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Conventions

The symbol f means the magnitude of the terms contained within

The symbol Re( } means the "real part" & Im( ) means "imaginary part"

The symbol < ---- > indicates a Fcurier transform pair

The symbol c refers to "proportional to"

The use of ~over a symbol means the estimate of an unknown parameter

Random variables are uppercase; random variable values are lowercase

A / within parantheses (/A) means "given that" ("given that" A is true)

The symbol ln[ I denotes the natural logarithm of the enclosed quantity

The symbol 3qrt( ) mz: tl- squ~re root operation

The symbol Et ) means the expected value

The symbol var{ . means the variance

The symbol cov( ) means the covariance

"The symbol P( ) means the probability of the enclosed random quantity

Boldface letters denote vector quantities

Srefers to a sum & f refers to an integration
A'( ) refers to the derivative with respect to the parameter A

A*( r refers to the second riviaive with respect to tte parameter A

wrt means "with respect to"f

E, or Egy, designates signa, energy

BW designates the 3dS beamwidth

PnI designates the pulse re tition interval

MSE designatesmean-square rror

CRB designates the Cramer-R o Bound

ZZB designates the Ziv-Zaka Bqut,

%%I 
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ABS"I RACT

This investigation addresses the problem of estimating the target

angle off beam-axis of an amplitude-comparison monopulse radar to

generate an error signal that can be applied to a servo-cdntrol system,

to reposition the beam-axis on target, thus providing target tracking.

Cramer-Rao (CR) and Ziv-Zakai (ZZ) bounds are derived to indicate system

performance under varying signal-to-noise ratio (SNR) conditions.

Actual tracking error is approximated from a computer simulated tracking

loop, and then compared to the CR and ZZ bounds for varying SNR levels,

for tracking in "slow" and "rapid" target fluctuation environments, and

for tracking in the presence of specular and diffuse sultipath. A two-

* dimensional tracking model and associated ZZ performance bound are also

presented.

At high SNR levels, the ,CR bound results lower bounded the mean-

square tracking error, but for low SNR conditions the CR bound exceeded

the mean-square error. The ZZ bound results indicate a tight lower

bound for the mean-square tracking error at low SNR levels and in both

the target fluctuation and multipath environments. "Slow" targ.et

Sfluctuations and diffuse multipath results indicate that target tracking

capability is not seriously degraded in either of these two

surroundings. Conversely,' "Rapid" target fluctuations aad sp.cular

multipath environment results indicite serious trackinq degradation is

introduced in the amp litude-comparicon amonopls* tracker.

""°°ii
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ZIV-ZAKJ•I FOUND AP?'LIED TO AN

AMPLITJDE-CONhRISON MONOPULSE RADAR

I. INTRODUCTION

Background

An amplitude-comparison monopulse radar is a tracking radar that

determines target 'direction by comparing the reflected signal amplitudes

received simultaneously on two identical but noncoincident antenna

patterns. Target tracking is accomplished by maintaining the 'axis of

symmetry of the antenna patterns (beam-axis) on the target. As the

target moves off beam-axis, the amplitude-comparison yields an error

voltage proportional to the angular difference between the present beam-

axis location and the target position. This error information is ._

applied to a servo-control system to reposition the beam-axis on target,

thus providing target tracking.

Due to practical considerations such as channel noise and servo __

time-constant limitations, the radar beam-axis will be steered in the

vicinity of the actual target position.. Associated with this vicinity

is the tracking error from the' true target location. An accurate bound

on the tracking error provides a direct indication of the quality of the

estimet'ed target position and thus provides a measure of the ability of

the system to track a target.

Traditionaly, the tracking error has been lower bounded by the

application of the Cramer-Rao bound to the variance of the distribution

0;%
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of the estimated angle off beam-axis.. This bound limits the variance of

the estimate to a value directly proportional to the radar's beamwidth

(BW) and inversely proportional to the available signal-to-noise ratio

(SNR).

var(estimated position) C BW
SNR

Inspection of the Cramer-Rao bound indicates that for any signal-

to-noise ratio, (SNR), reducing the beamwidth decreases the varianc" a of

the estimate. This presents a shortcoming of the Cramer-Rao bound as

this relationship will not hold for all BW and SNR values. Thus, SNR

levels for which the Cramer-Rao bound holds (ie the var".ance of the

estimated position is directly proportional to the beamwvdth) must be

lefined if the bound is to be useful.

Problem and Scope

This thesis concentrates upon generating a. maximum-likelihood

egtimate of the target angle off beam-axis, dete&-mininq the mean-square

error between the estimate and the actual target position, and aoplying

the Ziv-Zakai bound to verify 'system performance.

The maximum-likelihood estimate of an unknown parameter is the

parameter value that would most likely cause a given observation to

occur. In terms of statistical information, the maximum-likelihood

estimate would be the value of. an unknown parameter for which the;

con4itional probability dibtribution function, given the unknown

parameter, is maximum. Ti,.i. thesis develops a ma~xxmamlikelihOod

estimate of the target angle off beam-axis and u3es the estimate to

• . .
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track the target.

The optimum solution of the estimation of an unknown quantity from

"" data is. in general, very difficult analytically. The solution,

"however, can be considerably simplified if the permitted analytical

operations are optimum in the mean-square sense. The error of the

target position in the mean-square sense is the average value of the

squared difference between the estimated and actual target position:'

mean-square error E((estimated position - actual position) 2

This thesis considers the difference between the actual target position

and the maximum-likelihood estimated position in the mean-square sense.

The Ziv-Zakai bound is designed to be tighter to actual performance

values at low signal-to-noise ratio levels. The bounds established by

the Ziv-Zakai method are derived by comparing 4he estimation problem

with the known results ,rom detection theory. The derived bound

compares a suboptimal estimate of one of two possible values of a

parameter to an optimal detection scheme between the two possible

"values. A criteria for determination of which unique parameter value

was estimated then leads to a simple comparis.,n between the probability

of error associated with optimal and suboptimal detection methods. A

form of the Ziv-Zakai bound is used in, this thesis.-e derive a lower

bound for the mean-square tracking error.

The goal of this thesis is to solve the general problem of

estimating an aakplitude-comparison monopulse radar target parameter and

to apply the Ziv-Zakai bound to develop an accuracy estimate for system

performance as, a function of signal-to-no4se ratio.

. °,-



Assumptions

The development and solution of this thesis depends upon the

following assumptions:

1) The channel noise is assumed to be additive white Gaussian

that is independent from channel to channel and pulse to

pulse with zero mean and variance equal to P /2.
.0

2) The model is restricted to one dimensional tracking; thus

total independence from a second dimension is assumed.

3) Any velocity changes are assumed to be slowly varying with

respect to the time between radar pulses.

4) The antenna patterns are derived assuming a uniform

aperture illumination and the target is in the "far-

field*.

; 5) The amplitude of the return signal is assumed either

unknown, but non-randcvt, (deterministic) or a Rayleigh

distributed random variable with completely specified

characteristics.

6) Thecarrier phase, although unknown, is assumed to be the

* same in all receiver beams.

General Approach

The approach to solving this problem can be broken up into the

following main divisions:

1) Develop a pair of observations that are waighted functions

of the signals received by the two antenna patterns.

" ..... . . . ..



2) Process the observations to qaantify a maximum-likelihood

angle error estimate that will be used to steer the radar

beam-axis'to the predicted target location.

3) Derive Cramer-Rao and Ziv-Zakai bounds to indicate system

performance under varying signal-to-noise ratio

conditions.

4) Design and implement a computer simulated tracking locp

that provides for beam-axis position changes and will

yield the error between actual target position and the

beam-axis position.

5) Convert the tracking error into a mean-square error and

plot for different signal-to-noise ratio levels.

6) Compare 'the mean-square error plots to the derived Crarer-

Rao and Ziv-Zakai bountds to indicate which bound provides

the best estimate of accuracy, in the mean-square sense,

for different signal-to-noise ratio levels.

7) Observe radar performance under situations of slow and

rapid fading of the signal amplitude, and in the presence

of a return embedded in multipath.



II. RADAR MODEL

The Antenna Functions

Amplitude-comparison monopulse radar uses two overlapping antenna

patterns to obtain angle tracking for a single coordinate direction. "I

The patterns are usually mirror images about the boresight axis (beam-

axis). When a target is on the boresight axis, the signals received

from the two patterns are equal. Target tracking can be accomplished by

bringing the boresight axis into coincidence with the target bearing, as

indicated by equal received signals.

Vs=

, ~A*

Figure 1. Simple Block Diagram of Antenna Circus ,

Processing of the received signals is accomplished by applying the

antenna patterns, A and B. to a hybrid junctio., which sums and subtracts

the two patterns. A block diagram of the amplitude-comparison antenna

circuitry is shown in Figure I.

-6-
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The sum of the two beam patterns, A + B, is represented as an

antenna function V . Likewise, the d.Kfference, A B, is represented ass

Vd. To derive the two antenna functions, V and V, the following steps

will be taken:

1) The technique for taking the Fourier transform of a uniform

source will be developed.

2) A general expression will be derived for the magnitude of the

electric field at a distance far from the source (far-field).

3) An expression will be developed for squinting (offsetting) the

antenna patterns from the boresight axis.

4) Two antenna patterns will be combined with one squinted in a

positive direction, and the other squinted an equal"amount in

the negative direction. These two patterns will then be added

and subtracted to form V and Vd, respectively. -
S d b

5) Approximations will be applied tt the general expressions Of 4

to develop simple expressions for the antenna. functions.

p

Antenna Patterns

Each individual antenna pattern, A or B, is assumed to be generated

from a uniformly illuminated rectangular aperture. A uniform

rectangular aperture has aperture fields which are uniform in phase and

amplitude across the physical aperture. The described situation for .

uniform illumination in the x-y plane is shown in Figure 2.

-7-
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Figure 2. Uniformly Illuminated Rectangular Aperture
in the x-y Plane'

To specify antenna patterns, Fourier transform techniques are used.

In general, the Fourier transform is used to convert from time domain to

frequency domain. As applied to antennas, the Fourier transform can be

used to convert from direct space (apertu:e illumination! to K-space

(antenna far-field pattern) [1:5231. Three Fourier transform tools will

be utilized in the far-field pattern development. These tools are:

1) flt) < ---- > NOu

2) f'(t) < ---- >juF(u)

3) f(t)' f(tia) < ---- >P(u) - exp(jua)

where:

f( ) refers, to the illumination of the source

F( ) refers to the far-field antenna pattern

< ---- > designates the Fourier transform operatior

primed variables refer to derivatives of that variable

61 ) refers to the Dirac delta function 12:2731

\ l
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jrFOURIER TRANSFORM

I-f

juF(u)..-,!exp(jua)-exP(-jua)"

Figure 3. Graphical Determination of f'(t)

Consider f(t) to be a uniform source of length 2a. the derivative.

f'l(t), can be determined graphically as shown in Figure 3. Using the

Fourier transform tools previously mentioned, the derivative of the

uniform source can be utilized to determi.ae the K-space represent.ation

of the far-field pattern.

if'It) < ---- >jul•(u)-12a)" lexpljua)-expl-jual] )

Solving for F(u) yields:

P(u) (2a&ju) [exp(jua)-exp(-J-,a)]

(2aju) (-jsin(ua)"

- (ua) Isin(ua) = Sa(ua) 1)

where:

Sa( ) C sampling function 13:241 -

.9w

* ... ~t, *t **~* ****.'. .~,; * *
* ~ * - * * **,~*% ~* **** %~*. ... ~ .% *.*~ %*~ •' o*



-- - - - - - --- --

. . . . ., .E

\+

I -

Figure 4.. The Rctangular Aperture

To apply the Fourier expression for the far-field pattern. suppose

the aperture electric field, E is known and x directed an shown in the

a..

L 1x b by 1 rectangular aperture of Figure 4. For the one-dimensional

problem, the source geometry takes the form of a uniform line source

along the x-axis. The pattern of concern is the electric field in the

x-z plane that will be generated by this uniform source. For the x

directed source, the variable u will dencribe the x component. of the

phase constant for a plane wave. This phase constant is commonly-

refere4 to as k and equals 2(pi)/wavelength. making a simple

rectangula" to spherical coordinates conversion, k -,-

(sin()lcos(l9)J2(pi)/wavelength. Substituting this value into equation,

1, and noting that the distance a 1 /2, yields an expression for the

magnitude of the electric field due to a uniform source.

E Sa(2(pi)/wavelength)tsin(S)coosiwj~l 12 (IA)

-10-..
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For the one-dimensional radar model, further simplification of

equation IA can be made by noting that only the magnitude of the

electric field in the x-z plane is of interest (ie electric field

changes as a function of azimuth only). In the x-z plane:

0 = 0.-'

cos(B) = 1 .•:•

Simplifying equation IA:

E Sa[((pi)l X/wavelength)sin(8)] (2)

For large apertures (ie 1 >> wavelength) the sin(S) factor is
x

approximately equal to 8 (1:387]. Further, the factor (pi)l /wavelength

can'be expresse.. as L4:267):

(op.4) 1 /wavelength 2.78/BW '(3)x..

where:

O BW - 3dB beamwidth -

Substituting equation 3 into equation 2. a final form forthe normalized

magnitude of the electric field for the uniform rectangular aperture can

be expressed as:

E Sa(2.78e/BW) (4)

A plot of equation 4 for varying 9/3W ratios is provided in Figure 5.

.IF.
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Figure 5. Antenna Pattern for Uniformly Illuminated Line Source

Squinting Beams Off Boresight

Amplitude-comparison monopulse uses two overlapping patterns, of

Sthe nature of equation 4, that are squinted (offset) from the boresight

(tracking) axis. The boresight axis is an imaginary line drawn

prrpendicular, and centered on, the plane of the rectangular apertures.

This squint relationship is shown in Figure 6, where one beam is

squinted in a positive direction from boresight by the angle * , and the

other beam is squinted negativoly from boresight by 90.

The squinting of the two beams from boresight will Cause two

distinct antenna voltage gains to be received from a target that is

arbitrarily placed at some angle .

-1-
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In order to locate a target position relative to the boresight

axis, the monopulse radar stuns and subtracts the voltage gain from each

of the two squinted beams. The antenna functions V (sum of the
5

patterns) and Vd (difference of the two patterns) depend upon completely

specifying the squinted beam patterns. For a target located at an angle

8:

V (8): E(l - 0s) (5).
1 "

V (8) - E(O + 6) (6) _
2 s

where:

V CO8) received voltage due to positively squinted beam

and is a function of the target angle 6 0_

V (8) - received voltage due to negatively squirted beam
2

and is a function of the target angle .

Using equations 5 and 6 with .-the patterns described by equation 4:

V1 () - Sa((2.78/BW)(8 - 89)) (SA)

V2 (9) -Sa((2.78/BW)(÷ + sl) (6A)

I-a

At this point of the antenna function development, the squint angle

is established as one-half the be&width. With this assumption,

equations 5A and 6A become.

V (8) - Sa(2.78T/BW - 1.39) (53)

V (a) - Sa(2.780/Bw + 1.39) (63)
2 (3

* t. ...N J S..

.- , * S, : ¶.' **- ' h'_.
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Figure 8. Voltage Gain of TwD Beams
Squinted Off Boresight by BW/2

A combined plot of equations 5: and 65 are shown in Figure 8. The

antenna functions then follow as V (s) a V (a) + V (6) and V (B) -V (e)
a1 2 d

-V 2(0). The development for the sum pattern is as follows:

V (0) - V (a) + V (9)
s 1 2

- Sa(2.788/BW - 1.39) + Sa(2.788/BW + 1.39)

=Sa(2.789/BW -1.39) r2.788/BW + 1.391

L[2.789/BW + .1.391 J

+ Sa(2.s789/BW + 1.39) .2.78./BW 1,391

.2.78//BW B1.39]

let a 1.39; b a2.780/BW

V (B) " (a2 - b2 ) 'isin(a - b) s sin(a ÷ b)+ a ÷.
, sin(a b) + sin(a + b)]b j.

(a -b ) (-cos(a)sin(b) * cosla)sin(b)ib
[sin(a)cos(b) + sin(a)cos(b)la ""

a2 2 -1-(a b t2as.in(a)coa(b) 2bcos(a)sin(b).

"-15' •''
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V (0) = 2 [.5(0/BW)sin(2.ý/80/BW)-1.37cos(2.7a8/BW)] (7)
S

2"
7.731[/BWI - 1.93

A similar development for the difference pattern yields:

V d (8) - 2 i.25sin(2.78e/Bw)-2.74(e/Bw)cos(2.78e/Bw)f (8)
2

7.731[/BW] - 1.93

, i

In order to make subsequent calculations more tractable, and to

remove the function discontinuities sho. . .in Figure 9. equations 7 -and

need to be simplified. Observation of Fi~gure 9 indicates that V is an

even function and Vd is a odd function. Consider approxiat.ny'the sum

pattern as a scaled cosine function and approximating the Jifferonae

pattern as a scaled sine function:

n
V (approx.) *sqrt(2)aos (c) 'A)

Vi(approx.) sinc M (SA)

ft A.



"A few calculations on the arguments and powers of the

"approximations indicates that the best argument for the sum

approximation is c = 1.0479/BW, and the best power for the sum

approximation sets n 2; similarly, the best argument for the

difference approximation is d = 1.888/BW, and the best power for the

difference approximation sets n = 1. Substitution into equations 7A and

8A yield the final form for the antenna functions of the monopulse

"radar. These functions are:

S 2o2V (0).= sqrt(2)cos (1.0479/BW)
s

(sqrt(2)/2)[1 ,+ cos(2.0948/BW)] (9)

V (B) = sin(1.88e/BW) (10)
d

.'. Ys(even)

a' A I 136W

* Figure 10. Approximations for Monopulse Antenna Patterns

For notational convenience, the theta dependence in the subsequent

"developments usiing the sum and difference patterns will be dropped and
EL

"the antenna functions will be referred to as:

d.d
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Estimation Model

"The general framework of the estimation problem consists of

determination (estimatioP) of the value of an unknown parameter,

possibly random, from an observation. Normally observations are made

through a noisy channel, and in this case, estimation techniques must be

used to determine the desired parameter value:. ý Parameter estimation is

then a mapping of the observation space into a parameter space.

P ,observa t ion:
A , aRI : space .

C R
El

Fprobabi .isticu t sitioan ion

Rl

C1
El

Figure 11. Estimation Model

Source: [5:53]

Figure 11 shows the basic components of the eitimation model. Once

a suitaule rule for mapping into a parameter space has been developed.

it is of inteorest, to examine measures of quality of the estimatimi

procedures. Possible quality measures might include the mean and the

error (in the mean square sense) of the estimate. Frequently, quality

measures of the estimation procedure are quite difficult, and for many

cases rather .than approach the error of the estimate directly it is of

' ":::" 18 .



more concern to derive a lower bound on the variance of any estimate.

A comparison of the chosen estimation procedure to the dertved lower

bound will provide the needed measure of quality of the estimation

procedure. To complete the estimation model for the amplitude-

comparison monopulse radar, the following steps will be taken:

1) The observations that the estiz'ator will have to work with are

derived from the amplitude weighting provided by the antenna

functions in the presence of additive white Gaussian noise.

2) A maximum-likelihood estimation procedure will be applied to

the received-observations to estimate the amplitude that most

likely caused the observation. Subsequently, the amplitude

estimate will be used to develop an error equation based upon

the angle of arrival of the received signal from a target.

3) The Cramer-Rao lower bound will be developed which considers

the conditional variance of any unbiased estimate for the

target angle of arrival.

4) An alternate bound, the Ziv-Zakai bound, will be developed for

the specific case where the procedure of estitmation is maximum-

likelihood.

-19-.



Observation Formulation

n Mt

As(t)

r Mt)

22

Figure 12. Monopulse Observation Model

For the specific case of additive white noise (See Figure 12) the

(7 received waveforms are:

r (t) - As(t)V + nit) 1111 s

r 2(t) = As(t)Vd + n 2(t) (12)

r(t) '-r W))2 r d 2

where:

A - unknown signal amplitude (nonrandom)

s(t) - transmited signal

V - sum voltage antenna gain - ,VV (6)

Vd - difference voltage antenna gain VdlS)

n(t) - additive white Gaussian noise

In general, the transmitted siqnal (s(t)); t e disturbing noise

-p.0-
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(n(t)): and the received signal are randon processes. The key to

analyzing the random observation is to find away to replace all

waveforms by finite dimensional vectors, for which characterization of

the random process, by way of a joint density function, can be made.

One implementation of this transformation is referred to as Gram-Schmidt

orthogonalization [6:266). The orthogonaxization procedure permits the

representation of any K finite energy time functions as linear

combinations of M < K orthonormal basis functions.

sk(t) = (Sk)9 (t) k=1o2....K (13)
1o.

where:.

k~m fkMt)ml(t)dt

integration is taken over a period

(0 1(MN u, 2 (t) .... 9M t)) are orthonormal

* ,

Figure 13. General Orthogonalization Implementation
Source: [6s228)

-2i-
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Figure 13 illustrates the implementation of the orthogonalization

process. Each individual observation is developed by the basis

function, 3 (t), and t ie total dimension of the vector observationm -o

corresponds, at most, .o the number of signals at the source. For the

estimation problem at hand, the nature of the source is known and one-

dimensional (singular valued). The random variable R Iwill be thc only

output and is a sufficient representation for the energy time function,

r 1(t). as all other R's are independent of R (with white Gaussian noise

assumed). Further, the basis function, 0 Wt) is 16:2671:

0 Wt) = s(t)/sqrt(E) (14)

where: /2
E f()dt signal energyf...

sqrt( ) - square root operation

integration~is taken over a period

RANDOM _RANDOM

PROCESS VARIABLE

r1 t ()dt R

3(t)

Figure 14. Monopulse Orthogonalization
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Substitution of equations 11 and 14 into equation 13 yields:

R1  fr 11tO1 (t)dt

[AVsWt) + n (tl19 (t)dt

W [AVs(t)/sqrt(E)Idt + N 1

= AV ssqrt(E) + N (155)

where:

N1 = fs(t)nl(t)/sqrt(E)dt

integrations are taken over a period

A similar development for R2 yields:

R AV sqrt(E) + N (16)
2 d. 2

To form the joint density function required to characterize the

received waveforms, the first and second moments of tk3 vectors R and

R must bo, determined. For the R vector, and conditioning on the
2 1

amplitude and angle of arrival (conditioning is performed on the angle

of arrival rather than the received sum channel voltage because the sum

voltage antenna pattern is a function of 6, therefore E(R /A.V5) is

proportional to E(R /A.@)):

E(R 1 /AO) =AV sqrt(E) + Ef(tlnllt)/sqrt(E)dt)

= AV sqrt(E) + fE(sltlE(n 1 (t)/sqrt(E)dt

"- AV sqrt(E) (17)aOo

where: '

signal and noise are independent,

mean of the noise is assumed zer"

E( ) refers to the expectation operation

-23-
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where: (continued)

integrations are taken over a period

A similar development for the R2 vector yields:

E(R /A,@) AVdsqrt(E) (18)
2d

where:

E(R 2 /AVd) is proportional to E(R /A.9)
2 d 2

2
var(R1/A.9) = EC[R 1 - AV sqrt(E)l2/AB)

= E((R 1) 2 /A,3) - [AV~sqrt(El) 2

2 2=EAV sqrt(E) +kI ) /A.O) - [AVssqrt(E)I (19)

Expanding the first term of equation 19:

2 2E(AVs sqrt(E)I /A,$) + E(2AVsqrt(E)NI/A,9) + E(12 /A)e)

( [AV sqrt(E)J 2 + E(( ffn1 (t)n (u)s(t)s(u)/E)dtdu/A.B) 119A1
- I I

Substituting equation 19A back into equation 19:

var(R VA.@) 1 l/E (n 1 (tlnl(u))E(sct)scu))dtdu

a No/2 ff/,t-uis(tlsudtdu

= N0 /2Efs(u)s(u)du b.

