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I.  INTRODUCTION 

There is a continuing need for and interest in simple models of explo- 
sively driven metal. Military applications have received the most attention, 

1 2 beginning with the work of Taylor and Gurney on the launch speeds of frag- 
ments from explosively driven metal shells. Taylor also applied his ideas to 

the formation of shaped charge Jets and later published his results.^ Varia- 
tions of these basic ideas are still being used today in design and analysis 

5 6 7 work. ' '' These ideas have also proven to be useful in the general field of 

shock physics,  and several recent papers have appeared on applications of 

G. I. Taylor, "Analysis of the Explosion of a Long Cylindrical Bomb Detonated 
at One End," paper written for the Civil Defence Research Committee, Ministry 
of Home Security in 1941, available in The Scientific Papers of Sir Geoffrey 
Ingram Taylor, Vol. Ill, G. K. Batchelor, ed., The University Press, 
Cambridge, 1963, p. 277. 

2 
R. W. Gurney, "The Initial Velocities of Fragments from Bombs, Shell, 
Grenades," Ballistic Research Laboratory R405, 1943. (AD ATI 36218) 

G. I. Taylor, "A Formulation of Mr, Tuck's Conception of Munroe Jets," 
written in 1943 and available in The Scientific Papers of Sir Geoffrey Ingram 
Taylor, Vol. Ill, ed. by G. K. Batchelor, The University Press, Cambridge,  * 
1963, P. 358. 

ü 
G. Birkhoff, D. P. MacDougall, E. M. Pugh, and G. I. Taylor, "Explosives with 
Lined Cavities," Journal of Applied Physics, 19, 1948, p. 563. 

J. T. Harrison, "BASC, An Analytical Code for Calculating Shaped Charge 
Properties," Sixth International Symposium on Ballistics sponsored by the 
Araerioan Defense Preparedness Association (ADPA), 1981, p. 253. 

G. Randers-Pehrson, R. R. Karpp, C» E. Anderson, Jr., and H. J. Blische, 
"SHORTFRAG Users Guide," Ballistic Research Laboratory Memorandum Report 
3007, 1980. (ADB Oh66hhh) 

7 
L. R. Kruse, "Theoretically Determined Fragmentation Characteristics and 
Lethality Estimates for a Newly Proposed Tungsten Alloy Cased BLV-97 Combined 
Effects Borabiet,n Ballistic Research Laboratory Memorandum Report 3291*, 1983-CADC 032^97L) 

Q 

M. A. Meyers and L. E. Murr, eds. Appendix E, "Nomograph for Determination of 
Flyer-Plate Velocity, "Shock Waves and Hlgh-Straln-Rate Phenomena in Metals, 
proceedings of an International Conference on Metallurgical Effects of 
High-Strain-Rate Deformation and Fabrication, Plenum Press, NY and London, 
1981, p. 1057. 



9-1 k Gurneyf3 analysis.     Other references to work on this subject can be found 
in these papers. However, a bibliography compiled from these sources alone is 
far from complete, as will become evident below. 

Here we will express Taylor's analysis in simple formulas and extend it 
to cases of planar as well as cylindrical symmetry. Taylor's numerical 
analysis was presented in tabular form and has been virtually ignored.  By 
contrast, Gurney's results were presented in simple formulas which have been 
widely used and extended. An exception is Taylor's simple formula for the 
projection angle. This small part of Taylor's model has also been widely used 
in a somewhat obscure combination with Gurney formulas to obtain a projection 
velocity (magnitude and direction). Here we will develop time-dependent 
formulas for projection positions and velocities as simple as Gurney formulas. 
First, we will treat side-on cases in which the detonation front propagates 
parallel to the metal surface (surface normal perpendicular to the propagation 
vector).  Cases in which the propagation vector and metal surface normal make 
an angle between zero and ninety degrees can be treated in the manner of 
References 3 and 4. Finally, we will give some simple formulas for head-on 
projection velocities (propagation vector parallel to surface normal vector). 

In Section II of this report we will establish the validity of using the 
exponent y = 3 in the entropic equation of state. This is required for the 
simplification of Taylor's theory and its extension to planar geometry as 
discussed in Section V« A description and comparison of Taylor's and Gurney's 
models is given in Sections III and IV by way of preparation. Thomas' model 
is simplified and compared with other models in Section VI. Comparisons with 
experimental data are also made wherever possible.  In Section VII we describe 
Sterne's extensions of the models of his co-workers, Gurney and Thomas. 
Finally, we will generalize Sterne's method in order to discuss more than one 
layer of metal in contact with more than one layer of explosive in three 
geometries: spherical, cylindrical, and planar. In particular, we will 
develop simple design methods for optimizing certain types of performance. 

9 
G. E. Jones, J. E. Kennedy, and L. D. Bertholf, "Ballistic Calculations of 
R. W. Gurney," American Journal of Physics, 48. 1980, p.264. 

G. E. Jones, "The Gurney Equations for Multilayered Fragments," Journal of 
Applied Physics, 50, 1979, p. 3746. 

M. J. Kamlet and M. Finger, "An Alternative Method for Calculating Gurney 
Velocities," Combustion and Flame, 34, 1979, p. 213. 

12 
E. W. LaRocca, "A Simplified Method of Calculating the Gurney Constant of 
Common Explosives," presented at the meeting of the Pyrotechnics and 
Explosives Applications Section of the American Defense Preparedness 
Association, 1978. 

E. W. LaRocca, "Advances in Predicting the Relative Power of High Explosives 
and the Correlation with Fragment Velocity," presented at the meeting of the 
Pyrotechnics and Explosives Applications Section of the American Defense 
Preparedness Association, 1980. 

14 
D. R. Hardesty and J. E. Kennedy, "Thermochemical Estimation of Explosive 
Energy Output," Combustion and Flame, 28, 1977, p. 45. 



II.  THE ADIABATIC EXPANSION OF DETONATION PRODUCT GASES 

A key element in Taylor's analysis was provided by H. Jones who numer- 
ically evaluated one of Taylor's integrals. Jone3 worked with Taylor on 
the Research Committee (R.C.) of the Ministry of Home Security and wrote 

several papers with him.'5,ID»17 Jones gave an account of his methods in 

several Research Committee papers which are no longer available.10,19,20 For_ 
21 22 

tunately, his work was later published.  ' 

In Reference 21, Jones give3 as his Equation (27) 

p = BpY (D 

relating the pressure p and density p of the product gas during its expansion. 
Here B and y are constants.  Equation (1) is called the entropic equation of 
state and applies to polytropic gases for which the internal energy depends 

only on the temperature-   For ideal gases at moderate pressures and tempera- 
tures, y is not much larger than unity. Jones estimates that Y should be 
close to three near the rear of the reaction zone of a typical solid explosive 
loading and remarks that such a high value occurs because the products ini- 
tially form a very imperfect gas. He derives the value y  = 3 by assuming that 
the ratio of the densities at the front (p ) and rear (P-) of the reaction 

zone is P / p„  *  3/4. 
o 1 

15 G. I. Taylor and H. Jones, "Note on the Lateral Expansion behind a 
Detonation Wave," The Scientific Papers of Sir Geoffrey Ingram Taylor, Vol. 
Ill, G. K. Batchelor, ed., The University Press, Cambridge, 1963, p. 309. 

G. I. Taylor and H. Jones, "Blast Impulse and Fragment Velocities from Cased 
Charges," The Scientific Papers of Sir Geoffrey Ingram,Taylor, Vol. Ill, G. 
K. Batchelor, ed., The University Press, Cambridge, 1963, p. 363- 

'G. I. Taylor and H. Jones, "The Bursting of Cylindrical Cased Charges," The 
Scientific Papers of Sir Geoffrey Ingram Taylor, Vol. Ill, G. K. Batchelor, 
ed.. The University Press, Cambridge, 1963, p.379. 

18 
H. Jones, Research Committee Paper 166, no longer available. 

19 ' H. Jones, Research Committee Paper 212, no longer available. 
20 

H. Jones and A. R. Miller, Research Committee Paper 306, no longer 
available. 

21 
H. Jones, "A Theory of the Dependence of the Rate of Detonation of Solid 
Explosives on the Diameter of the Charge," Proceedings of the Royal Society 
of London, 189A, 1946, p. 415. —— • 

22 H. Jones and A. R. Miller, "The Detonation of Solid Explosives: the 
Equilibrium Conditions in the Detonation Wave-Front and the Adiabatic 
Expansion of the Products of Detonation," Proceedings of the Royal Society 
of London, 194A, 1948, p. 480. 

JR. Courant and K. 0. Friedrichs, Supersonic Flow and Shock Waves, 
Interscience, NY, 1948, p. 6. 



In Reference 22 Jones and Miller used the following virial equation of 
state 

pV'/N = RT + bp + cp2 + dp (2) 

to calculate pressure and volume (V) of N moles of gas at temperature T re- 
sulting from the detonation of one mole of explosive. They also calculated 
product species for TNT and predicted an approximately linear dependence of 
both detonation velocity and detonation pressure on loading density. In Part 

B of their paper, they give numerical examples for TNT at a high (T.5 g/cnr) 

loading density and a low (1.0 g/cnr) loading density. For the high density 
loading, their Table III gives the pressure, temperature, inverse density, and 
effective Y  value calculated for the entire expansion process. Here we are 
particularly interested in the y values. At the detonation pressure achieved 

10       2 at the rear of the reaction zone (p = 15.88 x 10  dyne/cm ) they find y = 

3.36 (and P = 1.95 g/cm-*).  By the time the pressure has dropped to 6.25 x 

10  dyne/cm , P = 0.65 g/cnr and y = 2.39.  Between these two points we note 
that a y value obtained by taking half of (3-36 + 2.39) is 2.9.  Their Table 

continues down to p = 2.818 x 10 dyne/cm and P = 0.003 g/cnr with 7 a 1.27. 

Their Table V gives similar results for the lower loading density with 7 rang- 

ing from 2.43 at the detonation pressure down to 1.20 near atmospheric condi- 

tions. Normally cast TNT for military applications has a loading density 

slightly greater than 1.6 g/cnr so that a suitable effective value over the 

range of interest to metal acceleration (2.1 > P > 0.6 g/cnr) ought to be 7 = 
3. Jones and Miller go on to compare their calculated species concentrations 
favorably with experiment, implying that their p, T, P and 7 estimates ought 
to be approximately correct also, even though no direct comparison of these 
quantities with experimental measurements is possible even today. These 

results of Jones and Miller were again used by Taylor in a later paper  in 
which he demonstrated for the first time the possibility of a spherical 

detonation wave, contradicting an opinion previously expressed by Jouget .25 

Many other authors have followed Jones by using y  = 3 to describe the high 
pressure gases which result from the detonation of condensed explosives near 

their maximum loading density. Jacobs  has pointed out that both the 
27 

Kistiakowsky-Wilson equation of state  and that used by Jones and Miller 

2**G. I. Taylor, "The Dynamics of the Combustion Products behind Plane and 
Spherical Detonation Fronts in Explosives," Proceedings of the Royal Society 
of London, 200A, 1950, p. 235. 

25M. Jouget, C. R. Academy of Science, 144, Paris, 1907, p. 633. 

S. J. Jacobs, "Recent Advances in Condensed Media Detonations," American 
Rocket Society Journal, 30, 1960, p. 151. 

27 
G. B. Kistiakowsky and E. B. Wilson, Jr., OSRD Report 11^1, US National 

Defense and Research Committee of the Office of Scientific Research and 
Development, 1941. 

10 



(Equation (2) above) lead to calculated results which can be expressed by 
Equation (1) above with 7=3 down to one per cent of the detonation pressure, 
with an accuracy acceptable for hydrodynamic usage. 

In 1968, Jacobs, together with Kamlet, proposed a simple method of calcu- 
lating detonation properties, that is, properties at the rear of the reaction 

zone.   This was the first in a long series of papers which has not yet been 
29-35 33 completed.      The sixth paper  in this series gives an empirical expres- 

sion for 7 in terras of the loading density with 7 again approximately equal to 
three for military explosives at typical loading densities. In connection 

with this paper, we also note a recent paper by Andersen . 

-\2 The fifth paper-' in the above series provides us with a table of pres- 
sures and inverse densities (specific volumes) for various conditions during 
the expansion of the products from the detonation of twelve common explosive 
loadings, calculated by using a Kistiakowsky-Wilson equation of state: 

pVV(NRT) « 1 + Xe**f (3) 

28 
M. J. Kamlet and S. J. Jacobs, "Chemistry of Detonations, I:  A Simple 
Method for Calculating Detonation Properties of C-H-N-0 Explosives,u Journal 
of Chemical Physics, 48, 1968, p. 23. 

29 'M. J. Kamlet and J. E. Ablard, "Chemistry of Detonations, II: Buffered 
Equilibria," Journal of Chemical Physics, 48, 1968, p. 36. 

M. J. Kamlet and C. Dickinson, "Chemistry of Detonations, III: Evaluation 
of the Simplified Calculational Method for Chapman-Jouget Detonation 
Pressures on the Basis of the Available Experimental Information," Journal 
of Chemical Physics» 48, 1968, p. 43. 

M. J. Kamlet and H. Hurwitz, "Chemistry of Detonations, IV: Evaluation of a 
Simple Predictional Method for Detonation Velocities of C-H-N-0 Explosives," 
Journal of Chemical Physics, 48, 1968, p. 3685. 

32 M. J. Kamlet and H. Hurwitz, "The Chemistry of Detonations, V: Pressures of 
C-H-N-0 Explosives at Various Stages of the Isentropic Expansion," NOLTR 
68-44, 1968 or Israel Journal of Technology, 7, 1968, p. 431. 

^3 M. J. Kamlet and J. M. Short, "The Chemistry of Detonations, VI:  A 'Rule 
for Gamma' as a Criterion for Choice among Conflicting Detonation Pressure 
Measurements," Combustion and Flame, 38, 1980, p. 221. 

