BRL
- 2626
C.2A

AD A 15194 2

R TECHNICAL REPORT BRL~TR—2626

MODELS OF EXPLOSIVELY DRIVEN METAL

James T. Dehn

December 1984

APPROVED FOR PUBUC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND




Destroy this report when it is no longer needed.
Do not return it to the originator.

Additional copies of this report may be obtained
from the National Technical Information Service,

U. 8. Department of Commerce, Springfield, Virginia
22161,

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other
authorized documents.

The use of trade names or manufacturers' names in this report
does not constitute indorsement of any commercial product.



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMBLETING FORM
1. REPORYT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMH_ER
~TR-2626
4, TITLE fend Subtitia) 5. TYPE OF REFORT & PER|IOD COVERED
MODELS QF EXPLOSIVELY DRIVEN METAL Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)

James T. Dehn

9. PERFORMING ORGANIZATION NAME ANO AODRESS 10. :2‘5’2“&
US Army Ballistic Research Laboratory
ATTN: AMXBR-TED

AM ELEMENT, PROJECT, TASK
WORK UNIT NUMBERS

Aberdeen Proving Ground, MD 21005-5066 1L162618AHE0
1. CONTROLLING OFFICE NAME AND AOORESS 12. REPORT OATE
US Arwy Ballistic Research Laboratory December 1984
ATTN: AMXBR-0OD=ST 3. NUMBER OF PAGES
Aberdeen Proving Ground, MD 21005-5066 73
8. MONITORING AGENCY NAME & AOORESS(I! diflerent Irom Controfling Office) | 15. SECURITY TLASS. (of this report)
UNCLASSIFIED

1Sa. OECL ASSIFICATION/ OOWNGRADING
SCHEOQULE

16. OISTRIBUTION STATEMENT (ol thie Repors)

Approved for public release; distribution is unlimited.

PROPERTY OF U S. ARMY
STINFO BRRANCH . .
BRL, APG, MD. 21008

17. OISTRIBUTION STATEMENT (of the abetract entered In Block 20, I dilferent lrom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on raveree alds !l neceessary and Identity by block numbar)

Metal acceleration, explosives, detonation

20. ABSTRACT (Cantinue e reverse side H necessary aod Identity by block mumber)

A comprehensive discussion is given of various simple models of explosively
driven metal. These are compared with each other and with experiments, wherever
possible, and their relation to more complicated models is discussed as needed.
Certain types enable us to describe detailed space-time trajectories, while
others are more suitable for asymptotic cases such as estimating launch veloci-
ties. All arc simple enough to use in initial design work where insight and
suggestions for experiment are more important than great precision.

DD (30 I3 =oimom oF 1oV es is ossoLeTE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)




This page Left Intentionally Blank



I.

II.

III.

Iv.

VI.

VII.

VIIT.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS . & « « & « ¢ =« s o o =
INTRODUCTION o o o« o o o ¢« o o o s & ¢ o o o
THE ADIABATIC EXPANSION OF DETONATION PRODUCT
TAYLOR'S ANALYSIS OF A TUBULAR BOMB . . + 4+
GURNEY'S MODEL AND THOMAS' SYNTHESIS . . . .
TAYLOR'S MODEL SIMPLIFIED AND EXTENDED

A. Cylinder Struck Side-on . « « « o o = « =
B. Plate Struck Slde-on « « ¢« « « & o & & &
C. Expansion in the Reactlon Zone . . . . .
THOMAS' HEAD-ON MODEL SIMPLIFIED + & o « & &
STERNE'S EXTENSION OF EARLIER WORK . . . . ;
SIMPLE GEOMETRIES WITH AN ARBITRARY NUMBER OF
A. Introductlon . + o ¢« ¢« o o s o o & o « &
B. The Jelly Roll and Onlon .« « « « o « o «

C. The Dagwood « . ¢ ¢ o s o ¢ o « o o o o &

SUMMARY o o o v v 0 v o i w0 alay i L .

REFERENCES + v = = o = o = o = = o « « = o « .

DISTRIBUTION LIST - - L] - - - L] - L] L] L] L] L] L]

LAYERS

Page

14

22

27
34
37
39

!

49
51
58
65
67

73



This page Left Intentionally Blank



Figure

1.

10.

1.

LIST OF ILLUSTRATIONS

Linear Relation between Pressure and Denslty Cubed . . . . . . .

Tubular Case Expanslon Geometry .« « 4 « o o o 4 & 2 « a « a » &

(fas Denslty In an Expanding Cyllnder. « « « o ¢« « o« « 4 ¢« o« o« o« &
Movling Coordlnate Axial Gas Velocity in an Expanding Cylinder . .
Gas Denslty and x Veloolity Component for an Expandlng Sheet . . .
Jones' and Taylor's Cylinder Case Shapes Compared . « « « « « o« &
Comparlson of Launch Velocity Formulas Versus @ « « « + o o o o «

Kinetlc Energy Per Unlt Explosive Mass for One Plate in an
Asymmetrlc Saqdwlch * & 8 & 4 8 4 8 8 8 4 8 8 & & a4 & & 8 & & s a

Experimental Slngle Plate Launch Speede Compared with Model
Predlctlons [ ] . [ ] L] a L ] L L . L L . L ] L * . L . a a a ] - a a a a

Layer Numbering Scheme for the Jelly Roll and Onlon . « « « . .« .

Layer Numbering Scheme for the Dagwood + 4 4 ¢ & & a a a & & a a

29
30
36
38

42

46

50
53
59



This page Left Imemionall_v Blank



I. INTRODUCTION
There is a continuing need for and interest in simple models of explo-
sively driven metal. Military applications have recelved the most attention,

beginning with the work of Taylor1 and Gurney2 on the launch speeds of frag-
ments from explosively driven metal shells. Taylor also applied his ideas to

the formation of shaped charge Jets3 and later published his results.h Varia-
tions of these basic 1deas are still being used today in design and analysis

work.5'6'7 These ideas have also proven to be useful in the general field of

shock physics,8 and several recent papers have appeared on applications of

1G. I. Taylor, "Analysis of the Explosion of a Long Cylindrical Bomb Detonated

at One End," paper written for the Civil Defence Research Committee, Ministry
of Home Security in 1941, avallable in The Scientific Papers of Sir Geoffrey
Ingram Taxlor, Vol. III, G. K. Batchelor, ed., The Universlty Press,
Cambridge, 1963, p. 277.

R. W. Gurney, "The Initial Velocitles of Fragments from Bombs, Shell,
Grenades," Ballistic Research Laboratory R40O5, 1943, (AD ATI 36218)

2

3G. I. Taylor, "A Formulation of Mr. Tuck's Conception of Munroe Jets,”

written in 1943 and available in The Scientific Papers of Sir Geoffrey Ingram
Taylor, Vol. III, ed. by G. K. Batchelor, The University Press, CamEr%ng,

1963, p. 358.

G. Birkhoff, D. P. MacDougall, E. M. Pugh, and G. I. Taylor, "Explosives with
Lined Cavities," Journal of Applied Physies, 19, 1948, p. 563.

J. T. Harrison, "BASC, An Analytical Code for Calculating Shaped Charge
Properties,” Sixth International Symposium on Ballisties sponsored by the
Amerioan Defsnse Preparedness Assoclation (ADPA), 1981, p. 253.

y

5

6G. Randers-Pehrson, R. R. Karpp, C. E. Anderson, Jr., and H. J. Blische,
"SHORTFRAG Users Gulde," Ballistic Research Laboratory Memorandum Report
3007, 1980. (ADB O46644L)

L. R. Kruse, "Theoretically Determined Fragmentation Characteristics and
Lethality Estimates for a Newly Proposed Tungsten Alloy Cased BLVY-97 Combined
Effects Bomblet,™ Ballistic Research Laboratory Memorandum Report 3264, 1983.(ADC 032497L)

8M. A. Meyers and L. E. Murr, eds, Appendix E, "Nomograph for Determination of
Flyer-Plate Velocity, "™ Shock Waves and High-Strain-Rate Phenomena in Metals,
proceedings of an International Conference on Metallurgical EffectS of
High-Strain-Rate Deformation and Fabrication, Plenum Press, NY and London,
1981, p. 1057.

7




Gurney's analyﬁis.g-'”1l Other preferences to work on this subject can be [ound
in these papers. However, a bibliography compiled from these sources alone is
far from complete, as will become evident below.

Here we will express Taylor's analysis1 in simple formulas and extend it
to cases of planar as well as cylindrical symmetry. Taylor's numerical
analysis was presented in tabular form and has been virtually ignored. By
contrast, Gurney's results were presented in simple formulas which have been
widely used and extended. An exception 1s Taylor's simple formula for the
projection angle. This small part of Taylor's model has also been widely used
in a somewhat obscure combination with Gurney formulas to obtain a projection
velocity (magnitude and direction). Here we will develop time-dependent
formulas for projection positions and velocities as simple as Gurney formulas,’

First, we will treat side-on cases in which the detonation front propagates
parallel to the metal surface (surface normal perpendicular to the propagation
vector). Cases in which the propagation vector and metal surface normal make
an angle between zero and ninety degrees can be treated in the manner of
References 2 and 4. Finally, we will give some simple formulas for head=on
projection velocities (propagation vector parallel to surface normal vector).

In Section II of this report we will establish the validity of using the
exponent ¥ = 3 in the entropic equation of state. This is required for the
simplification of Taylor's theory and its extension to planar geometry as
discussed in Section V. A description and comparison of Taylor's and Gurney's
models 18 given in Sections III and IV by way of preparation. Thomas' model
1s simplified and compared with other models in Section VI. Comparisons with
experimental data are also made wherever possible. In Section VII we describe
Sterne's cxtensions of the models of his co-workers, Gurney and Thomas.
Finally, we will generalize Sterne's method in order to discuss more than one
layer of metal in contact with more than one layer of explosive in three
geometries: spherical, cylindrical, and planar, In particular, we will
develop simple design methods for optimizing certain types of performance.

gG. E. Jones, J. E. Xennedy, and L. D. Bertholf, "Ballistic Calculations of

R. W. Gurney," American Journal of Physiecs, 48. 1980, p.264.

100. E. Jones, "The Gurney Equations for Multilayered Fragments," Journal of

Applied Physics, 50, 1979, p. 3746.

"M, 5. Kamlet and M. Finger, "An Alternative Method for Calculating Gurney

Velocities,” Combustion and Flame, 34, 1979, p. 213.

12}3. W. LaRocca, "A Simplified Method of Calculating the Gurney Constant of

Common Explosives," presented at the meeting of the Pyrotechnics and

Explosives Applications Section of the American Defense Preparedness
Association, 1978.

3E. W. LaRocca, "Advances in Predicting the Relative Power of High Explosives
and the Correlation with Fragment Velocity," presented at the meeting of the
Pyrotechnics and Explosives Applications Section of the American Defense
Preparedness Association, 1980.

11'D. R. Hardesty and J. E. Kennedy, "Thermochemical Estimation of Exploéive

Energy Qutput,® Combustion and Flame, 28, 1977, p. U45.




II. THE ADIABATIC EXPANSION OF DETONATION PRODUCT GASES

A key element in Taylor's analysis was provided by H. Jones who numer-
ically evaluated one of Taylor's integrals., Jones worked with Taylor on
the Research Committee (R.C.) of the Ministry of Home Security and wrote

several papers with him.15n16'17 Jones gave an account of his methods in

several Research Committee papers which are no longer available.18’19'20 For-

tunately, his work was later published.21’22

In Reference 21, Jones glves as his Equation (27)

p = BpY (1)
relating the pressure p and density p of the product gas during its expansion.
Here B and v are constants. Equation (1} is called the entropic equation of
state and applies to polE}roplc gases for which the internal energy depends

only on the temperature. For ldeal gases at moderate pressures and tempera-
tures, Y is not much larger than unity. Jones estimates that Y should be
close to three near the rear of the reaction zone of a typical so0lid explosive
loading and remarks that such a high value occurs because the products ini-~
tially form a very imperfect gas. He derives the value y = 3 by assuming that
the ratio of the densities at the front (pb) and rear (91) of the reaction

zone is PO/ pT = 3/4.

15G. I. Taylor and H. Jones, "Note on the Lateral Expansion behind a
Detonation Wave," The Scientific Papers of‘Sir Geoffrey Ingram Taylor, Vol.
I1I, G. K. Batcheldr, ed., The University pPress, Cambridge, 1963, p. 309.

G. I. Taylor and H. Jones, "Blast Impulse and Fragment Velocities from Cased
Charges," The Scientifle Papers of Sir Geoffrey Ingram, Taylor, Vol. III, G.
K. Batchelor, ed., The University Press, Cambridge, 1963, p. 363.

17G. I. Taylor and H. Jones, "The Bursting of Cylindrical Cased Charges," The
Scientifle Papers of Sir Geoffrey Ingram Taylor, Vol. III, G. K. Batchelor,
ed., The University Press, Cambridge, 1963, p.379.

H. Jones, Research Committee Paper 166, no longer available,

16

18
19
20

H. Jones, Research Committee ﬁaper 212, no longer avallable.

H. Jones and A. R. Miller, Research Commlttee Paper 306, no longer
available.

21H. Jones, "A Theory of the Dependence of the Rate of Detonation of Solid

Explosives on the Diameter of the Charge," Proceedings of the Royal Soclety
of London, 1894, 1946, p. 415.

H. Jones and A. R. Miller, "The Detonation of Solid Explosives: the
Equilibrium Conditions in the Detonation Wave-Front and the Adiabatic
Expanslon of the Products of Detonation,™ Proceedings of the Royal Society
of London, 194A, 1948, p. 480.

23R. Courant and K. Q. Friedrichs, Supersonic Flow and Shoc¢k Waves,
Interscience, NY, 1948, p. 6.

22




In Reference 22 Jones and Miller used the following virlial equation of
state

pvV'/N = RT + bp + cp2 + dp3 (2)

to calculate pressure and volume (V') of N moles of gas at temperature T re-
sulting from the detonation of one mole of explosive. They also calculated
product species for TNT and predicted an approximately linear dependence of
both detonatlion veloclty and detonatlion pressure on loading density. 1In Part

B of thelr paper, they give numerical examples for TNT at a high (1.5 g/cma)

loading density and a low (1.0 g/cm3) loading density. For the high density
loading, their Table III gives the pressure, temperature, inverse density, and
effective r value calculated for the entire expansion process. Here we are
partlcularly interested in the Y values. At the detonation pressure achleved
at the rear of the reaction zone (p. = 15.88 x 10'0 dyne/cm®) they find ¥ =

3.36 (and 91

1010 dyne/cm2, P = 0.65 g/cm3 and ¥ =z 2.39. Between these two points we note

that a Y value obtalned by taking half of (3.36 + 2.39) 1s 2.9. Thelr Table
continues down to p = 2.818 x 106 dyne/cm2 and P = 0.003 s/cm3 with ¥ = 1.27.