= N E/22 N-,2 (20)
0 N0/2

where:

f(t,-uldt I i iff t - u (sifting property)

- O0 otherwise

integrations are taken over a period

each noise sample is independent, Gaussian, zero mean

autocorrelation of the noise U (NO/2I)j(v)

-24-
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A similar development for R yields:
2

var(R2 /A,e) N0/2 (21) -

cov(R1,R R/A. 6) E((R R1)/A. -A 2 EVsV (22)
,2 1 2 s d

Expanding the first term of equation 22:

EC[AV sqrt(E) + N1] [AVdsqrt(E) + N2I/A.0)

- A2V VdE + AV2sqrtlE)E{N /A.@) + AVdsqrtlE)E(N2 /A,'O) + E(NIN 2/A#e)

2 A2VVdE (22A)

Substituting equation 22A for the first term of equation 22:

cov(RIR 2 /AO) 0 (23)

Equation 23 shows the vector observations to be uncorrelated.

Further. with Gaussian noise assumed and linear operations to develop

Sthe vector observations, RI and R2 will be Gaussian and uncorrelated,

therefore independent [7:199). The receiver observation is then the

joint density of two independent Gaussian random variables.

Independence implies that the joint density of RI and R2 is the product

'of the marginal R and R distributions. With GAussian distributions
1 2

and statistics given by equations 17, 18, 20, 21, and 23 the joint

conditional density )f theireceiver observation is:

PR(r/A,0) - p(r I/A.)p(r /A,@)
2 2:•

(piN0) 
t exp(-I/N0[r1 - AV sqrt(E)) 2 + (r - AdsqrtE)) (24)

05 2 d)(4

where:

rJ r"

"-25-
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Maximum-Likelihood (ml) estimation

The maximum-likelihood approach is to choose the estimate for the -

unknown parameter to be the parameter value that most likely caused a

given observation to occur. In the general case, the joint conditional

density of the receiver observation is denoted as the likelihood

function £3:651. Another useful function for monotonic functions (1 to

1 mapping betveen the function and the likelihood function) is the

logaritJ-,m of the likelihood function. with a I to ' mapping, working -

with the log-likelihood function is- equivalent to working with- the

likelihood function [8: 1811. The u'aximum-likelihood (ml) estimate is

then that value of the unknown parameter for which the likelihood

function is a maximum. Or equivalently, a necessary condition for the

ml estimate is obtained by differentiating the log-likelihood function

with respect to the unknown parameter and setting the result equal to

zero [5:651.

Calling this condition the log-likelihood equation, it can be

expressed as:

A, [rn[pRlr/Al) 111 0 (25)

A A
ml

where:-

A' Ii represents the partial wrt the parameter A

Maximum-likelihood estimates can then be obtained from unique

solutions of equation 25. To apply the procedure described by equation

25 to the conditional density of equation 24, the log-Likelihood

equation must first be established. Using equation 241

-26 °
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ln[PR(r/A.o)] =-1/N 0 [(r 1-AVssqrt(E)) 2 +(r-AVdsqrt(E))2]-in[(pi)N0= _/N[(112_ Ar~ssrtE)+ (rAV~sqrt(gE)2]-l~p

-11N0 [(r12. 2Ar V sqrt(E) + (AVdsqrt(E))2

2 2-11N I(r )-2Ar V sqrt(E) + (AV sqrt(E))I
0 2 2 dd

-ln[(pi)N I

Takinv the partial wrt the parameter A and setting the result equal to

zero will provide the log-likelihood equation described by equation 25:

0 2r Vssqrt(E)/N0 - 2A(V sqrt(E)) 2/N +

22r 2 Vdsqrt(E)/N 0 - 2A(Vdsqrt(E)) I/N0  (25A)
rVsqrt(E) A(V 2  + Vsqrt(E AV2E

E r2VsssqrtEE)- A(V)
I -s 2d

solving for A
ml,

Al r V sqrt(E) + r 2 Vdsqrt(E)

2 2(V )E + (V ) E
s -d

S- 1 [ r V + rV :issqrE' I 2vd1 (26) -

"2 2"

sqrt E) ;v 5  + (V d~

The other unknown parameter of 'interest is the angle of arrival.

An estimate of 0 allows boresight movement to keep the tracking axis

(boresight) upon the target. The log-likelihood function terms that are.

functions of the angle 9 are V5 and V which are described by equations

9 and 10, respectively. Taking 'the partial with respect to the

parameter S and setting the result equal to zero yields:

0 a 2ArlV'sqrt(E)/N0 - 2AV sqL*t(E)AVs'sqrt(Z)/N '

2Ar 2V sqrt(E)/1 0 - 2AV sqrt(S)AV sqrt(E)/ ( 27,

* r V I AV V 'sqrt(l) +r V I -AV Vd'sqrlE) (27A)

a5 ss 2 4 d27d

44..



q *,

where

Vs". Vd' represents the partial wrt the parameter 9 -

4

Substituting equation 26 for A of equation 27A and simplifying:
rV'V 2 20 r -I r2VSVj.s' r2V'V r IVsdd.---:
I s d 2sds 2Vd' I lsVdd

or equivalently:

rlVd[V aVd VsVd] r 2 V sV 'Vd - VsV d'

equating coefficients, and evaluating at the position estimate:
r V (d) - r Vs(0) = 0 (28)

The maximum-likelihood estimation procedure has generated two

estimates. The first estimate, equation 26, describes the most likely

amplitude for a given observation. The seco.nd estimate, equation 28..

was derived from the amplitude estimate and gives a relationship that

contains both observation terms and amplitude weighted angle terms. In

order to get a better feel for the relationship between equation 28 and.

the estimate for target position, it is necessary to look more closely

at equation 28. -

For the second estimate (equation 28) the random quantities will be

the noise corrupted observations, R and R In a no-noise environment.
20

the observations R and R would equal their respective mean values and1 2

equation 28 restated for the no-noise case is:

0 [AV (O)sqrt(E)]V (OY * [AV- O)sqrt(Z)IIVs() (29)s d d.(9

-2-'V
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where:

Vs(a), Vd(9) are functions of an estimated target position, 8

Vs(9), Vd(9) are functions of the true target position, e

Substitution of equations 9 and 10 into equation 29 yields:

0 = Asqrt(2E)/2[(1 + cos(2.18/BW))sin(1.889/BW) -

(I + cos(2.19/BW))sin(0.88G/BW)] (29A)"-

Inspection of emaation 29A indicates that the equality will be -

satisfied. in the no-noise case, when the estimate for theta equals the

parameter value. For all other estimated values of 8, unequal to the

true target position, the equation will not be zero but will be an error

that is proportional to the difference of the estimate from the actual

value. Further, with no-noise assumed, the target position could be

determined exactly with one observed pulse (ie the required estimate

for target position to force equation 29A to zero) and the boresight

could ther. move to the exact target location. With additive noise,

equation 23 will not be equal to zero and the maximum-likelihood

estimate for target position will be in error. In this light, the

second estimate (equation 28). is the error equation for the amplitude-

comparison monopulse radar. The derived second -estimate will be used to

wove the boresight to the vicinity of the target.

In order to bound the estimation error for the target position, it

is first necessary to, compute the statistics for the generated estimate

for the amplitude of the return signal.

.o:29-
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E(A /A.0:= VE(R- + V E(R)

2 2
sqrt (E)[ (V st) + (Vd

=V (AVssqrtlE)) + Vd(AVdsqr,(E))

sqrt(E) (Vs)2 d2

=A (30)

Equation 30 indicates that for all values of A, the average value

of the. estimate equals the parameter that o. are trying to estimate. -

With this relationship satisfied, the estimate is commonly referred to

as unbiased [S:641.

var(A /A,O) kmE(A) ) E((Am)) 2

2% 2

'I, Rj~s -21

E• 'V s1 + (V d) :

Let k 1/(EI(V ) + (V)) d ) "2 2

var(A /A.@) - kEUR V) + 2RR V+ (RV) A-
ml1 12sd 2d

Sk.[V 2(var(R)A2Vs2E) + 2A2EVs2Vd2 + V d 2(var(R2 )+A 2Vd 2E)I -',A2

2 2 2 (A 4  22?2 2 4 2.k[V N /? + V 2N/2 + (AV4E+ 22A V V E 'A V E4EI - A
s 0O' d 0 d d

2 +V2 2 2 2 2 2kN0 /2[V + Vd2I + A kE[Vs + V - A

var(A /AB).. N + A2 A 2
ml 0

2 22E(Vs2 + Vd

Now (31)
2E(V 2 + V 2

s d

-30.
S . . ' S. . . . . . . .

* * S *~ . * b . * ~ * % . * ~ o5 . ,'-o
- SW -



Cramer-Rao Lower Bound (CRB),

"r'" For any unbiased estimate A of a scalar A. the conditional variance

is bounded by [8:2321:

a 2 1
var(A/A) > [E((A'[ln(pR(r/A)))) -

or equivalently, var(A/A) > [-E(A'Iln(pR(r/A))I1]- (32)

where:

A' represents the partial wrt the paremeter A
I

A' represents the second partial wrt the parameter A

Equation 32 is usually referred to as the Cramer-Rac inequality.

Consider applying the steps described by equation 32 to the amplitude

estimate:

2
A'[ln('pRlr/Al)] = 2r V sqrt(E)/N0 - 2AV E/IN0 +

2r 2Vdqrt (E)/N 0 - 2AVd2E/NO (33)

"2 2--A"n p Il r/AI1] = 2V Z/H + 2% E/N (33A)

E(-A"Iln(p (/A))]) -1 = N
R 0

i 2E(V 2 + Vd2
a d

"Using the inequality given by equation 32:

2.* 140
var(Aml/A,Q) 0 , . (34)

2E(V 2+ V2
d-

Equation 31 previously defined the conditional variance of the

amplitude estimate. Comparison of equation 31 with thi conditional

"inequality of equation 34 indicates that the conditional variance

satisfies the CR8 with equality. Any unbiased estimate that satisfies

-a
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the inequality of equation 32 with an equality is called an efficient

estimate [5:661. There is no guarantee that an efficient estimator'

exists for a given problem, however, if one doe, exist, the maximum-

likelihood estimate will be efficient (8:2331. Efficiency is of

importance because equality with the lower bound described by equation

32 assures minimization Of the conditional variance of the estimate, and

therefore, provides the best estimate available. Applying equation 32

to an estimate of target location, 6:

'1(lnpR(r/A,B)] = 2Ar 1Vs'sqrt(E)/N0 - 2AV sqrt(E)AV sqrt(E)/N +

2ArV' sqrt(E)/N, - 2AVdsqrt (E)A 'sqrt(E)/NH
24 d d 0

2 2 ' 2

e" lnPR{ r/A, 81 - 2Ar 1 V~seqrt(E)/N 0 -2A2(Vs' ]2/N•0 -2A2VsVsE/N 0 +

2Ar 2 Vdsqrt(E)/N0 "2A2 ( 2 2 AVdVdE/N0

2 do 0 V' / d d

- 2Asqrt(E)/N0 [Vs-(r 1-AVssqrt(E)) + Vd-(r 2 .AVdsqxt(Z) EM

2A 2E/N 0 (V' 1)2 + (Vd' )2

- 2Asqrt(E)/N [VsWN +V aN -Asqrt(E)(V'2 -Asqrt(E)(.Vd') 2 (35)
091 d 2d

*.E(S"[InpR(r/AS)] - 2A 2E/N0 ((Vs,)2 + (V yd 2 (35A)

where:

E(Vs"N 1) E(Vd N = 0

-1 N 1

R ~~2AE2 L(4 ' 2 +(V12

Substitution of equations 9 and 10 into equation 353 and performing

the indicated first partial, squared, and then simplifying yields -the

final form for the Cramer-Rao bound (CR3) for the coditional variance

of the unbiased estimate Ot

"-32-m
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var(B/A.e) > 2 (36)
"2A E 2.87 + 1.8cos(3.8@/BW) -1.1cos(4.2/BW)

Equation 36 is one of the bounds for the tracking error of the

monopulse radar. Application of the conditional variance as a mean

square error implies a priori knowledge about the average error.

Specifically, a zero average error is implied. 'This will clearly not be

the case if the estimate is no longer unbiased, and at that point this

form of the CRB lores usefulness. Before leaving the CRB, a few

comments about equation 36 are in order. Inspection of the leading

coefficient indicates that the bound is directly proportional to the

beamwidth and inversely proportional to the signal-to-noise ratio. This

result is intuitively appealing, as the bound predicts a small tracking

error in a low-noise (highStR. low BW). environment. Nota also tihat if

the converse is true (low SNR, high BW), then the variance of the

estimated position grows quite Jarge. For low SNR, the CR3 does not

adequately approximate the estimation error because the likelihood

function can have several peaks and maximization of the likelihood

function may only produce a local, instead of absolute, maximum. Errors

are then made on the likelihood function sidelobe peaks [9:148).

* -33-
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Ziv-Zakai Lower Bound (ZZB)

The Ziv-Zakai bound is derived by comparing the estimation problem

with the optimal detection prvblem. The resulting bounds are

inaependent of bias and explicitly include the dependence on the a

priori interval of the desired parameter [10:3861. The estimation

decision rule will have an associated probability of error (P ) that
e

will be lower bounded by the P associated with an optimal detection
e

scheme. This lower bound (estimation decision vs optimal decision) -

enables the derivation of performance bounds that are based upon

detection theory.,

Consider an estimation technique for the target angle off beam-

axis, St, of a received ,essage when it is known that the angle is

either 0 or OI . The Ziv-Zakai approach is to compare the angle0

estimate, 0, with an average value Cie compare 0 with (0 + S )/2) and
0 1

then decide between 0 and S.o
0

Pe ESTIMATION DECISIOH

THRESH

+ +°

+ + . . . .....

÷ Pe(S 1 ) ÷ ; Pe(S 0 ) - .
. , , ,. .. ..

* *I,, * .°-

9 01

* S -

-0 * , S. .. . ....

B

2

Figure i5. Estimation Decision Space
Sources 110:3871
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From the law of total probability:

Pet)st P(NO)P((e > 60 0 + PNO)?((9 < 80 + ¶1)/e

2 2
a° a

I 1/2P((8 > 8o/2 +8 /2)/9) + 1/2P((9 < 0 /2 + 8 /2)/8 .
0 1 0 0 1 1

where:

P() 0 .

conditioning on 96 assumes s(981 was transmitted

0 0*

Let: d - 1 -1 08
A a

P (est) - 1/2P((G > 0 + d/2) + 1/2P((9 ( 81 - d/2)/O -
e 0 o

-1/2P((O - 0 > d/2)/9 + 1/2P($ - 0 < -42/e)

- 1/2P((I. - 01 >d/2)/e0) + 1/2P((19 1 - /2 >d/2)/9 1)

Recall that P must be greater than an optimal d tection scheme. (i-

for equiprobable binary signaling):

S1/2P(lO - 001 > d/2)/9 0) + 1/2P((S - ll > d/2)/9 1) (37)

where

Io- *1! - jB,-

To proceed, the right side of equation 37 must be simplified.

Reference 9 applied the Tchebycheff inequality to the right side of

equation 37. The Tchebycheff inequality is a specific case of a more

general rule which is termed the inequality of Bienamye (11:1515?):

Let Y Ix -'an;, since Y is always positive:

P(tx-al ) b) C Z(Ix - l)/bn (38)

-351-,
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Applying equation 38 to equation 37:

Let: x - 0; d/2= b; a = 0 or 91; n 2

Ple- 901 > d/2) E< j - e012)/(,/2)2 (38A)

,I; - @,I d/2) < E(l9 - 811)/(d/2)2 (38B)

Using equations 38A and 38B in the inequality of equation 37:

P< 1/2E(j9 - e 0 12 /e 0)/(d/2) 2 + 1/2E(I8 - '1I2 /9l)/(d/21)2

2 2 a 2Ed /41Pe < 1/2[E((1 - e0)2i 01 + EC(S - 0 )1/0 1)

[d /4]P'_< 1/2 (29 + e2() (39)
e- 0 18)

where:

)2 2
E((1 - /) - e (1) - mean-square estimation error

To simplify, assume 0 -0 -
0

J(20) /41P e(,-B) < 1/2[E(1 - 0)2/0) + E((9 -(0)/-0)1 (40)

- where:

P (0,-0) - error probability of the best procedure for
e

deciding whether a target is at 0, or -0, when it

is known to be at one of these positions with equal .

probability

2 2 a2
0 -P ) < 1/2e0 (0) + 1/2e (.) c40A)

The right hand side of the inequality of equation 40A is a lower,

e^2)bound to the arithmetic average of the mean square estimation error 1

for any pair of the values of the parameter St which are 20 units apart

110:3871. Imposing the sywaetry of the mean-square errors equation 40A

then becomes:

-36-
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2 * 2 + Z
* P (8,-4) ( 1/2e2(8) + 1/2e2(0)

e -

-2 2

Many bounds on the estimation error can be derived from this basic

result. Clearly, the worst case error will be lower bounded by the

maximum in the a priori interval of the parameter 0 '[12:650). In thist

case, the estimation error is bounded from below by the scaled maximum

of the product of the square of the difference of the two possible

angles and the minimum achievable detection error for equiprobable

binary signaling over the a priori interval.

2 2 (40-)
e > max P (4OB) -.

t max

Reference 9 developed an extension to the bound on the mean-square error,

for bearing estimation given in equation 403 for the specific case of

maximum-likelihood estimation. The development is as follows [9-156):

A tighter bound can be obtained for the case where the probability

density function is a function only of the difference between

estimated and actual parameter values. This constraint is

satisfied by a maximum-likelihood estimator vu sin(B). Realizing

that jsin(S) - sin(01 )I 1 0 9 11j the maximum-likelihood

estimator can be applicd to give the appropriate bounds on the

mean-square error:

-37- -
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2 2e > max [sin(t)I P (8 ,-et) (40C)< << t e t t

where:

sin(c ) = [sin(8a) + siri(S)]/2P max

8 = maximum possible anglh (a priori interval)
max

Equation 40C, [9:1561, will be the form of the Ziv-Zakai bound used

to predict the mean-square estimation error for a maximum-likelihood

estimate of azimuth angle. To apply equation 40C, the error

probabiltiy. P e must first be computed.

H and H are the two hypotheses for the binary detection problem
0 1

of whether the azimuth angle of the target is at a0 or OV when it is

known that a target is at one of these two positions. The two

hypotheses are:

H0: R - E(R/H + N
0 0

H': R -E(R/Hi) + N4

The total probability of error is:

P - P(making an incorrect decision)

- P(deciding H but H is true or deciding H1 but H is true)
0 1 0

- P(H R(r/HO)dr + P(H0 R(r/H )dr
Hý

where:

H integral is area under "0" density in the "10 region

H integral is area under "10 density in the 00 region -

0

-38-
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The decision rule is then:

H1

L(R) --"0 -

HO< P(HI-

where:

L(R) is the likelihood ratio 15:263 p(r/H)

p(r/Ho)

equal a priori probabilities is assumed

equivalently:
>H I -. °

>11
(R) o10

HO<

where:

1(R) is the natural logarithm of the likelihood ratio

ZERO.
THRESH

*- -

+ 
-+

* +,4 + .+ . -7 1.

* ' 4 4 " .... ... .. . * II ii-II , i" '
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From Figure 16, the total probability of error is:

Pe= .1/2P(l(R) > 0/H + 1/2P(I(R) < 0/HI) (41) -

e 01

The log-likelihood ratio is a random variable. This is easily seen

from the derivation for the likelihood ratio which involves the ratio of

two functions of a random variable; therefore, L(R) is a one-dimensional

random variable [5:26], and the logarithm of a random variable is

random. With Gaussian statistics for each of the. joint conditional

densities, 1(R) is the sum of independent Gaussian random variables;

therefore Gaussian. Computing the statistics of the one-dimensional . -

Gaussian random variable 1(R) will allow the development of the

probability of error as described by equation 41. From equation 24,

the joint conditional density when H is true is:
0

pR(r/H01 = equation 24 evaluated at 0 - 00 (42)

(11.expl-,/N0 [lr 1-AVs(e 0 )sqrt(EJl2 + (r 2 -AV(9 00)sqrtCE)) 2 ] (421A)
(pi)

Similarly, the joint conditional density when H is true is:

= (1)exp(-/N [Hr -AV ( 2 +(-AV (a}s)qrt(E)) 14)2B42B)
(pi)N0  0 1 c 1 sr() 2 Cr (41

Then l(R) is the logarithm of equation 42B divided by equation 42A:.

1(R) - -i/N0lrI-a) 2 -1/N 0(r2 -b) 2 +/N 0lrl-ol.+11N0(r2-d) 2 1C4 3),cCr

where:

a - E(RI/HI) AVs C )sqrt(E)

b - E(R 2 /H 1] ) AVd (9 )sqrtlE) -

C - E(R 1 /H 0  'AVs(l 0 )sqrtCE)

d E(R 2 /Ho) = AV (9 )sqrt(E)

-40-
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22 2 2
M(R) -1N0 2 - 2rla + a2) 1-/N0 (r2 2 - b + b

÷1 2 2rlc + c2 ) +11N 2 2r 2 d + d 2 1 -

+/0 1C

- I/N 0 12r 1 (AVs(81)sqrt(E) -AVs( 0 )sqrt(,E)) +

2r 2 (AVd (8 )sqrt(E) - AVd ( 0 )sqrt(E)) -

A2 EV, 2 (9) + A2 EV(29) -'A 2 EV(21) + A2 EVd21(9

= 2Asqrt(l)/NA0 [rIVs(61s - Vs(90)) + r 2Vddl)( - Vd(0()) +

Asqrt(E )/2(v 2 () V 2 (9 V 2 (6) Vd2 (e,) (43A)

Introducing a new version of I(M):

Il(R) l(R)/(2Asqrt(E)/N0) (43B)
0

The statistics of l'(R) for the hypothesis H are:

0

EI,'(R)/H0  - E(Rl(V (aI) -Vs(8 0 )/H 0 )) + E(R2(Vd(e8) -Vdl(a0)/H +

•,) 2 - 2 + 2 2
AsrtZ -/ " ., - ,, (, (9 V8 (9 )1

-Asqrt(E)(V (V )(Vs( )-V (9 ))+V (8 0)( l( )-V (0 M))+
SO ¶ sO0 dO0 (dl dO

~srtE/2V 2  2 2 2AsqrtE)/2(V2(90- V (0)1 + Vd (a Vd (a 0". "ood 0

= Asqrt(E)[Vs ( )Vs (1) + V d( )Vd (9 1

Asqrt(E)/21(V (9 ) + V 2(6 + (a + V 2(a )
sO s 1 d 0 d 1

= AsqrtCE)W/2[p - 1.01 (44)

where:

W - v 2 (1e) + V 2 (e) + Vdll01 + V (1 (45)

p 2/WIVs(l 0oVsl61 ) ( V+( 0 lVd( )146)

var(l' (R)/H 0) - var(RI/H 0 )Vs(l 19 Vs(0 ) 2 +

- o° 2,°

var(R /H0 ) IV( V" (9 V.2/ 02 -- 1 ".0.