34 
J. M. Short, F. H. Helm, M. Finger, and M. J. Kamlet, "The Chemistry of 
Detonations, VII:  A Simplified Method for Predicting Explosive Performance 
in the Cylinder Test," Combustion and Flame, 43, 1981, p. 99. 

M. J. Kamlet, J. M. Short, M. Finger, F. Helm, R. R. McGuire, and I. B. 
Akst, "The Chemistry of Detonations, VIII:  Energetics Relationships on the 
Detonation Isentrope," Combustion and Flame, 51, 1983, P« 325. 

36 
W. H. Andersen, "Comments on 'The Chemistry of Detonations'," Combustion and 
Flame, 45, 1982, p. 309. 

11 



where X = KXx.k./CV(T+G)  ] with x. the mole fraction, k. the covolume fac- 

tor, and a', ß,  K and 0 empirical constants. If we use this table to plot p 

versus p , we see that Equation (1) with 7=3 can be fitted very closely to 
these" calculated results, at least over the range of P of interest to metal 

26 
acceleration, confirming Jacobs1 remark.   Figure t illustrates this for two 
explosive loadings which are not very different from ones used in military ap- 
plications. The values marked X and 0 were calculated from their table. 

Kamlet and Hurwitz also quote values for TNT at P0 = 1.55 g/cm which are 
3 22 

quite close to those calculated for p0 = 1.50 g/cm by Jones and Miller, 
using a very different equation of state (Equation (2) versus Equation (3))» 
We conclude that Equation (1) with 7 = 3 is a satisfactory approximation for 
most applications.  In fact it is much better than we might expect from the 
estimates given by Jones and Miller, quoted above. At present we have no 
satisfactory explanation for this remarkable observation. The fact that the 
range .6 < p < 2 is centered near P = 1 where p is independent of 7 may be of 

some help, but this does not explain the agreement over the range 0.2 < P < 
8. 

If we adjusted 7 as well as B in Equation (1) we might obtain slightly 
better agreement. However, there is little justification for doing this since 
the values being fitted can be calculated from various equations of state 
chosen for convenience rather than theoretical reasons. Since almost any 
reasonable form will do, we should not place much weight on the fact that a 
particular form gives us reasonable results. As Jones and Miller remarked 

22 long ago,  we have little information to guide us in choosing a correct form 
for the equation of state. There is no virtue in using complicated empirical 
equations which are designed to cover critical phenomena controlled by weak 
molecular attractions. The best that can be done Is to choose the simplest 
equation which is adequate for onefs purpose, as they did and as we shall do. 

If we let 7 = 3 in Equation (1), analytical simplifications become possi- 
ble, as we shall see presently. One example of such simplification has already 

37 been given by Aziz and co-workers.  who compared the results of an exact so- 
lution for rigid piston loading (possible if 7 = 3) with numerical solutions 
in the parameter range 2.5 < 7 < 3«5« They concluded that only a one percent 
error would be made in calculating the energy transmitted to the piston, in 
spite of variations in the detonation pressure and velocity of about fifty per 
cent. Similar conclusions were reached earlier by Gurney in his discussion of 

gas leakage. 

37 
A. K. Aziz, H. Hurwitz, and H. M. Sternberg, "Energy Transfer to a Rigid 
Piston under Detonation Loading," The Physics of Fluids, 4, 1961, p. 380 

—^  -— 
R. W. Gurney, "Fragmentation of Bombs, Shells and Grenades," Ballistic 
Research Laboratory Report 635, 1947.  (ADB 800^51) 

12 
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III.  TAYLOR'S ANALYSIS OF A TUBULAR BOMB 

Since the details of this model are not widely known, we will summarize 
them here. Figure 2 shows a longitudinal cross section of an infinitely long 
tubular bomb in the neighborhood of a planar detonation front (solid vertical 
line) which Is moving to the right at constant speed, D. To an observer in 
the laboratory, the process of gas expansion and metal acceleration appears to 
be complicated, since the gas first moves forward following the detonation 
wave front and later moves backward away from it so that it acts twice on the 
same element of the case, as we shall see. However, to an observer who trav- 
els with the detonation front and looks back at the expansion process, these 
complexities disappear, since the gas pressure and velocity at a given dis- 
tance behind the front (dashed vertical line) do not change with time (steady 
state condition). Moreover, the velocity of a case element along its length 
ds is constant and equal to D, since there is no stretching along ds. The 
transformation between the laboratory coordinate X and the coordinate x used 
by the moving observer is 

X = - (x-Dt) + xo, (*») 

as shown in Figure 2. Here t is the time, which is taken to be the same for 
both observers, since detonation wave speeds are negligible compared to the 
speed of light. The radial coordinates R = r are also the same for both ob- 
servers as is the (lgnorable) equatorial angle measured about the x-axis. The 

time derivative of Equation (H)  gives us the relation between the speeds U s X 

and u = x, using the dot convention for time derivative, 

U = D - u. (5) 

Let M be the constant mass per unit length of the cylindrical shell casing 
and r be the radial position of the center of a ringlike element of the case 
wall, namely, the average of the inner and outer radii of the casing at any 
time t with r much larger than the wall thickness. If we take the ring to be 
of unit length, then the area acted on by the gas pressure Is 2wr times unity 
and the mass per unit area is M/(2irr). The pressure always acts normal to the 

2 
metal surface and balances the centrifugal force  [M/(2*-r)] (D /R ), where R c c 
is the radius of curvature (see Figure 2), the inverse of the curvature of the 
arc ds. Thus, 

= P (6) 

where we  have  retained  the exact expression  for the curvature.    For a suffi- 

ciently heavy case,  tan    <$> = I$*\    will  be much  less  than unity  (see Figure 
Vdx/ o 2), approaching unity only asN <J> 'approaches 45 . Thus It is a good approxima- 

tion to neglect it in the denominator of Equation (6) as Taylor implicitly 
did. However, there is no difficulty introduced by retaining it, at least for 
a while, so we will. 

14 
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If we multiply both sides of Equation (6) by (4*rdr)/MD ) = (^»r tan <j> dx) 

/(MD2), we find 

0 tan <h d(tan <b) 0     .      .   ,   , 2TT     ,.  2. 2 £—±-—_-££-   = 2 sin <J> d <l> = —T pd(r ) 
[l + tan2 (J)]3/ 2 .13/2 " " ~" r " r  im2 *~** ' (7) MD* 

2 2      2 where we have used the identities d(tan<*>) = sec </>d<£, 1 + tan <£ = sec <j> and 
p 

2 rdr = d(r ). The left side of Equation (7) is readily integrated from <j> = 0 
to obtain 

2(1 - cos <J>) = 4 sin (<J>/2) (3) 

by another identity. If we approximate Equation (8) by retaining only the 
first order term in a binomial expansion, 

2(1 - cos (fr) = 2(l - ^i-j-) = 2 [l - (1 + tan2 fl"*J 

= 2 [1 - (1 - ^ tan <J> + ...)] « tan <J>. t 

we recover Taylor's approximation.  The same thing can be accomplished by re- 
taining only first order terms in series expressions of either side of Equa- 

tion (8). Thus 2 [1 - cos<*>] ft- 2 [1 -(L-^2J1 = *2 « tan 0, or 1» sin (*/2) ss 

4(<*>/2)2 = 4>2 ä tan2<*> for small <*>. 

We are interested in the square root of Equation (8). In moving coordi- 
nates, the components of the case velocity are v = dr/dt = D sin <£ and v = 

dx/dt = D cos 4>  from Figure 2. In laboratory coordinates the components are 
V = v and V = D(1 - cos4>), so the magnitude of the case velocity in 

laboratory coordinates is 

V =Jv 2 + V 2 = D^sin2 -<J> + (1 - cos <$>)2    = D^2^1 ' cos ^ (10) 

= 2D sin (<J>/2)   , 

2      2 
where we have used the identity sin 4>  + cos <£ = 1 and Equation (8).  Equation 
(10) is the only formula in Taylor's analysis which has received wide use, 
clearly because of its simplicity.  We also note by another identity that 

V   1 - cos <J) 
r°  sin 4  -tMt»/2)   ,  , <11) 
r       Y 

so that the angle of projection in laboratory coordinates isifr/2.  Equations 
(10) and (11) are exact.  If we follow Taylor and use tan 0 w 2 sin(<£/2) for 
the integral of the left side of Equation (7), we make less than a 5$ error 

for 4>  < 20 . The exact expression in Equation (8) has already been used by 
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39 40 
others. In the journal literature It was used by Allison and co-workers ' 
who wrote d</>/ds = (dr/ds) (d^/dr) s sin <t> (d^/dr) for the curvature in Equation 
(7)» They did not point out that this is equivalent to retaining the exact 
curvature instead of approximating the curvature. 

In order to integrate the right side of Equation (7) let us write down a 
few more useful relations. For an explosive gas mixture in a rigid cylinder, 
such as a hydrogen/oxygen mixture in a shock tube experiment, the equation of 
mass conservation in moving coordinates is 

dm = P A Ddt = pAudt   , o o (12) 

where Ddt and udt are the original and compressed length of a gas volume ele- 
ment of mass dm and constant cross sectional area A = A . Here p    is the un- o       o 
compressed gas density, while P is its compressed density.  Since the tube is 
rigid, A is constant and P D = pu.  However, for the gaseous detonation prod- 

o 
ucts of a solid explosive high density loading expanding in a metal tube, A 
will not remain constant. For a tube with a circular cross section, the area 

2 2 before expansion is A = r r  , while after some expansion it becomes A srr > 

A .  If we use these expressions in Equation (12) and cancel *-, we find 
o 

PoDr0
2 = pur2 <13) 

for mass conservation. Now p    is the loading density of the solid explosive 

before detonation. Since steady state flow conditions hold in moving coordi- 
nates, the equation of continuity is 

r 3? (rpv) + 4  (pUj = °   ' (14) 

where v is the radial component of the gas velocity (as contrasted with v , 

the radial component of the metal velocity). In Table 1 below we will note 
that v « u sa D, so that the first term in Equation (14) might be neglected on 
these grounds for r values of interest. This would make (pu)  independent of x 
as it is in Equation (13)» However, it is more interesting to conclude from 
Equation (13) that (pu) is independent of x, so that (rpv) in Equation (14) 

2 
must be independent of r. Since P  is inversely proportional to r from 
Equation (13) when u » D, then v must be proportional to r under these condi- 
tions. Thus we may write 

v s r(vß/rB), (15) 

39 F. E. Allison and J. T. Schriempf, "Explosively Loaded Metallic Cylinders, 
II," Journal of Applied Physics, 31, 1960, p. 846. 

40 
F. E. Allison and R. W. Watson, "Explosively Loaded Metallic Cylinders, I," 
Journal of Applied Physics, 31, 1960, p. 842. 
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where v and r are constants which we will define later. Equation (15) was 
B B        ~ 

introduced by Gurney as a postulate, although it follows from the equation of 

continuity under the conditions mentioned. Gurney gave no indication that he 
ever noticed this fact.  Instead, his assumption had quite a different motiva- 
tion as we shall see. 

In the Chapman-Jouget model of detonation, the approximation is made that 
all chemical reaction is completed in such a short time that the width of the 
reaction zone is negligible. Thus we may approximate changes in variables 
like p, p and u by discontinuous jumps instead of using derivatives with very 
large values.  If we use the subscript unity to denote values just behind this 
very narrow reaction zone and the approximation r*  ~ r    (no expansion in the 
reaction zone), then Equation (13) becomes 

PoD = P1U1 (16) 

as in a rigid tube. Similarly, we can use Newton»s second law in its impulse- 
momentum form to derive another jump condition. The impulse delivered across 
the reaction zone is (p. - p )Adt which is equal to the change in momentum 

across this zone, namely,dm(D - u.) where dm is given by Equation (12). If we 

neglect the (ambient) pressure p at the front of the reaction zone compared 
o 

to the detonation pressure p. at its rear and cancel Adt, we obtain 

P1 = pQD(D - Uj). (17) 

We need one other relation in order to integrate the right side of Equa- 
41 

tion (7).  This is the strong form of Bernoulli's law for steady flow 

/. 
t   f .l^.il.'.v'l« h  W,2-»2)       <„, 

2    2   2 
since v << u » D as mentioned above. The approximate differential form of 
Equation (18) is then 

dp s - pudu« (19) 

Every science student is familiar with the integral of Equation (19) in the 
case of an incompressible fluid for which p - p    for any p and u (in the ab- 

0      2 2 
sence of external fields like gravity), namely, p + ^ p u s p + 3g pu • In 

the present case, of course, p > p • 

.2 
The variable on the right side of Equation (7) was chosen to be r so that 

we may use Equation (13) to introduce the new variable 1/(pu). Then the right 
side of Equation (7) becomes 

41 
R. Courant and K. 0. Friedrichs, Supersonic Flow and Shock Waves, 
Interscience, NY, 1948, p. 22. 
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aD |_pu J 

(20) 

*    4 sin2(<|>/2) 

=  (V/D)2£?  tan2 <j> 

i 2 
which Is Taylor's  Equation (11) when tan 4> is used.  In the second line of 
Equation (20), we have introduced Taylor's notation for the metal case mass to 
explosive charge mass ratio 

M M , s a s    = (21) 

(po*ro
2) 

where C is the explosive mass per unit length of cylinder. We have also inte- 
grated by parts from the highly compressed state 1 to an expanded state some 
distance x behind the detonation front (zero width reaction zone).  In the 
third line of Equation (20), we have used Equation (19) to evaluate the 
remaining integral. In the fourth line, we have eliminated p D in Equation 
(17) by using Equation (16) to obtain ° 

pi Pi 
ET> + ui • p^r • »i = B (22) 

then used Equation (22) in Equation (20). In the last two lines we have used 
Equations (8), (9)» and (10) to complete the derivation. Equation (20.) gives 
V as a function of the variables p, p and u and the parameters D and a . 
Taylor went on to find the shape of the case by numerically Integrating the 
equation 

•;.: 
dr/tan $ (23) 

o 

which is derived from tan^>= dr/dx. 

