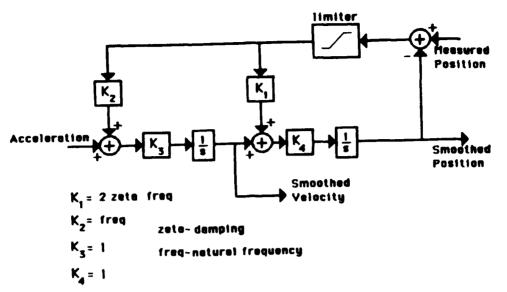


Figure 4.14: Second Order Complementary Filter. The filter uses acceleration and position to determine the smoothed position and velocity needed by the control law.

- These smoothed values of x, \dot{x} , y, \dot{y} , z, and \dot{z} were then rotated through the aircraft heading angle to the heading-oriented inertial frame required by the control system.
- Based on the tracker status information coming from the ground and based on data reasonableness checks, an algorithm kept the inertial data consistent during short term tracker breaklocks. For longer term breaklocks, the experimental control system was disengaged to avoid the large control motions caused by trying to follow bad data. Initially, the laser tacker was used since it provided more precise range information (1 - 2 foot acurracy). Unfortunately, the laser had frequent and unpredictable breaklocks which made the data essentially unusable in the control loop. Because of this inability to hold lock, the radar tracker was used for the flight test although its accuracy was only 5 - 10 feet.

4.6.2. Transient-Free Switching

Since this control system had both manual and automatic capability in the three body axes, a way was needed to transition smoothly among these different control modes. This task was complicated by the following characteristics of the control system:

- The pilot had the freedom to change heading at any time.
- The x coordinate of the desired hover point had to follow the x coordinate of the actual position when the pilot was commanding \dot{x} velocity. At the same time, the helicopter had to hold both y and z position in the heading inertial frame.
- Same as above in the y and z directions.
- A detent on the pilot controls was needed. If the pilot's control was less than the detent value, that axis was in position hold mode; else, the pilot was commanding a velocity.

Figures 4.15, 4.16, and 4.17 show the switching logic for the three axes. The assembly code, shown in Appendix I, implements this logic.

4.7. Flight Test Results

The hover flight testing was done at the Crows Landing test facility. The testing was limited to this location since the system required the use of the radar tracker at Crows. Unlike the longitudinal CAS control system, the hover controller was very difficult to debug and make operational. The flight testing was divided into three phases to accommodate these difficulties. The first phase developed the J,

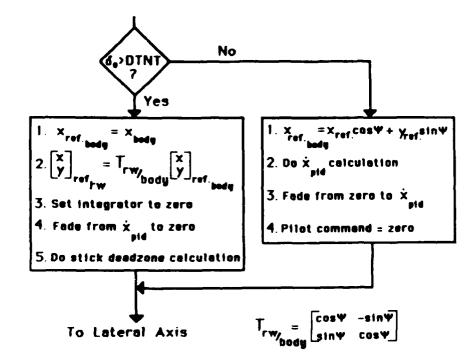


Figure 4.15: X Axis Transient-Free Switching Logic. The transformation from body to runway uses heading angle from the INS. The best deadzone or detent value was about .25 inches.

Section 4.7

り、

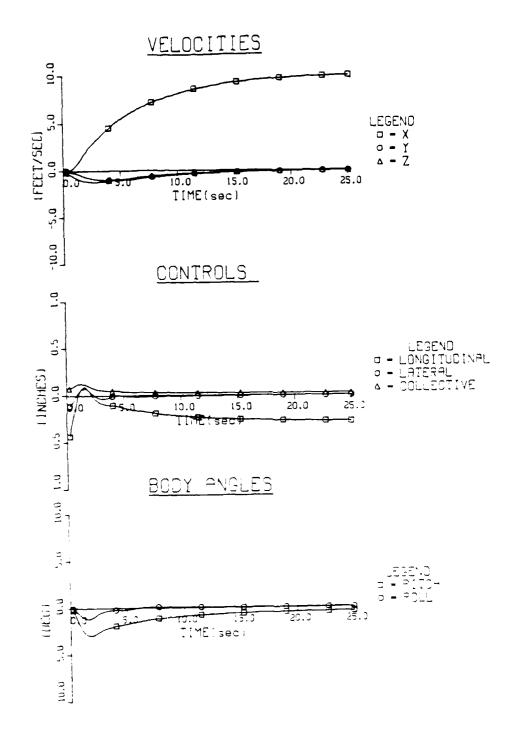


Figure 4.25: Hover Forward Velocity Step Command in Simulation. The pitch angle response is improved from the original design of Figure 4.9.

quicken the lateral response while in hold mode hence reducing any coupling due to action in the longitudinal axis. With these two changes to reduce the coupling, and the redesigned inner loop velocity system, the final flight testing began.

4.7.4. Final Closed Loop Flight Test in Hover

With the redesigned controller, the velocity performance was significantly improved. Figure 4.28 shows the response to a command in \dot{x} . The poor pitch damping has been eliminated and the coupling to bank angle is gone. The y axis velocity performance remains good as shown in Figure 4.29. The z velocity response remained almost identical to the original design shown in Figure 4.21. The position hold performance is also evident in these figures when the velocity commands are removed and the system reenters the postion hold mode. Figures 4.30 and 4.31 confirm the good hold performance in the y and z axes but the poor damping in position hold in x. The x axis position hold dynamics are dominated by a slow, poorly damped mode ($\varsigma \approx .4$ and $\omega \approx 50$ sec). A significant amount of flight time was spent adjusting gains in the *PID* outer loops to improve this x hold performance. Shown below are the final set of outer loop gains which resulted from these efforts. Later flight tests used the integrator in the x axis *PIDD*²D³ controller only when the error was less than 40 feet. This improved the damping slightly to about .5.

$$K_{XP} = -.20 \frac{f_{P}}{(ft \ error)} \qquad K_{YP} = -1.0 \frac{f_{P}}{(ft \ error)} \qquad K_{ZP} = -2.0 \frac{f_{P}}{(ft \ error)}$$

$$K_{ZI} = -7.6 \times 10^{-4} \frac{f_{P}}{(ft \ eec \ error)} \qquad K_{YI} = -7.6 \times 10^{-3} \frac{f_{P}}{(ft \ eec \ error)} \qquad K_{ZI} = -1.9 \times 10^{-3} \frac{f_{P}}{(ft \ eec \ error)}$$

$$K_{XD} = -2.0 \frac{f_{P}}{f_{P}} \qquad K_{YD} = -1.0 \frac{f_{P}}{f_{P}} \qquad K_{ZD} = -4.5 \frac{f_{P}}{f_{P}}$$

$$K_{XQ} = 3.0 \frac{f_{P}}{(deg/eec)} \qquad K_{YP} = -.5 \frac{f_{P}}{deg}$$

$$K_{YP} = -.5 \frac{f_{P}}{(deg/eec)} \qquad (4.12)$$

$$F_{min} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -17.93 & -4.90 & 0 & 0 & 0 \\ 0 & 0 & -1.98 & 0 & 0 \\ 0 & 0 & 0 & -1.815 & 0 \\ 0 & 0 & 0 & 0 & -6.31 \end{bmatrix}$$

$$K_{min} = \begin{bmatrix} -.035 & -.050 & -.040 & -.56 & 2.18 & .216 & 3.23 & -74.7 \\ -.037 & -.74 & .071 & -.28 & -1.57 & -7.63 & -19.7 & 169.0 \\ -.58 & .140 & -.23 & .19 & 29.2 & 16.05 & 1.30 & -100.3 \\ -.45 & .0079 & 1.45 & .068 & 6.52 & 1.20 & 2.57 & 7.16 \\ .018 & -.0058 & -.003 & -.029 & 3.4 & -.66 & 14.03 & 8.32 \end{bmatrix}$$

$$C_{min} = \begin{bmatrix} .07 & .054 & -.0776 & -.0036 & -4.61 \\ .026 & -.0045 & -.029 & .022 & -.52 \\ .44 & -.021 & -.062 & .00078 & -.42 \end{bmatrix}$$

 $V = \begin{bmatrix} .007 & -.0079 & .0021 \\ 0.0 & -.0034 & .0059 \end{bmatrix}$

Closed Loop Eigenvalues					
Real Part	Imag Part	Damping	Freq(rad/sec)	Freq(Hz)	
-40.2	0.0	1.0	40.2	6.39	
-40.01	0.0	1.0	40.01	6.367	
-39.99	0.0	1.0	39.99	6.365	
-6.007	0.0	1.0	6.007	.956	
-2.37	2.70	.66	3.59	.57	
-2.37	-2.70	.65	3.59	.57	
94	2.13	.40	2.33	.37	
~.94	-2.13	.40	2.33	.37	
60	1.51	.37	1.62	.26	
60	-1.51	.37	1.62	.26	
55	.48	.75	.73	.116	
55	48	.75	.73	.116	
62	.402	.84	.74	.117	
62	402	.84	.74	.117	
90	0.0	1.0	.90	.14	
17	0.0	1.0	.17	.027	

Performance Index Data				
Outputs or Controls	Units	Weighting		
u	ft/sec	5×10^3		
v	ft/sec	5×10^3		
	11/sec	5×10^{3}		
P	rad/see	1×10^{5}		
q	rad/sec	1 × 10 ⁸		
•	rad/see	1×10^{5}		
6.	inches/sec	1×10^{5}		
ð.	inches/sec	1 × 10 ⁵		
ė.	inches/sec	1×10^{5}		
ú	ft/sec2	5×10^3		
ΰ	ft/sec2	5 × 10 ³		
*	ft/sec?	5 × 10 ⁸		
8.	inches	1 × 10 ²		
b _c	inches	1 × 10 ³		
80	inches	1 × 10 ²		

Figure 4.24: Redesigned Hover Compensator. Only the columns of K associated q and θ and the row of C corresponding to longitudinal control (δ_e) are changed from the initial design of Figure 4.7.

; j

Ð,

good time responses. In this case, the measurement noise characteristics were left unchanged and an unrealistically high value of the vertical velocity disturbance was used. Specifically, the vertical gust root mean square (rms) was increased from 2.3 ft/sec to 10 ft/sec. Vertical gust was selected since it affects the pitch angle more strongly than the other disturbances. With this one change, the RSANDY program was used to find a new compensator. To speed up the convergence in the RSANDY program, only the columns of the K_{min} matrix associated with measurements of q and θ , and the row of C_{min} associated with the longitudinal control were allowed to vary. This approach was also logical since we wished to keep the vertical and lateral axes unchanged from the first design. The redesigned compensator in shown in Figure 4.24 and can be compared to the initial design in Figure 4.7. Figure 4.25 shows the simulation response of the redesigned velocity command inner loop with the improvement in pitch damping compared to the initial design shown in Figure 4.9. Figures 4.26 and 4.27 show that the y and zresponses were essentially unchanged by the redesign.

Since there was nothing in the simulation to suggest that there would be coupling from \dot{x} command to ϕ , the approach to solving this problem was based on the experience gained thus far. Two changes were made to the controller which would have to wait for flight to be evaluated. The first change was the zeroing of the feedforward gain from \dot{x} command to δ_a in the N matrix of Figure 4.3. This was a logical approach to solving the problem since the N matrix was highly dependent on accurate modeling and the longitudinal flight test had already shown the model to be lacking. The other change made to solve this coupling was to include nonzero values for $K_{Y\phi}$ and K_{YP} in the lateral *PID* outer loop. This change was made to

Section 4.7

1

1

•).

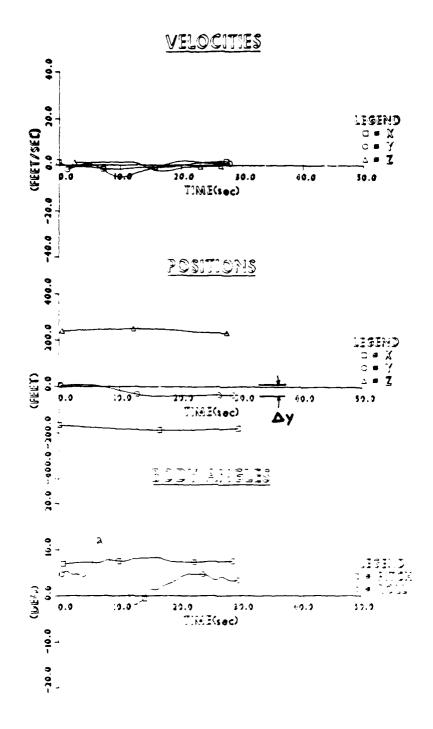


Figure 4.23: Preliminary Lateral Position Step Command in Flight. The y position hold performance is well damped and similar to the simulation of Figure 4.13.

L

I

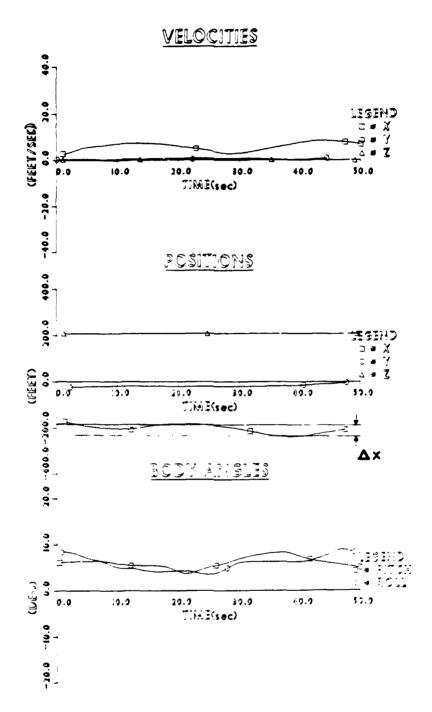


Figure 4.22: Preliminary Forward Position Step Command in Flight. The z position damping is very poor ($\varsigma \approx .1$), unlike the near critical damping of the simulation shown in Figure 4.12.

. .

L

ļ

لاستعاكما تحسيمهم مخسده

á

Section 4.7

.

Ô

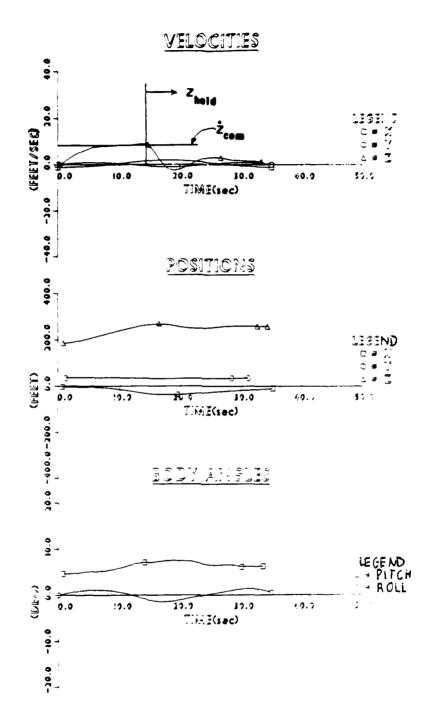


Figure 4.21: Preliminary \dot{z} Flight Response. The 5 second time to steady state matches the simulation shown in Figure 4.11.

E TA

0

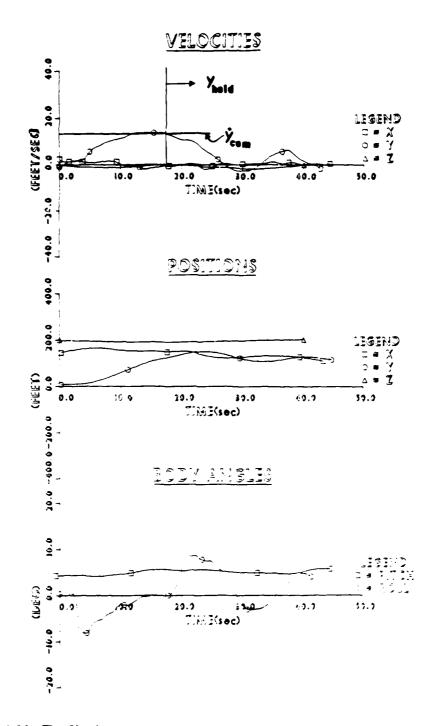


Figure 4.20: Preliminary \dot{y} Flight Response. The \dot{y} response is well behaved and similar to the simulation results of Figure 4.10. The peak roll angle is about 8 degrees for both responses to a command of about 10 ft/sec.

Section 4.7

Í

K

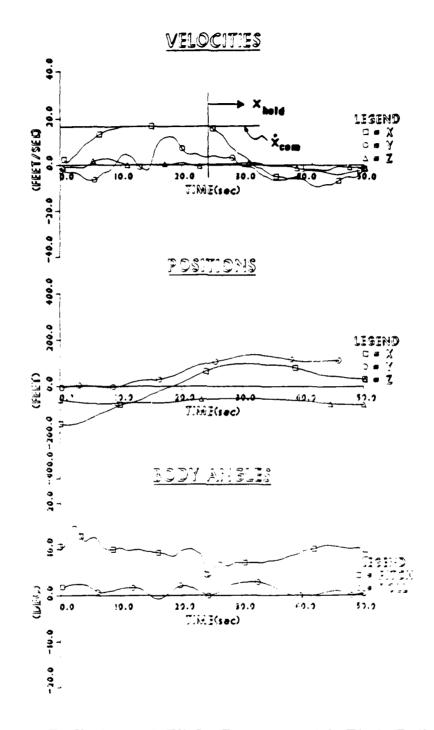


Figure 4.19: Preliminary \dot{x} Flight Response with Pitch Roll Coupling. With the instability of Figure 4.18 corrected, the roll coupling, shown here, was discovered.

Į

D

Ľ

È

R

Ō

1) •

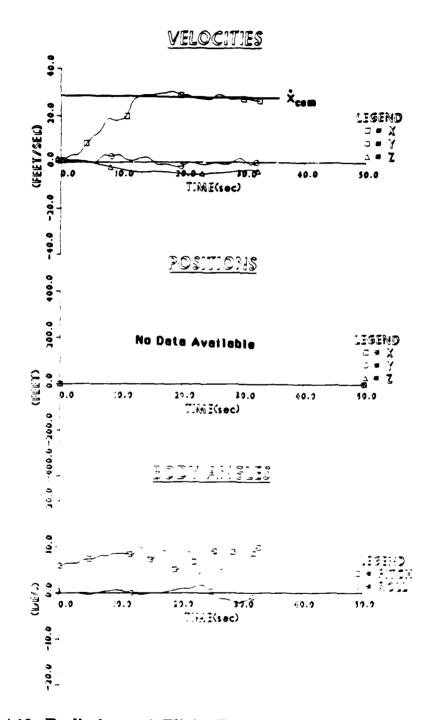


Figure 4.18: Preliminary \dot{x} Flight Response with Pitch Oscillation. The poorly damped simulation response of Figure 4.9 became unstable in flight as the pitch angle shows. The decoupling using the outer loops worked well.

1

system in flight. Figure 4.18 shows the flight results with the extremely poor z axis performance. After a redesign of the velocity inner loop system, described in the next section, another problem was found. There was unacceptable coupling between the z and y axes. The coupling, evident in Figure 4.19, was manifested as roll osscillations resulting from the \dot{z} command. The next section also describes the approach taken to solve this pitch to roll coupling problem. The coupling was one way, however, as seen in Figure 4.20 where the response to a step in \dot{y} is quite acceptable and similar to the simulation results of Figure 4.10. The \dot{z} command capability is also quite good as Figure 4.21 shows. The z position hold performance of Figure 4.22 was very poor due to the low damping (\approx .1). Y position (Figure 4.22) was much better damped and faster than z. The z position hold performance was very good with vertical position changes of less than 10 feet during the velocity commands of Figures 4.19, 4.20, and 4.21. Use of the radar tracker data in the inner loops, which was considered risky due to its complexity, worked well throughout the flight test.

4.7.3. Hover Controller Redesign

The redesign of the system was necessitated by bad performance in two modes. First, the x velocity response was slightly unstable in flight. The other problem was the coupling from x velocity command to roll angle. The first problem was handled by redesigning the inner loop velocity control system in order to slow the longitudinal response. This redesign was first attempted by changing the weighting matrices in the RSANDY program to get a better damped longitudinal response. This approach did not work so the technique of Section 3.4.1 was used. Section 3.4.1 described using an arbitrary set of measurement spectral densities to achieve

ſ

new capabilities needed by the hover controller including data uplink capability and complementary filtering to get smooth inertial data. The second phase included preliminary flight test which discovered poor velocity performance which necessitated a redesign of the velocity inner loop. The final phase of the flying evaluated the redesigned control system.

4.7.1. Support Systems Development Flying

The complexity of the hover controller required that essentially all the aircraft systems and all the ground support equipment be working in order to exercise the system. A number of flights was required just to ensure that the uplink system and the associated complementary filters were producing good inertial data. Once these systems were operating correctly, the flight testing continued with checks of the mode switching and transient suppression logic while using the real data coming from the complementary filters. It was while doing this work that the laser tracker's poor ability to hold lock was discovered and the decision was make to go with the less accurate radar tracker.

4.7.2. Preliminary Closed Loop Flight Test in Hover

Preliminary closed loop testing included velocity step commands in the three axes and changes in desired position while remaining in the hover hold mode. These closed loop tests confirmed what the longitudinal CAS tests had already shown. The flight responses were less damped than the simulations had predicted. In other words, we couldn't achieve as high a bandwidth in flight as in simulation. This was most evident in the x axis where the well damped velocity response in the simulation (Figure 4.9) turned into a neutrally stable or slightly unstable

r

(

D)

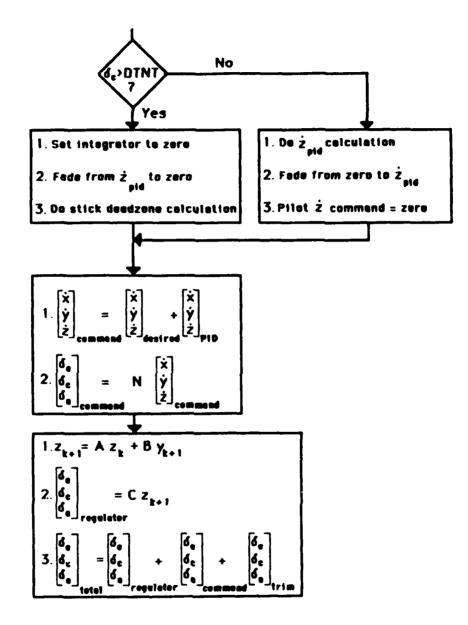


Figure 4.17: Z Axis Transient-Free Switching Logic. This figure also shows the rest of the hover controller which was shown in Figure 4.3.

r

•)

Ω

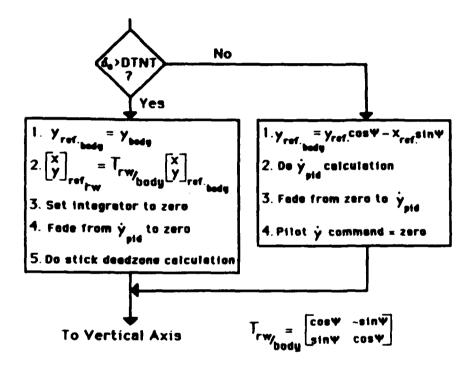


Figure 4.16: Y Axis Transient-Free Switching Logic. The switching logic for the x and y axes was identical. The best detent was .25 inches.

С

 \cap

Q

O

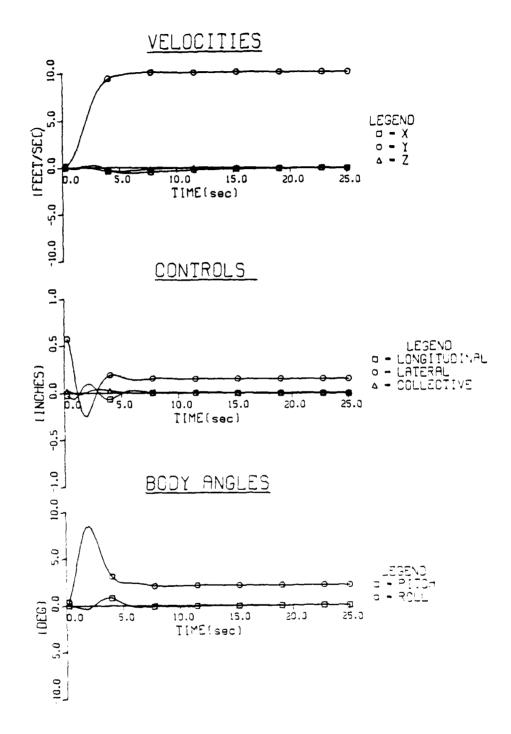


Figure 4.26: Hover Side Velocity Step Command in Simulation. The response is nearly identical to the original design of Figure 4.10.

(

)

0.

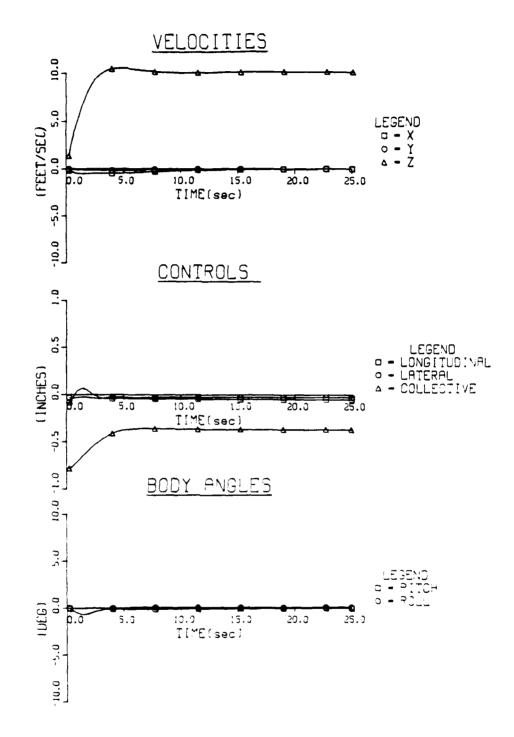


Figure 4.27: Hover Vertical Velocity Step Command in Simulation. The response is nearly identical to the original design of Figure 4.11.

4.8. Summary of Results of the Hover Controller Design

As with the longitudinal CAS, the discussion of results is separated into two groups:

- the effectiveness of the methodology
- the flight test results

The hover controller emphasized the usefulness of the design methodology for a more complicated control system. To have used classical incremental loop closures to do this design would probably have taken longer or would have required more specific experience in helicopter control systems than I had. This task also showed the advantage of using a modern control inner loop to modify the open loop plant in such a way as to increase the physical intuition for the design engineer. The increased physical intuition made classically designed outer loops simpler. In this case, the plant was changed from control motion in, measurement out to desired output in, actual output out. This change simplified the selection of the outer loop control structure and made the outer loop gains more intuitive. Figure 4.3 showed these advantages. This task also emphasized the relative speed and ease with which design iterations can be made on MIMO systems. When the first design of the hover controller was found unacceptable in flight, the redesign described in Section 4.7.3 was done in only 2 - 3 days which avoided delays in the flight testing. As with the longitudinal CAS design, the analysis tools developed to use the methodology (described in the various appendices) were sufficient but their

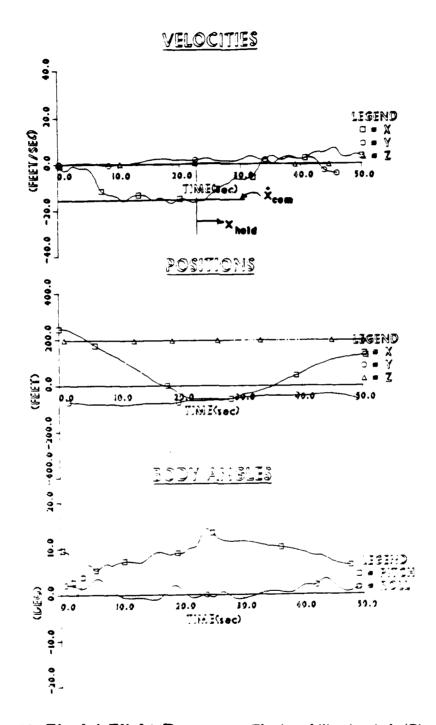


Figure 4.28: Final \dot{x} Flight Response. The instability in pitch (Figure 4.18) and the pitch roll coupling (Figure 4.19) are gone but the pitch angle damping is still less than the simulation response of Figure 4.25.

1

Ç

1

S)

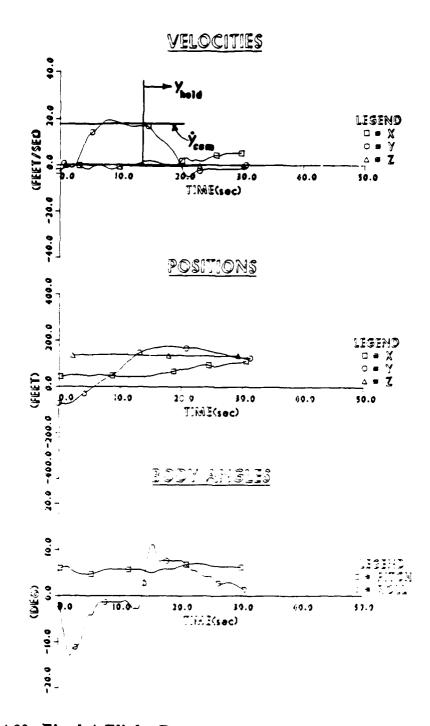


Figure 4.29: Final \dot{y} Flight Response. The \dot{y} response is little changed from the first flight test results of Figure 4.20.

113

1

ſ

C

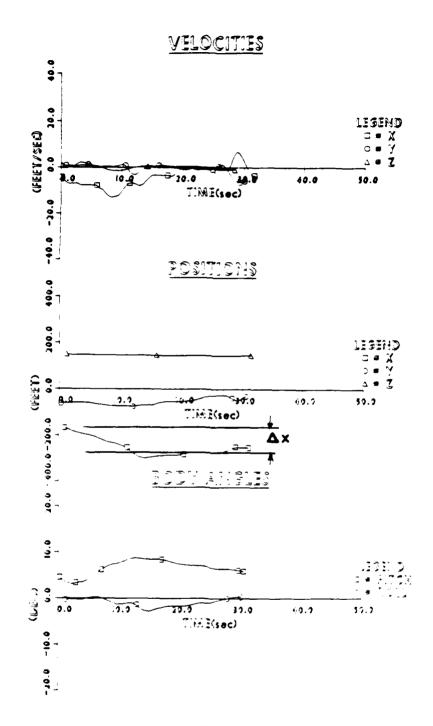


Figure 4.30: Final Hover Forward Position Step Command in Flight. The performance is much improved from Figure 4.22 but the damping of $\approx .4$ is still not good enough for operational use.

ľ

F

IC

e.

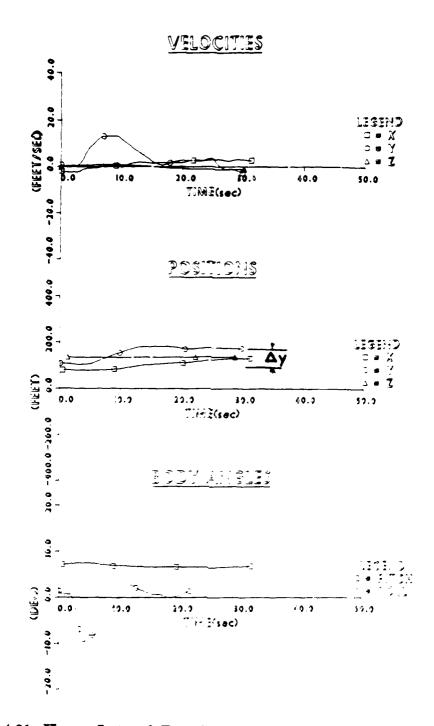


Figure 4.31: Hover Lateral Position Step Command in Flight. The lateral position response is adequate and little changed from the first tests of Figure 4.23.

E

(

f

"user friendliness" needed improvement.

In flight test, the hover controller was fairly successful. Many advanced helcopter or VTOL airplane designs call for a translational velocity control(TVC) system such as was tested here. Normally the evaluations of these concepts seldom leave the simulators to address the hardware and software difficulties of flight implementation. This test reemphasized two of the important difficulties of TVC systems, the inertial position/velocity sensor and the human factors involved. The primary contribution of this work was the development of a flexible TVC system where these type issues can be studied. Specifically, this system showed good velocity command performance in all three axes, excellent hold performance in the lateral and vertical axes, and marginally acceptable hold performance longitudinally. The switching logic worked well from a control viewpoint but the pilots who flew the system commented on the need for a better indication of switching from hold mode to velocity command mode in each axis.

Chapter 5.

Conclusions

2

2

The conclusions are separated into those applicable to the design methodology and those associated with the flight tests.

5.1. Methodology

- The process of scaling and using the modal input/output measures is an effective way to reduce the order of the compensator.
- The scaled block minimal realization of the compensator is useful in identifying unimportant measurements and controls.
- The decoupling feedforward matrix depends heavily on an accurate model so practical designs will usually require some sort of integral control. For very poor models, integral control alone should be used for implementing output commands.
- The software tools were adequate for application of the methodology.
- Both "modern" and "classical" control techniques are important for MIMO control system design. The specific application determines the appropriate techniques to use. In this research, the use of a modern control inner loop

Section 5.2

7

Σ

with classically designed outer loops was a useful approach for the hover controller.

5.2. Flight Tests

- Although requiring some change of pilot technique (retraining), the decoupled velocity and climb rate controller was well received by the pilots who flew it.
- The hover controller performed adequately as a translational velocity command system, had good position hold capability in the vertical and lateral axes, but its hold performance in the longitudinal direction was marginal.
- Integral control was crucial to achieve decoupled control for both the cruise and hover control systems.

5.3. Lessons Learned

Finally, two "lessons learned" (or relearned) during this research should be emphasized, even though they may seem obvious. First, there is no substitute for experience. For this methodology, experience was important in:

- selecting the correct units for scaling the dynamic system
- determining which gains are "small" for compensator simplification
- selecting outputs and their weightings in the optimization using the ROPT-SYS and RSANDY computer programs
- selecting scale factors for fixed-point scaling, Appendix E

• selecting stick and collective lever gains for the pilot

in av it as a fint a facture i a la facture i affa

• determining the structure of the integral control loops

Also, experience in use of the methodology itself, especially the design tools, was critical. The hover controller, though much more complicated, took about as much time to design as the longitudinal CAS. The other lesson is that the design of the control logic is often the easiest and fastest step in building an operational control system. Most of the work is spent on:

- software design, coding, and testing
- hardware modifications and testing
- ground based closed loop testing

į

Chapter 6.

[],

Recommendations for Further Research

The CH-47 research helicopter at Ames is a very flexible test vehicle and is being improved by the addition of a floating point digital computer programmable in a higher order language. With this improvement, a number of potential research projects should be considered:

- Parameter identification to improve the existing models used for design and simulation
- Refinement of the two designs presented here and pilot evaluation in a more realistic setting such as instrument landing
- Outer loop guidance work (Microwave Landing System, 4-dimensional navigation, etc.) using these inner loops
- Application of singular value LQG-LTR (Linear Quadratic Gaussian Loop Transfer Recovery) to account for unmodeled rotor dynamics

One difficulty in applying the methodology was the poor convergence characteristics of the first order gradient algorithm in the RSANDY program. A second order technique to speed convergence would be an important improvement to the program. Another possibility for research is finding a way of commanding a system without exciting all the closed-loop modes similar to the method described in

Chapter6

(ا

121

Chapter 3 for the case of the full-order compensator.

Saberi has shown a technique for calculating helicopter stability derivatives during low speed flight near the ground.[18] This research vehicle is an excellent testbed for validating these derivatives.

References

- 1. McRuer, D., Ashkenas, I., and Graham, D., Aircraft Dynamics and Automatic Control, Princeton University Press, Princeton, New Jersey, 1973.
- Bryson, A.E., Notes from the "Advanced Stability and Control of Flight Vehicles" course at Stanford(AA271b), 1983.
- 3. Ly, U.L., "A Design Algorithm for Robust Low-Order Controllers", Stanford University, SUDAAR 536, November 1982.
- 4. Bryson, A.E. and Ho, Y., Applied Optimal Control, Hemishpere Publishing Corporation, New York, 1975.
- 5. Kailath, T., *Linear Systems*, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.
- 6. Franklin, G.F. and Powell, J.D., Digital Control of Dynamic Systems, Addison-Wesley Publishing Company, Menlo Park, California, 1981.
- 7. Bernard, D., "Control System Design for Lightly Coupled Space Structures", PhD Dissertation, Stanford University, September 1984.
- 8. Ly, U.L., "Optimal Robust Low-Order Controller Design, User Guide for the Program SANDY", Stanford University, 1982.

Appendix D.

Set Point Design

This appendix derives the feedforward matrix which commands a dynamic system, including compensator, to a new equilibrium. This matrix turns desired outputs into the steady-state controls needed to achieve the outputs. The restrictions are that these outputs (or new operating point) be physically realizable and that the number of controls be equal to the number of outputs.

Consider the following dynamic system:

$$\dot{x} = Fx + Gu$$

$$y_{o} = H_{o}x + D_{ou}u$$

$$\dot{z} = Az + By_{o} + G_{z}u_{c}$$

$$u = Cz + Dy_{o} + u_{c}$$
(D.1)

where:

)

x- plant states

 y_{\bullet} - measurements

z- compensator states

u- controls

AppendixC

The general form of the transformation is:

$$T = \begin{bmatrix} T_1 & 0 & \dots & 0 \\ 0 & T_2 & 0 & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & 0 & 0 & \frac{1}{c_l} \end{bmatrix}$$

$$T^{-1} = \begin{bmatrix} T_1^{-1} & 0 & \dots & 0 \\ 0 & T_2^{-1} & 0 & 0 \\ \vdots & 0 & \ddots & 0 \\ 0 & 0 & 0 & c_l \end{bmatrix}$$
(C.11)

where:

() \

$$T_{i} = \frac{\begin{bmatrix} c_{l,2i}(f_{i}g_{i} - e_{i}h_{i}) & e_{i}c_{l,2i} - b_{i}c_{l,2i-1} \\ -c_{l,2i-1}(f_{i}g_{i} - e_{i}h_{i}) & g_{i}c_{l,2i-1} - h_{i}c_{l,2i-1} \end{bmatrix}}{-f_{i}c_{l,2i-1}^{2} + (e_{i} - h_{i})c_{l,2i-1}c_{l,2i} + g_{i}c_{l,2i}^{2}}$$
(C.12)

i- the i^{th} complex mode

l- row index corresponding to the largest value of $c_1^2 + c_2^2$ for that mode's double column, or the largest value of c_1^2 for the a real mode

A listing of a FORTRAN subroutine, MINCOM, which does this transformation is shown in Appendix L.

AppendixC

The "0 1" in the C_{min} matrix results from scaling the system by the largest values in the C double columns.