, V 2 2(9s2() .+ V a2 (1+(00)1 + V ) 2 (91

No0V (a0o)V (01) I Vd(e 0 )Vd(el) I
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var(lI(R)/H 0  N N0W/2[1.0 p) (47)

A similar development f or hypothesis H1 yields:-

E(l'(R)/H )=Asqrt(E)W/2[1.0 - p] (48)

var(l'(R)/H) I N 0W/2[1.0 - p) (49)

The conditional distribution under the hypothesis H is:

2p(l'(R)/H I=kexp[-(l'(R)-EV2'(R)/H1) /2var(l'(R)/H1)

where:

k [sqrt(2(pi)var(l'(R)/111)M

El'R)H1 A~sqrt(E)W/2f 1.0 p

var(l'(R)/H1  N NW/2[1.0 -pJ

Similarly, under the hypothesis H0

p(l'(R)/H) kexoi-(l'(R)+E(l'(R)/H, J) 2 /2var(l'(R)/H)

where:-

E(l'(R)/H0  - E(1'(R)/H1

var(l'(R)/H) var(l'(R)/H

Equation 41 then becomes:

P 1/2P(l'(R) > 0/H, + 1/2P(II(R) < a/H)

-1/2P(l*(R) > 0/H0  + 1/2P(1l(R) > 0,/H)

- P(l"(,R) > 0/H 0)

where:

Due to the symmetry of the shifted distributionas

P(l'(R) > 0/H0 ) a P(l'(R) < 0/H1 )

-42-o
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P f P(1'(R)/H0 )dl'(R)
= kexp[-(l' (R)+E(1 /2var(l'(R)/H ])dl'(R) (50)

where

integrations range from zero to infinity

Let u - (1'(R)+E(1'(R)/H 1))/sqrt(var(l'CR)/H 1  -

du dl' (R)/sqrt(var(l'(R)/HI)); dl'(R) - sqrt(var(l'(R)/H ))du"

when V'(R) 0 ; u = E(l'I(R)/H),/sqrt(var(l'(RI)/H 1 ).

Equation 50 then becomes:

1' (R)= sqrt(2(pi), ) )expl-u 2 /21 du

Qtu when I'MR) = 0)

where:

Qlal sqrt(2(pi)) 1/exp[-x 2i)dx 18:2571

P - QIE(i' (R)/H )/sqrt(var(l' (1)/H 1 )
e

- Q[Asqrt(E)W/21I.0 - p]/sqrtC(N0 W/2E1.0 - p))

= Q(Asqrt([EW/2N 0(1.0 p))M (51)

Equation 51 describes the necessary P of the best procedure for

deciding whether a target is a 0 or 91. when it is known' to be at, one
0 1

of these two positions with equal probability. For the case at hand, 60

"- • and substitution of equations 9 and 10 into ,equations 4S and 46

the factors wand p become:

-43-
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w = (V 2 (e0 + V2 (01 ) + Vd2 (8O) + Vd2 (9)

1/2[1+2cos(2.1l/BW) t cos (2.1i/BW)] + sin 2 (1-98/BW) +

2 2
1/2[1+2cos(-2.18/BW) + Cos (-2.18/EBW)1 ] sin (-1.9e/BW)

= 5/2 + 2cos(2.1e/BW) + 1/2cos(4.28/BW)- cos(3.89/BW) (52)

Figure 17 provides a plot of the factor W out to three beamwidths,

I- 5/2+2C0S(2.1X)+.5COS(4.2X) -COS(3.8X)

S.. 5 .X - .*8/BV

3 X•
-33

-3 -2 -I II 39WY--•

Figure 17. W vs Normalized Beamwidth

p 2/W[V 800 )V (9 ) + Vd(8 )Vd (0)1

-[1/2 +:Zcos(2.10/BW) *1/2cos,(4.20/BW) +cos(3.89/Sw)]/w (53)

A plot of the parameter p is provided in Figure 18. Inspection of

Figure 18 shows the parameter p to be periodic in norzAized beamwidth

and approximately equal to cos(2.225/SW)., F' ure 18 displays only a

small window of the function p because the partiaulaz form of equation

52 has discontinuities at multiples of 1.7 ti.es the norpalized

beamwidth. No approximation for p is utilized because all angles of

"-44-.
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interest are within plus or minus one-half the beamwidth. With the

magnitude of p always less than or equal to 1, p satisfies the condition

of a correlation coefficient.

" Xs,OBW

. . 1.1. B.

-!

i-1  Figure 18. p vs Normalized Beamwidth

Inspection of Figures 17 ind 18 reveal that when the parameter 9 is

zero, W equals 4 and p is unity.' When p is unity, equation 51 is

maximum; and therefore P is 'maximum. This result is intuitively
e.

appealing as targets with small seperation angles will be difficult to

distinguish. Substitution of equation Si into equation 40C, along with

equations 52 and 53. will provide the Ziv-Zakai lover bound for the

estimation error of a maximum-likelihood estimate of the target azimuth

angle.
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Tracking Loop

The output of the monopulse estimator was previously shown

(equation 28) to be an error signalithat is proportional to the

difference of a noise corrupted estimate of target position ard actual

target location. Restating equation 28:

S= R (B)V d(8) - R (2)Vs () (28)

To provide automatic tracking of targets, the error signal actuates

a servo-control system 'to steer the beam-axis on target. If the error

signal does not change rapidly with respect to the operating frequency

of the radar, the error will be approximately a dc, or step, input to

the antenna servo system. The time domain response of the servo is then

approximately the response that would be obtained due to a scaled step

function proportional to the error signal. In that light, the

development for the tracking loop will be as follows:

1) A relationship will be derived between the error signal and a

step function that is proportional to the difference of the

estimated target location and actual target position. This

conversion will be in the form o a discriminatcr curve that

will, within limits, provide a 1 to I mapping between error and

a step function with amplitude proportional to required

boresight movement.

2) Since the error signal will be in the form of a step function,

an improved Type I servo system ill be developed to provide

the desired response time and steady state error for the

"-46.
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monopulse tracker. A Type I servo gives zero steady state

errcr for a step input, and an improved Type I provides the
I-

desired response time.

3) Relationships will be established for tracking moving targets.

Discriminator'

With additive noise, the error equation is a random quantity as R

and R are indeperdent, Gaussian, distributed random variables. As

stated earlier, the discriminator curve is established 'assuming a

perfect mapping from error signal to a step function required to align

the beam-axis with the target pcsition (ie the mapping is accomplished

in the no-noise environment). In this case, the observations are given

by the conditional means:

R EMRIO)/A.,)

-AV {8)sqrt(E) for observation R, (54) a

- AVd(B)sqrt(E) for observation R2 (55)'

Substitution of equations 54 and 55 into equation 28 yields:
b

e KAVs()sqrt(E)V (6) - AV (O)sqrt(E)V (6) (56r)
s d d

Recall that V (6) and V (8) were described by equations 9 and 10:
s d

( (8) - sqrt(2)/21 + cos(2.0940/BW)l
$q

V d() a sintl.880/BW|

As previously stated, it is necessary to express the error equation

(equation S6) as a function of the difference between estimated and

actual target location. Such a function allows boresight movement

"" 47-
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proportional to this difference. If all anqles are considered relative

"to the boresight axis the radar will estimate a target location, the

target may move relative to that location, and the boresight will then

move to the estimatcd position where the whole procedure is repeated

over again. In this light, each angular difference between 9 and 8 is

approximately equal to the difference between 0 and the boresight (ie 0

is approximately equal to zero).

a A a•"

'Let d 90 -,; B= dO + 8; For small 0:

V (6) - sqrt(2) (56A)

Vd(e) 1.886/BW which is approximately 0 (56B)
p

Substitution of equations 56A and 56B into equation 56:

e Asqrt(2)sqrt(E)[sin(1.88G/BW)-

-... Asqrt(2E)[sin(l.88d6/BW)l (57) "

dO - -BW/1.88arcsinte/Asqrt(2E)j (57A)

Equation 57A is the transformation required from an error signal to

a step function with amplitude proportional to the required boresight

movement for target tracking.

Figure 19 provides a plot of equation 57. Due to the- inverse sine

function associated with the discriminator curve, all values of error do

not. map to a unique value of dO. Limits must be place on d0 such that

within the defined interval, there is approximately a one to one mapping

between dO and the error signal. For large errors, dO can then only

move to an established maximum, and no further. This constraint doesn't

limit the usefulness of the discriminator curve, because in a realistic
r

-48-

S-** ";"~* -*s-t * •..%7



sense the mechanical limitations on how far the boresight can move for

large inputs may be the final performance limitation. The limits used "

for dS are noted on Figure 19. Equation 57A will be then be used.

within the specified limits, to actuate a servo-control system to steer

the beam-axis on target. -

e/ASQRT(E) * SQRT(2) ISJN(1.88d8/BW)"

IP
I "

-
o

Stt

!. .4 a. 1.28

Figure 19. Discriminator Curve

Angle Servo ----

.A tracking radar can be divided into two p.rt. The first part

estimates the position of the target within the resolution cell. The

second part centers the resolution cell on the'target, typically with

the aid of servomechaniams (4:3121. If gear backlash. and other non-

linearities. are neglected, the nervo, system can bo'modeled as a linear

system. Analysis of this linear system can be performed with the aid of

Laplace transforms.

-49-
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KM

SIS+0 I

K O

Fi gure 20. Type I An~1e Servo
Source: 14:3131

Figure 20 shown a'. Type 1 angle servo and associated parameters.

The corner frequency. w,, is fixed by antenna inertia and motor torque

(4:3141. Combining the gains,.X and Kof Figure 20, results in an-

open loop transfer function:

G(s) K/sts + w I

Closing the loop, the closed loop transfer function is:-

S /a 21 H(s) =G(s)/(I +' G,(s)]
out in

* -K/(-s(s +,w1  +' K)

K/Is 2 + SW1 + K) (8

The charact~eristic equation of equation 58 is:

2s +*sw + K 0 (58.A)

The roots of equation 58A determine the time response

characteristics of the linear system. Exciting equatiz~n 58 by-the



Laplace transform of a unit step function (1/s), separating into partial

fractions, taking the inverse Laplace transform, and then simplifying

the result yields the time domain output response due to a unit step

input. For t > 0, this response can be shown to be:,

Sou(t) I -exp(-fw nt)[sin(w nsqrt(1 - •)t) + "_

cos(w sqrt(1 - )2lt) /sqrt(1 - (59)
n

where:

- w /2sqrt(K) damping coefficient

w - pqrt(K) = system natural frequency

Since w1 is fixed by the system elements, desired system

performance (ie allowable settling time, steady state error, and

percent overshoot in the output response to a unit step function) must

be established by the adjustment of the gain parameter, K. Settling

time is the time required for the system to damp out all transients., In

practice; the settling time is established where the error (ripple about

the desired response) is reduced below 5% of the initial error [13:90).

For approximation purposes, the settling time is within 4 time constants

of the enve ope of the damped sinusoidal oscillation. The ratio of the

step respon e peak value to the steady state settling value is termed

percent ove shoot. The amount of overshoot allowable depends upon the,

-)articular ystem, and is a function of the damping ratio, but ten

percent overshoot is reasonable [13:911. For the monopulse radar, 'the

constraints for the servo are: -

1) The servo response to a pulse must settle to steady state

be ore the arrival of the next pulse. This fixes the settling
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time to be less than the PRI, which in turn fixes the rise time

of the aervo u.o be less than one-fourth the PRI.

2) To maintain allowable overshoot, the damping ratio must be set

to approximately 1/sqrt(2) for optimum second order response to

a step input [4:315].

Due to the pulse repetition frequency (PRF) of the radar (100pps),

the Type I servo, as described by equation 59, could not settle within

the pulse repetition interval (PRI) and a slightly different servo

system 'than the Type I servo must be employed.

Higher gain can be utilized while holding the damping ratio to

approximately one-half with the addition of a reciprical corner (phase-

lead network) in the system closed loop transfer function of a Type I

servo system [14:251). This phase-lead network eliminates the overshoot

problem at high values of gain while reducing the step response rise-

time [4:320]. The step response of the improved Type I servo is given

in. Reference 14 as (14:2541:

2-0 (t) - [1 - exp(-Cw t)/sqrt(1 ,- C )]sqrt(1 - /wn)
out n1n

[cos(wnsqrt(1 r )t - 0)] (60)
n

where:

Wl. antenna corner frequency - 10 rad/sec (4:3211 (60A)

w2 - phase lead network break frequency

w natural frequency * sqrt(K) (60B)
n

*-damping coefficient - K/(2w nw) + w 1(2w 1 (60C) -
n2. 1

S - arctan~ll/2sqrt(1 - MW2 ))(/Wn' W /w )( (600)
1n n 2
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The rise time is provided as (14:254]:

(pi) - arctant(1/2sqrt(i - ý2 ))(w /w + wn1w2)] + +
= ~1 n n 2 (1,t .. .(61)

r w sqrt(1 - )
n

To establish performance at the desired level, the gain (sqrt(K)

and the phase-lead break frequency (w2 ) were adjusted, by an iterative

technique, with constraints of a fixed damping ratio ( - 0.707) and a

rise time that must be slightly less than one-fourth the PRI (t <
r

2.5msec). For the iteration, the ratio w /w was held constant at 1.4
n 2

until an acceptable value of rise time was attained, and then w2 was

adjusted until - 0.707. All calculations were performed on a

prograammble hand-held calculator. The iterative results are:

w 900 rad/sec (61A)

w- 641 rad/sec (61B)

From equations 61A and 60B:

2KY W 810E+3 (62)

Substituting equations 62. 61A, 60A, and 618 into equation 60Cz

S= 0.707 (63)

Using all of the constants and solving equation 61t',

t 2.48E-3 sec (64)r

Solving for the step response (equation 60)s

2o(tlW - [1 - expl-rw t)/sqrt(1 -I )lsqrt(1 - '/w
out n I n

[cos(w sqrt( 1 2 )t - )1
n

,1 - 1..9exp(-636t)!cos(636t - 0.778))

%
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o(t) 1 1.39exp(-636t)(cos(636t)cos(.78) sin(636t)sin(.78)]
out

1 - .99exp(-636t)[cos(636t) - .99sin(636t)]

= 1 - exp(-636t)(cos(636t) - sin(636t)] (65)

Equation 65 is the output, time domain, servo response

characteristic for the monopulse tracker. An amplitude scaled version

of equation 65 is used to steer the beam-axis on target for a given

error signal input. A plot of equation 65 is provided in Figure 21 for

a unit step input.