Equation (20) is rarely cited in the literature since p and u do not ap- 
pear as simple functions of r, although (pu) has a simple form in Equation 
(13). Instead, u must be found from Equation (18) with u., given by Equation 

(16). As was mentioned above, H. Jones evaluated the Integral in Equation 

20 



3 5 (18) for Taylor.  Once this was done (using p    = 1.51 g/cm and D = 6.38 x 10 
cra/s), Taylor presented his solution in tabular form. Table 1 here is an 
abbreviated version of his results with one row added (for u = D) and some 
additional column?—two giving 0 in degrees for the exact and approximate 
expressions in Equation (20), using the example « = 2. From this table we see 
that by the time Ä, = r/r = 1.5, V has already achieved 90$ of the value it 

would achieve if the case were ductile enough to avoid fragmentation until 
r/r = 2.  Calculations for large values of r/r are purely academic, since no 

o o 
casing material will stretch indefinitely. This is emphasized by the fact 
that the angle 4>  found by using the exact curvature becomes imaginary as soon 

as\ 2" (V/D) > 2. This corresponds to the physical fact that V cannot exceed 

D. The value <f>  = 80.97°, found by using the approximation tan <p,  is without 
significance since the approximation ceased to be valid long before 
r/r -?">   . Since practical metal cases usually burst near r/r = 1.5, we see o o 
that the range of pressure and density which can be adequately represented by 
Equation (1) with y = 3 is covered quite well.  As can be seen, approximate 
values are very close to exact"values in this range. Finally, we note that u 
is initially somewhat smaller than D, then becomes slightly larger than D for 
r/r > 1.2. If we recall Equation (5), it becomes clear that to a laboratory 

observer the gas tirst appears to move forward after the detonation front (U > 
2 

0), then backward (U < 0) for any given X position. The approximation v << 

2   2 u « D also becomes clear, since v < V « 0.2D for reasonable a « 2 in the 
fifth column. ~ 

Taylor did not«have cased TNT observations to compare with his calcula- 
tions when he wrote his paper, so he compared his V values with observations 
made for tetryl explosive cased in steel and found rough agreement. Tetryl is 
similar to TNT since it too has an hexagonal trinitro ring. However, it has 
an extra nitro group bonded to its methyl group via a nitrogen atom, so we 

1 ft 17 
might expect some disagreement.  Taylor later collaborated with H. Jones '• 
and compared calculated case shapes and velocities with experimental values 
for composition B explosive (60/40 RDX/TNT) encased in steel, using Jones' 
calculations for this mixture. They found agreement over the range observed, 

namely, 0.6 < o< 13.5, which corresponds to 26.5° > 4> >  6.5° near bursting. 

In recent years cylinder tests have become standardized as explained for 

example by Short,  who gives measured cylinder wall velocities as a function 

of case expansion for two densities of TNT (p = 1.45 g/cnr and P = 1.63 
~ o o 

g/cm ), which bracket the densities being used by Taylor in his calculations 

(P a 1.51 g/cm ). For the standard copper cylinder,« = M/C = (p../ p ) 

^rout/r*n^ - 1^ = ^«026/ Pf  since ?      =  8.92 g/cm, the outer cylinder 

radius r . = 1.53 cm = r and the inner radius r,  = 1.27 cm.  For p  = 1.51 
T  out o in o 

g/cm we find a  r 2.67. We can use this value together with D = .6.38 mm/jts 
to find V (mm/M^ = 5.52 times the values in column 5^of Table 1.  These values 
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are about 10$ lower than the experimental values in column 10, consistent with 
Taylor's neglect of the radial gas velocity component, an approximation which 
becomes worse as £ increases.  The experimental values were obtained by 

plotting Short's values  versus r/r = 1 + (r - r )/r , since his expansion 
O 0   0 

variable is (r - r ), followed by a linear interpolation between the cases he 

gives for P    = 1.45 g/cm and P = 1.63 g/cra .  The method of interpolation is 
o o 

unimportant, since the values in column 9 lie below the lower curve for p    = 
3 ° 1.45 g/cm instead of between the two curves. We can imagine a variety" of 

corrections for both the calculated and measured values.  For example, we 
might use a more modern value of D closer to ? mm//*s, as indicated in the 

survey by Kamlet and Hurwitz.   We might also use the higher pressure values 
22 given by Jones and Miller  and adjust u accordingly.  On the experimental 

side we might correct for the neglect of Taylor's angle in Short's values 
(which are V , not V) by eliminating <f>  between Equations (10) and (11) to 
obtain 

V = D[~2 /l -Vl - (Vr/D)
2}] h      . (24) 

However, this leads to corrections only in the third decimal place. Even 
corrections for observing the outside instead of the center of the thinning 
case wall are beyond the accuracy of the experiment, since the data reduction 
process includes numerical differentiation of displacement versus time curves. 
Altogether, the agreement is remarkable. 

IV.  GURNEY'S MODEL AND THOMAS' SYNTHESIS 

2 
It is clear from Section 3 of his report  that Gurney wanted to explain an 

experimental observation; namely, the fact that the fragment launch speeds of 
very different size weapons containing the same explosive seemed to depend 
mainly on the ratio of the mass of the explosive to the mass of the metalj 

that is, (C/M)y, where y is a power near 0.22 for large bombs, but closer to 
0.50 for small projectiles. This led him to his basic assumption which he 
stated in his abstract and repeated in Section 4 of his report: namely, the 
contribution made to the total kinetic energy by the detonation of each unit 
mass of explosive is independent of the size of the projectile. He used the 
symbol E to denote this constant energy contribution per unit mass and C s p   v 

r  for the explosive mass per unit cylinder length. Thus,EC is the energy 

contribution per unit length. Initially, the energy released by the detona- 
tion appears entirely as the internal energy of the highly compressed detona- 
tion product gases. However, it is rapidly converted into kinetic energies of 
gas and metal as the case expands until, at the moment of bursting, most of it 
is in this form.  Since Gurney knew from experiments that radial fragment 
motion completely dominates axial components, he partitioned EC into radial 

2 
energies of metal and gas, integrating over 1/2pv for the latter.  He took 
Equation (15) above to be true, using the symbol v for v_, the case velocity 

O D 
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at the moment of bursting (equal to the gas velocity at the case), and the 
symbol a instead of r„ for the case radius at this time.  He then wrote his 
Equation (1): 

2 

EC = i*Mvn
2 + h v 2 I       2-irrp -^j <*r        • (25) 

B      B -'o       rD B 

Here we are using M for the case mass per unit length, a sum over mass ele- 
ments which form a ring.  Since his basic assumption requires EC to be 
independent of rR, the integral in Equation (25) must somehow be independent 

of r .  Near the top of page 5 in his report, Gurney states that he assumed /> 
2      2  2 

to be constant. Clearly, he took p  = C/(7rr_ ) = /> r /r_ , a constant which 
B     o o  B 

can be taken outside the integral sign, putting rD in the denominator. 

Gurney'^ reason for assuming a linear dependence of v on r now becomes clear. 

Equation (15) puts r /rR in the integral. Since the integral of r**  is r /4, 

r  appears in the numerator to cancel r  in the denominator and make EC 
. B 2 
independent of the projectile size. The integral becomes CvR A and a 

solution for vD gives us 

vB =y]  2E/ [(M/C) + 1/2]/ (26) 

which is Gurney's widely used cylinder  formula. 

Gurney was also  interested   in  small  projectile warheads and grenades  which 
more  closely  resemble  spheres  than  long  cylinders.     His  Equation  (2)  for a 
cased  spherical  charge   is  analogous to his  Equation  (1): 

EC * h MvB
2 • h vB

2J   B 47rr2p -^     dr   . 
2 

(27) 
B 

where V  is now the case mass and C = p   (4/3*T  ) is the charge mass with r the 
o    o 

spherical radial coordinate.  Again he took P = 3C/(4wr  ) to be constant 
5 4    5 

which put rR in the denominator.  Of course the integral of r is r /5 which 
5 

puts r  in the numerator, making EC Independent of projectile size in this 

geometry also. The integral becomes 3Cv_ /?0, and a solution for v_ gives us 
D B 

vB = ^ 2E / C(M/C) + 3/5]' (28) 

for a sphere.  Gurney noted that Equations (26) and (28) make v    vary  as 
5 ?R 

(C/M)* for small C/M and as (C/M)*  for large C/M in agreement with the 

observations he set out to explain as simply as he could. Of course both 
equations tend to asymptotic values as (C/M)-»« (bare charge). 
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In his discussion in Section IV of his report, Gurney suggests a slightly 
lower value than 1/2 in Equation (26).  He also comments that his equations 
are intended to express the fact that a fraction of the chemical energy 
released is converted into kinetic energy, other details being unimportant for 
his purpose.  (His report contains the word "important" instead of unimpor- 
tant. This is an obvious typographical error since the context demands the 
latter.) In addition, he remarks that his taking r„ as the upper limit of 

his integral suggests a dependence on metal strength. He goes on to assert 
that he did this to simplify the calculation, since the evidence available to 
him at the time gave no hint of such a dependence. Later experiments have 
confirmed the fact that there is a small dependence of launch speed on metal 

ho 
strength.  For example, Faraiglietti  found that for identical geometries and 
explosive fills,the launch speed of Hadfield manganese steel fragments was 
about 15% greater than that of stainless steel fragments in spite of the fact 

that C/M was virtually the same in both cases. This implies that Gurney»s*y2E 
is not strictly a characteristic of the explosive alone, although it has 

11-1*1 usually been treated as if it were. 

In Section V of his report, Gurney notes that the value \2E = 2.44 x 10 
cm/s gave a good fit for TNT-filled shells, over the range 0.18 < M/C < 16.67, 

17 
which is a bit larger than the range examined by Taylor and Jones.   He also 
notes that this fitted value gives an E value which is only 80%  of the energy 
per unit mass which ought to be released in a TNT detonation. This is, of 
course, expected since E is only the contribution to the total kinetic energy, 
the rest of the energy still remaining as internal energies of gas and metal 
after fragmentation (neglecting minor factors,such as light emission which 
occurs later anyway). 

In the last paragraph of his report, Gurney mentions Taylor's paper and 
correctly states that Taylor neglected radial gas motion compared to longitu- 
dinal. Most likely he had not read Taylor's paper at this time and had this 
on hearsay since he continues by saying that Taylor's results "were not 
intended to apply to a projectile from which the end sprays are feeble 
compared with the side spray." Gurney was obviously not aware that Taylor 
neglected v compared to u in moving coordinates but found V >> V in labora- 

tory coordinates (small angle ^ in Equation (11)). Gurney was a physicist 
with remarkable insight who could grasp the essentials of a problem without 
much mathematical analysis. For an appreciation of Gurney, especially his 

insights into quantum mechanical tunneling, see Condon,   As we have seen in 
our discussion of Equations (1*1) and (15) above, Gurney was making an 
excellent approximation in Equation (15)« In effect, he was letting u = D in 

42 
M. Famiglietti, "Fragmentation of Ring Type Cylindrical Shell Made of 
Various Metals," Ballistic Research Laboratory Memorandum Report 597,1953. (AD 4867W 

E. U. Condon, "Tunneling - How It All Started," American Journal of Physics, 
46, 1978, p. 319. 
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p 
Equation (13) when he let P = P_ = C/0rrn ), which is very nearly true for 

bursts which occur for r/r > 1,16 (see Table 1). As Taylor pointed out, the 

gas density is nearly a constant over an entire plane at any distance x from a 
moving observer, that is, for any given r/r . For a sphere in which only 

radial motion occurs, the analog of Equation (14) is 

4 4 ^ • ° <29) 
r 

which can be considered together with mass conservation 

r        « 4   3    4   3 
C = po 3 ^o s p 3 TC (30) 

to arrive at Equation (15) in this geometry also. If y is the cartesian coor- 
dinate normal to an initially planar explosive/metal interface and the detona- 
tion propagates along the x-axis, the analog of Equation (14) is 

-g| CPV) + -g| (PU) - 0  , (31) 

where each term in Equation (3D vanishes.  Mass conservation requiresp uy = 
p Dy where y is the initial explosive sheet thickness, so u is not a o o      o 
function of x. For u » D,  p«1/y so v^y to make PV independent of y. 

Thomas,  a co-worker of Gurney, compared Gurney's and Taylor's models. 

The year before,  he originated the method of mentally dividing a shell or 
bomb into sections by planes perpendicular to its longitudinal axis in order 
to apply Gurney's method of calculating launch speeds, taking into account the 
curvature and variable wall thickness of real shells. His method is still 
used today and has been re-invented several times, most recently by Burman and 

46 kk 
Bedford.   In his synthesis,  Thomas began with a brief description of 
Gurney's model, generalizing Equations (26) and (28) to include the planar 
case 

V s vß =V 2E / [(M/C) + n/(n + 2)], (32) 

where n = 1, 2 and 3 for planar, cylindrical and spherical symmetries 
respectively. Following this, he gave a brief account of Taylor's model, but 

44 L. H. Thomas, "Theory of the Explosion of Cased Charges of Simple Shape," 
Ballistic Research Laboratory Report 475, 1944.  (AD 4919^5) 

45 L. H. Thomas, "Analysis of the Distribution in Mass, in Speed, and in 
Direction of Motion of the Fragments of the M71 (90 mm) A. A. Shell, When 
Filled with TNT, and When Filled with Ednatol," Ballistic Research 
Laboratory Report 434, 1943.  (ADB 493515) 

46 N.M. Burman and A.J. Bedford, "A Concept for the Prediction of Fragment 
Mass/Number Distributions of Fragmenting Munitions," Proceedings of the 
Sixth International Symposium on Ballistics, 1981, p. 245. 
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39 
used the exact curvature d^/ds = sln^(d^/dr) aa Allison and Shriempf  did 
sixteen years later. Thomas went on to solve the Lagrangian equations of 
motion by a series of successive approximations, using a parameter inverse to 
the detonation velocity. He obtained Gurney»s result as the asymptotic limit 
of the zeroth order solution in which detonation is imagined to occur simul- 
taneously everywhere in the explosive (D =  <*»)•  Taylor's model emerged in 
higher order solutions. He concluded that Taylor's model should be an excel- 
lent approximation.  Thomas also considered shocks and concluded that their 
effect on the energy is slight.  After two or three brief reverberations, the 
motion settles down to an asymptotic form.  For very thin shells stepwise 
shock acceleration at very early times has been observed by Allison and 

39 ü7 
Shriempf,   Eden and Wright ' have observed a similar effect for thin plates. 
Theoretical studies of shock acceleration have also been carried out in recent 

1*8 k9 
years, using the method of characteristics.  '   Neither of these studies 
changes Thomas* conclusion that there is no need to consider shock effects 
when considering the motion of most practical devices. 