Consider a second order system in general form:

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} y$$

$$u = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

$$(C.6)$$

The desired transformation will put this system into the following form:

$$\begin{bmatrix} \dot{z}_1' \\ \dot{z}_2' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \begin{bmatrix} z_1' \\ z_2' \end{bmatrix} + \begin{bmatrix} b_1' \\ b_2' \end{bmatrix} \mathbf{y}$$
$$\mathbf{u} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} z_1' \\ z_2' \end{bmatrix}$$
(C.7)

The similarity transformation requires the two systems to have identical eigenvalues, that is:

$$sI - A| = |sI - A_{min}|$$

$$\downarrow$$

$$a_1 = fg - eh$$
(C.8)

$$\iota_2 = e + h$$

Introducing the transformation matrix and expanding:

$$TA_{min} = AT$$

$$C_{min} = CT$$

$$\begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ fg - eh & e+h \end{bmatrix} = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$$

$$[0 \quad 1] = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$$
(C.9)

where $c_1^2 + c_2^2$ has the largest magnitude of any row pair in double column associated with the mode being made minimal. Solving the equations above we have the desired transformation:

$$T = \frac{\begin{bmatrix} c_2(fg - eh) & ec_2 - bc_1 \\ -c_1(fg - eh) & gc_2 - hc_1 \end{bmatrix}}{-fc_1^2 + (e - h)c_1c_2 + gc_2^2}$$
(C.10)

where:

$$A = \begin{bmatrix} \star & \star & 0 & 0 & \dots \\ \star & \star & 0 & 0 & \dots \\ 0 & \star & \star & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ \vdots & 0 & 0 & \star \end{bmatrix}, r \times r$$

$$B = [Full], r \times p$$

$$C = [Full], m \times r$$
(C.2)

We want a transformation to a new form:

$$\dot{z}' = A_{min} z' + B_{min} y$$

$$u = C_{min} z'$$
(C.3)

where:

 A_{min} - minimal form of A B_{min} - minimal form of B

 C_{min} - minimal form of C

$$A_{min} = \begin{bmatrix} 0 & 1 & 0 & \dots \\ a_{1} & a_{2} & 0 & \dots \\ 0 & a_{1} & a_{2} & \dots \\ \vdots & \vdots & \ddots & \ddots \end{bmatrix}, n \times n$$

$$B_{min} = \begin{bmatrix} \star & \star & \dots \\ \star & \star & \dots \\ \vdots & \vdots & \ddots & \ddots \\ \star & \star & \star & \star & \dots \\ \star & \star & \star & \star & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}, m \times n$$

$$C_{min} = \begin{bmatrix} \star & \star & 0 & 1 & \dots \\ 0 & 1 & \star & \star & \dots \\ \star & \star & \star & \star & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}, m \times n$$

$$z = Tz'$$

$$A_{min} = T^{-1}AT$$

$$B_{min} = T^{-1}B$$

$$C_{min} = CT$$
(C.4)

Appendix C.

Minimal Realizations

The design methodology described in Chapter 2 used minimal realizations in two places. The first was when the ROPTSYS computer program displayed the compensator in minimal form to be better suited for the optimization in the RSANDY program. This eliminated redundant parameters which could cause trouble in the RSANDY gradient search procedures. The second use of a minimal realization came when the discrete compensator was transformed to minimal form for computational efficiency. In the first case, the transformation was from arbitrary form to block modal form then to block minimal form. The second was from an arbitrary 2×2 block form to the block minimal form. The derivation is shown for an arbitrary 2×2 system then expanded for any order.

Given the following form of the dynamic system:

$$\dot{z} = Az + By \tag{C.1}$$
$$u = Cz$$

Appendix B

By the duality property of regulators and estimators (Figure B.1), these gains, $K^T = (R + NQN^T)^{-1}(NQ\Gamma^T + H_mP)$, are determined using the randomly disturbed equations of motion:

$$\dot{x} = Fx + \Gamma w$$

$$y_m = H_m + Nw + v$$
(B.12)

where

5)

Q- noise spectral density matrix of plant distrubances, w

R- noise spectral density matrix of measurement noise, v

Regulato	r F	G	H	L	A	B	S	\overline{C}
Estimato	$\mathbf{r} \mid F^T$	H_m^T	Γ^{T}	NT	Q	R	P	$\overline{K^T}$

Figure B.1: Duality Between Regulators and Estimators. This shows the property of duality which allows the use of the regulator results for design of an optimal estimator (a steady-state Kalman filter).

۱

Appendix B

F

 \mathbf{O}

Adjoining the constraints (the equations of motion) to form the Hamiltonian:

$$H = \mathcal{L} + \lambda^T (F x + G u) \tag{B.5}$$

Recalling the optimality conditions:

$$\dot{\lambda}^{T} = \frac{\partial H}{\partial x} \tag{B.6}$$

$$0 = \frac{\partial H}{\partial u} \tag{B.7}$$

Introducing the system equations, $\dot{x} = Fx + Gu$, and expanding the optimality equations, we have the Euler-Lagrange equations (here in matrix form):

$$\begin{bmatrix} \dot{x} \\ \dot{\lambda} \end{bmatrix} = \begin{bmatrix} F - G(B + L^T AL)^{-1} L^T AM & -G(B + L^T AL)^{-1} G^T \\ -M^T AM - M^T AL(B + L^T AL)^{-1} L^T AM & -F - M^T AL(B + L^T AL)^{-1} G^T \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix}$$
(B.8)

As shown in Bryson and Ho [4] or Franklin and Powell [6], the solution to these equations is $\lambda = Sx$ where $S = \Lambda_{-} \chi_{-}^{-1}$. Λ_{-} and χ_{-} are the submatrices of the eigenvector matrix of the Hamiltonian matrix associated with eigenvalues having negative real values, i.e.

$$\begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\chi}_{-} & \boldsymbol{\chi}_{+} \\ \boldsymbol{\Lambda}_{-} & \boldsymbol{\Lambda}_{+} \end{bmatrix} \begin{bmatrix} \boldsymbol{\xi}_{-} \\ \boldsymbol{\xi}_{+} \end{bmatrix}$$
(B.9)

With this solution for λ , the optimal steady state control, u, can be expressed as a linear combination of the state variables, x:

$$u = Cz$$

$$C = (B + LTAL)^{-1}(LTAM + GTS)$$
(B.10)

The same approach applies to finding the estimator gains, K, of the equation:

$$\dot{\hat{x}} = F\hat{x} + Gu + K(y_m - H_m\hat{x}) \tag{B.11}$$

Appendix B.

1

(

Optimal Compensator Design

The design methodology described in Chapter 2 uses an optimal full order compensator as the starting point. This appendix summarizes the derivation of the optimal compensator. From Hall and Bryson, we see that to design a set of regulator gains which minimize a quadratic performance index, we minimize the Hamiltonian with respect to the control.[17] In this case, the performance index includes the control in the output, thus enabling the weighting of state rates(accelerations). This is essential in aerospace applications where vehicle acceleration is an important parameter in the design and analysis of the control system. Starting with the modified performance index:

$$J = \int_0^\infty \mathcal{L} dt = \int_0^\infty \frac{1}{2} (y^T A y + u^T B u) dt \qquad (B.1)$$

where:

$$y = Mx + Lu \tag{B.2}$$

$$y^T = x^T M^T + u^T L^T \tag{B.3}$$

Expanding the integrand of J:

$$\mathcal{L} = \frac{1}{2} \left[\boldsymbol{x}^T \boldsymbol{M}^T \boldsymbol{A} \boldsymbol{M} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{M}^T \boldsymbol{A} \boldsymbol{L} \boldsymbol{u} + \boldsymbol{u}^T \boldsymbol{L}^T \boldsymbol{A} \boldsymbol{M} \boldsymbol{x} + \boldsymbol{u}^T (\boldsymbol{L}^T \boldsymbol{A} \boldsymbol{L} + \boldsymbol{B}) \boldsymbol{u} \right] \qquad (B.4)$$

 \bigcirc

6.1

- σ standard deviation of the noise variable
- T_{e} correlation time of the noise

With these transformations, the resulting compensator will use scaled measurements to calculate a scaled control signal. If we want to use the compensator in the physical system, we need only unscale the gain matrices. The compensator based on the scaled variables is:

$$\dot{z} = \bar{A}z + \bar{B}\bar{y},$$

$$\bar{u} = \bar{C}z + \bar{D}\bar{y}_{z}$$
(A.8)

We unscale the system by replacing scaled vectors \bar{u} and \bar{y}_{o} with their unscaled equivalents $\bar{u} = T_{c}^{-1}u$ and $\bar{y}_{o} = T_{m}^{-1}y_{o}$:

$$\dot{z} = \bar{A}z + \bar{B} T_m^{-1} y_{\bullet}$$

$$\bar{u} = T_e \bar{C}z + \bar{D} T_m^{-1} y_{\bullet}$$
(A.9)

Now the compensator uses actual (unscaled) measurements and gives unscaled control signals as outputs.

To make the scaling process consistent, I've listed some rules of thumb below:

- Scale the matrices consistently; for example, if a measurement is also a state, use the same units.
- Scale intermediate state variables in an actuator model the same as the control itself. For example, if we have a first order actuator model, $\dot{u}_a = -au_a + au_c$, then scale the actuator position state (u_a) , its rate (\dot{u}_a) , and the command (u_c) identically.
- Similarly, if sensor noise filters are included in the plant model, then these poise filter states should be scaled the same as the measurements they filter.

turbances:

 $y_{\bullet} = T_{m} \tilde{y_{\bullet}}$ $y_{e} = T_{p} \bar{y_{e}}$ $w = T_{d} \bar{w}$ $v = T_{m} \bar{v}$ (A.4)

With these transformations, the scaled dynamic system is:

$$\dot{\bar{x}} = \bar{F}\bar{x} + \bar{G}\bar{u} + \bar{\Gamma}\bar{w}$$

$$\bar{y}_{o} = \bar{H}_{o}\bar{x} + \bar{D}_{ou}\bar{u} + \bar{N}\bar{w} + \bar{v}$$

$$\bar{y}_{c} = \bar{H}_{c}\bar{x} + \bar{D}_{cu}\bar{u}$$
(A.5)

where:

1

Ō

$$F = T_{\bullet}^{-1} F T_{\bullet}$$

$$\bar{G} = T_{\bullet}^{-1} G T_{c}$$

$$\bar{\Gamma} = T_{\bullet}^{-1} \Gamma T_{d}$$

$$\bar{H}_{\bullet} = T_{m}^{-1} H_{\bullet} T_{\bullet}$$

$$\bar{D}_{\bullet u} = T_{m}^{-1} D_{\bullet u} T_{c}$$

$$\bar{N} = T_{m}^{-1} N T_{d}$$

$$\bar{H}_{c} = T_{p}^{-1} H_{c} T_{\bullet}$$

$$\bar{D}_{cu} = T_{p}^{-1} D_{cu} T_{c}$$

$$\bar{Q} = T_{d}^{-1} Q T_{d}^{-1}$$

$$\bar{R} = T_{m}^{-1} R T_{m}^{-1}$$
(A.6)

The scaled power spectral density matrices were derived using the approximation:

$$PSD \approx 2\sigma^2 T_e \tag{A.7}$$

where:

AppendixA

- F- plant dynamics matrix, $n \times n$
- G- control distribution matrix, $n \times m$
- Γ plant disturbance distribution matrix, $n \times m'$
- H_{e^-} state to measurement distribution matrix, $p \times n$
- D_{eu} control to measurement distribution matrix, $p \times m$
- N- plant disturbance to measurement distribution matrix, $p \times m'$
- H_{e^-} state to output distribution matrix, $p' \times n$
- D_{eu} control to output distribution matrix, $p' \times m$
- Q- plant disturbance spectral density matrix, $m' \times m'$
- R- sensor noise spectral density matrix, $p \times p$

The scaling process continues by describing the changes of units on the states, controls, etc. as simple transformations. For instance, if we want new states, \bar{x} , and new controls, \bar{u} , to be $s_{x_1}x_1, s_{x_2}x_2, \ldots s_{x_n}x_n$ and $s_{u_1}u_1, s_{u_2}u_2, \ldots s_{u_n}u_n$, then we can define scaling (also similarity) transformations:

$$x = T_s \bar{x}$$
(A.2)
$$u = T_c \bar{u}$$

where:

$$T_{e} = \begin{bmatrix} \frac{1}{s_{z_{1}}} & & & \\ & \frac{1}{s_{z_{2}}} & & \\ & & \ddots & \\ & & & \frac{1}{s_{z_{n}}} \end{bmatrix}$$

$$T_{e} = \begin{bmatrix} \frac{1}{s_{u_{1}}} & & & \\ & \frac{1}{s_{u_{2}}} & & \\ & & \ddots & \\ & & & \frac{1}{s_{u_{n}}} \end{bmatrix}$$
(A.3)

Using an identical procedure, we scale the outputs, measurements, and plant dis-

Appendix A.

Engineering Scaling

This appendix derives engineering scaling equations used in the ROPTSYS computer program. This process transforms the model of the physical system into a "similar" model where the units of the variables have changed. Similar means the eigenvalues of the system are not changed by the transformation to the new coordinates. As described in section 2.2, the new units are chosen to make the new variables of the dynamic system of equal importance to the design engineer. The process begins with the linear model shown below:

$$\dot{x} = Fx + Gu + \Gamma w$$

$$y_{e} = H_{e}x + D_{eu}u + Nw + v$$

$$y_{e} = H_{e}x + D_{eu}u$$

$$J = \int_{0}^{\infty} (y_{e}^{T}Ay_{e} + u^{T}Bu) dt$$
(A.1)

where:

- x- system states, $n \times 1$
- z- compensator states, $r \times 1$
- u- controls, $m \times 1$
- w- plant disturbances, $m' \times 1$

 y_0 - sensor measurements, $p \times 1$

 y_{e^-} weighted outputs, $p' \times 1$

v- sensor noise, $p \times 1$

ber, 1971.

M

 \mathbf{O}

8

0

18. Saberi, H.A., "Ground Effect on Helicopter Aerodynamics and Stability", PhD Dissertation, Stanford University, October 1984.

- 9. Bryson, A.E., Notes from the "Optimal Estimation and Control Logic in the Presence of Noise" course at Stanford (AA278b), 1984.
- Kelly, J.R., Niessen, F.R., Garren, J.F., and Abbott, T.S., "Description of the VTOL Approach and Landing Technology (VALT) CH-47 Research System", NASA TP 1436, August 1979.
- Ostroff, A.J., Downing, D.R., and Rood, W.J., "A Technique Using a Nonlinear Helicopter Model for Determining Trims and Derivatives", NASA TN D-8159, May 1976.
- 12. Chen, R.T.N. and Hindson, W.S., "Influence of Rotor and Other High-Order Dynamics on Helicopter Flight Control System Bandwidth", a paper to be presented at the International Conference on Rotorcraft Basic Research, Research Triangle Park, NC, February 1985.
- Hutto, A.J., "Flight Test Report on the Heavy-Lift Helicopter Flight Control System", 31, Annual National Forum of the American Helicopter Society, May 1975.
- Etkin, B., Dynamics of Atmospheric Flight, John Wiley and Sons, Inc., Toronto, 1972.
- 15. Valkenburg, M.E., Introduction to Modern Network Synthesis, John Wiley and Sons, Inc., New York, 1964.
- 16. Gardner, B.E., "Feedforward/Feedback Control Logic for Robust Target Tracking", PhD Dissertation, Stanford University, December 1984.
- 17. Hall, W.E. and Bryson, A.E., "Optimal Control and Filter Synthesis by Eigenvector Decomposition", SUDAAR No. 436, Stanford University, Novem-

AppendixD

If $DD_{ou} = 0$, then these equations can be rewritten as:

$$\begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} F + GDH_{\bullet} & GC \\ B(I + D_{\bullet u}D)H_{\bullet} & A + BD_{\bullet u}C \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} G \\ BD_{\bullet u} + G_z \end{bmatrix} u_e \qquad (D.2)$$

Defining $x_T = \begin{bmatrix} x \\ z \end{bmatrix}$, we can rewrite the equations above as:

$$\dot{x_T} = F_T x_T + G_T u_c \tag{D.3}$$

Expressing the desired outputs, y_D , as a linear combination of x_T and u_c we have:

$$y_D = H_D x_T + L_D u_c \tag{D.4}$$

At steady state, $\dot{x_T} = 0$, and the two previous equations become:

$$\begin{bmatrix} F_T & G_T \\ H_D & L_D \end{bmatrix} \begin{bmatrix} x_T \\ u_e \end{bmatrix}_{ee} = \begin{bmatrix} 0 \\ y_D \end{bmatrix}$$
(D.5)

inverting:

$$\begin{bmatrix} x_T \\ u_c \end{bmatrix}_{ss} = \begin{bmatrix} F_T & G_T \\ H_D & L_D \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ y_D \end{bmatrix}$$
$$= \begin{bmatrix} \star & M \\ \star & N \end{bmatrix} \begin{bmatrix} 0 \\ y_D \end{bmatrix}$$
(D.6)

The steady-state controls are $u_c = Ny_D$ and new equilibrium state vector is $x_T = My_D$ where:

$$\begin{bmatrix} \star & M \\ \star & N \end{bmatrix} = \begin{bmatrix} F + GDH_{\bullet} & GC & G \\ B(I + D_{\bullet u}D)H_{\bullet} & A + BD_{\bullet u}C & BD_{\bullet u} + G_{z} \\ H_{D} & L_{D} \end{bmatrix}^{-1}$$
(D.7)

This last equation is used by the SETPNT program, Appendix L, to calculate the N matrix.

Appendix E.

Fixed Point Scaling

This appendix describes the technique of scaling the analytical designs to run on the Sperry 1819A flight computer. The process is similar in principle to scaling engineering problems for an analog computer. This computer is an 18 bit fixedpoint digital computer. There are two problems which must be considered when doing this scaling. The first is avoiding overflows (exceeding $2^{17} - 1$ during calculations) and the second is maintaining precision in the results. The procedure which follows handles both these potential problems.

Consider the compensator dynamic system:

$$\dot{z} = Az + By \tag{E.1}$$
$$u = Cz$$

where y and u are in engineering units (not yet computer scaled). In the computer, these variable have computer scaling factors, K, such that $\dot{z}K_i$, zK_z , yK_y , and uK_u have units of bits. For example, if $K_{\theta} = 500 \frac{bits}{deg}$, then then 5 deg of θ is 2500 bits in the computer. In these computer scaled variables, the compensator appears:

$$\begin{bmatrix} \dot{z} \end{bmatrix} K_{i} = K_{A} \begin{bmatrix} A \end{bmatrix} \frac{K_{i}}{K_{z}K_{A}} \begin{bmatrix} z \end{bmatrix} K_{z} + K_{B} \begin{bmatrix} B \end{bmatrix} \frac{K_{i}}{K_{y}K_{B}} \begin{bmatrix} y \end{bmatrix} K_{y}$$

$$\begin{bmatrix} u \end{bmatrix} K_{u} = K_{C} \begin{bmatrix} C \end{bmatrix} \frac{K_{u}}{K_{z}K_{C}} \begin{bmatrix} z \end{bmatrix} K_{z}$$

$$(E.2)$$

Appendix E

ĩ

where A, B, and C are in engineering units. The scale factors, K, for y and u are part of the computer environment (set up by the programmers of the original flight program) but we need to calculate K_i and K_z . This is simplified by the digital implemention; we have z_{k+1} and z_k rather than \dot{z} and z. This means only one scale facter, K_z , is needed. To find this factor, first estimate the largest value that any z_{k+1} or z_k can achieve by finding the maximum single product in the matrix multiply, $[B] [y]_{max}$. For controls, measurements, and desired outputs, the maximum values can be set using engineering judgement and intuition. Since we also want precision in the z term, we select K_z so that z_{max} uses all of the 18 bits available:

$$K_{z} = \frac{2^{17}}{z_{max}}$$
(E.3)

where z_{max} is rounded up to the next power of 2. 2^{17} is used since the largest negative number expressed in 18 bits is -2^{17} .

With the K_z term, the problem of overflow is solved. Now we need only ensure that precision is maintained in the calculations by choosing the additional scale factors, K_A , K_B , and K_C that scale the elements of the A, B, and C matrices. Making use of all 18 bits, we can find these scale factors in the same way as the K_z term above was calculated:

$$K_{A} = \frac{2^{17}}{a_{max}\frac{K_{x}}{K_{x}}}$$

$$K_{B} = \frac{2^{17}}{b_{max}\frac{K_{x}}{K_{y}}}$$

$$K_{C} = \frac{2^{17}}{c_{max}\frac{K_{x}}{K_{y}}}$$
(E.4)

where a_{max} , b_{max} , and c_{max} are the maximum elements of the A, B, and C matrices which have been rounded up to the nearest power of 2.

AppendixE

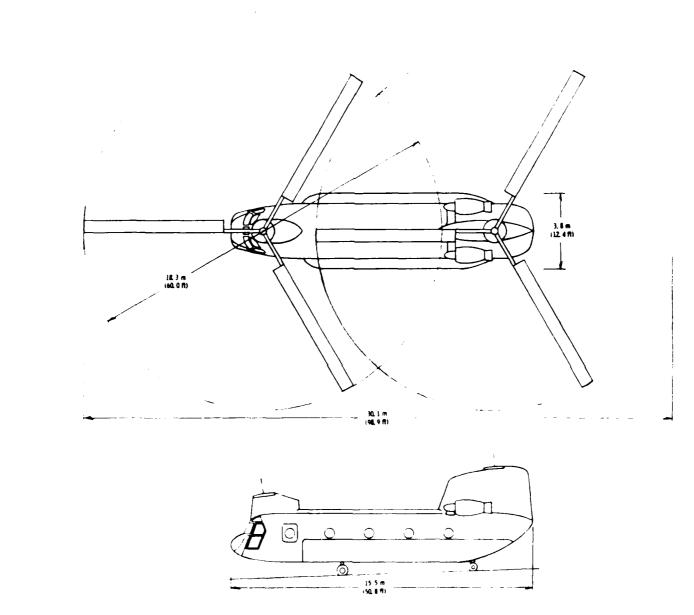
One product from the matrix multiplies is:

$$(b_{ij}\frac{K_z}{K_y})K_B(y_jK_y) \tag{E.5}$$

This number is included in the double precession (36 bits) A register in the 1819A and is always less than $2^{35} - 1$. We want to accumulate these double precision elements to get one element of By. Finally, we divide by K_A (or equivalently shift the A register) to regain the single precision inner product. This is done for each of the matrix multiplies.

The same approach is used to scale the feedforward matrix and the integral gain matrix used in the longitudinal CAS. The two BASIC computer programs, which do this scaling for the longitudinal CAS and for the hover controller, are listed in Appendix N along with example data files.

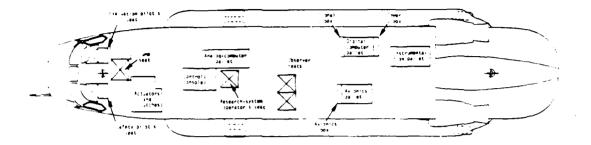
Appendix F.


О

CH-47 Research Helicopter

The helicopter used for this research is a highly modified version of the Boeing-Vertol CH-47 "Chinook" used by the U.S Army for cargo and troop transport. Figure F.1 shows the tandem rotor helicopter, which is operated by the NASA Ames Research Center. Reference 10 is a more complete description of this particular helicopter including the many modifications made to the basic CH-47. Below are listed some of the modifications and improved capabilities:

- Full authority, variable stability, fly-by-wire flight control system in all four axes.
- Programmable analog and digital computers capable of executing the control laws.
- Programmable force-feel system on the experimental pilot's stick.
- Flight instrumentation system capable of recording over 100 variables at 100 times per second.
- Operator's console for control of the experimental systems.
- Additional sensors: INS, radar altimeter, body-mounted accelerometers, improved air data sensors, numerous control position sensors, boom-mounted angle of attack and sideslip vanes, rate gyros
- Digital ground to air uplink capability


Figures F.2 and F.3, from reference 10, show the cabin layout in this experimental vehicle and a block diagram of the experimental control system.

ſ

ľ

Figure F.1: Boeing-Vertol CH-47 Chinook Helicopter. The large tandem rotor helicopter is used operationally by the U.S. Army for cargo and troop transport. Maximum gross weight is 38000 pounds with typical operating weight of 30000 pounds.

ſ

E

E

Figure F.2: Cabin Layout. The research helicopter requires a crew of 4; safety pilot, experimental pilot, research system operator, and crew chief.

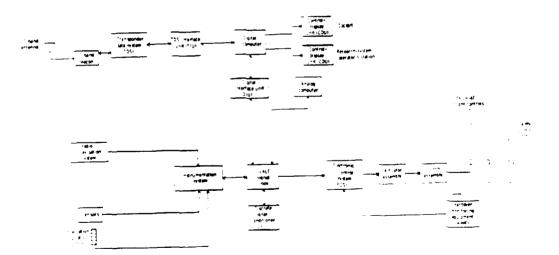


Figure F.3: Experimental Flight Systems. The flexibility of the experimental system is emphasized here where we note the many interfaces between the various components.

Appendix G.

ſ

CH-47 Linear Models

The models described in this appendix were calculated using the information from reference 11. The general forms for the decoupled 4^{th} order models and for the coupled 8^{th} order are shown in Figures G.1 and G.2. The linear models for the flight conditions related to this research are shown in Figures G.3 to G.16.

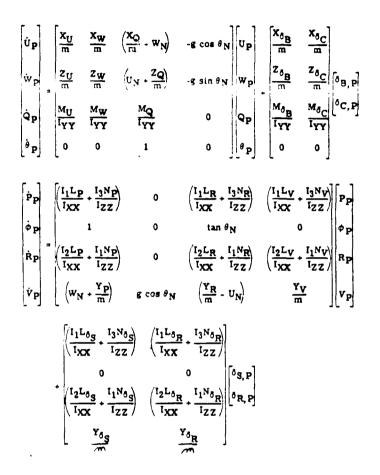


Figure G.1: Longitudinal and Lateral 4th Order Models. The longitudinal model above was used in the design of the longitudinal CAS (Chapter 3).

٠.

X.P (* - *) 쏲 쪾 ×. (<u>*</u>8 - v_N) Up. Úp ā Try m (TP. . . 끹 ¥**w** (<u>*</u>B - U_N) Ŷр /, (29. UN) <u>7</u> žB 갷 24 <u>Zw</u> ŴP $\begin{pmatrix} \frac{I_1L_0}{I_{XX}} \cdot \frac{I_3N_0}{I_{ZZ}} \end{pmatrix}$ $\begin{pmatrix} \frac{I_1 L p}{I_{XX}} \cdot \frac{I_3 N p}{I_{ZZ}} \end{pmatrix}$ $\left(\frac{I_1L_2}{I_{XX}}\cdot\frac{I_3N_2}{I_{ZZ}}\right)$ $\begin{pmatrix} \frac{I_1 L_V}{I_{XX}} \cdot \frac{I_3 N_V}{I_{ZZ}} \end{pmatrix}$ $\frac{I_1 L_W}{I_{XX}} \cdot \frac{I_2 N_W}{I_{ZZ}}$ $\begin{pmatrix} l_1 L_B \\ I_{XX} \\ I_{ZZ} \end{pmatrix}$ a ۵ Ý₽ Mw Iyy MQ Mp IYY Mu IYY Q, ٩p (13LU . 11NU) $\frac{I_2 L_W}{I_{XX}} \cdot \frac{I_1 N_W}{I_{ZZ}}$ $\begin{pmatrix} \mathbf{I_2Lp} \\ \mathbf{I_{XX}} \\ \mathbf{I_{I}} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I_1Np} \\ \mathbf{I_{I}} \end{pmatrix}$ $\left(\frac{I_2L_Q}{I_{XX}} \cdot \frac{I_1N_Q}{I_{ZZ}}\right)$ Izte $\left(\frac{\mathbf{I_{1}L_{Y}}}{\cdot\mathbf{X}\mathbf{X}}\cdot\frac{\mathbf{I_{1}N_{Y}}}{\mathbf{I_{22}}}\right)$ Rp Ŕp 0 0 ۶p ٥ 'P ٥ 1 ٥ cos #N tas #N 0 -sis #w tas ė p ٥ °₽ <u>×₀c</u> ____ 씦 <u>*</u>** Y₈C Y₀ Ton m Y. $I_{XX} = 50\ 386.3\ \text{kg} - \text{m}^2\ (37\ 163\ \text{slug} - \text{ft}^2)$ 208 m ^z°c Z og $I_{YY} = 273536 \text{ kg} \cdot \text{m}^2 (201750 \text{ slug} \cdot (t^2))$ B.P $\left(\frac{I_1 L_6}{I_{XX}} + \frac{I_3 N_6}{I_{ZZ}}\right)$ $\frac{I_1 L_0}{I_{XX}} \cdot \frac{I_3 N_0}{I_{ZZ}}$ $\left(\frac{\mathbf{I_1L_{\theta_{\underline{C}}}}}{\mathbf{I_{XX}}} \cdot \frac{\mathbf{I_3N_{\theta_{\underline{C}}}}}{\mathbf{I_{ZZ}}}\right)$ (IILOS + 13Nos °C, P $I_{ZZ} = 257.685 \text{ kg} \cdot \text{m}^2 (190.059 \text{ slug} \cdot (t^2))$ 85, P MOB MOC IYY Mag TYT MOR IYY ⁶R, P $I_{XZ} = 19.338.3 \text{ kg} \cdot \text{m}^2 (14.632 \text{ slug} \cdot (t^2))$ IINOR $\frac{I_2 L_{0 B}}{I_{XX}} \cdot \frac{I_1 N_{0 B}}{I_{ZZ}}$ 122 $\left(\frac{l_{\mathbf{Z}}\mathbf{L}_{\mathbf{0}}\mathbf{g}}{l_{\mathbf{X}\mathbf{X}}} + \frac{l_{\mathbf{1}}\mathbf{N}_{\mathbf{0}}\mathbf{g}}{l_{\mathbf{Z}}\mathbf{Z}}\right)$ $\left(\frac{{}^{I_2L_0}R}{{}^{I}xx}+\right.$ (12L0C IZZ/ m = 14 968.6 kg (1 025.67 slug) 0 0 0 0 0 0 0 0 $\frac{I_{ZZ}I_{XZ}}{I_{XX}I_{ZZ} - I_{XZ}^2}$ 1xx122 1xx¹xz 1xx¹zz - 1xz $I_{\underline{1}} = \cdot$

è.

¢

D

ð

Figure G.2: Coupled 8th Order Model. This model was used in the design of the hover controller, described in Chapter 4.

THIS IS DATA FOR ZDOT≠ 60 ►NOTS	Q	FT/MIN	AND XDOT OR AI	RSFEED=
	z	L	M N	
u -0.02046 -0.00017	—	.00024 -0.00		
\vee 0.00014 -0.07404	0.00487 -0			
W 0.03764 0.00330		0.00146 - 0.01		
DB 0.12688 0.51850		0.00376 0.3		
00 0.42640 0.04854		0.00864 0.1		
DS 0.00003 1.11989			0000 0.00887	
DR 0.00004 -0.05298			0011 0.19699	
P 0.00380 -2.03591		.81835 0.023		
0 2.35790 0.00340		.00117 -1.68		
R -0.04676 -0.22199	-	.06732 0.003		
LONGITUDINAL F-MATRIX I	c .			G-MATRIX 15:
	J: J	4		G-MAIRIX 15:
1 -0.02046 0.03764		-12,14647	0.12688	0,42540
		-1.85603	0.1 <u>2</u> 888 0.46734	-9.75989
2 -0.06631 -0.55118 3 -0.00420 0.01764		0.00000	0.39113	• • • •
4 9.00000 0.00000		0.00000	0.00000	0.15286 0.00000
 A second contraction A second contraction 	1.1000000		0.00000	$\hat{\alpha}^{\bullet}$ ($\hat{\alpha}$) $\hat{\alpha}$ ($\hat{\alpha}$)
LATERAL F-MATRIX IS:			LATERAL G-M	ATRIX IS:
1 2	7	4	1	-
1 -0.35072 0.00000	-0.08531	-0.00569	0.42183	-0.05 375
2 1.00000 0.00000	0.05774	$\dot{\phi}_{\bullet}$ $\dot{\phi}\dot{\phi}\dot{\phi}\dot{\phi}\dot{\phi}$	0.00000	$(\phi_{\bullet},\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}$
I -0.08221 0.00000	-0.04570	-0,00053	0.04139	0.19246
4 -2.01591 32.14647	%-100.42200	-0.07404	1.11989	-0.45298
THE STH ORDER F-MATRIX	15.			
1 2		4 5	5	7 3
_		-	-0.04676 -12	-
	.00330 -2.03		3-100,42200	
· · · · · · · · · · · · · · · · · · ·		wine in the end of the	• • • • • • • • • • • • • • • • • • • •	
2				
	.55118 0.71	481 49.02081	0 19515 -4	347.6
- 1 - 0100831 - 0100487 - 00 - 4 - 0100017 - 0100559 - 0				.3550 C
4	.00157 -0.35	072 -0.00096	-9.185I1 O	ຸດ, ພັດເມັນ 👔 👘 👘
4 (0.000)[7 (0.00559) (0 5 (0.00420 (0.005 (0.005	.00157 -0.95 .01764 -0.92	072 -0.00095 270 -1.68130	-0.18511 0 	andana) () ala Alana () ala
4	.00157 -0.35	072 -0.00096 270 -1.68130 221 -0.08150	-0.18511 0 -0.20157 0 -0.04570 0	. (19)(19)(19) (19) (19) (19)(19)(19) (19) (19) (19)(19)(19) (19) (19) (19)
4	.00157 -0.95 .01764 -0.02 .00024 -00.08	072 -0.00096 270 -1.68133 221 -0.08152 600 -0.49999	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. (19)(19)(19) (19) (19) (19)(19)(19) (19) (19) (19)(19)(19) (19) (19) (19)
4	.00157 -0.35 .01764 0.02 .00054 -0.08 .00000 0.00 .00000 1.0	072 -0.00096 270 -1.68133 221 -0.08152 600 -0.49999	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Фрункра (), 10% Фрункра (), 10% Средска (), 10%
4 (1.1.000)(こう)、2018年 (0 5 (2.10420)(10,00055)(0 6 (2.10123)(1.100055)(0 1 (2.10103)(1.100055)(0 1 (2.10100)(0)(0)(0) (1 (2.1010)(1.100050)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0	.00157 -0.35 .01764 0.02 .00054 -0.08 .00000 0.00 .00000 1.0	072 -0.00096 270 -1.68133 221 -0.08(52 000 -0.00023	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Абденда (), 10% Абденда (), 10% (), 10% да (), 10%
4 00.00017 0.00589 0 5 0.00420 00.00057 00 6 0.00029 00.00057 00 7 0.000000 0 6 0.00000 0 906 576 06068 G-MATRIX 1 2	.00157 -0.35 .01764 0.02 .00054 -0.08 .00000 0.00 .00000 1.0 15: .7	072 -0.00096 270 -1.68133 221 -0.08(52 000 -0.08023 4	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Абденда (), 10% Абденда (), 10% (), 10% да (), 10%
4	.00157 -0.95 .01764 0.02 .00024 -0.08 .00000 0.00 .00000 1.0 1S: 	072 -0.00096 270 -0.00096 221 -0.09(52 000 -0.09053 000 -0.00023 4 0.00004	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Абденда (), 10% Абденда (), 10% (), 10% да (), 10%
4 00.00017 0.00589 0 5 0.00420 00.00057 00 6 0.00029 00.00057 00 7 0.000000 0 6 0.00000 0 906 576 06068 G-MATRIX 1 2	.00157 -0.95 .01764 0.02 .00024 -0.98 .00000 0.00 .00000 1.0 1S: 	072 -0.00096 270 -1.68133 221 -0.09(52 000 -0.49999 000 -0.00023 4 -0.00004 -0.05228	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Абденда (), 10% Абденда (), 10% (), 10% да (), 10%
4 00.00017 0.00589 0 5 0.00420 00.0053 00 6 0.00029 00.0053 00 7 0.00000 0 0 0.00000 0 000000 0 000000 0 000000 0 000000	.00157 -0.95 .01764 0.02 .00024 -0.98 .00000 0.00 .00000 1.0 15: 	072 -0.00096 270 -1.68133 221 -0.09(52 000 -0.09023 4 -0.00004 -0.05298 0.00008	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Абденда (), 10% Абденда (), 10% (), 10% да (), 10%
4 00.00017 0.00589 0 5 0.0012 0.001953 0 6 0.0012 0.001953 0 7 0.0019 0.00000 0 0 0.0010 0.00000 0 000 00000 00000 0000 000000 0 0000 00000 0 0000 00000 0 0000 0.00000 0 0000 0.00000 0 00000 0.00000 0 0.00000 0.000000 0 0.00000 0.000000 0 0.00000 0.000000 0 0.00000 0.000000 0 0.00000 0.00000000	.00157 -0.95 .01764 0.02 .00024 -0.98 .00000 0.00 .00000 1.00 IS: 	072 -0.00096 270 -1.68133 221 -0.09152 000 -0.09523 4 -0.09004 -0.05298 -0.05298 -0.05375	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Абденда (), 10% Абденда (), 10% (), 10% да (), 10%
4 00.000(1 0.00589 0 5 0.00420 00.00055 00 6 0.00029 00.00055 00 7 0.00000 0.00000 0 596 574 UFLER G-MATRIX 1 0.12598 0.42640 2 0.91350 0.04854 7 0.44574 0.15989 4 0.1529 0.06687 1 0.00005	.00157 -0.35 .01764 0.02 .00024 -0.98 .00000 0.00 .00000 1.0 15: 	072 -0.00096 270 -1.68133 221 -0.09152 000000523 4 -0.00004 -0.05298 -0.05375 0.000011	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Абденда (), 10% Абденда (), 10% (), 10% да (), 10%
4 00.00017 0.00589 0 5 0.0012 0.0055 0 6 0.0012 0.00055 0 7 0.00000 0.00000 0 9 0.0000 0.00000 0 900 574 0FLER G-MATRIX 1 0.112598 0.04854 0 0.45129 0.04854 7 0.45129 0.06687 1 0.07111 15296	.00157 -0.95 .01764 0.02 .00024 -0.98 .00000 0.00 .00000 1.00 IS: 	072 -0.00096 270 -1.68133 221 -0.09152 000 -0.09523 4 -0.09004 -0.05298 -0.05298 -0.05375	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Абденда (), 10% Абденда (), 10% (), 10% да (), 10%
4 00.00017 0.00589 0 5 0.0012 0.00185 0 6 0.00029 00.0055 0 1 0.00000 0 50E 57H UFLER G-MATRIX 1 0.12598 0.00000 1 0.12598 0.04854 1 0.45174 0.15989 4 0.1527 0.00667 1 0.25111 0.15286 5 0.2529 0.00501	.00157 -0.35 .01764 0.02 .00024 -0.98 .00000 0.00 .00000 1.0 15: 	072 -0.00096 270 -1.68133 221 -0.09152 0000005 0000005 4 -0.05298 -0.05298 -0.05375 0.000611 -0.01069	-0.18511 0 -0.00157 0 -0.004570 0 -0.004586 0	. адбрур (), 10% Абденда (), 10% Абденда (), 10% (), 10% да (), 10%

() \

Figure G.3: Linear Model for Airspeed of 60 knots, Climb Rate 0 ft/min.