1l-EXP(836t) [COS(S3Bt)-SIlic$36t)I

~~~~~a Xcs..,s,,.~~ I er

Str=2.1/,O9,2.3E-3s

tg'8.4/98*9u.3E-3s
i 1 2 ; 3 '4 i , '1 0 + q ""'

ontr ont,,

Figure 21. Response of Imp-:,ved Type I Servo to a Unit Step Function

Moving Target

Several moving target considerations must be accounted for in the

radar model. Among the considerations are range and signal-to-noise

ratio (SNR) changes because of target movement. Consider linear target .

translation as shown in Figure 22.
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target ---- veOoc i ty

vel U time

Rold new

I radar I I I I I

Figure 22. Simple Linear Target Translation

From Figure 22, a simple relationship can be established for the

new target range as a function of velocity, time, and previous range.

Rnew sqrt[Rold2+ (vt)2] (66)

The range and signal-to-noise ratio are related bqy the radar range

equation 14:291:

2 2
Rrr22t r6 7

14(pi)] .3 N t(S/N)(
i.nt p

where:
R - maximum range for a given set of radar parameters
M

P =actual power received by the radarr ._

G antenna gainr
a wavelength

Nint - receiver internal noise power

(S/N)p - signal-to-noise ration per pulse

at = target cross-section

.,.... .................... ..
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Solving equation 67 for (S/N)

p
PG2 2

(SN) P r Gr, t A (67A)
S4(pi)] Nint Rm

Using equation 67A and after 'cancellation of like terms, the ratio of

new SNR to the previcus SNR is:

44 )14
SNR(nev) [1 Rm(new) Rk (old)
SNR(old) hR (old) R (new)"-

or equivalently:
SNR(new) = SNR(old)!R (old)/R (new)] 4  (68)

m M

where:

'2 2
R (new) sqrt[R + (vt) -a old+

R (old) is established by the initial conditionsm

To establish initial conditions, some constraints must be placed on

the simple translation described by Figure 22. Let:

aircraft velocity 500 knots 257.4 m/sec

antenna beamwidth = 3 degrees

aircraft travel one-half the beamwidth in 50 pulses

radar PRI. * 10E-3 sec

After 50 pulses, 'the target will travel 50 times the PRI times the

velocity, meters.' Plugging in the constraints, this translation is

128.7 meters. Figure 23 provides the geometry of the described

situation that now allows for initial range computation.
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2S7.4m/s

128.7a
N R I/,-::!

1A
TN

A E
L

128.7?.
TAN(U .5S)

* 4915a .

1 I radari I I I I I

Figure 23. Initial Range Geometry

Solving for the intial target range yields:

Rit [128.7 mi/tan(1.5 degrees) 4914.9 meters

Figure '24 depicts the complete amplitude-comparison monopulse radar

development that will be utilized in the radar simulation program that

.--
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III. RADAR SIMULATION

Computer Program

To compute the mean-square tracking error and associated

performance bounds of the amplitude-comparison monopulse radar, a

simulation program was designed for the radar model as developed in the

previous chapter. An annotated program listing of the program is

provided in Appendix B. The input variables of the simulation allow for

choice of a stationary or moving target and desired signal-to-noise

ratio (SNR) level. The output parameters are the mean-square tracking

error, the Cramer-Rao bound for the conditional variance of the

estimated target position, and the Ziv-Zakai lower bound for the

estimation error; of the target position. Two external International

Mathematical and Statistical Libraries (IMSL) routines are called during

the program execution. The first routine is a Gaussian random deviate

generator, GGNML, that creates random, independent, noise samples. The

second routine, MDNOR, computes the area under a Gaussian curve and is

utilized to compute the P for the Ziv-Zakai bound.a

Average 'tracking error as conducted in the simulation program is

developed by'c.cservation of the radars ability to maintain the boresight

in the vicinity of the target for a finite interval of pulses, and then

repeating the experiment many times and averaging the results.' The

observation interval is established at SO pulses, and each individual

pulse is sampled once. From that one sample, an error signal is

generated proportional to the difference between the boresight and
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target position. The error signal is then applied to the angle servo to

move the boresight in the target direction. Each set of 50 pulses is

considered a run. A total ,of 15 runs are perfocmed and then the error

is summed and averaged for each of the 50 pulses over the 15 runs. The

simulation program contains four discrete components:

1) An input section

2) A tracking section

3) Computation of performance and bounds

4) An output section

Input

The input is a short section that prompts the user for desired SNR

level and whether the target is moving or stationary, establishes the

radar and program parameters (pulse width, pulse repetition frequency

0 (PRF), beamwidth, etc. ), and positions the target in the beamwidth at

the beginning of a run. A few comments about the input section:

1) Two separate IX50 vectors of zero mean. Gaussian, random

variables are established. The two seeds are utilized to

insure independent noise samples.

2) Provisions are provided for .the testing of 15 signal-to-noise

ratio levels in the range from -20 to +35A d.

3) The only exit for the simulation is the entering of a 0 to the

prompt as to whether the target is moving or stationary.

4), Target placement provides for translation t be one-half the

beamwidth at the end of the $Oth pulse for the initial range,

velocity, and PRF provided.

""" -60-
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5) Signal amplitude was adjusted while monitoring boresight

movement for a stationary target at changing SNR levels. A -

compromise between the amount of pulses necessary to move to

the target and target tracking potential over the established

range of SNR levels fixed the amplitude at 5.

A flow chart of the input section is provided in Figure 25.

cumo

A

-" B
NOY. NV

C

Figure 251 Program Input Section-

Tracking

The tracking section moves the boresight to the vic~nity of tha

target for each received pualse. The radar tracks th~e target for a So

pulse interval. (run). During the imn,' noise samples are cenierated from

-61-
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the stored GGNML vectors, the receiver observations are formulated, an

error signal is generated from the observations, and the boresight is

moved in a direction to reduce the error. Figure 26 gives a flow chart

of the tracking section.
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Computation of Performance and Bounds

This section compntes the squared tracking error, the Cramer-Rao

bound, and the Ziv-Zakai bound. The tracking error (angle between

boresiqht and target after observing a pulse) was computed in the last

section. Squaring this result (in' radians) gives the desired squared,

error (SE). The Cramer-Rao bound is computed by substitution of the

angle 8, after pulse observation, into equation 36. The Ziv-Zakai bound

requires the maximum of equation 40C for all target angles from 0 out. to

0 * To find the maximum, the following routine was utilized:,
p

1) Compute the arithmetic mean angle 9 (9 varies from .75
P P

degrees to 1.5 degrees).

2) Segment 9 into angle intervals with provisions for adjustment
p

of the number of segments (8 segments when 0-0, 16 segments

when G-BW/2) to provide more resolution at large angles -

(approximately equal step sizes) and then evaluate and store

equation 40C for each seqmented-interval. The stored values

are then sorted, and the maximum is picked off. __-

-63-.
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Figure 27 provides a flow chart of the described sequence.

*.1

D

I STORE ()"=21

[COMPUTE &' STORE RS

----------------------------.

IC2PT THETAPICOIMPOTE TT I

FOR THSEGME

INkXIMIZ& ,S R -B:
----------------- -----

PULSES.

Y

Figure 27. Computation of Performance and Bounds

Output

The output section averages the squared traekinq error (SE) and

bounds over the 15 runs and prints the three output vectors (the average

of the SE will be designated as mean-square error (MSE)). A flow chart

of the output section is shown in Figure 28.
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Figure 28.* Simulation Output Section

Performance Verification

Stationary Target

The outputs of the simulation program are plotted in th* foillowing

diagram. The first plot, Figure 29, shows the general trend of the

mean-square tracking error for a stationary target at different SNR

levels.' As the figure indicates, there is an increasing error for

decreasing SNR levels. There is also a igeneral. tendency for the mean-

square error to be spread over a larger range for the smaller values of

SNR. This in a direct indication of the increased difficulty of

maintaining the-bor~esight within the vicinity of the target.
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Figure 29. General Trend of the Stationary Target Tracking Error

Figure 30 is a stationary target composite plot for mean-square

tracking error (4SE), the Cramer-Rao bound (CRB), and the Ziv-Zakai

bound (ZZB) for SNR levels of 15, 7, -5, and -20 dB. As the -5db plot

indicates, the CRB begins to approach the MSE. The -20dB plot clearly

shows the CR( exceeding the MSE. Since by definition a lower bound must

always be less than or equal to the actual error, the CR8 is not useful

at low SNR levels. Where the actual bound loses its usefulness depends

upon the system parameters, but for the purposes of this simulation, the

CRB for a stationary target will only be valid for SNR levels greater

than -5dB. In contrast to the CRB3 observation of Figure 30 shows the

ZZB is tight at the lowest measured SNR level.. The -200. plot shows the . " -

ZZs to be approximately constant and no greater thin the average MS " -"-

excugrsions.
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Moving Target

Figure 31 provides the general trend of the mean-square tracking

error for a moving target at different SNR levels. As the figure

indicates, there is an increasing error for decreasing SHR levels.

Further, comparison with the general trend for 'a 'stationary target

(Figure 29) shows two significant results. The first observation is

that for high SNR (15dB) the MSE settles out to the same value a"

stationary target tracking. The second observation is that for the

lower SNR levels, the moving MSE is slightly higher than the

co..responding stationary values and the degree of MSE spreading for a

moving target is noticeably larger (increased tracking difficulty).

N flOUING TARGET
E (Xl8E - S)
A 65- -- "
N 68-

55--n
S 580-l
Q 43--l
U 480-
A35

E 25-

20- Do°°

E 15-
Ri

"R 5-- 1'- 1

0 a, -0 +-- -t
R 8 5 18 1 2825 30 35 48 4i5

Figure 31. General Trend of the Moving Target Tracking Error

Figure 32 provides the moving target composite plot. As the -20dB

plot indicates, the CRB again far exceeds the MSE, In contrast to the

CRB, the ZZB is once again tight, approximately constant, and no greater

than the average MSE excursions.
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.IV. TARGET FLUCTUATIONS

The receiver design and analysis up to this point considered only

deterministic amplitudes of the received signal. Consequently, the

performance estimates, up to this point, are based upon a deterministic

amplitude. Of interest in this chapter is what happens to performance

estimates, and to target tracking capability, when target fluctuations

are present that were not 'designed for.

To properly account for target cross-sections, the probability

density function must be known for the particular type of target that is

being tracked. The model of the radar considered thus far has utilized

deterministic amplitudes that are proportional to the positive square

root, of the radar's cross-section. The next extension is to assume that.

there are many individual point scatterers with each individual

scatterer contributing (in an additive fashion) to the cross-section of

the target. The probabilistic model of a target in free space with many

individual contributers will turn out tr% appear as one source which has

an Exponentially distributed cross-section [15:471. The corresponding

target amplitude will have a Rayleigh distributioný Inherent in this

development is the assumption that none of the individual scatterers are

much larger than the rest (point targets) and that the crossai-section

does not change during the sampling interval.

To account for fluctuating cross-sections, the nature of cr"ose.

section dependence upon radar viewing angle must be known. The target

cross-section is very dependent upon aspect angle, and the aspect angle
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changes with time 14:381. If the cross-section changes significantly

over a time of-viewing equal to the pulse repetition interval (PRI), the

fluctuations are assumed independent from pulse to pulse [15:471. This

paper will consider such fluctuations to be "rapid" fluctuations. If

the cross-section changes are significant only over times on the order

of a burst of pulses, many times the PRI, the fluctuations &re assumed

to be independent from scan to scan 115:461. This/paper considers such

fluctuations to be *slow" fluctuations. Target fluctuations will be

investigated in the following steps:

1) A variable transformation will be performed on an Exponential

(cross-section) density to insure that the positive square root

(amplitude) will be Rayleigh distributed.

2) The effect of a random amplitude on the receiver estimator will

be investigated.

3) The simulation program developed in chapter 3 will be modified

to investigate tracking performance with "slow* and "rapid*

fluctuations on the signal amplitude.

4) A simple method to reduce the mean-square tracking error for

target tracking in the presence of amplitude fluctuations will

be proposed and investigated.

Distributions

As previously stated, the probabilistic model of a target in free

space with many individual contributors appears to the radar to be one

source that has an Exponential distribution on the radar cross-section.

Let the cross-section be represen#-. by the random variable X. the
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probability density function, pdf, of X is given by (7:451:

fx(x) = aexp[-hax] x > 0 (69)

where:

a = I/E(X)

The units of cross-section are units of power. To convert to a

form of positive amplitude, power must be converted to field strength.

The appropriate transformation is:

Y - +sqrt(X) (70)

The transformation requires the following theorem (7:118) :

Let X be a continuous random variable and Y - g(X) where g(X)

is continuous in X and strictly monotonic. Then

fy(y) - fx[gl (yl(g"1 (y))1' (71)

where:

denotes absolute value

)'denotes the derivitive urt y

Utilizing equations 69 and 70 in equation 71 and realizing that for

X restricted to pos'itive values and Y re tricted to the positive square

root:

fxl aexp(-axl x > 0

g(x) * isqrt(X)

g (y) y y

Icg'(y))'I " 2y

2 2
fl(y) 2ayexp(-ay y > 0

-72-
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Let a 1/2a2

f (y)2 2 2 (A" f fy(Y) = y/2 exp(-y /227 y > 0 (71A)

Examination of equation 71A shows that Y is a Rayleigh distributed

random variable [111:1951. The general eo,:ression for the moments of a

Rayleigh distributed random variable are given by [:1: 1481:

n nE(Yn) - sqrt((pi)/2)[(13t5*......nao ; n odd (71B)

.5n ,n- 2 (.5n)o a; n even (71C)

From 71B and 71C, the mean and variance of Y are:

E(Y) - sqrt((pi)/2)o (71D)

2 2var(Y) - ECY¥2 - E(Y)

•2 ""
- (2 - (pi)/ 2 )d (71E)

The parameter 0 of the Rayleigh distributed amplitude will be

adjusted in the fade simulation program to force equation 71D to be

equal to the deterministic amplitude previously used (A - 5). Note that

equation 71E shows that the variance of the random amplitude will change

as' the parameter a is changed*

Receiver' Structure

Earlier in the estimator development, the necessary condition for

the maximum-likelihood estimate was obtained by differentiating the

conditional log-likelihood functioi with respect to the unknown

parameter and settin; the result equal to zer6. This condition was

called the log-likelihood equation and was expressed in equation 25A.

The inherent assumption was that the conditioning due to the amplitude

"-73-
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and angle of arrival resulted from deterministic, but unknown,

"parameters. With the amplitude now known to be a Rayleigh random

variable, the log-likelihood equation must be expressed in terms of the

a priori knowledge of the amplitude distribution. To account for,

conditioning with a random variable, an average log-likelihood e.-. ation

can be used to remove the conditioning by averaging over all possible

amplitude values [16:310). Averaging equation 25A:

2ECO a E(2rIVssqrt(E)/N 0 - 2A(VsSqrt(E))/N 0 + 0+

2r 2Vdsqrt(E)/N0 - 2A(Vdsqrt(E))2/H0

0 r Vssqrt(E) - ECA)(V 2E + r V sqrt(E) - E(A)(V 2E
s s 2 d d

Solving for E(Al): .

E(Aml]) r Vssqrt(E) + r 2 Vdsqrt(E)

2 + 2(V ) E + (V YE

Srrv rV
gqrt(E) s 2r(72)[ 2

comparison of equation 72 and the previously derived estimate for

amplitude (equation 26) shcws that on the average, the maximum-

likelihood estimate for amplitude will be unaffected by its random

nature. Recall that the amplitude estimate is, later utilized to develop

the monopulse error equation, and therefore the receiver structure that

develops an error signal of the angle off boresight is, on the averagew

unaffected by the Rayleigh distributed amplitude. Squation 72 only

considers the average value of the amplitude estimate. As shown earlier

in equation 71E, the random amplitude will have an associated variance.
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This amplitude dispersion will have a direct consequence upon receiver

performance for a fixed radar design based upon deterministic

amplitudes.

Performance

Rayleigh Amplitude Samples

To investigate the performance aspects of fluctuating targets, it

is necessary to modify the simulation program of Appendix B to account

for "slow" and "r. d" fluctuations on signal amplitude. The IMSL

routine GGWIB provides the necessary tool for developing Rayleigh

distributed random samples. GGWIB is a Weibull random deviate

generator, and the Rayleigh density is a special case of the more

general Weibull density. The general form of the Weibull probability

density function, pdf, of the random variable Y is given by (7:229]:

*(A-1) Afy(y) (A/B) [(y - C)/B] exp[-(y-C)/B] A y > C (73)

where:

A -shape parameter; A > 0

B S scale parameter; B > 0

C * location parameter

Consider the following parameter values in equation 73:

-A,- 2; B - sqrt(2)ao C a 0

2 2 2f (y) -y/cr expf-y /2a ; y > 0 .(73A)

Comparison of equation 73A .,ith equation 71A shows that with the

parameter values as designatid, 'the Weibull density is transformed to

.75O.°
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the desired Rayleigh density. This transformation is used in the target

fluctuation program to create Rayleigh distributed amplitude samples.

An annotated program listing is provided in Appendix C.

Signal-to-Noise Ratio (SNR)

Signal-to-noise ratio as designated up to this point has been equal

to the maximum instantaneous signal power to the average noise power.

With a fluctuating amplitude, the peak value of signal power is no

longer applicable, and an average signal-to-noise ratio must be defined.

In general:

Egy ( tfs2 t)dt = JW A2 dt = A PW

An average value of Egy would be:
E(Egy) E(A 2 PW 2a 2pw

where:

2 2from 71C, EA 20 '-

Egy represents signal energy

An average signal-to-noise ratio is then:

E(SNR) 2ECEgy)o/No 4d2 Pw/No .. :..

Taking the ratio of peak to average SNR:

SNRk/SNRa Egy/E(Egy) A2 /E(A 2 .

Solving for SNRavq:

av2 p2aSNR avg a SNR pea / ( 74)

In the fluctuating target simulation, the standard deviation of the

-76-'



Rayleigh distribution was adjusted to provide a mean value of amplitude

equal to the nonfluctuating amplitude (A = 5). This was done to provide

a performance comparison between fluctuating and nonfluctuating models.

Solving equation 71D for the standard deviation required for a mean

amplitude equal to 5 yields a = 3.9894. From equation 74:

SNR = SNR E(A 2 )/52
avg peak

-SNR 2
SR 2d /25

peak

- 1.2 7 SNR k (74A)

I.The result of equation 74A indicates that to maintain the same mean ii

value of amplitude as the nonfluctuating model, 1.27 times as much SNR

was required under fading conditions. This is equivalent to adding 1.04

dB more to the signal-to-noise ratio level. Another way of interpreting

the result of equation 74A is that for a fixed average SNR, the average

and standard deviation of the amplitude would change considerably from

the nonfluctuating values of A = 5, and o = 0. Because simulation SNR

was free, the average SNR could be raised. If there were an associated

cost with increasing average SNR, performance may 'degrade even further

than what the results that follow indicate.

,luctuiting Target Simulation

The modifications necessary to include provisions for amplitude .

fluct utions are simple and straight-forward. The program modification

is antoted in Appendix C and includes the following steps:

The user is prompted for "slow" or "rapid" fading of the

amplitude..

0. N N.7..



2) The external Weibull deviate generator is called.

3) For "rapid" fading, the pulse amplitude is fluctuated for each

of the 50 tracked pulses. For "slow" fading, the amplitude is

held constant for each run (50 pulses) but is allowed to

fluctuate for successive runs. Each fluctuation is Rayleigh

distributed by appropriately transforming the Weibull deviates.

4) The tracking error, and performance bounds, are then computed.

The outputs of the fluctuating target simulation program are

plotted for a stationary target in the following diagrams. A stationary

target was chosen because as noted in the previous chapter the only

difference between stationary and moving targets was a slight increase

in the average mean-square error (MSE) value and larger dispersions in

the error (increased tracking difficulty). The first plot, Figure 33,

shows the general trend of the MSE 'at high SNR for the nonfluctuating

model, the "slowly" fluctuating model, and the "rapidly" flubtuating

model; As Figure 33 indicates, even at high SNR the rapidly fluctuating

model is very erratic and with a considerably larger tracking error than

either the nonfiuctuating or "slowly" fluctuating models. This is an

indication of the boresight bouncing wildly around the target positioa-

rather than settling to a steady-state MSE value. The "slowly"

fluctuating model shows a moderate increase in MSE above the

nonfluctuating model.,

V2 -
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Figure 33. General Trend of Fluctuating Target Tracking Error

Slow Fluctuation

Figure 34 'is a stationary target composite plot for the slowly

fluctuating target mean-square tracking error (MSE), the Cramer-Rao

bound (CRB), and the Ziv-Zakai bound (ZZB) for SNR levels of 15, 7, -7,

and -20 dB. Comparison of Figure 34 with the previous nonfluctuating

target model shown by Figure 30 demonstrate that:

1) The MSE for "slowly" fading targets shows more degradation at

high SNR than for low. This is an indication that when the

target .tracking environment is poor (low SNR) slow target fades

don't contribute significantly to the tracking error.

2) The CRB was largely affected by the presense of target

fluctuations.

3) Although the error is greater for all levels of SMR, the radar

is still able to track the target.

4) As the -20 dB plot indicates, the =Z3 is still tight at the

lowest measured SNR level and the CRB has lost its usefulness."
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Rapid Fluctuation

Figure 35 provides the rapid fluctuation composite plot.

Comparison of Figure 35 with the previous nonfluctuating target model

shown in Figure 30 demonstrate that:

I) Because of the very large excursions in both MSE and bounds, it

is very difficult to track the target in a "rapid" amplitude

fluctuation environment.

2) The MSE shows relatively little sensitivity to changing SNR and

doesn't really indicate tracking at all.

3) The CRB exceeds the MSE at a higher SNR level.

4) The ZZB shows more variation at Iw SNR than previously seen,

but still proves to be a tight bound at low SNR levels.

5) Characteristic of the "rapid" fluctuating model are deep nulls

and peaks from pulse to pulse in the MSE and CRB curv.s. This

indicates that tracking, which should be based upon past

history, is independent from pulse to pulse. Clearly this is

not a very desireable tracking characteristic.
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Smoothing Effects

In an attempt to smooth out amplitude fluctuations, th-. ±luctuating

target simulation of Appendix C was modified to accumulate the error

signal on N pulses before moving the boresight. The annotated smoothing

program is provided in Appendix D and includes the following steps:

1) The user' is prompted for the number of pulses to be observed

before boresight movement (N). N must be a factor of 50 to fit

into the previous programming structures.

2) The error for the designated N pulses is then accumulated and

averaged. This averaging injects the "smoothing" of amplitude

fluctuations over N pulses..

3) The boresight is moved at the end of the Nth pulse based upon

the average measured error.

'4) Tracking error and bounds are then computed in the same fashion

as the previous programs.

Figure 36 provides a plot of the MSE at high SNR for a stationary

target with "rapid" amplitude fluctuations and pulse smoothing. Two and

five pulses were observed' before boresight movement. Also included-in

Figure 36 is the nonfluctuating MSE. Inspection of the provided plot

clearly'shows the tendency of smoothing to reduce the tracking error.

Further, as the ,cL-zber of pulses increases, the M$E approaches the

nonfluctuating model MSE. It is worth noting that this increase in.

tracking reliability in a fading environment comes at the expense of

requiring N pulses to accurately locate target p4. ion.
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V. MULTIPATH

The last chapter was an extensioi. to the initial model that

considered target tracking and performance estimates in the presence of

a fluctuating target. This chapter extends the initial model to

determine performance estimates and target tracking capability for a

more complex channel model-, specifically, tracking in the presence of a

multipath environment.

As a signal is transmitted from one point to another --.ove an

irregular surface with electrical properties differing from that of the

propagation medium, reflected signals may be generated. These signals

then appear, along with the direct path signal, at the antenna of the

radar. The reflected signals are commonly called multipath. The

concern of this section is to determine the effects of multipath on

azimuth estimation performance.

Rather than a complete spatial diffraction descr•.'tion of specific

envircnmental structures, the attempt will be to develop an adequate

model to characterize and simulate the multipath channel. One specific

tfpe of multipath will be focused upon, terrain bounce. Figure 37

describes the geometry of the terrain bounce environment. Obser'e from

Figure 37 that the target radiates or reflects signals in all directions

and the radar .receives a direct signal from the angle , and a

reflected signal from the angle B r

, ' ,° ° °.
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Figure 37. Terrain Bounce Environment
Source [16:6881

The reflected path, or multipath signal return, will depend upon

the relection characteristics of the terrain. Strong, well defined

returns are called specular multipath and they result from large flat

reflecting surfaces. A second kind of multipath. diffuse multipath.

occurs due to small surface irregularities and appear to come from all

angles instead of a single well defined direction. In this section.

both specular and diffuse multipath effects on azimuth estimation

performance are of interest. Figure 38 describes the two types of

multipath.. .
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2)ckn Ainuahmestimatio pevrformncen will be sinvetiated'in the