Thoraas went on to consider planar, cylindrical and spherical cased charges 
initiated simultaneously at all points on a central plane, on an axis of 
symmetry or at the center respectively. For the planar case, he pointed out 
that the problem is equivalent to Lagrange's problem in internal ballistics 

50 
which was treated in detail by Love and Pidduck.   This theme was later taken 

up by Jacobs,   Sterne5 '"  later extended Gurney's work to explosive sand- 
wiches as well as cored cylinders and spheres with a fuze cavity.  He also 

38 
took up Thomas' model of symmetrical Initiation as did Gurney. 

G. Eden and P.W. Wright, "A Technique for the Precise Measurement of the 
Motion of a Plane Free Surface," Fourth Symposium on Detonation, Naval 
Ordnance Laboratory ACR-126, 1965, p. 573. 

B. D. Lambourn and J. E. Hartley, "The Calculation of the Hydrodynamic 
Behavior of Plane One Dimensional Explosive/Metal Systems," Fourth Symposium 
on Detonation, 1965, p. 538. 

9N. E. Hoskln and B. D. Lambourn, "The Acceleration of Two Metal Plates in an 
HE-Metal Sandwich," Seventh Symposium on Detonation, Naval Surface Weapons 
Center MP 82-33*1, 1981, p. 811. 

50Love and Pidduck, "Lagrange Ballistic Problem," Phil. Trans. Royal Society 
of London, 222, 1922, p. 167. 

S. J. Jacobs, "The Gurney Formula:  Variations on a Theme by Lagrange," 
NOLTR 7*4-86, 197*». 

52T. E. Sterne, "A Note on the Initial Velocities of Fragments from Warheads," 
Ballistic Research Laboratory Report 648, W.  (AD 898680) 

53T. E. Sterne, "The Fragment Velocity of a Spherical Shell Containing an 
Inert Core," Ballistic Research Laboratory Report 753, 1951.  (ADB 377181) 
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Let us compare Gurney's model with Taylor's« Gurney's model Is more ele- 
mentary since it relies on an energy partition at a particular moment, while 
Taylor solves an equation of motion.  With Gurney's model, we can only estimate 
a speed at a given time. With Taylor's model, we can calculate the position 
(case shape) and velocity (speed and direction) of each case element at any 
time. For many purposes, a Gurney speed with or without the addition of a 
Taylor angle is sufficient« If metal trajectories are required, Taylor's 
model might be preferred. Thomas1 solution of the Lagrangian equations could 
be used, of course, but this is usually too complicated an approach for design 
work where the aim is insight with minimum effort rather than great precision. 
Sometimes it is useful or even necessary to include shock effects, as when one 

metal plate is used to accelerate and fragment another. 

More detailed modeling might include microscopic defects, crack propaga- 
cir eft 

tion or even molecular interactions. 

V.  TAYLOR'S MODEL SIMPLIFIED AND EXTENDED 

A*  Cylinder Struck Side-on 

Since the publication of Taylor's papers by Batchelor in 1963, his model 
2 

has been more readily accessible to a wider audience than Gurney's report, 
which was,practically speaking,an internal laboratory memorandum which rela- 
tively few people have actually read. In spite of this, Gurney's model has 
been widely used and extended, while Taylor's model has been virtually ig- 
nored, except for one equation.  Clearly, this is because of the relative sim- 
plicity of Gurney's model. In this section we will simplify Taylor's model in 
order to facilitate its use in problems for which it is appropriate. 

54 
J. F. Mescall and P. V. Riffin, "Slapper Concept in Fragmentation," AMMRC 
Technical Report 76-8, 1976. 

55 N. F. Mott, "Fragmentation of Shell Cases," Proceedings of the Royal Society 
of London, 189. 1947, p. 300. 

R. Curran, L. Seaman, and D. A. Shockey, "Dynamic Failure in Solids," 
Physics Today, January 1977, p. 46. 

57 F. E. Walker, A. M. Karo, and J. R. Hardy, "Comparison of Molecular Dynamics 
Calculations with Observed Initiation Phenomena," Seventh Symposium on 
Detonation, 1981, p. 777. 

58 
A. M. Karo, F. E. Walker, W. G. Cunningham, and J. R. Hardy, "Theoretical 
Studies of Shock Dynamics in Two Dimensional Structures," Shock Waves In 
Condensed Matter - 1981, W. J. Nellis, L. Seaman, and R. A. Graham, eds., 
AIP Conference Proceedings 78, American Institute of Physics, NY, 1982, p. 
92. 
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As we mentioned after Equation (25) above, Gurney took P  to be uniform 
] 

2 

inside the case for any l = r/r    value.  In effect, he took 

P " Po/l       , (33) 
where r =  r„   (late in the expansion).  Equation (13) can be written 

a 

p = (p?D)/t
2u) = P0/(*

2« , (3i)) 

where f = u/D « 1. Equations (34) and (33) are the same for f = 1. If we put 
Equation (34) for p in Equation (1) with  y s 3 and Equation (34) for (Pu) 
In the first term of Equation (20), we find 

Mi - [(3/»0
2)/(Df3)]/l4 = V*4 (35) 

which defines UR.  From Figure 1 for a TNT loading density near that discussed 
10 233 232 

by Taylor,   we  see   that  B = 2 x   10     (dyne/cm   )/g/cm   )     =  2(mm/^s)   /(g/cm   )   . 
3 Q 

Consequently,   for  P    =1.51   g/cm    and  D  =   6.38 mm/^s,   UD =   .7/f    =   1  mm/fis if 
O D 

f = 0.89» This value of f can be taken as an effective value during the ac- 
celeration period and enables us to deal with Uß as a constant dependent only 
on explosive properties. 

Next let us approximate u by the formula 

u = it, - UB(I/A
2
 + \/i*)     , (36) 

where Um  = 6.914 mm//*s from Table 1.  If U« - 1 mm/ s, Equation (36) can be 
used in Equation (34) to find' 

p= 9.634/[6.9l4Jl2 - (1 + I/A2)]  , (34a) 

where PQD = (1.51 g/cm
3) x (6-38 mm//is) = 9.634 (g/cm3) (mm/fis). 

In Figure 3 we plot p versus I  from Table 1 as the solid line and Equation 
(34a) as the long dash line which deviates from the solid line by at most 15$ 
(near I  = 1.1) and is indistinguishable from it on the scale shown for I   > 
1.5«  A somewhat smaller UR would improve the agreement except near £ r 1. 

2        2 The short dash line in Figure 3 plots P = p /I    = 1.51 /Ä , showing why 

Gurney's cylinder formula based on a radial energy partition can be applied 
during the later stages of the expansion of devices initiated at one end.  A 

plot of P = P /I2  = 2/Jl2 would lie considerably higher. 

Figure 4 plots u versus A from Table 1 as a solid line and Equation (36) 
with the values mentioned as the dashed, line. Smaller Uß would make the dash- 

ed line lie higher. The per cent deviation is about the same as in Figure 3» 
reaching a maximum of about 15$ near 2, = 1.1.  Disagreement with Taylor's cal- 
culations during the early stages of the motion is not necessarily bad.  Be- 
cause he used a model in which the width of the reaction zone is neglected, we 
expect his results to be in error at early times.  This point will be 
discussed further in Section C below. 
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Now let us put Equations  (35) and (36)  in Equation  (20) and require V = 0 
for   A=   1.    We  find 

Uw    « D +UB  f (37) 

so that U can be estimated for any explosive loading from D, p,   B and f— 

knowledge which is available for most cases of interest. We may assume f = 
0.89 or use Taylor's f r u/D as a universal function. Equation (20) becomes 

V = P0f-
3/2V<2B/«)(l-1/i2)' (38) 

which does not depend on D explicitly as in Taylor's model (only through p 

and B). The parameter a  = M/C appears in the denominator under a square root 
sign as in Gurney*s formula, although there is no constant added to  since 
Taylor neglects v compared to u. This will be discussed below in Section VI. 

As l->« and f « 1, V = P0^(2B)/a' and ^2B PQ
d 'plays a similar role to ^2E'in 

Gurney's formula.  Here, however, there is an explicit dependence on p   , as 

well as that implicit in B and a  . It would be desirable to tabulate values 
I T7 

of y2B P     for cases of practical Interest.  However, to do a proper job, we 

should make a critical comparison of p versus p curves calculated by various 

methods.  Alternatively, we can tabulate y2B P     from experimental 
Information. 

2     3 2 If we use Taylor's values of f in Equation (38) and B = 2(mm/p.s) /(g/cm ) 
with a   = 2.67 for the standard cylinder, we find the values given In column 3 
of Table 2. These are about 15$ higher than the experimental values which 
have been repeated in column 2. If we let B = 1.5 instead of 2, we find the 
values in column 4 which exhibit a root mean square error of 0.04 mm//is rela- 
tive to the six experimental values.  Here we are lowering B by 25%  much as 
Gurney lowered E from the value he expected. 

Since V » V = dr/dt s r dfc/dt, we can integrate Equation (38) with f 

constant (UD constant) to find D 

Dt» r Vt(aD)/(2Un)](^-1)'« 
x (39) o o 

since v = dx/dt = D cos <f> w D as was mentioned above in connection with Equa- 

tion (10). If we put Equation (39) into Equation (4), it is clear that a case 
element which is seen by a laboratory observer to have very little axial mo- 
tion (X ä X ) is said by the moving observer to recede axially at about the 

detonation speed.  Of course, both observers see the same radial motion. We 
can rewrite Equation (39) as 

r2/r 2 - x2/[r 2«D/(2Uj] = 1 , (40) 
o        o      B 

which exhibits the approximately hyperbolic form of the case shape in moving 
coordinates. 

31 



Since V /V = dX/dr = tan ($/2) from Equation (11) and tan <£ « 2 sin (<£/2) 
x  r 

«2 tan (4»/2), we can integrate Equation (38) with Uß constant, using V = 2D 

sin (<f>/2)   from Equation (20) to find the X, r path of a case element in 
laboratory coordinates, namely, 

X - X = r 
o   o J    tan (*/2)d£ = r^^ [jl2  -  1 - cos"1 (!/£)]     (41) 

which also gives us X(t) since Jt(t) is known from Equation (39).  Accelera- 
tions as functions of time may also be found.  High speed cinematography or a 

17 sequential series of still photographs as used by Taylor and Jones  could be 
used to check some of these relationships. 

Column 5 of Table 2 gives a more complete listing of Taylor!s values of 
x /T7 

than column 6 of Table 1, while column 6 of Table 2 gives values calcu- 
lated from Equation (39) using D = 6.38 mm/^s and UR -   .75 mm/p-s corresponding 

to B = 1.5 instead of 2.  Column 7 gives values for the same case shape 
function x(£) as will be explained in part C below. 

Column 8 of Table 2 gives experimental values of the time t(^) observed by 

Lee and co-workers  for TNT with p   = 1.63 g/cm  («= 2.47) in the standard 
o 

copper cylinder.  Columns 9 and 10 give values of t calculated from Equation 
(39) using r = 15.3 mm for this test, D = 6.38 mm/^s and 1). : 1 or .75 mm//As 

° 2     3 2 corresponding to B = 2 or 1.5 (mm//ts) /(g/cnr) . During the later stages of 
the expansion, the calculated values tend to bracket the experimental values 
but are higher in the early stages. 

Column 11 of Table 2 gives experimental values^  for 64/36 RDX/TNT with 

P    = 1.717 g/cm (a -  2.34) in the standard cylinder.  From Figure 1 we see 
° 2     ? 2 that B = 2.4 (mm//ts) /(g/cm )  for this loading. Column 12 gives V calculated 
from Equation (38) for B = 2.4, while column 13 uses B = .7(2.4) = 1.68. This 
illustrates the fact that Equation (38) and presumably Equations (39)-(4l) and 
others related to them can be applied to other explosive loadings.  Compari- 
sons with experimental values covering a larger range of a  values would also 
be desirable, but little time-dependent data is available. In Section VI we 
will make some comparisons of Equation (38) with launch speeds for a range of 
a  values. 