теці 13 дета	FOR TROTE	•.0	£T. d∎	14 -445 FIR	2° 2° 4.	inst_i≤
in the second se	NOTS					
	· · · · · · · · · · · · · · · · · · ·	Z	Ĺ	.4	1	
	-0.000 5	-0.1114.	91 8091 4 - 1994	•	. 5	
		- 44333		. н. тта	• • • • •	
- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	5 . 5	- <u>1</u> 3760			- I.I.S	
	g (, 1515)	-e.55870	-0.01174	4.99114	h.s.n:154 µ	
	4 1.12521		1.40000	4. http://	1.12 S.J.	
	7		171Es	1 1 1 1 1 1	• • •	
	-1.31°51					
				35 ⁴ 47	S.1114⊒	
	1 1 1 1 1 1	1977, B	0160141 - SS		2.017 (M	
				1	TTHEITHE	ې د د د جمعی
li dit⊺ju Gae⊑			:			-
i		- 4=355			ເທີຣະ	4.54. L
· · · · · · · · · · · · · · · · · · ·		2044220			16931	1.11.
			and a second of the	•	1553+	•
• •	• • •				en all <u>i</u>	<u>.</u>
•	•	• • •				
and the second second					Enel Landa	:
		•			•	
			1. se	-	- •	
		ť.	· · ·	· •		· .
		•			 	• .
			· · 14 · ·	:		:
	·	. :				
			. 6			
		Ē				
		2	•			-
	·	*				
•	-					
					·	
	2					
	1. <u>5</u> . 5 <u>6</u>	· · ·				
	, <u> </u>	Les Les				
		· . ·				
	-		•			
	•	•				

/) ·

Figure G.4: Linear Model for Airspeed of 40 knots, Climb Rate 0 ft/min.

em metri anzi kosin uki a 17 Grezo -1915 13 2414 FOR 200T# BR ENOTS
 1
 Y
 Z
 L
 M
 1

 1
 -0.0026
 -0.00744
 0.1014
 0.104497
 M
 1

 2
 0.00026
 -0.00744
 0.1014
 0.104497
 M
 1

 2
 0.00026
 -0.00744
 0.1014
 0.104497
 M
 1

 2
 0.00026
 -0.00744
 0.10164
 0.104497
 M
 1

 2
 0.00026
 -0.00744
 0.10166
 0.01164
 0.10164
 0.10171

 2
 0.17122
 0.00026
 0.4498
 0.000166
 0.011276
 0.10171

 0
 0.12514
 0.0443
 10.12718
 0.00166
 0.11276
 0.00771

 1
 0.12514
 0.0443
 10.12718
 0.00166
 0.11276
 0.00771

 1
 0.1060
 0.01043
 0.00714
 0.11324
 0.10171

 1
 0.000155
 0.00714
 0.11324
 0.00714
 0.00714

 1
 0.000155
 0.00714
 0.00025
 0.00714
 0.00714

 1
 0.000155
 0.00714
 0.00025
 0.00714
 0.00025

 1
 0.000155
 0.00114
 0.00025
 0.00114
 0.00114
 .•1 LL.511.DroAL L HACKIN 2 39 2 C. L. HL - 1947 - 14 C.S. 11.21 нц но тнајзије из 17.223 - 17.112 - 5.21859 - 71.12275 28.724 - 5.994 рок.127.721600 - 1.52711 28.425 - 1824 - 1.7713. - 92.0005 0 28.955 - 1934 - 1.7713. - 92.0005 0 L 10: 10: 10: 10: 10: and the second 1. . • ••••••• ч÷. . 1 2 J 1 1 1 . . • • . . . · · · · · · · · · · · · · · . . .

ì

4

D.

1

Figure G.5: Linear Model for Airspeed of 80 knots, Climb Rate 0 ft/min.

3000 FTAMIN AND KOOT OF ALFACELLE 1-15 15 CATH FOR 200T= ser MOT3
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 2 ٦ ٢ L 11 1.1.1_1(F)DEGMU F-HATELK [3: LONG FUDINAL G-MHINIS . 1: 고 - - - 4동원 - 1 0.12475 1 11月2日 - 11日 - 11月2日 - 11日 - 11月2日 - 11日 - 11月2日 - 11日 - 11日 · · · · · · · · · e e e e e e e e e 1 . . LATERAL SHMATED (111) LADERAL REMARKANCES 4 . 141905 - . . . • · · _ · · · · · · · • . . . 19114 • . * • .: V ۰. • • • · • . . . ι. 3 Halbur 18: . · · • .49352 1 1 51 2 1 . . ----.

Figure G.6: Linear Model for Airspeed of 60 knots, Climb Rate 500 ft/min.

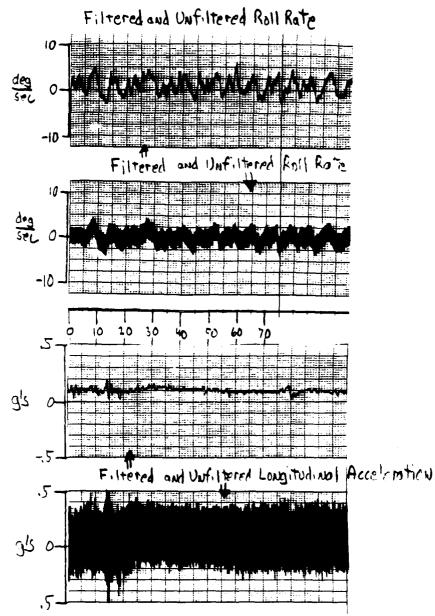


Figure H.2: Comparison of Filtered and Unfiltered Data in Flight. The importance of the filters is evident here where -data- is shown before and after the filter.

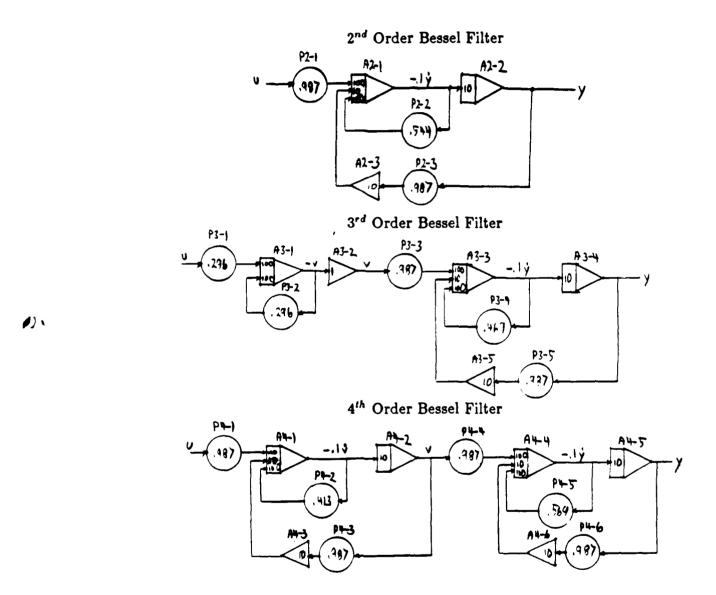


Figure H.1: Bessel Filter Analog Flow Diagrams. These filters were programmed on the airborne TR-48 analog computer.

AppendixH

shown in Figure H.2 where the unfiltered and filtered measurements are compared. By the end of flight test, all these filters were replaced by hardwired 3rd order Bessel filters located in a signal conditioning box.

Appendix H.

Bessel Filters

The Bessel filters described here were designed to eliminate the "3 per rev" and "6 per rev" harmonics at 11 Hz and 22 Hz due to the 225 rpm rotor. The break frequency was chosen at 5 Hz as a compromise between noise attenuation and measurement bandwidth. The actual filter designs came from reference 15. Nine filters were patched on the airborne TR-48 analog computer:

- 4^{th} order-Body axis accelerations (A_z, A_y, A_z)
- 3^{rd} order- Roll rate (p)
- 2^{nd} order-Pitch rate (q), Yaw rate (r), Velocity (u), Altitude (h)

The transfer functions for these filters are shown below:

 $\frac{974603}{s^4 + 98s^3 + 4323s^2 + 96906s + 974603}$

$$\frac{29220}{s^3 + 76s^2 + 2374s + 29220} \tag{H.1}$$

$$\frac{987}{s^2 + 54s + 987}$$

Figure H.1 shows the analog patch diagrams for these filters. Their effectiveness is

ייי נאיד	S IS DATA (20	FOR ZDOT= KNOTS	-500		FT/MIN (AND XDOT OF	R AIRSPEED=	ı
	x	Y	Z	L		м	N	
u	-0.00641	0.00087	-0.11816	-0.000				
v	0.00053	-0.11666	0.00208	-0.006	-			
	0.03589	0.00354	-0.37819	0.000				
DE		0.03487	0.15524	-0.01				
DC			-8.31674	-0.01		3169 0.00		
DS			0.00073	0.41				
DF			-0.00002	-0.13				
P	-0.00190	~1.40184	-0.09404	-0.664				
à	2.52291	-0.02457	0.08001	0.079	-		-	
R	-0.02995	~0.15189	-0.44359	~0.048				
· · ·	-0.02773	-0.10104	-0.44237	-0.040	43 -0.000	324 -0.044	57	
LON	GITUDINAL						INAL G-MATE	IX IS:
	1	2	3	4		1	2	
1	-0.00641	0.03589	10.8562		05505	0.11223		
2	-0.11816	-0.37819	13.7800		0 5181	0.15524		
2	0.00468	0.00835	-1.3171		00000	0.34191		
4	0.00000	0.00000	1.0000	o o.	00000	0.00000) 0.000	ψQ
LAT	TERAL F-MAT	RIX IS:				LATERAL	G-MATRIX I	S:
	1	2	3	4		1	2	
1	-0.68970	0.00000	-0.0671	в -0.	00584	0.42986		28
2	1.00000	0.00000	0.0952		00000	0.00000		
5	-0.06789	0.00000	-0.0475		00090	0.04340		
•	-9.73517	32.05505	-33.5518		11666	1.15112		
THE	BTH ORDER	F-MATRIX					-	_
	-	 	3	4		6	7	3
				.00190	10.85624		-72.05505	0,00000
	0.00087 -0			.73517		-33.55189	0.02449	72.05407
				.09404	33,78001	-0.44359	-7.05181	$\hat{O}_{\bullet} O (\hat{O} \hat{O} \hat{O} \hat{O})$
	0.0000 8 -0			68970	0.01469	-0.06718	0.00000	$\phi_* \dot{\phi} \dot{\phi} \dot{\phi} \dot{\phi} \dot{\phi}$
	9,99 458 -9			.05462	-1.31713	-0.00624	0,0000	9.00000
57				.05:89	-0.15567	-0.04757	0.00000	0.00000
				.00000	0.99997	0.00802	0.00000	0.ներնո
сŋ.	നം സംസംസം വ	,φφφφφοίο,	.00000 1	.00000	0.00076	0.07520	Q 00000	ύ, φόφου
ŤнĘ	E BTH OFDER	G-MATRIX	IS:					
	1	2	5	4				
1	0.11223	0.70594	-0.00001	7 -Q.	00005			
2	0.00487	0.06762	1.1511	z -0.	07522			
7	0.13524	-8.31674	0.0007	5 -0.	00002			
4	0.00270	-0.01419	0.4298	a -0.	05528			
5	0.74191	0.03169	0.0000) -o.	00015			
5	0.04847	0.00277	0.04740) -o.	01060			
7	ϕ_{1} or a ϕ_{1}	் , அற்ற்ற	0.0000	o .	φφφφφ			
-3		0.00000	զ.գերեր		ούροφ			

1

D

)

)

2

ر و و و

÷,

Figure G.16: Linear Model for Airspeed of 20 knots, Climb Rate -500 ft/min.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 419	IS DATA	FOR ZDOT=	500		FT/MIN	AND XD	OT OR AI	RSPEED=	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_								
U 0.00129 0.00122 -0.16288 0.00027 0.00945 0.00031 V -0.00143 -0.10831 0.0176 -0.00563 0.00097 0.00131 W 0.03219 0.00341 -0.31546 0.00096 0.01226 0.00010 BB 0.10490 0.04643 0.16602 -0.00798 0.32750 0.03386 DC 0.69235 0.05507 -8.15329 -0.01474 0.00353 0.00077 DC 0.69235 0.05507 -8.15329 -0.01474 0.00070 0.01006 DR 0.00008 -0.03710 0.00018 -0.17271 0.00027 0.20108 P 0.01602 -1.77729 0.71697 -0.74894 0.06761 -0.00977 D 2.52136 -0.06817 -0.09012 0.04674 -1.54224 -0.15206 R -0.17555 -0.19694 1.42550 -0.06014 0.01388 -0.04086 LONGITUDINAL F-MATRIX IS: 1 0.00129 0.07219 -5.8197 -72.05065 0.10490 0.09775 2 -0.16248 -0.31546 J3.50988 -5.09780 0.16602 -8.15529 3 0.00000 0.00000 1.00000 0.00000 0.160000 0.00000 0.00000 LATERAL F-MATRIX IS: 1 1 0.00109 0.01226 -1.34224 0.00000 0.32750 0.00173 1 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 2 -0.06965 0.01226 -1.54924 -0.00000 0.00000 0.00000 0.00000 2 -0.06965 0.00000 -0.07665 0.00000 0.00000 0.00000 0.00000 2 -0.06962 0.00000 -0.07665 0.00000 0.00000 0.00000 0.00000 0.00000 2 -0.06962 0.00000 -0.07665 0.00000 0.00000 0.00000 0.00000 0.00000 2 -0.06962 0.00000 -0.07665 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 -0.06962 0.00000 -0.07665 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 -0.06962 0.00000 -0.07665 0.000000		-		Z	L					
$ \begin{array}{c} \mathbf{V} = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	13			-0.16248	0.0002	27 0.00	· •			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-			0.01176	-0.0058	53 0.00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-		-0.31546	0.0009	76 0.01	226			
02 0.09235 0.09236 0.0024 DS 0.00013 1.14249 -0.0016 0.00000 0.00004 DS 0.00006 -0.03710 0.00027 0.20108 P 0.00006 -0.03710 0.00017 0.00077 0.00077 D 1.52156 -0.06817 -0.09012 0.04744 -1.13206 R -0.17655 -0.19694 1.42150 -0.06014 -0.01388 -0.04086 LONGITUDINAL F-MATRIX IS: 1 2 - 4 1 2 1 0.00129 0.03219 -5.81197 -32.05065 0.10490 0.64215 2 -0.16248 -0.13246 33.50988 -5.09780 0.16602 -9.15529 2 -0.16248 -0.17545 300000 0.00000 0.00000 0.00000 0.00000 1 2 5 4 1 2 2 1 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000	•••		• • •	0.16602	-0.007	798 0.3	2750			
DS 0.00013 1.14249 -0.00126 0.41067 0.00000 0.01006 DR 0.00008 -0.03710 0.00018 -0.12571 0.00027 0.20108 P 0.01602 -1.77729 0.71697 -0.74994 0.06761 -0.00977 D 2.52126 -0.06817 -0.09012 0.04674 -1.24224 -0.1206 R -0.17655 -0.19694 1.42250 -0.06014 -0.0268 -0.04096 LONGITUDINAL F-MATRIX IS: L 0.00129 0.03219 -5.81197 -32.05065 0.10490 -0.64275 2 0.00965 0.01226 -1.24224 0.00000 0.22750 0.00175 4 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 LATERAL F-MATRIX IS: L 1 2 3 4 1 2 1 -0.77635 0.00000 -0.07861 -0.05527 0.42751 -0.05543 2 1.00000 0.00000 -0.04692 0.00000 0.00000 0.00000 0.00000 LATERAL F-MATRIX IS: L 1 2 3 4 1 2 1 -0.77635 0.00000 -0.07861 -0.00527 0.42751 -0.05543 2 1.00000 0.00000 -0.04692 0.00000 0.00000 0.00000 0.00000 LATERAL F-MATRIX IS: L 1 2 5 4 1 2 1 -0.77635 0.00000 -0.04692 0.00000 0.00000 0.00000 0.00000 LATERAL G-MATRIX IS: 1 1 2 7 4 1 2 1 -0.07635 0.00000 -0.04692 0.00000 0.00000 0.00000 0.00000 LATERAL G-MATRIX IS: 1 0.00129 -0.00143 0.05219 0.01051 1.14249 -0.07710 THE 8TH ORDER F-MATRIX IS: 1 0.00129 -0.00176 -0.051546 0.31647 07.00617 -0.15555 -31.05465 0.00000 3 -0.06672 0.00000 0.00601 -0.06617 0.105574 0.00000 0.00000 5 -0.06952 0.00000 -0.07654 -0.06017 0.105574 0.00000 0.00000 5 -0.06952 0.00000 0.00001 -0.07651 -0.06017 0.105564 0.00000 5 -0.06952 0.00007 0.01226 0.00001 1.00001 1.00001 0.00000 0.00000 0.00000 5 -0.06617 0.00527 0.00103 -0.7755 -0.00541 -0.07364 -0.00065 5 -0.00057 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 5 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 -0.00000 0.00000 0.00000 0.00000 5 -0.00000 0.000000 0.00000 0.					-0.014	454 0.0	0333	0.00324		
DR 0.00008 -0.03710 0.00018 -0.13291 0.00027 0.20108 P 0.01602 -1.73729 0.31697 -0.74894 0.08741 -0.000977 0.252156 -0.06817 -0.09012 0.04474 -1.34224 -0.13206 R -0.17655 -0.19694 1.42350 -0.06014 0.01388 -0.04086 LONGITUDINAL F-MATRIX IS: 1 $\frac{2}{10}$ -0.03217 -5.81197 -32.05085 0.10490 0.64275 2 -0.16248 -0.31546 33.30988 -3.09780 0.16802 -3.15329 3 0.00985 0.01226 -1.74224 0.00000 0.52750 0.00137 4 0.00000 0.00000 1.00000 0.00000 0.00000 LATERAL F-MATRIX IS: 1 $\frac{2}{10}$ -0.77635 0.00000 -0.07861 -0.00527 0.42751 -0.05543 2 1.00000 0.00000 -0.04692 0.00000 0.00000 0.00000 0.00000 7 -0.66982 0.00000 -0.04692 0.00090 0.000000						0.0	00000	0.01006)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							00027	0.20108	F	
$ \begin{array}{c} \begin{array}{c} 0 & 2.52126 \\ 0 & -0.06817 \\ 0 & -0.17655 \\ -0.17655 \\ -0.17657 \\ -0.17655 \\ -0.17657 \\ -0.10248 \\ -0.0129 \\ 0.00129 \\ 0.00129 \\ -0.05219 \\ -5.81197 \\ -5.81197 \\ -5.8197 \\ -52.05965 \\ -5.00780 \\ -5.00780 \\ 0.10490 \\ 0.00490 \\ 0.00000$		-				94 Ó.ÚE	3761 -	0.00977		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.046	74 -1.34	4224 -	0.13206		
$ \begin{array}{c} \begin{array}{cccccccccccccccccccccccccccccccc$			• • • =		-0.060	14 0.01	- 880	⊕.04086		
$ \begin{array}{c} \begin{array}{cccccccccccccccccccccccccccccccc$			E-MATRIX I	c.			LONG	ITUDINAL	G-MATRI	x IS:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LUNI			-	4				2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				_5_9119			o.	10490	0.6927	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.0077	5
LATERAL F-MATRIX IS: LATERAL G-MATRIX IS:		-			• • •		ò.	0000	0.000	Ċ.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	0,00000	0.00000		• ••					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ERAL E-MA	TRIX IS.				LAT	ERAL G-M	MATRIX IS	:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CMU			3	4			1	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1				1 -0.	00 527	Q.	42751		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						<u>Ó</u> ŎŎŎŎ	9.	QQQQQ		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-					000 9 0	4.F.	04002		
THE 8TH ORDER F-MATRIX IS: 1 2 4 5 7 8 1 0.00129 -0.00143 0.00219 0.01602 -5.811-7 -0.17555 -0.2086 12.04792 2 0.00112 -0.10831 0.00241 8.59604 -0.06817 -17.55964 0.02086 12.04792 3 -0.16248 0.01176 -0.31546 0.31697 13.30928 1.42350 -3.09790 0.0006 4 0.00495 0.00097 0.01226 0.08761 -1.34224 0.01799 0.000008 0.001350	÷.				4	10831	1.	14249	-0.071	Q.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•••••							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	THE	BTH ORDE	R F-MATRIX	19:	,	5		5	7	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	2				7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.02086	12.04992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				• • • • •						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•••			-	-			
5 0.00070 0.00078 10.0372 0.00577 0.00577 0.00070 0.00000 7 0.0000 0.00000 0.00000 0.00000 0.00577 0.00577 0.00577 0.00070 0.00000 9 0.0000 0.00000 0.00000 0.00000 0.00008 0.005577 0.005577 0.00000 0.00008 1 0.10490 0.69235 0.00013 0.00008 0.00008 0.00008 2 0.04843 0.05507 1.14249 -0.01710 0.00018 3 0.16602 -8.15329 -0.00126 0.000018 0.000018 4 0.00787 -0.01347 0.42761 -0.05543 0.32750 0.00333 0.000000 0.000027 5 0.04027 0.00200 0.004702 -0.010577 7 0.000000 0.000000	5			••••=•						1. AN 1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		• • •			-		-		-	
G H										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н	0.00	1.00000	1.00000	L • (100,000)	·	5.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	гне	STH OF DE	R G-MATRIX	IS:		_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ι								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.10490								
5 0.16602 -8.15329 -0.00136 0.00018 4 0.00787 -0.01347 0.42761 -0.05543 5 0.32750 0.00333 0.00000 0.00027 6 0.04027 0.00220 0.04302 -0.01057 7 0.00000 0.00000 0.00000	2	Q.Q4843								
4 0.00787 -0.01347 0.42761 -0.05545 5 0.32750 0.00333 0.00000 0.00027 5 0.04027 0.00220 0.04302 -0.01057 7 0.00000 0.00000 0.00000	-	0.16602	-8.1572							
5 0.04027 0.00000 0.04002 -0.01057 7 0.00000 0.00000 0.00000	4	0.00787	7 -0.0134							
5 0.04027 0.00220 0.04702 -0.01057 7 0.00000 0.000000 0.000000 0.000000	3	0.02750		-	•••					
7 5.00000 0.00000 0.00000 0.00000		0.04027	7 9.0022							
		ာင္းခဲ့ပဲ့မှာပါ	5 0,0000	•	•••					
8 $\dot{\alpha_{*}}$ which α_{*} and $\dot{\alpha}_{*}$ and $\dot{\alpha}_{*}$ and $\dot{\alpha}_{*}$ and $\dot{\alpha}_{*}$ and $\dot{\alpha}_{*}$	3	n. conn	$\phi = \phi \phi \phi \phi$	ç élévé	φφ - ό.	, ինկսեր				

Figure G.15: Linear Model for Airspeed of 20 knots, Climb Rate 500 ft/min.

- IS IS DATA FOR ZDOT	• 0	FT/MIN	AND XDOT OR	AIRSPEED≠	
20 KNOTS					
X Y	Z	L	M	N	
U -0.00259 0.00095	5 -0.14099	0.00004 0.0	0679 0.0004	2	
V ~0.00046 -0.11155		0.00591 -0.0	0006 0.0013	2	
W 0.03412 0.00334			0992 0.0002	21	
DB 0.10849 0.0403			33528 0.041	571	
DC 0.69883 0.0516	-		02107 0.00	44	
DS 0.00004 1.145			00000 0.010	14	
DR 0.00002 -0.036			00009 0.201		
P 0.00784 -1.5751			3618 -0.0092		
Q = 2.51853 - 0.04279	•		1578 -0.1487		
$= \frac{10}{1000000000000000000000000000000000$			0294 -0.0414		
R -0.04364 -0.1781	4 0.JU/0/2/7	0100400 010		-	
LONGITUDINAL F-MATRIX	rs:		LONGITUDIN	AL G-MATRI	X IS:
1 2	3	4	1	2	
1 -0.00259 0.034		-32.05281	0.10849	0.6988	13
2 -0.14099 -0.348		-3.07534	0.16269	-8.2147	7
3 0.00679 0.009		0,00000	0.33528	0.0210	7
4 0.0000 0.000		0.00000	0.00000	0.0000	0
	••				
LATERAL F-MATRIX IS:			LATERAL (G-MATRIX IS	6:
	7	4	1	2	
1 -0.75454 0.000		-0.00556	0.42853	-0,0553	7
		0.00000	0.00000	0,0000	
2 1.00000 0.000 3 -0.06583 0.000		0.00087	0.04317	0.1974	
	••	-0.11155	1,14599	-0.0363	
-1.57519 32.052	er -2010/014	0.11100			
THE 8TH ORDER F-MATRI	X IS:				
1 2	3	4 1	5 6	7	8
1 -0.00259 -0.00046	0.03412 0.1	00794 2.51 55	55 -0.09582 ·	-32.05281	0.00000
2 0.00095 ~0.11155			-9 -33.57614	0.02265	32,05194
		19709 - 33.6129		-3.07534	0.00000
4 0.00021 -0.00556		71454 0.0055		0,00000	0.00000
5 0.00579 -0.00008		03618 -1.0159	98 -0.00294	0.00000	0,00000
5 9.00044 9.00089		06587 -0.1483		0.00000	0,00000
7 G.QOQOQ 9.00000		00000 0.7999	97 0.007T5	$\phi_{\bullet}\phi\phi\phi\phi\phi$	-0 . 00000
a n, ceció 0, ceció		00000 - 9 . 940		ပ ပက်ရဲပ	0.00000
THE ATH OFDER G-MATRI	X IS:				
1 2	3	4			
1 0.10849 0.698		0,00002			
2 0.04076 0.061					
5 0.16269 -8.214					
4 0.004 89 -0.013		-0,05577			
5 0.07529 0.021	-				
5 0.04409 0.001	•	-			
7 0.00000 0.000	•				
- 0.00000 0.0000 					

المكمار الماسكم فكراميا رضار المراجعان فستنصب لعشر فبارتها وستألم

0

1

C

.Э

0.00000

6,00000

Figure G.14: Linear Model for Airspeed of 20 knots, Climb Rate 0 ft/min.

0.0000

0.00000

•_•

THIS IS DATA FOR ZDOT=	-500	FT/MIN AND	XDOT OR AIR	SPEED=
X Y	Z	L M	N	
u -0.02325 -0.00038	0.02826 -0.00	037 0.00623	0.00050	
V -0.00097 -0.14525	0.00135 -0.00	635 0.00008	-0.00070	
W 0.03589 0.00301	-0.32741 0.00	047 0.00203	0.00026	
DB 0.11831 0.01249		2638 0.33695	0.05075	
DC 0.94701 0.06887	-8.13578 -0.0	1448 0.02009		
DS -0.00015 1.16274		1643 0.00000		
DR -0.00008 -0.05288		3909 -0.00026		
P 0.03242 -1.32917	-0.17822 -0.65	429 0.00108	0.00184	
Q 2.59202 0.00144	0.46157 0.10		-0.17600	
R -0.12040 -0.14595	0.31169 -0.04	691 -0.00288	~0.04263	
LONGITUDINAL F-MATRIX I	c.	LC	NGITUDINAL	G-MATRIX IS:
	3	4	1	2
1 -0.02325 0.03589		. 78588	0.11831	0.94701
2 0.02826 -0.32741		.70723	0.02908	-8.13578
3 0.00623 0.00203		.00000	0.33695	0,0 <u>1</u> 00 9
4 0.0000 0.0000		.00000	0.00000	Q.00000
LATERAL F-MATRIX IS:			ATERAL G-MA	
1 2	Ĵ.	4	1	2
1 -0.67402 0.00000		.00683	0.43722	-0.06042 0.00000
2 1.00000 0.00000		.00000	0.00000	0.19982
-0.05012 0.00000		.00123	0.04264	-0.05288
4 -9.66250 J1.98586	3 -0.14595 -C	.14525	1.16274	-0.0200
THE JTH ORDER F-MATRIX	15.			
	- 4	<u>:</u>	0	7 5
-	0.03589 0.03242	10.925-5 -0	0.12040 -01.	98588 0.00000
• • • • • • • • • • •	.00301 -9.58250			03116 31.98475
	0.02741 -0.17821	0,46157 0	0.01169 -00	70723 0.00000
	0,00059 -0.6/402	0.040680	0.053 57 0.	φορόφοι φιώθεια
	0,00203 0.00t∂€	9 -1.24138 -	0.002 98 0.	$\phi \phi $
	0.00031 -0.05012	-0.17287 -		
	ο,φοφοφο φ.φοφόψη	, c.99995 ·	· · · · -	
3 2,00000 0,00000 0), ÇÇ <u>Ç</u> ÇÛ (1, ÇÇÇÛ)	u q.00097 (0.11590 0.	,00000 0,00000
A STATE STOPPE O MOTOTA	16.			
THE BIH ORDER G-MATRIX	19:	4		
1 0.11871 0.9470	=	0.00008		
0.01249 0.0688				
0.02908 -8.13578	••••==	0.00009		
4 .0.00660 -0.0145	• • •	0.06042		
5 0.01695 0.0200		0.00026		
5 0.05024 -0.0001		0.01106		
7 2.00000 0.0000		0,0000		
s - condo - codo		$\phi_{\bullet}\phi\phi\phi\phi\phi$		

ĺ

C

1

Figure G.13: Linear Model for Airspeed of 0 knots, Climb Rate -500 ft/min.

THIS IS DATA FOR ZDOT= 0 KNOTS	500	FT/MIN AND	XDOT OR AIRS	PEED=
X Y	Z L		N	
U -0.01857 -0.00001	0.02097 -0.000		0.00023	
V -0.00127 -0.13179			-0.00055	
W 0.02894 0.00244			0.00018	
DB 0.10910 0.0111				
DC 0.93710 0.0569	6 -8.05096 -0.01			
DS 0.00012 1.1571	7 -0.00110 0.41			
DR 0.00007 -0.0550	6 0.00005 -0.13			
P -0.02869 -1.64496				
Q 2.57072 0.00500			-0.14708	
R -0.08620 -0.18117	0.43277 -0.057	04 0.01044	-0.04078	
LONGITUDINAL F-MATRIX	IS:	LO	NGITUDINAL G	
1 2	<u> </u>	k i i i i i i i i i i i i i i i i i i i	1	2
1 -0.01857 0.0289	4 -5.76261 -31.	98550	0.10910	0.93710
2 0.02097 -0.2596		71050	0.03148 -	-8.05096
3 0.01356 0.0026		00000	0.31958	0.01764
4 0.00000 0.0000		00000	0.00000	ġ. <u>ŎŎŎŎ</u> Ŏ
LATERAL F-MATRIX IS:		L	ATERAL G-MAT	TRIX IS:
1 2	3 4	\	1	2
1 -0.75477 0.000		00624	0.43176	-0.06079
2 1.00000 0.0000		, 00000	0.00000	0,0000
		00100	0.04234	0 .1788 0
6.66837 31.985		13179	1.15717 -	-0.05506
THE BTH ORDER F-MATRI	([5:			
	- 4	ū	á	7 3
1 ~0.01857 -0.00127	0.02894 -0.02869	-5.76251 -0	0.08620 -31.9	78550 0.0000
2 -9.00001 -0.12179	0.00244 6.68837			02737 51.78464
	-0.25982 0.35800	0,40010 0).43277 -I.	71050 0.00000
4 -0.0005 -0.00624	0.00061 ~0.75477	0.03562 -0	0.07518 0.0	10000 0.00000
5 0.01056 0.00027	0.00285 0.01003	-1.24855 0	0.01044 0.0	HOUND CLOUDED
5 0.00023 -0.00103	0.00027 -0.05966	-0.14433 -0	0.04659 0.0.0	μάφφο άτιφάφο
7 0.0000 0.00000		0.99997	9.00778 0.0	jopoo elemente
8 0.00000 0.00000),00000 1.00000	0.00 8 6	0.11600 0.0	<u>h(ka)</u> ky – st. (a.)(a.)(
THE BIH OFDER G-MATRI	¥ 13.			
1 2	-	4		
1 0.10910 0.937	••• ••••	• (H) (H) 7		
2 0.01113 0.056 7 0.03148 -8.050	/	. 11551/6		
1 0.03148 -8.050		. ADUNS		
4 -0.00539 -0.014		.04979		
5 0.71758 0.017	54 0.00000 0	.00021		

1

1

L

ł

٩, .

1

Figure G.12: Linear Model for Airspeed of 0 knots, Climb Rate 500 ft/min.

-0.01105

0.00000

 $\phi_{\bullet}\phi\phi\phi\phi\phi$

0.04274

0,0000 0.00000

0.04252

 $(\hat{\varphi}_{\bullet}) = \hat{\varphi}_{\bullet} = (\hat{\varphi}_{\bullet})$

+10000

ភ្វែរ ភ

-0.00059

0.00000

പ്പാനവും

÷.,

THIS IS DATA FOR ZDOT=	o	FT/MIN AN	ND XDOT OR A	IRSPEED=	
O KNOTS	-		1 N		
X Y	ζ	—			
U -0.02114 -0.00019	0.02484 -0.00				
V -0.00085 -0.13712	0.00374 -0.00 -0.29557 0.00				
W 0.03259 0.00265		01048 0.002. 02410 0.329			
DB 0.11408 0.01175		0.015			
DC 0.93867 0.06053		41552 0.000			-
DS 0.00000 1.15902		13896 0.000			
DR -0.00001 -0.05395 P 0.02051 -1.49383	0.04190 -0.6				
		0.0410 0.0410 0.0410			
Q 2.58521 0.00414 R -0.10552 -0.16450	0.06222 -0.0				
R -0.10002 -0.18400	0.00mmt 0.00	9220 0.0040			
LONGITUDINAL F-MATRIX I	5:		LONGITUDINA	L G-MATR	IX IS:
1 2	3	4	1	2	
1 -0.02114 0.000259	2,58521 -3	1.98577	0.11408	0.938	67
2 0.02484 -0.29557	0.43507 -	3.70815	0.30310	-8.061	88
3 0.00925 0.00234	-1.22925	<u>0.0000</u>	0.32921	្.ា19	0 5
4 0.00000 0.00000	L.QQQQQ 0	0.00000	0.00000	0,000	00
					C .
LATERAL F-MATRIX IS:	_		LATERAL G-		5:
1 2		4	1	2	E 4
1 -0.71638 0.00000		0.00452	0.43224	-0.060	
2 1.00000 0.00000		0.00000	0.00000	0,000	
5 -0.05442 A.DODD		0.00112	0.04246	0.199	
· -1.49383 31.98577	-0.16450 -	0.13712	1.15902	-0.053	7.1
THE ATH DEDER F-MATRIX	15:				
1 2	- 4	5	6	7	8
1 -0.02114 -0.00085 0	.000059 0.0005	1 2.58511	-0.10552 -3	1.98577	0,00000
-	.00265 ~1.4938		-9.16450	0.02922	31.78479
	.29557 0.0419	0.43507	0.36222 -	3.70815	0.00000
	.00058 -0.7153	8 0.03817	-0.07077	0.00000	$\Phi_{\bullet} \phi \phi \phi \phi \phi$
	100204 0.0426	7 -1.22925	-0.00433	0.00000	ϕ_{\bullet} (applied 0)
	.000 <u>27</u> -0.0544	2 -0.15758	-0.04718	$\phi_{\bullet}\phi\phi\phi\phi$	0,00000
		0 0.79997	0.00788	0.00000	0,00000
9 0.00000 0.00000 0	.0000 1.0000	0 0.0x091	0.11593	0.00000	0.00000
	10.				
THE BTH ORDER G-MATRIX	19:	4			
1 0.11408 0.93867	· 0.0000 -	0.00001			
		0.05795			
2 0.01175 0.06353 7 0.70710 -8.06188		0.00011			
4 -0.00596 -0.01418		0.05056			
5 0.32721 0.01905		<u>0.00000</u>			
5 0.04609 00.00077		0.01105			
7 0.0000 2.0000		¢.JQQQQQ			
3 0.00000 0.0000		e, ended			

r

Ĩ

C

Figure G.11: Linear Model for Airspeed of 0 knots, Climb Rate 0 ft/min.

IS IS DATA FOR ZDOT≈	-500	FT/MIN	AND XDOT OR A	RSPEED=
-20 KNOTS				
X Y	Z	L	M N	
U -0.04431 -0.00170	0.18208 -	0.00058 0.00		
V ~0.00184 ~0.14266	-0.00104 -	0.00631 - 0.00	•	
W 0.04284 0.00272	-0.34017	0.00049 -0.00	0.00025	
DB 0.13510 -0.01040	2 -0.09822	-0.03337 0.3	.4340 0.04849	7
DC 1.22694 0.06576	-8.22802	-0.01187 0.0	01087 -0.00194	1
DS -0.00025 1.1569	0.00182	0.41832 0.0	00000 0.00791	1
DR -0.00013 -0.0745	-0.00001	-0.14503 -0.0	00037 0.20502	2
P 0.07529 -1.41972	-0.31843 -	0.68419 0.06	421 0.01341	
Q 2.54761 0.02677	0.57144	0.12586 -1.31	840 -0.16553	
R -0.21772 -0.15751		0.05023 -0.00	0735 ~0.04199	
LONGITUDINAL F-MATRIX	IS:		LONGITUDINAL	_ G-MATRIX IS:
1 2	3	4	1	2
1 -0.04431 0.0428		-31.90117	0,10510	1.22694
		-4.37670	-0.09822	-8.02802
2 0.18208 -0.3401 5 0.00498 -0.0044		0,00000	0.34340	0.01087
4 0.00000 0.0000		0.00000	0,00000	$\phi_*\phi\phi\phi\phi\phi$
LATERAL F-MATRIX IS:			LATEPAL G-1	MATRIX IS:
	7	4	1	2
1 -0.70016 0.0000		-0.00761	0.40462	-0.05633
		0.00000	$\overline{\mathbf{v}}$, $\overline{\mathbf{v}}$ $\overline{\mathbf{v}}$ $\overline{\mathbf{v}}$ $\overline{\mathbf{v}}$	ျန်းမှုင်းမို့မှုပါ
2 <u>1.00000</u> 0,0.0000 7 ~0.04049 0.0000		-0.00330	0.04177	4.17992
-9.75305 31.9011		-0.14266	1.16691	-0.07431
	and the second			
THE ATH ORDER F-MATRIX	15:			
	7	4 5	5	7 9
	0.04284 0.0	7519 10.8809	4 -0.21772 -5	1.90117 0.0000
• • • • • • • • • • • •		5005 0.0267/		2.03467 31.90047
		1847 -72.92854	5 1.13901 -	1.3767 0 0.00000.
• • • • • • • • • • • • •		0016 0.08259		1,00000 - 0,00000
		6421 -1.31840	9 -0.00775 0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		4049 -0.1507		$\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}$, $\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}$, $\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}$
		0000 0.7999		ի սորելոր է հերածերին։
		0000 0.00105	–	ເຊັ່ວດຸດູດູດູ້ນີ້ ແລະ ປະຈຳປະ
THE STH ORDER G-MATRIX	15.			
		4		
1 0,13510 1,2269	-	-0.00013		
		-0.07451		
2 -0.01042 0.0657 7 -0.09822 -8.2280		-0.00001		
- <u>-</u> -0.04811 -5.2100 - 4 -0.01473 -0.0130	-	-0.06633		
- 4 -0.014/2 -00.0122 - 5 -0.74740 -0.0108	•	-0.00037		
· · · · · · · · · · · · · · · · · · ·		-0.01152		
- a 0.94716 - 1.9629 7 alaóban - 1.9990		0.00000		

Figure G.10: Linear Model for Airspeed of -20 knots, Climb Rate -500 ft/min.