= 1.95 g/cm3). By the time the pressure has dropped to 6.25 x

Thelr Table V gives simllar results for the lower loading density with 7 rang-
ing from 2.43 at the detonatlon pressure down to 1.20 near atmospherlic condi-

tions. Normally cast TNT for military applications has a loading density

slightly greater than 1.6 g/cm3 80 that a sultable effective value over the

range of interest to metal acceleration (2.1 > 2 > 0.6 g/cma) ought to be 7 =
3. Jones and Miller go on to compare their calculated species concentrations
favorably with experiment, implying that thelir p, T, ¢ and T estimates ought
to be approximately correct also, even though no direct comparison of these
quantities with experimental measurements 1s possible even today. These

results of Jones and Miller were again used by Tayler in a later paperzu in
which he demonstrated for the first time the possibility of a spherical

detonation wave, contradicting an opinion previously expressed by Jouget.25

Many other authors have followed Jones by using 7 = 3 to describe the high
pressure gases which result from the detonation of condensed explosives near

their maximum lcading density. Jac:ob.‘.az6 has peinted out that both the

27

Kistiakowsky~Wilson equation of state and that used by Jones and Miller

2“0. I. Taylor, "The Dynamics of the Combustion Products behind Plane and
Spherical Detonation Fronts in Explosives,™ Proceedings of the Royal Soclety
of Londcn, 2004, 1950, p. 235.

25M. Jouget, C. R. Academy of Science, 144, Paris, 1907, p. 633.

265. J. Jacobs, "Recent Advances in Condensed Media Detonations,™ American

Rocket Soclety Journal, ‘30, 1960, p. 151.

2?G. B. Kistiakowsky and E. B. Wilson, Jr., OSRD Report 114, US National
Defense and Research Committee of the Office of Scientific Research and
Development, 1941.

10



(Equation (2) above) lead to calculated results which can be expressed by
Equation (1) above with ¥ = 3 down to one per cent of the detonation pressure,
with an accuracy acceptable for hydrodynamic usage.

In 1968, Jacobs, together with Kamlet, proposed a simple method of calcu-
lating detonation properties, that 1is, properties at the rear of the reaction
28

zone ., This was the first in a long series of papers which has not yet been

completed.29_35 The sixth paper33 in this series gives an empirical expres-

sion for <¥ in terms of the loading density with ¥ again approximately equal to
three for military explosives at typical loading densities. In connection

36

with this paper, we also note a recent paper by Andersen.

The fifth paper'32 in the zbove series provides us with a table of pres-
sures and inverse densities (specific volumes) for various conditions during
the expansion of the products from the detonation of twelve common explosive
loadings, calculated by using a Kistiakowsky-Wilson equation of state:

pV'/(NRT) = 1 + Xeﬁx, (3)

28M. J. Kamlet and S. J. Jacobs, "Chemistry of Detonations, I: A Simple

Method for Calculating Detonatlon Properties of C-E-N-0 Explosives, Journal
of Chemical Physics, 48, 1968, p. 23.

29M. J. Kamlet and J. E. Ablard, "Chemistry of Detonations, II: Buffered
Equilibria," Journal of Chemical Physics, U8, 1968, p. 36.

M. J. Kamlet and C. Dickinson, "Chemistry of Detonations, III: Evaluation
of the Simplified Calculational Method for Chapman-Jouget Detonation
Pressures on the Basis of the Avallable Experimental Information," Journal
of Chemical Physics, 48, 1968, p. U3.

31M. J. Kamlet and H. Hurwitz, "Chemistry of Detonations, IV: Evaluation of a
-Simple Predictional Method for Detonation Velocities of C-H-N-O Explosives,"
Journal of Chemical Physics, 48, 1968, p. 3685.

30

32H. J. Kamlet and H. Hurwitz, "The Chemistry of Detonations, V: Pressures of

C=H-N=0 Explosives at Various Stages of the Isentropic Expansion,"™ NOLTR
68-44, 1968 or Israel Journal of Technology, T, 1968, p. u431.

33H. J. Kamlet and J. M. Short, "The Chemistry of Detonations, VI: A 'Rule
for Gamma' as a Criterion for Choice among Conflicting Detonation Pressure
Measurements,™" Combustion and Flame, 38, 1980, p. 221.

J«. M. Short, F. H. Helm, M. Finger, and M. J. Kamlet, "The Chemistry of
Detonations, VII: A Simplified Method for Predicting Explosive Performance
in the Cylinder Test," Combustion and Flame, 43, 1981, p. 99.

35M. J. Kamlet, J. M. Snort, M. Finger, F. Helm, R. R. McGuire, and I. B.
Akst, "The Chemistry of Detonations, VIII: Energetics Relationships on the
Detonation Isentrope,™ Combustion and Flame, 51, 1983, p. 325.

34

36w. H., Andersen, "Comments on 'The Chemistry of Detonations?," Combustion and

Flame, 45, 1982, p. 309.

11



at
where X = K@xiki/[V'(T+9) 1 with x; the mole fraction, k, the covolume fac-
j

tor, and &', B8, K and ¢ empirical constants. If we use this table to plot p

versus p3, we see that Equation (1)} with 7 = 3 can be fitted very closely to

these¢ calculated results, at least over the range of p of interest to metal

acceleration, confirming Jacobs? remark.26 Figure 1 illustrates this for two
explosive lcoadings which are not very different from ones used in military ap-
plications. The values marked X and O were calculated from their table.

Kamlet and Hurwitz alsoc quote values for TNT at A, = 1.55 g/cm3 which are

quite close to those calculated for g, = 1.50 g/cm3 by Jones and Miller,22
using a very different equation of state (Equation (2) versus Equation (3)).
We conclude that Equation (1) with ¥ = 3 18 a satisfactory approximation for
most applications, In fact it is much better than we might expect from the
estimates given by Jones and Miller, quoted above. At present we have no
satisfactory explanation for this remarkable observation. The fact that the
range .6 < p< 2 is centered near g = 1 where p is independent of ¥ may be of

some help, but this does not explain the agreement over the range 0.2 < P3 <

Bl

If we adjusted ¥ as well as B in Equation (1) we might obtain slightly
better agreement. However, there is 1little justification for doing this since
the values being fitted can be calculated from various equations of state
chosen for convenience rather than theoretical reasons. Since almost any
reasonable form will do, we should not place much weight on the fact that a
particular form gives us reasonable results. As Jones and Miller remarked

long ago,22 we have little information to guide us in choosing a correct form
for the equation of state. There i3 no virtue in using complicated empirical
equations which are designed to cover critical phenomena controlled by weak
molecular attractions. The beat that can be done is to choose the simplest
equation which is adequate for one's purpose, as they did and as we shall do.

If we let ¥ = 3 in Equation (1), analytical simplifications become possi-
ble, as we shall see presently. One example of such simplification has already

been given by Aziz and co-workers.37 who compared the results of an exact so-
lution for rigid piston loading (possible if ¥ = 3) with numerical solutions
in the parameter range 2.5 < 7 € 3.5. They concluded that only a one percent
error would be made in calculating the energy transmitted to the pisten, in
spite of variations in the detonation pressure and velocity of about fifty per
cent. Similar conclusions were reached earlier by Gurney in his discussion of

38

gas leakage.

374, X. Aziz, H. Hurwitz, and H. M. Sternberg, "Energy Transfer to a Rigid

Piston under Detonation Loading,™ The Physics of Fluids, 4, 1961, p. 380.

R. W. Gurney, "Fragmentation of Bombs, Shells and Grenades,™ Ballistic
Research Laboratory Report 635, 1947. (ADB 800451)

38
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III. TAYLOR'S ANALYSIS OF A TUBULAR BOMB

Since the detalls of this model1 are not widely known, we will summarize
them here. Figure 2 shows a longitudinal cross section of an infinitely long
tubular bomb in the neighborhood of a planar detonation front (solid vertical
line) which is moving to the right at constant speed, D. To an observer in
the laboratory, the process of gas expansion and metal acceleration appears to
be complicated, since the gas first moves forward following the detconation
wave front and later moves backward away from i1t so that it acts twice on the
same element of the case, as we shall see. However, to an observer who trav-
els with the detonation front and looks back at the expansion process, these
complexitles disappear, since the gas pressure and velocity at a given dis.
tance behind the front (dashed vertical line) do not change with time (steady
state condition). Moreover, the velocity of a case element along its length
ds 1s constant and equal to D, since there 18 no stretching along da. The
transformation between the laboratory coordinate X and the coordinate x used
by the moving observer 1s

X = - (x=Dt) + X, (4)

as shown in Figure 2. Here t is the time, which 1s taken to be the same for
both observers, since detonation wave speeds are negligible compared to the
speed of light. The radial coordinates R = r are also the same for both ob-

servers as is the {ignorable) equatorial angle measured about the x-axis. The
[
time derivative of Equation (4) gives us the relation between the speeds U = X

and u = ﬁ, using the dot convention for time derivative,
U=D-u. (5)

Let M be the constant mass per unit length of the c¢ylindrical shell casing
and rr be the radial position of the center of a ringlike element of the case
wall, namely, the average of the inner and outer radil of the casing at any
time t with r much larger than the wall thickness. If we take the ring to be
of unit length, then the area acted on by the gas pressure 1s 2xr times unity
and the mass per unit area is M/(2wsr). The pressure always acts normal to the

metal surface and balances the centrifugal force [M/(2xr)] (D2/Hc), where Rc

is the radius of curvature (see Figure 2), the inverse of the curvature of the
arc ds. Thus,

g (dr)
M_ 2 dx \dx

=p (6)
2mr ‘[’1 . (ﬂ)z]‘i}rf
dx

where we have retained the exact expression for the curvature. For a suffi-
ciently heavy case, tan® ¢ =(%E 2 4ill be much less than unity (see Figure

dx
2), approaching unity only as‘¢ ‘approaches HSO. Thus 1t is a good approxima-
tion to neglect it in the denominator of Equation (6) as Taylor implicitly
did. However, there 13 no difficulty introduced by retaining it, at least for
a while, 3o we will.

14
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If we multiply both sides of Equation (6) by (4xrdr)/Mp%) = (4xr tan ¢ dx)
/(HDE), we find

p tan ¢ d(tan ¢} _ , .o ddo¢ = —E%'pd(rzj

[ + tan® ¢]3/2 MD (7)

2
where we have used the identitles d(tane) = se02¢d¢, 1 + tan2¢ s sec’¢ and

2 rdr = d(r2). The left side of Equation (7) 1is readily integrated from¢ = 0
to obtain

2(1 - cos ¢) = 4 sin2(¢/2) (8)

by another identity. If we approximate Equation (8) by retaining only the
first order term 1n a binomlal expansion,

2(1 - ‘s'éi;l"—qs) = 2 [1 - (1 + tan® ¢)'!‘i]

2 [1 - {1 - % tan2 ¢ + )] ztanqu_

2(1 - cos ¢)

(9)

H

Wwe recover Taylor's approximation, The same thing can be accomplished by re-

taining only first order terms in series expressions of either slde of Equa-
2

tion (8). Thus 2 [1 - cos¢]l =2 [1 -(l-%/2)] - % tan2¢, or 4 sin (¢/2) =~

H(¢/2)2 = ¢2 =~ tan2¢ for small ¢.

We are interested in the square root of Equation (8). In moving coordi-
nates, the components of the case velocity are V. = dr/dt = D sin ¢ and v, S

dx/dt = D cos ¢ from Figure 2. In laboratory coordinates the components are

V.= v, and v, = D(1 - cos ¢ ), so the magnitude of the case velocity in

laboratory coordinates is

!
n
L
+
<
n

2 2 DJsinz ¢+ (1 -cos ¢)° =0y2(1 - cos ¢) (10)

2D sin (¢/2) H]

where we have used the identity sin2¢ + cosz¢ = 1 and Equation (8). Equation
(10) is the only formula in Taylor's analysis which has received wide use,
clearly because of 1ts simplicity. We also note by -another identity that

Vx l - cos ¢ (11)
VT s o trn o,
T
so that the angle of projection in laboratory coordinates is ¢ /2. Equations
(10) and (11) are exact. If we follow Taylor and use tang¢ sz 2 sin(¢/2) for
the integral of the left side of Equation (7}, we make less than a 5% error

for ¢ < 20°. The exact expression in Equation (8) has already been used by
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others. 1In the journal literature it was used by Allison and co-uorkerng’llo
who wrote d¢/ds = (dr/ds)(d¢/dr) = sin ¢ (d¢/dr) for the curvature in Equation
(7). They did not point out that this 1s equivalent to retalning the exact
curvature instead of approximating the curvature.

In order to integrate the right side of Equation (7) let us write down a
few more useful relatlions. For an explosive gas mixture In a rigld cylinder,
such as a hydrogen/oxygen mixture in a shock tube experiment, the equation of
mass conservation in moving ccordinates 1s

dm = p A Ddt = pAudt R

°° (12)
where Ddt and udt are the original and compressed length of a gas volume ele-
ment of mass dm and constant cross sectional area A = Ao. Here Po is the un-

compressed gas density, while p is 1ts compressed density. Since the tube is
rigid, A 1s constant and PBD = pu. However, for the gaseous detonation prod-

ucts of a so0lid explosive high density loading expanding in a metal tube, A
will not remaln constant. For a tube with a circular cross section, the area
before expansion 1s A = rroe, while after some expanslion it becomes A = rr2 >
Ao. If we use these expressions in Equation (12) and cancel », we find

2 _ 2 (13)
poDro = pur

for mass conservation. Now N is the loading density of the solid explosive

before detonation, Since steady state flow conditions hold in moving coordi-
nates, the equation of continuity is

= ]

] 9
'5'; (rpV) e -3-; (pl.l) =0 » (14)

where v 13 the radial component of the gas velocity (as contrasted with Vi

the radial component of the metal velocity). In Table 1 below we will note
that v << u 22 D, 80 that the first term in Equation {(14) might be neglected on
these grounds for r values of interest. This would make (Pu) independent of x
as it 1s in Equatien (13). However, 1t is more interesting to conclude from
Equation (13) that (pu) is independent of x, so that (rev) in Equation (14)

2
must be independent of r. Since P 18 inversely proportional to r from
Equation (13) when u as D, then v must be proportional to r under these condi-
tionas. Thus we may write

v = r(vB/rB), (15)

39F. E. Allison and J. T. Schriempf, "Explosively Loaded Metallic Cylinders,

I11," Journal of Applied Physies, 31, 1960, p. Bub.

uOF. E. Allison and R. W, Watson, "Explosively Loaded Metallic Cylinders, I,"

Journal of Appllied Physics, 31, 1960, p. Bu2.
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where Vg and rp are constants which we will define later. Equation (15) was

Introduced by Gurney2 as a postulate, although 1t follows from the equation of
continuity under the condlitions mentioned. Gurney gave no indication that he

ever noticed this fact. Inatead, his assumption had quite a different motiva-
tion as we shall see.