59 E.L. Lee, H.C. Hornig, and J.W. Kury, "Adiabatic Expansion of High Explosive 
Detonation Products," UCRL-50422, Lawrence Radiation Labortory, 1968. 
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B.  Plate Struck Side-On 

Now let us apply Taylor's model to a planar rather than a cylindrical ge- 
ometry. The situation is similar to that in Figure 2 except that we will use 
the Cartesian coordinate y Instead of r, so tan <f> = dy/dx. We will allow the 
metal plates to have different thicknesses h. and h • We will let the 

thickness of the explosive sheet be W = 2y . The mass per unit area of each 

metal plate will be designated by M, =  Pw.h, with 1=0,1 where we allow the 
1      Ml 1 

plates to have different densities p  as well as different thicknesses. HI 
Equation (6) is now replaced by 

(i) 
" FPJT 

.2    3x_     
'3/2 

M.D^-ig^LL, . p# (42) 

We multiply each side of this equation by 2dy/(M.D ) a 2 tan <f>  dx/(M D ) and 
obtain 

2 
2 sin(j> dcj) =  =• pdy 

H.Ö* ' (43) 
1 

where the left side is readily integrated as in Equation (8). Equations (10) 
and (11) will have V instead of V but are otherwise unchanged. Equation 
(13) is replaced by 

P0DyQ = puy  , W) 

and Equation (14) by Equation (3D which we have already discussed. Equations 
(16) through (19) are unchanged, so the analog of Equation (20) is 

y 2p Dy^ 

M 

= 4 sin2 ((|>/2) « tan2 <t> 

= (V/D)2 

where 

tti = V^Vo3 = Mi/C <*6> 
and C is the explosive mass per unit area. We have not repeated several steps 
here since they are the same as before. The analog of Equation (23) is 

•/. 
7 dy/tan * (H7) 
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Now let us simplify this model. Since u is a function of y by Equation 
as is p : 

Equation (35) 

(44) as is p = p   /(f£) where £ = y/yo 
and f -  u/°# we can write the analog of 

^* [BP0
2/CD£3)]/^2 = UB/^

: 

(48) 
where U_ has the same form as in Equation (35). 

B 

Now let us approximate u by the formula 

u " U«, " UB|T + 'W (49) (* + ?) 
which is the analog of Equation (36). Here the inverse powers of %  are n and 
2n with n = 1, just as they were in Equation (36) with n = 2.  The spherical 
analog might consist of a disk-shaped detonation front rotating about a 
radius, a configuration very  difficult to realize experimentally. It  we use 
Equation (49) in Equation (44), we find 

P - p0
D/|y - UB (x + x)] • (5o) 

If we use pD = 9.634 (g/cm ){mm/fis),  Uro = 6.914 mm/us and U = 1 mm//is, we 

obtain the decreasing long dash line in Figure 5 which diminishes more slowly 
than the analogous curve in Figure 3« The short dash line just above it cor- 
responds to p s p.ft  s 2/1  for the head-on case, while the dotted line below 

it is for p s p  /£ = 1.51/£» a Gurney-type assumption. The increasing dashed 

line plots Equation (49) for the same U«, and Uß. This line increases more 
slowly than its analog in Figure 4. 

Next, let us put Equations (48) and (49) in Equation (45) and require V a 
0 for £ = 1, giving Equation (37) again. Equation (45) becomes 

W)Hl v-p0r
3/i/(~Hi-TI (51) 

which is the analog of Equation (38) with n = 1 replacing n = 2 as the coeffi- 
cient of B and the inverse power of £• As l-**>  and f ^ 1 we can compare Equa- 
tion (51) with Equation (32) above with n s 1. For two equal mass metal 
plates in a symmetric sandwich, a    = 2 ON S 2M/C in Equation (46), so Equation 

(51) becomes V = P V2B/a in this limit.  We will compare these formulas for 

a range of a values in Section VII below. 

Since V «V 2 dy/dt = y dJt/dt, we can integrate Equation (51) with f 

constant to find the analog of Equation (39) 

Dt « X0\ 2^T {W1   '   V* +  ^ in CW1   "   1/l +   £ " *] ~  h Zn h }        ^52) 
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Clearly the case shape (y versus x) Is not approximately hyperbolic as it was 
for the cylinder. Since V /V = dX/dy = tan(<t>/2) by the analog of Equation 

(11) and tan 4> ^2 sin( 4>/2) * 2 tan (<t>/2), we can integrate Equation (»15) with 
U-, (or f) constant to find the X, y path of a plate element in laboratory 

D 

coordinates. 

53) x - XQ = y0Vus/(4aiD) {W1 " 1/z - ** £nW - !/* + l - h] + k in h\ ( 

which is the analog of Equation (41).  Use of Equation (52) gives X(t). 
Accelerations may also be found. 

C.  Expansion in the Reaction Zone 

As we noted above, Taylor used a model which assumes a zero width for the 
21 reaction zone.  H. Jones  has pointed out that case expansion occurs inside 

the reaction zone, leading to a slight decrease in detonation velocity com- 
pared to the idealized Chapman-Jouget value. He also derived an expression 
for the shape of an expanding cylinder valid inside the reaction zone: 

VI | f-- 2 COSh"1*«,) (54) 
O 

for 1 < i  s r/r < r„/r  • Here we have used a as defined in Equation (21) 
— o —    1     o 

above  instead  of Jones'   mass  per  unit  area o  = M/(2nr  ).     At the  rear  of the o 
reaction zone we can rewrite Equation (5*0 as 

*1- Vro* C0Sh S;VI=1 + X   • (55) 
Jones gave a numerical example in which he took x./r = 2/ot  = 1/2, assuming 

that the width of the reaction zone, x,, might be as large as half the charge 

radius for a = 1« Thus,A s 0.015 in Equation (55) so L is only slightly 

larger than unity. This would lead to a 6.25$ reduction in detonation veloc- 
ity compared to the idealized value. For a bare charge (the extreme departure 
from a rigid tube), Jones estimates a 9.6$ reduction for the same reaction 
zone. For solid or liquid explosives,the idealization of a rigid tube cannot 
be realized experimentally since at least the inner radius of even a very 
heavy-walled tube of metal will expand somewhat under the pressures produced 
by condensed explosives (unlike a shock tube filled with a detonable gas 
mixture). 

Column 7 in Table 2 exhibits Equation (5*1) as a function of i  and compares 
it with Taylor's values in column 5,as well as the present model values in 
column 6.  According to Jones there is less expansion near the front of the 
reaction zone than Taylor estimates (or a given amount of expansion occurs 
farther behind the detonation front). However, the two curves agree rather 
closely even in the reaction zone (say 1 < i <   1.03) and deviate appreciably 
only well behind the reaction zone where Jones* formula is no longer 
applicable. This is illustrated in Figure 6. 
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VI.  THOMAS' HEAD-ON MODEL SIMPLIFIED 

Thomas  developed his own model for plane, cylindrical and spherical 
cased charges initiated on a symmetry plane, axis or point. In these cases the 
detonation front will strike all points of the metal surface simultaneously, 
"head-on" (propagation vector parallel to surface normal). If dm" is the mass 
of product gas in a volume element of thickness dr (per unit area for the 
plane, per unit length and angle for the cylinder and per unit solid angle for 
the sphere), then this specific mass element is 

dm' = pA'dr  , (56) 

where n = 1, 2 and 3 for plane, cylinder and sphere respectively. The 
equation of gas motion is 

3 r    I  3£ =   n-1  3r_ 3j> _  n-1  8|>_ 
2 " ~ p 3r = " r    -. 3r = ~r " (57) 

Thomas used Equation (1) for p but kept y  arbitrary and concentrated on cylin- 
drical symmetry. He was able to obtain a first integral but could not com- 
pletely solve the problem.  He assumed an initial uniform distribution of mass 
and outward velocity when the detonation wave reached the metal surface with 
boundary conditions m" s 0 for r s 0 and 

M **L = r""1 p (58) 
3tZ 

for m' s C, the total specific charge mass, at the moving metal surface.  As 
before, M is the specific metal mass.  After a brief period of shock reverber- 
ation, Thomas argued, the solution should approach a form in which the method 
of separation of variables can be applied.  Letting r be a product of a 
function of time and a function of mass, namely, 

r = £(t)g(nO  . (59) 

Equation (57) separates into 

d2a   2pn-l-nY 

dt2 = " (60> 

and 

[(<- a-) 1 • v2g - -fig""  dir 1 lg    dnT)       | > (61) 

where we have used v  for the separation constant instead of letting it be 
unity as Thomas did.  Dimensionally speaking, v is an inverse relaxation time. 
The boundary conditions become g(0) = 0 and 

«2   D n-1 /n-1 dg \ -Y 
(62) 
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for m' = C where we have used Equations (59) and (60) in Equation (58). 

If we multiply Equation (60) by d£ = fi-dt and integrate, we obtain the 
first integral of Equation (60) 

n(Y - 1) 
[1 - £-n^-D] s v/rQ , (63) 

where we have taken £ = 0 for Ä. = 1.  The second equality comes from taking 
g(C) = r in Equation (59) so V = r = r J for the case velocity. If Y = 3 and 

I  -* °° in Equation (63), V = r v/y/n.    As «• -*• •» and f * 1, Equation (38) for a 

cylinder and Equation (51) for a symmetric sandwich (a = 2a.) both give V = 

P v/(2B)/a .  if we assume that the head-on and side-on formulas are equal 

under these conditions (same launch velocity), 

v = yJT  (P0/ro)>/(2B)/o f <W> 

and Equation (63) becomes for Y s 3 

v = P0J|C2B/COCI - r2n)      . (65) 

Requiring approximate equality for large I  corresponds to the approximate 
equalities of the gas densities illustrated in Figure 3 as £ increases. For a 
cylinder (n = 2) the head-on velocity in Equation (65) may be expressed as 

v = P0^(2B/cO(i + *'
2)(i - a'2} 

and compared with Equation (38) for the side-on velocity 

(66) 

V = P0V(2B/a)f~
3(l - £"2)   . (38) 

In both cases V = 0 for I  s 1. They differ by the factors V1 + a~ and 
—3/2 f   , where f is given by u in Taylor's Table I or Equation (36) divided by 

D. Similarly for a symmetric sandwich (n = 1),the head-on velocity in Equation 
(65) is 

i V = Po^(2B/cO(l * A
_1)(l - I'1) , (67) 

while the side-on velocity in Equation (51) is 

= P0^(2B/a)f
3(l - JT1)   . (51) 

These formulas differ by the factors \1 + l~    and f   , where f is given by 
Equation (U9) divided by D. 
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Thomas did not let y  = 3 or make such Interpretations of £ and g and of 
course set v » 1. However, he did write down the first integral of Equation 
(61) for arbitrary n and yf   namely, with K constant, 

1)  ^g    dm'J *vV*£nr fl""1 Ä-r(T"1} =K. (68, 

For the special case of a cylinder (n s 2), he also found a second integral 

•' • C»/v2)(^-i) T^T [K ^ - (K - H VV) ^] •    (69) 

However, for n = 2 and arbitrary yt he could not integrate Equation (63) 
exactly.  Instead, he integrated numerically with y  near 3 as a parameter. 
Finally he found the kinetic energy of the gas in the expanding cylinder and 
added this to the kinetic energy of the case, equating the sum to EC in order 
to compare with Gurney's model. In the limit I  -> » he wrote a formula for V 

which depended on Y, as well as V2E and a.  Even in this limit his formula for 
arbitrary y  is rather complicated.  However, for y s  3 it simplifies to 

V = V|_(2E)/(2a/S)] [(1 + l/*)2/3 - l]/ [(1 + l/a)5/3 . i] 

which gives almost the same launch speed as Gurney's much simpler cylinder 
formula, 

(70) 

V = V(2E)/ [a + h\     , (26) 

These two formulas are compared as curves (a) and (b) in Figure 7.  As o •* 0, 

Thomas' V -"x/SE" while Gurney's V -* \/5fE. Both formulas approach zero as a •* « 
and are practically indistinguishable for a > 0.1. Of course V will reach 
zero for large finite a when the case fails to break and the model has ceased 
to apply. 

^ Equation (38) for £-*•», f ^ 1 gives V = D V2B/a  which approaches zero as 

a •*•  w but increases without limit as a -* o since Taylor's model takes no ac- 
count of the gas energy and assumes a "sufficiently heavy" case (« > 0). One 
way to compare this form of V with Gurney's formula might be to assume that 
some fraction, say 0.8>of the available energy appears as case kinetic energy 
with the rest appearing mainly as gas energy as *. "*• *".  Then 

2 
i 

and the limit form of Equation (38) becomes 

h  MV = h  M(2Bp /a) = 0.8 (EC), (71) 

V = ^/(2E)/(«/0.8) , (72) 

which is plotted as curve (c) in Figure 7.  If we wish to avoid the large 
divergence near a = 0, we might add a constant like n/(n + 2) from Equation 
(32) to a in Equations (64) - (67), (38) and (51). Then for n = 2,the limit 
form of Equation (38) becomes 
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(a) Gurney cylinder      Eq(26) 

(b) Thomas cylinder    (1-><°) Eq(70) 

(c) Simplified  Taylor cylinder (1-><o) Eq(72) 

(d) Gurney - Thomas  symmetric  sandwich   Eq(75) 

Figure 7.    Comparison of Launch Velocity Formulas Versus«. 
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V =  p   yj(2B)/(a +  1/2)   . (73) o 

If we   require  Equation  (73)  to  reduce  to Gurney's  formula as«-»D,  then V = 

\4Bp       =   \Z4E or 

BPQ
2 = E  , (74) 

completing the analogy  between B and E.    If we  add  1/3 to a  for n =  1  and 
consider the limit form  (1+ °%   f ^ 1),  Equation  (51)  becomes for a    = a/2 

V = y2Bpo
2/(a +  1/3)   =  ^2E/(OL +  1/3) • (75) 

by Equation (74). This is the same as the Gurney-Thomas formula for a 
symmetric sandwich, Equation (32), and is also plotted in Figure 1.     Equation 
(32) with n = 3 for a sphere might also be plotted but has been omitted to 
avoid further confusing the figure. For typical values of o which generally 
exceed unity, all of these formulas predict similar launch velocities 
independent of geometry (plane, cylinder or sphere) or direction of travel of 
the detonation wave (head-on or side-on). They differ mainly for small £. 
None of them are really intended for a bare charge (<* - o) or for very large 
values of a s M/C.  A finite value for V in the limit a -*• 0 might be thought 
of as corresponding to the case In which a finite mass of metal is acceler- 
ated by an unlimited amount of explosive. As is well known, beyond a certain 
point the addition of more explosive does almost nothing to increase launch 
velocity, even in a vacuum where air resistance is not a limiting factor. 
Similarly, if the limit a -+• °° is approached by decreasing the amount of 
explosive, we reach a situation in which a detonation wave will not propagate 
because the dimensions are too small. Again the model does not apply. 