0.00000 0.00000

0.04117 0.00000

 $\phi_{\bullet}\phi\phi\phi\phi\phi$

 ϕ_{1} (couple)

ר ד

÷

o, copera

 $(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{3},$

<u> </u>	S IS DATA P		500	F	T/MIN AND	XDOT OR	AIRSPEED=	
	-20	KNOTS	_					
	X	Y	Z	L	M		N	
U	-0.04422	-0.00151	0.21206	-0.00063	0.01045			
V	-0.000 58	-0.12523	0.00570	-0.00574	-0.00033			
₩	0.032 83	0.00221	-0.27064	0.00530	-0.00731			
DB	0.12940	-0.02766	-0.10331	-0.03274				
DC	1.20437	0.05345	-8.06621	-0.01071				
DS	0.00007	1.15921	-0.00050	0.41645				
DR	0.0003	-0.07663	-0.00001	-0.14475				
Р	-0.05257	-1.76946	0.30099	-0.76640	-0.05050			
Q	2.46181	0.08166	0.93621	0.12011	-1.33744			
R	0.00776	-0.18787	-0.45957	-0.06008	0.00643	5 -0.039	76	
LON	GITUDINAL I	F-MATRIX IS	5:		ι	ONGITUDI	NAL G-MATR	IX IS:
	1	2	3	4		1	2	
1	-0.04422	0.00283	-5.87152	2 -31.907	70	0.12940		
2	0.21206	-0.27064	-32.46379		379	-0.10331	-8.066	
5	0.01045	-0.00771	-1.33744	• 0.000	00	0,32931	0.006	15
4	0.0000	0.00000	1.00000	0.000	000	0.00000	0.000	00
1.07	ERAL F-MAT					LATERAL	G-MATRIX I	S:
LA,	1	2	3	4		1	2	
1	-0.78875	0.00000			90	0.43262		59
2	1.00000	0,00000	0.1756)			0.00000		
	-0.05677	0,00000	-0.04576			0.04107		
-	5,55387	21,90770	22.21213			1.15921	-0,075	63
THE	E BTH ORDER	F-MAIRIX	12: -	4		6	7	а
	1	<u>.</u>	್ಷ ಸಂಗಾಣಕ ಸಂಗ		5.97152		-31,90770	0.00000
	-0.04422 -0					JJ.21213	0.02901	51.90699
	-0.00151 -0			.56387 (.30099 -31		-0.45957	-4.32879	0.00000
						-0.07810	0.00000	0.00000
	-0.00062 ~0				1.33744	0.00643	0.00000	α $\alpha_{\mu\nu}$
-	0.01045 ~0	• • • • • • • •				-0.04578	$\phi_{\bullet}\phi\phi\phi\phi\phi$	Ó QUICO
-	0.00003 -0					0.00 4 078 0.00 5 70	0.00000	0.0000
7		• • • • • •).79998 	0.10566	0.00000	0.0000
7	ց, պոտիֆ (ֆ	çöçöğö 0	.00000 t	.QQQQQ 0	0.00091	9.1.500	0.00000	19 • 19 1 19 202
ГHE	E BTH ORDER	G-MATRIX	IS:					
	1	2	3	4				
1	0.12940	1,20437						
2	-0.0275 6	0.05045						
7	-0.10071	-8,06621						
4	-0.01773	-0.01208						
5	0.72971	0.00615						
5	0.07812	-0.00349						
7	Α, αρόφο	9.00000	0.000	$\phi = 0.00$	<u>500</u>			
a	4 EA 10.00	e <u>2000</u> 0	0 9 . 90.60	Q Q.QQ	<u>Ģ</u> ĢĢ			

C

 \bigcirc

O

÷

30

Figure G.9: Linear Model for Airspeed of -20 knots, Climb Rate 500 ft/min.

THE TO DAT	A FOR ZDOT=	ġ	ET/M	N AND	XDOT OR A	(RSPEED≠	
-20	KNOTS						
×0	Y	Z	L	M	N		
u _0.0444		0.19817 -0		00727	0.00023		
V -0.0007		0,00100 -0	00601 0	,000 54	-0.00254		
W 0.0381	-	-0.30703 0		.00562	0.00026	_	
DB 0.132		-0.10291 -		0.33689			
DC 1.211		-8.12808 -		0.02013			
DS -0.000				0.00000			
DR -0.000		0.00014 -		0.00012	0.2041	9	
P 0.0529).7270 6 O	05658	0.00866		
0 2.5145				.31503	-0.14697		
R -0.124		0.47219 -0	0.05530 -0	.01058	-0.040 88		
							Y 15.
	AL F-MATRIX IS	5:		LC	NGITUDINA	L G-MAINI	× 13.
1	2	3	4		1	1.2117	0
1 =0.044		2.51458	-31.90471		0.13262	-8.1290	
2 0.198		-32.70814	-4.35079	-	0.10291	0.0201	
0.007		-1.31503	0,00000		0.33689	0.0101 0.0000	
4 0,000		1.00000	0.00000		0.00000	10 a 10 ani	··
					ATERAL G-	MATRIX 19	S :
LATERAL F-	MATRIX IS:			L		2	
1	2	5	4		0.45358	-0.0663	.8
1 -0.746	30 0.00000	-0.07363	-0.00723		0.00000	0,0000	
2 1,000	çõ 0.00000	0.10607	0.00000		0.04123	0.1990	
$\frac{2}{7}$ 1,000 $\frac{1}{7}$ -0,048	87 0.0000	-0.04656	-0.00310		1.16217	-0.0754	
-1,600	55 31.90471	33.22720	-0.13255		1.1021/		
THE BTH OR	DER F-MATRIX	[5: _	4	5	6	7	a
1	2			1458 -	0.12457 ~	31.90471	المكارف فرافيا والأ
1 -0.04445		.03811 0.0	0055 0.0		3.22720	0.03181	J1.90385
			9944 -32.7		0.47219	-4.35079	\mathcal{O}_{\bullet} (d) the constant \mathcal{O}_{\bullet}
5 9.19817			4530 0.00	4597 -	0.07767	ϕ_{\bullet} $(\phi_{\bullet})\phi_{\bullet}\phi_{\bullet}$	Q., por elec-
			5558 -1.2		0.01058	0.00000	$\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}\phi_{\bullet}$
5 0.0072			48871		. 455a	o, andora	0 , (€ues)
				2002	0.00731	Q. 00000	en salatata
7 - C., Casala				0100	0.17675	a_* 00000	မ်းရှင်ရှင်းမှုမှု
a orden) 0,00000 (- <u> </u>					
ورسي والمعجاب العور والعو	ADER G-MATRIX	15:					
			4				
1 0.173		5 - <u>0</u> ,00007	-0.00006				
-			-0.07540				
2 = -0.01			0.00014				

	-0.01824 -0.10291 -0.01395 0.73689 0.04252	0.05992 -8.12808 -0.01239 0.02013 -0.00714	1.16217 0.00051 0.43338 0.00000 0.04123	-0.07540 0.00014 -0.06658 -0.00012 -0.01151 0.00000
5	0.04252			
7	OF OORDON	ġ,ġġġġġ	0,00000	0.00000
а	0.00000	$\phi_{+}\phi\phi\phi\phi\phi$	0,00000	All Charles and All Charles

Figure G.8: Linear Model for Airspeed of -20 knots, Climb Rate 0 ft/min.

FT/MIN AND KOLF OF ALGOTICE THIS (S CHIA FOR IDOTE -500 - NUTS
 Z
 L
 M
 I

 K
 T
 L
 M
 I
 I

 M. 11/4
 Non-Domy HoursEsill
 Multiple
 <thMultiple</th>
 11 . N DВ يدا مد 25 ĴĒ E. ì LEARLY IN THE STREET د الالاردية المحرور المحرور الأوراقي المحرور ال 1 ÷. , La Come to the 1773 A. C. Marine (M. 151 • . 1 ۰. 1 -. 1 -· • · · • 2 1.1 . . 1.000 , , samele to: -. • . 1. **1**. 1. 1. 1.

ſ

(E)

.

Figure G.7: Linear Model for Airspeed of 60 knots, Climb Rate -500 ft/min.

· _

. .

.

and the case of a state

.

Appendix I.

Flight Software

This appendix lists the flight computer software unique to this project. It is written in Sperry 1819A assembly code and internally documented. Three different sets of the code are shown. The initialization code was executed whenever the experimental control system was disengaged. It did such things as:

- reset the compensator states to zero
- set the trim values of controls and states to the current values of these variables in preparation for system engage

The experimental controller subroutines computed the control laws, described in Chapters 3 and 4, and were executed at 20 Hz. Both the longitudinal CAS and hover controller are shown. The last item shown in this appendix are the instructions which reserve memory for the variables and contants unique to the subroutines.

PAGE 32

SECTION

HOVE43 10/02/84

1019A ASSEMBLER, YERSION 1.0

C

0

G....

O

!		1		I	1		1	ş		1	1	ia				1	1		ļ	1	į		2	1			1	1		1	ļ		1	ļ	ļ	ļ		ļ
		STOPE INITIAL THETA AND AIRSPEEC FOR THE CUSIP SUBA.		HETA AT ER	SIGRE THETA AT ERCACE	TPEIA AT E	ATTUT I	GET PHI AT ENGAGE STIDD PAIL LT ENGAGE	PHI AT ENGAGE	HE AIRSPEEC A	AIREPEED AT	STORE AIREPEED AI ENGAGE Store Airspeed at Engage	AIRSPEED AT	ERT VELOCITY AT FNGAGE	SIDRE VERIICAL VELUCLII AI ERCAGE Store veriical velucity at encage	VERTICAL VELOCITY AT	STUPE VENTICAL VELUCITI AT ENCAGE Coo Butere y Doctotion	X ARACA X ACTIVITY ACTIVITY ACTIVITY X ACTIVITY X ACTIVITY X ACTIVITY X ACTIV	PXPETUITIL RUNNFY X	۰Ę	II	CTREFEINITAL FUCITION CTREFEINITAL FUCITION	E	-	CIDREFITIAL RUDI I FYRREFILTIAL RODY Y	C20112 DC81910HTTON A A A A A A A A A A A A A A A A A A A											CXDCLED	3=0700X4
*******		STOPE INITIAL THETA AND ALASI	SHURANGINI NULA		1					D		C																					I ALOXA	0761+1				P10000
	LIMI. DI	- +	-	ENTRL - INCTN - ACAMER		-	STRAL PJRFTH			,		STRAL MINTAS Stral Otras		ENTAL IVS]		[01746 P14740		STRAL			BTRAL OYAFP	·		STRAL PIEPEI	ews at. "2911 1 steal. 17856	i	1								1		2448
******		+ THESE LINES STOPE INI		ļ		442603 BTRAL			443152 BTRAL	- 120792 ENTAL		317715 STEAL	14419	1	442346 BIRAL	1412	,	442662 BTPAL		114LS	443231 BTRAL	-	1418	C ENTAL	443242 STRAL	• · ·		51R2	DIO 2419 01200 01200 00200	2418	5112	14 1415 14264140664	2418 102600	8782	000000			2418 002600 060800

.

(012)1 (118.1 710.0 (012)1 517.2 710.1 (012)2 617.2 710.1 (012)2 617.2 710.1 (012)2 617.2 710.1 (012)2 617.2 710.1 (012)2 617.2 710.1 (012)2 617.2 710.1 (012)2 717.2 710.1 (012)2 717.2 710.1 (012)2 717.2 710.1 (012)2 717.2 710.1 (012)2 717.2 710.1 (012)2 717.2 710.1 (012)2 717.2 710.1 (012)2 717.2 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1 (012)2 710.1 710.1	FIRE FIGURE F	*	,		1	,				ł		1	ł	Ι	'ni	iti	al	is	a1	tio) n 		Co	de	•	(c	OI	itd	I)	1		1	,		•							
001331 819.2 910(L0 001313 819.2 910(L0 001313 819.2 910(L0 001313 819.2 910(L0 001313 819.2 910(L0 001314 819.2 911(L0 11714 819.2 91	03880 03231 FTE PUELD 003881 00331 0171 0171 0171 003881 00331 0171 0171 0171 003811 00331 0131 0171 0171 003811 013130 0171 0171 0171 003811 013130 0171 0171 0171 003812 01313 0171 0171 0171 003813 01312 0171 0171 0171 003813 01312 0171 0171 0171 003813 01314 0171 0171 0171 003910 12144 0171 0171 0171 003910 12144 1171 0171 0171 003910 12144 1171 0171 0171 003910 12144 1171 0171 0171 003910 12144 1171 0171 0171 003910 12144 1171	PYDCLC=0		6 ZDCTC = 0			CZDPSEad		START PID FADE-IN AT	TAPAGE ALARIATI TAU TAPAGE ALARIATI		ALIETANCY NUMBER OF CONTROLS, CHAIN!		USE BARK 0 EUCAILOTO Alis(al)-198C-1 A		ALgeAU		AGAIN	MBER OF CONTROLS, CMS18	SURGATA) NUPBER OF COMP BIATES, Bank o Locations			AL/sal-jeng-j	Īm			AL1=(AL)-1=NC=1	CRCF1 BRC+1	- ALTERCHOT		CONTROLS.	KUNSER OF COMP STATES,	USE BANK 0 LOCATIONS		xcland	ALIEAL-JENR-J	Ē		- 1			
403251 8182 403251 8182 403251 8182 403250 8182 403251 8182 403250 8182 403251 8182 403250 8182 403231 8182 403230 8182 403230 8182 403230 8182 403230 8182 403230 8182 403230 8182 403230 8182 403230 8182 403230 8182 403230 8182 403230 8182 403230 8182 803230 8182 803230 8182 803230 8182 803230 8182 803230 8184 803230 8184 803230 8184 803230 8184 803230 8184 803230 8184 803230 8184 803230 8184 803310 8184 803310 8184 803310 8184 803310 8184 803310 8184 803310	003860 403251 8182 003861 403251 8182 003861 403231 8182 003861 403231 8182 003861 403231 8182 003861 403230 8182 003871 403230 8182 003873 403246 8182 003873 403246 8182 003873 403246 8182 003873 403246 8182 003873 403270 8182 003873 403270 8182 003873 403270 8182 003873 403270 8182 003704 403266 8182 003704 403270 8182 003704 901303 8182 003704 901303 8182 003704 901303 8184 003704 901303 8184 003704 901303 8184 003704 901303 8184 003704 901303 8184 003704 901303 8184 003704 901303 8184 003704 901303 8184 003714 911776 8184	6 1 0 1 3 1 4	020110	720CL0			070710	01 10 10					THEFT IS STATE	C. The drawning force since	HEC	Ŧ	- 1			41 Mart 1		NPC								Ŧ	DECPT		1 48 40	11 PhC		2	PACTI		1		WETIALIZATIONS	
		STP Z	2418	51R2	2 H L B	7110	ZH18.	2423		2419	2419	2418	2410	PERCRY BANK, 1.	ENTAL	ENTAU	ADDALK	TYNLS.	IFRUL	AUDALR BTRAL	ISTNI	ENTAL		ADDACK STAR	TAKOT	ADDALK	arte Arte			ADCALK	TRAL	ADDALK	BTRAL	ENTAL	nu un		STRAL	TOAL	ADDALK		1	
		-		• (•						• •	÷.									1.											1					16702		I

0

167

.

D

ø

•

	002746	564437		E GK	1 42 4	IF PakC+1
				9	······································	AT ZERC, TERISTET
Ę	002750	000085-		ENTBR		
197	002751	412114	511N1H	STR2B	#2#	(#2K+ICP1):=0
ŧ	261200	112110		82¥18.		(#ZKP1+JCA1)1#0
	002753	564454		1		
DACI					LISE GO INTIALIZE NEXT YERF,	
	121200	161216				CUNTRAUE INITIALIZATION
					CHOING INTITUTIONS	
		107/05				UCH LAN DO LAVAD MEGIOLEX
201	002757	412211	NINIT1	BZULE	NUT NUT	(NU3+1CR1)1=0
-	001100	041695		NS4		TP PERFET THE REAP ELTRE
					ELSE INITIALIZE THE WEXT NUL	CRI=ICRI+
1	- 19469-	-161646-	1.			CONSINUE NUI INITIALIZATION
	002762	360000		e k 1 d k	•	ICR18=0 START NZK, NZKP1 INITIALIZATION
	00140	- 412271 -	TTNIN .	- 81828 -	1	
115	002764	412274		87#Z8	NZKF1	a.
	591200	691696		NB4		-
		•	•	9	ELSE GO INIJIALIZE NENT TERP,	ICP1=ICR1+1
	11/200		+			CONTINCE TRITIALIZATION
			3HI 00	-	INTTIALIZATIONS	
	191209	107108	1	HJILM3-		-
112	002770	000096		ENTBR		ICR1=0 START D2K,OZKP1 INITIALIZATION
	1//200	161215	711870	82419	110	(OZKAIJTWO)
				07410		(UZFFJ+LFFJ)IUV 197 Bandaut dugt durch a frame:
					FLSF CO INTITALIZE NEXT	LE DECREMENTER OF LY A DURING TO THE STREET
523			NON DO	3HE	CMSTR4 INITIALIZATIONS	
		102105				
975	002776	360000		E # 7 8 K	0	ICRISED START PZK, PZKP1 INITIALIZATION
		- 419619-	-CLINIA	- 92418		
		120511		07H19		(PZKP]+ICH1)toU
	100600	111996		NCA		IT BUFFOL INCH DALF A LINE
					TAINING AND	TERTALE ALEXANDER
				2 7		
						440 166 144148446414040 201 08 400 70000 101010
						2004103100111101 V1013 V01 J0 J0 J0
	00100	130161			***************************************	
1937	00100	440267		STRAL		RCLE PODEL POLLOWING
	010600			JATT.		
111	110600	400274		STR2	INGL 17	
115	610600	401277		5 1 R Z	ncccd	
				2418		
	510500			2418		1
						CISABLE CLUTCH BLIP LIGHT EMABLE FLAG
	110500			2419		
				- 2418.		
				7410		

.

· . .

Initialisation Code. (contd)

168

1

(

(

3

C

SECTION

10/02/84

E + 4 A D H

1019A AGGUGLER, VERSION 1.0

Q

	-	7 ~ ~ 7 7 7		I CAL
87 53		507313		
		442170		Ĩ
AL REGURL Abk		1111	- [
		102334	- [
		507313	Į	
	J I			
THEFT DEPICTING VARIABLES SINCE BELLEVEN'T				
	1	000000	- [
ERY RESERVID	:	00000		
	_	000000		1662 1662
		00000	005166	2912
	۵	000000	- 1	
RESERVE MORDS FOR USE IN THE PRANCHING INSIGU				2926
	*******	• •		2926
NOTES ACCOUNTERVALOR OUTPERSANTON				2924
ATANA INC CUPERSAICH INFUT LIZ ATS THE MEAS, VECTOR				2262
FARTER INC COPPERSATOR CTRAFICS PSK++ THE LAST COPPERSATOR STATE	:			2920
PRESENT CONF		•••		2910
ATURBATION		•••		5167 5167
WHERE: FUC== THE SETACINT CONTROL VECTOR NNK THE FEEDFORWARD GAIN MATRIX				1162
	•	• • •		2910
I = 201 + MKINT9(MTDES-NTACT) KP1 = 201 + MKINT9(MTDES-NTACT)		• • •		
DES = NYOC	1	• •• •		9062 2067
EQUATIONS FEING DONE RY THIS SUBRCUTINE	H.			2904
TUATUD	Ŧ			2902
MAL COMFENDATOR. THE INPL NELT(PILOT COPMANES)	•	••••••••••••••••••••••••••••••••••••••		2900
IS THE START OF		* -		
		-		
	The start of the superative st			1413 1413 1413 1414

Longitudinal CAS Subroutine.

Ĩ

6

ł

7

đ

•) \

170

-----........ サミンレス

ľ

()

171

(7)

0

(<u>c</u>.

Ċ,

0

, •

. . .

.

	201200 8805	120756		TYLNE			ALLERD LATERAL REPAIRS FOR A PUP
3069		504600		LATAL	0		SCALE THE LATERAL STICK
1070	016200	C 2288		STRAL Stral	#FL1+2 Ecval		KFLTT3)=LATERAL CYCLIC,1034 PER IN,+RIGHT ''''''''''''''''''''''''''''''''''''
101		009105		LRTAL			
1073	005312	442234		STRAL	NFL1+3		APLT(4)=YAb CONTROL,1024 PER IN.+RIGHT??
1015				860710	N 26751000000000000000000000000000000000000		
101							
			THIS	THIS SECTION P Freet Gutph	TTG PPLI +	COMMAND SCALING INTE THE	9201v
3079		•					
				R TOTA	LIAN A PIDEAN M		
				WRERE NYSC	LE THE DIACONAL SCALING MATHIN	TALING MATRIX	
2003	009313	507310	N57P1	とうての国	04		MENCRY BANK O
	116500	102/05	-	TITTE			S THE INDEX
	515500				0		
		13231	NSTPIO	ENTALD	1.3 MP L:1		UDE RERETE CARE S Al arter tates (Dit)
1000	ſ	752257	:	PULALB	FISCLE		
1011	121200	504702		LRTA	2		HSTP1 SCALING MAS 20016
	226500	122213		BTRAUB	NTCES		STORE REBULT IN (NYDES+JCR1), SCALING IS 24416
	005323	565170		ESK			IF ICPIENNCMI(MC-1) THEN SKIP NEXT LINE
2685						Ititalelelelelelelelelele	
							GU BÇALE INE MEXI CUMIKOL Friyar yor Teykreit Paatent tertanı
]	-		5			LAISING JOLING JELSUILI JEL DI DO
1000			*****	1.736=========	severales == ZdL94 HDL		
			SINT	INTO SECTION DOES THE	UES THE INTEGNAL CON	INTEGRAL CONTROL CALCULATION	
500	į	•	U BHE	THE CONTROLLER	SUBACUT		165
1016			01104		ALENT BASIC COMMANDS		
E				UN - IUN	I + WEINT V CHIDES-KYACT)		
1103		•					
1016	001126	10110	13702	92483 7 702 39329	S THE CUTPUT OF THE LATEGRATURE	INTEGNATOR.	THE REACE DARK O
ŧ		102405		PRATCR.			TERCES
1107	065500	360000		ENTOR			ITALIZE THE B REG. TO O
	166500	20000		2418			
	766600			2115	-		LCKJBO, THE ROW INDEA
	46600	516/0C		E NTAL			UDE TERENT BARK S Bilanusten of Tor-Trols
	666500	91111		NDALK			
1113	902336	507310			10		USE NEWCRY BANK O
				BIRAC -			
	10500	00000	PRICES.	ENTRES.			- 1
1116	003342	907400		XFRLU	,		
	606600	008005	NNXCLO	ANTE			Lubier
-	905344	011650					
	001115	1000L1					GET THE COLUMN INDEX
	(11500			CALTURE C	L MTDESel		INCREMENT COUDER INDERLISHERELEATIN

.-

Longitudinal CAS Subroutine. (contd)

FMICP 1 USE ICRI AS INTER 1 <td< th=""><th>Image: Section of the section of t</th><th><pre>FINT INCLUDE TO THE TOTAL TOTAL</pre></th><th>Image: Section of the section of t</th><th></th><th></th><th></th><th></th><th></th><th></th><th>,</th><th></th><th>1</th><th></th><th></th><th>5*</th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th>1</th><th>1br</th><th>, u</th><th>لمع ب ا</th><th>1</th><th></th><th></th><th>1</th><th></th><th>·/</th><th></th><th>1</th><th>I</th><th></th><th>1</th><th>:</th><th>i</th><th>I</th><th></th><th></th><th>,</th></td<>	Image: Section of the section of t	<pre>FINT INCLUDE TO THE TOTAL TOTAL</pre>	Image: Section of the section of t							,		1			5*				•				1	1 br	, u	لمع ب ا	1			1		· /		1	I		1	:	i	I			,
ENTICR I FULALE METET FULALE METET FCOR METET FCOR METET FCOR METET FCOR METET FCOR METET FCOR METET FFNL FLSE AND METT AND METT FFNL FLSE AND METT FFNL FLSE AND METT FFNL FLSE FFNL METET FFNL FFNL FFNL FFNL FFNL FFNL FFNL FFNL FFNL FFNL FFNL FFNL FFNL <td< th=""><th>ENTICE INTER FULALE INTER FULA INTER FULALE INTER</th><th>ENTICE INTER FULALE INTER FULA INTER FULALE INTER</th><th>907201 ENTICR 1 772201 FNTICR TTTT 772201 FCD TTTTT 77201 ETER TTTTT 77201 ETTTT TTTTT 77201 ETTTT TTTTT 77201 ETTTT TTTTT 77201 ETTTT TTTTTT 77201 ETTTT TTTTTT 77201 ETTTT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT</th><th>LCR1 AS INDEX</th><th>AL . CHKINTATCR</th><th>Ē</th><th>K FCF OVEN Cuebeloc</th><th>IF ICPLERATED THEY SELP MEXT LINE</th><th>ICP1</th><th>JUPPS IC NEXT COLURN OF</th><th></th><th>ICH3 AS INDEX</th><th>LING FCR MSTP2,</th><th>AU(1HE RESULT) INTO</th><th>#LT##L+(MUJ+1CM)) bUJ+1CA3te(AL)=(BUI+1CK3)+AL</th><th> ICR3=1(R3+1</th><th>FESET THE COUNT TO MAY MATCH</th><th>TU PEAL TRUEX AND STARY USING COLUMN</th><th>CCLUMN INDEX TO ZERC</th><th>TO USE MREEND Leve</th><th>ALLERREERCHARCTRLERREERD+5 OF COLUMNS</th><th></th><th></th><th></th><th>CATION</th><th> •</th><th>80</th><th>TILLE AS THE INDEX REG</th><th>ME CCLUMM INDI</th><th>340, 742 RCU</th><th></th><th>-RNC-1</th><th>FUCHT FANK</th><th></th><th>ALISO</th><th></th><th></th><th>THE CC</th><th></th><th>TCRI-MS INDEX</th><th></th><th></th><th></th></td<>	ENTICE INTER FULALE INTER FULA INTER FULALE INTER	ENTICE INTER FULALE INTER FULA INTER FULALE INTER	907201 ENTICR 1 772201 FNTICR TTTT 772201 FCD TTTTT 77201 ETER TTTTT 77201 ETTTT TTTTT 77201 ETTTT TTTTT 77201 ETTTT TTTTT 77201 ETTTT TTTTTT 77201 ETTTT TTTTTT 77201 ETTTT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	LCR1 AS INDEX	AL . CHKINTATCR	Ē	K FCF OVEN Cuebeloc	IF ICPLERATED THEY SELP MEXT LINE	ICP1	JUPPS IC NEXT COLURN OF		ICH3 AS INDEX	LING FCR MSTP2,	AU(1HE RESULT) INTO	#LT##L+(MUJ+1CM)) bUJ+1CA3te(AL)=(BUI+1CK3)+AL	 ICR3=1(R3+1	FESET THE COUNT TO MAY MATCH	TU PEAL TRUEX AND STARY USING COLUMN	CCLUMN INDEX TO ZERC	TO USE MREEND Leve	ALLERREERCHARCTRLERREERD+5 OF COLUMNS				CATION	•	80	TILLE AS THE INDEX REG	ME CCLUMM INDI	340, 742 RCU		-RNC-1	FUCHT FANK		ALISO			THE CC		TCRI-MS INDEX			
	FIND THE FULLE FOULALE FOULALE FOULALE FOULALE FOULALE FOULALE FOULALE FINALE FOULALE FINALE	FIND THE FULLE FOULALE FOULALE FOULALE FOULALE FOULALE FOULALE FINAL FI	507201 507201 FM11CF 7372701 FM11CF FM11CF 5031900 60700 6070 5031900 67700 6770 5031900 67700 6770 5031910 77700 77700 5031910 7770						ELSE DO		IN TRAFTIC		1			FLSE DO MENT LINE						AP 46 ND	р9		GENERATOR MATRIX	NUC & NUC X NUC AND			~							4			IYDE3-1				
				11CP							Ē	ENTICE	ļ	XFRUL			r 	- THICK	1 1 1 1		quous	STRAL N	191	BECTION	THE SET P		:	ENTICR 1	81R2	2419	1	×	STRAL				1	ENTICH			FULALB	A DH GH	

173

1

ţ

LEASOO	343414		a C	DO NEXT	AAD ICRIEICRIAI JUMPES IC NEXT COLUMN OF NWK
203432	170001		F a v a k B	AND NEXT RCW ELEMENT 1	EN1 OF NFLT
005433	507203		ENTICE		USE ICR3 AS INDEX REG. (ROW INDEX)
121500	504703 472215		E R T A B T R A U B	J NUC	SCALING FOR NSTP3,20015 Auchich350(AU)
963500	941595		181		
. 164200	INSHE		- <u>4</u> P		
003440	345451		5	NST S	X] MATRIX MULT IF DOME
199200	507202	ILICAN	ENTICH HTTCH		SAVE HOR INDER AND START OSING COLUPN INDEX Deset frieds these to tedo
622500	916792		EN'SK	PA	0 10 USE WPGEND 7
005444	125164		ENTAL		
005445	141591	1	ADDAL		PUSSERFERT-FROMPLENREDOFS OF COLORED FROM PROFESSION
	ELELOE		ENTSR		
0034500	11516		a ?	~ = = = = =	HF NEXT
1	-			SEC110X N31P4	
1					
			_		
169600	- altra	REFE	L L L L	D1 + 11.2	CBE RENCRY BANK 0
003452	507201	•	ENTICE	1	AS THE INDEX
151500	360000				INTIALIZE THE BARG, TO O ICED-A THE COLUMN INDEX
568500	10000		2410		THE NON THE
967500	507313		EN15P	13	
0999600	911116		ADDALK		ALLERIGHUER OF MEASURENES
199500	016106		HELME -	<u>10</u>	USE REACHY BANK 0 SINCE NEARD 12 YARRE
					FART VD PERCET ANK 1 FOR DATA
005464	70000	NNXR42	ENTALK		
588500	001406		TPRED		
	000005		57RA		
002470	507202		ENTICR	2	GET THE CCLUMM INDEX
119500	370001		ENTBRO		INCREPENT COLUMN INDEX(ICR24CH2+1)
211200	102705		ENTER		USE TCHI AB INDEX REG. (ELEMENT INCEX)
005474	252302		PULALR	NEWIN	E N
543500	201050		YOON		Atex + (YVP,TAP+1)
005500	565164		792		IF ICPLEREND THEN SKIP WELL LINE
001500				HEALT ELSE DO NEXT LINE	AND ICRIMICANAL STATE OF WANTH
105500	ſ				
105500			ENTICA	• •	USE ICP3 AS INDEX REG. (ROW INDEX)
<u> </u>	12274		LATA	100	
106500	SALSAS		EBK		IF TCREARE TREM SKIP NEXT LINE
				ELSE DO NEXT LINE AND I	ICB3mICB3+1

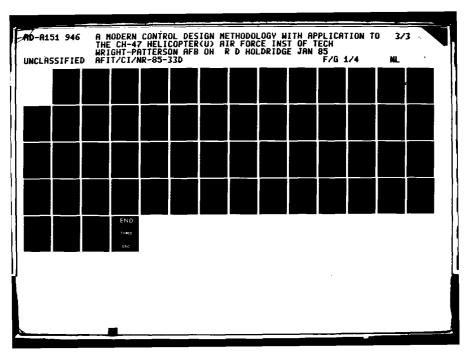
174

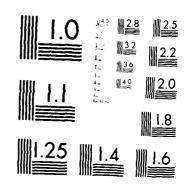
PAGE 61

	1				1	1					1		ţ			!		1			- F														•					ļ		
:	INDEX							1		• • •	,					•		1			 	: 1 1 1 1			:					<u>n</u>								NG 15				
RESETTHE COUNTER	GO TO MEXT MATHIX MULT IT DOME	T CCLUPM INDEX TO ZFRC	TARE O TO COR ETERSO ARD FRIED				LC THE PERT MC.					SATCR	•	5ELEC1 1CP2(J=JCR2)	ICR2TWO	ログサアビー シングル・シュレイション	JF JCPENE SKIP CHE	NEXT LINE	CHECK FOR TYPE OF	GU TU BURWATIUM PITH M2KPI USE ICP2 AS INDEX,J	CR2)	COMPARE AL'I.E. MADESC(U), WITH I Anto estery te barbarritet	ARE AL TO	GOTO-WSTEST IT ANDESCIJUZ		#ICR2+1,1.E.	AL 28AL FIRE ANDEA REG. AL 28AL F(NANJX+)(R151)	Atestertertett	SCALING FCR NSTP52 IS 20015	TEFNZELJEFUER(IJ*NZKTI),SCRLANG 10 2*1 Jumo Park in cet mert avin descrificr		ICR2=ICR2+1,1.E. J=J+1	ICFI IB FUT INC INDEX FEG. Alibethzk+ICRi)	THPN2+1Ch1+11=(N2K+1CR1), I.E.		PC[s(###Z##ICM1s1)	2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	THP: HALL I.E. TPPENANIN(I) HAZK(I), SCALING	24419	ZH+TCP1);1.E.	SCALING FCR NSTP53 16 2++15	
51			2. 4							MULTIFLICATICH		THE COMPENSATOR		-			. –	ANC			- -	1					~ •	-												-		
								:				50	;					+1=1)1+						•	CP ANIN			•			CF AMIN				K(1+1)	1				*		T J X Z H A C
					•					S THE NATRIX		MININAL FORP						E TCRIWICRI+I(IMI+I)				,		-	t 1X1 BLCCKS					4	1 2X2 BLCCHS			,	THPN2(1)=NZK(1+1)					:		
NFSE12	- RGTF 5 2	0		NAME AG	- ON STAN	11		-SECTICH HSTP3		11111111111111111111111111111111111111		A LE THE	XIATA	2	0	c	NPR	LINE ELSE	Nates1	2	RACEBO	NC NE	NTHE		SECTICN FOR		NAVIN-1			1-24441	BECTION FOR		M7K	1-24441			f a v Z k	TPP	NAM1N	124	۲ ۲	
٩ ८	ENTICR	E N 7 8 K		ADDAL	BINE -	ENTSR 	10	(Constant)		TH18-372P(INGN JAJAN	DTHANTO	ENTICR				·	9	ENTICR	ENTALB	CHAL Hero:	CHAL		- THE - THE -	ENTEKB Stores	ENTICH	PULALB	LRTA	BURATS	THIG IS THE	E N 1 B K B	ENTICH-	STRALE				STRAU	ENTALO	- ADADO	LPTA	
	NPSET2										-	-		eq t e m		,	NSTP50			N81P51					91HL	NSTP52	,				1HL	N5TP53				t t						
112211	507202	- 360000	507310	149172	10161	515705		• •	•	•	•		•	507202	- 100000		565166	•	345530	507202		022375	022376	000000		370001	- 32776		504703	144424		370001		498364			017767	461650	132277	-1111	504703	
- 71		416600		009915	916699	005517	176600							005521	226600		005525		005526	015500	16660	009532	+66500			665537	195500		005543	111100		005346	011100					999995	003556		005560	
	116500	\$	ŏ ē	Ö	٣.		r –									- 1		1			1	1			1		ł i	1		1			I I			1	- 1		1	1		1

1

AL=A(I)=Z(1)+A(I+1)=Z(I+1)			DUE LINE					EG.(B)			5717E8	JAJAI SI ONJAN	DR DATA			ICHZHICK2+1)	ELENERT THERY)			. *	111111	HUW INDIX)	1146 16 24418 Skift be 24418		
ALISAL+1HF, I.E. ALSA(I)+	THPHZ-TCRIINKISCALING IS 7615 ICAINICRIAL BUT THIS MEANS INT-2 ICAINICRE ALREADY ICAINICRE ALREADY ICAINICRE ALREADY ICAINICRE ALREADY ICAINICRE ALREADY	AL:*(MZKP1+ICR1-1) AL:*AL+(T5PM2+ICR1-1) MZ:*AL+(T6PM2+ICR1-1)	'IF ICALEND+I THEN BRIP ONE LINE Next Line	CONTINUE GOTO NEXT STEP		2			INITIALIZE THE E REG. TO icr2m0, the column index	ICH340, THE ROW INDEX USE MEMORY BANK 3	-ALIENUM CF COMPENSATON STATES Aliembolataei	USE MERCHY BANK O BINCE MRGEND IS THERE UDEF MERCHY BANK O BINCE MRGEND IS THERE	ERCK TO PERONY BANK 3 FOR DAYA	THP: STATE	GET THE CCLUMM INDEX	"]#CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	-USE ICHI AS~INDEX HEG.(ELEMERT INCEX) Atmat. 9 (hichin+ichi)		CALL CVERFLOW HANDLER			USE TERTIES ANDER NEG (HUM INDER) Active fre metod is Jacia	CONTINUE TO TOTA TO THE SET OF TOTAL TO TOTAL TO TOTAL TO TOTAL TO TOTAL THE SET OF TOTAL THE SET OF TOTAL T	ICHJEJCRJAJ	TO TO REAL WATERS HOLT IF DORE
	SINCE NSTF50 INCREMENTED	ACOG REMINENIS + FAFINENZK Reacty in the Nikfi vector Nikfe-1 Nikfe-1 Nikfe-1	ELSE ICF1=ICR1+1 ANC DO			TRIX NULTIPLY IN THE CHSTR2	TCHIN & NZKF1													LORE DO NEXT LINE NED TO	AND NEXT RUE ELEMENT OF			L DAN ANIT LYAN DO ISTA	
441				NETE 6	TOT NOT			1	0 ~	- 2	NRCATA	SU MAN	F •	4.L	7	N2KF1-1	NICPIN	dal					MUN	NP.0ET 3	13184
ADDAL				5.7	3EC1	,	F	ENTICE	Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B Z M Z B	5172 5173 5173 57	ENTRE	ENTSR Steal	ENTSH FATALK	IPRLU 61RA	ENTICR	ENTALD ENTALD	FULALB	A CDA	TUCP		C C C C C C C C C C C C C C C C C C C	ENTICE LETA	STRAUB ESK		79
	¥ 5.4 1.9 #	DAR SEALS						94184					E NE NE	NNXCL3											C
141650	452365 370001 5 6 345925 345925	132373	565166	345575	• • •		• •	507310 507201	400002	100001	11111	916796	100000	009005	031650 507202	100015	252316	201620	204000		10001	507705	12221	10903	- 619616
005562	00556J	1/5500	2/5500	005574				005575	009500	002602	003603		002607	009612	005614	005616	003620	005622	005623		224500	129200	005632	005633	10000
	1 1							1111																	


Longitudinal CAS Subroutine. (contd)


Longitudinal CAS Subroutine. (contd) F 1014 THER THE . COPNAND END THE CCMTROLLER SUBROUTINE NUMBER 1 ET CCLUMM INDEX TO ZERO Hake o Since Henend and Hectri SCALE FCR CUTPUT(11N/140.858178) STORE NUT(1) TO ECS PITCH CONFAND COLUMNS ALI=MUT(2),COLLECTIVE Scale the Output(11m/206;248178) Store Mut(2) to ecs collective co RUTIEAL, "KUT(TJENUC(I)+AUH(I) " If bekenncirl skip the next line THE AL 3489646 AL 3489646 AL 3489646 AL 248864644646 CSE BARR 3 FOR CATA USE BARR 3 FOR CATA CO THE MEXA RC SKIP A LINE IF NO OVERFLOW SHTP 1 CALL CVERFLOW HANDLER ALIMAL+(NUR+JCR1+1) AL :=AL + (NUI + ICR1-1) WRITE THE DATA CUT XIGNI hZK+ICRI+I takL 2P-1CR1=HPR THEN ALT=(#2KP1+1CR1) AL := (NUC+ICR1-1) (ICRISED) HEANS NC YENUT (1) LONG (0=1)I) WHICH WRITES NUT(ACTUATCR MHICH SENDS AUT 1C THF NEXT LINE NUE ICRI TOWITINO' NEXT LINE THIB BECTION (F CMSTR2 BETS THE PREBENT COMPENSATOR **States(Werpt) to Old States(Werk)** ICR1=0 PESET USF HA THE OUTPUT(LIN/218.33EITS) CONT I NN + USE STOPE NUT(3) TC-ECS ROLL CCHMAKD 00 STORE NUT(4) TO ECS TAN COPMAND + NUR AND 0 ANC LATERAL CYCLT 00# ELSE ICFICICR1+1 WERE GOUNTHE SECTION(WATPH) WHICH Commands) IC 146 Location Mhich Se Actuators:-----TCRITEICRI+1 . ADDITION NUT sessessessessessessesses NSTPB SECTION ----SECTION NETP7-----(C) LONEL JO CALON- JAIN SCALE 2673 ----SECTION NSTP9 DCE8 THE NETE70 HETE8 NUT + 1 NCCLSC NP 4 6 ND ON 3 N 5 N N N X R N J CP81P2 NACTRL NLNGSC Dé al la NZ K - 1 NUC-1 HUP-1 NUT-1 T-LON HOVR43 10/02/14 0871 OP 1 *** PULAL'NLATEC ETRAU'OBF3 0 AULAL "NTANOC THIS STEP i 647564 64766 647866 678768 678768 ENTALD ADDALD ADDALB BRPNOV ENTICR STRALB KULAL 87840 81840 91840 81840 81840 ENTBK ENTSR ENTAL ADDAL S1RAL Entsr LP -NBTN' NOOP E 3 K 12 \$ -----N57P70 96419# **NSTP**7 **T** 1019A-AGBENGLER, VERSION 1.C 138873 452270 445164 907915 345610 345647 460075 49164 122226 360000 909900 904000 919595 655173 25161 92226 152210 94546-52644 242340 360001 12214 660073 50720 545171 003656 005674 11111 005636 005653 005655 005644 CP9600 005647 10000 005667 005671 009030 005651 005665 129201 005663 003661 12200 9200 1319 3403 562 Ì 1966 9119 ***** 1117 1163 1367 1363 3369 ŝ 1993 -----3371 111 SHEE 3367 1966 1940 Ī Ī 135 ž

Hover Controller Subroutine. .