presence of specular or diffuse multipath.

r3) A method to reduce the tracking error for target tracking in

the presence of niultipath will be proposed and investigated.

b,

Signakl Rep~resentation

Characteristic of the multipath medium is the time spread

introduced in the signal whicih is transmitted through the channel

117:455]. A short trsvsmitted pulse over a multipath channel might be

received an a train of pulses. Fr.gure,39 shows a' possible 'response to a

transmitted pulse throgh the multipath channel.
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h ' t t3 4t
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't ta PULSE ARRIVAL TIME

Figure 39. Possible Response to a Transmitted Pulse
Source: (17:455]

Another characteristic inherent to the radar problem is that the

received direction of the individual reflected signals will differ from

each other and from the direct signal received from the true target

Slocation.

The objective of the radar signal model, as developed here, is to

obtain a received observation that is a function of both time and

azimuthal direction that accounts for the following effects:

"1) Direct returns from the target.

2) Reflected returns (either specular or diffuse) from the

* terrain.

"" 3) The possibility of the superposition of retýxns (pulse overlap)

that may add in a constructive or destructive manner.

L
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General Signal

Most narrowband radar signals can be expressed as [18:2981:

s(t) - A(t)coslw 0t) + O(t)) (75)

where:

carrier frequency (rad/sec)

A(t) - instantaneous amplitude

P(t) - instantaneous phase

A(t) & O(t) vary slowly compared to WO

To 'characterize both direct pulses and a random number of reflected

pulses with both specular and diffuse multipath environments, equation

75 must be extended to a more gex:ral descriptive form of s(t). For any

arbitrary pulse, a general representation of the signal received at the

radar can be expressed as:

ESt) - Re(u(t)expljw0 tMI) (75A)

where:

u(t) is the complex envelope and can be expressed as

ult) - rA(t)expojemt]

r - complex reflection coefficient

A(t) - discrete random process that describes the ,received

pulses in both quantity and time of occurance

0(t) * arbitrary phase relative to some reference

complex representation is, used' to allow combining signals
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Complex Reflection Coefficient

The reflection coefficient of the terrain surface is generally a

complex quantity. r = pexp[jj]. The real part of F (p) describes the

amplitude changes on reflection, while the imaginary part of F (o)

describes the phase changes on reflection. To assign appropriate

magnitude coefficients for the different multipath cases (specblar or

diffuse), an average value of surface roughness was employed. For

average surface roughness, the magnitude (p) of the complex reflection.

coefficients for both specular and diffuse multipath is approximately

0.4 [16:689). To assign the appropriate phase after reflection, a phase

angle of pi radians applies to a smooth surface with good reflecting

properties if the radiation is horizontally (tangentiaX electric fields

across a boundary) polarized and the angle of incidence is small

(7 (specular) [15:444], and diffus4 reflection is assumed uniform in phase

from 0 to 2pi. The complex reflection coefficients are:

specular: F r 0.4/i (76)

diffuse:, r - 0.4/0 (77)

where:

0 is U(0,2pi)

Envelope A(t)

The changing terrain will cause independent path lengths and a

random number of pulse returns, with unique arrival times, at the radar

receiving antenna. Defining a random variable A such that A(r) equals

Sthe total number of returns within the radar pulse repetition interval

"(PRI), A only takes on discrete integer values 0, i2 .2 and the
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event (A=k) is the event k returns occur in the time interval [0,PRI}.

The probability of k returns within the PRI -is given by [11:2851:

P(A = k) exp[-XPRII(XPRI) 1kl 'k 0, i, ... (78)

where:

X average number of occurances per unit time

Let a - PRI

- rate~time - avg occurances in the time interval (O0PRI)

P(A - k) - exp[-al (a) /k = 0. 1.... (78A)

Equation 78A gives the probabiltiy mass function of A(t), the

number of pulse arrivals during the PRI. It describes the Poisson

distribution with parameter a (7:1711. At this point,, it is necessary

to determine the placement of etch returned pulse on the time axis.

Each time interval between successive pulues will be a random variable

and can be termed as the interarrival.time for the Poisson distribution.

To find the distribution for the interarrival times assume:

1) all events are equiprobable

2) the first event (To)must occur after some time t
Cie A(t) - 0 for t < To)

0"P(A - 0) P(To > t) * expi-al(a)O/ol,

P(TO > t) - expl-a]

P(To < t) P(To < t) 1 expl-a] (79)

The probability distribution of the interarrival times is expressed

in equation 79, and its corresponding density function is that of the

Exponential distribution (7:2091. The Exponential density function was



previously defined by equation 69. Thus, the envelope of the general

representation of the signal received at the radar will take the form of

a Poisson distribution with Exponential interarrival times'.

Instantaneous Phase

To account for the phase of the complex envelope, all instantaneous

phases are assumed as time inaependent and equiprobable for any phase

between 0 and 2pi. This establishes phases as being uniformly

distributed from 0 to 2pi and constant. From equation 75A and the

preceding development, the received signal at the radar will take on

three seperate forms:

1) For the direct pulse; 0 0. 0(t) is U(0,2pi), p 1

s(t). - A(t)costw0 Wt) + 01 (80)

2) For specular reflections; p - pi, 0(t) is U(0,2pi), p - 0.4

•." s(t) - 0.4A(t)coS(w Mt) + B + pil (80A)
0

3) For diffuse reflections; *-U(0,2pi), 0(t) is U(0,2pi), p =0.4
s(t) - 0.4A(t)costw 0t) + 0 + 0] (80B)

Observations

The received observations will in general bet

ir(t,e)S - s(t,y)V(O) + N(t)

S . where:

s(t.e) is described by the arpropriate form of equation 80

* NMt) is additive white Gaussian noise

"V(S) is an antenna weighting due to the angle of arrival
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The model for the antenna weighting, V(9), will take on one of

three seperate forms. The direct pulse will have an angle of arrival as

described by Figure 37. The two forms of reflection will have angle of

arrivals as described by Figure 38. Therefore:

1) For the direct pulse; e = target angle of arrival

2) For specular reflections; with respect to the boresight, 6

will be uniformly distributed from 9 O to 8 - BW/2. All

reflected pulses will be allowed to form observations.

3) For diffuse reflections; B will be uniformly distributed from

e - 0 to S * pi. Only reflected pulses that fall within the

interval (0,BW/2) will be allowed to form observations, as all

other returns will not get into the received antenna.

Pulse Overlap

With Exponential interarrival times, provisions must be made for

the possibility of two pulses arriving into the receiving antenna during

the same time interval. Such an occurance would be pulse overlap, and

for simplification this investigation considers any ovelap to be

complete overlap tie for any portion of overlap in the pulsewidth.

overlap is considered to be of length equal to the pulsewidth) with a

resultant received pulse equal to the superposition of the amplitudes

and phases of the two affected pulses. This assumption is reasonably

valid provided no doppler shifts of either'of the two signals occurs (is

the sum of two sinusoids at the same frequency is sinusoidal at the same

frequency).

recall u(t) - A(t)exp(jO(t)]
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in polar form: u(t) = Um/Om (81)

where:

Um = lu(t)I, IrJA(t) pA(t)

Sm = /u(t) = S +

in rectangular form: u(t) X + jY (81A)

where:

X Umcos[OmJ - Re(u(t))

Y = Umsin[Om]- Im(u(t))

Using the rectanguliar form of u(t) as described by equation 81A,

two overlapping pulses can be combined by adding the real and imaginary

components of each pulse. For the two overlapping pulses at the same

frequency:

Re(uW(t)} - Um cos[Om )I Im(U(t)) - Um sin[Mm 1

Re(u 2 (t)W - Um2 cos[om2]; Im((u 2 (t)) Um2 sin(O1 2 ]

where:

Um and Sm are described by equation 81

The resultant magnitude and phase of the sum of the two pulses are:

Iu(sum)I - sqrtt(UmIcos(Om ) + Um2 xos(Om)2 ÷) 2

(Um sin(Om1 ) + Um2 sin(P m2 )) 2  (82)

/O(sum) um Isin(m 1).÷ Um2 sin(Om 2
tan ' (83)

tYr cos(Om 1. + Um 2 cos(Oa )2

Only the magnitude (equation 82) is of interest in the combined

resultant signal. Equation 82 will be used in the multipath simulation
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program to combine two pulses. the resultant signal (ar(t)] is:

Sr(t) - Re(lu(sum)I/O(sum)exp[jw 0 (t)])

= Iu(sum)Icos(w 0 (t) + 0(sum))

Performance

To investigate the performance aspects of target tracking in the

presence of multipath, extensive modifications are required in the

simulation program of Appendix B. Extension to a multipath environment

requires a random number of additional pulses that will form

observations during each pulse repetition interval (PRI). An annotated

listing of the simulation program in the presence of multipath is

provided in Appendix E. In the multipath simulation, each received

pulse is allowed to form an observation, compute an error estimate, and

move the boresight in a direction to reduce the error estimate. To

G facilitate comparison with previous'resultq the simulation outputs, the

tracking error and performance bounds, are again computed after each

pulse repetition interval. Both diffuse and specular multinath

environments are considered.

oisaon Distributed Returns

a stated in equation 78A, the model used to simulate a random

numbe of arrivals during the PRI is a discrete Poisson distribution on

the e velope of the signal, A(t). The INSL routine GGPOS 'provides the

necessary tool for developing the Poisson deviates. The Poisson

parameter, a of equation 78A, is an input parameter, RLAM, of the

simulation program of Appendix 9, and was adjusted during performance
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verification to simulate different multipath environments.

Spicifically, RLAM values of 0.5, 1.0, and 1,5, respectively, were used

to model increasing multipath scenarios. The GGPOS output vector, IR,

contains the 50 Poisson deviates describing the number of random

reflections for each PRI of the 50 pulse run.

Exponential Interarrival Times

For each of the 50 direct pulses of a run, the Poisson generated

number, IR(Pulse) of the simulation, describes the number of reflected

pulses. As shown in equation 79, the time of arrival for each of these

pulses will be Exponentially distributed. The IMSL routine GGEXP

provides the necessary tool for developing pulse interarrival times

within the PRI. The number of required Exponential interarrivals, NEX

of the simulation, equals the random GGPOS output for a specific PRI.

The generated random arrival times, the vector E of the simulation, are

sorted to provide sequential arrivals in time.. The difference between

arrival times, DTIME of the simulation, establishes the response time

that the servo-ioop will have to each generated observation.

Pulse Overlap

As mentioned ear t .ier, pulses are conside::ed to be totally

overlapped if any portion of the pulses overlap (ie if the time

difference between pulses is less than twice the pulse width). Both

direct and reflected pulses are considered for the' possibility'of

overl~p. If overlap occurs, the resultant pulse magnitude is computed

by equation 82. Magnitudes are assigned according to the appropriate
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reflection coefficient times the pulie amplitude for each considered

"pulse. All phases are assigned a random, uniform, number between 0 and

2pi. The IMSL routine GGUBS provides the necessary tool for developing

uniform deviates from 0 to 1, and an appropriate scaling of the

generated vector ot uniform deviates yields the desired raniom phases.

Upon computation of the resultant maqnitude and phase of two overlapping

pulses, a program flag is set which disregards the next incoming pulse

and subsequentialy reset in anticipation of another overlap.

Angle of Arrival

The !Y.SL routine GGUBS also provides provisions for random angle of

arrivals (AA). "For diffu;e multipath. IR(PULSE) (Poisson number of

gemnerated reflections) uniform deviates are generated by an external

call to GGUBS and scaled to be uniform from 0 to (pi). Each reflected

( pulse is 'then assigned a unique AOA. Likewise, specular multipath

uniquely assigns IR(PULSE) AOA's but the deviates are scaled to be

uniform from 0 to BW/2. No AOA is assigned to the direct pulse, as it'

locates the true target location. In the simulation program, no

observations are .formed for AOA's that are greate. than BW/2 (diffuse

multipath). Therefore, the difference in 'the simulation program between

specular tnd diffuse multtpath is the AOA's that are allowed to form

observations (all for spetularl only those between 0 and BW/2 for

diffuse).

The outputs of the multipath simulation program are.plotted for a

stationary target in the following diagrams.
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Diffuse Multipath

Figure 40 is a composite plot showing diffuse multipath effects on

the mean square tracking error for a, stationary target, at high SNR,

with varying degrees of multipath (para&-ntr lambda). The upper left.

corner shows the MSE for the direct pulse with no multipath, and is

provided for comparison. Comparison of the plots with parameter lambda.

unequal to zero with the direct pulse only plot demonstrate that:

1) In allcases, the MSE starts at some large value and settles to

a smaller value. This indicates good tracking capability.

2) Although the actual MSE changes from plot to plot jMSE is a

random variable), diffuse multipath does not significantly

degrade tracking capability. This result verifies a statement

made in the literature [19:112] where diffuse multipath is

claimed to present no serious limitation in direction finding

capabilities.

w
b
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"Specular Multipath

Figure 41 is the corresponding composite plot for specular

multipath effects on the MSE for a stationary target. at high SNR. with

varying degrees of multipath (parameter lambda). Comparison of the

three multipath plots with the direct pulse only plot demonstrate that:

1) Serious monopulse tracking errors occur in the presence of

specular multipath.

"2) At an average one-half additional pulse per PRI, MSE has

"increased considerably but still shows tracking capability.

3) At an average of one extra random pulse per PRI, the monopulse

"radar tracks for approximately 5 pulses and then the tracking

error starts to run away. This is an indication of not enough

"SNR to perform the tracking function (breaklock). Observe that

there are a few points where the error dips down. or decreases,

in the lambda - 1 plot. The boresight has in these few

instances moved to reduce the error and for the purposes of

"this simulation lambda 1 1 is the tracking threshold for the

radar..

"4) At an average of one and one-half additional pulses per PRI,

"the tracking error increases monotonically. Clearly, the

monopulse tracker has lost its usefulness. The monotonic

increase in tracking error may be useful though as a multipath

detector [19:613.
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Specular Multipath vs SNR

2 In general, tracking capability was indicated for specular

multipath only when the parameter lambda (average number of returns in

the PRI) was less than 1.0. Of concern in this section is how tracking

and performance bounds are affected by changing SNR .levels. Specular

multipath was chosen for observation because the previous .results

indicate that no serious tracking limitations are introduced by diffuse

multipath enviornments. Also, since tracking capability was indicated
4

"when the parameter lambda was less than 1.0, the Poisson paramenter

lambda whil, ,onitoring tracking potential will be established as lambda

- 0.5. Figu& 42 is a stationary target composite plot for MSE, thea
CRB, and the ZZB for SNR levels of 15, 7, -7, -20 dB in the presence of'

"specular multipath. Comparison of Figure 42 with the previous direct

pulse only target model shown'by Figure 30 demonstrate that:

I) Even for high SNR levels, the MSE does not settle to a steady

state value but is larger at the end of the run (50 pulse) thanh

an average value of MSE. This is indication of a general

tendency of the MSE to be increasing in the multipath

environment.

2) At -7dB SNR level, although tracking is indicated the monopulse

tracker is'clearly in a threshold situation where there is not

an adequate amount of signal power to determine target

direction.

3) Once again the CRB exceeds the MSE at low SNR levels while in

"contrast the ZZB lower bounds the MSZ, even at -20dB.
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"Lock-out" Technique

In an attempt to overcome the tracking difficulties introduced by a

multipath environment, the multipath simulation program of Appendix E

was modified to "lock-out" all undesired pulses within the radar's PRI.

The "lock-out" technique requires that the first 4 PRI's be tracked in a

multipath environment, thus the radar must be able to uacrifice accurate

tracking in the first 4 PRI's in favor of increased tracking- capability

later in the run (the remaining 46 pulses). Additionally, only one

target is assumed to be present. Discarding returns (as is done in this

technique) with multiple targets present may affect target

resolvability.

The objective of the simulation modification is to look at the

target returns over the first 4 PRI's and extract some form of

periodicity in the target returns. The characteristic focused upon in

this investigation was the time of arrival of pulse returns. Recall

that the interarrival times are random, Exponentially distributed, over

the PRI. The probability that pulse returns would consecutively occur

at the same instant in time for the first 4 PRI's and that the pulse

would be due to a random terrain reflection is quite small (considered

equal to 0 in this simulation). Using this reasoning,- the pulse arrival

time ,(arrival time 0 for the direct pulse, and repetitive) within 'the

first 4 PRI's can be used to,"lock-inA the desired target return and

"lock-out" all other returns not occuring at the proper time instants.

-104-
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The annotated "lock-out" program listing is provided in Appendix F and

includes the following steps:
,/

1) A (4X25) arrival time storage matrix is initialized to a value

of 1.0. The 4 rows represent the first 4 PRI's, and the 25

columns represent the direct pulse and a possible maximum of 24

refulected pulses within each PRI.

2) As the simulation program proceeds, the arrival time for each

pulse (direct and reflected) is stored in the proper matrix

element position.

3) At the beginning of the 5th PRI, each of the 25 columns are

averaged over the 4 PRI's. This column average is then

compared to each corresponding column element. If total

equality for all elements is obtained with the average and the

average is not equal to the initialized value (1.0), or the

next PRI, then the equality designates the desired pulse

arrival time for "lock-i'n. All other received pulses will be

disreqarded in the 5th and subsequent PRI's except the

designated "lock" pulse.

Figure 43 provides a plot of the MSE af high SNR for a stationary.

. target in a specular multipath environment and pulse "lock-out"

employed. For compari3on with the previous performance curves of Figure

41, the same values of lambda (Poisson parameter) were used. Comparison

of Figure 43 and Figure 41 show that the "lock-out" technique has

removed the tracking degradation introduced, by all of the multipath

environments. All of the tracking errors settle in to a final value
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that is representative of stationary target tracking at high SNR

(reference upper left corner plot of Figure 43). It is well worth

noting that this increase in'tracking reliability in a specular

multipath environment is for the particular model of multipath, and form

of radar simulation, that has been defined herein and may require

extensions to combat an actual multipath situation.
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VI. RESULTS AND RECOMMENDATIONS

This chapter summarizes the ..ýevious results for the various

tracking capabilities and the applicability of the performance bounds

for the amplitude-comparison monopulse radar. In addition, a section is

provided for recommendations for continued study along the lines

followed by this thesi-.

Stationary Target Tracking

As Figure 29 indicates, the general trend of the mean-square

tracking error (MSE) for a stationary target is inversely proportional

to the available signal-to-noise ratio (SNR) level. There is also a

general tendency for the NSE to be spread over a larger range of values

for the smaller values of SNR.

Moving Target Tracking

Figure 31 indicated two significant results for the MSE for a

moving target relative to the previous stationary target tracking

trends:

1) For high SNR, the-moving tar et MSE settles out to the same

value as for stationary targ t tracking.

2) For low SNR levels, the moving tar~at MSE is slightly higher

than. the corresponding stationary values, and the 1SE spreading

is noticeably larger (increased tracking difficulty).
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Cramer-Rao Bound

"Present in all of the obtained results is the inability of the

Cramer-Rao bound (CRB) to predict tracking capability in low SNR

environments. Performance results indicate that the applicability of

the CRB as a performance indicator is limited to prior knowledge that

the MSE exceeds the bound (ie the SNR is above a threshold situation).

Further, as Figure 35 ineicates, the CRB is extremely susceptable to

target amplitude fluctuations (producing a much higher error with

correspondingly larger valleys and peaks in a fluctuating target

environment).

Ziv-Zakai Bound

The Ziv-Zakai bound (ZZb) in all observed tracking environments was

approximately constant and no greater than the average MSE excursions.

•j For high SNR levelsi a large magnitude difference exists between the ZZB

and MSE (See Figure 30). Thus, the ZZB is more applicable at lower SNR

levels. For low SNR levels, the ZZB proved to be very tight to actual

performance values in that the bound always existed at, or slightly

below. the arithmetic mean of the MSE excursions (see the -20dB SNR

level plots of Figures 30, 32, 34, 35, and 42). Thus, the ZZB w as found

to be a very good performance indicator for low SNR levels.
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Target Fluctuations

Significant results of tracking in a fluctuating target amplitude

environment are:

1) The maximum-likelihood receiver structure was unaffected by the

nature of the fluctuating taryet amplitude.

2) "Slow" amplitude dispersions only moderately degqLded tracking

capability (see Figure 34).

3) "Rapid" amplitude dispersions imposed serious tracking

limitations (tracking degradation) upon a fixed radar design

based upon deterministic amplitudes (see Figure 35).

Multipath

Significant results of tracking in a multipath environment are:

1) Diffuse multipath presents no serious limitations in target

tracking capabilities (see Figure 40).

2) Serious tracking errors occur in the presence of' specular

multipath (see Figures 41 and 42).

Recom•endations

In the way of recommendations for continued study along the lines

established by this thesis, the following studies art proposed:

Simultaneous Parameter Estimation

One of the possible extensions of the work presented here would be

to include another radar parameter in the estimation process and

investigate the multiple parameter ambiguity fuction. Possible

candidates for the study might be the signal delay or doppler.
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Two-Dimensional Radar

Appendix A providen the work done in this thesis on a two-'

dimensional target tracking radar. The mappi~ig from probability space

to a moment space (in the estimation error) was accomplished via a two-

dimensional generalization of the Tchebycheff inequality. The method

utilized to come up with a two-dimensional mean-square estimation error

requires close scrutiny as to its correctness and applicability.

Further, the error probabilities for both estimation and detection as

calculated in this development require exhaustive integr.ations of

standard normal density functions at low SNR levels. The efficiency of

the computational algorithm could be considerably improved with a Q

function "look-up" table rather than using computer integrations. Such

an improvement would allow runs at lower SNR levels than were possible

in this investigation and would directly provide indication about the

applicability of this form of the ZZB to the two-dimensional tracker.

Simultaneous Multipath Components

This thesis focused in on either specular or diffuse multipath

environments when in a practical tracking environment both components

would be present simultaneously. It is well worth recomumending an,

investigation that considers both multipath components present and their

resulting consequences upon receiver performance. The idea would be to

establish a probabilistic description of the received envelope by

allowing a constant specular component added to a Gaussian distributed

diffuse component (Central Limit Theorem applied to many diffuse

scatterers'* The constant plus a Gaussian should result in a Rician
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envelope distribution. It would be interesting to monitor receiver

performance while varying the specular component of multipath [ie'

varying the specular component from zero (diffuse component only), to an

intermediate value (combined specular and diffuse components), to a.

large value (specular component only)].

U-.

.- •

~~I"2



-- -- 7.--- .7. 7 7- . .'

Appendix A

"TWO-DIMENSIONAL RADAR MODEL

Introduction

In its simplist form, amplitude-comparison monopulse radar

determines target direction by comparing a single pair of signals

received on two antenna patterns simultaneously. This is sufficient to

datermine the target angle of arrival in a single plane (azimuth or

elevation). This simple form of monopulse is the radar model thus far

developed. Three dimensional tracking, however, requires comparison of

two pairs of signals in orthogonal planes (usually one in azimuth and

the other in elevation).

"The two-dimensional development that follows provides only

Ssignificant features and results. Extensive derivations are omitted as

much of the radar development parallels previous work, and a rigorous

• .development is lengthy. The scope of this appendix is to cover the two-

*o dimensional radar model with sufficient detail to demonstrate the work

Sdone in this thesis, and to provide an avenue for subsequent studies.

"Antenna Functions

"Figure 44 shows the monopulse Antenna signal processing circuitry

0 for a four horn monopulse radar. Amplitude-comparison monopulse uses

the amplitude difference between two adjacent horn voltages to generate

error signals 120:461.
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Figure 44. Monopulse Antenna Signal Processing Circuitry
Source: [20:46]

Inspection of Figure 44 indicates that only three combinations use

adjacent horns (A + D or C + B are diagonal combinations). The three

adjacent horn combinations produce a sum channel, an azimuthal

difference channel, and an elevation difference channel. The diagonal

combination is not used, and is simply routed to a load.

Reference 4 derived the three necessary antenna patterns required

for further processing of the two-dimensional monopulse receive signals.

Gaussian beams squinted off the tracking axis 'in the two-orthogonal

coordinate directions, azimuth and elevation, were used'. The Gaussian

pattern is almost identical (out to one-half the beamuidth) to the Sa()