Thomas did not consider the case y a 3, nor did he pursue a solution for 
planar symmetry (n = 1). However, this is a case for which his formulation 
of the problem may be solved exactly. For y  = 3# n = 1» the integral of 
Equation (63) is 

.JT7 v2t2 , (76) 

while the integral of Equation (68) is 

2K  ._-l /_, /2iT\l 
(77) Vs-'-'foF7- 5"""HF)]- 

Since Equation (77) gives g(m") implicitly while Equation (76) gives Ä(t) ex- 
plicitly, the problem of finding r in Equation (59) is solved. The constant 
K can be found from Equation (68) by using Y = 3, n s 1 and the initial 
values g = r and dm'Vdg = p , the density at the rear of the reaction zone. 

We may use Equation (76) and r = r 0 for z  > 1 in Equation (58) with n = 1 
to find 

Mrov
c/ÄJ = P = Bp3 s B(Pi/Ä)

3 . (78) = p = 1 
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Equation (64) with n = 1 and <* = 2M/C = 2M/(2r p  ) for a symmetric sandwich 
oo 

may then be used in Equation (78) to find 

(P,/ P0) • 21/3 - 1.26 (79) 

close to the value 4/3 = 1.33 suggested by H. Jones. 

VII.  STERNE'S EXTENSIONS OF EARLIER WORK 

In 1947, Sterne  considered methods of extending the ideas of Gurney and 
Thomas to asymmetric sandwiches, including the extreme case of a single plate 
(sometimes called an open-face sandwich). He also considered cylinders with 
solid metal cores, representing fuzing devices.  For two plates with specific 
masses (per unit area) M1 and M separated by a sheet of explosive of specific 

mass C, he wrote for the radial energy partition at launch 

EC = 1/2(M1V1
2 + MQVo

2) + (1/6)C(V1
2 + VQ

2 + V1VQ) ; (80) 

and for the conservation of momentum (initially zero), 

0 = M.V., + M V  + (1/2)C(V  + V ) , (81) 
110 0 10 

where V. > 0 and V < 0 in the chosen coordinate system. Sterne mentioned 

that he was following GurneyTs procedure, assuming a linear variation of gas 
velocity v with distance and uniformity of P at all points between the plates 
at launch time. He did not bother to derive Equations (80) and (81), probably 
thinking it to be sufficiently obvious. We will give a derivation below as 
part of a more general treatment» 

If we eliminate V between Equations (80) and (81) we obtain the asymmet- 

ric sandwich formula of Sterne: 

V, = J(2E)/[« + a q2 + 1/3 (1 - q + q2)] (82) IV       1   o 

with V = -qv and q = (1 + 2 «J/(1 + 2a  ) with a   = M,/C and « = M /C.  If 
o     1 1       o       11       oo 

M- = MQ, «1 = «0 = a/2  and q = 1, then 

* = J(2E)/( «+1/3)  = -V( (83) 

for the symmetric sandwich, the same as Equation (32) with n = 1.  If a =0, 
 ^_—^— o 

V = i(2E)/\.-[/3  (1 + 5^ + Ü«^2)] (84) 

for a single plate.  In this limit the model predicts that V = - (1 + 2«1)V1, 

so IV I > V, as M -> 0. We can interpret V in the limit M -> 0 as the 
o    1    o o o 

velocity of the free surface of the gas. 
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Twenty years later, Henry  cited Sterne's report and repeated his 
results.  Unlike Gurney's report, Sterne's was widely circulated and had 
Hughes Aircraft among its recipients.  Henry's report has been frequently 
cited in the literature while Sterne*3 has been forgotten. Probably Henry's 
report has been the main instrument through which most interested parties have 
become acquainted with Gurney's and Thomas' work, since almost no one cites 
Sterne or Thomas.  It also seems likely that Henry never read Gurney's report 
since he does not seem to have a clear understanding of Gurney's method.  In 
his own derivation of Equation (84), Henry arrives at the more cumbersome but 
equivalent form 

V  = Y(2E)/[« + 1/611 + (1 + 2<*)3}/(l +«)] . (85) 

The equivalence is easily seen by expanding the cubic, factoring 2 from the 
curly brackets, dividing by (1 +«) and collecting terras.  Similar considera- 
tions hold for Henry's form of Equation (82) which appears again more recently 

9 
in the paper by G. Jones and co-workers. 

About five years after Henry's report was published, Defourneaux 
2 

repeated Equation (84) as his Equation (18), citing Gurney's report, but not 
Sterne's.  Of course Gurney's report does not contain Equation (84), although 
other references did by this time.  Defourneaux pointed out that the kinetic 

2 
energy per unit explosive mass for a single plate, namely ^-s(1/2)«-V- where 

V1 is given by Equation (84), has a maximum (equal to E/3) for a    = M./C = 

1/2. He did not pursue this, but it is interesting to investigate the 
asymmetric sandwich as well. We wish to optimize £.., using Equation (82) for 

V-, subject to the constraints a- _> 0, a > 0- If we let d<t>Jda      = 0, we find 

a- + a + 6a,a * 0.5 . (86) 1   o    1 o      ' 

which is plotted as the dashed curve in Figure 8 and gives the locus of the 
inflection points in the curves 4>Aa«)  for ft < 0.5. Values of <£.. in units of 

E, namely, ^»./E, are given in parentheses at some points in the figure. 

Clearly <f>.  increases with a  . If we let 3^-/3 «- = 0, we find 

ax  - 0.5^(1 + 5aQ + 4aQ
2)/(l + 3aQ) > (87) 

which is plotted as the solid curve in Figure 8 and gives a maximum </> (a  )  for 
o 

any a *    The straight line at 45 is for a    = a- (symmetric sandwich) while 

the horizontal straight line is for a    = 0.5. As a and a    increase without 

I.G. Henry, "The Gurney Formula and Related Approximations for the 
High-Explosive Detonation products," Hughes Aircraft Report PUB-189, 1967. 

M. Defourneaux, "Transferts d'Energie Dans les Combustions et Detonations 
avecConfinement," Astronautica Acta, 17, 1972, p. 609. 
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limit, <f>  /E approaches unity. This incorrect prediction says that we achieve 

the greatest possible launch energy per unit explosive mass when we sandwich 
the explosive between two infinitely heavy plates. The model fails for large 
«^ since it does not account for energy absorbed as heat by relatively 

immobile masses.  This will be discussed further below after Equation (104). 
For the present, it is sufficient to note that errors should be less than ^0% 
if a^  < 7. For typical «i# the model should correctly predict that the 

addition of a backing plate (« > 0) will increase the specific launch energy 
h n 

or plate 1. Hoskin and Lambourn y  arrived at a similar conclusion by using 
the method of reflected shock characteristics. 

o 
In units of the Gurney velocity, V^E, the launch velocity for a    = 0.5, a 

= 0 is V /y/2E  = 2/3 = 0.816, while the optimized launch energy is 0 /E = 

1/3 * 0.333* At <*t = a0  = 0.729 where the optimized sandwich is symmetric, 

V^v^E = 0.748 (8$ less). However, <^/E = 0.408 (22.5%  greater). The 

combined energy of both plates is of course still larger.  For the optimal 

values «j = 0.98, «Q r 2, we find V^/y/^E  = 0.72 (down 28$), but 0 /E = 0.507 

(up 52%), 

and so on. 

It is interesting to note that Sewell  assumed an equivalence between 
warhead effectiveness and launch kinetic energy (or momentum) per unit 
explosive mass and optimized the design of cylindrical and spherical 
configurations, using Gurneyfs formulas.  Of course these geometries are 
necessarily symmetrical. His cylinder calculations were later refined by 

Zulkoski, •* who took account of finite end effects. 
o 

G. Jones and co-workers,  who recently rederived Equations (82)-(84), 

referring to Henry's report ° but not to Sterne»s,  also derived a formula 

for the velocity of a plate in a symmetric sandwich based on Equation (83) and 
Equation (1): 

If y s 3 in Equation (88) and 3« >> 1, this formula reduces to Equation (65) 

with n = 1, BpQ = E from Equation (74). For an asymmetric sandwich they 

obtained 

•^—  

R.G.S. Sewell, "Fixed-weight and Fixed-volume Constraints on Optimum 
Charge-to-Metal Ratios in Warhead Design," NAVWEPS Report 8471, N0TS TP 
3430, China Lake, CA, 1964. 

63 
T. Zulkoski, "Development of Optimum Theoretical Warhead Design Criteria," 
Naval Weapons Center TP 5892, 1976. 

47 



f)ji- [Cq+ iH-ql^-DCq^DQ/Ojj (89) 

with 

Q= «! + « a2 + 1/3(1 - q + q2) . (90) 

For a single plate or open-face sandwich (« = 0), q s 1 + 2a.»  and Q = 1/3(1 

+ 5tt1 + M«1 ) in Equation (89).  Of course y should be 3 as we have shown. 

Sterne derived similar formulas for VU) in the case of sandwiches. In the 
same report, he discussed "cored" cylinders, that is, a Gurney cylinder with a 
solid metal core or fuze cavity. This will be discussed further in the next 

sections, as will his treatment of a "cored" sphere. 

fih 9 
Chanteret  follows a method similar to that of Jones and co-workers, but 

treats the "side-on" acceleration of plates and cylinders explicitly in his 
extension of the Gurney model.  For symmetric cases he again arrives at 

42 
equation (32), the generalization first made by Thomas.   However, his 
expression for E is the square brackets in equation (20) multipled by D. His 
notation differs from ours since his u is our U, defined in equation (5) 
above. His calculation of V still involves finite time or space steps, so it is 
not completely analytical, but numerical. For an asymmetric sandwich he 
employs the usual technique of a zero velocity plane in the explosive. He 
also applies this technique to obtain a Gurney type formula for the launch 
velocity of a hollow cylinder, namely, a tube of explosive between two tubes 
of metal, which he looks upon as an asymmetric sandwich rolled about an axis 
above or below the sandwich parallel to an edge until two edges meet. His 
expression for the location of the zero velocity cylindrical surface in the 
explosive involves a cubic equation with the Chapman-Jouget density of the 
explosive products as one of the parameters. His expression for E still 
involves finite space or time steps, except, of course, in the limit A,-*00. 

65 In 1965 Hoskin and co-workers  presented experimental data for single 
plate launch velocities in terms of C/M, the inverse of our a = M/C. They 
compared their data with their version of Equation (8M), namely 

V = V(2E)/[1/3(1 + U« + Ha2)]    -   \/6E/(1 + 2« ) (91) 

P.Y. Chanteret, "An Analytical Model for Metal Acceleration by Grazing 
Detonation/ Seventh International Symposium on Ballistice, The Hague-The 
Netherlands, 1983, p. 5t5. 

5N.E. Hoskin, J.W.S. Allan, W.A. Bailey, J.W. Lethaby, and I.C. Skidmore, 
"The Motion of Plates and Cylinders Driven by Detonation Waves at Tangential 
Incidence," Forth International Symposium on Detonation, ONR ACR-126, 1965, 
p. Ak. 
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a simplification achieved by using 4« instead of 5« in the denominator with 
little variation in a-dependence. Their analysis was based on a method of 

66 
shock characteristics previously discussed by Hill and Pack.   Related 
theoretical work appears in References 48 and 49 mentioned above»  Equation 
(91) is for the side-on case while Equation (84) is head-on since it is based 
on an energy partition for motion normal to the initial plane of the plate 
surface. Again we see that launch velocity formulas (£ ->*»), in this case for 
single plates, do not depend strongly on the direction of motion of the 
detonation wave. 

Figure 9 shows Hoskin's data as the solid line.  Here we are taking his 
normal velocity component and V1 to be approximately the same as we did with 

similar cylinder data. Our a   is the inverse of his. Since he gave no 

numerical values, only a graph, the values we show for large a.  are somewhat 

uncertain,and there may be better agreement than shown between model and 
experiment. Equation (91) is shown as the dashed line, using >/2E = 2.575 ram/f-s 

=    4.46/vTas suggested by Hoskins. On the scale of the figure, it is 

indistinguishable from Equation (84).  Of course Equation (89) with £ -*• »,y = 

3 and a    -  0 is the same as Equation (84). 

2 
It is interesting to note that <f>    = (1/2)« V  has a maximum for a   = 1/2 

whether we use 4 or 5 as the coefficient of a*  in the denominator of Equations 

(91) or (84). 

VIII.  SIMPLE GEOMETRIES WITH AN ARBITRARY NUMBER OF LAYERS 

A.  Introduction 

Henry  also repeated SterneTs modeling of a cored cylinder  and 
mentioned a cored sphere which Sterne also modeled.  Neither author mentioned 
the planar analog, a sandwich with a metal center, which implies a minimum of 
five layers instead of three. Henry did, however, discuss the problem of a 
cylindrical configuration with more than two or three alternating tubes 
(cylindrical layers) of metal and explosive, an arrangement which he called a 
jelly roll.  If we ignore the lack of layer closure in the pastry analog, this 
is a descriptive name.  The spherical analog might be called an onion, if we 
ignore the fact that the alternate layers are of different materials. 
Finally, the Dagwood seems to be a suitable name for a multilayered planar 
sandwich. 

Henry  wrote down a very simple model for a many-layered jelly roll in 
which he envisioned all metal layers to be of the same composition and 

R. Hill and D.C. Pack, 11An Investigation, by the Method of Characteristics, 
of the Lateral Expansion of the Gases behind a Detonating Slab of 
Explosive," Proceedings of the Royal Society of London, )$],   1947, p. 524. 
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experiment (mild sfee!, Cu, 
AI and brass driven by 

Composition B). 