	• •		-	***************************************		
4102 4103	2 2		ZĒ	THE START OF THE SURACUTINF WHICH DEEE THE COMFERSATOR FOR THE RULER.	CH DGEÉ THE CLUER	
1019	• •	• •	THE CONTROL THE IMPOTE 1	STRATECY IS "VELOCITY IC THE SUBROUTINE BAE	CC#MANU/PCSIIIUM NULL	
\$1.06				PFLT(PILOT COMMANES) PTBLTHE MEASUNEMENT VECTUR)		
4100	• • •		THE OUTPU	utputs ARE: 	10KS)	
0617		F	THE EQUATI	CATIONS PERSONS BY ALL THE ARE		
4197	•		- 0140f4	• P10F + P10I + P10C + P100L 0		
	• •			TIS X, Y, AND Z.	DALY DUALAG	
151						
1961			23	<pre>* PYSCLE + (PPLT+P7CPIC)</pre>		
101			- 70C'X 7 P7KP1 =	PUR PILAT POLIA POLIA PIS		
	• •			Lay2a .		
1200	•••			PUR + PUC		
4202			LHERE :		1	
1969				EPOD DERIVATIVE CONTROL		
4 204	• •			FIDEIDes TOTAL PIC CONTROL		
1204				FUC++ THE BETPCINT CONTRCL SHEWE THE FEEDFORMARD GAIN	VECTCR MATRIATER SETFUTAT	
1200	• •					
100				ILLUI LA TALA TALANA TALAN	PILUZ INTUI TELIUM 146 CNIAL AT INITIALIZE)	
				FIRPLS THE PRESENT CURPERSATOR STATE VECTOR	SATOM STATE VECTOR	
4252	-			FARIN THE CUPPERDATOM UTWARLED FATALA 	BARTE VECTER	
1 I Z A	• •			FBMIN-+ THE COMPENSATOR INFUT CIST.	FUT CIST. MATRIX	
512					BATOR CONTROL VECTOR	
• 12 •				XINING LOGIOO HOLYSWEEDOO JHL MINJ?	TPUT FATRIX	
4310	•			<pre>gut THE TOTAL PERTURBATION CONTROL </pre>	ICH CONTROL	
4219						
1251			REENE	APE-"HOROF" TOR USE TH THE PRANCHING INGTRUCTIONS		
4222 006715		PREED	NEBERV	NEBER'S'	Į	
		CHRN 2		ne sé rv * 1 0	CROER OF COMPENSATOR - 1 FURTE OF FOUTPRESSION	
{		PTT PEEPI	REBERV	NE 55 F Y - 1 U Ně 55 P Y * 1 U	55	
		PRCNT		NEBERY ID	51	
_		PNCTAL	REBERV	ALBERY'ID	RUMBER CF CUMINULS	
4330 006720	000000 OT	CPSTR4	0.0			
1232		N	TIALIZE	VARIABLES SINCE BSK	CCESN'T USE	
1234			-BPECIAL	145 865C147 46C7515M		
121300 000121	21. 301313		ENTON ENTON		ALIACHY J REGIONS	

Appendi**xI**

ſ

MICROCOPY RESOLUTION TEST CHART NATIONAL BOREAU OF STANDARDS 1965 A

.

(7)

 $\overline{\mathbf{O}}$

(Real

C

O

194 ASGENBLER, YERSION 1.0 MOVN43 10/02/64 SECTION 1

0000723 30011 01001 000013 00011		j			AUIs(PNP)	
0000772 2000771	1 1 1	I		PNOTPL	ENCIPLIEDNC	
0063121 446119 51781 0063131 501113 0063131 501113 0063131 501113 517810 0065133 501113 517810 0065133 163114 517810 0065133 163114 517810 11715 118 54517108 7015 118 54517113 118 54517108 7015 118 5451710000000000000000000000000000000000	1	-			AL LUPRC+1	
0000000 578.0 910 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 00000000 500000 500000 0000000000 500000 500000 10000000000 500000 500000 100000000000 500000 500000 10000000000000000 500000000000000 1000000000000000000000000000000000000	i l			PACE 1	FNCH1 SEPRC-1	
0000131 501113 501114 EN15R 13 0000133 440113 51784 94 0000133 440113 51784 94 0000133 440113 51784 94 0000133 440113 51784 94 0000133 440113 51784 94 0000133 440113 51784 94 0000133 440113 51784 94 0000133 440113 51784 94 000133 440113 51784 94 000133 440113 51784 94 000133 440113 51784 94 000133 440113 51784 94 000134 51115 51115 51115 11 94 94 94 12 94 94 94 13 94 94 94 14 94 94 94 15 94 94 94 14 94 94 94 15 94 94 16 94 94 17 94 94 18 94 19 94 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
00001111 111110 ENTAL PERI 00001111 1101111 ENTAL PERI 00001111 1101111 ETAL PERI 00001111 100111 ETAL PERI 00001111 100111 ETAL PERI 00001111 100111 ETAL PERI 00001111 100111 ETAL PERI 0000111 100111 ETAL PERI 0000111 10111 ETAL PERI 111 PERI PERI PERI			5 1	13	USE MEMCRY BANK 3	
0000134 201114 ENTAU PUNI 0000134 301110 61111 PUNI 0000134 11111 61111 PUNI 0000134 11111 867100 P0113 0000134 11111 8671100 P0113 11111 8671100 P0113 P0113 11111 8671100 P0113 P0114 11111 8671100 P0113 P0114 11111 8671100 P0114 P0114 11111 8671100 P0114 P0114 11111 867110 P0114 P0114 11111 867111 P11411 P11411 11111 P1141 P11411 P11411 11111 P11411 P11411 P11411 11111 P11411 P11411 P11411 11111 P11411 P11411 P11411 111111 P11411 P11411 P11411 111111 P11411 P11411 P11411 111111 P11411 P11411 P11411 111111 P11411 P11411 P114111 111111 P11411 P114111 P114111 111111111111 P114111 P11411111 </td <td></td> <td></td> <td>•</td> <td></td> <td>ALTER (PR)</td> <td></td>			•		ALTER (PR)	
0001)11 11110 11111 11111 0001)11 111111 11111 11111 0001)11 11111 11111 11111 0001011 1111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 111111 11111 11111 11111 111111 11111 11111 11111 111111 11111 11111 11111 111111 111111 111111 111111 111111					(PRF1)	
0000133 440113 5578AL 9989 0000130 440112 5178AL 99891 0000130 440112 5178AL 99891 0000130 18110 1812 5178AL 99891 000130 18110 1812 51784L 99891 1810 1810 1816 1817 1 1810 181 1816 181 10 181 18 18 11 1 181 18 18 11 1 181 18 18 11 1 181 18 18 11 1 181 18 18 11 1 181 18 18 11 1 181 18 18 11 1 181 18 18 1 1 181 18 18 1 1 181 18 18 1 1 181 18 18 1 1 181 18 18 18 1 181 18 18 18 1 191 18 18 18 1		I			ACAT CANK	
0000111 000111 000111 000111 000111 0000111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 1111 000111 000111 000111 000111 <t< td=""><td></td><td></td><td>STRAL Stral</td><td></td><td></td><td></td></t<>			STRAL Stral			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td></td> <td></td> <td></td> <td>nifari ofarkat Doorssesses</td> <td></td>					nifari ofarkat Doorssesses	
1110 1111 360 9015 4614 1110 1111 360 9015 4614 1110 111 360 9015 4614 1110 111 111 111 111 1110 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 111 1111 111 111 111 1111						
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		_				
1 1 <td></td> <td>•</td> <td>38</td> <td></td> <td></td> <td></td>		•	38			
1810 1810	4253	•				
1 BASIC, THE COOL TOUL 1 1	4294 4255	•		<mark>uts hersurents herded by The CC</mark> Bement herede dys	NTROLLER	
IM BABIC, THE CODE P1311 P1311 P13111 P13111 P13111 P13111 P13111 P13111 P131111 P13111 P131111 P13111 P131111 P13111 P1311111 P13111 P1311111111111111111111111111111111111		• •				
708 708 708 708 718 7458 718 7458 718 7458 718 7458 718 7458 718 7458 718 7458 718 7458 718 7458 718 7458 718 7458 718 7458 718 7458 718 7468 718 7468 718 7468 718 7468 718 7468 718 7468 718 7468 718 7468 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 7488 718 <td< td=""><td>1237</td><td>•••</td><td>BABIC,</td><td>CODE NOULD BE:</td><td></td><td></td></td<>	1237	•••	BABIC,	CODE NOULD BE:		
		•				
	1361	••				
	100					
				19、1117、1111110,19、19171111110,10.000 1943年3月8日の日本三日の日本三日の日本三日の日本三日の日本三日の日本		
	265		THE INDEX NUMB	ERS AND THE RELATED PCSSIBLE FEAS		
			Ī			
	269	•				
			- - - - - - - - -			And and a second se
		•		PBI(MAGNETIC,500/DEG)	:	
				DIADE UNITION (UEG/SEC))		
			n	F(+RHD,300/(DEG/AEC))		
		•	• •	LONG. ACCEL. (AC GRAV.+PCF	H.128/(F1/8EC++2))	
		•	•	tar accet-the Grav, FRIG	IT, 124/(F1/SEC++2))	
	1377	•	•	ACCEL .	,128/(FT/SEC++2))	
				(4:48044);]34	(11/9EC))	
		-	=	VENT.	[1/3EC)]	
	1221				IN FRYING	
× • × • • • • •					TREATINE	
• • • • • • • •	1203	•	51		IN HEADING INERTIAL AXIS	
		•			TAPPS IN REACTING THENTIAL	
		╺╺				
	575		•			
31 31 31 4		•			PPS) IN NEACING INENTIAL A	
21 21	•207	-	5			
			92.		1	
				- 1	JANTAJ IN PUNANT FRANC	

Hover Controller Subroutine. (contd)

(7)

 \mathbf{O}

 $\mathbf{O}_{\mathbf{w}}$

•

		8 307313 P81P0 120746 169191 443202	24157 24141 81741 81741	13 14114 P18714 P18714 P1161 UP, 500/CBC	USE MEMCHT BAMK J Alieangih(Pitch Angle) Aliealstimth(Perturbation theta) foiheiteperturbation Pitch Angle
1111 11993 1911 1111 1111 11111 11111 11111 </td <td></td> <td>120753 103152 443203</td> <td>ENTAL BUBAL STRAL</td> <td>Ingen Psrppn Psn1</td> <td>ALITAL-PITAPATPENTURSATIUM PHI) FPHI 15 ACLL.+RMC.500/DEG</td>		120753 103152 443203	ENTAL BUBAL STRAL	Ingen Psrppn Psn1	ALITAL-PITAPATPENTURSATIUM PHI) FPHI 15 ACLL.+RMC.500/DEG
FIAL F11CH F11CH F11CH FIAL F11AL F11AL F11AL FIAL F11AL F11AL F11AL FIAL F11AL F11AL F11AL FIAL F11AL F11AL F11AL F1AL F11AL F11AL	1	120766	BTRAL	1844 18481	FPSI IS HEADING, MAGNETIC, 500/DEG
FR11. P10.1. P1.1. P1.1. F11. P1.1. P1.1. P1.1. F11.1 P1.1. P1.1	1	443205	STRAL	2117/C	
Introduction Introduction Introduction		120744	ENTAL BTAAL	PPOL RT	A1E,+
FIRML MACEN MACEN MACEN FIRML MA MA MA FIRML MA MA M		120745 413207	ETAL STRAL		YAW RATE, +RIGHT, 500/(DEG/BEC)
FILL ACCAT LAT. ACCEL FILL PL ACCAT FILL PL ACCAT FILL PL ACCAT FILL PL PL		120747	ENTAL BTRAL		ACCEL., NO
EFAL ACCOM ACCOM ACCOM ACCOM ETAL PITAL FITAL ALISA100PC ETAL PITAL FTAL ALISA100PC ETAL PITAL FTAL ALISA100PC ETAL PITAL FTAL PITAL ETAL PITAL FTAL PITAL ETAL PITAL FTAL PITAL ETAL PITAL PITAL PITAL ETAL PI		120730	STRAL	RCCRT Pay	ACCELNO 6
600AL FTME AL1=A180PC 600AL FTME FTM1 610AL FTM1 FTM1 810AL FTM1 FTM1 810AL FTM1 FTM1 810AL FTM1 FTM1 810AL FTM2 FTM2 810AL FTM2 FTM2 810AL FTM2 <		120791 443212	STRAL	P12	L ACCEL., NO
STAL FUE PUEC TE 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1		160153	ENTAL Bubal		ALI=AIR6PC+TRIM AIR5PEED
EFFAL TYRT SPEC UBAL FTRIT BUDITAL STAL FTRIT BARC STAL FTRIT			BTRAL		PDVEL TE PERTURATION VELOCITY,
STAL PYREL PERTURRET V 81411 8140 8140 81411 8001 8140 81411 8001 8140 81411 8001 8001 81411 8001 8001 81411 8001 8001 81411 81001 8001 81411 81001 8001 81411 81001 8001 81411 8001 8001 81411 8001 8001 81411 8001 8001 81411 8001 8001 81411 8001 8001 81411 8100 8101 81411 8101 8101 81411 8101 8101 81411 8101 8101 81411 8101 8101 81411 8101 8101 81411 8101 8101 81411 8101 8101 81411 8101 8101			SUBAL		VERT. SPEED, VDP.32/(FT/SEC) Bubtract Hdot at Engage
STAL PEAL PEAL 1 1 1 <		120754	STAL ENTAL	94461	PERTURBED VERT, SPEED, +UP, 32/(FT/SEC)
379.02 79.05 79.05 79.05 117.11 71.05 71.05 79.05 117.11 71.05 71.05 79.05 117.11 77.05 79.05 79.05 117.11 77.05 79.05 79.05 117.11 77.05 79.05 79.05 117.11 77.05 79.05 79.05 117.11 77.05 79.05 79.05 117.12 70.05 79.05 79.05 117.12 70.05 79.05 79.05 117.12 710.1 70.05 79.05 117.13 710.1 70.05 70.05 117.14 70.05 70.05 70.05 117.15 710.1 70.05 70.05 117.15 710.1 70.05 70.05 117.15 710.1 70.05 70.05 117.15 710.1 70.05 70.05 117.15 710.1 70.05 70.05 117.15 710.1 70.05 70.05 117.15 710.1 70.05 70.05 117.15 710.1 70.05 70.05 117.15 710.1 70.05 70.05 117.1		10213	ENTAL	PEAC 1 XEOC 1	BARD. BCT., 16/91
37845 79650 7 903171081 18741 27111 7 903171081 18741 27111 7 903171081 18741 27111 7 903171081 18741 27111 1 114 18741 1201 1 114 18741 2101 1 114 18741 2101 1 114 18741 2101 1 114 18741 2101 1 114 18741 2101 1 114 18741 2101 1 1467134 18741 2101 1 1467134 18741 2111 1 1467134 18741 2111 1 1467134 18741 2111 1 1467134 18741 2111 1 1467134 18741 2111 1 1467134 18741 2111 2 1467134 18741 2111 2 1467134 18741 2111 2 1467134 18741 2111 2 1467134 18741 2111 2 1467134 18741 2111 2 1467134 18741 2111 2 1467134 18741 2 1467134 2 1467134 18741 2 1467134 2 1467134		121150	BTRAL ENTAL		POSITICAL PORT (* FORS. ; 16/F1) IN MEACING FRANE
37946 72860 2 90317104 1141 X2867 1 1 1141 2007 1 1 1141 2007 1 1 1141 2007 1 1 1141 2001 1 1 1141 2001 1 1 1141 2001 1 1 1141 2001 1 1 1141 1101 1 1 1141 1101 1 1 1141 1001 1 1		121136		2 11 1 2	
319.4L 918.601 1 1 118.4L 12.001 1 1 118.4L 916.001 1 1 118.4L 916.001 1 1 118.4L 916.001 1 1 118.4L 918.001 1 1 118.4L 918.01 1 1 118.4L 918.01 1 1 118.4L 918.11 1 1		121151	87PAC ENTAL	FBC0 XEDC1	
ENTAL FEDC1 1 1 JIRAL PIECOT 1 1 JIRAL PIECOT 2 1 JIRAL PIECOT 2 1 JIRAL PIECOT 2 1 JIRAL PIECOT 2 1 JIRAL PIECOT 1 1 POSTIONC PIECOT 1 POSTIONC POSTIONC PIECOT 1 POSTIONC PIRAL PI PIECOT 1 PIRAL PIECOT PIECOT PIECOT PIRAL PIECOT PIECOT PIECOT		142611			INCOTAL
Infal 2001 ANE Infal 2001 Infal Infal 2001 Infal Infal 21810 Infal		191199	STRAL		VEL.(+RIGHT, 32/PPS) IN HEADING
		121142	LUTAL	2001	
E894b XP1(1) X P0317104(6194L P3 P3 P3 7 P3 P3 P3		66664			
STAL P3 STAL P3 STAL P111 STAL P111 STAL P111 STAL P101		NIN		4364	
1 212111111111111111111111111111111111		44324	STRAL	71	
		143225	STRAL		•
		413236		PADCT	
					VELOCITY (* RIGHT,

Hover Controller Subroutine. (contd)

Hover Controller Subroutine. (contd) 68 PAGE PPLT(3)=LATERAL"CYCLIC,1024" PER TR,FRIGH CONTROL, 1024 PER IN, +PIGHTT ETTHPEFABEL(1) Lightag(FJBBEL(1))=(PDTHET+ThP=1) Lgelineareforter i Again (PTSTT=1)=PTS(7)=Al I P=PNFEAB SKIP A LINE LINE C STICK, 1024PER IN, +AFT INPUT OF COLLECTIVE LONG CYLIC (1=3) SCALE THE LATERAL STICK 8 (I-INDI-I) COMMANDS 5 ICP1=1 DLLECTIVE TH DEFENT, THE PIC CALCULATIONS Axes are handled independently. KIGNI THIS SECTOM PUTS EXPERIMENTAL FILDT COMMANDS JATO THE FFLY VECTOR KIONI S TISTE DECK BITCH RPUT L(1) PPL1(4)=%AW 138814=14H1 138814=14H1 ALISEP YAN 17 i = (FYES) OF THE 3 AXE8. 31 FIRST CHECKS TO SEE IF THE APPROPRIATE Pilot compare 18 tot of detemt. If upt of lettem', the PID calculations are theld and the Pilot's control becomes a velocity command to the chart. If in detent, the Pilot Carcu HCLD POSITION in That Alis. The 3 AXES ARE HADLED INDEPEN PH18 CODE ALSO PUTS A DEADZONE ARCUMD THE PILOT CONFUL TO TH18 CODE ALSO PUTS A DEADZONE ARCUMD THE PILOT CONFUL TO SUNT THUS <u>=(1)13</u>4 ICALE IF PLT(2) 161-69 IN EACH DETENT SHE FOLLOWING 28 AN COULVALENT SET OF BASIC LANGUAGE Thstructions heeded to do the JCS. ELSE ICRITEICRIFI AND DC WEAT ITAIBA DI DO MINI INICKAN(())IJAA)BBW AI <u>areast(1104_b34b1=sequesterses</u> CALCULATICAS 5 Lub TRANSIENTS WHEN GOING IN AND PTS SELECTICN SECTION PXDI=PXCI+PKXI+PD&LX 60 70 987912 PDELX=PIFILT=PXREF PYBSEL-1 F-Y3HT34 CONTINUE PXDOLD=PXCPID EFHEAV PF L1+1 PPD7+2 P67901 PRNE AG SECTION DOES THE PF L1+1 7.5-1 1744 NOVR43 10/02/84 941 2 ELSE ENTE ENTELE ENTICE ETTALE ENTOR Entalb Ē **INTICR** BTRAL ENTAL ENTAL BTRAL LATAL STRAL ENTAL DIAL THEN BIRAL THE ATAL. **ELININATE** 23 R 5 114184 THIS LOALSA PSTPOL 1819A ASSEMBLER, VERSICH 1.0 321650 133201 507201 452764 120760 120757 112160 504400 133124 111450 347024 442762 10001 PL-LP 966717 ISCO21 50720 127 060700 160700 220100 007025 001033 007034 007044 007046 001030 007023 120700 i i i Ħ Ę, 1152]] 1116 Ē 171 Ē Ē 360 Ē Ĺ ١

AppendixI

181

.

1

Hover Controller Subroutine. (contd) 2 ACTUAL FESTION WHILE THE PILOT IS COMMANDING TF WE*YE RAMPED TO ZERO, HOLD PIDCLD AT ZERO Brip Arcund the Fade-Out to Sir2" Command Conting Farp Down TO RUNNING THESE TWO LINES FONCE THE WEFENENCE POBITION TO ZERO, GO DOWN AND CONTINUE DETENT MAGNITUDE GU 40 PID CALCULATICHS PLACE THE CONTROL 18 POSITIVE 30 BUBINACT CONN REGISTER STORE THE FADED VALUE OF THE LAST FID Command Refore coming out of detent terd the thteghator " F RANP NEADING 1111 F OF VIEW IF NOT PID TURN CFF THE PITCH DETENT LIGHT ELVIDE EY NUMBER OF CYCLES IN PXDOLC1# PADED VALUE go store the dendzoned value for neg.cchtaol, add detent fut the medified contant back < STICK ALTEPPLICI), PILOT LAG BIICA If control necative, BKIP A STORE THE RANPED DOWN VALUE KONA THE GET READY FOR PID FADE-IN 1 LONG N ILTERNEECOT FULTER THE TRANSFORMATION COMPARE PELT(1) AND IF CETENT IS LANCEN YBREF ALI=PPLT(1)=PILCT CET ABS(PFLT(1)) COMMANDING A VELOCITY AND A terrererer DOLC IF NOT PAPPED PITCH BAR DUT AND IDENTICAL EXCEPT FOR THE Y AXIS(PPL1(3) IS LAT. CURTROL) THE T CCLLECTIVE) Xerff IC FOLLCH A RATE. 2 GET INSTRUCTICK5 di la Eg ġ X AXIS ***VELOCITY COMMAND/POSITION HOLD*** LOGIC ATTS(PPLT(2) IS PILOT 15 THE FCLLOWING WILLE 51 VALUE. 0 10 L Duf X# P + P X K I + P X DD + P X DC I O P1101 * OLD PID CONTROL DETENT THE DEADZONE CALCULATIONS THE THE SPLILUN FOR g ELSE THE DO PADE OUT OF ULU COMMANDING A VELOCITY. PXDO=PKXD+PXD07 Ł TESTES LAST TATER PLATER N/APLG 9777-02816 77860 1130K4 PXETON PXCLO PXCL ST PXCT THIOX4 111134 ILALEA INJORA INJORA PINET PCR+2-PAECFF PADCED PIDCED 1+10×4 134814 **PX8PE** LOK+3 FNTOR4 134879 LC K + 6 LCK+4 **F5U1** HOVERS 10/U2/P4 BUBALIAC ATAS ENTACK ATAAL ENTAL **JPALNZ** ł - JEAL ENTAU RUP STRAL STRAU STRAL PULAL LATA BRAU-ADDAL ENTAL RJP CHAL JPHGR Idnaa STRE STRE 5782 FREAL - ZNT6 **31R2** \$ 5 8 214164 P51P10 NOR NOR 1.0 141172 141172 141172 147205 443274 403300 403261 101242 122761 400663 11011 19261 110113 403240 **** 023172 112211 HEE ADDEMBLER, 007112 007114 001010 007053 001057 007001 007000 007005 007107 -100100 007077 101100 501100 007073 601400 007051 001033 007071 01019 Total Sector Ĭ 10000 ŧŧ į 1121 亁 1111 1116 1151 1134 1101 1115 ŧ 5 Į 4425 1699 == Ī 1139 1107 Ē Ē Ī 10194

182

~1

 \mathbf{O}

0

۲

					-								•					Ā						_																	
CO THE TRANSFORMATION FROM RUNMAY TO MEADING			JURN CN THE PITCH DETENT LIGHT		ZERO IN	THESE J LINES CALCULATE	AT TOLLOW BRADY, ALTVERA			BCALING 3.339=682 COUNTS=42.6 FEET=1 INCH7		FULTER FARTER DE PROFUENTION FULTER FULTER CONTROLD			GET POSITION ENNOR TO BE INTEGNATED(1F1016BIT	HOLD INTEGRATOR TERM IF ERROR GT 15FT		PULTIPLY BY DIGITIZED INTEGRAL GAIM(1PP8/FT=2		AL COLTALLUR LALE LALEVALLUR Al Corr of Deriver and the second second		CO DEMINATIVE CONTROL	FAUVEFAU FAUUI		CET THETA FOR ZWD DERIVATIVE CONTROL	FAUTHERLINEJOPPALM Beatime - En Philip - Te be be dec n some ny s		<u>GET O FCM JND DEMIVATIVE CONTROL</u> Exemandateryea	SCALING CH PRAPH 15 1 PP5 PEH DEG/SEC & 1041		BIURE THE MESULT Rfcim the Pindir Fourtion				FINFICEPSC P4PSD14PSD04PSD2H4PSDPR			ACTE FACEE RUCTIPLIER	53	USE 120 CTCLES AS THE RAPP UP TIME I THIT DYESOM ON DRIDA (LIMIT AL IC AU)	11 AM 17471
		···· · · · ·												N N N N N N N N N N N N N N N N N N N																							PID CUMMAND WHEN INE VILUT ENT				
PARF	P7FF	PTEFE	-	N/NFLG	1964				BATCHE	02516	PCELX			1014	1111	ABSVAL		PKXI	1242	- LILL -		13014		PADE	ALAND		HLQXA	a si na	11		PXDF	Leigka	PACE	A LOYA			NTO DETENT		1		
		BTRAU	ENTALK	STRAC	5192 5292	AURAL	- INNER -	CPAL		STAL	LATAL BATAL	THTA		DANTS	44 1 5 4	9.6		PULAL	4964			LTS ENTRE		BTRAU			BTRAU				LEN1AL	ADDAL	ADDAL	AUDAL	BRAC		GOES BACK IN	38243	ADDALK	DYINA	
14164							•		:												1	511184								1 											
 062671	107601	183242	700001			163231	262644	506100	10001	440111	262621	504707		112101		160533		243160	201260	001005	033260	123226		163234	202621	304704	463235	243170	204704		123233	INCOL	16261	143236	102231			11110	710001	102501	
	007117	- 921200	007121	221400		007125	921600	007127	- 001130	007131	11100	- 361400		561100		007137	001100	001143	007144	591400	007146	007147		007152	001154	661400	007156	091600	101600		007163	191(99	591/00	01100						007174	
		ì						4467										4479	4480								1109	1011	-		ii					190				1061	

183

•

.

1

Ū

1

6

D)

Ó	007177	504307		PSHA PSHA	7C 	CIVIDE EY MUMBER OF CYCLES IN RAME and East stit forwawntranneng on emerica
ð	007201	113237		STRAL		FUT SUM PACK INTO PID COMMAND
ŧ	101101	44340		BTRAL	PYDELD	CONFARC
Õ	007203	123200		2 M L M L		
Š						CARCYP GET STANT UP FAUE-CUT VALOE
				JAAAA SEXU	CLOCITY COMPAND/POSITION MOLDERS	
		•				
ŧ.		191963	P87P 12	FNTAL	PPU+2	AL (= PPLT(3)=PILOT LAT STICK
ŏ	007206	760533			ARGVAL	
Ŧ.	007007					DETENI
5	017100	162//9				
					Saldadamoo SI Lojid akt 2012	A VELOCITY THUS
Ę						times see and fight freezes (7565 = 1 11
	007212	703377		F N T A L K		
\$				328.85		
ŏ	007214	123217		ENTAL		THESE THO LINES FORCE THE REFERENCE POSITION
ŏ	007215	443242		STRAL		ACTUAL FESTION MAILE THE FILOT IS COMMANDING
0	007216	112121		CHTAL.		R RATE. En tur teamsfrighating fein hfaðthe 10 bilhuav
Ş		103242		19243		COLUMN LANGUATION OF THE TARGET AND
õ	007220	763413		474	I VOJ VI	
Ŧ	122400	49230			- · · · · · · · · · · · · · · · · · · ·	
ŏ	007222	463241		STRAU	P 7 A E F	
		•	2		De DIO DIA COMPOSI UNTIL DIACE TE	
			5		A VERCETT.	
ŏ	007223	123272		_	PYSCFF	AL;=FADE-CUT MULIIPLIER
F		-062468		287840	DCRN t	IF HOT PAPPED TO ZEMO, GC DOAM AND CUMINUE W
j a	- C Z Z L D D			2 M 1 B		IT WENTE MARPED IO ZEMO, MULD PIDLLE AI ZEMO 18 latus binded so sedo keso bine de sedo
5				7 L T D		
à	007230			ADDALK		
ě				STRAL	Preces	STORE THE RANPED TIONS VALUE
ŏ	007232	243251		PULAL	PYDCLD	ld . da
Ť				- LATA-	4C	CIVIDE EY NUMEER OF CYCLES IN RAMP CONN
ŏ	007234	463251		BIRAU	PICCLD	PIDOLCI- FADED VALUE
Ť					PYE20	-GET REACT POR PID PADE-IN
ŏ	007236	123251		ENTAL	PYDCLD	GTORE THE FADED VALUE OF THE LAST PID
P						COMPART-BEFORE CORING OUT OF CETENT
				7410		ZEMU THE INTEGNATOR
	122/2			7110		
			00-N08	- 345	DEADEONE-CALCULATIONS	
Ō	007242	122763			PFL1+2	ALI=PPLT(3), PILOT LATERAL STICK
þ						INTROC - NEGATIVE
			-			COE 146 COMINGE TO LOGITAC ON CARINACI
õ	007245	347247			LER+2	GO RECHE THE DEADZONED VALUE
Ť		-teller-				FOR MPG.CCMTROL: ADD DETEMT
ő	007247	442763		STRAL	PP (1 + 2	FUT THE ACCIFIED CONTROL BACK IN PPLT
				,		

Hover Controller Subroutine. (contd)

K

リ

1

4

••••••••••••••••••••••••••••••••••••	PYDFID PYCCLD PYCCLD PX64 PX64 PYCCF P
133200 133200 1133200 133200 133200 11111 133200 13320 11111 133200 13111 111111 133200 131111 111111 133200 131111 111111 133200 131111 1111111 133200 131111 1111111 13330 00 111111 13330 00 1111111 13330 00 111111 13330 00 111111 13330 00 11111 13330 00 11111 13330 00 11111 13330 00 11111 13330 00 11111 13330 00 11111 13330 00 11111 13330 00 00 13330 00 00 13330 00 00 13330 00 00 13330 00 00 13330 00 00 13330 00 00 13330 00 00 13330 00 00 133300 00 00 13330	PYDFIO PYCCLD PR64 PYCCFF
	. 5
	BIRAL BIRAL BIRAL BIRAL BIRAL
	BIAL STAL ENTAL ENTAL BTAL BTAL

Hover Controller Subroutine. (contd)

Hover Controller Subroutine. (contd) 5 EY MUNBER OF CYCLES IN RANF It fig communicated) to aveic thansient GET POSITION ERROR TO BE INTEGRATED(IFT=16BIT GAIN(IFP8/FT=2 2++16 PAGE - 1024 B118 STORE RESULT IN (PYDES+ICM1),SCALING 18 If Terispheni(me=1) Them skip went lime E PEDOLD FADE-OUT ABOVE PZEZCH TO PK64 (LIMIT AL TO AU) TR LATER FADE-CUT UP TINE GU BCALF THE MEXI CUMTROL GO TO THE INTEGRAL COMTROL BECTION . 944 **PY DIGITIZED INTEGRAL** INITIALIZE THE INDEX REG.(B) USE MENCRY PANK 2 SUPMATION(THE INTEGRATION) COES IC PZKI+1, AL TO PZKI INTO PID COMMAND RANP SCALING WAS ZUWIG FOR PSTPZ THE P20P1C=F2CP+P20I+P200 AULTIPLIER ICRI) 99 APP FACER CET START CLES INDIALAAL TON PUT BUN BACK 1 AI=AL+(PY6CLE STORE RAPP P PULTIFLY E PP198178) EC SUPMAT3 AU GOES TC CIVIDE PI PZEDFF THE PYDES STORE GE T ICRI=ICRI+1 SET POINT GENERATOR MATRIX MULTIPLICATION PUC = PMK + PTDES THE PILOT THIN SECTION PUTS [FPLY & COMMAND SCALING] ING (Desired Output) Vector. MATRIX AND i DIAGONAL SCALING NANN LINE COMMAND NEXT SECTION PTDES = PYSCLE + PPLT 8 ELSE DO RAMP FADE-JM .CF PIC GOES BACK INTO DETENT WHERE PISCLE IS THE PR120 LTHTE P20710 P20F10 PZEZCN P2DF1D 720560 024784 P2C1+1 VZCL81 PTECT PC E L 2 73870 PIDES L L L L L E 4 7 8 4 HOVE43 10/02/84 P.164 1214 P2C1 PZDC 1024 PK 2 L 81PAUB ESK ULALB DUALK WIICR LATAL STAU ENTAL ADDAL ADDAL ENTAU PULAL LATA STRAL INCAL DENE TRAC HSIN HSIN WIND: PULAL ENTAL TRAL TRAL #TBF **JEAN** A D D A B T R A N Lu SHA DO THE 5 FIR81 Lais ICIGA ASSEMBLER, VERSION 1.0 142621 243254 504307 293903 303364 123253 243162 123270 122211 47277 511995 347447 143245 03201 10937 113256 01110 507313 933264 01701 103255 123254 ELLER F 33200 11271 100001 50720 FFE 44325 0001 007446 001403 001405 007420 007443 001404 007417 001430 007437 007415 07426 007441 007413 001401 0141 11100 12210 Line of 00741 11100 ŧ 9119 1114 1113 1111 E 610 ŝ E 5 Ż

I

ł

ł

1

()

Hover Controller Subroutine. (contd)

1720		• •	PYCES	PYCES INCLUDES	801H PICOT	DT COMMANOS AND THE
	÷	•	10 014	PIC CONTROLLER		
		•				
i.		- 018405-	19193	2 N 7 3 F	PC PC	
	001450	507201		EN1 ICP	-	USE ICHI AS THE INDEX REG.(B)
	- IGALAA			NRIN3	P	INITIZE THE B PEC. TO O
	007452	40000		2118	~	
		10000		2418 -	- -	ICRIMINATION INCOMENTATION INCOMENTATION
		50711			2	
1						014044(1)23014(1)24(1)24(1)
_	007460	123256				
			i 1 1	ADDAC	1+92014	ALTAPTOPAGINE LATEBAL
	007462	443000		STRAL	P1CE5+1	STORE PERFORMENTS STORED STORES
ļ		113230	•	ENTAL .	- 011014	
-	001464	143001		ADDAL	P1078+2	AL:=970543.920910
				BIRRE	2483014	
	007466	123134		ENTAL	280	ALISALARED OF CONTROLS
Ţ				ADDACK		
-	007470	507110		19113	ž	USE REACT BARK O
Ĩ.				BTRAU-	PRWEND	
	007472	507313		ENTSA	1	COE REACT TRACK
ł		00000		- HINGH	•	
		001/05		ULALU	4	AUSALad
		969969				
4747 00	001300	370001		1 XO L N 3		LIN LIN LINE ALGELT ALGELT ALGELT
I					- Proto-	
	001803	102105		ENTICA	-	USE ICRI AG INDEX REG. (ELENENT INDEX)
1						
	00/204	201450		ADEA	dal	(1425,125) + 4514
			: 			
		000006		4004		CALL DYEFTION HANDLER
					1 × 3 × 4 Å	FISE DU MERT LINE ADD SCHWEND, INCM SKIL MERT PINC
1						ŝ
		-				AND NEXT POW ELEMENT OF PPLY CONTROL OF THE
				-8+84-8-		
4759 00	007512	507203		ENTICE	~	
ł					36	9CHC186 PCF PCF 20193
	-16/00		:		PUC	
	etel					THE STATE THE ADDITION OF THE ADDITION OF THE STATE S
			-	40	111044	
-	_	347530		40	P2154	The second secon
					• •	AAPE NON INDEX THD START COLUMN INDEX
	11111	126711		ENTAL	PPERD	01100000000000000000000000000000000000
T						
_	007525	446711		BTRAL	DP 12 ND	
I.					Ŧ	BARK 9 PCR CATA
	722700			•		

05174 1011 111 1217 111
901310 P31P4 507313 507313 507313 507313 507313 507313 507313 507303 507303 507304 507400000000000000000000000000000000000

٠.