In the Chapman-Jouget model of detonation, the approximation is made that
all chemical reaction 1s completed in such a short time that the width of the
reactlon zone 1s negliglible. Thus we may approximate changes 1in varlables
like p, p and u by discontinuous jumps instead of using derivatives with very
large values. If we use the subsecript unity to denote values just behind this
very narroW reactlion zone and the approximatlon r,=r, {no expansion in the
reaction zone), then Equation (13) becomes

poD = pyuy (16)

as in a rigid tube. Simlilarly, we can use Newton's second law in its impulse-
momentum form to derive another jump condition. The impulse dellvered across
the reactlon zone 1s (p1 - po)Adt which 13 equal to the change in momentum

across this zone, namely,dm(D =- u1) where dm is given by Equation (12). If we
neglect the {(ambilent) pressure Py at the front of the reactlion zone compared

to the detonation pressure p1 at its rear and cancel Adt, we obtaln
P, = pOD(D - u,)- (17)

We need one other relation in order to integrate the right side of Equa-

tion (7). This 1a the strong form of Bernoulll's law for steady flouu1

dp _ 2 2 2 2 2

_/;p 52-‘5“1‘%(“"")“!’[“1 ) (18)
1

since v2 << u2== D2 as mentioned above. The approximate differential form of

Equatlion (18) is then
dp - - PUdu. (19)

Every sclence student 1s famlliar with the integral of Equation (19) in the
case of an lncompressible fluld for which p = po for any p and u (in the ab-
sence of external flelds llke gravity), namely, p + & pou2 =Py + ;épou12. In
the present case, of course, p1 > Poe

The varlable on the right side of Equation (7) was chosen to be 0 80 that
Wwe may use Equation (13) to introduce the new varlable 1/(pu). Then the right
side of Equation (7) becomes

il
1B. Courant and K. 0. Friledrichs, Supersonic Flow and Shock Waves,

Interscience, NY, 194§, p. 22.
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which 1s Taylor's1 Equation (11) when tan2¢ 18 used. In the second line of

Equation (20),we have introduced Taylor's notation for the metal case mass to
explosive charge mass ratilo

_ M _M
@=——="=F

(21)
(poﬂrozl

where C 1s the explosive mass per unit length of cylinder. We have also inte-
grated by parts from the highly compressed state 1 to an expanded state some
distance x behind the detonation front (zero width reaction zone). In the
third line of Equation (20), we have used Equation (19) to evaluate the
remaining integral. In the fourth line, we have eliminated ¢ D in Equation
(17) by using Equation (16) to obtain ' o

Py Py
— 4+ u. = +u. =D (22)
PP 1 puy 71 ,

then used Equation (22) in Equation (20). In the last two lines we have used
Equations (8), (9), and (10) to complete the derivation. Equation (20) gives
V as a functlion of the varilables p, p and u and the parameters D and e.

Taylor went on to find the shape of the case by numerically integrating the
equation

X =jrr dr/tan ¢ (23)

o
which is derived from tan¢ = dr/dx.

Equatlion (20) 18 rarely cited in the literature since p and u do not ap-
pear as simple functions of r, although {(pu) has a simple form in Equation
(13). Instead, u must be found from Equation (18) with Uy, given by Equation

(16). As was mentioned above, H, Jones evaluated the integral in Equation

2



(18) for Taylor. Once this was done {using p_ = 1.51 g/cm3 and D = 6.38 x 105

cm/s}, Taylor presented his solution in tabular form. Table 1 here 1s an
abbreviated version of his results with one row added {(for u = D) and some
additional columne--two giving ¢ in degrees for the exact and approximate
expressions in Equation (20), using the example « = 2. From thia table we see
that by the time £ = r/ro = 1.5, V has already achieved 90% of the value it

would achieve if the case were ductile enough to avoid fragmentation until
r/ro = 2. Calculations for large values of r/ro are purely academic, since no

casing material will stretch indefinitely. This is emphasized by the fact
that the angle ¢ found by using the exact curvature becomes imaginary as soon

as\{EF(V/D) > 2. This corresponds to the physical fact that V cannot exceed

D. The value ¢ = 80.970, found by using the approximation tan2¢, is without

significance since the approximation ceased to be valid long before
r/ro—vm « Since practical metal cases usually burst near r/ro = 1.5, we see

that the range of pressure and density which can be adegquately represented by
Equation (1) with v = 3 1is covered quite well. As can be seen, approximate

values are very close to exact values in this range. Finally, we note that u
is initially somewhat smaller than D, then becomes slightly larger than D for
r/ro > 1.2. If we recall Equation (5), it becomes clear that to a laboratory

observer the gas irst appears to move forward after the detonation front (U >
0}, then backward (U < Q) for any given X position. The approximation v <«
2

u- = D2 also becomes clear, since v { V= 0.2D for reasonable a = 2 in the
fifth column.

Taylor did not -have cased TNT observations to compare with his calcula-
tions when he wrote his paper, 50 he compared his V values with observations
made for tetryl explosive cased in steel and found rough agreement. Tetryl 1is
similar to TNT since it too has an hexagonal trinitro ring. However, it has
an extra nitro group bonded to its methyl group via a nitrogen atom, so we

might expect some disagreement. Taylor later collaborated with H. Jones16*17
and compared calculated case shapes and velocities with experimental values
for composition B explosive (60/40 RDX/TNT) encased in steel, using Jones'®
calculations for this mixture. They found agreement over the range observed,

namely, 0.6 < a < 13.5, which corresponds to 26.5o >¢ > 6.5° near bursting.

In recent years cylinder tests have become standardized as explained for
example by Short, who gives measured cylinder wall velocities as a function
of case expansion for two densities of TNT (P = 1.45 g/cm3 and P = 1.63
g/cm ), which bracket the densities being used by Taylor in his calculatlons

(fB = 1.51 g/cm3). For the standard copper cylinder,a = M/C = (PM/'B)

2 3
[(r'out ) - 1] = 4.026/1%, since Poy = 8.92 g/cm”, the outer cylinder
radigs rout = 1.53 cm = ro and the lnner radius rin = 1.27T em. For po = 1.51
g/cm” we find a = 2,67. We can use this value together with D = 6.38 mm/us

to find v (mm/t9 = 5.52 times the values in column 5 'of Table 1. These values
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are about 10% lower than the experimental values in column 10, consistent with
Taylor's neglect of the radial gas velocity component, an approximation which

becomes worse as & increases. The experimental values were obtained by

34

plotting Short's values versus r/ro =1+ (r - ro)/ro, gsince his expansion

variable is (r - ro), followed by a linear interpolation between the cases he

gives for Po = 1.45 g/cm3 and Po = 1.63 g/cm3. The method of interpolation 1is

unimportant, since the values in column 9 lie below the lower curve for Py =

1.45 g/cm3 instead of between the two curves. We can imagine a variety of
corrections for both the calculated and measured values. For example, we
‘might use a more modern value of D closer to 7 mm/us, as indicated in the

31

survey by Kamlet and Hurwitz,

given by Jones and Miller22 and adjust u aceordingly. On the experimental
side we might correct for the neglect of Taylor's angle in Short's values
{(which are V., not V) by eliminating ¢ between Equations (10) and (11) to

obtain
V= D[2 {1 V1 - (vr/n)T}];ﬁ . (24)

We might also use the higher pressure values

However, this leads to corrections only in the third decimal place. Even
corrections for observing the outside instead of the center of the thinning
case wall are beyond the accuracy of the experiments since the data reduction
process 1ncludes numerical differentiation of displacement versus time curves.
Altogether, the agreement is remarkable.

IV, GCURNEY'S MODEL AND THOMAS' SYNTHESIS

It is clear from Section 3 of his report2 that Gurney wanted to explain an
experimental observation; namely, the fact that the fragment launch speeds of
very different size weapons containing the same explosive seemed to depend
mainly on the ratio of the mass of the explosive to the mass of the metal;

that is, (C/M)y, where y is a power near 0.22 for large bombs, but closer to
0.50 for small projectiles. This led him to his basic assumption which he

stated in his abstract and repeated in Section 4 of his report: namely, the
contribution made to the total kinetlc energy by the detonation of each unit
mass of explosive 1s independent of the size of the projectile. He used the

symbol E to denote this constant energy contribution per unit mass and C = T

Po

r, for the explosive mass per unit cylinder length. Thus,EC is the energy

contribution per unit length. Initially, the energy released by the detona-
tion appears entirely as the internal energy of the highly compressed detona-
tion product gases. However, 1t is rapidly converted into kinetlc energies of
gas and metal as the case expands until, at the moment of bursting, most of it
is in this form. Since Gurney knew from experiments that radial fragment
motion completely dominates axial components, he partitioned EC into radial

energles of metal and gas, integrating over 1/2Pv2 for the latter. He took
Equation (15) above to be true, using the symbol v, for vpe the case velocity
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at the ‘moment of bursting (equal to the gas velocity at the case), and the
synmbol a instead of rg for the case radius at this time. He then wrote his
Equation (1):

2

T

2 (78 3

EC = ‘/,,MVBZ + % va amrp —5 4t . (25)
0 rB

Here we are using M for the case mass per unit length, a sum over mass ele-
ments which form a ring. Since his basle assumption requires EC to be
independent of rg. the integral in Equation (25) must somehow be independent
of rge Near the top of page 5 in his report, Gurney states that he assumed p
to be constant. Clearly, he took ¢ = Cf(erz) = pbroz/r
can be taken outslide the integral sign, putting r-Bu

Gurney's reason for assuming a linear dependence of v on r now becomes clear.

Bz' a constant which

in the denominator.

Equation (15) puts r2/r32 in the integral. Since the integral of r3 1s r“/u,

PB appears In the numerator to cancel rBu in the denominator and make EC

2
independent of the projectile size. The integral becomes CVB /4 and a
solution for vp gives us

—
vg =V 28/ [(We) + 1/3 (26)
which is Gurney's widely used cylinder formula.

Gurney was also interested in small projectile warheads and grenades which

more closely resemble spheres than long cylinders. His Equation (2) for a
cased spherical charge is analogous to his Equation (1):

r 2
2( B 2 T
Ec=%Mv2+‘iVBJ’ CCuACl A (27)
o] T
B
whaere M 1s now the case mass and C = po(H/3wr03) is the charge mass with r the
spherical radial coordinate. Again he took P =z 3C/(erB3) to be constant

which put 5 in the denominator. Of course the integral of r is r5/5 which

r
B
puts rBS in the numerator, making EC independent of projectile size in this
geometry also. The integral becomes 3Cv32/?0, and a solution for VB gives us

— 7
Vg _\, 2E /7 [(M/C) + 3/5] (28)

for a sphere. Gurney noted that Equations (26) and (28) make v_ vary as

B
A 2
(c/M) = for small C/M and as (C/M) : for large C/M in agreement with the

obzerva-lons he set out to explain as simply as he could, Of course both
equatlons tend to asymptotic values as (C/M)> « (bare charge).
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In his discussion in Section IV of his report, Gurney suggests a slightly
lower value than 1/2 in Equation (26). He also comments that his equations
are intended to express the fact that a fraction of the chemical energy
released is eonverted into kinetic energy, other details being unimportant for
his purpose. (His report contains the word "important™ lnstead of unimpor.
tant. This is an obvious typographical error since the context demands the
latter.) In addition, he remarks that his taking ry as the upper limit of

his integral suggests a dependence on metal strength. He goes on to assert
that he did this to simplify the calculation, since the evidence availlable to
him at the time gave no hint of such a dependence. Later experiments have
confirmed the fact that there is a small dependence of launch speed on metal

strength. For example, Famigliettiu2 found that for identical geometries and

explosive fills, the launch speed of Hadfield manganese steel fragments was
about 15% greater than that of stainless steel fragments in spite of the fact

that C/M was virtually the same in both cases. This implies that Gurney's*dZE
is not strictly a characteristic of the explosive alone, although it has

usually been treated as if it were.11_1ll

In Section V of his report, Gurney notes that the value J2E = 2.44 x 105
cm/s gave a good fit for TNT-filled shells. over the range 0.18 < M/C < 16.67,

which is a bit larger than the range examined by Taylor and Jones.17 He also
notes that this fitted value gives an E value which is only 80% of the energy
per unit mass which ought to be released in a TNT detonation. This is, of
course, expected since E is only the contribution to the total kinetic energy,
the rest of the energy still remalining as internal energies of gas and metal
after fragmentation (neglecting minor factors,such as light emission which
occurs later anyway).

In the last paragraph of his report, Gurney mentions Taylor's paper‘1 and
correctly states that Taylor neglected radial gas motion compared to longitu-
dinal. Most likely he had not read Taylor's paper at this time and had this
on hearsay since he contlnues by saying that Taylor's results "were not
intended to apply to a projectile from which the end sprays are feeble
compared with the side spray.™ Gurney was obviously not aware that Taylor
neglected v compared to u in moving coordinates but found Vr >> Vx in labora-

tory coordinates (small angle ¢ in Equation (11)). Gurney was a physicist
with remarkable insight who could grasp the essentials of a problem without
much mathematical analysis. For an appreclation of Gurney, especlilally his

insights into quantum mechanical tunneling, see Condon.43 As we have seen in
our discussion of Equations (14) and {15) above, Gurney was making an
excellent approximation in Equation (15). 1In effect, he was letting u = D in

uEH. Famiglietti, "Fragmentation of Ring Type Cylindrical Shell Made of
Various Metals," Ballistic Research Laboratory Memorandum Report 597, 1953. (AD 4867hY)

E. U. Conden, "Tunneling - How It All Started,™ American Journal of Physics,
46, 1978, p. 319,

43
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Equation (13) when he let p = PB = C/(erz), which 1s very nearly true for

bursts which occur for r/ro > 1.16 (see Table 1). As Tayler pclnted out, the

gas density 1s nearly a constant over an entire plane at any distance x from a
moving observer, that 1s, for any given r/ro. For a sphere 1in which only

radial motion occurs, the analog of Equation (14) 1s

;%. H%—(rzpv) =0 (29)

which can be considered together with mass conservation

- 4 3 4 3
C=p,gm,~ =pxgaur (30)

to arrive at Equation (15) in thils geometry also. If y 1s the cartesian coor-
dinate normal to an initially planar explosive/metal interface and the detona-
tion propagatea along the x-axils, the analog of Equation (14) 1is

2
P ACORS NGO IS o

where each term in Equatlon (31) vanishes. Mass conservation requirespuy =
J%Dyo where yo is the 1nitial explosive sheet thickness, so u 1s not a

function of x, For u=D, #ea1/y so v~y to make fv 1independent of y.