Figure 9. 

a,= /vyc 
Experimental Single Plate Launch Speeds 
Compared with Model Predictions. 
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thickness with metal on the exterior»  He also envisioned all explosive layers 
o 

of the same composition and thickness. He then wrote (C + M)/(*-R ) for the 
average initial density of the array, where C and M have their usual meanings 
for a cylinder and R is the outer radius before detonation. His energy 
balance became 

EC = hj    [(C  + M)/(TTR
2
)] [v2(f)    ]27rrdr 

(92) 

2 = 1/4 (C + M) V 

Here he used the initial radius instead of the radius at bursting, apparently 
not having Gurney's report to aid his understanding of the model.  Equation 
(92) gives 

V = ^UE)/(1 + a) . (93) 

where   a =  M/C for the entire  device.     He  compared  Equation   (93)  graphically 
with Gurney's  simple   cylinder formula.   Equation   (26) 

VG =   ^(4E)/(1  + 2«G) , (26) 

where we have used the subscript G for Gurney.  Since for a =a> 0, V > V„, 
u        G 

Henry concluded that the jelly roll ought to give a higher launch speed for 
the outermost metal layer than the simple cylinder for the same a . Or, to. 
achieve the same speed, V = VG, we need a  = M/C = 2«G = 2M/Cß, that is C = 

Cr/2, or half the explosive. This kind of prediction is traceable to his 

integrating over the metal layers as if they were expanding gas, leading to 
2 2 

1/4 MV instead of 1/2 MV .  His use of R instead of rß has no practical 

consequences since it cancels in Gurney's scheme anyway. If Henry's formula 
were correct, it should reduce to Gurney's when all the metal is placed 
outside of the explosive, since he specifies nothing about ordering in 
Equation (92).  Obviously it does not.  Although Henry's model is incorrect, 
he has raised an interesting question about the potential advantages of many 
alternating layers. For example, instead of the usual expanding tube with 
some spread in wall thickness as air resistance slows the smaller fragments 
more than the larger ones, we might obtain different launch speeds initially 
which (together with spreading due to air resistance) could fill more of space 
over a longer time than a simple cylinder can. Of course, the slower 
inner-layer fragments might be less effective. 

B. The Jelly Roll and Onion 

The first practical problem in making such devices is that of detonation. 
For a head-on encounter between detonation wave and metal surface, we would 
probably have to drill holes of sufficient size and frequency in the metal 
layers and fill them with explosive in order to insure propagation to the 
outermost layer. Initiation in a laboratory device should not be difficult. 
A small spherical detonator or an exploding wire or foil might be used. 
However, inadequate electrical sources might prevent the use of such 
techniques In field devices. Initiation by a disk or sheet of explosive 
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covering one or both ends of a jelly roll or Dagwood should be practical for 
side-on encounter.  End initiation of a uniform explosive loading should lead 
to an approximately plane wave consisting of the sum of the waves in each 
layer of a jelly-roll or Dagwood, Consequently, the pressure and density at 
any distance behind this front should be approximately uniform over the 
gaseous portions of the front and depend only on the state of expansion«  If 
the metal layers are significantly different in their bending properties, this 
picture might have to be modified. For the present, let us assume an 
arrangement for which this picture is sufficiently accurate. 

First, let us consider the jelly roll and adopt the layer numbering scheme 

m  in Figi 
explosive is 
shown in Figure 10. The specific mass (per unit length) for the i  layer of 

C. = p .7T (RI.   - nl.   t ) , , % l  Koi \ 2i   2i-l / (9tj) 

while that for the metal is 

Mi = »Mi* (R2i+1 - R2i ) . <^> 

Figure 10 gives some examples for 1=0, 1, ....  Because of cylindrical 
symmetry, all R^ are positive (^ = 0 if 1 < 0) and are measured from the 

symmetry axis. Capital R are initial values.  As the device expands, r > R. 

are the radii, and the decreasing density of each gas layer is 

Pi = CC,/TT)/fr?.- r2   \ (96) •i-»1/n)/(r2Vr^1) 

If we assume  that the radial gas velocity is a simple  linear  form in r^ we 
obtain an energy  balance   (and  thus a launch speed) which is rather 
complicated.     Thus,   if 

1 *      lr2i-r2i-iy        I r2i-r2i-l     ) (97) 

for the i  layer of gas, then vsV when r=r  and v = V   when rar . 

That is, the gas moves at the metal speed V at each interface»  If 1 s 0 Is 
the only value of i, we have v s V\(r/r ) = vD(r/rI1) since r-sV-sO, and O       O        D D — J       —I 

Equation (97) reduces to Gurney's assumption for the simple cylinder, Equation 
(15).  The energy balance becomes 
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Figure 10. Layer Numbering Scheme for the Jelly Roll and Onion. 
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Z E.C.  = h I M V 2 + H I  f    2i p.v22Trrdr 
1 i i*/r^.  „    a 

2i-l 

To. 
7        C-        (   2i 

% g *<tyi * f / 2  »2  V  /    v 2rdr (98) 

(99) 

(100) 

(101) 

If we use Equation (97) in Equation (98), we find 

I EiCi = h \ MiVi2 + T I ci [FVi2 + ! vivi-i + <i] 

F = [l + 1 x(x2 + x - 5)] / [l + x(x2 - x - 1)] 

G = i [l + x(3x2 - 5x + 1)J / [l + x(x2 - x - 1)J 

with x = r~*       1^^pi• Since x is a ratio of radii at launch, we still have no 

dependence on device size.  If i = 0 is the only i value. Equation (99) 
reduces to Equation (25). 

If we want to simplify our result, we might follow Gurney's method of 
choosing a form for v designed for this purpose.  Thus, if 

we still have v s V, for r = r,., v = V, _ - for r = i», __ - and v = v0(
r/0 

if i = 0 is the only value of i. Since vdv = a.rdr, the integral in Equation 

(98) is simplified if we change the variable to v with limits V. _ . and V.. 

By using Equation (102) in Equation (98) we find 

E E.C. - H L  M.V.2 • i E C.(V.2 • V2^ )  # ^ 

i        i x 

which also reduces to Equation (25) if i s 0 is the only value of i. 

Now let us consider the case of a metal-cored cylinder with C = V =0, 
o   o 

M / 0 and i s 0, 1.  Equation (103) gives us 

Vt = ^(2E1)/(«1 + 1/2)    . <101») 

In other words, this model predicts that a cored cylinder will have the same 
velocity as a simple cylinder, if E. and a    are the same. Of course, if we 
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simply replace explosive by a metal core, we increase a    and decrease V... 

However, if we alter the device dimensions in order to keep «1 the same, the 
52 

launch velocity ought to be lower when an inert core is present. Sterne 

obtained essentially the same result by a different method and compared this 
prediction with experiment. For a steel core with a radius about 3/4 the 
initial radius of an outer steel case, using composition C3 explosive and a    = 

2.33» the measured launch velocity was down 13% compared to that measured for 
a simple cylinder with the same a.  and E-. He attributed this to energy 

absorption and conversion to heat by the immobile core. This hypothesis was 
approximately confirmed by a calorimeter measurement of the heat content of 
the recovered core right after the experiment. He suggested lowering E. to 

about E. - 10 a , with E expressed in calories per unit specific explosive 

mass. Here 10 calories per gram of specific metal core mass was approximately 
the measured value. Thus, for example, if E. «700 cal/gm (as for TNT), then 

a   = 7 would mean about a 10% reduction in available energy. However, if a    a 
o o 

1, there would only be a 1.5% reduction. For a = 1, a.  = 0.5 in Figure 8, 

*/E would be (0.410) instead of (0.416), still larger than its value (0.333) 

without a backing plate (« = 0). Sterne also noted that there was some 

permanent deformation of the core which he took to be negligible by comparison 
to the above correction. The energy absorbed by heating and fracturing the 
outer metal tube has already been accounted for in the original reduction of 
E1 from its expected chemical value to its'Gurney value. Even for a large 

core like that used, the loss in velocity is fairly small, probably because 
there is little time for energy transfer by shock transmission and heat 
conduction. 

As we have noted, Equation (99) is more complicated than Equation (103). 
In the case of a cored cylinder, Equation (99) gives 

vt = \/(2Ei)/Ui + '5F*  ' (105) 

with x r r^r. = R-,/'*_ if the radius of the core does not change during the 

expansion. Of course for the inner radius of the case at launch r > R > R 

so x < 1. If x = 0 because R.. = 0 (no core), F = 1 by Equation (100) and 

Equation (105) is that of a simple cylinder. Typically x might be near 0.5. 
As x increases from zero to unity in Equation (100), F decreases from 1 to 
2/3» being about 0.8 near x = 1/2. Thus for the same E and a  , Equation 

(105) predicts that V.. for a cored cylinder is greater than for a simple 

cylinder, with larger cores giving greater V-. This is contrary to the 

experimental results discussed by Sterne. Consequently, Equation (99) and 
Equation (97) upon which it is based are suspect. Equation (103) and Equation 
(102) on which it is based are preferred in this instance, not only for 
reasons of simplicity, but also because the prediction is at least closer to 
experiment and gives no misleading trends. 
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Now consider Equation (103) for the simplest Jelly roll which is 
illustrated in Figure 10 (i = 0, 1): 

E C    + EC    =   1/2 M V 2 +  1/2 M V 2 +  1/1   [C  V 2 + C  (V 2 + V,2)]   .     (106) 
ooll oo 11 oo 1     o 7 

Equation (?06) of course reduces to the metal-cored cylinder if C = V =0, o   o 
HQ ^0 and the simple cylinder if CQ = VQ = MQ = 0. If only C1 =0, VQ = V , 

provided we weld the two metal tubes together and again we have a simple 
cylinder. If the metal tubes are in loose contact initially, the shock 
rarefaction wave returning from the outer metal/air interface will tend to 
separate the tubes, while the gas pressure inside will tend to keep thera 
together. Because of the high gas pressure during the acceleration phase of 
the motion, we expect the tubes to remain in contact until they break in most 
cases» 

In designing a warhead,it is desirable to have V < V^ in Equation (106) 

since this would mean that the inner layer of fragments would travel more 
slowly than the outer layer and there would be a greater spread of metal in 
space for a longer time. This would increase the chance of hitting a moving 
target and (provided V and V are not too small) would increase the 

probability of damage. 

It is possible but not desirable to select the E , C*  and M. in Equation 

(706) so that the launch speeds are the same, namely, V * .V- =  V.  In this 
case, with E =E = E, 

V = ^2E/[a + 1/2(1 + 2)]   , (107) 

where « = M/C = (MQ + 
M-|)/(Co + Cfl) and Z = C /C.  If we divide this equation 

by the simple cylinder formula, 

V/Vc =  y (a + 1/2)/U + 1/2(1 + Z)] (108) 

for the same a    and E. For Z > 0 we have V < V and neither an increase in 

metal distribution is achieved nor an increase in launch velocity. For « 
much above unity V/V -» 1.  In the extreme Z -» 1, (CQ-> 0, VQ-* 0), which is 

the metal-cored cylinder, we can no longer assume EQ = E, since the Inner 

metal tube absorbs a significant fraction of the energy imparted to it and 
converts it to heat rather than to its diminishing kinetic energy. 
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In our comparisons with a simple cylinder, we always fill the simple 
cylinder with the most energetic explosive available to avoid making the jelly 
roll appear better because it has a more energetic fill. We can, of course, 
use a less energetic explosive in either layer of the simple jelly roll. 
However, the practical range of E is rather limited. The most energetic solid 

explosive commonly available is HMX with E = (3) /2, while the least energetic 
2   

is TNT with E r (2.H) /2.  The values in parentheses are the >/2E (mm/jus) 

Gurney velocities given by Kamlet and Finger.    Roughly speaking then, 2/3 < 
EQ/E1 < 1 when EQ < E.,. If VQ -  V-, = V and <r = EQ/E1 < 1, then Equation (108) 

is replaced by • 

V/V *V<a + **)  1°  + ZC1 -<rf)/|> + ^ + z)] (109) 

so that V will be even less than in Equation (108), as expected.  If the 
launch speeds are approximately equal, then there is not much decrease in 
launch velocity compared to a simple cylinder.  However, there is not much 
increase in metal distribution either, since the inner layer will tend to 
maintain its original separation from the outer layer at least after launch 
time. Most likely, the outer layer will break first and tend to slow down 
first, emphasizing the tendency for both layers to fly together. 

There are two ways to achieve a significant increase in separation of the 
two layers compared to their initial separation. One way is to have M /C >> 

M./C., approaching the case of the metal-cored cylinder for which V =0.  The 

other way is to use a less energetic explosive in the core so that the inner 
pressure is lower (at least initially). A combination of both techniques 
should enable us to design a device where the Inner layer flies with half the 
speed of the outer layer, giving an increasing gap between the layers, a 
configuration which may be desirable for some purposes. An estimate of inner 
layer launch speed might be made by treating the layers M , C. and M- as a 
single inertial layer, so that ° 

V<2E )/[(Mft + n + M^/C + 1/2]    . (110) »   O     0    1    1   o 

More complicated jelly rolls can be discussed in the same way. 

V o 

The spherical analog of the jelly roll will also lead to fairly 
complicated expressions if we use Equation (97) for v. However, if we use the 

cubic analog of Equation (102) and relate v to r , we find 

Z E.C. = h I  M.V.2 + -4 I  C. (v.5 - V? , ) I  (v.3 - V? , ) 
li   .li  io.i\i   l-i /' V i   i-i/ 
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since Pi = [ci/(l *>] j (r2i ' r2i-l ) (112) 

Ci^oi(^)(R2i-RLl) <113> 

and *   MlV3 J\   2i+l   2i J (m) 

using the layer numbering scheme of Figure 10, Thus Equation (111) is 
independent of device size and reasonably simple.  If 1 = 0 is the only value 
of 1, we obtain Gurney's sphere formula, Equation (28).  The same design goals 
and limitations apply to the onion as to the jelly roll., and an entirely 
analogous discussion could be carried out.  In the limit of equal launch 

p 
speeds, the ratio in the last term of Equation (111) is 5/3 V and Equation 
(111) becomes 

E E.C, = h (I  M + Z  C )v2 

i x x    U X  i X/  - %(M+C)V2 # (US) 

For a uniform explosive fill of the sane type as in a simple sphere with the 
same a -  M/C 

v/vg = yj U  + 3/5)/(* + 1) t (116) 

where V < V , the launch velocity of a simple sphere. A discussion of metal s 
spreading by controlling the E. and a.  analogous to that given for the 

cylinder can also be carried out. 