٠.

189

•)

1

1

Ą

1

•

001663 36010 56799 007606 347645 767793 007610 131700 791701 007611 013110 131701 007611 013110 131701 007611 013110 131701 007611 01310 131701 007611 01701 1319030 007626 507201 007630 131701 007630 131701 007630 131701 007630 131276 007630 131276 007630 131276 007630 131276 007630 131276 007630 131276 007631 131001 007631 141690 007631 141690 007641 141690 007641 141690 0007641 141690 007641 141690 007641 141690 007641 14169	te te		360000		ENTOR Futter	c #		SELFCT ICHI(IHICHI)
Market Market <thmarkt< th=""> Market Market<td>1012</td><td></td><td>360000</td><td></td><td>RATAK</td><td>0</td><td></td><td></td></thmarkt<>	1012		360000		RATAK	0		
000000000000000000000000000000000000			946919	054104		-	(),[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	IF ICREFF SKIP
001000 1/100 00100 1/100 00100 1/100 00100 1/100 00100 1/100 00100 1/100 00100 1/100 00100 1/100 00100 1/100 00100 1/100 00100 1/100 1/100 00100 1/100 00100 1/100 00100 1/100 00100 1/100 00100 <t< td=""><td></td><td></td><td>147807</td><td></td><td>4.7.</td><td></td><td></td><td>CO CHECK FOR TYPE OF MINIMAL</td></t<>			147807		4.7.			CO CHECK FOR TYPE OF MINIMAL
001440 101401 10140 10140 10140 10140 10141		007606	347645		9.0	PE1F34		TO SUMPATION WITH
001111 0111100 0111100 0111100 0111100 01110	È	60860	-202202	IG4L84	ENTICE -			TCH7 IS INDEX
000000000000000000000000000000000000	E	019100			5 1 7 T B	PADESC		+1042) • • • • • • • • • • • • • • • •
000000000000000000000000000000000000			116620					10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 000000000000000000000000000000000000								
07911 970000 P1001 F101	::		617629			PE1P53		PS1P53 IF
01111 970001 P31F923 FTUENC I STUEL STUE	÷	I	204060		ROOP .			L TC AN ENPOR HANDLER
001011 907001 Partras 1	Ξ		•	141	3 18 THE 3	TION	1X1 BLCCKS CF AHL	
00113 011001 FFTILE FFTILE <td>Ì</td> <td></td> <td>100046</td> <td>P31P32</td> <td></td> <td>-</td> <td></td> <td>EICF241,1.E. J</td>	Ì		100046	P31P32		-		EICF241,1.E. J
00000000 1000000 100000 100000 100000		19/00					,	10 14E 14UEA
000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001 0000001					2 1 4 L 4 Z			~ ^
000000000000000000000000000000000000		178/00	810667		PULALB	1.424		
0100000 010000 </td <td></td> <td>228/00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		228/00						
THIS					BIRAUS	1 = 2 4 4 4 1		1.447 (STURN) (J)4767 (I) 2017146 IS 2441
001439 91999 01499 01490 10741 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>EACH 10 GET WENT AWIN VESCHIFIC</td></t<>								EACH 10 GET WENT AWIN VESCHIFIC
007434 507001 70773 10000 1000 1000 1000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AAA BLUCKS UP AP</td> <td></td>							AAA BLUCKS UP AP	
OUT001 ENTICATION ENTICATION ENTICATION 0010010 631276 518ALB TPFZ-1 NICHTUR FIX NICHTUR FIX 001001 631276 518ALB TPFZ-1 NICHTUR FIX NICHTUR FIX 001001 631276 518ALB TPFZ-1 NICHTUR FIX NICHTUR FIX 001001 1130010 ENTALB PAVIN-1 NICHTUR FIX NICHTUR FIX 001001 2330011 ENTALB PAVIN-1 NICHTUR FIX NICHTUR FIX 001001 2330011 ENTALB PAVIN-1 NICHTUR FIX NICHTUR FIX 001001 2330011 FINID PATALBOR ALANDATION NICHTUR FIX NICHTUR FIX 001001 2330011 FINID PATALBOR			LADALS	664104		<u>н</u> .		14780
001430 5174.10 774.12 774.12 11.12			102/05		ENTICH			JCHI IS MCB THE INVER HEG.
007000 007000		178100			9 1 Y I Y 2			
007431 131010 FMTALD PAUALE PTF-1 ALIAC(FTZTTTCR1-1) 007431 30470 PULALE PTF-1 ALIAC(FTZTTTCR1-1) 007431 30470 PULALE PTF-1 ALIAC(FTZTTTCR1-1) 007431 30470 PULALE PTF-1 ALIAC(FTZTTTCR1-1) 007431 30470 PULAL PTF-1 ALIAC(FTZTTTCR1-1) 007431 11400 PTHAL PTF-1 ALIAC(FTZTTTCR1-1) 007431 231001 PULAL PTF-1 ALIAC(FTZTTTCR1-1) 007431 231001 PULAL PTF-1 ALIAC(FTZTTTCR1-1) 007441 21000 PULAL PTF-1 ALIAC(FTALE) ALIAC(FTALE) 007441 21000 PULAL PTF-1 ALIAC(FTALE) ALIAC(FTALE) ALIACLING FCA PSTP3 007441 21000 PULAL PTF-1 ALIAAL+1PFJLE ALIAAL+					OTVIC	1-7-1-4-L		
007431 504703 FIRT		1014100						I O T A M T M A T C D I
001433 504703 [NTAU 174 1.1.							:	
001010 011000 011000 0100000 010000 010000 010000<		007633	504703		LATA			15
001635 13001 FMTALE PAVIN 20015 001635 23001 FULALE PAVIN ALECTANTON 001641 304103 FULALE PAVIN ALECTANCE 001641 304103 FULALE PAVIN ALECLING FOR PSTP3 001641 304103 FULALE PAVIN ALECLING FOR PSTP3 001641 14130 APANIN(I+1)*PZA(I+1) ALECLING FOR PSTP3 001641 14130 ADDAL TYP ALEALING FOR PSTP3 001641 317601 ALEALING FOR PSTP3 ALEALING ALCA ALEALING ALCA 001643 317601 FUT AL TAPA ALEALING ALCA 001643 317601 FUT AL TAPA ALEALING ALCA 001643 317601 FUT AL TAPA ALEALING ALCA 001644 317601 FUT AL TAPA ALEALING ALCA 001644 317601 FUT AL FUT AL ALEALING ALCA 001644 317601 FUT AL FUT AL ALEALING AL 001644 317601 FUT AL FUT AL AL	-		-068498-		BRAU			THPEAN. T.C. THPEPANIN(I)+PZK(I), SCALING 15
001615 131011 EFFALE P2K A=PAMIN(I+1)*PZN(I+1) ALIAL*(FFALCR1).1 001615 231017 FULALE PZN A=PAMIN(I+1)*PZN(I+1) PUT AU FNULATION 001615 231017 FNUL FNUL PV A=PAMIN(I+1)*PZN(I+1) PUT AU FNULATION 001641 114650 ADDAL FV A=PAMIN(I+1)*PZN(I+1) PUT AU FNT AU 001641 114650 ADDAL FV A=PAMIN(I+1)*PZN(I+1) PUT AU FNT AU 001641 114650 ADDAL FV AITAL*(FV ALTAL*(FV ALTA ALTAL*(FV ALTA								
007636 233017 FULALB FZK 007636 233017 FULALB FZK 007631 201403 FTA 3 007631 141890 FTA 3 007631 141890 FTA 3 007631 141890 ADDAL TPP 007643 170001 ENTERD TPPP2 007643 170001 ENTERD TPPP2 007643 170001 ENTERD TPP2 007643 170001 ENTERD TPP2 007643 170001 ENTERD TRATED 007643 170001 ENTERD TRATED 007643 17001 ENTERD TRATED 007643 131023 ENTERD TRATED 007644 131023 PATED TRATED 007643 131023			- 159651-		ENTALO	21244		
001001 1010	::	007636	253017		PULALD	P2K		AIMAL®(F2K+ICR1),1.E.
APPAMIN(1+1)*PZA(1+1) APPAMIN(1+1)*PZA(1+1) 007641 14100 007641 14100 007641 14100 007641 14100 007641 14100 007641 14100 007641 14100 007641 14100 007641 14100 10001 11000 11001 11000 11001 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11100 11000 11100 11000 11100 11000 11100 11000 11100 11000 11100 11000 11100 11000 11100 1	=		E04905-		LATA	-		51 15
001441 141840 1710 AL Tepe ALIAAL			-				PAMIN(I+1)*PZN(1+1	
007641 141650 ALIEAL+7FF.1.E. ALE 007641 141650 578ALB 7797 007643 31000 578ALB 7797 007643 31000 1 578ALB 7797 007643 31000 1 578CE 7571 1417 007643 317604 JP 2787 1418 141 007643 317604 JP 2787 141 141 007643 317604 JP 2787 141 141 007643 317004 141 2787 141 141 007643 310001 81750 3100 141 141 141 007643 131023 8170 741 741 141 141 141 007643 317023 8170 741 741 741 141					- TPAGE			PUT AD TATE AL
001443 370001 ENTRUE TPPPE ICR134 BUT 1445 001443 370001 ENTRUE I SINCE P37P90 ICR134 BUT 1445 001444 37604 JP Pa1F50 SINCE P37P90 ICR134 BUT 1445 001444 37604 JP Pa1F50 SINCE P37P90 ICR1341 BUT 1445 001444 37604 JP Pa1F50 SINCE P37P90 ICR1341 BUT 1445 001444 37604 JP Pa1F50 SINCE P37P90 ICR1341 BUT 1445 001444 37604 B193910 ENTRU THE NEXT AND ICR1341 INTERD1 00144 13023 PS1P55 EVALUANE ELSE ICR131CR134 ILENTERD1 ILENT	5	007641	141650		ADDAL			I.E. ALS
001443 310001 ENTER 1 SINCE P3TP30 ICRIEICEI+1 BUT THIS 001444 31500 JP P31550 SINCE P3TP30 ICRIEICEI+1 BUT THIS 001444 31500 JP P31550 SINCE P3TP30 ICRIEICEI+1 BUT THIS 001444 31500 JP P31550 SINCE P3TP30 ICRIEIL ICRIEIL 001443 31500 SINCE P3TP30 ICRIEIL ICRIEIL ICRIEIL 001433 31701 P31795 ICRIEIL ICRIEIL ICRIEIL 001431 13023 P31795 ICRIEIL ICRIEIL ICRIEIL ICRIEIL 001433 131023 P31795 ICRIEIL ICRIEIL ICRIEIL ICRIEIL ICRIEIL 001433 34164 U P3176 ICRIEIL			- 493664 -	i 	- BIRALB	2442		THE JOCALING
007444 34760 JP 51MCE 54790 JMCREEKTED ICH ICH </td <td>5</td> <td>007643</td> <td>100016</td> <td></td> <td>ENTOKO</td> <td></td> <td></td> <td>1 BUT THIS</td>	5	007643	100016		ENTOKO			1 BUT THIS
007646 JP DBTF50 GO GET THE NEXT ANIM 007645 J47604 TCMITH TCMITH 007645 J40001 PTH56 FMMMPYS + FAVIM+PZK TCMITH 007646 J13023 PBTF10 PTH5 FAVIM+PZK 007646 J13023 PBTF10 PTH5 PTH5 007646 J13023 PBTF10 PTH5 PTF10 007646 J13023 PBTF10 PTF10 PTF10 007640 J13023 PBTF10 PTF10 PTF10 007640 J3023 PBTF10 PTF10 PTF10 007653 J47640 JP PTF50 PTF50 007653 J47640 JP PTF50 PTF10 007653 J47640 JP </td <td>=</td> <td></td> <td></td> <td>;</td> <td></td> <td></td> <td>064184</td> <td>ICHI-DHCE</td>	=			;			064184	ICHI-DHCE
001401 781734 1 001404 13023 74128 540144913 540144924 001404 13023 74126 74126 74126 001404 13023 74126 74126 74126 001404 13023 74126 74126 74126 001404 13023 74126 74126 74126 001404 13023 74126 74126 74126 001404 13023 74126 74126 74126 001404 13023 74126 74126 74126 001404 13023 74126 74126 74126 001404 13023 74126 74126 7416 001403 34144 4 74126 7416 7416 001403 341454 4 7416 7416 7416 7416 01403 34164 4 7416 7416 7416 7416 7416 01403 34164 4 7416 7416 7416 7416 7416 01403 3	12	007644	347604		٩٥	P61550		GO GET THE NEXT AMIN
Image: Consett of the sector accessed bear and sector accessed by the sector accessed of the sector accessed by the sector accese	\$		-100006				i	ICHINI
007446 13023 P81P35 THE PERFIT	2		•	1 4 5	5 SECTION	8	+ 514+	
001044 131023 P81P95 FW1LA P2FF1-1 001041 13023 BERLA P2FF1-1 ALIECERFITERFETER 001651 431023 BERLA P2FF1-1 ELSE ICPLETERFETER 001653 347646 UP P8FF55 ELSE ICPLETERFETER CONTANCE 001653 347546 UP P8FF56 ELSE ICPLETERFETER CONTANCE 001653 347546 UP P8FF66 CONTANCE CONTANCE	\$	i.	•		THE BEAR	RESULT IN	14×24	
01441 133814 ADDALD TPFTC1 001450 431023 81RALD P2KF1-1 FIRENTTTFFTC1CM1-11AL 001450 431023 81RALD P2KF1-1 FIRENTTTFFTC1CM1-11AL 001451 346113 FIRENTTTFFTC1-11AL FIRENTTTFFTC1CM1-11AL 001451 34614 UP P87F53 ELSE ICR1+1 ANC DO NETT LINE 001453 341644 UP P87F53 ELSE ICR1+1 ANC DO NETT LINE 001453 341654 UP P87F53 GOTO NETT RUE 001453 341654 UP P87F53 GOTO NETT RUE			13023	PS1P95	ENTALA			ZKP1+ICP1-1)
007650 433023 818ALB P2KF1-1 FIXE1-11AK FIXE FIXE FIXE FIXE FIXE FIXE FIXE FIXE	*		946664-		ADDAUB	1-24444		
001031 100113 100113 100114<		007650	493023		STRALP	P2KF1-1		KP1+ICR1-11mAL
001053 347646 LUP Porf55 ELSE ICRIFI AFE DO NEXT LINE 001053 347654 JP Porf55 CONTINUE 0 001653 347654 CONTINUE CONTINUE 0 001653 347654 CONTINUE CONTINUE 0 001653 347654 CONTINUE CONTINUE	Ì							-IF ICHIEPPAT THEN SKIP ONE
007053 307650 -UP 007653 -CONTINUE -CONTINUE 0 007053 317654 JP PEFF6 GCT0 NEX1 B1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1			•				SE ICHINICRI+1 AND	
007453 347654 JP PETF6 607453 347654 6070 MEXI BI	Ì				2	P07195		
• • • • • • • • • • • • • • • • • • •	:	007653	347654		٦	PE7F6		NEX1 81
882CTION P819	İ		•					
			•		BECTIO	9 1 8 9		
			•					

190

1

1

ł

AppendixJ

Example Data File for Using the ROPTSYS Computer Program.

1

....

t i i

0.0 (AX AM) MATRIX (NO) C MATRIX (NS X NC) 0.1 0 -28 2.0 -11 0.0 0.0 B MATRIX (NC) 1,1 HM MATRIX (NM X NS) 1 0,0.0.0 0.+1 0,0,176 0 0,0 0,1 0 PN MATRIX (NM X NPD) 0.000 0.0 GAMMA MATRIX (NS X NPD) .245.-036 .37.2.02 .00191.0396 - 00191, 0396 0.0 0 MATRIX (NPD) 24 5.9 98 R MATRIX (NM) 318, 318, 00039

AppendixJ

.

7

1

.....

ROPTSYS User's Manual. (contd)

 $\overline{\mathbf{x}}$

FIN ONE RECULATOR SYNTHESIS USE FIND FRITES AN C B FINE FILTER SYNTHESIS USE FINE CAN Q R DISTABLE FINTE DIACONAL ELEMENTS ONLY (AX ANI B Q ARE DIACONAL ELEMENTS ONLY (AX ANI AND THE CLEAR AND ELEMENTS HOUSE (ALE ONLY SIGN ALE ONLY SIGN (AT ANTRIX AND FILL ONLY AND ALE ANTRICES (ALE ONLY SIGN (AT ANTRIX AND FILL ONLY AND ALE ANTRICES (ALE ONLY SIGN (AT ANTRIX AND FILL ONLY AND ALE ANTRICES (ALE ONLY SIGN (ALE ONLY S

Appendix J

111 0.1 MO COMPENSATING TRANSFER FLANTIONS AND INFORMATION TO COMPENSATION TRANSFER FLANTIONS AND FUESTINEL ON THE CONTRIPTION OF THE PROPERSIZED ON THE PROPERSIZ INVERT A REQUIRE AND FURLANT. 1.11 CART A MORE AND FURLANT. 2.11 CART A MORE AND FURLANT. 2.11 CART A MORE AND FORMATION. 1.11 FORMAL COMPARIANCE INACTION AND FORMATION FORMATION. 2.12 FURDIAN COMPARIANCE AND FORMATION FORMATION. 2.12 FURDIAN COMPARIANCE AND FORMATION FORMATION. 1.12 FORMAL COMPARIANCE AND FORMATION FORMATION FORMATION. 2.12 FURDIAN COMPARIANCE AND FORMATION FORMATION. 1.12 FORMAL COMPARIANCE AND FORMATION AND FORMATION. 1.12 FORMAL COMPARIANCE AND FORMATION AND FORMATION. 1.12 FORMAL COMPARIANCE AND EXCENT FORMATION. 1.14 FORMAL COMPARIANCE AND EXCENT FORMALIANCE AND EXCENT FORMATION. 1.14 FORMAL COMPARIANCE AND EXCENT FORMALIANCE AND EXCENT FORMATION. 1.14 FORMAL COMPARIANCE AND EXCENT FORMALIANCE AND EXCENT FORMATION. 1.14 FORMAL COMPARIANCE AND EXCENT FORMALIANCE AND EXCENT FORMATION. 1.15 FORMER FORMALIANCE AND EXCENT FORMALIANCE AND EXCENT FORMATION. 1.16 FORMER FORMALIANCE AND EXCENT FORMALIANCE FORMATION. new line for next row IMIN O THE MINIMAL FORM OF THE COMPENSATION IS NOT FOUND -1. THE MINIMAL FORM OF THE COMPENSATION IS CALIFICATED NS : MARRIER OF STATES (MAY 20) NC = MARRIER OF URTROLS (MAY 8) NC = MARRIER OF URTSOLS (MAY 8) NC = MARRIER OF USTATRIANERS (MAX 8) NC = MARRIER OF DISTATRIANES (MAX 9) NCOT = MARRIER OF OUTFUTS (MAX 10) URCO = MARRIER OF MOOTL STATES (MAX 10) LIFLG = 1 LIFR REJULATER AND FLITTA STATESIS = 0 FLAB BOTH REJULATER AND FLITTA STATESIS MATRIX CURIS one line title free format, by row, wrap around if needed. DELETE TRUSE MATRICES NOT REQUIRED FOR OPTIMUL RELATIATION SYNTHESIS USI F HO AX G B TS.TC TD TH TP F. DSTAB.HD.RL, D.C. FM. (AK.AH) .C B CAM, HM.RN Q.R.K.MC Here 4 comment for the numbers AHD 5 (free format) NS MC, MXH MC MOUT, MHCD 1REG ITT 10 IF DEFAULT VALUES ME ZERO IOL-1 OPDU LOUP EICHNYSTEM IS DÉSTRED IOL-1 OPDU LOUP EICHNYSTEM OMLY (THEN TEJMILMITE) = 1 MODAL DISTRIBUTEN MARTES OMLY = 1 MODAL DISTRIBUTEN MARTES OMLY = 10=1 IF THE PNS VALUES OF THE COMPOL AND STATE ARE TO BE FOUND IO=1 IF THE PNS VALUES OF THE COMPOL AND STATE ARE TO BE FOUND VIL.81) prior Missier equition equipation of Thinks. 2 report free founds experi and neglect one true risks at Hime 1.2.4 und feature each maria. wore U = C+x The I title or comment for the data set 11.0.1 (comment for the options CARD 1 (comment of 155, 14 177, DAH, 1773, 16, 1057AB 104, 107, 140, 157, 157, 157, 161, 104 MATRICES THIS VERSION OF OPTEYS WILL COMPUTE OFTIMAL CONTROLLERS OFTIMAL ROLL FOLLOWIC CONTROLLERS OFTIMAL MERLE FOLLOWIC CONTROLLERS OFTIMAL MERLE FOLLOWIC CONTROLLERS SYSTEM FLORMALUES FLORMVETTERS AND MEDAL MAT SYSTEM FLORMALUES FLORMVETTERS AND MEDAL MAT FLANDES SYSTEM FLORMALUES FLORMVETTERS AND MEDAL. MAT FLANDES SYSTEM FLORMALUES FLORMVETTERS AND MEDAL. MAT FLANDES OFTIMAL STATES AN AND P. '. INTEGTA-CONTROLLER CANSS C. DEPTIMAL OFTIMAL CONTROLLER CANSS C. OFTIMAL CANTON OFTIMAL CANTON CONTROLLER CANSS C. OFTIMAL CANTON CONTROLLER CANSS C. MATE U. S. CONTROLLER CANSS C. CONTROLLER ŧ PEVISION BY RICK SHALFER IN MACHINE HELICLE REAL-BIA H O Z VERSION 22 DULY 1981 JEFFERY A QUIRK TRUMEN S. REALING (#15YC 6 STURNI

ROPTSYS User's Manual.

Appendix J. ROPTSYS Computer Program

D

<u>, 1</u>

D

This appendix includes the users manual for the ROPTSYS computer program, which is located on the FSD VAX at NASA Ames Research center, and an example data file. The data file was used to calculate the full order compensator in the Navion example in Chapter 2. The lengthy FORTRAN listing is not shown.

-

ł

ſ

ĺ

4

ľ

ļ

ł

۱

51

10197 ASSEMBLEM, VEHOLLP 1.C. SCRTA SECTION

Ç

THE CROER HERE TO AAR THE REASURENCEN IN CPP3IA CORRECT PUTIE RESERV RESERVIC PT144 RESERV RESERVIC P1144 RESERV RESERVIC P1146 RESERV RESERVIC P1146 RESERV RESERVIC P1146 RESERV RESERVIC P1147 RESERV RESERVIC P1147 RESERV RESERVIC P1146 RESERV RESERVIC P1146 RESERV RESERVIC P1147 RESERV RESERVIC P146 RESE	SELECTICA LOGIC
PDIMET RESERV ME SERV'10 PPHI RESERV ME SERV'10 PPHI RESERV ME SERV'10 PPHI RESERV ME SERV'10 PAI RESERV ME SERV'10 PAICI RESERV ME SERV'10 PAUCI RESERV RESERV'10 PAUCI R	1
PFM1 RESERV RESERV RESERV RESERV LE PA0181 RESERV RESERV RESERV LE PA1 RESERV RESERV RESERV LE PA10C RESERV RESERV LE RESERV PA10C RESERV RESERV LE RESERV PA10C RESERV RESERV LE RESERV PA10C RESERV RESERV LE LE PA10C RESERV RESERV LE<	
P931 RESERV RESERV RESERV RESERV L PAIR RESERV RESERV RESERV L PAIR RESERV RESERV L PARCT RE	-
PALING RESERV RESERV RESERV RESERV 10 PAI RESERV RESERV RESERV 10 PAI RESERV RESERV RESERV 10 PAI RESERV RESERV 10 PAI RESERV RESERV 10 PAI RESERV RESERV 10 PAIC RESERV RESERV 10	YAP ANGLE
FALL RESERV RESERV RESERV RESERV L FAL RESERV RESERV RESERV L FUEL RESERV RESERV L L FUEL RESERV RESERV RESERV L FUEL RESERV RESERV RESERV L FUEL RESERV RESERV RESERV L FIBUC RESERV RESERV L L FIBUC RESERV RESERV RESERV L FIBUC RESERV RESERV L L FIBUC RESERV RESERV RESERV L FIBUC RESERV RESERV RESERV <td></td>	
PAX PESERY NESERY	
FAT #13684 #13684 10 FVVEL #13684 #1564 #1564 10 FVVEL #13684 #1564 #10 FVVEL #13684 #1564 10 FVVEL #13684 #1564 10 FVVEL #13684 #1564 10 F180C #13684 #1584 10 F180C #13684 #15844 10 F180C #15644 #15844 10 F180C #15684 #15844 10 F180C #15684 #15844 10 F180C1 #15684 #15844 10 F180C1 #15684 #15864 10 F180C1 #15864 #15864 10 F180C1 #15866	LONG. ACCELERATION
PAZ PESERV NESERV	I ASERT. ACCELERATION
FUVEL RESERV NE SERV	NUMMAL ACCELERATION
PYREL RESERV RESERV RESERV RESERV IESERV IESERV <td></td>	
P180L RESERV RESERV RESERV LC P180C RESERV RESERV RESERV P180C RESERV RESERV RESERV P180C RESERV RESERV RESERV P180C RESERV RESERV P180C RESERV	VERTICAL VELOCITY
F180C 81568V 81568V 81568V 10 F180C 81568V 81568V 10 F1001 81568V 81568V 10 F100 81568V 81568V 10 F100 81568V 81588V 10 F100 81568V	
73800 85568 85568 85568 10 73000 85568 85568 85568 10 93000 85568 85568 85568 10 93 8000 85568 85568 10 93 8000 85568 85568 10 93 85568 85568 85568 10 93 8400 85568 85568 10 93 8400 85568 85588 10 93 8400 85568 85588 10 93 8400 85568 85588 10 93 86568 86588 10 93 85568 86588 10 93 85568 86588 10 94 85568 86588 10 94 85568 86588 10 94 85568 86588 10 94 85688 86588 10 94 85688 86588 10 94 85688 86588 10 94 85688 86588 10 94 85688 86588 10 94 85688 86588 <	
PX800 R1568 R1696 R1668 R1568	THEFTAL
PARDUT MESERY MESERY <td>6</td>	6
PIECT	TATTA THE HEADING THERTAL
PARTY RESERV RESERV <td>T VEL, IN HEADING</td>	T VEL, IN HEADING
71 72.017 75.014 75.014 75.014 75.014 70.01 75.014 70.01 75.014 70.01 75.014 70.01	INCRTIAL Z VEL, IN HEADING INCRTIAL FMAPE Bunnay reast v branerov
PADOT PLSERY MESERY MESERY <td>۶þ</td>	۶þ
PT001 RESERV RESERV <td>NUMBAY TEARS I TOULLY WILL WILL WE WILL W</td>	NUMBAY TEARS I TOULLY WILL WILL WE WILL W
8 8.856.87 8.856.87 10 712.87 8.556.87 10 10 712.97 8.556.87 10 10 712.97 8.556.87 10 10 712.97 8.556.87 10 10 712.97 8.556.87 10 10 712.97 8.556.87 10 10 712.97 8.556.87 8.56.87 10 712.97 8.556.87 8.56.87 10 712.97 8.556.87 8.56.87 10 712.97 8.556.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 8.56.87 10 712.97 8.56.87 10 10 710.97	FRANE
PARKF RESERV PADP RESERV PADE RESERV PADE RESERV PADE RESERV PADP RESERV PADP RESERV PADP RESERV	
9.2644 8.264 9.207 8.264 9.207 8.264 9.209 8.264 9.209 8.264 9.209 8.264 9.209 8.264 9.209 8.264 9.209 8.264 9.209 8.264 9.209 8.264 9.209 8.264 9.209 8.264 9.209 8.264 9.200 8.264 9.200 8.264 9.200 8.264 9.200 8.264	REFERENCE POSITION
PICF PICF PICF	ROTATEC REFERENCE POSITION
PICD NESERV PICI RESERV PICI RESERV PICI RESERV PICL RESERV PICL RESERV PICL RESERV PICL RESERV PICL RESERV PICL RESERV PICA RESERV	A PUBLICE EMPUN
P.LCIM RESERV P.LCULD RESERV P.LCULD RESERV P.LCLU RESERV	÷
720910 828284 720910 85584 91801 82584 91801 82584 9100 82584 9100 85584 9100 85584 9100 85584 9100 85584 9100 85584 9100 85584 9100 85584 9200 85584 9200 85584	A 2MD DEMIVATIVE CONTROL (IMETA FREDBACK)
PX0910 PE5ERV PX6010 PE5ERV PY8011 PE5ERV P100 PE5ERV P100 PE5ERV P1010 PE5ERV P1010 PE5ERV P1010 PE5ERV P2010 PE5ERV P200 PE5ERV P200 PE5ERV P200 PE5ERV P200 PE5ERV	X 3ND DERIVITIVE CONTROL (PITCH WAIE PEECBACK)
736010 760603 73867 760603 73877 760603 7107 75564 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664 7107 75664	A TOTAL PID CONTROL
71847 465644 71847 465644 7107 765644 7107 765644 7107 765644 7107 765644 7107 765644 7107 765644 7107 765644 7107 765644 7107 765644 7107 765644 7107 765644 7107 765644 7207 765644 7207 765644	LLD X TCTAL PTO CONTROL
9105 855 9105 855 9105 855 9105 855 9105 855 9105 855 9105 855 9105 855 9105 855 9105 855 9105 855 9105 855 9105 855 9209 855 9209 855	REFERENCE POSITION
F10F RESERV F10D RESERV F10D RESERV F10D10 RESERV F200 RESERV F201 RESERV	NOINTRO NETRICE TOULLON V deatairt seaca
P10D R656RV P10PA R656RV P10PA R656RV P10P10 R656RV P100L0 R656RV P100L0 R656RV P100L0 R656RV P100L0 R656RV P100L0 R656RV P20P R556RV P20D R556RV	A TUBLICE CANUN
71074 KEREAV 710710 REBERV 710010 REBERV 72827 REBERV 7262 REBERV 7207 REBERV 7207 REBERV 7207 REBERV	Y DERIVATIVE CONTROL
PYCAR RESERV PYDOLD RESERV PYDOLD RESERV PYDELZ RESERV PYDELZ RESERV PYCD RESERV PYCD RESERV	T ZHD DEPLYATIVE CONTROL(PHI PEEDEACK)
PT0PT0 REAERY PT00L0 REAERY PT0EL2 REAERY PT0EL2 REAERY PT00 REAERY PT00 REAERY PT00 REAERY	Y JRD DERIVATIVE CONTROL(ROLL RATE FEEDBACK)
PIDULD RESERV PIDULD RESERV PIDEL2 RESERV PIDD RESERV PIDD RESERV	TOTAL PID CONTROL
71417 415514 7101 155514 7101 155514 7101 155514 7101 155514	CLD Y ICTAL PID CONTROL
P20P10 P25ERV P20P10 P25ERV	
V1257 014024	Z PUBITION ENROW
PTOPIO RESERV	2 DERIVATIVE CONTOL
000000 PZCOLD PESERV RESERV'10	CLD 2 ICIAL PID CONTROL
ANDER PERKA	
Z ANASAN ANASAN TOLA DODOOD	I INTEGRAL CONTROL

Memory Allocation. (contd)

AppendixI

199

1

R

•)