Thomas,hh a co=worker of CGurney, compared Gurney's and Taylor's models.

The year bef‘ore,l'5 he originated the method of mentally dividing a shell or
bomb 1nto sections by planes perpendicular to its longitudlnal axls in order
to apply Gurney's method of calculating launch speeds, taklng 1lnto account the
curvature and varlable wall thickness of real shells. His method 1s still
used today and has been re-invented several tlmes, most recently by Burman and

Bedf‘or'd.l'6 In his synthesis,hh Thomas began with a brief description of
Gurney's model, generalizing Equations (26) and (28) to 1lnclude the planar
case

Vevy =y 26/ [(WC) + n/n + 2], (32)

where n = 1, 2 and 3 for planar, cylindrical and spherical symmetrles
reapectively. Following thls, he gave a brief account of Taylor's model, but

HHL. H. Thomas, "Theory of the Explosion of Cased Charges of Simple Shape,"

Ballistic Research Laboratory Report 475, 1944, (AD %91945)

L. H. Thomas, MAnalysis of the Distribution in Mass, 1n Speed, and in
Direction of Motion of the Fragments of the M71 (90 mm) A. A. Shell, When -
Fillled with TNT, and When Filled with Ednatol," Ballistlc Research
Laboratory Report 434, 1943, (ADB 493515)

llGN.M. Burman and A.J. Bedford, "A Concept for the Prediction of Fragment

Mass/Number Distributions of Fragmenting Munitions,™ Proceedings of the
S1xth International Symposium on Ballisties, 1981, p. 245.

45
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used the exact curvature d¢/ds = sin¢(d¢/dr) as Allison and Shriempf.‘39 did
sixteen years later. Thomas went on to solve the Lagrangian equations of
motion by a series of successive approximations, using a parameter inverse to
the detonation velocity. He obtained Gurney's result as the asymptotic limit
of the zeroth order solution in which detonation is imagined to occur simul-
taneously everywhere in the explosive (D = «=). Taylor's model emerged 1n
higher order solutions. He concluded that Taylor's model should be an excel-
lent approximation. Thomas also considered shocks and concluded that their
effect on the energy 1s slight. After two or three brief reverberations, the
motion settles down to an asymptotic form. For very thin shells stepwlse
shock acceleration at very early times has been observed by Allison and

Shriempf;39 Eden and Wright”T have observed a similar effect for thin plates.
Theoretical studies of shock acceleration have also been carried out in recent

years, using the method of character‘‘1sst,1<:s.ha'l}9 Neither of these studies
changes Thomas' conclusion that there is no need to consider shock effects
when consldering the motion of most practical devices.

Thomas went on to consider planar, cylindrical and spherical cased charges
initiated simultaneously at all points on a central plane, on an axis of
symmetry or at the center respectively. For the planar case, he polnted out
that the problem is equivalent to Lagrange's problem in internal ballistlcs

which was treated in detail by Love and Pidduck.so This theme was later taken

up by Jaeobs,51 Sterne52’53 later extended Gurney's= work to exploslve sand=-
wiches as well as cored cylinders and spheres wlth a fuze cavity. He also

took up Thomas' model of symmetrical initlation as did Gurney.

uTG. Eden and P.W. Wright, "A Technique for the Preclse Measurement of the
Motion of a Plane Free Surface," Fourth Symposium on Detonation, Naval
Ordnance Laboratory ACR-126, 1965, p. 573.

uaB. D. Lambourn and J. E. Hartley, "The Calculation of the Hydrodynamlc

Behavior of Plane One Dimensional Explosive/Metal Systems,® Fourth Symposium
on Detonation, 1965, p. 538.

H. E. Hoskin and B, D. Lambourn, "The Acceleration of Two Metal Plates in an
HE-Metal Sandwich,® Seventh Symposium on Detonation, Naval Surface Weapons
Center MP 82-33%, 1981, p. 811.

5[)Low..re and Pidduck, "Lagrange Ballistic Problem,” Phil. Trans. Royal Soclety
of London, 222, 1922, p. 167.
51

hg

S. J. Jacobs, "The Gurney Formula: Variations on a Theme by Lagrange,™
NOLTR Tu-86, 1974.

T. E. Sterne, "A Note on the Initlal Velocities of Fragments from Warheads,"
Ballistic Research Laboratory Report 648, 1947. (AD 898680)

53T. E. Sterne, "The Fragment Velocity of a Spherical Shell Containing an
Inert Core," Ballistic Research Laboratory Report 753, 1951. (ADB 377181)

52
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Let us compare Gurney's model with Taylor's. Gurney's model 1s more ele-
mentary since 1t reliles on an energy partition at a particular moment, while
Taylor solves an equation of motion., With Gurney's model, we can only estimate
a speed at a given time. With Taylor's model, we can calculate the position
(case shape) and veloclity (speed and direction) of each case element at any
time. For many purposes, a Gurney speed wlth or without the addition of a
Taylor angle 1s sufficlent. If metal trajectorles are required, Taylor's
model might be preferred. Thomas' solution of the Lagranglan equations could
be used, of course, but this 1s usually too complicated an approach for design
work where the aim 1s 1lnsight with minimum effort rather than great precision.
Sometimes 1t 1s useful or even necessary to include shock effects, as when one

54

metal plate 1s used to accelerate and fragment another.

More detalled modeling might include microscopilc defects, crack propaga-
55-58

tion or e¢ven molecular interactions.

V. TAYLOR'S MODEL SIMPLIFIED AND EXTENDED

A. Cylinder Struck Side-on

Since the publicatlon of Taylor's papers by Batchelor in 1963.1 his model

has been more readlly accessible to a wlder audlence than Gurney's report,2
which was, practically speaking,an internal laboratory memorandum which rela-
tively few people have actually read. 1In spite of this, Gurney's model has
been wldely used and extended, while Taylor's model has been virtually ig-
nored, except for one equation., Clearly, thls is because of the relative sim-
plicity of Gurney's model. In thls sectlon we will simplify Taylor's model in
order to facilitate 1ts use 1n problems for which it 1s appropriate.

SuJ. F. Mescall and P. V. Riffin, "Slapper Concept in Fragmentation," AMMRC

Technical Report 76-8, 1976.

55N. F. Mott, "Fragmentation of Shell Cases,™ Proceedings of the Royal Soclet
of London, 189. 1947, p. 300.

56R. Curran, L. Seaman, and D. A. Shockey, "Dynamic Fallure in Solids,"

Physics Today, January 1977, p. U46.

57F. E. Walker, A. M. Karo, and J. R. Hardy, "Comparlison of Molecular Dynamlcs

Calculations with Observed Inltiation Phenomena,™ Seventh Symposium on
Detonation, 1981, p. 777.

A. M. Karo, F., E. Walker, W. G. Cunningham, and J. R. Hardy, "Theoretical
Studies of Shock Dynamics 1n Two Dimenslonal Structures,™ Shock Waves 1n
Condensed Matter - 1981, W. J. Nellis, L. Seaman, and R. A. Graham, eds.,
AIP Conference Proceedings 78, American Institute of Physics, NY, 1982, p.
92.

58
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As we mentloned after Equation (25) above, Gurney took £ to be uniform
inslde the case for any & = r/ro value., In effect, he took

2
= £
P pO/ » (33)

where r = ry (late in the expansion). Equation (13) can be written

2 2
= uj) = R'f)
p = (/K W) = p G
where £ = u/D = 1. Equations (34) and (33) are the same for f = 1. If we put
Equation (34) for p in Equation (1) with Y = 3 and Equation (34) for (Pu)
in the first term of Equation (20), we find

P 2 3., 4 4
Pu = [(Bp, (DF}])/y = UB/Q (35)
which defines U,. From Figure 1 for a TNT ioading density near that discussed

B
by Taylor, we see that B = 2 x 1010(dyne/cm2)/g/cm3)3 = E(MNALS)EI(SICMB)E.

3 and D = 6.38 mm/rs, UB = .7/f3 = 1 mm/ps if

f = 0.89. This value of f can be taken as an effective value during the ac-

celeration period and enables us to deal with UB as a constant dependent only
on explosive properties.

Consequently, for Po =z 1.51 g/cm

Next let us approximate u by the formula
_ 2 4
u=U - Ug(1/2° + 1/47) (36)

where U, = 6.914 mm/ns from Table 1. If Ug = 1 mm/ s, Equation (36) can be
used in Equation (34) to find”

P=9.634/[6.9142°% - (1 + 17291 , (34a)

3) x (6.38 mm/ns) = 9.634 (g/cm3)(mm/ps).

where POD = (1.51 g/cm
In Figure 3 we plot p versus & from Table 1 as the s0lid line and Equation
(34a) as the long dash line which devliates from the solld line by at most 15%
(near £ = 1.1) and 1s indistinguishable from it on the scale shown for % »
1.5. A somewhat smaller UB would improve the agreement except near £ = 1.

The short dash line in Figure 3 plots P = 90/22 = 1.51 /EE, showlng why

Gurney's cylinder formula based on a radial energy partition can be applied
during the later stages of the expansion of devices initiated at one end. A

plot of P = 91/12 = 2722 would lie considerably higher.

Figure 4 plots u versus £ from Table 1 as a solid line and Equation (36)

with the values mentloned as the dashed line, Smaller UB would make the dash-

ed line lie higher. The per cent deviation is about the same as in Figure 3,
reaching a maximum of about 15% near £ = 1.1. Disagreement with Taylor's cal-
culations during the early stages of the motion is not necessarily bad. Be-
cause he used a model 1n which the width of the reaction zone is neglected, we
expect his results to be in error at early times. This point will be
discussed further in Section C below.
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Now let us put Equations (35) and (36) in Equation (20) and require Vv = 0
for £= 1. We find

U =D+ U (37)

oo B’
so that U can be estimated for any explosive loading from D, Py B and f ~~

knowledge which 1s avallable for most cases of interest. We may assume f =
0.89 or use Taylor's f = u/D as a universal function. Equation (20) becomes

v pof'3’2\{(23/a)(1_1/223’ (38)

which does not depend on D explicitly as in Taylor's model (only through Po

and B). The parameter « = M/C appears in the denominator under a square root
sign as in Gurney's formula, although there 13 no constant added to since
Taylor neglects v compared to u. This willl be discussed below in Section VI.

As 19~ and f= 1, V= PO\I(EB)/a and\sz fo Plays a similar role to Yy 2E’in
Gurney's formula. Here, however, there 13 an explicit dependence on ;:O,as
well as that implicit in B and « . It would be desirable to tabulate values
of‘*VZBIBE for cases of practical interest. However, to do a proper job, we
should make a critical comparison of p veraus p curves calculated by varilous
methods, Alternatively, we can tabulate \12BP2 from experimental

(+]
information.

If we use Taylor's values of f in Equation (38) and B = 2(mm[us)2/(g/cm3)2
with a = 2.67 for the standard cylinder, we find the values given in column 3
of Table 2. These are about 15% higher than the experimental values which
have been repeated in coluymn 2. If we let B = 1.5 1lnstead of 2, we find the
values in column 4 which exhibit a root mean square error of 0.04 mm/ts rela-
tive to the six experimental values. Here we are lowering B by 25% much as
Gurney lowered E from the value he expected.

Since V = V. = dr/dt = rodtldt, we can ilntegrate Equation (38) with f

constant (UB constant) to find

Dt s~ ro\,[(«n)/(zuB)](zz-T)'z x (39)

since vx = dx/dt = D cos ¢ & D as was mentioned above in connection with Equa-

tlon (10). 1If we put Equation (39) into Equation (4), it 1s clear that a case
element which 1s seen by a laboratory observer to have very little axial mo=-
tion (X Rsxo) 1s sald by the moving observer to recede axially at about the

datonation speed. Of course, both observers see the same radlal motlon. We
can rewrite Equation (39) as

2,2 2. 2
ro/rt - x7/e "aD/(20p)1 = 1, (40)

which exhibits the approximately hyperbolic form of the case shape in moving
coordinates. '
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Since vxlvr = dX/dr = tan (¢/2) from Equation (11) and tan¢ = 2 sin (¢/2)
sz 2 tan ($/2), we can integrate Equation (38) with Up conatant, using V = 2D

sin (¢/2) from Equation (20) to find the X, r path of a case element in
laboratory coordinates, namely,

Lo u
X - X = r°./: tan (¢/2)dk = T _3% EUE -1 - cos™t (l/lﬂ (41)

which also gives us X(t) since 2(t) 13 known from Equation (39). Accelera-
tions as functions of time may also be found. High speed cinematography or a
17

sequential serles of still photographs as used by Taylor snd Jones could be

used to check some of these relationships.

Column 5 of Table 2 gives a more complete listing of Taylor's values of
x {2

To¥ 2 than column 6 of Table 1, while column 6 of Table 2 gives values calcu=-
lated from Equation (39) using D = 6.38 mm/us and UB = 75 mm/us corresponding

to B = 1.5 instead of 2. Column 7 gives values for the same caae shape
function x{( %) as will be explained in part C below.

Column 8 of Table 2 glves experimental values of the time t(2) observed by
Lee and co-workers59 for TNT with % = 1.63 g/cm3 (e= 2.47) in the standard

copper cylinder. Columns 9 and 10 glve values of t calculated from Equation
(39) using r, = 15.3 mm for this test, D = 6.38 mm/n3 and UB = 1 or .75 mm/us
corresponding to B = 2 or 1.5 (mm/ps)zl(g/cm3)2. During the later stages of
the expansion, the calculated values tend to bracket the experimental values
but are higher in the early stages.