"pattern resulting from the uniformly illuminated rectangular aperature

that was developed in the second chapter 14:2681. Since all angles of

interest are within one-half the beamwidth, the squinted Gaussian beams

"can be successfuly applied to this two-dimensional development. The

"" ' ' ""'"-1 14",



derived sum and difference patterns of squinted beams (for small angular

displacements) are [4:306]:

V 2g 0

V = 29 k BW
e 0rn

V = 2g 0 k m/BW

"where: m

V a- sum voltage pattern

Ve - elevation difference voltage pattern

V - azimuthal difference voltage pattern
a

ck 2sqrt(2)ln(2)B /BW; 2sqrt(2)ln(2)0 /BW

0.98 if s BW/2; 0 -BW/25 s

o pattern gain'constant

Let: go - 0.5

V - 1 (84)S

V - B/sw (84A)

V -0/BW (84B)a

The three forms of equation'84 are the desired antenna function

"" approximations for the two-dimensional monopulse radar model.

Estimation model

Observation Formulation

For the specific case of additive white noise, the received

waveforms for the sum and difference channels are:
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r (t) - As(t)V + n (t) (85)
1. . -1

"r r2(t) = As(t)V + n2 (t) (85A)

r (t) = As(t)V + n (t) (85B)
3 a 3

Applying the Gram-Schmidt orthogonalization procedure as in the

Chapter 2 development, the waveforms can be replaced by finite'

dimensional vectors. Characterization of the received observation by

way of a joint density function can then be made. ,The vector

observations are:

R, = AVsSqrt(E) + N1  (86)

=R2 AVesqrt(E) + N2 (86A)

IL., R = AVasqrt(E) + N (86B)
.3 a 3

The means and variances of the three observation vectors are:

"- ~E(R /AB,9,) - Asqrt(E)V var(R1 /A.B.1) - N0 /2 (87)

"E(R /A,@,#) - Asqrt(E)V var(R2 /A,9,D) - N /2 (87A)

E(R 3/A.,,) - Asqrt(E)V ; var(R 3/A.,.,) N0 /2 (87B)

d The conditional covariances are:

cov(RiR 2 /A,8,0) cov(R1 ,R 3/A.8,P) " cv(R2 ,R 3 /A,9,0) 0 (88)

Equation 88 shows the vector observations to be uncorrelated.

- Further, with Gaussian noise assumed and linear operations to develop

the vector observations, R1 R2 and R3 will be Gaussian and uncorrelated,

* therefore independent. The receiver observation is then the joint

density of three independent Gaussian random variables. Independence

implies that the joint density of Ri, R2. and R3 is the product of the

-116'.
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marginal distributions. With Gaussian distributions and statistics

given by equations 87, 87A, 87B, and 88 the joint conditional density of

the receiver observation is:

pR(r/AD,0) - p(r /A,BD)p('r 2 /A,90 )P(r 3 /A.08 ).)

1.5 2 2[(pi)N0 1 exp(-I/N0 [(r - AV sqrt(E)) + (r - AV sqrt(E)) +
01 as 2 e

2(r - AV sqrt(E)2]) (89)
3 a

* .!_-xirn.m-Likelihood (m__.) estimation'

The log-likelihood equation for a parameter A was given in equation

25 of Chapter 2. The extension to a three dimensional conditional

density described by the vectors RV, R2 , and R3 is straightforward.

Applying the procedure described by equation 25 to the joint conditional

density of equation 89 and solving for the unknown parameter A yields.

Am I¶ + rV+ rv
A~sqrt(E) [rV e(90)

* [(V)2 (V (V)2.( J

Taking the expected value of equation 90 produces the mean value of

the amplitude estimate. Performing the expectation, the amplitude

estimate, as in the one-dimenbional case, proves to be unbiased.

Applying the maximum-likelihood procedure of equation 25 to an

estimate of the elevation angle off boresight (i)_and substitution of

the amplitude estimate of equation 90 into the result yields the

elevation error equation. The elevation error (e) iSt

.11o



2 2

* r BWr *r2[BWC02 9.

ee r 0mlBw + r em0 - B + 02 (1
e I Ml 3 ml 2

where:

The antenna functions of equations 84, 84A, and 84B are

used in the development for elevation error

Taking the expected value of equation 91 produces the average

nilevation error, Performing the expectation operation, the average

error value is found to be equal to zero when t equals the parameterml

6. Assuming zero error, equation 91 can be solved uniquely for the

elevation mimum-likelihood estimate. The result is:

2 2r 2[JBW2 t 0]
"ml r1BW +0 (92)

ml rIBW + r31

Manipulation of equation 92 and taking the expectation of both

(.@ sides yields the average estimate value of the elevation angle estimate.

Performing the expectation operation, the maxim=m-likelihood estimate

for the elevation angle off boresight is found to be unbiased (ie the

average value of the estimate equals 6)'. An operation similar to that

for the equation 91 development performed for the azimuthal angle off,

.boresight produces the azimuth error equation (e ), and an unbiased

maxiuum-likelihood estimate for the azimuthal angle off boresigto.

a - r 0 BW + r 0 9 r[BW4w+ 62] (93)
.A Iml 2M1 3

*2 2
r 3 a r 3 [BW + a1(- O - (.. . 94)

ml.
rl#W + r2g

When joint azimuth and elevation angle es" iates are made, the
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estimates are, in general, coupled'. Inspection of equations 92 and 94

show that both estimates have a scaled Gaussian numerator and a Gaussian

denominator (sum of scaled Gaussian random variables). The ratio of

jointly independent Gaussian random variables has a Cauchy density

centered at zero (11:198]. The Cauchy density is like the Gaussian

density, but the tails are off-axis. moments do not exist for the

Cauchy density, thus making it difficult to determine the coupling

coefficient, for two Cauchy random variables (azimuth and elevation

estimates). This investigation will make use of reference 21 which

generated combined azimuth and elevation maximum-likelihood estimates in

a white noise environment. Reference 21 shows that for a narrow-band

signal the maximum-likelihood elevation and azimuth'estimates will be

uncoupled if the two-dimensional illumination function is separable into

the product of one-dimensional functions (21:441. Since, the

illumination functions used in the two-dimensional development are

Gaussian, the estimates are assumed uncorrelated.

,*.To move the boresight in both, azimuth and elevation, the

relationship between the two error equations (equations 91 and 93) must

be determined. The covariance between azimuthal and elevation errors

after lengthy calculations is:

cov(eA .a E()ee - Me eI1ea- E(ea)I)

2 2 2 2. 8W /21; +0 + V ) + 0(1 + V m V1 1 . (95)

Evaluating equation 95 at the average estimate values for 8 0* ml:

cov(e,.e) a m-0BW2 0I/2[Va2 + Ve2 + a 2( 95A)
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Examination of equation 95A shows that in the no-noise environment

"the covariance will be small for small angular displacements 80.. Since

target tracking implies that both 0 and 0 are less than one-half the

beameidth (1.5 degrees), the coupling coefficient between azimuth and

elevation error is assumed negligible. Neglecting the co'•pling, allows

the error voltages to be used to drive two seperate antenna servo loops.

similar to the one-diAensional servo loop of Chapter 2, to maintain

track-axis alignment with the target.

Discriminators

It is necessary to express the two error equations (equations 91

and 93) as a fu€ction of the difference between the estimated and actual

target locations. Functions of the diffference allow projected

boresight movement along the two orthogonal coordinate axes proportional

Cto the computed difference. with additive noise, the error equations

are random quantities as R 1V R2 , and R3 are independent Gaussian

distributed random variables. Assuming no-noise, the observations will

be equal to their respective mean values. Using the mean values of the

observations RV, R2 , and R3 and expressing the elevation difference as

dO. the. elevation error (equation 91) can be expressed as:

a- - Asqrt(E)BWdB - Asqrt(E)g2 d/BWse

where:

dO - -

Solving for dO and approximating the resultz
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dO = - e /Asqrt(E)BW (96)

e

"where:

(O/BW)2 <<

A similar development for azimuthal error yields an approximate

expression for dO:

dO - e a/Asqrt(E)BW (97)

where:

2
(o/0W) < I

Examination of equations 96 and 97 indicates that the mapping from'

estimated error to step function proporticnal to required boresight

movement is linear. Equations 96 an 97 will then be used to actuate

seperate elevation and azimuthal type 1, improved, servo-control systems

to steer the beam-axia on target.

Ziv-Zakai Bound (ZZB)

The Ziv-Zakai two-dimensional bound is derived by comparing the

estimation problem with the optimal detection problem. The first

development for the Ziv-Zskai bound is to determine the errorý

probability associated with estimating a two-dimensional target

position. The next development is to compute the probability of error

associated with detection of all possible combinations of the two,

angular dimensions. This is an M-ary detection problem where M equals 2

squared, or. 4. Finally, an inequality must be established between the

estimation and detection problems that accounts for all possible target

positions in the a priori interval.
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Estimation Error Probability

Consider an estimation technique for the two-dimensional angle off

,boresight S when it is known that the angle is either at position S or

position S Figure 45 shows the described situation where the two-
2'

dimensional position vector S has azimuthal (9) and elevation (0)

components.

I -oil
S 1

S 2A

- .9 a SII

• ['21
I I II I II

Figure 45. Estimation Geometry

The Ziv-Zakai-approach is to compare S with an ,4verage value of S,

S v*The decision space for the two possible pos~itiorn and their

average is shown in Figure 46.
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"S1 :(8 1 ,# 1 )

S ~S
sav 1 2

.2

Figure 46. Estimation Decision Space

From the law of total probability:

P (total) - M's1 )P(s < Savg /S' + P(S 2 )P(S ) S vg/S3)

1P(S )P(l9 < 01/2 + 0 2 /2 or 09 < A/2 + 2/2)/S -

P((e < 1/2 + 82/2and 0 < 01 /2 + 112/2)/S1)1 +
A A

P(S2)IPC(l > a1/ 2 + 9 /2 or I > 1 /2++ 02/2)/S

P((9 > * /2 + 0 /2 and .< 0 /2 + ( /2)/S A] 98)
1 21 - ¶ 2 *2  2)/2

wheres

the first P{81 ) term is left or below the averages

the second P(S 1 ) term is left and below the averages and

accounted for twice., therefore must be subtracted out

similar arguments hold for the P(S 2 ) terms
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Assuming equal a priori probabilities and rearranging terms:

P - O.SIP((& < 01/ 2 + 92/2 or 0< I/2 + 02/21/$ +
e 11

P((9 > 91/2 + 02/2 or 9 > 01/2 + 2/2)/S2

0.51P((O < 0 /2 + 02/2 and A < 9 /2 + 02/2)/S +
1 2 V 1 2

P( > 0 1/2 + 02/2 and > 0 1/2 + - 2 /2)/S 2 )1 (98A)

Consider the or terms of equation 98A and let:

dO - 01 - dO+0 01 -= -ada
2 1 2 1 1 2

d 02 1 1 v2 "d 1 + '1 -0 2 -d

P((9 < 10/2 + 02/2 or 0 < (l/2 + 92/2)/S1

P(o9 - 91 < d9/2 or - 0 < dO/2)/S 1 ) 198B)

Pce > 01 /2"+ 02/2 or 0 > ei1/2 + 02/2)/t2-

P((0 - 02 > -d9/2 or 9 - 92 > -d4/2)/S 2 ) (98C)

Imposing sy=etric target positiona let 31 --2 and fix d9, dt at the

maximum usable angle off boresight (ie dO - dO - -BW). Equations 98B

and 98C become:

P((e - B < d0/2 or -0 1 < d-/2l/S

Ple 1- Iý > V/2/0or o i1t - 0l W BW/2/0 1 ) (98D)

P (e-2 > -dO/2 or 9- > "dO/2)/S
2 2 -9 2)/2

P(c; - 1 BW2/2/0 1 or (98E)

Substitution of 0 - 0 and 91 - into equations 980 and 98U and scaling

by 0.5. the terms can be added together. Equatio., 90? is the result,

and represents the or term contribution to the equation 98A estimation

probability of error. The or terms can now be 'expressed ast,

-,24-



O 91 - BW/2 or - (1 > BW/2) (98F)

To proceed, equation 98F must be transformed into a second moment.

Reference 22 provides a two-dimensional generalization of Tchebychev's

inequality 122:181:

POO - E(c)1 sqrt(var(c)) or Ie - kI)Il _>sqrt(var(C))) <

11 + sqrt(1 -p 2 )/ (99)

where "

p is the correlation coefficient between 6 and 0

Following a partial development in reference 22, and applying a Biename'

inequality of the nature of equation 38:

P(I9 - 1l ) BW/2 or ! - 0l > BW/2) <

E(maxl( - 0) .(,. ,) ])1, + sqrt(, p 2)I/(BW/2) 2 (99A)

Assuming 9 and 0 are uncorrelated:

P(J; - l _) 31/2 or 1; 1 l_ 31/2) (e 99(s)/1 )

where:

.(, - E(maxO - 6)2,(; 0 ) 21)

- two-dimensional mean-'square estimation error

Now, consider the and terms of equation 98A:

2 2

P(le < e/2 + 2 /2 andd V < '1/ + •2/2~1/8)

POO 91 '1 DM/2/9 and i 11B//)10

P((l > 01/2 .+ 90/2 and 0 >,Bi/2 + 92/2)/S)
1 ¶ 2 2

P( - ) 3Bt/2/0 and 10 - 1 > B/2/0) (10A"
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Scaling by -0.5 and adding equations 100 and 100A results in equation

1O0B, which'represents the and term contribution to the equation 98A

estimation probability of error. The and terms can now bp expressed as:

-P(19- 9> BW/2 and 10 - # I' BW/2) (1OB)

Assuming 6 and A are independent. equation IOOB becc.aes:

-(P;- 1 > BW/2)P(Il; - 01 > BW/2)) (1ooC)

From the one-dimensional development, equation 100C becomes the product

of scaled one-dimensional error probabilities:

-[ ;2()/(BW/2)2;2 ()/(BW/2. (1OOD)

where:
.2(0) . ;- .12) me&ansquare el error

-2 1; 12)

e (B) E [€l; - mea - mean-square az error

Combining the results from the or terms (equation 998) with the

results obtained from the and terms (equation lOD), the expression for

estimation probability of error (equation 98Albecomes:

^2 2 2 2 2(0)P a (est) -,e (3) -. 2e (0e ()/BWW18/SW (01

Detection error probability

The detection error probability is the error probability for

deciding whether a target is at SI or S2 when it is known to b.. at one

of these two positions with equal probability. The decision regions for

the two-dimensional case are, shown in Figure 47.
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REGION 2 REGIOM I

1e

REUION 3 REGION 4

Figure,47. Detection Decision Regions

The four detection hypothieses arel

H R Asqrt(z)v (+01,+O ) + N

R2 - ksqrt(E)V a(+a t+$ t) +N

R 3 rn ksqrt(E)V a(+9 g'+0 )I + N 3

H R = Aa rt E) a£ - t . #t ) 3

R2-ApqrtCZ)Ve(-0S #+0 t) + N 2

R a Asqrt(E)V (-0 ,+0 )+ ?I3a to t 3

H:3 R A~sqrt(E)V (_9tf-0 t- ) + NI

R2 = Asqrt'(E)V (-90 -6 ) + N2 t t

R3  sqrt(E)V (-0 '-S + ma t t 3

H:4 Ra Asqrt(E)V a(+9 t -0 ) + N 1

R2 is Aqrt(E)V (+a '_0 + N2,. t 2

R3  Aaqtt(E)V (+6 '_0 )+ N3 t t 3



Due to the symmetry of the four decision regions of Figure 47, and

with eaual a priori probabilities, the detection error will be

equivalent to the error in a single region. Using hypothesis H1:

Se det} P 12 < 0/H IPM1 1 2) + P(1 1 3 < O/H1)P(11 3) +

P (4 0/HPMl (141 (102)

where:

1 - natural logarithm of the likelihood ratio

= ln[p(r/Hi)/p(r/H.)]
" .2

Consider the general log-likelihood ratio (1):
i+

-i -N 0  [(r 1 - E(RI/Hi) 2 + (r - E(R2/H)) 2 + (r 3 - E(R 3 /Hi))

ER/)2  - (/) 2  
-2

-(rl " ER/Hj -(r- ER2/H -(r3 - ECR 3 /H19

-[2Asqrt(E)/BWN0 j[r 2 (a9 - ) + r 3 lj - *i) +

"O.5Asqrt(E)/BW(Bi2 
- 2 2 2

where-

"E(R ) - equation 87, and is independent of D,

E(R ) - equation 87A. and is independent of 0
2

E(R 3 ) - equation 87B, and is independent of *

"An equivilant decision rule considers 1' where:"ij
1' - 1i(BWN )/(2Asqrt(E))

ij 0

The general conditional mean of I follows as:
ij

"E(l'i /H1) r Asqrt(E)/BW (9i - +'0.Se 2 + 0 2 2
t '

... •tlml ( - S• ]113
(0 i 1 (103)
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"A similar analysis on the general conditional variance of i' yields:Sejl2

var(1'1./H1 ) = 0.5NUi - 2 + (0i - ) 2 ( (104)

To uniquely determine the density functions of the various

combinations of liii the statistics must be derived from the general

- formulas given. With Gaussian statistics for each of the joint

conditional densities, 1' is the sum of independent Gaussian random
ij

variables, therefore Gaussian.

"Consider the combination i - 1. j 21 i a Ot,+ , (-9t,+0

. E(* 1 2 /H1 ) - 2Asqrt(E)l 2I/BW var(V1 /H) - 2N0 2 105
12t 12 1 0105)

-.5-12 2P(I' 1 2 /H1 1 = [k (pi))l-'exp[-(k1 2 )1(' 1 2 - 2Asqrt(E)2 /RW) I
1 1 12 12 1,t

S. where

2
k... 4N 0t

SConsider the combination i - 1, J - 3i 1 (+, + - (-t-0t)

2 2 22N2
/HE(l' 1Y -2Asqrt(E)(2 +t )1/BW var(V1 /H 2N(0+t 2 +t 2  106)

131t t 13 0t t
-. 5 -12 2 2p(l' 1 3 /Hl1 =[k 1 3 ((pi)I exp[-(k )1113 - 2Asqrt(E)(et2 + 0 t)/BW) I

where

-k1 3  4N(9t 2 +

Consider the combination 1 - 1, J = 4i i 0 1 (+00+9 j = (+9*,-0. l

t t t t;•E(I' 1 4 /H1) - 2Asqrt(E)9 /W•vrl'4HI (N0t 107)
2 2

pl' 14/Hil (k (pi)' expi"(k 2Asqrt(E)o /BW) 114 ¶ ai 14(p) ex 14, 1 14 t

where,

14 0ot

"Using the appropriate change of variables in each of the three density
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functions described by equations 105, 106, and 107, the detection error

(equation 102) can now be expressed as:

Pe(det) = P(1' 1 2 )Q[E(l' 1 2 /H 1 )/sqrt(var(l' 1 2 /H 1 ))I +

P(l' 1 3 )Q[E(l' 1 3 /H1 )/sqrt(var(l' 1 3 /H1 ))M +

P(9l' 1 4 )Q[E(l' 1 4 /H 1)/sqrt(var(l' 1 4 /H 1))1 (108)

where:

Q[a) sqrt(2(pi))l' ,exp[-x2/2ldx

statistics of 1' are given in equation 105• 12
s
statistics of 1' are given in equation 10613

statistics of i' are given in equation 107
14

. Substituting the appropriate statistics into equation 108 and

simplifying:

P e(det) - 0.33[Q(A tsqrt(2SNR)/BW) + Q(A tsqrt(2SNR)/BW) +

i . Q(Asqrt(8 2 + 2l )sqrt(2SNR)/BW)l (108A)

where:

SSNR - E/N 0

iP(' 2 P(l' -P(l' =1/3
12 13 14

Equation 108A describes the P of the best procedure for deciding
0

whether a target is at S or -, * when it is known to be at one of thesei1
two locations, with equal probabality. To compare with the results

"obtained in one-dimensional tracking consider 9 0 Ot
t t

P (det(0,0)) = .333(Q(0) + Q(o) + Q(O)j * 0.5

This result is the same as obtained in the one-dimensional case where

the target seperation angle was zero. Here, target seperation in two
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orthogonal planes is zero and once again the detection error indicates

that the targets will be difficult to distinguish.

Detection/Estimation Inequality

Following the Ziv-Zakai method, a performance bound can be derived

by comparing the estimation problem with the optimal detection problem.

The estimation decision rule error will be lower bounded by the error

associated with an optimal detection scheme. Establishing an

estimation/detection inequality:

P (e det) < P e(est) (109)

Using the estimation probability of error as described by equation 101

and solving equation 109 for the two-dimensional mean-square estimation

error:

-2 ( 3 2 P 2e(B). (0)/BW2
a S WP(S,-S)/8 + 2 6 2 (109A)

where:

P (S,-S) is described by equation 108A

^2a (a) refers to the mean-square error for parameter a and

given by the expression in equation, 40C

Equation 109A is a lower bound to the mean-square estimation error

of any pair of values of the, parameter S, which are 3W units apart.

Extension of equation 109A to consider all possible positions in the a

priori interval of the parameter S, and using the worst case error of

all possible a priori values results in:

* -' .13 1 -



J

(CS) > max is cSP .-S)/8 + 2;2(e) 02 /S21 (109B)

-t-max
0<_et(e0 < 0 0 ,.

-- -- max

where:

"S [tl

Observe in equation 1098 that the lorer bound does not exist at S -

0. Thus a restriction on the bound as deucribed in references 9 and 12,

and previously' used in equation 40C of this thesis, must be imposed.

Further, because of the symetry invoked, the bound only considers

positive values of azimuth and elevation. Positive parameter values

allow the aubstitution of the magnitude squared of the parameter for the

square of the parameter. In vector notation:

S2 (pon S)- IS,2- ST-a .]I't -t

- et 2 ÷

Redefining the bound of equation 109B:

a ( ,) . s)2P 2 ^()e2(9)/ns,2](109)

a ~ (S(0a si( ecs)a2 9 t e t/$n-ose ,<e

wheres

sin(e ) - 0.5(sin(S-x) + sin(e)I
p max

sin(9 ) -0.5(sin(a), + sin(]))
p ~max,

Equation 109C will be the form of the Ziv-Zakai bound used to

predict the mean-square estimation error for maximmi-likelihood

estimates of elevation and azimuthal angles.
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Radar Simulation

To compute the mean-square tracking error and associated

performance bounds of the two-dimensional amplitude-comparison monopulse

radar, a simulation program was designed for the radar model. as

developed in this appendix. An annotated listing of the simulation

program is provided in Appendix G. The program is a straightforward

extension of the one-dimensional simulation provided in Appendix B. The

major modifications and significant features are:

1) Three independent observations, are required.

2) The Cramer-Rao bound is not computed.

3) Provisions for moving targets are reroved.

4) Equation 109C (ZZB) is never evaluated at 0 - - precisely

zero. The slight offset from zero allows computation of the

second term of the described equation.

5) A storage matrix (16X16) is established for the .evaluation of

equation 109C (ZZB) for the various segmented angle intervals

in azimuth and elevation. The stored values are then sorted by

row and column, and the maximum is, picked off.

Performance Verification,

Before comparing the results with the one-dimensional tracking

results, a few 'commient about ,the' simulation is in order. For each

computed bound of the simulation, the Q function is evaluated'by

integrating the tails of a standard Normal density in an external call

to the XMSL subroutine MDNOR. One run calls the MDNOR subroutine
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approximately thirteen hundred times. Each SNR level conducts fifteen

runs, therefore approximately nineteen thousand integrations. For lower

SWR levels, the area inteqrated increases, and the time consumed for

each run is quite lengthy. Low SNR runs were not possible because of

time limits on the computer system used (CYBER).

Figure 48 is a stationary target composite plot for the two-,

dimensional target mean-square tracking error (MSZ), and the Ziv-Zakai

bound (ZZB) for SNR levels of 30, 25, 15, and 7 dM. Comparision of

Figure 48 with the previous stationary one-dimensional target tracking

results demonstrate that:

1) The MSE is much larger for the two-dimensional tracking case

[reference approximately 3X10E-5 for one-dimension at 15dB SNR

(see Figure 30) and approximately 20X10-5 for two-dimensions

at 15dB SNR (see Figure 48)).

2) At 7dB SNR, the two-dimensional MSE grovs unbounded. Breaklock

is assumed to occur at this point. This was not encountered in

the one-dimensional tracker.

3) For all SUIR levels c nsidered. the two-dimensional ZZB lower

bounds the MSE curves. Although not as, tight as in the one-

dimensional tracker, the two-dimensional ZZB is an adequate

performance indicato r and merits further investigation.
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Appendix 8

Proqram Listina

* PROGRAM: SIMULATION OF AMPLITUDE-COMPARISON MONOPULSE RADAR
* PURPOSE: COMPUTE THE TRACKING ERROR AN4D PERFORMANCE BOUN'DS
* INPUT: DESIRED SNR LEVEL(dB), TARGET MOVING OR STATIONARY *
* OUTPUT: 3(1 BY 50) VECTORS CONTAINING AVG ERROR, CR9, ZZB
a COMPILER: FORTRAN9 VERSION 5*
a EXT CALLS: IMSL ROUTINES G6141L, MDNOR

DBBSI~h "J(50) OMGUI (5)AJ6(50) ,PRE(16),k(50) ,B(50)
DIJ614ESIV(N 15),SER(15,51),SERC(15,50),SERZZ(15,56) I
RGA WNM,1N2, AffNWAC # INTESEN TO EMALI
INTESER PULSEARGE # I A RMTOINTEGER
DOUBLE PRECISICN DSEEDI,DSEED2 0 HOU1LE PRECISICN SEEDS

fIWQiT STATBI9WS

M USIBLE 96 VALUES (00I
5 IOETINUE *

WRITE(.,1861)
Rw, lim TAWE 1MUJN 83 QUIT

IF(IMS.E2.O)60 TO 560
IEITE(I,18hI)
WRITE0u,1628) #
REA.1,11,12 * ST~AT/SDSW VAWLUES -

DATA DSEEDI,DSEED2/123457.ODO,325017.000/
DATA DPPAD,R0,VEL,FU,mW57.3.4"IO.,257.4,1.E-6,3.8/ I
DATA PR!,SI6.WfGA,9V,SWi/lO.E-3,636.,636.,5.fl4.E-3/

Nt.5Q 50 WMSIAM4 WIPES #

DO0500 IP!1,12 24 SIDO LOOP #

ROD"I INITIAL WWIE
DO 200 M,15. 0 JoRW4NUMBR
CALL GSflL(DSEEDINR,R) 0 NO0W. DEVIATE 6ffflATORu
CALL 6Nt1(DSEED24N.8) 0 NOOKW DEVIATE SMIEMTORt

I RIACE TAWGE IN KEIWIMT #
BSITE-0.I # STATINAI
7R6TS1.81 * STATIRMI
IF(INS.E0.l)8SITEuI .5 IWNPIN6
IF( JNS.E9.d)TR6T'0.O GJN

I TRcKING CAIcLMATIONS #
THETAnTRST-OSSTE a TARSET W46L OF AHOIWL #
lot
DO0111 PIAGE-1,2 R PLSES a
PULSE01FLOAT(PULSE) CU cURTONIDIEIC a
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SEIM'ST(N.IZ(VELIRIPIJLEC)"2 * DTEOMING WM #

NPASFdL/943 NOI~SE PooR #
MVIWCS TPA) 'NOI!SE AMLITUDE

N294MO)W WO U NfLECBS 2
Y0IUMD(I.UTHETA/SI ANO iT I 1FF WdE1GTIN6
YSO(S5T(2.)/2.)§Ii.4COS(2.O94ITlETA/5W)) # O SLB~IM EI6NTINS
*I949SwT(ESYM~SM#4 # SUN CIwE O9SERITIO4I -

or~#ISU (E6Y)WD#Aw DI0FF CIWIE OBSEFATION.
LRR1N~42~S a ERROR SINK. #

IF(EURl(SUlT(2.#E6flEM9).GE.l.99) ERM'4.99aSMT(2.IE6T)if # LIM1T POSITIVE EROR I

IF(ERL/(SQRT(2.fE5)W9) .LE.-f.99) ERR-4.99aSGM(2.aE6Y)4MU # UNIMT NEMTIW ERROR #
OT1EA-(I.UIASN(EWSUTIEI)1)) STEP PROPORTIONAL TO ERR'
SE3I JEXP-SGIPI )(CO(U~IP! )SINIREMIRJ) a SERVO RESPOSE

IF('DIER.STU.IOflETA"OTITAf TMCK PROPERLY

IF( IS.ED. I)TR6TuATffi((ELI9FLSEIPR)/R1)IOM # a MMWING TARGET POSIT130
flETATRMT-ISJTE t NEW MUE OF MIRIL #

SER(JPLSE)OTHETA"2 I SNUBD uRmR
# COfVTE cmWER-M SCw"

'-I.V"5"(4.IISITIEMM) 841*O

* CO1MM Z1rJ- M- IM
TIETP(ASIN((SINW/2).SIWN(MSTIETA)))'O.5))'OPW I A MITMETIC IMM ANGLE

TNETb.THETAOPM I
DAA PWE/16.0/ # INITIALIZE
MIGLEUI ..AS(INT(I0.#TVEP)) # W4GE X1S FOR DO LOWP
DO " NwlMuSLE # 01ECK FROM O-TNETP a
WNCLuFLOAT(AN6LEM/IJIM0I
w.5.,2.2.acO(2.O,4#4CAIW/S)#.S.SCOS(4.18BV4M.CdI) a

*-CDS(3.764NCALC1PW) # ANTDION E16TING

.. COS(.760lCALUMfd CI!RREIATION COEFfICIINT'
A&u(SGt((1.-RH0)EJ.9I3462.))*9 INPUT PAWMETER AX I

CALL UOR(AX,PX) * COMPTE ARM -lrFTO AX
I FUNCTION (Pe)

NCALOIWrAWOMDI
PREMBOO~(SIN(l.I4CA.C"2 * KA

95 CONTINUEI
00 14 JP1915I # SORT MOUINE PRE()
JKIu.JEII
Do 1 KJ.JKI,16 I

IF(PRE(JK).LL.PRE(KJ))6O TO 92 I

STORIBEMPEJ
PRE(JVPM(K)
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PRE(KJ)usrI

9n CONTINUJE -

CONIPR(1) PRE(1) IS MAIMM~N

SERZZ(J,PtLSEWxZZI

201 CWfl1NUL 1

UNITE0,103040R
WIITE0a,1140) N EWCE

* (EJ MG MROS R 15 RIMS

0046 "1 IS N-11

9DM24.3

00 386 04~,15

SIHzlH.SERC(L ,K)

3M CW *N

OMZKý4tIW15.

46CONTIlIE
6 TOS 1. ONYlay outisIIN INS#

FM F UNTSATU¶MT IN/OUT
MlS FOSMT(1X,"NPIIN6 76T,STAT 'UT, 01 QUIT(1:NPI,2:STAT.0OZUUIT)') I

1020 F0SNT(1X,'6DTE 901 START/STOP POINTS(IE STARTa1,STOPnI5)')
11336 FCmT(/,X,'S* LJEM 06) a ',EII.S,/) *

1056 FCFT(10X,3(3X.El1.5)) I
5096 STOP

ENDI
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Appenix C

Program Listina

* PROGRAM: SIMULATION OF OSLOLWa AND *RAPID' AMPLITUDE FADING
* PURPOSE: COMPUTE THE TRACKING ERROR AND PERFORMANCE BOUNIDS
* INPUT: DESIRED SNR LEVEL(dB), TARGET MOVING OR STATIONA~RY,

* ~TYPE OF FADE CHA~RACTERISTIC DESIRED
* OUTPUT: 3(1 BY 50) VECTORS CONTAINING AVG ERROR, CR6, ZZB
* COMPILER: FORTRAN, VERSION 5
* EXT CALLS: IMSL ROUTINES GGtflL, MONOR, GGWIB

FRO WE v

ODOISIEN AJ65S) AJ1,A16C8,tU)R0,e0A51J f 50 MIPITUJD SAIRBS
DM161G 9JC15),SERt(15,58),SERCR(15,56),SERZZ(15,50) f
VAW. NPEN,N2MfflPMMCACI.
INTEGER PULSE$4GL,SMW # FADE TYPE: SWRLS
OOIULE PRECISICH OSEEDI ,DSEED2

* IPU STATOWIS
DATA *

WUiTE(',INI)

- ~IF(JNS.EI.6)60 TO 5006 #
URITE(I,101I) I
WIdhTi(,1821) a

WIiITE0a,162) #
VA04,3RL6 # INPUT FACE lYPE

f R0AW PAWETERS
DATA DSEEDI.05EED2fl23457.000,325017.000/ 0 #
DATA DPM0,RO,YEL,PFd,5M57.3,4fl0.,257.4,1.E-6,3.0/ a
DATA PRISI6iNGAE,SAiRI0.E-3,636..636.,1.E-V/ # #
ALPW*3.9S94 # RAYLEIGH PAWCEER-STOEV #
Sx2 # SWIPE PAP4IFER
TsWR(2.)MILPM # SMAE PAETER
W150

Wpm 1 50 RAYLEIG SqILES I
IF (51JERLGA.EO.Ifl 0 15 I5~PLES SLWJFACE a
DO 0500 1P11,912 #

DO0200 M131
CALL OftL(OSEEOI,10,A) a
CAL GIIL(DSEEO2A,N ) #
CAL.L 6WdIISEEOI,S^MA) a IEIDILL DEVIATES
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MMLAE TAROE IN BEMIJID1N
BSITE4.8 a
TROTU.N a
IF(IHS.EQ.1)BSITE=1 .5 a
IF(IMS.EQ.1)TRGT=0.O 0

* RACKING CALCULATIONS
THETAMTRG-OSIT *
124
Do 101 PtLSE.I,50
PtLSE~iLA~T(PULSE)
M.SGM(Rl#n2+(UEL*IPRImtSEC$'42) I--

IF(IS.EG.1J9a~i(ROLWOWWV FADE MV f

# *SG'FAEN

WEDS1(I .8Su1NETAMi) #
VS.(S9RT(2.)/2.).(I.,COS(2.O"4aTNETA/W9) #
RI3%'SGR(EGY)VVS4Nl
1249fS~t( E6Y)#W

IF(E3'(SWT(2.46M)'lM.E.1.99) ERRSI.9"aSQRT(2. *EBY)' WV
IF(EJWASMTr2.'sM~'wr).LL4.rn. EW-1.lloSMT(2.§E6Y)'W9 f

* ~ TIEAm-(IWI .9S)fSIN(ERR(SURT(2.'EEI)a9)) #

11fl17MSTMEMS~OOTHETA
IF( NS.EG. I )TROTaATft4 (ELPSECaPRD/ */ODPWO
THETANTROT-OSTE I
OWSWOPMO I
THETABTNETA/DPMO

*TRACKING ERROR
SEl(J,PIXSE)-TIIETA##2

IC-MM'T CMlR-MO got",
D840mm(2..3 9a#~a2)ae2.S65,l .77uC0S(3.76oTHETA/hd) I

a-I.095aCOS(4.l88#7HETA/ghd)) . I

SERCR(J ,PIJSE)uCRB
*CMIPIT ZIV-ZAKAI B0LND

TNUETP(ASIN( (SIN(df/2).SIN(ABS(TNETA) ))* .5) )IOPMO

THETANTHETAWOMo
DATA PRE/16o0.O/ I
AM46Lu.AOS( NT(1OMTHETP))I

DO " ti'1$Gm 3
NCALc.(FLOAUN&GE)/OIJON4*

0-c0s(.70#cALc/a)
* ~~~RNO'(I.5.2.#cO(2.j940iWMVBWM4.5.c9S(4.1884(MCfS9) .I