001181 001181 000000 000011 000011 000010 000000 000000 000000 000000 000000			000325		C A T A	213f,+76C,755C,2048C,229D	
0)1111 000143 [A13 0.2564E.102.02.735.10.01 0)1112 000111 000012 [A13 0.2564E.102.02.735.10.02 0)1112 000011 000012 [A13 [A13.1] 0)1112 000012 [A13.1] [A13.1] [A13.1] 0)1112 000013 [A13.1] [A13.1] [A13.1] 0)1112 000013 [A13.1] [A13.1] [A13.1] 0)1112 000013 [A13.1] [A13.1] [A13.1] 0)1113 000001 [A13.1] [A13.1] [A13.1] 0)1113 000001 [A11.1] [A13.1] [A13.1] 0)1113 000001 [A11.1] [A11.1] [A11.1] 0)1113 000001 [A11.1] [A11.1] 0)1113 000000 [A	-						
011111 000001 0.1544E,1924E,795,1046 011111 001011 001111 001011 011111 001011 001011 00111 011111 000001 115541 LA1A 165,170,100,55,40,461,10,26 011111 000001 111 000011 111 011111 000001 111 100011 111 011111 000001 111 211,1,1 100011 011111 000001 111 211,1,1 211,1,1 011111 000001 111 211,1,1 211,1,1 011111 000001 111 211,1,1 211,1,1 011111 000001 111 211,1,1 211,1,1 011111 000001 111 211,1,1 211,1,1 011111 000001 111 211,1,1 211,1,1 011111 000001 111 211,1,1 211,1,1 011111 000001 111 211,1,1 211,1,1 011111 000001 111 211,1,1 211,1,1 011111 000001 111 211,1,1 211,1 011111 000001 111,1 211,1 211,1,1 011111 000001							
0.11110 0.00000 F.M.A 0.20000 F.M.A 2.0.0.0000 F.M.A <		111660	000345				
0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000001 0)11/1 000001 0)11/1 000001 0)11/1 000001 0)11/1 000001 0)11/1 000001 0)11/1 000001 0)11/1 000001 0)11/1 000001 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1 000000 0)11/1	1	031560	00000		CATA	0.36486.16240.730.1040	
011111 000111 011111 000010 011111 000010 011111 000010 011111 000010 011111 000010 011111 000010 011111 000010 011111 000010 011111 000010 011111 000010 011111 000010 011111 000010 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 0111111 11400 0111111 11400 01111111111111 11400 0111111111111111 11400 01111111111111111111 11410 0111111111111111111111111111111111111		121660	004000				
011113 000020 P15541 LAIA 106.170.166.120.26 011111 000002 P15541 LAIA 106.170.160.120.40.66.120.26 011111 000002 P15 P1 P1 011111 000002 P1 P0 011111 000001 P1 P0 011111 000001 P1 P1 0111111 000001 P1 P1 0111111 000001 P1 P1 0111111 010010 P1 P1 0111111 010010 P1 P1 0111111 010100 P1 P1 0111111 010100 P1 P1 0111111 011111 P1 P1 0111111 010100 P1 P1 0111111 P1 P1 P1 01111111 P1 P1 P1 01111111 P1 P1 P1 0111111 <td></td> <td>11121</td> <td>061600</td> <td></td> <td></td> <td></td> <td></td>		11121	061600				
011112 000012 P15551 LATA 166.170.180.56.40.46.120.26 011111 000001 P1 50 011111 000001 P1 20 011115 000000 P1 20 011115 P1 P1 20 0	Ţ	933124	000333				
011119 00001 PM S 011119 000001 PM S 011111 000001 PM S 011111 000001 PM S 011115 100113 PLAGE 300540 011115 000001 PM S 011115 000000 PM S 011115 PM C S <td>-</td> <td>621660</td> <td>000020</td> <td>PYSSEL</td> <td>EATA</td> <td>11 11 19 190 ET 10 10 10</td> <td></td>	-	621660	000020	PYSSEL	EATA	11 11 19 190 ET 10 10 10	
011117 000002 011119 000001 011119 000001 011119 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000001 011111 000000 011111 000000 011111 000000 011111 000000 011111 000000 011111 000000 011111 000000 0111111 000000 0111111 000000 0111111 000000 01111111 000000 0111111 010000 0111111 010000 01111111 010000 01111111 010000 01111111 010000 01111111 010000 011111111 010000		- 921660	120000			100 · 1 / 0 · 100 · 30 · 40 · 00 · 10 · 20	
011111 000001 FM 50 011111 000001 FM 50 011111 000001 FM 50 011111 000001 FM 10 011111 1000001 FM 119190 011111 000000 FM 119190 011111 000000 FM 2 0111111 000000 FM 119190 011112 000000 FM 2 011112 010000 FM 2 011115 010000<	_	LEIEE0	000032				
011113 000001 FM 50 011113 000001 FM 10 011113 100001 FM 10 011113 100001 FM 10 011113 111134 FLMSC 519190 011113 111406 FLM -1060D 011113 111406 FLM -1060D 011113 111406 FLM -1060D 011113 011113 FLM -1060D			500000				
011113 000001 FIL 55 011113 000001 FIL 55 011113 000001 FIL 55 011114 000001 FIL 50 011114 000001 FIL 50 011114 000001 FIL 55 011114 000001 FIL 50 011114 000001 FIL 50 011114 000001 FIL 50 011115 114545 55920 55920 011113 000000 FIL 51 011113 000000 FIL 11 011113 000000 FIL 11 011113 000000 FIL -2005 011113 0100000 FIL -2005 011113 011140 777713 FIL -2005 011114 777713 FIL -2005 -2016 011113 777713 FIL -2016 -2016 011114 777713 FIL -2016 -2016 011111		-261664	00000				
011117 000003 PH 50 011113 000001 PH 10 011111 010001 PH 10 011111 115124 PLATAG 589997 011111 115124 PLATAG 589992 011111 115124 PLATAG 589992 011115 115124 PLATAG 589992 011115 115124 PLATAG 589992 011115 115124 PLATA 2.1.1.1.1 011115 115000 PLATA 2.000 011115 717000 PLATA 2.000 011115 717010 PLATA -2000 011115 717010 PLATA -2000 011116 717011 PLATA -2000 011116 717011 PLATA -2000 0111111 7170110 PL		CETEL	00000				- 7
011115 000000 FM 50 011117 000001 FM 10 011117 000001 FM 10 011111 000001 FM 10 011111 000001 FM 10 011111 000001 FM 10 011111 1151124 FLMGG 560540 011111 1151124 FLMGG 560540 011111 1151124 FLMGG 560540 011115 1151136 510000 FTMMM 0 011115 010000 FTMMM 0 -2005 011115 777793 FM -2005 -2005 011115 777793 FM -2005 -2005 011115 777793 FM -2005 -10600 011115 777793 FM -20505 -10600 <t< td=""><td>T</td><td>-HIEH</td><td>00000</td><td></td><td>,</td><td></td><td></td></t<>	T	-HIEH	00000		,		
011110 000000 PARTAC JU 011111 000001 PARTAC ATA Z.1.1.1.1 011111 000001 PARTAC ATA Z.1.1.1.1 011111 000001 PARTAC ATA Z.1.1.1.1 011111 100001 PARTAC ATA Z.1.1.1.1 011111 110001 PARTAC ATA Z.1.1.1.1 011111 110112 PARTAC ATA Z.1.1.1.1 011111 110112 PARTAC ATA Z.1.1.1.1 011113 110000 PARTAC ATA Z.1.1.1.1 011113 110000 PARTAC ATA Z.1.1.1.1 011113 110000 PARTAC ATA Z.1.1.1.1 011113 PARTAC ATA Z.1.1.1 011113 PARTAC ATA Z.1.1.1 011113 PARTAC ATA Z.1.1 011113 PARTAC ATA Z.1.1 011113 PARTAC		SETEEC	000000	ađ	30		
011117 000001 FLETSC EATA 2,1,1,1 011115 000001 FLETSC EATA 2,1,1,1 011115 1001125 FLEGSC 360540 011115 1001126 FLEGSC 580540 011115 1151124 FLEGSC 580540 011115 1151124 FLEGSC 580540 011115 1151124 FLEGSC 580540 011115 1151124 FLEGSC 580540 011115 0100000 FEMMIN C 011115 0100000 FEMMIN C 011115 0100000 FEMMIN C 011115 0100000 FEMMIN C 011115 011100 FEM -2000 011115 717101 FAIA -2000 011115 717101 FAIA -2000 011115 717112 FAIA -2000 011115 717112 FAIA -2000 011115 FAIA -2000 -1,1,1 011115 FAIA -10600 -1,1 011115 FAIA -2000 -1,1 011112 717112 FAIA -2000 011112 717112 <	Ł		60000	- DHA	96		
0111110 000001 MLCFAC Z.1.1.1.1 0111111 000001 MT B0 0111111 1000001 MT B0 0111111 1010001 MT B0 0111111 1151124 FLMSGC 559970 0111111 1151124 FLMSGC 559920 0111111 1151124 FLMSGC 559920 0111111 000000 FLMM C 0111154 717467 FLM 2000 0111154 717467 FLM 2000 0111154 714607 FLM 2000 0111154 714607 FLM 2000 0111154 71467 FLM 2000 0111154 71467 FLM -2000 0111154 71467 FLM -2000 0111154 717753	,	161660	010000		0		
011111 000001 11111 000001 011111 1001117 115114 1001117 011111 151114 1001117 115115 011111 151114 1001117 115115 011111 151114 1001116 115115 011115 100000 7111116 711116 011115 777000 7111116 6400 011115 777000 7171116 6400 011115 777000 717111 6400 011115 777000 717111 6400 011115 777000 717111 6400 011115 777000 717111 71711 011115 777000 717111 71711 011112 777711 71711 71711 011112 777711 71711 71711 011112 777711 71711 71711 011112 777711 71711 71711 011112 777711 71711 71711 011112 777711 71711 7000	ł	-011654	00000	PACESC	CATA	2,1,1,1	
011111 000001 MP1 000001 011111 1000001 PILMGAC 360340 011111 1151124 PILMGAC 360340 011111 1151124 PILMGAC 360340 011111 1151124 PILMGAC 360340 011111 1151124 PILMGAC 360340 0111111 000000 PILMIH C 0111111 000000 PILMIH C 0111151 000000 PILMIH C 0111151 000000 PILMIH C 0111151 717000 PILM C 0111151 717011 PILM C 011110 777001 PILM -2005 011110 777011 PILM -2005 011110 777001 PILM -2005 011110 777001 PILM -2005 0111111 77001 PILM -2005 0111111 77001 PILM -205 0111111 77001 PILM -10600 0111111 7			100000			- 	
011143 000001 FILNESC 589300 011145 1155124 FLAESC 589310 011145 1151124 FLAESC 589310 011145 1151124 FLAESC 589310 011151 000000 FIRNESC 559310 011153 000000 FIRNESC 559320 011153 010000 FIRNESC 559320 011153 010000 FIRNESC 559320 011153 717463 FIRNESC 559320 011153 717463 FIRNESC 559320 011153 717763 FIRNESC 6111A -1060D 011153 717753 FIRNESC 6113 -2050 011154 717753 FIRNESC 6113 -2050 011154 717713 FIRNESC 6113 -2050 011154 717713 FIRNESC 6113 -2050 011154 717713 FIRNESC 6114 -2050 011154 717713 FIRNESC 6114 -2050 0111170 001310 <td< td=""><td>- ' </td><td></td><td>100000</td><td></td><td></td><td></td><td>-</td></td<>	- ' 		100000				-
011145 1001131 FLMGEC 560540 011145 1155124 FLMGEC 560540 011151 115124 FLMGEC 550920 011151 100000 FLMFEC 550920 011153 000000 FLMFEC 550920 011153 000000 FLMFEC 550920 011153 010000 FLMFEC 550920 011153 170000 FLMFE 0 011154 710000 FLMFE 0 011155 777465 FLMF 0 011154 710027 FLMF 0 011154 777715 FLMF -20050 011150 777715 FLMF -20500 011160 777715 FLMF -20500 011161 777715 FLMF -20500 011161 777715 FLMF -20500 011161 777715 FLMF -20500 011116 777715 FLMF -20500 011117 001120 FLMF FLMF 011117 00			100000				
01114) 179914 FLMGC 599970 01114) 159124 FLMGC 599970 011151 000000 FLMMC 599970 011153 000000 FLMMC 599970 011154 700000 FLMMC 2000 011155 777460 FLMMC 2000 011155 777460 FLMMC 2000 011156 77460 FLMMC 2000 011156 77460 FLMMC 2000 011156 77460 FLMMC 2000 011156 77460 FLMMC 2000 011156 777753 FLM -2000 011150 777753 FLM -2000 011160 777753 FLM -10000 011160 77760 FLM -10000 <td>[</td> <td></td> <td>900000</td> <td></td> <td>1</td> <td></td> <td></td>	[900000		1		
0)))) 135)) 135)) 135)) 135)) 135) 0)))) 136) 135) 0)))) 136 136 0)))) 137) 0)))) 137) 0)))) 0)))) 136 176 0)))) 137 136 177 137)	- 1		10012	183814			CYCLIC DUTPUT
031151 040000 FTMME 111100 031153 040000 FTMME 0 031154 773467 FTMME 0 031155 773467 FTMME 0 031154 773467 FTMME 0 031155 773467 FTMME 0 031155 773467 FTMME 0 031154 714057 FTM CATA 031150 777753 FTM FATA 031160 777753 FTM FATA 031161 777753 FTM FATA 031161 777753 FTM FATA 031170 001750 FTM FATA 031170 001750 FTM FATA 031171 001750 FTM FATA </td <td></td> <td></td> <td>151124</td> <td></td> <td>2797</td> <td></td> <td>OUTPUT SCALING TERN (SCALEC 2011)</td>			151124		2797		OUTPUT SCALING TERN (SCALEC 2011)
031151 000000 FTATH 0 031155 779467 FTATH 0 031155 779467 FTATH 0 031155 779467 FTATH 0 031155 779467 FTATH -2065 031155 779467 FTATH -2065 031156 779467 FTAT -2065 031167 777933 FTAT -2060 031162 7777933 FTAT -2065 031163 7777133 FTAT -2065 031163 7777133 FTAT -2065 031163 7777133 FTAT -2065 031163 7777133 FTAT -2065 031163 777713 FTAT -2065 031164 777713 FTAT -2065 031164 777713 FTAT -2065 031164 777713 FTAT -10505 031174 601750 FTAT -5065 031174 6001750 FTAT 2505 031174 6003772 <t< td=""><td></td><td></td><td>-114156</td><td></td><td>-</td><td></td><td>CYCLIC GUTPUT</td></t<>			-114156		-		CYCLIC GUTPUT
011155 000000 FTRIME 0 011155 777467 FTRIME 0 011155 777467 FTRIME 0 011155 777467 FTRIME 0 011154 77467 FTRIME 0 011155 777467 FTRIME 0 011157 777467 FTRIME 0 011157 777405 FTRIME 6 011160 777753 FK1 EATA -20600 011161 7777153 FK1 EATA -20600 011162 7777153 FK1 EATA -20600 011163 7777153 FK1 EATA -20600 011164 7777153 FK1 EATA -20600 011164 7777153 FK1 -10600 -10600 011164 7777153 FK1 EATA -10600 011116 7779153 FK1 EATA -10600 011116 779153 FK1 EATA -10600 0111172 FK1 EATA -2060		13156	000000	PINNIN			
011153 040000 FIRMS 0 011155 777467 FIRP LATA -2065 011154 777467 FIRP LATA -2065 011151 777467 FIRP LATA -2065 011151 777465 FIRP LATA -2060 011151 777793 FIRP LATA -2050 011161 777713 FIRT CATA -2050 011161 777713 FIRT CATA -2050 011161 770037 FIRT CATA -2050 011170 001732 FIRT EATA -10500 011170 001732 FIRT EATA -10500 011170 001732 FIRT EATA -10500 011170 0019670 FIRT EATA -10500 011170 0019670 FIRT EATA -2050 011170 001972 FIRT EATA -2050 011170 001972 FIRT EATA -2050 0111170 0019917 FI	Ł		00000	HANNE	-		ITELA AL ENGAGE
011155 777467 FXXP 6ATA -1060 011151 777467 FXXP EATA -1060 011151 777467 FXXP EATA -1060 011151 777793 FXXP EATA -206 011162 777793 FXXI EATA -206 011162 777793 FXXI EATA -206 011162 777713 FXXI EATA -206 011164 777713 FXXI EATA -10600 011164 770027 FXXI EATA -10600 011170 009577 FXXI EATA -10600 011171 009577 FXXI EATA -10600 011170 009577 FXXI EATA -10600 011171 009127 FXXIII EATA -206 011171 009172 <td></td> <td>133153</td> <td>000000</td> <td>Stan19</td> <td>0</td> <td>-</td> <td>ALASSES AT SACACE</td>		133153	000000	Stan19	0	-	ALASSES AT SACACE
011155 774067 FMTP EATA -206CC 011151 774057 FMTP EATA -206CD 011151 7777153 FMTP EATA -206CD 011151 7777153 FMTP EATA -206CD 011160 7777153 FMTP EATA -206CD 011161 7777153 FMTP EATA -206CD 011164 777027 FMTP EATA -1060D 011164 774027 FMTP EATA -106CD 011170 001750 FMTP EATA -106CD 011170 001750 FMTP EATA -106CD 011170 001750 FMTP EATA -106CD 011170 001720 FMTP EATA -106CD 011170 001972 FMTP EATA -206C 0111716 </td <td> </td> <td></td> <td>- 000000</td> <td>JANKLA</td> <td>0</td> <td></td> <td></td>			- 000000	JANKLA	0		
0)1156 7)703 FMYP EAIA -1060b 0)1150 7)7753 FMYP EAIA -2060b 0)1160 7)7753 FMYP EAIA -206 0)1160 7)7753 FMYP EAIA -206 0)1160 7)7753 FMYP EAIA -206 0)1161 7)7753 FMYP EAIA -206 0)1162 7)7793 FMYP EAIA -206 0)1164 7)7053 FMYP EAIA -206 0)1164 7)4053 FMYP EAIA -2060 0)1164 7)4053 FMYP EAIA -10660 0)1164 7)4053 FMYP EAIA -10660 0)11164 7)4053 FMYP EAIA -10660 0)11170 001750 FMYP EAIA -10660 0)11170 0005172 FMYP EAIA -2060 0)11170 0003172 FMYP EAIA -2060 0)11170 0003172 FMYP EAIA -2060 0)11170 0			777467	PK X P	CATA (-20(5	GAIN CI
0)31157 717053 PKZP LATA -20000 0)31160 717753 PKXI LATA -2000 0)31160 717753 PKXI EATA -2001 0)31160 717753 PKXI EATA -2001 0)31161 7177153 PKXI EATA -2001 0)31162 7177153 PKXI EATA -2001 0)31164 7177153 PKXI EATA -5001 0)31164 7177153 PKXI EATA -5001 0)31164 717153 PKXI EATA -5001 0)31170 001750 PKXIP EATA -5001 0)31170 001750 PKXIP EATA -5001 0)31170 001770 PKXIP EATA -5001 0)31170 0003770 PKXIP EATA -5001 <td< td=""><td></td><td>11156</td><td>114035</td><td>94,9</td><td></td><td></td><td></td></td<>		11156	114035	94,9			
011151 717053 PNZP CATA -2000 011160 717753 PNZI CATA -2000 011162 7177153 PNZI CATA -5000 011164 7177153 PNZI CATA -5000 011164 71731 CATA -5000 -10000 011170 001750 PNZIM CATA -5000 011170 001750 PNZIM CATA -5000 011170 001770 PNZIM CATA -5000 011170 001372 PNZIM CATA -5000 011170 001372 PNZIM CATA -5000 011170 001372 PNZIM CATA -5000 011170 PNO172 PNZIM CATA -5000 011170 PNCH CATA 25000 PNZIM 011170 <	1						GAIN (1
0131160 7/77951 FATA =200 0131162 7/77151 FATA =200 0131162 7/77151 FATA =200 0131162 7/77151 FATA =500 0131162 7/77151 FATA =500 0131164 7/77151 FATA =500 0131164 7/77151 FATA =500 0131166 011750 FATA =10000 0131170 003170 FATA =500 0131170 003170 FATA =500 0131170 0003170 FATA =500 0131170 0003170 FATA 2500 0131170 94003170 FATA 2500 0131170 94003170 FATA 2500 0131170 94003170 FATA 2500		191157	114057	9 Z N 9	C A T A	-20000	
033140 777703 7841 CATA -200 033140 777715 FRIT CATA -200 033140 777715 FRIT CATA -200 033140 777715 FRIT CATA -200 033140 77605 FRIT CATA -200 033140 77605 FRIT CATA -10000 033140 77715 FRIT CATA -10000 0331140 76715 FRIT CATA -10000 0331170 001750 FRIT CATA -500 0331170 000377 FRIT FATA 2500 0333174 000377 FRIT CATA 2500 0333174 000377 FRIT CATA 2500 0333174 000377 FRIT CATA 2500				, I I ;		• • • •	
031162 777115 FXZI FATA -2065 031164 779027 FXZI FATA -9060 031164 790027 FXZI FATA -10600 031164 791953 FXZI FATA -10600 031164 791953 FXZI FATA -10600 031170 001750 FXZI FATA -10600 031170 003570 FXZI FATA -2065 031170 003570 FXZI FATA 2505 031174 003172 FXCIII FATA 2505						-205	
0)1161 1)003 1003		133162	217775	PK 7 1			
000000 000000 000000 000000 0000000 000000 000000 000000 0000000 000000 000000 000000 0000000 000000 000000 000000 0000000 000000 000000 000000 0000000 000000 000000 000000 0000000 000000 000000 000000 0000000 000000 000000 000000 0000000 000000 000000 000000	1		-19091-				GAIN
031165 767153 PNTER 64500 031165 001750 PNTEH CATA 45000 031170 005670 PNTER CATA 45000 031171 P005172 PNTER CATA 25000 031174 0003172 PNTER CATA 25000		133164	776027	PAYD	CATA ATA	-1000	Sdd HJd Sdd 11 HIN
033170 0451730 FKXTH CATA 10000 033170 095670 FKXPH CATA -9000 033172 000372 FKXPH CATA -9000 033173 000372 FKTH CATA -9000 033174 000372 FKTH CATA 2000 033174 000372 FKTH CATA 2500 033174 000372 FETH 2500 033174 000372 FETH 2500 033174 000370 FATA 2500			767153	8×20	CATA	-45600	
033170 07503 FXTFH DATA -5005 033170 075670 FXTFH DATA -5005 033172 000372 FXTH DATA -5005 033174 000372 FXTH DATA -2005 033174 000372 FXTH DATA -2505 033174 000360 FX240 DATA -2505 033175 000360 FX240 DATA -2505 033176 FX240	1		06/100		CAIA	10000	(1 FPS PFB DFC = 1049
033117 010317 0100317 0100317 01003			117015		CATA	-50(5	
00000000000000000000000000000000000000			0/9500			30000	CATACT FPS PEN
		221660					CATACI PPS-PER DECYSEC W
033174 000372 PIDING EATA 2500 033174 000372 PICINT EATA 2500 033174 000360 PNB EATA 2500 033174 000360 PK240 EATA 250	Ĩ	161666			6 1 A 1 A	2500	STICK DETENT(1024/IM)
		133174			CATA	20 CL	DETEN
			216000	F2C1NT	CATA	250L	COLLECTIVE DETENTIONALIMI
		111174			CATA	5	a
				0.0.7.4.4	E A 1 A	2401	

Memory Allocation. (contd)

C

٩.

C

C

C

Ċ

/) \

M

Ó

•

a

O

]	M	em	01	У.	A]	10	cat	10	n . (co	ntd)											
Z ICTAL FID CCNTHOL CLD Z TCTAL PID CONTROL	INTEGRAL	INTEGEAL CONTRGL Integeal control						TERPORARY USEC IN CSTP52 AND CSTP53							SET POINT BIAS COMMAND TO ACTUATOR Recluarce commands to actuator Proter actuator commands					ERSURFERIS Cestred Output Vector	LNG. CYCLIC SCALING(20000=10FPS/IN)		SCALING SCALING					
36AY'1C	2	5 E P 1 2 5 E P 1 2 5 1 - 1 - 2			RESERV'LC	RESERV15 - Aeserv15		00	CHPSTR SUBROUTINE				THE CONSTANTS A V THE CASIRA SUB	13 Y345 100434 MT_0	· · · · · · · · · · · · · · · · · · ·	PUT(1) =CELB(LUNG CYCLIC)	PUT(2)=CELC(CULLECTIVE) PUT(3)=CELS(LAT CYCLIC) PUT(4)=CELR(CIRECTICHAL)	PPLT(1)#FCP=AFT STICK PPLT(2)#CCLLECTIVE	PLT(4)=RUCOFR PECALS				COLLECTIVE Lateral CYC	-12¢390,-23690,-623C	18 36C,-20665D,550C		00 ,-8 970,1 34 360	
				7 6	S	5 3	22	5					STRVES Eled b	27042	55 R V * 4					55 H V 40		:		26590	360.			¢
20	ESERV				-			•	FCR		:			ICH IS ASSENDED.	ESERY RESERY 40 ESERY RESERY 40 PSPRY							- - - - -					ATA -30800,	
202			RESERV	OZEZCH HESERV RESU -Oxeopp reserv resu	RESERV	CZEOFF RESERV RESE Caclot reserv rese	CTCCST - PESERV - RESI CZCLST RESERV BESI	A LARA			30		<u>n</u> 03		PUC					PTG RESERV RESERVIC PTGES RESERV RESERVIC				PRE - CATA =126590			CATA -308	1111
AESERV AE	0 OXC I	CYC1 RESERV R O2D1 RESERV R	UPERCH RESERV	RESERV	OYEGTE RESERV	FESERV I	RESERV	THPOZ RESERV	FCR		0100 20			μ ε			, 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10			ES PESELV RE		116100	•		CA1A	·	CATA	01K 7.41
OZCPIC RESERV RE Ozcelo Reserv Re	600000 OXCI	000000 CYC1 RESERV R 000000 0201 RESERV R	UUUUUU CAELU RESERV	OZEZCH HESERV	000000 CYECTE RESERV	CZEGTE RESERV I CXCLST FESERV I	CTCLST RESERV	DCOOOD THPOZ RESERV	FCR		000003 0110 20				PUR RESERV					PTGES RESERV RE Destre same		033005 116100			71620 003454 CATA		716176 CATA	92K C.41A

. . .

<u>`</u> •

.

E

Section of the sector

Ð

¢

.#**3382MBCER, VERGIO**R 1.0 MOVR43 10/02/84 SECTION]

		- NTRYAS			AIRSPEE AI ENGAGE
032346		NTANKC 0 The Polloring The Cader Here The Capera Con		A 2 VAFIABLE CECLARATICMS MUST STAT IM 10 Make the Measureneni Selectica Logic ect	hDO1 A1 ENGAGE
Life o		LINLON	NESEN		PERTURBATION PITCH ANGLE
032350		T N A N	PESERV	RESERV'LC	HOLL ANGLE
166260		47111	D S S P U		
		- RROLAT	RESERV		
032354		NYABRT	PLGERV	RESERV'ID	VAH RASE
7885 032399 2555 032399	00000		KESERV		
			RESER		KATEMAL ALCEEMALLUM Kodaal arceitedatine
032360		NCVEL	REGERV		
19696 - 075361	1	1344# -	F858	neservito	VERTICAL VEGOCITY
296260	00000	NBALT	RESERV	RESERVID BARCHEIRIC	BARCMETRIC ALTITUDE
7692 032363	000000	ThPHZ	PESERV		JERPORARY USED IN MSTP52 AND MSTP53
7695			CC N5 TANTS	S FCR CMSTR2 BUBROUTINE	
032375		NONE	10		

	••	*******			
		-	THIS CODE	F RESERVES THE CONSTANTS AND	
	Þ •		WICH 13	ASSPECT IN NENDEL AREA II.	
7706 032403		4no	RESERV	RESER'40	
	00000		F282RV	RESERV'4D	
	•• •			OUT(1)-CELB(LONG CYCLIC)	
	••			DUT(3)=CELG(LAT CYCLIC)	
				out(4)=ctrout(5)=ctrout(ctrout)=	
1117 0171				NCOENV'4U Aditititedebette Attit -	PILOT CCAFANUS
7714	•			OPLT(2)=CCLLECTIVE	
	00000		PEBERV		
		OYCES	FESERV	RESERV'4D	CESTRED CUTPUT VECTOR
		- 1 3616-	CATA		LMG. CYCLIC SCALING(20000=10FP\$/1N)
	041040				
					CALTING CALTING
7721 7728 032440 032441	1		¥£48	LAIERAL CYCL	CYCLIC SCALING
1723 032443	003457		CATA	1839D20664D.549C	

Memory Allocation. (contd)

ħ

ſ

Ĩ

()

194

Constraint First Norm Constraint Constraint <thconstraint< th=""> Constraint Constrai</thconstraint<>
HIEES PESENV HIEES PESENV HISCLE CATA ANN CATA CATA BERNY CATA BERNY CATA BERNY CATA CATA CATA CATA CATA CATA CATA CAT

151 SCALING TERM(BCALED 2++14) LAT. CYCLIC OUTPUT SCALING TERRIGCALED 20010) Tak Dutfut Scaling terriscaled 20010] Theta at Engage Tirspeec at Engage PAGE UNIFUT SCALING TERR(SCALED 24918) HCO1 TEMPORARY USED IN NSTP52 AND NBTP53 INTEGRAL CONTROL COMPONENTS Bet-Point-Bias-Command-te-Actuator Regulater commands to actuator AND CESIRED COMMANDS ARE VELOCITY 1 PERTURBATION PITCH ANGLU Poli Angle SOTAL - ACTUATOR - CONNANDS FERTURBATION AIRSPEED LATERAL ACCELERATION DUTPUT BARONETRIC ALTITUDE CONC. ACCELERATION VERTICAL VELOCITY HDOT AT ENGAGE CCNPANDS CYCLIC FITCH RATE TAN' ANGLE" FOLL-RATE YAH RATE COLL FILCT LONG. LOGIC CTCLIC) MPLT(2)=CCLLECTIVE MPLT(3)=CEPT-AIGHT_BTLC WUT (4) at ELR (D I RE CT I C WAL IN CACLEC! THIS CODE REBERVES THE CONSTANTS AND Variables-Weeted by The-Cnstag-Subroutime Which is asserbled in memory area 51. SELECTICN I #PLT(1)=#08=#FT 871CK NUT(1)=CELB(LONG NUT(3) &CELS(LAT CMPSTA SUBROUTINE POLLOWING 12 VAPTABLE DECLARATICNE ORDER MERE TO MAKE THE MEASUREMENT BECTTON RESERV'10D RE SE RY 40 RE SE RY 40 RE SE RY 40 RE SE RY 40 RESERV 10 SERV'1D 56 RV '10 NESERY"10 NE SE FY '1D RESERV'IC RESERV'IC RESERV'ID RESERV'4D TESERV RESERVID 01, 1438 L. AN JS JH HE POLLOWING 12-VAPTABLE 1 C C , 1 1 F 10/02/84 CCNSTANTS FCR 1.1 ž ä Ì IN-CPPSISI-CORRECT 550920 RESERV 09500 PEBERV. VRSE AESERV Reger PESERV IESERV VASEAN RESERV SERV **IESERV REGERV** RESERV RESERV REBERV **VEBER** LA1A CATA HOVP43 2 2 2 2 COLSC NLA75C PICSEL RACESC LINGSC MINRI' PIRANC TATI94 FROLPT F X A LA T THE CANEL! **FBALT** TRPA2 NDVEL **HAVEL** TJGM HONE 18194 ABOCHBLER, VERSION 1.0 <u>a</u> 00000 106132 155124 000002 000000 000000 000012 000000 100000 000000 10000 000000 10000 000000 000000 000000 000000 000000 000000 000000 00000 0000 00000 00000 032146 032147 031150 012221 032142 012152 121259 0 3 2 1 5 4 032156 032231 032145 -----032160 032175 032207 032144 032162 032166 032170 032172 032174 112260 032164 591860 1111 111111 THE C 1996 2 **4** 5 7 **4** 5 7 **4** 5 7 **4** 5 7590 1596 1632 1634 1636 7630 1110 -----7610 7612 7620 ŝ 7630 1111 7604 7600 til. 7616 Ŧ 7610 7626 7620 100 H Ī Ŧ 7591 Ē 622 Ĩ Ī Ŧ ŝ ÷ ŝ

Memory Allocation.

AppendixI

193

Hover Controller Subroutine. (contd) ł Ì 100 PAGE PUICE TO ECS COLLECTIVE COMMAND ((3), LATERAL CTCLIC NUMPE PUT(1) TO ECS PITCH COMPAND 0.33BITS) CUTPUT(11N/140.85B1TS) SCALE FCR DUTPUT(]IR/206,24HITS) IF PSK=FNCTRL SKIP THE NEXT LINE TOT RANK 1 SUBROUT LNE LIKE -CYCLIC SKIP AL 1=PUT (2), COLLECTIVE CONTROLLER Cul OUTPU1(1 **X 3 Q N 1** ICRIUPPR THEK I + ICWIJ at reput(1) .Long FUT(3) TO ICK1=0 (1=0) ALT=(PZ#P1+ICH1 FZK+1CR1=11=AL DATA CCNTINUE RPITE TPE 3 8) WHICH WHITES PUT(ACTUATCH MHICH SEMES FUT IC THE AFX1 LINE AL LEPUT THE INTINO: THIS SECTION (F CMPSTR SETS THE PRESENT COMPENSATOR States(P2MP1) to OLD states(P2M) LINF STURE STORE SCALE STCPE SCALE ULAL-FIANSC SCALE FOR DUTPUT(11N/290,93EIIS) Strau"Corg 210re Put(4) TC ECS YAN CCPMANC 190 REXT CCPHAND g 0 W W 00 ELSE TCRIFFICPIAL AND ELSE ICPI#JCR1+1 DIFECTIONAL seessection PSIPB.seesesses MERE CUES THE SECTION(PSTP8) Commands) To the location an Actuators. t PSTP8 ENTAL'PUT+3 ALIEPUT(4), SFCTION ---SECTION FSTP9 P27590 CV3784 P31570 PACIRL NC SC P2158 HC443 10/02/84 5 E PLAL PYANSC ENTICH ENTBK ENTBK ENTALB ETRALB ESK 1 PULAL ETPAU ENTAL FULAL ETRAU ENTAL PULAL ENTAL - 40 1.1P 121 55 19795 Porps 14784 18198 BUBERDLES, VERGLER 1.0 347726 566716 556720 347736 10110 66713 10661 ÷ £ 007734 [[[00 007755 007752 +54404 01155 930 111 Į

Hover Controller Subroutine. (contd) 5 PACE THER GO TO MEXI MATRIX MULT IF DOME Bave nod trdex and start using colofm index USE BANK O BIRCE PROCED AND PROTECLARE INERE INDEX REG.(ELENENT INCEX) COLUMN INDEX(ICR2=ICR2+1) 13 ICHIPPHERD THEN SKIP HERT LINI FURAICALLE(AU),SCALING 18 20016 IF TCR35PRCM1 THER BUTP NEXT LINE CULUMNS AS INDEX REG. (ROM INDEX) FIRTH EACK TO NEWORY BANK 3 FOR DATA MC OVERFLOW C CVERFLOW , PUT(1)#PUC(1)+PUR(1) REG. (B) ALI-HUM OF COMPENSATOR STATES CCLUMM INDEX TO ZERO 0 AL LOPHENC FRENTREED & UT SCALING FLE PSTPE IS THE IS INDET Þ RUEX (lel) (FRCHYNTICRI) OVERTION MANDLER ALIC(PUC+ICR1-1) ALICATTORITOR Skip if MC Overflow Call the evertice Han ROM INDEX NULLE TEXT COLUMN GO REBET THE COUNTER GO TO MEXI MATRIX MU CCLURE INDEX TTA TON TATA COLUAN USF RENCRY BANK RINK3 H FRERCIEFRE <u>1 + 1 d x 2 d) = 1 1</u> NE X 3 H , THE ICR240, THE 44E) + CRIBICEI 41 AL SUPPLENC ALTIALIZ LICH I LEO USE ICA3 ELSE DO NENT LINE AND ICRIMICRI+1 AUINALEO FUT IMAL ICHJ=ICR3+1 THE 1 H E Taidel ICP 3=0 ERL. Dal 1r PE8ET CALL PZKPI 667 2 E 5 25 A N D ELENEN3 ٠ LINE PUC . NEXT PUT NEX1 PZKF 8 ADDITION. ELSE SECTION AND + WINDL'S THIS STEP DOES THE 10 PPWEND PR WE ND PREEND PFBF73 CARX44 NTTTT I وبروريدن PEXCE 3 PUC-1 PUT-1 PECFI PE167 SUBPOUTINE, 1.F NOVR43 10/02/84 208 441 ENTALB ADDALB Brphov ENTICH ENTOKO ENTICH ENTICH LRTA BTRAUB PSK STRALB ADDA BRPHOV HOCP ENTICR DDALK RALU **ENSTRY** ENTICA NTECK NTEK ENTAL ADCAL STRAL ISTN3 182 H J HEIN3 ENTBR IS IN 18187 19 MIAL STRAC' VALS. B -E ħ 5 P81P10 PINCL3 **FRART** LISU PS1P7 **P31P6** 18194 ASBENGLER, YERSTON 1.0 11111 904000 452754 907202 960000 907310 126711 126711 146711 446711 203300 700000 507400 500600 102105 507310 507702 <u>303300</u> 504000 121214 360000 201650 11/985 511115 347724 507310 031650 391106 507203 00000 CIELON 123135 11116 507313 LEDELL 507201 ITST E 37000 16/100 007724 007730 007724 007710 007713 007715 007723 11/100 -1110 007717 007721 007470 001700 Inter I 007702 001104 001706 91119 07672 007676 007454 11110 00767. ŧiŧ 1941 1927 1929 526 Ē 1917 1001 1903 1903 **606** 919 Ē ŝ

Appendix K.

RSANDY Computer Program

The RSANDY computer program is a modified version of the SANDY computer program written by Uy-Loi Ly as part of his PhD dissertation at Stanford [3] and later modified first by Gardner [16]. It is stored on the FSD VAX at NASA Ames Research Center. Ly also wrote a user's guide for the SANDY program.[8] This appendix gives the input format changes to make the SANDY user's guide correct for the RSANDY program. The major capabilities added by the RSANDY program are:

- an optional gradient step-size reducer from Gardner [16]
- a linear discrete model of the closed loop system can be created for later simulation studies
- a leading free line and free lines before all the data items are included to help in documenting the data files

The changes which follow apply to page numbers in the SANDY User's Guide. Other than these changes, the program is exactly like the SANDY program. Also included here is an example data set for running the program. This data was used to find the reduced order Navion compensator in Chapter 2. In the following changes, the new variables needed by the program are italicized. **AppendixK**

Change 1, page 117a. Running the RSANDY Program @RSANDY Infile Outfile Simfile

where:

- RSANDY- A VMS command file which runs the RSANDY.EXE file with Infile, Outfile, and Simfile as data files.
- Infile- A file containing the input data; an example is shown at the end of this appendix.
- Outfile- A filename where the program will write the output.
- Simfile- A filename written by program, if IPLOT=1, which contains the linear simulation models used by the SIMPLOT program, described in Appendix M.

Change 2, page 119a. Item 1

Np,n,m,m',p,p',p",r,flag,*NNS,IPPSS,ICF,ISS*

where:

C

NNS- Set to 0.

IPPSS-Set to 0.

ICF- Set to 0.

ISS- Set to 0.

Change 3, page 119a. Item 2

Maxfn,Nvar,Tol,MSTEP,Nlinear,Tf,Print,IDPRN,ICLPRN,MAPRN,IPLOT, DT,IBG where:

MSTEP- Maximum step size for the gradient algorithm. Start at 100 and make it smaller if there are convergence problems.

AppendixK

IDPRN = 0 for no input data printout.

ICLPRN-=0 for no closed loop data printout.

MAPRN-=0 for no modal analysis printout.

- IPLOT- = 0 for not creating a simulation model. = N for creating a simulation model of the N^{th} plant condition.
- DT- Cycle time for the discrete simulation model. Rule of Thumb, $DT \approx .2(\frac{2\pi}{\omega_{fastest}})$.

Change 4, page 126. Add Item 9

Data: XO

Description:

XO-A vector with (n + r + m') zeros.

AppendixK

Í

RSANDY Example Data File.

DATA FOR REAMDY FOR THE CHAP 2 EX. THE NAVION AT 100 KNOTS (REDUCED ORDER COMP) #LAT N.M.M. P.P.P.*R. ELAC.NNS IPPSS ICE ISS 1.4.2.4.2.4.2. FITE PHILIPAR TT.Print IDPEN ILLERN HAPEN, IPLOT. DT IBC MAXON MS. 10 CF 01100 0.999 DC. -1.0.0.0.0.0.0.05.1 PROBABILITY DENSITY OF PLANT CONDITION 1 0 f MATRIX(N X N)U N Q.THETA -045.036.0.12 2 -37.202.176.0.0 00191.0360.12 49.0 0 010.0 G MATRIX([n X m]) 0 20 0 0.10.0 CAMMA HATRIX([n X m]) 0 45.-036.0.0 0 0.10.0 CAMMA HATRIX([n X m]) 0 45.-036.0.0 0 0.0 .

Appendix L. SETPNT Computer Program

This appendix lists the computer program which calculates the feedforward matrix described in Appendix D. This version does not have the G_z matrix. The data formats and data sequence are described at the beginning of the program. Also included is an example data set (the full-order Navion of Chapter 2).

J

Ç

SETPNT Computer Program.