C.  The Dagwood 

Here the possibility of asymmetry about the central plane exists,and the 
momentum balance equation is not identically zero except in the symmetrical 
limit. Similar considerations hold for the Dagwood and jelly roll with 
respect to detonation wave Initiation and propagation as well as pressure and 
velocity equalization by launch time. The layer numbering scheme in Figure 11 
enables us to write 

Ct = Poi [
R2i+1 " R2i] , 

Mi = pMi [R2i+2 ' R2i+l] , 

(117) 

(118) 

and Pi " Ci/ ^21+1 " r2iJ , (119) 

where R. = Y. are initial values and r s y are values during the expansion. 

In the planar case, using a linear relation between v and r enables us to 
preserve Gurney's basic assumption. We let 
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Ci=(M [R3-R2] 

C^(^O)-I[R-,-R-2]-(/>O)-I [lR-2l-lR-il] 

M0--(/>M)o   [R2"R1 ] 

Mi »(/»Ji   [R4-R3] 

M •i = (^h  [Ro-R-i]= (/»M)-I  [iR-il-lRol] 

R: £ 0   for i S 0   and   R0 < 0 

Figure 11.  Layer Numbering Scheme for the Dagwood 
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. v=air+b. = rv* - vi-i L + ryi-i^i - vni 
1 1       Lr2i+1 - r2iJ Lr2i+l"

r2i J (120) 

since each plate has a single V    at launch time which may  be specified by 

either the outer or inner surface or some point  between.    Now we  find 

(121) 
Z E.C.   = h Z M.V.2 + i Z C. /V.2 + V.V.       + V2 1 ) 

li .11 6  .     ill l  i~l l-l / 
l l 1        x 

when we use Equations (119) arid (120) to find /1/2 p,v  dr and divide 
3       3 •* 

Vi   ~ vi - 1 bv ai^r2i + 1 " r2i^ = ^vl " Vi - 1^* A 3lmllar procedure 
involving fp, vdr gives the conservation of momentum equation 

0 = Z M.V. + H  z c. (v. + V. - ) ,,„„, ^  i i    .  i \ i   i-l / (122) l         l j 

which is identically zero only for a symmetric Dagwood. In general, V. > 0 

for i _> 0 and V. < 0 for i < 0. For the simple asymmetric sandwich these 

equations reduce to Equations (80) and (81), namely, 

E-C, = h U-V 2 + M v 21 + ^c, [v 2 + V,V   + V 2] 11 L 1 1 ooj      6111 lo        o   J 
(123) 

and 
0 . [MIVI + MoVJ + h Cx  [Vt + Vj (12H) 

if we identify E^  = E and Cj r C (with CQ = M_j = C^ s M „ = 0 in Figure 11). 

Since for given M., C. and E we have two equations in two unknowns, we can 

solve for V and V, as before. o     1 

For the asymmetric Dagwood illustrated in Figure 11, Equations (121) and 
(122) become 

E-1C-1 + EoCo + E1C1 = * [M-2V-22 + M-1V-12 + MoVo2 + W] 

+ ijC-l(V-l2*V-lV-2*V-22) 

+ Co (Vo2 + V-l + V-l2 ) 

+ Cl (Vl2 + VlVo + Vo2 ) j 

0 = [H.2V_2 • M.JV.J • MQVo * M1V1] 

+ * {C-l (V-l + V-2) + Co (Vo + V-l ) + Cl ( Vl + Vo)} 

(125) 

and 

(126) 
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Now for given E,, C. and M,  we have two equations In four unknown V..  For 

the symmetric case when Equation (126) Is identically zero, we have one 
equation in two unknowns, V s -V1 and V = -V_. 

Let us consider the symmetric case, assuming equality of velocities at 
launch time and a single explosive loading.  With a   = 2(MQ + H.)/(C    +    C.) = 

M/C, we find that Equation (125) with E , = E = E^ = E becomes 

2E = (« + 1)V2 (127) 

for the simplest symmetric Dagwood with explosive in the center. This may be 
compared with Equation (83) and V for the simple symmetric planar case to 
obtain (for the same E and a) 

o 

V/Vp s y] (a + 1/3)/U +1) (128) 

so that the symmetric Dagwood launch speed Is somewhat less than for the 
simple symmetric sandwich. For typical « values the loss in launch speed will 
not be great, but for velocity equalization the Increase in metal spreading 
will not be great either. For the ideal planar configuration (unlike the 
cylinder) there will be no metal layer" thinning or fragmentation during 
flight. A. launch in air Instead of vacuum will, however, tend to slow the outer 
plates first.  Again we may increase the spread of metal at the sacrifice of 
inner layer speed by controlling the ratios EQ/E1, MQ/C0 and M-j/C^.  In 

addition, an estimate of V can be made by treating the layers exterior to CQ 

as a single inertial mass. 

If M_2 = C_1 = VQ = 0, M-1 s Hy  CQ = C1f a  = (2M1)/2C1) and V^
2 = V^ = 

V In Figure 11, we have a symmetric sandwich with the metal plate M^ at Its 

center. For E = E1 z  E, Equation (125) becomes 

V =  ^(2E)/(« + 1/3)   , (129) 

and the model predicts the same launch speed as If M s 0 (the simple 

symmetric sandwich). Again we should account for the fact that the effective 
values E = E1 < E since some energy is absorbed by the Inert stationary core 

as In the case of the metal-cored cylinder. 

If C  : C : 0 in Figure 11 and Equations (125) and (126), we have four 

plates but only one layer of explosive in the middle.  Again we have a simple 
asymmetric sandwich, provided we bond the plates together so they will not 
trap momentum and separate as soon as rarefaction waves reflected from the 
free surfaces return to the Interfaces. This configuration is a generaliza- 

tion of the case discussed by G. Jones  which consists of more than one 
plate, but only on one side of a single sheet of explosive. 
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If asymmetries are not great, and we assume approximate equalization of 
velocities at launch. Equation (127) holds for any number of explosive sheets 
sandwiched between metal plates. 

For significant asymmetries, we encounter a problem as soon as we add a 
sheet of explosive to one side of a simple asymmetric sandwich.  If we let E 

o 
= E. = E, M_2 = M. = C  = 0 in Figure 11, Equations (125) and (126) become 

EC = 1/2[M V 2 + M„V 2] + 1/6CC (V 2 + V V , + V2 J + C,(V 2 + V„V + V 2)] 
0 0      11 0  0      0-1      -1       11       1 O     °Mo0} 

and 

0 = [MoVo + M^] + 1/2[CQ(V0 + V_j) + C1(V1 + V0)]    , (13D 

where V, is the launch velocity of the free gas surface, which cannot be zero 

if C > 0 in the present configuration (M-/C-/M /C )• Since we only have two 

equations for the three unknowns V^f VQ and V^-j, we cannot give a general 

solution within the limitations of this model. If for some reason we want to 
fix the V., then we would have two linear equations in some M , C. pair (for 

given E) and some physically interesting solutions would exist. 

The assumptions of uniform density and linear spatial distribution of gas 
velocity at any instant imply the existence of a stationary plane (or surface) 
of zero gas velocity. This was mentioned above in the discussion after 
Equation (90).  For the simple asymmetric sandwich (M-/C./M ) the location of 

this plane may be found by letting v = 0, r = R, and i a 1 in Equation (120), 
giving R = (V^g - VQR3)/(V1-V0) with VQ = -qV., and v1 given by Equation (82). 

Thus we can find R from a , a   , R-, and R- since>/2E~ cancels. For example, 

when a_ = a-, q = 1, and R = (R~ + R-)/2. That is, the plane lies in the 

middle of the layer C... If we add the layer C below the sandwich (M./C /M ), 

we shift the plane downward. Sufficiently large CQ will move the plane 

through M and into C . When V = 0, we have o o       o 

V1 r^E / J^ • 1/3 [j81 + ßy   I  2ttl)
2/(l -Z^)]}       (132) 

and 

v-1 = - [(/*i + 2«t)/(1 - 0,)] V,, (133) 

where ß.  = C./C = C./CC + C.) s 1 - 0 = 1 - C /C. This case is equivalent 

to the simple open-face sandwich (M./C) with a reduction in E dependent on the 

size of M as explained above for other "cored" configurations. Usually this 

correction is negligible. If we neglect it and set Equation (132) equal to 
Equation (84), we find /?, = 1/[2(1 + «-)]• Obviously for «1 =0, £. = ß    = 

1/2. For a   =1, ß   = 1/4 and M must divide C so C s C/M and C = 3C/4 to 

make Vn = 0, etc. 
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If we wish to launch two plates in the same direction but with V < V, so 
0—1 

there will be a greater spread of metal,  our model is too simple to enable us 
to analyze all possibilities.    However,  for certain fixed  relations,  we  can 
estimate what is needed.    For example,  to obtain V    = sV-  with s <   1,  using M 

=  kM    with k >  1,  Equations  (131) and  (130)  become 

V-1  = -{[(s + /Jj)  + 2ai(1  + ks)]/(1  - /?1)]V1 (13*0 
and 

V, ./(2B)/ {( 1   • k.2)^ + \ \ß1+  ß1 +  s
2  - JS - TT^}{*lt S *  2ax(l  + ks)}]J 

(13S) 
For example, if s = 1/2, k = 8, «1 = 1/2 and ß   -  1/4, we find V A/2E = 0.55 

from Equation (135) with V /y/2E  s 0.275. Of course we can also use different 

types of explosive in the two sheets (E 4  E.) and vary the design further. 

The principles are clear and will not be elaborated here. 

The next, more complicated case is (M-/C-/M /C /M -) in Figure 11. This 

requires the addition of 1/2M V2  to the right side of Equation (130) and of 

M V  to the right side of Equation (131)« There is one more dimenslonless 

parameter, <*_, s M </C, but still only three launch speeds. Let us close this 

section by giving some simple examples of how we might estimate launch speeds. 
Suppose we have M^ = M = M^ CQ = 2Cp and EQ = Ef. We can solve the 

momentum equation for 

where 

and 

V-1 =ao Vo+a1 V1 , (136) 

a = -(3+6«1)/(2+6«1) (137) 
O I I  , 

a1 = -(1+60^/(2+6^) (138) 

and use Equation (136) to eliminate V - in the energy equation to obtain 

2E * XV 2 + YV V« + ZV} (139) 
o      Ol      It 

where 

X s aQ
2(a 4.2/9) + 2/9aQ + («^+1/3) (140) 

Y = 23^(^+2/9) + 2/9aQ +1/9 (141) 

Z = at
2(a1+2/9) + («t+1/9)  # (1H2) 
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Thus the V depend only on a    -  M /C, where C = C +C « Suppose we let a   = 1, 
1 IT        p   o 1      p i 

that is, a= M/C = 3M1/C -  3. If 2E = (2.4) r 5.76 (mm/jis) as for TNT at a 

typical loading density, then Equation (139) becomes 

5.76 = 2,63 VQ
2 + 2.27 VQV1 + 2.05 V^ , (143) 

while Equation (136) becomes 

V , = -(1.125V + .875VJ. (144) 
-1 o      1 

If we consider two related cases which are known, we can restrict the range of 
allowed values. First, consider C s C. = C/2, a case for which V = 0 and V 

= 2.4//2M /C + 1/3 = 1.57 mm/MS = "v_i*  If we move M0 
so Cj<c/2 and C0

>C/2» 
then V >0, V^l.57 mm/MS and V <-l.57 mm//iS.  Second, consider C s C. *  C/3, 

for which VQ = 0 and V1 = 2.4/^^(20/3) + 1/3 = 1.315 mm//iS = -V^. 

Increasing C to 2C/3 = 2Z.  will make V > 1.315 mta/ps  and V >0. The range of 

V values is thus fairly narrow, namely, 1.315<V <1.57 mm/^s).  These extreme 

values may be used in Equation (143) to find the range of V , namely 

.512>Vo>.176 and from Equation (144) we find -1.727>V_1>-1.572.  If we take 

the mid-points of these ranges as our estimate, we see that the model predicts 
VI = 1.44+.13 mm/Ms, VQ = .34 +.17 mro/jis and V-1 = -1.61+-08 rom/MS. 

Suppose we wish to make V. = 2V >0. Of course there are many choices of 

M. and C. which will accomplish this goal. For example, a    -  a    = 1/2, * - = 

1 and a s  M/C = (O.+ä +« .) s 2.  In this case.V, = 1.54 mm//AS, V a .77 mm/fis 1 o -1 1,o 
and V , =-1.76 ram/^s for /2~E s 2.4 mm//is.  In this and the previous example we 

are neglecting any reduction in v?!". 

The procedure illustrated here is not completely straightforward since it 
requires some ingenuity to narrow the range of values by comparisons with 
known theoretical or experimental cases. However,it can give us useful 
estimates for fairly complicated Dagwoods, jelly rolls and onions. 
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SUMMARY 

In this report we have seen that the exponent Y in the entroplc equation 
of state may be taken equal to three in practical applications involving the 
expansion of solid explosive detonation products. This fact has been used to 
simplify, extend and unify the ideas of Taylor, Gurney, Thomas and Sterne 
concerning the acceleration of metal by explosives. The modified theories 
which have been developed here can be used in the design of lined cavity 
charges and fragmentation warheads as well as flying plate experiments like 
those which have been used to study the shock properties of solids. 

The author wishes to acknowledge the support of his supervisors and the 
director of the Ballistics Research Laboratory who advocate a return to 
fundamentals as a means of obtaining fresh insights and of stimulating new 
approaches to problems.  The author shares this view and has attempted to give 
it substance in this report. 
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