*+COS(3.76WACALC/5)/W

CALL 000OR(AXP) *

NCALDCALC/DPRAD
PRE(N)UxI(SIN(1.vICALC))I*2 f #

90 CONTINUE #
DO 94 JK-1,15 a

DO 92 K".1,16 f
IF(PRE(JK).LE.PRE(KJ))GO TO 92 f

* ~STOREUPRE(JK

PRE(KJ)4TORE f
92lH INUE f

94 WM(ITIE a
* ~~ZZORPREMl) a

SERZZ(JlPIJLSE)zZZ3 B

100 CO(TINUE a

WRITE(f,0o)os a
WRITE0a,l04) f

MJERAGE ER_ ER 15 mm.
DO 400 N-1,5

50114I.1

DO 301 L-1,15 f
SII"OISER(L,K) f
5J1SUMI=M 4SERCR(L,K) f
SIUl2-MSMJ2SRZ(L,K) f* f

*300, CONTINE f
AY6(KuSlIW15. f f
0J61(K-SMNl/15.f
AVO2(K)xS1/1. #

*OUTPUT RESULTS f
WRITE0,,IlO50)AtJB(K) ,AV61(K),AV62MK

* 400 CONTINUE a
500 CONTINUE a

6010 5 #
*F0RMT STATMM~T IN/OU f

1000 PORMAT(X,IIOVING TGT,STAT TOT, OR. 0WITMM9E,22STAT, 6: QUIT)) f
1010 F0OMT(1X,'9ERJ/35ý30,25,2O,15,0,715,341,-2,-59,7,-10,-20/',/) f
1020 FONVTIX,'BTER M1 START/STOP POINTS(IE STARTUISTOPSIV)) 0
1025 FOItT(1X,'01TE DESIRED FADE MIODEL. (5LOd31,FASTm2Y)' I

1036 FOFMT(/,1X,'N1 LEVEL (09) a ',EI1.50/
1040 FOM(4tA6ERX' SaR'&," EZ'

* 1050 FORMT(IOMM,3(,1.5)) f
*5009 STOP f

END'



Appendix D

Program List ina

* PROGRAM: SMOOTHING OF ORAPID" AMPLITUDE FADING OVER N PULSES
* PURPOSE: -COMPUTE THE TRACKING ERROR AN'D PERFORMANCE BOUNDS
* INPUT: DESIRED SNR LEVEL(dB), TARGET MOVJING OR STATIONARY,

* ~NUMIBER OF INTEGRATED PULSES DESIRED
* OUTPUT: 3(1 BY 50) VECTORS CONTAINING AVG ERftOR, CR8I, ZZB
* COMPILER: FORTRAN4, VERSION 5
* EXT CALLS: IMSL ROUTINES GGNML, MONOR, GGWlD

PROW~ FAOIX #
# DECLARE VARIABLES

DIMENSION AJG(50),AVG(50),AV6(50),PRE(!6),R(50),B(50),M(51) #
DIMENSION 24I(15),SER(15,50),SERCRl15,508,SERZZ(15,58)
REAL NMA,NI ,N2,NAIP,NCALC
INTEGER PULSE$4GLE#
DOIALE PRECISION DSEEDI,DSEED2 #
DATA IJ3.3.5,2.1.I..,,.l.I

5 CG(TINUlE
WdRITE(I,I000) I

IF(IIIS.EQ.0)GO TO 5000
WRTE0l,I1I1)

IdRi(E(#, 1020) I
READ#, 11,12
WRITE(*,1025)
WRITE0 ,1827) *
READ*,m # HmPULSE3 INTED6ATED #

I RADAR PARAMETERS #
DATA DSEEDI,DSEED2.1123457.ODO,325017.ODO/ #
DATA DPPAD,R0,VEL,Rd14/57.3,49On.,257.4,1.E-6,3.o/ I

*DATA PR, ,SIG, OMEGA, SM4R/10. E-3,636.,636., 1. E-3/
ALPW3 9994 #

T=SGRT(2.)*ALPfM
N4R=50 9

DO 500 IP%!1,12 #
garmS41(P) #

00 200 M 115
CALL Ggft(DSEEDI,NR,R) I

CALL 60 ftL(DSEED?,ND,9)
* DALL. GGW8B(DSEED1,S,NA,A I

f Pt.ACE-TARME IN BEAVIDTH
'BSITE4.0
TRGT48.88 #
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a IMCING CALCULATIONS

MWQETOFrBITE MOVE

DO 106 PILSEuINO I
IrSU".s INITIALIZE EMUO SUM

DO15 is S~, - 5IOUTNINSML4 DO LOOP
PtULEcaPtlLSEC~l

msS~(RlHa2.(lVEPRI.PULsEC)I12)a

W2()WI~

'YONsiNK .SSIIHA/W)
v3m(SURT(2.)/2.)*I(..coS(2.094ITNETAW)) a
l1RI-ASQR1(E6Y)*YS4MII

IF(ERR/cSUfT(2.aW)*AM9).6E.O.": E&L99aSWT(2.*EGY')9 a
IF(ERR/(SWTC2.*ESY)aW).LE.-l.") ERm.-4.99aSWT(2.aEBY)lAMP f

SERV~wt .I-P(-SISPRI).(COS(ME6Aa I)-SIN(tRIEAg~t)) a

DSmOTS" ElaOTHETA f ACtHULATE ERROR SIN ,
156 COTIU f

DIHEOTWVLCT(M) f Njumf ERROR
BSITE*SSITE4SERVOfDTHETA
I F(IMS.EO. I )TR6TaATAN((QEL*PULSEC0II)/RO) #DPRA

* rI4ETWTNETWDPMO
v TFACKING ERROR &BOUIDS

*SERt(J,PULSE)-TiHrAII2 a TPACKIN6 ERROR
D8@l"2.I9ImIW #,Ia 1u2.8"1 .77aCOS(3.76'THEtA/fl) t

* I-1.0IOS(4.1881THETWOW)
CW(WI"fl/OeBM I CRAMER-RAO BOUND
SERCR(J,PULSE)--tR9
THETPs(ASIN( (SIN(BWfl) *SN(A8S(TNETA)) ) #0.) )~ fop"

THETAITHETAIO# Oa
DATA PRE/16u0.0/

*NCALc.(FLOAT(AlLE)/IoO.)oN



RI(0. .5*2. lCDS(2.O94iCA1C/Bd)+0 .5.COS(4.lS8t4CALC/3d) I

#4COS(3.76W4AVO/MAI
A~(ST((1. -RHO) iW*5NNE/2.))ViIP

CALL. MONO(AX,PX)

NCALDWACADPR0 I

PRE(N)UXQ(SIN(1 .4iCAC))*'2
P3 CONTINUE

DO 94 M-=1,15
JK1JK4I
D1692 LKI,1lt6
IF(PRE(JK).LE.PRE(KJ))60 TO 92

PRE(JK)uPRE(Ki) a
* ~PRE(KJ)wSTORE

92 CONTINUE
94 CONTINUE a

ZZ93PRR(16) f ZPJZMv~I Bon*
SERZZ(J,PULSE)aZZD

100 CONTINUE f
231 CONTINUE f

WRITE0a,103u)k #
IJRITE(1,1046)a

* ~ EERRMOVS(PER 15 RUNS*
00 as K-,51
Sw".eo
511114.3
541204.0 a
DO 300 L-1,15 a
SIIISWISER(LK) a

* ~SUMInSII14SERCR(LA,K
St"SU25L12SERMZL,K)I

300 CONTINUEIiVM S~V5
AV61kMuSUMI/ 5. I

AV62(IC)u5WN2/15.
MM OU~ RESULTS

URITEa, 105O)0JSUO,AV~l'KMJ2K)
400 CONTINUEa
500 CONITINUEI

60 TO 5
a UTSTATBEMETS IN/m

1000 FORMT(lX,'?10JIN6 TGT,STAT TST, OR QUIT(1:NMJE,2:STAT,0:0UI7)') a
1010 FON'tTC1X,'SNRV/35,30.25,2O,15,10,7,5,3,1,-2,-5,-7,-10,-20I',/) I
1020 FMgT(1IX,'B4TER MP S7ART/STOP POINTS(IE START-I,STOPI15)') I

1025 F0U'T(IX,'PULSES INTEGMATED/I,2,5,10,25,50/',/)I
1027 FOIMTT1X,'ENTER DESIRED NUMBER OF INTEGRATE PULSES')'I
1030 FOUtT(/,1X,'SMd LEVEL (09) a EI5/
1040 FO3WT(14X,'AJGSER',SX,'AJGSERC12',0x,'A,6SERZZ')I

5000 STOP*
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Apedi/

Prooram ListinQ

* PROGRAM: SIMULATION OF MULTIPATH EFFECTS (TERRAIN BOUN4CE)
a PURPOSE: COMPUTE THE TRACKING ERROR AND PERFORMANCE BOUNDS *
* INPUT: DESIRED SNR LEVEL(dB), TARGET MOVING OR STATIONARY, *

* ~AVG OCCURANCES IN THE PRI, SPECULAR OR DIFFUSE MULTI
* OUTPUT: 301 BY 50) VECTORS CONTAINING AVG ERROR, CR9, ZZB
* COMPILER: FORTRAN4, VERSION 5
* EXT CALLS: IMSL ROUTINES GGt*IL, MONOR, GGPOS, GGEXN, GGUBS *

* DECLARE VARIABLES #
01t451G4R AV6C50) oJ61(56),#J6(50),PRE(16),R(1250),D(1250) t DIN FOR 24 REFLECT, M~AX #
DIMENSION SOX 15) ,SERU15,5O) ,SERCR( 15,50) ,SERZZ( 15,50) f
DIMENSIO4 IR(5O),E(26),DTIIE(2d),U(25) iffi(25; § POIS,Wc,Lt4IF DEVIATES
REAL NFWR lNI WI,NCALC,PtLSEC f
INTESER PtLSE,ANGLE,REF ,FLAS, t FLAG NORITORS OVERLAP f
DOWL PRECISIOM OSEED!,DSEED2,DSEED3,DSEED4,DSEEDS f ADOITIORL DBLEPRE SEEDS I

# WhIJ STATEMENTS#

5 CSITINE #
WRITE0u,1008) I

IFMfIS.E9.O)GO TO 5001 # ONLY WAY OUT IS IIN4 INS'
WRI1'E(,181O) f
WRITE(I,1020) #

READ*, 11, 12f

DATA DSEEDIDSEED2/123457.0ODD,325017.000 0
DATA DSEED3IDSEED4,DSEEDSII234S7.0004123457.ODO,123457.GDO/ #
DATA DPPD,R0,4JE,FW,IV5.3.49OO.,257.4,1.E-6,3.O1 #
DATA PRI,SI6,GlEEG,AlP,SFdR/l0.E-3,63i4.,36.,5.8,1.E-3/ #
Nlm253 f PRIMARY *24 RDULCTED~XI
"NO.1250 § PRIMARY '24 REFILECTEDMA~f

N*N 50 POISSON DEVIATES 0
FLAW. f INITIALIZE FLAB TOO 0
DO 500 IPII,12 f

WRITEe, 1023) f INPOT AVG OCURMCES/PRl
WRITE(I,1025) # Llib§ LIMITED TO 10, POSs
READ' ,RLAM RLAIMPOISSMs PAW1TRAM
IdAITE(I,1027) U
READ,1REF * SPECULAR OR DIFFMS REFLe
IF(RIAM.LLS.Ol)6O TO 5 I LOWERULMIT, MUIST BE -P05
IF(BM.OT.11.0U6 To 5 # UPPER LIMIT, AV6 10
00 201 M~,I 91 f

CA4LL BSt(DSEED!,N,R) a



CALL IHL(DSEED2A,N,)

CALL GGOS(ftAIDSEED30N,IR,IER) 'POISSE DAREVIT I ES~I

KSITES1.1
TRUT24 U I

TW~cINS C&MaATIONS

DINl PtLSE.1, In
LASITCIR(PULSE)4 M 5AL PIR.SEMPOISS#OIRECT'
NEXE1R(PULSE) # R ED INrE00YL TIMES #
)WIM.O-W)FUNIT(LAST) # CjffWAY aPRI/PULSES f
CALL fGENIK XE GBMTE NOX INTMARRILS #

mme# .MA #W UNF DE V IATES REDl
CALL WGIS(DSEED5,NI,U) A WWETE Ng PIRSES u
IFQ .EX.LL)0O TO 65 # 000T NEED TO SORT .
DO do LLaIIM-1 t SORT 1NTShV3IK TIMES f
IPINLL6l 0 0