34 for 64/36 RDX/TNT with

Py = 1.717 g/cm3(¢r= 2.34) in the atandard cylinder. From Figure 1 we ace
that B = 2.4 (mm/#s)zl(g/cm3)2 for this loading. Column 12 gives V calculated
from Equation (38) for B = 2.4, while column 13 uses B = .7(2.4) = 1.68. This
1llustrates the fact that Equation (38) and presumably Equations (39)-(41) and
others related to them can be applied to other explosive loadings. Compari-
sons with experimental values covering a larger range of a values would also
be desirable, but little time-dependent data 13 avallable. In Section VI we
will make some comparisons of Equation (38) with launch speeds for a range of
a values.,

Column 11 of Table 2 gives experimental values

59E.L. l.ee, H.C. Hornig, and J.W. Kury, "Adlabatlc Expansion of High Explosive

Detonation Products," UCRL-50422, Lawrence Radlation Labortory, 1968.

32



L0°e on*e wEn 9*Lt f°9l1 0l 4 68°1 08°1L 89°9
Lo*e on*e g'ct h°8e | g ! 0°9l GG°i 08°t wE*n
28’1l L2 (89°1L) §5*ec S°61 Sh'g §°01 (0] '8 c9°1 (LE°1) 090°¢
9.L°1 oL°2e 99°1 L9l 9l ge’9 6L GE*L 9%°1 GE"l clt*e
99°1L 861 89°1 w*el FA ] L*2i 99t £2'g 82°1 gl 0E°l £g8*L
8S°L  68°L £G°1L 0L 86°8 96°6 68°Et 8L'h 22t in°i g2l 1L99°1
16°1L 08°l 6"l g0°6 L8°L £0°8 en't £G°E 9iL°1 we“l 0z°1l 8EG* L
BE*L  Hw9'L  (EN"L) 62°L LE*9 86°G LA w92 90°L 22°L  (EiL°L) iLEci
il ofr*lL 6£°5 L9*n 16°t 0E°1L co*e 06°1 i6* S0°1L et
90°1 921 §6°h w6 ¢ 60°t el’l (WA ch*l cB’ S6° 6611
28" L6° G0°E 192 gl*t 9L GiL°i ne* £9° £L° wlo°1
g9° Lg° gg2 20°e 1 (1N g8° 29’ s’ 09° Hho* L
2s° 29" 95°1L =t | on’* 86 gt on° i’ 020°1
9t ] LE*L EL°L 13 B LE* Gt* Lt® Hio'iL
8E " Sh* o1 06° 60° 6€° 2° 62° heE* 600°1
£0° #0° glL® L9° 90° (Yo 9glL* ={th £0° G00° 1

0 0 0 ") 0 0 0 0 0 000°1L

gryum erlyuw el uw s grl s sioum gl /um s /wa
(89°1L = )(h'2 = &) (6L =49) (2 =4a) aﬁ-:moom onm._ =d) (2 =4)
o] W
A A dX3, 3 3 dX3, 1-,1Me6°2 w?n A A dx3, ¥
£l Zi Ll oL 6 -8 A 9 S i £ 4 L
€ dWod i INL
juswtJdadxy yiIM [apoy Jolhel patrJirduwig Jo suosTJdedwo)y *2 alqel

33




B. Plate Struck Side~0On

Now let us apply Taylor's model to a planar rather than a cylindrical ge-
ometry. The sltuation 1s similar to that 1n Figure 2 except that we wlll use
the Cartesian coordinate y instead of r, so0 tan ¢ = dy/dx. We will allow the
metal plates to have different thicknesses h1 and hge We will let the

thickness of the explosive sheet be "o = 2yo. The mass per unit area of each

metal plate wlll be deslgnated by Mi = PMihi with 1 = 0,1 where we allow the

plates to have dlfferent densltles p, as well as different thlcknesases.

Mi
Equation (6) is now replaced by

9_(9:
2 dx dx (12)

40T +(51_;_z) 2] 37z P
L dx

We multlply each side of this equation by 2dy/(M1D2) = 2 tan ¢ dx/(Mibz) and
obtain .

2 sing dp = —= pdy
M.D
1
where the left side 13 readlly integrated as in Equation (8). Equatlons (10}

and (11) will have vy instead of Vr but are otherwlse unchanged. Equation
(13) 1s replaced by

’ (43}

poDyo =y, : TS

and Equation (14) by Equatlion (31) which we have already discussed. Equations
(16) through (19) are unchanged, 30 the analog of Equation (20) is

2 ¥ 2p_Dy
e (&)
i vy Mom gy

0
=$[B§*“'D] . (s)
= 4 sin? (¢/2) =~ tan® ¢
= (V/D)? .
where
o, = M /(2y 0,) = M, /C (46)

and C 1ls the explosive mass per unit area. We have not repeated several steps
here since they are the same as before. The analog of Equation (23) 1s

= ) 4
X ﬁo dy/tan ¢ . . 47)
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Now let us simplify this model. Since u is a function of y by Equation
(44) as 18 P = Pol(fg) where 3 = y/y_and f = u/D, we can write the analog of

Equation (35) :
B Esoo /(Df3J] 9% =V 792,

pu
(48)
where UB has the same form as in Equation (35).
Now let us approximate u by the formula
. 1 1
u=um_UB(i_+_£—2) (49)

which 1s the analog of Equation (36). Here the inverse powers of § are n and
2n with n = 1, just as they were in Equation (36) with n = 2, The spherical
analog might consist of a dilsk-shaped detonation front rotating about a
radius, 3 configuration very difficult to reallze experimentally. If we use
Equation (49) in Equation (44), we find

o = pon/[umn - Ug (1 * %)} : (50)

If we use P,D = 9.63H(g/cm3)(mm4us), U = 6,914 mm/us and UB = | mm/us, we

-]

obtaln the decreasing long dash line 1in Figure 5 which diminishes more slowly
than the analogous curve 1n Figure 3. The short dash line just above it cor-
responds to p = P1/2 = 2/4 for the head-on c¢ase, while the dotted line below

1t 1s for p= p°/£ = 1.51/2, a Gurney-type assumptlon. The increasing dashed
line plots Equation (49) for the same U, and Ug. This line increases more
slowly than its analog in Flgure 4.

Next, let us put Equations (48) and (49) in Equation (45) and require V =
0 for ¢ = 1, glving Equation (37) again. Equation (45) becomes

v - pof-S/z‘/(a_l_a_)( ] %) (51)
1

which 1s the analog of Equation (38) with n = 1 replaging n =2 as the coeffi-
clent of B and the inverse power of L. AS L+~ and f v 1 we can compare Equa-
tion (51) with Equation (32} above with n 1. For two equal mass metal
plates in a symmetric sandwich, o = 2 ay 2M/C 1in Equation (46), so Equation

(51) becomes V = P, V2B/2 1in this limit. We will compare these formulas for
a range of ¢ values in Sectlon VII below.

Since V a:vy = dy/dt = y _di/dt, we can Integrate Equation (51) with
constant to find the analog of Equatlon (39)

o.D

Dt =y, -2—1-{2\}1-1/1+159.n[1\/1-1/1+ 9.-%]~!z£n%} (52)

=~ X
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Clearly the case shape (y versus x) 1s not approximately hyperbollic as it was
for the cylinder. Since Vx/Vy = dX/dy = tan(¢/2) by the analog of Equation

n,
(11) and tan¢ ~2 sin($/2) R 2 tan($/2), we can integrate Equation (45) with
UB {(or f) constant to find the X, y path of a plate element in laboratory

coordinates,

X - X, = yo‘/uB/maiD) {z\h -1/2 - % ln[ﬁ\ﬁ - 1/8+ - %]+ % in %} (53)

which is the analog of Equation (41). Use of Equation (52) glves X(t).
Accelerations may also be found.

C. Expansion in the Reaction Zone

As we noted above, Taylor used a model which assumes a zero width for the

reaction zone. H. Jones21 has pointed out that case expansion occurs inside
the reaction zone, leading to a slight decrease in detonation velocity com-
pared to the idealized Chapman=Jouget value. He also derived an expression
for the shape of an expanding cylinder valid inside the reaction zone:

’2 x -1

o
for 1< ¢ = r/ro < r1/ro. Here we have used o as defined in Equation (21)

above 1lnstead of Jones' mass per unit area ¢ = M/(Eﬂro). At the rear of the

reaction zone we can rewrite Egquation (54) as

Y 2
= = — - =1+ X
21 rljro cosh zro 3 (55)
Jones gave a numerical example in which he took x1/ro = 2/a = 1/2, assuming

that the width of the reaction zone, x.,, might be as large as half the charge

1

radius for o« = 4. Thus,) = 0.015 in Equation (55) so ¢, 1s only slightly

1
larger than unity. This would lead to a 6.25% reduction in detonatlon veloc-
ity compared to the 1ldealized value. For a bare charge (the extreme departure
from a rigid tube), Jones estimates a 9.6% reduction for the same reaction
zone. For solld or liquid explosives,the ldealization of a rigid tube cannot
be reallzed experimentally since at least the inner radius of even a very
heavy=-walled tube of metal will expand somewhat under the pressures produced
by condensed explosives (unlike a shock tube filled with a detonable gas
mixture).

Column 7 in Table 2 exhibits Equation (54) as a function of § and compares
it with Taylor's values in column 5,as well as the present model values in
column 6. According to Jones there 1s less expansicn near the front of the
reaction zone than Taylor estimates (or a given amount of expansion occurs
farther behind the detonation front). However, the two curves agree rather
closely even in the reaction zone {say 1 < 2 < 1.03) and deviate appreclably
only well behind the reaction zone where Jones' formula is no longer
applicable., This is 1llustrated in Figure 6.
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VI. THOMAS' HEAD-ON MODEL SIMPLIFIED

Thomasu" developed his own model for plane, cylindrical and spherical
cased charges initiated on a symmetry plane, axis or point. In these cases the
detonation front will strike all points of the metal surface simultaneously,
"head~on" (propagation vector parallel to surface normal). If dm~ Is the mass
of product gas in a volume element of thickness dr (per unit area for the
plane, per unit length and angle for the c¢ylinder and per unit solid angle for
the sphere), then this specific mass element I1s

an” = pr™lar (56)

where n = 1, 2 and 3 for plane, c¢cylinder and sphere respectively. The
equation of gas motion ia

a%r

z = g0l 9P
ot

3p_ _ -1 3r op
ar a‘ 31‘ -
m om

(57)

hel I

Thomas used Equation (1) for p but kept v arbitrary and concentrated on cylin-
drical symmetry. He was able to obtain a first integral but could not com-
pletely solve the problem. He asaumed an initial uniform distribution of mass
and outward velocity when the detonation wave reached the metal surface with
boundary conditions m“ = Q0 for r = 0 and

2
M or = rn-l P (58)

at?

for m“ = C, the total specific charge mass, at the moving metal surface, As
before, M is the specific metal mass. After a brief period of shock reverber-
ation, Thomas argued, the solution ahould approach a form in which the method
of separation of variables can be applied. Letting r be a product of a
function of time and a function of mass, namely,

r = Ltlgm”) . (59)
Equation (57) separates into
gf& - vzgn-l-ny
dtz (60)
and
n-1 d n-1 d =Y
vig = -Bg an” [(3 E;nL) ’ (61)

where we have used u2 for the separation constant instead of letting it be
unity as Thomas did. Dimensionally speaking, v is an inverse relaxation time.
The boundary conditions become g(0) = 0 and

2 -1{ n-1 d =Y
Mg = Bg" (g a%’) (62)
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for m“ = C where we have used Equations (59) and (60) in Equation (58).

If we multiply Equation (60) by df = 2dt and integrate, we obtaln the
first integral of Equation (60)

2 -n(y-1)}] _
vy [0l (63)

where we have taken £ = 0 for L = {. The second equallity comes from taking
g(c) = r, in Equation (59) so V=r-= roﬁ for the case velocity. If ¥ = 3 and

n,
£ + = 1n Equation (63), V = rOVI\/EZ As & + » and f * 1, Equation (38) for a
cylinder and Equation (51) for a symmetric sandwich (a = 2a1) both give V =

e

Py (2B)/a . If we assume that the head-on and side-on formulas are equal
under these conditions (same launch velocity),

v = \Ff (/T )y (2BY/a (64)
and Equatlion (63) becomes for v = 3
V= poJ(z'B/a)u S . (65)

Requiring approximate equality for large & corresponds to the approximate
equalities of the gas densitles illustrated in Figure 3 as £ 1lncreases., For a
cylinder (n = 2) the head-on veloelty in Equatlion (65) may be expressed as

V = pOJ(ZB/a) (1+2%a - 179 (66)

and compared with Equation (38) for the side-on velocity

Vo= QOJ(ZB/a)f—S(I - 27 . (38)

In both cases V = 0 for L = 1. They differ by the factors V1 + 1-2 and

£73/2 uhere f 1s glven by u in Taylor's Table I or Equation (36) divided by
D. Similarly for a symmetric sandwich (n = 1),the head-on velocity in Equation
(65) is

V= po‘/(zn/a)(l e ha - ah ’ (67)

while the side-on velocity in Equation (51) 1s

vV = pOJ(ZB/OL)f_S(l - 2'1) . (51)

These formulas differ by the factors 1 + 2-1 and f-3/2, where f is given by

Equation (49) divided by D.
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Thomas did not let vy = 3 or make such interpretatlons of £ and g and of
course set v = 1. However, he did write down the first integral of Equation
(61) for arbitrary n and y, namely, with K constant,

-y - 1)
22 YB n-1 d _
!i v g + (.Y _ 1) (g %;) =K. (68)

For the speclal case of a cylinder (n = 2), he also found a second integral

Y s . (69)
m” = (B/vz)(YY; 1') y-1 [x L ¢ PV B 1] .

However, for n = 2 and arbltrary v, he could not integrate Equation (63)
exactly. Instead, he Integrated numerically with vy near 3 as a parameter.
Finally he found the kinetle energy of the gas in the expanding c¢ylinder and
added this to the kinetlic¢c energy of the case, equating the sum to EC in order
to compare with Gurney's model. In the limit 2 <+ « he wrote a formula for V

which depended on v,as well as V2E and ¢. Even 1n this limit his formula for
arbitrary y 1s rather complicated. However, for vy = 3 it simplifies to

Va \/L(zﬁ)/(za/SJ] [+ ya¥3 1), [a+ yo®/3 . 1] (70)

which gives almost the same launch speed as Gurney's much simpler cylinder
formula,

v - v/ [orn] | (26)

These two formulas are compared as curves (a) and (b) in Figure 7. As a - 0,

Thomas' V ++5E while Gurney's V - V4E. Both formulas approach zero as o =+ =
and are practically indistinguishable for o > 0.1. Of course V will reach
zero for large finite o when the case falls to break and the model has ceased
to apply.