INTICLE RALANA NO 7) HALLO 201 NSUM M.R.M. CALLE FILLEN(M M P. R. NRUR NSUM F. G. ISSUA, R.C. D. HD C. M. B. B. I. THE T. THE J. THE A. THE S. THE G. THE P. THE B. THE P. THE S. THE A. THE S. THE A. THE S. THE G. THE P. THE S. THE A. THE S. THE G. THE P. THE S. THE A. THE S. THE S. THE A. THE S. THE A. THE S. THE S. THE S. THE A. THE S. TH CALL THE SUPPORTIME MHICH DOES THE MATRIX POLYNOMIAL AND PARTIAL FRACTION EXPANSION OF THE CORPORATION PARTIAL FRACTION THESE STATEMENTS ARE COMPENTED BECAUSE THE THEORY BEHIND GETTING H AND N IS MRONG CALL CETTOR (N P. R. NPLR NSUM, BICOMIN. BTNP. BTNP1 RM RN) CULL LINV / (BICH NSUM NSUM BICHIN, S. MAVEA, IEN) IF (IER EQ 12) MATTY (6 1000) IF (IER EQ 121) MATTY (6 1010) CALL MATPAT (BICHIN NSUM NSUM, 'INVERSE (BICH)') CULL MULT (BICHIN BICH THP NSUM NSUM NSUM) ') CULL MITPHT (THP HSUM NSUM, 'IDENTITY (NSUM) ') TITLE OF D. MATRIX TITLE OF D. MATRIX TITLE OF HD MATRIX D. MATRIX N. N. N. METRED BY ROM TITLE OF LJ MATRIX LD MATRIX (M. X. M) ENTERED BY ROM FXTRACT THE LATA AND PRINT THE RESULTS FILL THE BICH MATRIX USING THE DATA CHECK CORRECTNESS OF THE INVERSION INVERT THE BICH MATHIX INPUT THE DATA 0000 000000 000 00000 000 OF STRED PLANT SFNSORS CURPENSATOR DYNAMICS CONTROLS OF THE SYSTEM MATRICES MAGRE N IS THE MANUER OF STATTS IN IS THE MANUER OF CONTROLS AND THE MUNICE OF THE FORLOWING • - **• •** - • •, THE FOLLAWING IS THE DATA REQUIRED BY THE PROTAVAN THE INTA MUST BE IN THE ORDER SHOWN THE DATA IS ASSUMED TO BE IN FRENCE UNT THIS PROTAWA TAKES AS IMPUT A DYNAMIC SYSTEM AND FINNS THE TERM AND MATTERING MALTIFICED BY A TESTERIO ANTIFICE CUSS THE STELLOUT OF THE AND ANTIFICED BY A TESTERIO BY THE STELLOUT OF IT ALSO FINDS THE TRANSFER FUNCTIONS OF THE COMPLEXATION DYNAMIC SYSTEM IS DEFINED BY THE FOLLOWING SET OF EQUATIONS 0 0 <u>x</u> • • • • IS THE MINDER OF MEASURFMENTS IS THE CRUCK OF THE COMPENSATION 8
 B* (1P*DSU*D)
 C*C
 C*C
 C
 ŝ MADDE MAND N CORE FROM THE INVERSE MATRIX LEC = RM+ YD RT(STEADY STATE) = RM + YD
 MUT
 F
 X
 C
 U

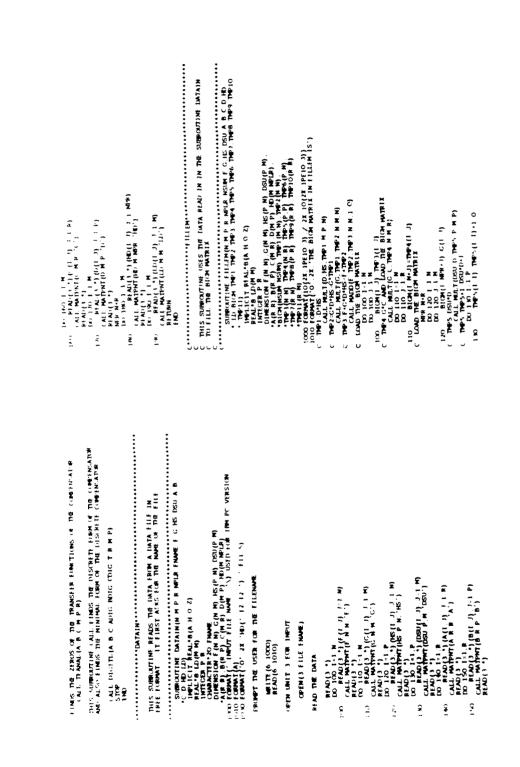
 YS
 HS
 X
 B
 YS

 ZUT
 X
 Z
 B
 YS

 U
 C
 Z
 D
 YS
 UC
 MOTHE THE DESIRE IS TO FIND US AS A FUNCTION AND THE DESIRED OUTPUT VELTAR YD 10 - 10 - 11 - 10 - 11 DESCRIPTION OF N.M.P.R.(ONE LINE) N.M.P.R. ENTERED BY ROW ENTITIED BY NOW ENTERED BY ROM 9 ХТ- Х 2 F+C*D*HS MUPRE STEADY STATE ĨZ SO AT

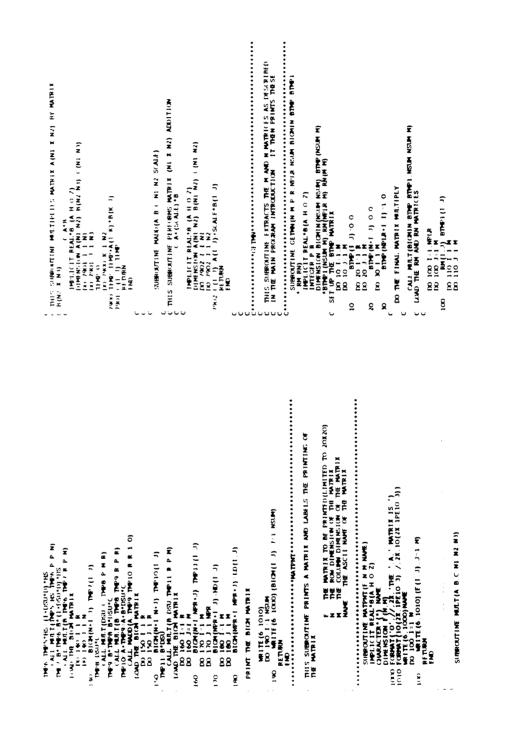
210

Į


C

5

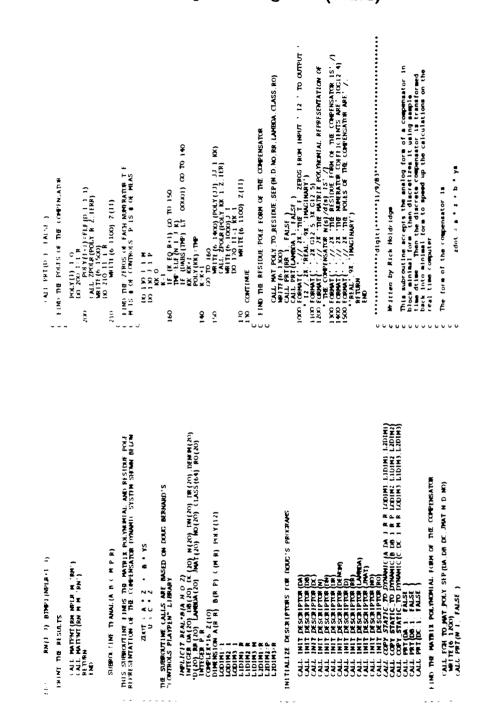
Í.


10

1) •

SETPNT Computer Program. (contd)

(


SETPNT Computer Program. (contd)

212

 $\mathbf{\hat{n}}$

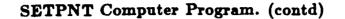
5.6

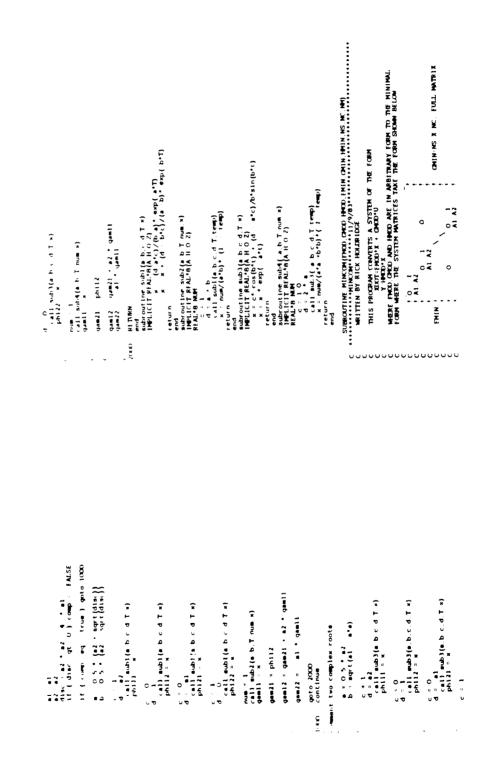
Dx

note that the program returns unit solutions for the gamma matrix for a real problem straigh multiply the rollowers by the elements of the rollinous instrix: This subroutione excepts a continuous 2 by 2 block in real endal from and discretizes it |21| | ||11| ||12|| ||11| + ||4mm11 ||4mm12| ||12|| |22||(++1) ||11121 ||122||(*) ||9mm22| ||4mm22| ||122|| these statements are needed since I enter a matrix of the form initialized in the initialized initialized in the initialized ini subroutine physical at T phill phill phill phill. gamil gamil gamil gamil gamil gamil gamil gamil) [z1der] [0]] [z1] + [0] + [z1] + [z1] + [0] + [1] + [2] + maintee the matrix the sample period is T in units of seconds Now the a b c matrices have the digital form of the comparisation The continuous equations are the discrete equations are IMPLICIT REAL*8(A H O 2) REAL*8 MM logical comp comp ≐ TRUE endered this last section comment check discriminant comment statements are needs c form i i 1 112 11 (1 41 1) 14 1 44 140 (140 - ~ ALL CONTINUES ۰.

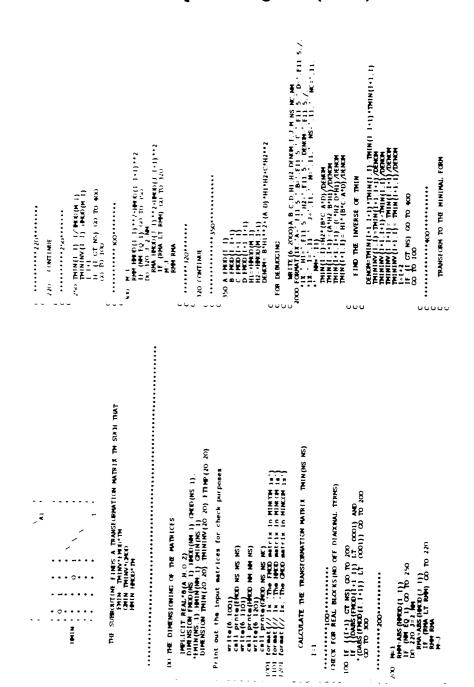
SETPNT Computer Program. (contd)

571¥0

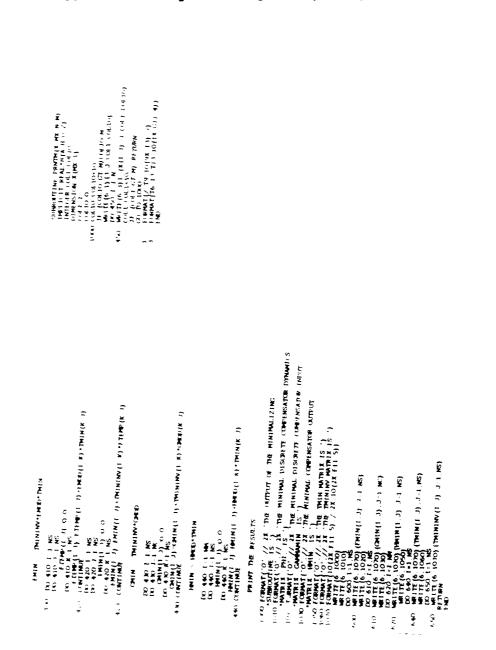

Supporting for LLA R (ANIC BOIC COIC DIFFER R M P) Supporting for LLA R (ANIC BOIC COIC DIFFER R M P) (drager P = 1 = 0 (A h o 2) (drager 1) (dr r r r (compensator dynam) y matrix) r r (compensator input dist matrix) m r (compensator output dist matrix) p r [control vertor) m r [(control vertor) ((1000 fill the bdig matrix [is the index of the phi(i 1) element in the big phi matrix XX call ph([a(i+1.1) a(i+1 i+1) dtime.adig(i 1) adig(i 1+1) * adig(i+1.1) adig(i+1 i+1).gmali gami2.gam21 gam22) Bayin an outer loop which checks for 1x1 or 2x2 blocks 1x1 [[[[1:1] gt r] go to 200 1x1 [[[[dams[a[1:1]]] 11 0001] and [dabs[a[1 1:1]]] 11 go to 200 go to 200 ະກັນດຳໄດ້[[]]=ອອງ[ຄ[[]]-ປະໄສສອ) ປີ 250 [bil][]]=[(ອອງ[ຄ[]]]-ປະໄສສອ] 250 [bil][]]]=[(ອອງ[ຄ[]]]-ປະໄສສອ] 1 0)/ຄ[[]]]*b(L]]) 240 [________[d][]]] ເ(]]] •• XXX** This section finds the transision matrix for the laboration finds the transision matrix for the ••200** This finds the part of the transition matrix associated with a real mode do 310 [=1.p bd14[1.1]] :gum12*b(1.]]; gmm21*b(1.1]]) bd14[1.1]]; gum22*b(1.]]; gmm21*b(1.1]]) do 320 [=1.m cd1g[]; 1.1]=c(1,1) cd1g[]; 1.1]=c(1,1) for check purposes cutta(b.1000)
cutta(b.1000)
cutta(b.1000)
cutta(b.1100)
cutta(b.1100)
cutta(b.1200)
cutta(b.120 Print out the input matrices . 1111 1111 at r) go to 400 go to 100 • A - M 3 2 1076 op 110 076 ;


214

not in the for∎ used by Dan Rosenthal who wrote this subroutine.


.....

and the second state of the se



Ø),

Ø)

SETPNT Computer Program. (contd)

217

)

I

Ł

-

SETPNT Computer Program Example Data Set.

N M.P.R.SAMPLE TIME FOR SPHOV5 DAT 4 2.3.4.5 F MATRIX(n X n) --U.W.Q.THETA - 045..036.0.32.2 - 37.-2 02.176 0.0 OD191.-.0396.2.98.0 0.01.0.0 G MATRIX(n X m) 0.1 - 28.2.0 - 11.0.0 0.0 HS MATRIX(p X n) --U.HDOT.THETA 1.0.0.0.0 0.3 - 10.0.176.0 0.0.1.0 DSU MATRIX, PXM 0.0 0.0 0.0 A MATRIX 0.0000E+00 1.000 0.0000E+00 0.0000E+00 -14.69 -6.072 0.0000E+00 0.0000E+01 0.0000E+00 0.0000E+01 -2.622 2.441 0.711 -0.4641E-01 -10.10 C MATRIX 0.000 -0.1000E-01 -0.1000E-01 0.3600E-02 -0.1378 -0.2163E-01 0.3446E-01 -1.000 D MATRIX, MOP 0.00 HD MATRIX, M X N+R, -U.HDOT.THETA 1.0.0.00,0.0.0 HD MATRIX, M X N+R, -U.HDOT.THETA 1.0.0.00,0.0.0 HD MATRIX, M X N+R, -U.HDOT.THETA 1.0.0.0000.0 HD MATRIX, M X N+R, -U.HDOT.THETA 1.0.0.000.0 HD MATRIX, M X M 0.0

]

SCALEM2 Computer Program. (contd)

SCALEB CYLLE TH J PRINT N z THE SCALED KXE MATPLIX HAS A SAFETY FACTOR OF 5 TO AWALD ONEAFLAW OF CURPUTER SUMP. OF COMPATER IN AUX PRIM ; z FOLLER MALLER MALLER MALLER MALLER MALLINHER OR COMPUTE TO DELINE TO THE MALLER MALLER MALLER MALLER MALLER OR COMPUTE TO DELINE TO THE TO THE MALLER MALLER MALLER FOR MALLER FOR COMPUTE MALLER TO THE TO THE MALLER MALLER FOR MALLER FOR MALLER FOR COMPUTE TO THE MALLER TO THE DETERMINE SCALE LATTRES FOR MALLER FOR MALLER FOR MALLER TO THE MALLER FOR MALLER FOR MALLER FOR MALLER FOR MALLER FOR THE MALLER TO THE MALLER FOR MALLER FOR MALLER FOR MALLER FOR MALLER FOR MALLER TO THE MALLER FOR MALLER FO ς NE XT LX N 1.1 ZAR FINET 2 17-2 "MAXHZ PARTHENT "DOUGHER STATING FOR MAXHER CHARTER ON MAX FLEMINE TTTE PRYSICAL VARIABLE MATRICES APE-THE A VALLES (19) APE (A(1)) A VET 1 PRIMT TAB(19) APE (A(1)) A VET 1 FOR J 1 TO MAN PRIMT TAB(J*8) FOR (8(1))). TAB(IO)."THE C MATRIX IS" I TO NG\ FOR J I TO NAN PRINT TAA(J+9) FNR(C(I (H-10-14-14) 1-170-14 H-400 SALEX(1) HT([JJL(AB6(2-6/XX(1)))/JJL((2)) H-20 SALEXU(1) H-4 H-20 SALEXU(1) HT([JJL(AB6(2-12/XU(1)))/JJL(2)) H-20 SALEXU(1) HT([JJL(AB6(2-12/XU(1)))/JJL(2)) NEXT JONEXT 1 J) M S(L J) (2'SCALEN2) NEXT JONEXT 1 FOR L=1 TO MC KXF INAL (1) KX (1) *2 SCALEKX (1) KXTE INAL (1) KX (1) *2 SCALEKX (1) (1) *1 (1) *2 SCALEKX (1) TAB(10) TAB [10] NEXT I PRINT PRINT ΞĒ Ξ EGR 99928888 999288888 222 2.0 MUNE 0 2.0 FB TD 0 2 "THE A MATRIX SCALE FACTOR WILL BF 2'15 OR 32768" "Possible scaling for matrix B based on Max Element of Computer Scale uss (1, 1) = M(1, 1) = MSCALE (1) = CMPLISCALE (1) / MSCALE (1) (f. Abs (MSS (1, 1)) = MACM THEN MACM ABS (MSS (1, 1)) (MEAT (1) E. S. (1) - 9 (1) - 9 (2) - 5 (AJF (2) - 25 THE COMPENSATION STATES **4**11 And the second state of th NAM FIND TIG SCALIN. NTRUES ALF TISCALE INPUT &I THAT PL 1 TEMPS YMM CALF 22 .5 HAXFLE O HAXVEC O FOR 1-1 TY MEXT J FOR L ***** 222 <u>϶϶ϗ϶</u>϶϶϶϶ 9 38

SCALEM2 Computer Program.

The second CONTROL (1) 15 14MM CYCLUC AND 15 SCALED AS 1024 BUT THE CONSULTER SUALIDED ON FACTL CONTROL FOR INCLANCE (WITH SO AS F [W.) BSCALE SCALE NSCALF T OL TIMPS - 111 ----• M14 ---- Z(K+1) A. Z(K) B. WH(K)
 Y(K) A. Z(K) A. Z(K)
 Y(K) A. Z(K) A. Z(K)
 Y(K) A. Z(K)
 E EXCH RESURENTING FOR INSTANT LEACH RESURENTING FOR INSTANT TA AND THETA IS SCALED AS 500 BITS DEN YSCALE(1) 500 the following data is entried into a fille which the protain will agk the **nime** of and then read the data from MRTTEM BY RECK MENJARIDGE TO FER A4 UPELATED CAN 'S URBE AGE THE MEANER AUTOFULATIS MEADELED TO RUN CAN THE VALION BIJON B4

Ð N

/) \

Mark Newst Mark N AND THE ABSENTICS ([...]) FWART THEN MART ABS (41(5)(1...)) AND THE ABSENTICS ((1...)) FWART THEN MART ABS (41(5)(1...)) AND THE ABSENTIATION (ADD (2)) AND THE ADD (2) AND THE INPUT "PLEASE TYPE IN THE DESIRED STALING AS INNEH OF 2° 250 ALE 2 250 ALE 2 250 ALE 2 West Joshi Jowschiet Jownschiet (Jornschiet (J) REN Michters The Michael Moundain (Scholl) (Schort Jahr) REN Michters The Michael Moundain (Scholl) (Schort Jahr) REN Michters The Michael Moundain (Scholl) (Schort Jahr) REN Michters The Michael (Jornschiet (Jahr)) REN Rick (John (Schort (John)) (Schort (John)) REN Rick (John) (Schort (John)) (Schort (John)) (Schort (John)) REN Rick (John) (Schort (John)) (Schort (John 1.0 0.0</td (11) - (11) - (12) - (1 1) -CLS(L 1) - (2 SCALEC2) = Ton Jat 35888

SCALEM1 Computer Program. (contd)

SCALEM1 Computer Program.

(600 RET] Add (BELENENT) >NUTELE THEN NUTELE -ADS (BELENENT) \[E :1\JE -J 1000 RET] Add (BEC(1)) >NUTUEC THEN NUTUEC=ADS (BVEC(1)) \]V=T 1100 NUTELE = LUC (ADS (NUTELE) / LUC (2) 1100 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTELE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LUC (ADS (NUTECE) / LUC (2) 1110 NUTECE = LU i TO NA BUECI) O' BUECI) O' BELERENTE(L) • BELOLE(J) • YMM.(J) BELERENTE(L) • BELORDIT IF ADS (BELERENT) > MALELE THEN MALELE=ADS (BELERENT) \ [E=1\JE=J IF ADS (BELERENT) > MALELE THEN MALELE=ADS (BELERENT) \ [E=1\JE=J 2.11/2." HUNNECS MAXFLE O MAXVEC=0 FOR 1=1 1 . FOR J=1 IS DEN PRINT 3333338

WE NOT THE PATTER TO CONTROL DISTRIBUTION COMPENSATING STATE TO CONTROL DISTRIBUTION INTEL PATTERD BY NOW TO COMMUND DISTRIBUTION MATRIX ENTERED BY ROW NO DISTRIBUTION MATRIX ENTERED BY ROW THE SCALING FARTORS ON SPECIFIC COLUMNS OF B THIS ALLONS FOR CONTRISCION FROM DECREES TO DUDIANS ON VICE VIENS. A SPECIFIC COLUMNS OF B NODIANS ON VICE VIENS. A SPECIFIC COLUMNS OF C HERMALLY. THESE TETTORS ON SPECIFIC COLUMNS OF N NEDMALLY. THESE TETTORS ON SPECIFIC COLUMNS OF N NEDMALL CONTROL (1) IS LONG CYCLIC AND IS SCALED AS 1024 BIT FINE (S) ~ (1000000'S ~ () (100000 T * MELLOR TO SOLUTION T * PLASE THE IN THE WARE OF THE FILE CONTAINING THE INPUT DATA". FJLLDAN **BTEND (NR. NM)** C. NC) , NCS (NC. NC) TETINAL (NC. NC) CALLE (NC) , YSCALLE (NM) PFR INCH THEN CSCALF(1)=1024 THE CORPERTS SCALF(1)=1024 THE CORPERTS SCALF(1)=1024 THE VECTOR OF MAX VALUES OF THE DESIRED OUTPUTS THE VECTOR OF MAX VALUES OF THE DESIRED OUTPUTS MA MAY TP - NO CADDA OF THE CORPENSATION MARKING OF ALCOUNTER MAY MARKING OF CONTROLS AND DESIRED CATTAUTS MARKING OF CONTROLS AND DESIRED CATALAND MARKING THE ANALYAL DE MARKING OF MARKING CATALAND MARKING THE ANALYAL DE MARKING OF MARKING CATALAND DE MARKING DESIREMATE DISTRICTION MARKING CATALAND DE MARKING DESIREMATE DISTRICTION MARKING CATALAND DE MARKING DESIREMATE DISTRICTION MARKING THE DISTRICTION DE MARKING DESIREMATE DISTRICTION MARKING DISTRICTION DE MARKING DESIREMATE DISTRICTION MARKING DISTRICTION DE MARKING DESIREMATE DISTRICTION MARKING DISTRICTION DE MARKING DISTRICTION DISTRICTION MARKING DISTRICTION DE MARKING DISTRICTION DISTRICTION MARKING DISTRICTION DISTRICTUANI DI DISTRICTUANI DISTRICTUANI DI DISTRICTUANI DISTRICTUANI DI THIS PROCRAMM IS USED TO SUME THE A B C N MATRICES LOR USE IN THE CHAIN THE CONTROL SYSTEM MAILUAL USES THE SEDARY INTO FOLIAL COMPARTER. THE FOLLAWING DATA IS ENTERED INTO A FILE WIICH THE PROCEAUM WILL ASK THE NUME OF AND THEN READ THE DATA FROM MRITTEN BY RICK HOLDRIDGE, TO FEB 84 MCDEFIED TO RUN ON THE VAL. & JUN 84 READ THE DATA FROM A FILE OPEN FILENMED FOR INPUT AS BI N MATRIX (NC 7 NC) CTN KI MATRIX (NC 7 NC) INT BSCALE (NR) C MATRIX (NC X NR) CONTRLECALE (NC) YDALLE (NC) -YDALL (NE) YDALL (NC) KESCALE (NC) CSCALE (M) NSCALE (NC) YSCALE (NM)

auggesga2B

229

Appendix N.

SCALEM1 and SCALEM2 Computer Programs

This appendix lists the computer programs for doing the fixed point scaling described in Appendix E. Also included are two example sets of data. These programs are written in VAX BASIC. The SCALEM1 computer program does the scaling for the longitudinal CAS controller. The SCALEM2 computer program does the scaling for the hover controller. The description of required data is at the beginning of each program. The SCALEM1 data is for the 6th order compensator with integral control. The SCALEM2 data is for the final hover controller.

SIMPLOT Example Data File.

٩

4,8,0,.1,15.0,0,0 18,22,20,21,16,17,18,22 'NAVION WITH FULL ORDER COMP HDOT COM = 10 FT/SEC ' 'FORWARD VEL(FT/SEC) ' 'LLIMB RATE(FT/SEC) ' 'THETA (DEC) ' ' THETA (DEC) ' ' THROTTLE(FT/SEC) ' ' THROTTLE(FT/SEC) ' 'CLIMB RATE(FT/SEC) ' 'CLIMB RATE(FT/SEC) ' 'CLIMB RATE(FT/SEC) '

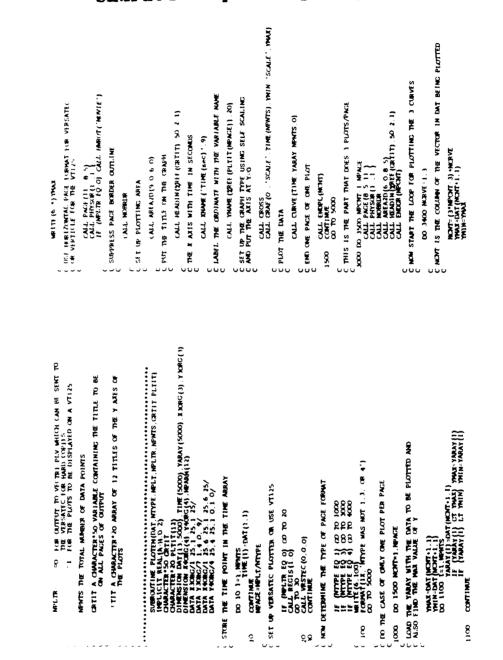
.

_ _

Ø)

1.

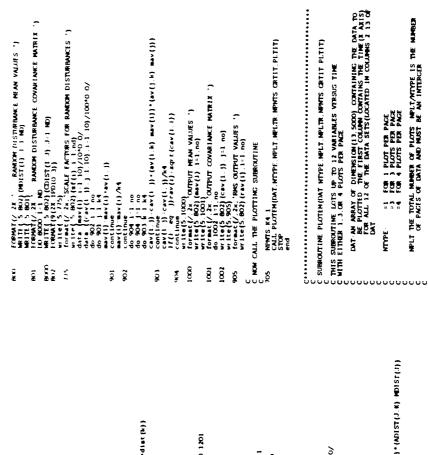
SIMPLOT Computer Program. (contd)

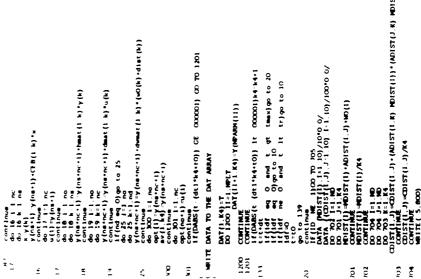

226

Ĵ.

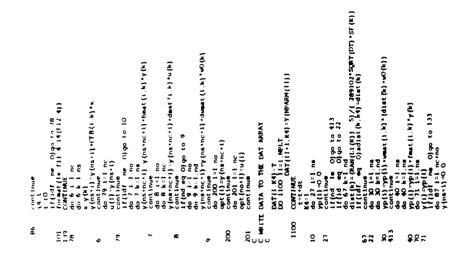
1

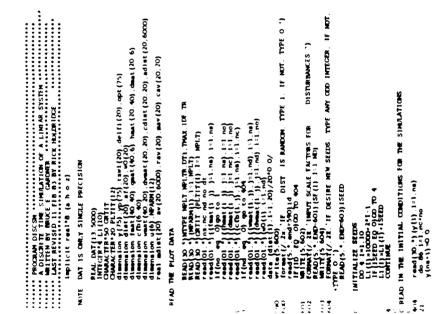
Ń


ſ



SIMPLOT Computer Program. (contd)


()


SIMPLOT Computer Program. (contd)

SIMPLOT Computer Program.

99

77 F**5**

NOTE

m- Number of controls.

p'' - Number of performance variables.

Item 3

GRTIT,PLTIT(NPLT)

where:

Ĩ

(

)

- GRTIT- A 50 character variable containing the title which will be put on all NPLT/NTYPE pages of plots.
- PLTIT- An array of NPLT 20 character variables containing the y-axis labels for the plots. The x-axis is always time.

Note: These character variables must be exactly 50 and 20 characters long.

Item 4

XCO(n+r+ns)

XC0 is an array containing n + r + ns initial conditions on the simulation states in the following order:

State	Parameter
x_1	
Ļ	plant states
$\boldsymbol{x_n}$	
$\boldsymbol{z_1}$	
1	compensator states
Z,	
w_1	
Ļ	noise filter states
w _n ,	

Description of "Plotdata" File inputs

Item 1

NTYPE,NPLT,NPLTR,DT1,TMAX,IDF,TR

where:

Í

K

- NTYPE- "1" for 1 plot per page, horizontal. "3" for 3 plots per page, vertical. "4" for 4 plots per page, horizontal.
- NPLT- The total number of plots to be made NPLT/NTYPE must be an integer less than 13.
- NPLTR "1" for immediate results on a VT125 screen. "0" to create plot files, VECTR1.PLV and PARM.PLV.
- DT1- The data point interval, DT1/DT (from RSANDY) must be an integer.

TMAX- Final time of the simulation, TMAX/DT1 must be less than 5000.

- IDF- "1" to run the simulation TR seconds prior to recording data for plotting. This is used to allow filtered noise to reach a steady covariance. "0" to start taking plot data at time= 0.
- TR- The number of seconds to wait prior to recording and plotting data.

Item 2

Plot parameter ID's, the array NPARM

NPARM is an array containing NPLT identification numbers of the variables to be plotted. The parameters are identified in the following sequence:

ID number	Parameter
1	<i>x</i> ₁
ļ	l plant states
n	x _n
n+1	<i>z</i> ₁
ļ	↓ compensator states
n+r	Z,
n + r + 1	w_1
Ļ	1 noise filter states
n+r+ns	w _{ne}
n+r+ns+1	<i>u</i> ₁
ļ	1 controls
n+r+ns+m	um .
n+r+ns+m+1	y1
ļ	<pre>↓ performance variables(from RSANDY)</pre>
n+r+ns+m+p''	yp"

where:

n- Order of the plant.

r- Order of the compensator.

ns- Number of states in all the noise filters.

Running SIMPLOT

@SIMPLOT Plotdata Simfile

where:

SIMPLOT- A VMS command file which runs the SIMPLOT.EXE file with Plotdata and Simfile as data files.

Plotdata- A users created file containing data used by SIMPLOT. The input item descriptions are shown on following pages.

Simfile- The simulation model file previously created by an RSANDY run.

The SIMPLOT program will ask 3 questions:

1. "Are the disturbances random?"

Type "1" for yes or "0" for no. If no noise was modeled in the RSANDY run which created the *Simfile*, you must type "0". If you had noise in the RSANDY run but want a clean time response, you can type "0" and no noise will show up in the time responses. If you answered "0" to this question, the simulation will be run. If you answered "1", the program will ask:

2. "Input new random number generator seed?"

Type in any odd integer for a new seed or type in zero for the default seed.

3. "Input scale factors for disturbances"

To force the simulation to be driven by noise having the same RMS as the RSANDY data, type "1,1,1,...1" where there are as many 1's as there were random inputs in the RSANDY data, i.e. m'. If you want to scale the RMS of the noise, change the "1's" accordingly. For example, typing "2,.5" will make the first noise source twice the RMS of the RSANDY data and will make the second source half as large.

Appendix M. SIMPLOT Computer Program

(

This appendix is the user's guide for the SIMPLOT computer program. The simulation part of the code was written by Bruce Gardner. It uses models created by the RSANDY program to run simulations of the closed loop designs. The program has the option of including the random disturbances used in the RSANDY design. Up to 12 variables can be plotted versus time and displayed on a VT125 screen or sent to a file for later plotting. The listing of the program and an example data set (Navion with full-order compensator from Chapter 2) are shown at the end of the appendix. The user's guide begins on the next page.

SCALEM2 Computer Program. (contd)

FYT 1 (240 PRINT TAB(10), "THE N MATRIX IS" (250 PRINT TAB(10), "THE N MATRIX IS" (250 PRINT IS"), NEXT J, PRINT NB(J*6), FMR(N(I J)), NEXT J, PRINT, N (351 PRINT TAB(0), "THE COMPUTER SCALED VARIABLE MATICES ARE" (250 PRINT TAB(0), "THE COMPUTER SCALED B MATRIX IS" (260 PRINT TAB(0), "THE COMPUTER SCALED B MATRIX IS" (260 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX IS" (260 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX IS" (260 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX (S" (210 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX (S" (210 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX (S" (210 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX (S" (210 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX (S" (210 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX (S" (210 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX (S" (210 PRINT TAB(0), "THE COMPUTER SCALED C MATRIX (S" (ST)), NEXT J, PRINT, "THE COMPUTER SCALED C MATRIX (S"), "THE

2 NO PRINT TAB(10). "THE COMPUTER SCALED C MATRIX IS" 2110 FOR ISL TO NC\ FOR JSL TO NR\ PRINT TAB(JSB). FMR(CCS(L,J)).\ NEXT J\ PRINT\ VEXT [2130 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(MCS(LJ)).\ NEXT J\ PRINT\ VEXT [2130 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(MCS(LJ)).\ NEXT J\ PRINT\ VEXT [2130 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(MCS(LJ)).\ NEXT J\ PRINT\ VEXT [2130 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(MCS(LJ)).\ NEXT J\ PRINT\ 2130 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(MCS(LJ)).\ NEXT J\ PRINT 2130 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(MCS(LJ)).\ NEXT J\ PRI 2130 FOR ISL TO NC\ FOR JSL TO NK\ PRINT TAB(JSB). FMR(GEINAL(L,J)).\ NEXT J\ PRI 2140 FOR ISL TO NC\ FOR JSL TO NK\ PRINT TAB(JSB). FMR(GEINAL(L,J)).\ NEXT J\ PRI 240 FOR ISL TO NC\ FOR JSL TO NK\ PRINT TAB(JSB). FMR(CEINAL(L,J)).\ NEXT J\ PRI 2410 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(CEINAL(L,J)).\ NEXT J\ PRI 2410 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(CEINAL(L,J)).\ NEXT J\ PRI 2410 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(TINL(L,J)).\ NEXT J\ PRI 2410 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(TINL(L,J)).\ NEXT J\ PRI 2410 FOR ISL TO NC\ FOR JSL TO NC\ PRINT TAB(JSB). FMR(TINL(L,J)).\ NEXT J\ PRI 2410 FOR ISL TO NC\ PRINT TAB(IS). "THE KORINAL MATRIX IS" 2400 FRINT TAB(IO)." THE KORINAL MATRIX IST 2400 FRINT TAB(IO)." THE KORINAL MATRIX IST 2410 FOR ISL TO NC\ PRINT TAB(ISL)." NEXT I 2420 FRINT TAB(ISL)." THE KORINAL MATRIX TS 2430 FOR ISL TO NC\ PRINT TAB(ISL)." NEXT I 2440 FRINT TAB(ISL TAB(ISL)." THE KORINAL 2450 FOR ISL TAB(ISL)." THE KORINAL MATRIX TS 2460 FRINT TAB(ISL TAB(ISL)." THE KORINAL 2471 FOR ISL TAB(ISL)." THE KORINAL MATRIX TS 2460 FRINT TAB(ISL TAB(ISL)." THE KORINAL TASL TS 2460 FRINT TAB(ISL TAB(ISL)." THE KORINAL TS 2471 FOR ISL TAB(ISL)." THE KORINAL TASL TS 2460 FRINT TAB(ISL TAB(ISL)." THE KORINAL TS 2471 FOR ISTADS 2460 FRINT TAB(ISL TAB(ISL)." THE KORINAL TS 2471 FOR ISL T

2510	PRINT	11402	LINATE	IX REQUI	RES A LRI	A	LALLCZ. THEN	STRAU"
2520	PRINT	"THE	N MATE	1X REÕUT	RES A LRT	A'", 18-S	CALEN 2 . "THEN	STRAU"
2530	PRINT	THE	ICK (1)	ELEMENT	REQUIRES	A LATA'"	18-SCALEKX (1) "THEN STRAU"
2540	PRINT	"THE	10(2)	ELEMENT	REQUIRES	A LRTA'"	18 - SCALEICE	2) "THEN STRAU"
2550	PRINT	THE	KX (3)	ELEMENT	REOUIRES	A LRTA'"	18-SCALEICE	3), "THEN STRAU"
2560	PRINT	"THE	Rum	ELEMENT	REQUIRES	A LETA"	10-SCALEICK	(1) "THEN STRAU"
2570	PRINT	"THE	10(1)25	ELEMENT	REQUIRES	A LETA"	. 18 - SCALEICK	(2) "THEN STRAU"
2580	PRINT	THE	KXI I II	ELEMENT	REQUIRES	A LATA'	18-SCALEKX	(3) "THEN STRAU"
2582	PRINT	"THE	1000/iii	ELEMENT	REQUIRES	A LRTA"	18-SCALEKO	OIL . "THEN STRAU"
2584	PRINT	"THE	1000/25	ELEMENT	REQUIRES	A LRTA"	": 18-SCALEIOO	(2) "THEN STRAU"
2586	PRINT	"THE	1000/35	ELEMENT	REQUIRES	A LATA''	. 18 - SCALEKO	() THEN STRAU
2590			1-1		-			

O

() \

SCALEM1 Computer Program Example Data.

SCALEM2 Computer Program Example Data.

"NR, NM, NC, TP" 5_8, 3, 05

"NR.NM.NC.TP" 5 8.3. 05 "THE MINIMAL DISCRETE COMPENSATOR DYNAMICS MATRIX. PHI, IS:" -0 78263.1.74302.0.90592.0.96006.0.72946 "THE MINIMAL DISCRETE COMPENSATOR INPUT MATRIX, GAMMAMIN, IS:" -0 00068.0.00024.-0.00074.-0.01160.0.04977.0.01823.0.10458.-1.910236 -0 00076.0.00083.-0.00088.-0.01252.0.04972.0.008007.-1.750846 0 00214.-0.00052.0.00084.-0.00071.-0.10784.-0.05930.-0.00479.0.370566 -0 00048.0.00001.0.00156.0.00007.0.00701.0.00129.0.00276.0.007696 -0 00356.0.00115.0.00006.0.00581.-0.67143.0.13067.-2.77471.-1.64643 "THE MINIMAL COMPENSATOR OUTPUT MATRIX. HMIN, IS:" -1 79786.1.82597.1.00000.-0.16434.1.000006 0 10394.-0 03719.0.35894.1.00000.0.111846 0 00000.1 00000.0.79317.0.03578.0.9061 "N MATRIX(NC X NC) COMMAND DISTRIBUTION MATRIX" -4 829E-02.-9 785E-03.-2.378E-036 -1 175E-02.-3 420E-03.5.886E-02 "THE KX MATRIX" - 26522.- 19939.-1.2212 "THE KX MATRIX" - 0000864.-0001028.- 17365 "THE KX MATRIX" - 0000864.-0001028.- 17365 "THE KX MATRIX" - 094118.-72424.-3.0 "BSCALE(NM)------ THE SCALING FACTORS ON SPECIFIC COLUMNS OF B." "HE KOD MAINIX" - 094118.-.72424,-3.0 "BSCALE (NM)------ THE SCALING FACTORS ON SPECIFIC COLUMNS OF B." 1,1,1, 017452,.017452,.017452,.017452,.017452 "CSCALE (NR)------ THE SCALING FACTORS ON SPECIFIC COLUMNS OF C." 1.1.1.1.1.1 "NSCALE (NC) ----- THE SCALING FACTORS ON SPECIFIC COLUMNS OF N." NSCALE (NC) ------ THE SCALING PACTORS ON SPECIFIC COLOMNS OF N. 1.1.1 "YSCALE (NM) ------ THE SCALING ON EACH MEASUREMENT." 32.32.32.500.500.500.500.500 "CNTRLSCALE (NC) --- THE COMPUTER SCALING ON EACH CONTROL." 1024.1024.1024 "YDSCALE (NC) ----- THE COMPUTER SCALING ON EACH DESIRED OUTPUT." 32.32.32 "YMAX (NM) ------ THE VECTOR OF MAX VALUES OF THE MEASUREMENTS." "YMAX (NM) ------ THE VECTOR OF MAX VALUES OF THE MEASUREMENTS." 50, 50, 30, 10, 10, 30, 20, 30 "YDMAX (NC) ------ THE VECTOR OF MAX VALUES OF THE DESIRED OUTPUTS." 20, 20, 20

D

END

FILMED

5-85

DTIC