Equation (38) for 2 » =, £ % 1 gives V = oo\/zB/u which approaches zero as

a - ® but increases without limit as o > 0 since Taylor's model takes no ac-
count of the gas energy and assumes a "sufficlently heavy" case (@ > (). One
way to compare this form of V with Gurney's formula might be to assume that
some fraction, say 0.B,of the available energy appears as case kinetic energy
with the rest appearing mainly as gas energy as 2 = ™, Then

i v = 5 M(2Bp /) = 0.8 (KC), (71)

and the limit form of Equation (38) becomes

V= \(2E)/(a/0.8) , (72)

which 1s plotted as curve (c) in Figure 7. If we wish to avoid the large
divergence near o = 0, we might add a constant like n/(n + 2) from Equation
(32) to ¢ in Equatlons (64) - (67), (38) and (51). Then for n = 2,the limit
form of Egquation (38) becomes
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o (c)
(d)

{a) Gurney cylinder Eqg{26)
{b) Thomas cylinder (1-a) Eq{70)
{c) Simplkfied Taylor cylinder (1) Eq(72)
(d) Gurney - Thomas symmetric sandwich Eq{75)

1.5

05
(a),(b)or {c)

(c) =

o
A 4

0 5 10
a

Figure 7. Comparison of Launch Velocity Formulas Versus @ ,
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v po\ﬁzn)/(a v 1/2) . (73)

If we require Equation (73) to reduc¢e to Gurneyts formula asa—0, then V =

dquoz = 3IE or

Bo, = E, (74)

completing the analogy between B and E. If we add 1/3 toa forn= 1 and

consider the limit form (£+ = f ¥ 1), Equation (51) becomes for o, = a/2

V = stpoz/(a + 1/3) = le-:/ (@ + 1/3) . (75)

by Equatlon (74). This is the same as the Gurney-Thomas formula for a
aymmetrlc sandwlch, Equation (32), and is also plotted 1n Figure 7. Equatlion
(32) with n = 3 for a sphere might also be plotted but has been omitted to
avoid further confusing the figure. For typical values of & which generally
exceed unlty, all of these formulas predict similar launch velocities
independent of geometry (plane, cylinder or sphere) or direction of travel of
the detonation wave (head-on or side-on). They differ mainly for small L.
None of them are really intended for a bare charge (& = Q) or for very large
values of @ = M/C. A finite value for V in the 1limit ¢ + 0 might be thought
of as corresponding to the case in which a finite mass of metal 1s accelera-
ated by an unlimited amount of explosive. As 1is well known, beyond a certain
point the addition of more explosive does almoat nothing to increase launch
veloclty, even in a vacuum where air reslistance is not a limiting factor.
Similarly, if the limit o + = is approaoched by decreasing the amount of
explosive, we reach a situation in which a detonation wave will not propagate
because the dimension= are too =mall. Again the model does not apply.

Thomas did not consider the case y = 3, nor did he puraue a solution for
planar symmetry (n = 1). However, this 1s a case for which his formulation
of the problem may be solved exactly. For y =z 3, n = 1, the integral of

Equation (63) is
L= ‘}1 + w22, (76)

while the integral of Equation (68) is

3B . 2k 2 2K _. -1 2K
== m” =k [zaf5 - g" + =5 sin " [2/gf 5
Juz [ v v? (‘o‘z)] ' T

Since Equation (77) gives g(m”) implicitly while Equation (76) gives 2(t) ex~
plicitly, the problem of finding r in Equatlon (59) ia aolved. The constant
K can be found from Equation (68) by using ¥ = 3, n = 1 and the initial
values g = ry and dm”/dg = Pqr the denaity at the rear of the reaction zone.

We may use Equation (76) and r = rot for g > 1 in Equation (58) with n = 1
to find =

Mr‘ov2/2,3 =p =B« 5(91/1)3 . (78)
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Equation (6l4) with n = 1 and « = 2M/C = 2H/(2ropo) for a symmetric sandwich
may then be used in Equation (78) to find

1/3
(py/ ) = 213 = 1.26 % (79)
close to the value 4/3 = 1.33 suggested by H. Jones.

VII. STERNE'S EXTENSIONS OF EARLIER WORK

In 1947, Sterne52 considered methods of extending the ideas of Gurney and
Thomas to asymmetric sandwiches, 1ncluding the extreme case of a single plate
(sometimes called an open-face sandwich)., He also considered cylinders with
s0lid metal cores, representing fuzing devices. For two plates with specifie
masses {(per unit area) H1 and Mo separated by a sheet of explosive of specific

mass C, he wrote for the radlal energy partition at launch

2
o)

2

2 2
EC = 1/2(M1v1 + MV ) + (1/6)c(v1 + V. v1vo) 3 (80)

and for the conservation of momentum (initially zere),

0= M1V1 + HOVO + (1/2)C(V1 + Vo) » (81)

where V1 > 0 and Vo < 0 in the chosen coordinate system. Sterne mentioned

that he was following Curney's procedure, assuming a linear variation of gas
velocity v with distance and uniformity of P at all points between the plates
at launch time. He did not bother to derive EqQuations (80) and (81), probably
thinking it to be sufficiently obvious. We wlll give a derivation below as
part of a more general treatment.

If we ellminate V, between Equations (80) and (81) we obtain the asymmet-

ric sandwich formula of Sterne:

v "(.s_»zm«:z1 +aa®+ 173 (1= a+qd) (82)

with Vo = -qV, and g = (1 + 2 n1)/(1 + 2&0) Wwith «

| = H1/C and a, = Mo/C. If

1
My = My, &g = a, = e/2 and q = 1, then

o]
v, o= d(zs)/(a+1/3) = -V, (83)
for the symmetric sandwich, the same as Equation (32) with n = 1, If @ = 0,
v, = Ve /1173 (1 + Sa, + Ha12)] (84)
for a single plate., 1In this limit the model predicts that Vo = = (1 + 2a1)v1,

s0 lvol > v1 as MO—+ 0. We can interpret Vo in the limit M°-+ 0 as the

velocity of the free surface of the gas.
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Twenty years later, Henry60 clted Sterne's report and repeated his
results. Unlike Gurney's report, Sterne's was widely clirculated and had
Hughes Alircraft among its recipients. Henry's report has been frequently
cited in the literature while Sterne's has been forgotten. Probably Henry's
report has been the main instrument through which most interested parties have
become acquainted with Gurney's and Thomas' work, since almost no one cites
Sterne cor Thomas., It also seems likely that Henry never read Gurney's report
since he does not seem to have a clear understanding of Gurney's method. 1In
hls own derivation of Equation (B3), Henry arrives at the more cumbersome but
equivalent form

‘v1 = {(23)/[:: + 17601 + (1 + 2a)3]/(1 +al)l . (85)

The equlvalence is easlly seen by expanding the cuble, factoring 2 from the
curly brackets, dividing by (1 +a ) and collecting terms. Simlilar considera-~
tions hold for Henry's form of Equation (82) which appears again more recently

9

in the paper by G. Jones and co=-workers.

About five years after Henry's report was published, D‘éf‘ourneaux61

repeated Equation (84) as his Equation (18), clting Gurney's report,2 but not
Sterne's. Of course Gurney's report does not contain Equation (84), although
other references did by this time. Defourneaux pointed out that the kinetic

energy per unit explosive mass for a single plate, namely ¢1=(1/2)a1v12 where
¥
1/2. He did not pursue this, but 1t is interesting to investigate the

asymmetric sandwich as well. We wish to optimize ¢1, using Equation (82) for

is given by Equation (84), has a maximum (equal to E/3) for ay = M1/C =

V1, subject to the constraints ay 20, aj > 0. If we let a¢ya%, = 0, we find

a, o+ o, = 0.5, (86)

1 170

which is plotted as the dashed curve in Figure 8 and gives the locus of the
inflection points in the curves ¢1(a1) for @, < 0.5. Values of ¢1 in units of

E, namely, ¢1/E, are given in parentheses at some points in the figure.

Clearly ¢1 increases with g If we let a¢1/a ay = 0, we find

a, = O.5‘[Ei + Sao + 4a°2)/(1 + 3ao) ’ (87)

which is plotted as the solid curve in Figure 8 and gives a maximum ¢1(a1) for
any a. The straight line at HSO is for a, = @y (symmetric sandwich) while

the horizontal straight line is for ay = 0.5. As ay and @ increase without

60I.G. Henry, "The Gurney Formula and Related Approximations for the

High-Explosive Detonation Products," Hughes Aircraft Report PUB-189, 1967.

M. Défourneaux, "Transferts d'Energie Dans les Combustions et Detonations
gvecConfinement,” Astronautica Acta, 17, 1972, p. 609.

61
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limit, ¢1/E approaches unity. This incorrect prediction says that we achieve

the greatest possible launch energy per unit explosive mass when we sandwich
the explosive between two infinitely heavy plates. The model fails for large
@ since it does not account for energy absorbed as heat by relatively

immobile masses. This will be discussed further below after Equation (104).
For the present, it is sufficient to note that errors should be less than 10%
ir @y < 7. For typical ay, the model should correctly predict that the

addition of a backing plate (“o > 0) will increase the specific launch energy
of plate 1. Hoskin and Lambournllg arrived at a similar conclusion by using
the method of reflected shock characteristics.

In units of the Gurney velocity, V2E, the launch velocity for a; = 0.5, a
= 0 1s V./V2E = 2/3 = 0.816, while the optlmized launch energy is $,/E =
1/3 = 0.333. At ay = a, = 0.729 where the optimized sandwich is symmetric,
V1/\/§E = 0.748 (8% less). However, ¢1/E = 0.408 (22.5% greater). The
combined energy of both plates is of course still larger. For the optimal
values a, = 0.98, @, = 2, we find V1/\/§f = 0.72 (down 28%), but ¢,/E = 0.507
(up 52%),
and so on.

It is Interesting to note that'Sewellez assumed an equivalence between
warhead effectiveness and launch kinetic energy (or momentum) per unit
explosive mass and optimized the design of cylindrical and spherical

configurations, using Gurney's formulas. Of course these geometries are
necessarily symmetrical., His cylinder calculations were later refined by

Zulkosk1,63 who took account of finite end effects.

G. Jones and co-workers,9 who recently rederived Equations (82)-(84),

60 52

referring to Henry's report but not to Sterne's, also derived a formula

for the velocity of a plate in a symmetric sandwich based on Equatlion (83) and
Equation {1): -

o 2E - (v-1) (1+1/30)
Vl —Jm [l -4 ] (88)

If ¥ = 3 in Equation (88) and 3« >> 1, this formula reduces to Equation (65)
with n = 1, Bp02 = E from Equatlion (74). For an asymmetric sandwich they

obtalned

62R.G.S. Sewell, "Fixed-welght and Fixed-volume Constraints on Optimum

Charge-to-Metal Ratios in Warhead Design," NAVWEPS Report 8471, NOTS TP
3430, China Lake, CA, 1964.

63T. Zulkoski, "Development of Optimum Theoretical Warhead Design Cr}teria,"
Naval Weapons Center TP 5892, 1976.
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2E “(y - B
£ =‘/(~6-)§1 - {(qg + D2 - q] (v - D@ 1)Q/a]£ o

with
Q=0 + 0 a’+ 17301 2
1% % -q+q) . (90)

For a single plate or open-face sandwich (ao =0),g=1=%+ 2a,, and Q = 1/3(1

+ 5a1 + Majz) in Equation (89). Of course y should be 3 as we have shown,

Sterne derived similar formulas for V(&) 1n the case of sandwiches. 1In the
same report, he discussed "cored" cyllnders, that 1s, a Gurney cylinder with a
s0lid metal core or fuze cavity. Thils will be discussed further in the next

53

sections, as will his treatment of a "cored" sphere.
Chanteretﬁu follows a method similar to that of Jones and co-workers,9 but

treats the "slde-on" acceleration of plates and cylinders explicitly in his

extension of the Gurney model. For symmetric cases he agaln arrives at

equation (32), the generalization first made by Thomas-. However, his
expression for E 1s the square brackets in equation (20) multipled by D. His
notation differs from ours since his u 1s our U, deflned in equation (5)
above. H1s calculation of V still involves finite time or space steps, so 1t 18
not completely analytical, but numerical. For an asymmetrlc sandwich he
employs the usual technique of a zero velocity plane 1n the explosive. He
also applies this technique to obtain a Gurney type formula for the launch
veloclty of a hollow cylinder, namely, a tube of exploslve between two tubes
of metal, which he loocks upon as an asymmetrlc sandwich rolled about an axis
above or below the sandwich parallel to an edge until two edges meet. Hls
expression for the location of the zero velocity cylindrical surface in the
explosive Involves a cubic equation with the Chapman-Jouget density of the
explosive products as one of the parameters. His expression for E still
involves finite space or time steps, except, of course, ln the limlt Revom

In 1965 Hoskin and co-worker365 presented experimental data for single

plate launch velocities in terms of C/M, the inverse of our a« = M/C. They
compared thelr data with their verslon of Equation (84), namely

v, = \/(25)/[1/3(1 + la_ o ’-Ialz)] = VBE/{1 + 2::1) ’ (91)

1

BuP.Y. Chanteret, ™An Analytical Model for Metal Acceleration by Grazing

Detonation," Seventh International Symposium on Ballistics, The Hague-The

Netherlands, 1983, p. 515.

6SN.E. Hoskin, J.W.S. Allan, W.A. Balley, J.W. Lethaby, and I.C. Skildmore,

"The Motion of Plates and Cylinders Driven by Detonation Waves at Tangential
Incigence," Forth International Symposium on Detonation, ONR ACR-126, 1965,
p. 14,
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a simplification achieved by using U4« instead of 5« in the denominator with
little variation in a-dependence. Their analysis was based on a method of

shock characteristics previously discussed by Hill and Pack. Related
theoretical work appears in Heferences 48 and 49 mentloned above. Equation
(91) is for the side-on case while Equation (84) is head-on since it 1s based
on an energy partition for motion normal to the initlal plane of the plate
surface. Again we see that launch velocity formulas (£ -+ =), in this case for
single plates, do not depend strongly on the direction of motion of the
detonation wave.

Figure 9 shows Hoskin's data as the solld line. Here we are taking hls
normal velocity component and V1 to be approximately the same as we did with
similar cylinder data. Our @y is the inverse of his. Since he gave no
numerical values, only a graph, the values we show for large @, are somewhat

uncertaln,and there may be better agreement than shown between model and
experiment. Equation (91) is shown as the dashed line, using +/2E = 2.575 mm/as

= 3,46/+3 as suggested by Hoskins. On the scale of the figure, it is
indistinguishable from Equation (84), Of course Equation (89) with £ + =,y =

3 and a, = 0 is the same as Equation (8%4).

It is interesting to note that ¢, = (1/2)a1V12

whether we use 4 or 5 as the coefflclient of a, in the denominator of Equations
(91) or (84).

has a maximum for a1 = 1/2

VIII. SIMPLE GEOMETRIES WITH AN ARBITRARY NUMBER OF LAYERS

A. Introduction

Henry60 also repeated Sterne's modeling of a cored cylinder52 and
mentioned a cored sphere which Sterne also modeled. Neither author mentioned
the planar analog, a sandwich with a metal center, which implies a minimum of
five layers instead of three, Henry did, however, discuss the problem of a
cylindrical configuratlion with more than two or three alternating tubes
(eylindrical layers) of metal and explosive, an arrangement which he called a
Jelly roll. If we ignore the lack of layer closure in the pastry analog, this
is a descriptive name. The spherical analog might be called an onion, if we
lgnore the fact that the alternate layers are of different materials.
Finally, the Dagwood seems to be a suitable name for a multilayered planar
sandwich.

Henry60 wrote down a very simple model for a many-layered jelly roll in
which he envisioned all metal layers to be of the same composition and

663. Hill and D.C. Pack, “An Investigation, by the Method of Characteristics,

of the Lateral Expansion of the Gases behind a Detonating Slab of
Explosive," Proceedings of the Royal Society of London, 197, 1947, p. 524,
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thickness with metal on the exterior. He also envisioned all explosive layers

of the same composition and thickness., He then wrote (C + M)/(«R2) for the
average initial density of the array, where C and M have thelr usual meanings
for a cylinder and R is the outer radius before detonation. H1s energy

balance became R
%j; [(C + M)/(TrRz)] [V2 (%) : } 2rrdr

1/4 (C + M) v2

EC
(92)

n

Here he used the initial radius instead of the radius at bursting, apparently
not having Gurney's report to aid his understanding of the model. Equation
(92) glves

V= WE/(1 +a) (93)

where a« = M/C for the entire device. He compared Equation (93) graphically
with Gurney's simple c¢ylinder formula, Equation (26)

VG = V(IIE)/(‘I + ZaG) . (26)

where we have used the subscript G for Gurney. Since for aza> Q, V > VG'
¥ ]

Henry concluded that the jelly roll ought to give a higher launch speed for
the cutermost metal layer than the simple c¢cylinder for the same a, Or, to.
achleve the same speed, V = VG’ we need o = M/C = 2“6 x 2M/CG, that 1s C =
CG/2, or half the explosive. This kind of prediction 1s traceable to his

integrating over the metal layers as if they were expanding gas, leading to

1/4 MV2 instead of 1/2 Mv2. His use of R instead of rp has no practical

consequences since it cancels in Gurney's scheme anyway. If Henry's formula
were correct, 1t should reduce to Gurney's when all the metal is placed
outside of the explosive, since he speciflies nothing about ordering in
Equation (92). Obviously it does not. Although Henry's model is incorrect,
he has raised an interesting question about the potential advantages of many
alternating layers. For example, instead of the usual expanding tube with
some spread 1n wall thickness as air.resistance slows the smaller fragments
more than the larger ones, we might obtain different launch speeds initially
which (together with spreading due to air resistance) could fill more of space
over a longer time than a simple cylinder can. O©Of course, the slower
inner~layer fragments might be less effective.

B, The Jelly Roll and Onion

The first practical problem in making such devices is that of detonation.
For a head-on encounter between detonation wave and metal surface, we would
probably have to drill holea of sufficient size and frequency in the metal
layers and fill them with explosive 1in order to insure propagation to the
outermost layer. Initliation in a laboratory device should not be difficult.
A small spherlcal detonator or an exploding wire or foll might be used.
However, lnadequate electrical sources might prevent the use of such
techniques in field devices. Initiation by a disk or sheet of explosive
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covering one or both ends of a jelly roll or Dagwood should be practical for
side-on encounter. End initiation of a uniform explosive loading should lead
to an approximately plane wave consisting of the sum of the waves 1in each
layer of a jelly-roll or Dagwood. Consequently, the pressure and density at
any distance behind this front should be approximately uniform over the
gaseous portions of the front and depend only on the state of expansion. If
the metal layers are slignificantly different in their bending properties, this
picture might have to be modifled. For the present, let us assume an
arrangement for which this pilcture 1s sufficiently accurate.

First, let us consider the jelly roll and adopt the layer numbering scheme

.t
shown 1in Figure 10. The specific mass {per unit length} for the i h layer of
explosive is

2 2
i = Poyi” (RZi -5 ) (o1)
while that for the metal 1s
2 2
Mio= PyiT (R2i+1 - Ry ) . (95)

Figure 10 gives some examples for i = 0, 1, .... DBecause of ¢ylindrical
symmetry, all Ri are positive (R1 =0 if 1 < 0) and are measured from the

symmetry axis. Capltal R1 are initial values. As the device expands, rl > Ri
are the radii, and the decreasing density of each gas layer 1s
p. = (C./m 2 _ 2 (96)
i M/ (rZi i1 .

If we assume that the radial gas velocity is a simple linear form in r, we
obtain an energy balance {and thus a launch speed} which is rather
complicated. Thus, if

V., -V, V. - V.
v=ArT+B, :(ﬁ_l___};l r +( 1-1721 = ViT2i-y
1 1 - -
21~ T2i-1 Tai ™ F23-1 (97)

th
for the 1 layer of gas, then v=V, when r=

1 r21 and v = Vi_1 when r:rei -1
That 1is, the gas moves at the metal speed Vv at each interface. If 1 = 0 1s
the only value of i, we have v = Vo(r/ro) = vB(rfrB) since r.=V_,= ¢, and

Equation (97) reduces to Gurney's assumption for the simple cylinder, Equatlon
(15). The energy balance becomes

52



. 7. ~.
vo 0000 iy
Ro

— <y

o 7.
v T

i

AN

Figure 10. Layer Numbering Scheme for the Jelly Roll and Onion.

53



TEC =urMyZeysr [ 2
-il R J.. vaTI'rdr
1 1

T2i-1

L 2 21
I MVT 42 f vrdr (98)
i i
( T2i ~ 21 lj

21 1

If we use Egquatlon (97) in Equation (98), we find

_ 2 1 2 2 2
I E.C, =4 L M.V, - . [ -
; 1 * ; i T3 ? C1 FVi *3ViVig Gvi~1] (99)
F = [1 +-% x(x2 + X - 5)] / [1 + x(x2 - X = 1)] Sikly
G = %_[1 + x(sz - 5x + 1)] / [1 + x(x2 - X - 1)] (101}

with x = T 1/rzi. Since x is a ratlio of radii at launch,we still have no
dependence on device size. If 1 = 0 is the only i value, Eguation (§9)
reduces to Equation (25).

If we want to simplify our result,we might follow Gurney's method of
choosing a form for v designed for this purpose. Thus, if

2 2 2 z v zrzl
) 2, Vit Vi) 2 fYiaTa T s Yo
Vv = air + i b 2 rz r2. - rz. (102)
Ty - T2i-1 2i 2i-1
we still have v = V; for r = ry, V=V, _,forr=r, _ ,andv-= Vo(r/ro)
if 1 = 0 is the only value of i, Since vdv = airdr. the integral 1n Equatlon
(98) is simplified if we change the variable to v with limita Vi -1 and Vi.

By using Equation (102) in Equation (98) we find

2 1 2 VZ )
el E MYy 7 f Ci(vi RS ) (103)
1

which also reduces to Equation (25) if 1 = 0 is the only value of 1.

Now let us conslder the case of a metal-cored cylinder with C0 = Vo =0,
M £0and 1 = 0, 1. Equation (103) gives us
\](2E1)1(m1 + 1/2) . (104)

In other words, this model predicts that a cored cylinder will have the same

velocity as a simple cylinder, if E1 and a, are the same, Of course, 1f we
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simply replace explosive by a metal core, we lncrease a, and decrease V1.

However, if we alter the device dimensions in order to keep a, the same, the
launch velocity ought to be lower when an inert core 1s present. Sterne52
obtalned essentially the same result by a different method and compared this
prediction with experiment. For a steel core with a radius about 3/4 the

initial radius of an outer steel case, using composition C3 explosive and @, =

2.33, the measured launch veloclity was down 13% compared to that measured for

a simple cylinder with the same a and ET‘ He attributed this to energy

absorption and conversion to heat by the immobile core. This hypothesls was
approximately confirmed by a calorimeter measurement of the heat content of
the recovered core right after the experiment. He suggested lowering E, to

1
about E, - 10 a,r with E, expressed in calories per unit specific explosive

1 1
mass, Here 10 calories per gram of specific metal core mass was approximately
the measured value. Thus, for example, 1f E1 22 700 cal/gm (as for TNT), then

a, = 7 would mean about a 10% reduction in available energy. However, if a, =
1, there would only be a 1.5% reduction. Fore. = 1, ay = 0.5 in Figure 8,

o
ﬁ/E would be (0.410) instead of (0.416), still larger than its value (0.333)

without a backing plate (ao = 0). Sterne also noted that there was some

permanent deformation of the core which he took to be negligible by comparison
to the above correction. The energy absorbed by heating and fracturing the
outer metal tube has already been accounted for in the original reduction of

ET from its expected chemical value to its-Gurney value. Even for a large

core like that used, the loss in velocity is fairly small, probably because
there is 1little time for energy transfer by shock transmission and heat
conduction.

As we have noted, Equation (99) is more complicated tham Equation (103).
In the case of a cored cylinder, Equation (99) glves

v, = V(.?ET)/(cr1 + J5F) ’ (105)
with x = r1/r2 = R1/r2 if the radius of the core does not change during the
expansion. Of course for the inner radius of the case at launch r2 > R2 > R1

so x < 1. If x = 0 because R, = 0 (no core), F = 1 by Equation (100) and

Equation (105) is that of a simple cylinder. Typically x might be near 0.5.
A3 x 1increases from zero to unity in Equation (100), F decreases from 1 to

2/3, being about (.8 near x = 1/2. Thus for the same E1 and @, Equation

(105) predicts that V1 for a cored cylinder 1s greater than for a simple
eylinder, with larger cores giving greater VT' This 1s contrary to the

experimental results discussed by Sterne. Consequently, Equation (99) and
Equation (97) upon which it 1s based are suspect. Equation (103) and Equation
(102) on which it is based are preferred in this instance, not only for
reasons of simplicity, but also because the prediction is at least closer to
experiment and gives no misleading trends.

55



Now consider Equation (103) for the simplest jelly roll which 1s
iliustrated in Figure 10 (1 = 0, 1):

EC +EC =1/2MV241/2My.° 2
00 1 00 11

samicveeic(veavdr. (106)
00 1 o 1

Equation (106) of course reduces to the metal-cored cylinder if Co = vo 0,

Mo £ 0 and the simple cylinder 1f Co = Vo 5 Ho = 0. If only C1 = 0, Vo =V

provided we weld the two metal tubes together and again we have a simple
cylinder. If the metal tubes are in loose contact inltially, the shock
rarefaction wave returning from the outer metal/air Interface will tend to
separate the tubes, while the gas pressure inside will tend to keep them
together. Because of the high gas pressure during the acceleration phase of
the motion, we expect the tubes to remain in contact untll they break in most
rases.

10

In designing a warhead, it 1s desirable to have V < V, 1in Equation (106)

since this would mean that the inner layer of fragments would travel more
slowly than the outer layer and there would be a greater spread of metal in
space for a longer time. This would increase the chance of hitting a moving
target and (provided v, and V1 are not too small) would 1ncrease the

probabllity of damage.

It is possible but not desirable to select the E;, C, and'Hi in Equation

(106) so that the launch speeds are the same, namely, V =V, =V. In this
case, with Eo =E_. = E,

1

0

Ve y2B/[e+ 17201+ 2)1 | - (107)

where o = M/C = (Mo + M1)/(Co + C1) and Z = 01/C. If we ‘divide thils eguation
by the simple cylinder formula,

VY, = V(a4 172)/la « 17201 + 2)] (108)

for the same a and E, For Z > 0 we have V < Vc and neither an increase in

metal distribution is achleved nor an ilncrease 1n launch velocity. For a
much above unity V/Vc-+ 1. In the extreme Z— 1, (Co-? 0, V,— 0), which 1is

the metal-cored cylinder, we can no longer assume E:o = 'E, since the 1lnner

metal tube absorbs a significant fractlon of the energy imparted to it and
converts it to heat rather than to its diminlishlng kinetlc energy.
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In our comparisona wlth a slmple cylinder, we always flll the simple
cylinder with the most energetic explosive avallable to avoid maklng the jelly
roll appear better because it has a more energetic flll. We can, of course,
use a less energetic explosive In elther layer of the simple jelly roll.
However, the practical range of E 1s rather limited. The most energetic solid

explosive commonly avallable 1s HMX with E = (3)2/2, while the least energetic
18 TNT with E = (2.4)%/2. The values in parentheses are the V2E (mm/us)

.1
Gurney velocltles given by Kamlet and Finger'.1 Roughly speaking then, 2/3 <
EO/E] <1 when E, < E;o IfV, =V, =Vand o= E,/Ey < 1, then Equation (108)

1s replaced by '
vV, = s 9 [0+ 200 -9)] /[0 + 51 + 2)] (109)

80 that Vv wlll be even less than in Equation (108), as expected. 1f the
launch speeds are approximately equal, then there is not much decrease in
launch veloelty compared to a simple cylinder. However, there is not much
Inerease in metal distribution elther, since the inner layer will tend to
maintaln 1ts orlginal separation from the outer layer at least after launch
tlme. Most llkely, the outer layer will break flrst and tend to slow down
first, emphaslizing the tendency for both layers to fly together.

There are two ways to achieve a significant increase in separatlion of the
two layers compared to thelr initial separation. One way 1s to have MOICO >

M1/C1, appreoaching the case of the metal-cored cylinder for which VO = 0. The

other way 1s to use a less energetic explosive in the core so that the inner
pressure 1s lower (at least initially). A comblnation of both techniques
should enable us to deslgn a devlce where the inner layer flies with half the
Speed of the outer layer, glving an increasing gap between the layers, a
configuration which may be desirable for some purposes. An estimate of inner
layer launch speed might be made by treating the layers M, C. and M, as a
single inertial layer, so that " 1 1

Vo= VED/LM +C +M)/C + /2] . (110)

1

More complicated Jelly rolls can be discussed in the same way.

The spherlcal analog of the jelly roll will also lead to falrly
complicated expressions if we use Equation (97) for v. However, if we use the

cuble analog of Equation (102) and relate v3 to r3, we flnd

(1)
., 3 (v,5 -8 (v, - 2
BES SRl e S G e Y )7 (v Vi1)
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since i [Ci/(%'ﬂ)] / (rgi - r;i-l )‘ | (112)

p =
4 3 3
C, = p,; (g-ﬂ)(RZi - Ry 1) (113)
4 3 3
M, = p .(— n)('R . - R .) »
and i Mi\ 3 2i+1 2i (114)

using the layer numbering scheme of Figure 10, Thus Equation (11%1) 1is

independent of device slze and reasonably simple. If 1 = 0 1s the only value
of 1, we obtaln Gurney's sphere formula, Equation (28). The same design goals

and limitations apply to the onlon as to the jelly reoll, and an entlrely
analogous discussion could be carried out. In the 1llmlt of equal launch

speeds, the ratlo in the last term of Equatlon (111) 1s 5/3 Va and Equation
(111) becomes .

2
Y EC. =k {L M. + L C.}V
. (i i 1) = u(ieC)V2 ) (115)

For a uniform explosive filll of the same type as in a slmple sphere wlth the
same a = M/C

V/Vs = 1/7(a + 3/5)/(a+ 1), {116)

where V < Vs, the launch veloclty of a simple sphere, A discussion of metal

spreading by controlling the E, and a, analogous to that glven for the

1
¢ylinder can also be carrled out.

1

C. The Dagwood

Here the possibility of asymmetry about the central plane exlsts,and the
momentum balance equatlon 1s not ldentically zero except in the symmetrical
limit. Similar conslderatlons hold for the Dagwood and jelly roll with
respect to detonatlon wave lnitilation and propagation as well as pressure and
veloclty equalization by launch time. The layer numbering scheme 1in Figure 11
enables us to write

Mi = Py [R21+2 - R21+1] , ) (118)

, = C, . - . ‘
and & i/ [r21+1 r21] s ' {(119)
where Ri = Yi are 1nitlal values and rEYy are values durihs the expanslon.

In the planar case, using a linear relatlon between v and r enables us to
preserve Gurney's baslic assumption. We let ' '
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Figure 11. Layer Numbering Scheme for the Dagwood.

59



V. -V, V. .T,; - V. r,.
v=ar+b; = [;rj;———i:l—-r + [ i-172i+1 i 21]
2i+1 ~ T2i T2iel ~ T2i (120)

since each plate has a single V, at launch time which may be specified by

1
elther the outer or inner surface or some point between. Now we find

2 1 2 2
LEC; =BIMV, +g2 € (Vi * Vi ¢ Vi) o
1 1 1

when we use Equations (119) and {120) to find‘,:IE pivzdr and divide
v 3 -V 3
i 11

by a;(ry; , ¢ - rog) = (Vy = Vg 1). A similar procedure
involving‘/}ivdr gives the conservation of momentum equation

; ; (122)

0 =L M.V, L C. . .
e A T s -1 (vl ¥ v1-1 )
’
which 1s identically zero only for a symmetric Dagwood. In general, vi >0
for 1 > 0 and Vi <0 for 1< 0. For the slmple asymmetric sandwich these

equations reduce to Equations (80) and (81), namely,

. 2 2] . 1 2 2
i€y =% [Mlvl * MY ] 55 [V1 *% Y ]
(123)
and
= 1
0 = [Mlvl + MOVO] +%5C, [v1 * vo] o

if we ldentify E, = E and C, = C (with Co =M, =C_, =M, =0 1in Figure 11).

Since for given Mi’ Ci and E we have two equations in two unknowns, we can

solve for vo and V1 as before.

For the asymmetric Dagwood illustrated in Figure 11, Equations (121) and
(122) become
_ 2 2 2 2]
E-lc—l + Eoco + EIC1 =k [M-ZV—Z + M_IV_1 + Movo + Mlvl

1 2 2
* Egc-l (V-1 AL ! )

{125)

2 2

* co (Vo * va-l * v-l )
2 2
"Cl("’1 PV 4V )%
and
0 = [M_zv_2 +M_V |+ MV Mlvl]

- (126)

M {C-l (V—l * V-Z) * Gy (Vo * V_1)+ ¢ (Vl * Vo)}
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Now for glven Ei’ Ci and Mi we have two equatlions 1n four unknown vi. For
1 4

the symmetrlc case when Equation (126} 1s identlcally zero, we have one

equatlon 1n two unknowns, vo = -V1 and V1 = -vz.

Let us consider the symmetric case, assuming equality of velocitles at
launch time and a single exploalve loading. With a = 2(Mo + M1)/(C° + C1) =

M/C, we find that Equatlon (125) with E4=E, =E =E becomes

2E = (a+ 1)V° (127)

for the simplest symmetrlc Dagwood with explosive 1n the center. Thils may be
compared with Equation (83) and Vp for the simple symmetric planar case to
obtaln (for the same E and a)

W= A (a s 1/3)/Ca +1) (128)

s0 that the symmetrlc Dagwood launch speed 1s somewhat less than for the
simple symmetric sandwich. For typlcal a values the loss 1n launch speed wlll
not be great, but for veloclty equallzation the increase in metal spreading
will not be great elther. For the ideal planar configuratlon (unlike the
cylinder) there will be no metal layer thlnning or fragmentatlon during
flight. A launch in air instead of vacuum will, however, tend to slow the outer
plates first. Agaln we may increase the spread of metal at the sacrifice of
inner layer speed by controlling the ratloes E°/E1, Molco and M1/C1. In

addition, an estlmate of vo can be made by treating the layers exterlor to Co

-

as a slngle inertlial mass.

2 2
If M-Z =2C_ =2V, =0, M =M, C = Cipa = (2M,I)/2C1) and V_1 = V." =

V2 in Figure 11, we have a symmetrlc sandwich with the metal plate Mo at 1ts
center. For E, = E, = E, Equation (125) becomes

V= Y@EM(es+1/3) (129)

and the model predlets the same launch speed as 1f Mo =z 0 (the slmple

symmetric sandwich). Agaln we should account for the fact that the effective
values Eo = ]:':1 < E since some energy ls absorbed by the 1lnert statlonary core

as 1n the case of the metal-cored cylinder.

If C_1 = C1 = 0 1n Figure 11 and Equations (125) and (126), we have four

plates but only one layer of explosive in the mlddle. Agaln we have a slmple
asymmetrlc sandwlch, provided we bond the plates together so they will not
trap momentum and separate as soon as rarefactlon waves reflected from the
free surfaces return to the interfaces. Thls configuration 1s a generallza-

tion of the case dlscussed by G. Jones10 which consists of more than one
plate, but only on one side of a single sheet of explosive.
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If asymmetries are not great, and we assume approximate equalization of
velocities at launch, Equatlion (127) holds for any number of explosive sheets
sandwiched between metal plates.

For significant asymmetries, we encounter a problem as soon as we add a
sheet of explosive to one side of a simple asymmetric sandwich. If we let Eo
=E, =E M,=M_,=C_, =0 in Figure 11, Equations (125) and (126) become

2 2 2
EC = 1/2[M V"~ + M,v.] + 1/6[C (V. © + V ¥
00 11 o o

2 2 2
Vgt V~_1) + C1(V1 + V.V +V )]

10 0(130)
and :

0= (M vV, + MV,] +1/2[C (V) + V_ ) + C (Vg + V)] ’ (131)

where V_. is the launch veloclty of the free gas surface, which cannot be zero

1
1f C, > 0 in the present configuration (M1/C1/M0/CO). Since we only have two

equations for the three unknowns V,, Vo and V_1, we cannot give a general

solutlon within the limitations of this model. If for some reason we want to
fix the Vi' then we would have two linear equations in some Mi' Cj pair (for

glven E) and some physically interesting solutlions would exist.

The assumptions of uniform density and linear spatial distribution of gas
veloclty at any instant imply the existence of a statlionary plane (or surface)
of zero gas velocity. This was mentioned above in the discussion after
Equation (90). For the simple asymmetric sandwich (H1/C1/H0) the loeatlon of

this plane may be found by letting v = 0, r = R, and 1 = 1 1n Egquation (120),
giving R = (V,R, - V0H3)/(V1-Vo) with Vv, = -qV, and V, glven by Equation (82).

Thus we can find R from @, @ H2, and H3 slnce+2E cancels. For example,

Ol
when . = @y, q = 1, and R = (R2 + R3)/2. That is, the plane lies 1n the

0
middle of the layer C If we add the layer C0 below the sandwich (M1/C1/Mo),

1.
we shift the plane downward. Sufficiently large C0 will move the plane

through Mo and into Co' When Vo = 0, we have

3
v, =§2E /{a + 173 [ + g+ 220700 - ]} (132)
and

V_1 2 - [(ﬁ1 + 2a1)/(1 - 31)3 V1, (133)

where B1 = C1/C = C1/(C0 + C1) =1 - By = 1 - CO/C. This case 1s equivalent
to the simple open-face sandwich (M1/C) with a reduction in E dependent on the
size of Mo as explained above for other "cored™ configurations., Usually this

correction is negligible. If we neglect i1t and set Equation (132) equal to
Equation (84), we find B1 = 1/02(1 + a1)]. Obviously for a, = 0, BT = By =
1/2. For @y =1, ﬁ1 = 1/4 and Mo must divide C so C1 = C/4 and Co = 3C/% to
make VO = 0, etc.
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If we wish to launch two plates in the same direction but with Vo < V1 S0

there will be a greater spread of metal, our model 1s too simple to enable us
to analyze all possibilitiles. However, for certain fixed relations, we can
estimate what is needed. For example, to obtain Vo = sv1 with s < 1, using Mo

= kM1 with k > 1, Equations (131) and (130) become

V_, = =1(s + ) + 2a,(1 + k8)1/(1 = B,) IV, (134)

and

Vl =‘{(ZE)/ {(1 + ksz)al + —%- [é1+ B+ 52 - {S - TTL_—E—l-)—}{ﬁlf S + 2a1 (1 + ks)}]} .

(135)
For example, 1f s = 1/2, k = 8, a, = 1/2 and ﬁ1 = 1/4, we find V1/\/2E = 0.55

from Equation (135) with V,/V'2E = 0.275. Of course we can also use different
types of explosive in the two sheets (Eo £ E1) and vary the design further.

The princlples are -clear and will not be elaborated here.

The next, more complicated case 1s (M1/C1/H0/C0/M_1) in Figure 11. This

requires the addition of 1/2H_1V2_1 to the right side of Equation (130) and of

M 1V 1 to the right side of Equation (131). There 13 one more dimensionless

parameter, a_, = M_1/C, but still only three launch speeds. Let us close this

1
sectlon by giving some slmple examples of how we might estimate launch speeds.
Suppose we have M_1 = MO = M1, Co ] 201, and E° = Eqe We can solve the

momentum equatlon for

V_q=a, V, +a, V, , (136)
where
a = -(3+6a1)/(2+6a1)' (137)
and
é1 = *(1+6a1)/(2+6a1) (138)
3
and use Equation (136) to eliminate V_1 in the energy equation to obtain
vy 2 2
2E = xvo + Yvov1 + zv1 , (139)
where
2
X =a, (a1+2/9) + 2/9% + (a1+1/3) (140)
Y = 2a°a1(a1+2/9) + 2/930 + 1/9 (141)
2 = a,%(ag+2/9) + (ay+1/9) (142)
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= M,/C,where C = C +C_. Suppose we let a_=1,
1 o 1 2 1

5.76 (mm/us)” as for TNT at a

Thus the Vi depend only on @,

that 1s, e = M/C = 3M1/C = 3. If 2E = (2.11)2
typical loading density, then Equation (139) becomes

2 2
5.76 = 2.63 V" + 2.27 V V, + 2.05 V,° , (143)

while Equatlon (136) becomes

v = -(1,125V_ + .B75V ). (144)
-1 o 1
If we consider two related cases whlch are known, we can restrict the range of

allowed values. First, conslder Co = C1 = C/2, a case for which Vo = 0 and V1

= 2.M//2M1/C + 1/3 = 1.57T mm/us = -V_1. If we move Mo so C1<C/2 and C°>C/2,
then V0>0, V1<1.57 mm/us and V_1<—1.57 mm/ps. Second, consider Co = C1 = C/3,
for which V, = 0 and vy = 2.H/¢2M1/(20/3) + 1/3 = 1,315 mm/as8 = -V_1.

Increasing Co to 2C/3 = 201 wlll make V1>1.315 mm/xs and V0>0. The range of

V1 values is thus fairly narrow, namely, 1.315<V1<1.57 mm/ns). These extreme

values may be used in Eguation (143) to find the range of Vs namely
«512>V0>.176 and from Fquation (144) we find -1.727>V_,>-1.572. If we take

1
the mid-polnts of these ranges as our estimate, we see that the model predicts

Vy = 1.uu1.13 mm/us, Vo = o34 +.17 mm/ps and'v_1 = —1.6M1.08 mm/us.

Suppose we wish to make V, = 2Vo>0. Of course there are many cholces of

1

Mi and C1 which will accomplish this goal. For example, ay = @, = 1/2, « 17
1 and a = M/C = (a1+ab+al1) = 2. In this case.v1 = 1.54 mm/ms, Vo = .77 mm/ns
and V_1 ==1.76 mm/ps for v2E = 2.4 mm/ws. In this and the previous example we

are neglecting any reduction in v2E.

The procedure 1llustrated here is not completely straightforward since 1t
requires some ingenuity to narrow the range of values by comparisons with
known theoretical or experimental cases. However,it can give us useful
estimates for fairly complicated Dagwoods, jelly rolls and onions.
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SUMMARY

In this report we have seen that the exponent ¥ 1n the entroplc equation
of state may be taken equal to three 1in practical applications 1nvolving the
expansion of s0lid explosive detonation products. This fact has been used to
simplify, extend and unlfy the ideas of Tayloer, Gurney, Thomas and Sterne
concerning the acceleration of metal by explosives. The modified theories
which have been developed here can be used in the design of lined cavity
charges and fragmentation warheads as well as flylng plate experiments like
those which have been used to study the shock propertles of solids.

The author wishes to acknowledge the support of hls supervisors and the
director of the Ballistics Research Laboratory who advocate a return to
fundamentals as a means of obtalning fresh insights and of stimulating new
approaches to problems. The author shares thls view and has attempted to glve
It substance 1n this report.
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