Doss KNIMPI # #
IF(E(LL).LL.E(KV)GO0 TO 55 I

T8fmE(LL)
E(LL)NE(KK)
E(KK)oTDU

55 CONTINUE
9' CONTINUE I

~~~~ NSITIEXLTIPATH PIT 00 LOOP

IF(FIABG.NE.)GO TO 67 # FLABo! ON00 04WRL PULSEI
FLAN # RESET FLAG VARIABLE
30,70 5 OB C RI PULSE ONJERLAP#

67 CONTINUE #
IF(MULTI .EQ.0)EQRR.TI)4.I I DIREcCT PULSE, ARRIVAL. TIME'
E(LAST)=PRI # LAST ARRIVAL44WX PR! #
IF(E(MuLT141).GE.PRI)GO TO 85 # LIMIT REF Fftf TO PR! f
OTIPE(MULTII)sE(MW..TIII)-E(MULTI) # DTIME MBEflES AOJ PULSES'#
COEFFx .4 # R9F COEFFICIENT SPEC,DIFF#
DO 70 1181,MU PHASES IN4IFUOF 0-2P1 #

~4G(II~u(II'6.23 I 2P1'U(SI)
70 CONTINUE

IF(MULTI.EQ.O)COEFF*.l. DIRECT REF COEFF MAD f

IF(OTIME(MlULTI+I).GT.ZIPJ)GO TO 75 IF PULSE MWRL DO ELSE 75#
W-~COEFF * FIRST PULSE 1e COEFF f
N4GIIGUIULTI) * FIRST PULE PHASE AIGLE 0

W12-0. SECOND PULSE me6 COEFF
MIG~fiGNULI I) * SECOND PULSEPHASE NIGLE'

'~.WISI(MG14IMISINffi2))I) ' RESULTANT MI meCOEFF
COEFFEWM
FLAGN! RA FASET OITS NEXT REF.

75 CONTINUE Da % BI OWUEM CAP C
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PULSEc*FLOT( PULSE)
7 "!P1 f(PULSEC- I.) 4E OIULT 11) * MLOCK FOR ENTIRE RUN

SSU~fn2.VE*TUE~f2 NOVMNG 76T W4GE UPDATE

N2480()*WI I

IF(HtLTJ.lEG.O)W 70 W f DIRECT AM IS TOTLOCAT *
IF(RlF.O.l)THETA.41(MLTI)*l .3 # SPEC, AOA IS U(O,1V2) o
IF(REF.El.2)flET&QiGRLT1)a1N. 0 01FF, AGA IS U(O,PI) i
IF(TNErAST.I.S)6 TO 85 (P IlT AL. REF OUTSIDE 34'2*

E* ISIM FUCIN FC

l1.COEFFWC.Sur(E6Y)wVS4N1 SUR MVWIL OBSER'ATION
R~n9EFFaW9aSU(EGY)EW4N DIFF CIWIEL OBSSEMTION
EIEl V-RX4 #
IF(ENI(SIE(2.iE6)ICVEFFW* .SE.I#.") #

fE ml §ST(2.§B )#COEFFa a
IF(E3/(SOIT(2.aEIYDaCEFFUIP).L.-I.")a

alEW-l."#SW(2aErt)iCOEFFlF #

"a-IWOIEMIOTII(mULTI*I))) # OTBIE IS PULSE TIHE DIFF'

ISITEOSITESERJOOMTEA WA HG OKCRSIGHT EAC PULSE*
95 CONTIME LOO 90 FOR REFLECTIONS a

IF(IN.EU.I)TRPTAT*K(NELTIVf)/RO)IOPAO UPDTE NNVE 76T LOCATIONI
TIETAPTRST-6S1TE # COMMIT THETA AFTER PRI

LWOA"IEWO0 #
*TMCKIN6 ERRO

SER(,PULE)TITA2# TMCEIN6 ERR AFTER PRIl#
v CGIPUTE CWER-PAO M~H #

0eU9.O(2.#a,6 iMWf )#(2.865.Ia7lcOS(3.76ITHEtA/mW) # #

cRIN.(BW#12)/09M a
SonC(JOPIR.SE)aCU * COB AFTER PR!

*CGUEO ZIY-ZAKAI BOUND0
THETPa(ASINC(SIN(IV)4SIN(AIS(flEA)))'O.S))IOPMOAI

TIE WrHETAI~P
DATA PRE/UO2.O/ £

009" Mel~iL
NW0ALC00(FLM WLE)/IOVIN4

-COS(3.?6WACM/W)'
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"*COS(3760CALCM/MN
A~(SQRTM(.-RHO)1W*9MNE/2.))W1P

* - ~CALL NDM (X,FX)

~6 CONTINUEa
D0ON Jimt,15 I

DOfl 92.K"1,16 a
1F(PRE(JK).LE.P1EiKJ))6O TO 92

PRE(JK)OPME(W
PRE(KJ)STURE I

SE3ZZ(JPULSE)xZZ3 ZZ3 ATER'ill

WI'ETE(',166)£

DO 4o6 N-KmI,

SLHI4.1 #
DO 381 L-1,13I
StI"'S"9SER(L,X)

~12StII24SERtZZ(L,K)
310 CONETINUE a

AM6(kuSMIt/ . #
aJSIK)'ZIII1MM RESI

WRITEOa, ID03)A6(K),AV6l (K),"J2(K) I

46 COlNTIMA

0 F~M~T STATOWIIS 1K/UTa
IMI FOAT(1X,'1MVIN6 TOT,STAT T6T, 01 UUIT(1N:M,2:STAT,I:9U1T)') 0

102n FOMT(IX,'WlEl M START/STCC POItETS(IE STANI.uST-OP.ISY))
1023 FUWT7(IX,'ItEW RATE OF OCCIVMCS/PRI WNDAYS))
1025. FOMT(1X,'LAMW MUIST BE REAL (-50/
1027 FOMT(/,IX,'SPECLAR OR DIFFUSE REF?(I:SPEC,2sOIFP)',/Y
1131 FOM~T(/,)X,'Ut LEVEL. (08) a ',EII.5,/)
1104 FOIMT(FUX,'AM ,SE3 ,'AJ6SERCR' ,A,'J6SERZZ') a

155 STOP~(S,(,1.)



ADpendix F

Proaram Listing

* PROGRAM: L.OCKOUT' OF UNJDESIRED PULSES WITHIN PRI(REO 4 PULSES)*
* PURPOSE: COMPUTE THE TRACKING ERROR AND PERFORMANCE BOUNDS
* INPUT: DESIRED SNR LEVEL(dB), TARGET MOVING OR STATIONARY,
* ~AVG OCCURANCES IN THEPRI, SPECULAR OR DIFFUSE MULTI-*

* OUTPUT: 3(1 BY 50) VECTORS CONTAINING AVG ERROR. CRB, ZZB
* COMPILER: FORTRAN, VERSION 5
* EXT CALLS: IMSL ROUTINES GG4L, MONOR, GGPOS, GGD(N, GOUBS

*DEO.AR VARIAILES

DIMENSION 91V1) ,SER(15,51) ,SEC( 15,58) ,SERZZ(1S,56) I
DIMENSION 1R(5O),E(26),DTI1IE(26),U(25)$4G(25),AffML(4,2S) 0 DIN ARRIVAL TIMES 4 P11'S'
REAL 1,1Q,1~9,NcALC,PtLSEC#
INTEGER PtLSE$ILE,REF,FIA6,FAlA1,FLA62,FLA63 o THREE ADDITIONAL FLAGS
DOMIE PRECISIONI DSEEO1,DSEED2,DSEED3,DSEED4,DSEED5 I

IF(TIMSE.3 TOIUOL A 17i NM
WRITE(I,1118)

WRITE(',102I)I
REA0o,I1,12 I

DATA DSEEDI,DSEED2/123457.ONC,325O17.ODO/ #
DATA DSEED3,DSEED4, DSEEDS/1 234V7.CDC, 123457.CDC, 123457.OCDC/ II
DATA DPMO,RI,VEL,PFd,IN57.3',4900.,257.4,1.E-6,3.0/ '-
DATA #1 #S6GMI,~R/0E3~6 66 50 E3
MNI.258 #
N'1l250 # -

DO 506 IP.11,12

UIITE(',1523) I
IdIITE( ,1825)
REANOALA
WIdIIE(I,1127) I
READ#,REF
IF(RLAM.LE.O.0)G0 TO 5
IF(RLAI..10.O)60 TO 5 £

DO 201 Ju1,15 a
DATA ~PL10411.0/ a INITIALIZE ALL ARVWALNA I



FLA634 * INIT FLA63 (LOCK INDICAT)f
CALL GSL(DSEEDIN,R) I

CML GSL(DSEED2,tB,S) f
CALL GGPOS(RlM.,DSEED3,NP,IR,IER)

MMPAC TARGET IN SMIdDTII

TSITx4.8 I

IF(D6.EA.1)BSJTEl1 .5

* TMCIN6 CALM-LTIN
TNETA.TIST-MITE

Do In PILSENIUm
IASTSIR(PULSE)4 f
NEulw3(PULSE)
)W( .8-2)/VLOT(LAST)
CALL NGMDEED4dMME,E)

CALL 681(DSEED5,NI,U) I

IF(NE).LE.1)60 TO 65 I

N0 i LL-IIE-1
IpIULLIII
0155 Kl.IPINEX I
IF(E(LL).LE.E(KK))60 TO 55 f
T99K(LL #
E(LL)-E(KK) f
E(KK)TDI I

G755 CONTINUE B-

68 CONTINUE #
N ULTIPMT PRI DO LOWP

65 DO85flULTI12EX0M
IF(FLAG.NE.I)6O TO 67

so60085
67 CONTINUE I

IF(MULTI .EO.O)(NLTI )B1.S
E(L46 1= *
IF(E(MILTlst).6E.PRI)60 TO 85
DTIlE(IIM.T14t)wE(NILTI*I)-E(MULTI)
IF(FIA63.EQ.J)DTIME(NILTI4I)xPRJ ON S OC 068 PERIOD IS PROI

DO 78 11u.MDI

70 CONTINUE
IF(MUILT.I.)COEFF6I.0

*COMPUTE PULSE MJRIAP
IF(DTIKEGILTI#I).ST.2ePJ)GO TO 75



FLAB.) PULSE MOWRLA NOEITOR

9 0 PULSE WOWLA CGIPUTE*
PULSEctFLOAT( PULSE) I
TIHEwPRIl(PULSEC-1.)sEGlLTI1) I

MB0SWI(RlH2#(VL*TIHE)**2)

N14(lE.I)THEW mU IL, #9.

IF(REF.E0.2)TIEMA.ONIULTI)II. -

IFCTIETAJ.St.l5)60 T0 85 I
of CONTIMlE

IF(PtLSE.LE.4)M*L(PULSE,IILTI.1)-EOWLTI) * STORE ARAL TIMES FIRST 40
IF(PULSEJE.5)U0 TO 84 * LOOU FOR PERIODIC (IN 5THI..
D0 82 JJJUI,25 MGM6DE 25 PULSES POSSIDI
7TOT-M.(AI 4 W ,JJJ).0.(2,JJJ)AIML(3,JJJ).NPAK(4,JJJ))/4.1 f AN6 25 PULSES OW 4 P11'So
IF(TOTM.JE.AM.I,JJJ))60 TO 82 0 DoEs NBPJUS JW a
IF(7OTA&JE.AIM 2,JJJ))6D TO 82 f DOES M-.PR12,PULSE JJJ?I
IF(TUTML.NE..(3tJJJ))6D TO 82 4 DOES J~ftI3,PULSE JJJI
IF(OTLMJE.ARIAW..49=J)) TO 82 0 DOES MJSPRl4,PULSE JJJ?.

L& IF(TUTM..E2.1.I)8S TO 82 # RECALL MAL. INIT TO 1.0 0
IF(TOTM..EU.RI)60 TO 82 ' NEXT P11 NOT DESIRED t
'RAURJJJ-1 * JJJ-I BECAUSE DIRECT IS 0
FLA6361 # SET & LOOSE TO PULSE FL20

82 CONTINUE * LOOP TNRUALL 25PULSES #
84 CONTINUE 0 OUT IF ROW,COL M4. 046 a

# N PULSE LOCK COMPTE #
E6YuPl0(COEFFaff)Ia2 # -

VO.SIN(1.88ITHETAM)
'JB.(SUT(2.)/2.)I(I.COS(2.894hTHEA/inO) a
Rl~COEFFoMPiSQRt(E6Y)h'S#4NI
R2.aCOEFFICISURt(EGT)f*eJON

IF(OW(SOI(2.#EVY).CIEFP'if).SE.O.99)a -

MEbf^ ~SoRT(2.aESY)#WOFialPI
IF(ER1/(SWT(2.IEG1)#COEFaWV).LE.-O.")

#EAw94.SI T(2.#E6flaCDEFFaMIP
OTMEAR-(SM.89) VASIN(ERR/(SIIT(2. #EGY) ICOEFF'OIP))

S41ME VA.).8 EP(SOTN E(LIID(cU 181TIEMLIt)

IF(YOOERLGT.O.M$THETA.-THETA I
IF(NILTI .EI.FLAB2)SSITE-nITE.SERVAOTHETA I LOCK ON FLA62o OMIT OTHER.

85 CONTINhUE N 80NL71FATN DOLOOP

IF(INAML)TRIuAT4KWELfTIME)MR)ODPW f
THE~TARPNO-SSTE I



THET1TIEWADPPO a
*TWcINS ERRO

SER(J,PtLSE)-THETA"f II
£CQWJTE CNlER-MO BOWD

DeoPt(2.,9imWIfqp2)I(2.86541.77ICOS(3.76IflETAwE)
t-1 .a95.(C13SS.18 TAI(T ))
C3S.(N"2)/09DGIa
SBOR(J ,PIR.SE')-W

a WMUT ZP)-ZAVI SM14

TNETFP(ASIN( (S1N(N/2)4SINi(ABS(TNETA) ) )O.5))£OMOa

THETAOT1ETAiOW
DATA PW/164d.3/

DO " N.1$dGlE
WALCm(FLOWTNWL)/lUgiNiI

O-COS(3.76*4ACANC1) a

inN(1.5,2.IcM(2.094,WACc/w)41.5Cg(4.1881WALC.'W)
*#CQSC3.76iWALCAM/UiM

CALL IUOA(AK,PX) *

PREQN~OP(SIW(1 ACAC))'12 #

"9 COETMI
-~~ 0094 J0uI,15 a

DI 92 K"1JK,16
IF(PIE(JK).LE.PRE(XJ))60 TO 9
ST0I~ust(JK)
PRE(JX)PRE()
PRE(KJ)sVORE

"9 CWITN1E
ZZBBMI( 16) a

SERZZ(J,PtLSE)BZZ3 a

203' CINTINUE I

WhITE(I,1O3C)S I

UIITE(I,1040)

DO ~5 K,56 * YE6E'ERROR MR 15 RUNS#'

Do 361.L1,15 a

SUIHuMPISERCRULM.
S4H2.SWI2SEIZZ(LgK)

361 COETIMt



AV6(K)sSWIV5. a
AJ61(K)SLHI/15. I

AV62(K)=SIH215. a
MWUTU RESULTS

IaRMf(,1105A6()ax,aJI(X)$J62(K) I

400 CCNTIMJE
508 CWITWE~

60 TO, 5 a
# FMT STATDIB4S IW[ '

1111 FOftT(1X,'NGJ1NG6 TST,STAT TV7, ON QUITO1flUJE,2 !STAT,O: QUIT)') #

1132 FW%~T1IX,'9WTE M STAIMT/TW POINTS(IE STARTa1,STOPN15Y)' I

IM2 FtWWTC1X,'flfl PATE OF 0CCAMSMI1 (LAMW)')
1125 FDMT(1X,'LEMI MM1S BE FA (~f*9'/
1127 F0ItT(/,IX,'SPEUtM 01 DIFFUSE REU?(1:SPEC,2:D1FF)',1) I
11636 FCMT(/,1X,'9E LEVEL WI a ',EI1.59/) I

104 FO TI(,A6E ,a ISEC',X'V6EZ'

11350 FOM~TlV,3(M,E11.5))
5m rOP I

-1.53-.



Dpcendix G

Program Listing

* PROGRAM: TWO-DIMENSIONAL AC MONOPULSE RADAR SIMULATION
* PURPOSE: COMPUJTE THE TRACKING ERROR AND PERFORMANCE SOUNID
* INPUT: DESIRED SNR LEVEL(dB)
* OUTPUT: 201 BY 50) VECTORS CONTAINING AVG ERROR.& ZZB
* COMPILER: FORTRAN, VERSION 5
* EXT CALLS: IMSL ROUTINES GGl1IL & MDNOR

aDEcL AE RIAMS3
DINIONI~aG5.,J25),R(61),(0 B5),(0
DMIIO6 MU(15),SER153,5O),SERZZ':5,50) a

RELW NIN2N3Mf,tA LCIWNALC2

DONUE PRECISIOR DSEEDI ,DSE2,DSEED3a

IF(INS.EO.1)G0 TO 50338

URMT(0,1120)a

rcAD1,1l,12 #

DATA DSEED1,DSEED2,DSEED3/123457.000,325017.00N433547.ODO/ a
DATA DPWADP9UJ57.3,1.C-6.3.0/aa
DATAPR,1,EfSd/3E,6.,3..O.E3a

DO0501 IF*11,12 .I

DO 203 J-1,15a
CALL GHI.(SEEDIl,'.4,R)aa
MAL OWIL(OSEE2NA8,9) a#

CALL G6fl(DSEED3,NC,C)a
aPLACE TARSE IN BE"IDTN

ISITELaS ,g

TROTEL- .8M #
TRSTAZ4.6 a

aTRACING CALCUIAAT4 a
TwITfpTR6TEL-sITEL a#
PflIxTTUAZSITMa
Igo #.
00 101 PILSEI1,30a
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*.PtULSED:*LOAT(PULSE)#

ISM

N2aB( I)* #W
N~mC(I)*WP
vCRTELTI~A/Bma
VDAZZPHI/Bd
USuI.

* R1.ff£SGT(EGY)i4S+N1
R25W#aSGT(EGY)#JDE.N2
R3EaIPISRt(EGY)QOA4N3 a
ERREL=UIaMI'THETA.R3aTHETA'PflI-R2a(Bda2sPHlia2) #
BONI OMM.P1I +R2*THETAaHI -R3#(EN.2+THETA§#2) # f
DTHTD-ERRElJ(AlP.SHT(ESY)*B) f
DPNIa-EMZ/(AlWaS9R(ES1)'9d)
savauLl .O-W(P-$S*~PRI)*(Cos(oNEGA*PRI)-SIN(81E6A*PRI) I
SERMZ=1 O-eCP(-S16aPR1)a(COS(O1EGAORI)-SIN(lEA*PRI))
IFVDELERMf.GT.8.o)DTHETA'E-MTEA
IFIVMZEMZ.ST.O.C)DpIU:-OPHl
BSITELUSSITEL+SEl?;2aIOTNETA f
BSITEOrrMIksawimzpfl

* . ~~T1ETTRSME-SSITEL I
PNI-TRGTAZ-BSITEA a

THETARTHETARA/DP a
PNISPHY~PM

# TRACKING ERROR & OMS
*SER(J ,PtLSE).(T1rA..24PHI--*2) * TRCKIN6 ERROR f

TNETIU.ASIN((SINinJ/2)4SIN(A8S(HETA) )aO .5))'OPRAD f
PHI P-(ASIN((SIN(SO'2)aSIN(ABS(PHIi)) *0.5))bDpffi #

THET~nTHETAaDPMD
PHIzPHi*DPRAD f
DATA PRE/256I0.O/ #
AWGLE1=1 .ABSSNT(1O.fTHETP) f

DO "O N-1,$NLEI
DO 8 NIW,ANGLE2 I
NCALC~x(FLIAT(f46tE1)/1C00.)*N f
NCALC2x(FLOAT(R46LE2)/1OO .)i#4 #
W UI5./24?.ICOS(2.094£NC4LCI/5d).O.5.COS(4.188CALCI/SBd) f

f-COS(3.764ICALCI/BW) # #I
* 12x5.1242. 'CS( 2.094*CALC2/UJ).O .5£COS(4. IBSWCALC2/BW) #

4-COS(3.76t4CACVow) f #
RHOIB(O.5.2.ICOS(2.O94at4ALCI/Ed),O..5ICOSC4.IS8iCALCI/3Oa

"aCaS(3.76OULCAWc/a)Adl
*RH02*(Q.5.2.ICOS(2.0944(CALCZ/W40..5.CDS(4.I9#iNCALCjSa) f

"*COS(3.76W4ALC2/94)/d2

AXmSORT(I. 02) VJ2a(9IRW4d2.)))*IP f
A)X3I=(NV4ALCI/Bw)*seRT(2.#a9I6) I



ST=USR( (NCALCI/DPPWO)u.2.(NCALC2/DPMOD)H2) *
AX32.(ffIST*DPeMD/md)ISOR(2.Ifa46) f

*AX33m(AMPqWLC2/MSW)QRT(2.*9lM )o f
CALL WCOR(AXI,PXI)#
CALL NMWNOR.A.2,F2)
CALL HNOR(AX31,PX31) I

CALL I1CNR(AX33,PX32) f

0(31.1.-PX31
0(32.1 .-R'32
I0C33s1.-PX33 f
NCALCIWACALWW f
NCALC2WNALCVDMD
PEST2.333(0031+0(324033) f
PRE(N,NNa .1251(SIN(ST)H2).PEST4(2d/(SIN(ST)1ii2)) #

*.~g(GIISI4(1.t4ALCI)**2)u(0(2*SIN( .4(ALC2)'I2) #

NCALUEWIALC2*DPRAD f
Be CONTINUE #

S90 CONTINUE1
DO 96 JJs1,l5
90 94 JK-1,15 *
XIJK1J4I1
DO092 KJ-JEI,16 ~
IF(PRE(JJ,JK).LE.PRE(JJ,IYJ))6O TO 92 I

~~ ~STOIEI=PR(JJ,JK) I
PR(JJ,JK)=PR(JJ,KJ)
PRE(JJ,KJ)=STDREI f

.92 CONT1NUE #
94 CONTINUE
96 CONTINUE #

DO9S A-1,13 f, #
JLIxJL41f
DO097 LJaJL,1,6 I
IF(PRE(JL,16).LE.PRE(LI,6))SO TO 97 I
STORE2-PRE(JL,16)
PRE(JL,I6)=PRE(LJ,16) #
PRE(LJ,16)r=STORE2 #

97 CONTINUE f .
98' CONTINUE f

ZZIIPRE(16,16) # I-AA O~
V SERZZ(J,PULSE)=ZZS #

*100 CONTINUE f
20CONTINUE
20WRITE(*,1030)9MI f

WRITE(I,1040) f JRG ROS .~t1 tS

900400 IK8l,58 # #
.9~~ sw00

SIIM290.8 I'
D03N0 LSI,15 f
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SWIMUNSER(L,K) I
SWI2=StM#2SERZZ(L,K)

3801 COTIMUE
AY6(K)xSt3Vl5. a

I aJ62(KM~uSIH2/15. a
# OUTPU RESULTS

WRITEOI,050)AJ6(k),Al62M #
410 COHTIME a
500 CONTINUE

60TO~ 5
*FOU*MT STATEMR4S IN/OT

1300 FOT(X,'U tT?(ITNEl I TO PROCME, I TO QUITY)) I

1020 FORMT(1X,'BfTE M4 START/STO PODITS(IE START=1,STOPk1S)') #
1030 FOftT(/,1X,'S* LEVEL (09) a ',I.,)i
1041 FOMT(14X(,'AJSSER',25X,'AJ6SERZZ') a

a 1050 FMT(I0X,M(,EII.5,I7X,EI1.5) a
-. 001 STOP a

Me
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This investigation estimates the target angle off-boresight of a
monopulse radar, generates an error signal, and excites a servo system
to reposition the boresight on target, thus providing target tracking.
Cramer-2aO (CR) and Ziv-Zakai (ZZ) bounds are derived to indicate system
performance under varying signal-to-noise ratio (SNR) conditions.
Actual tracking error .is approximated from a computer simulation and
compared to the CR and ZZ bounds for varying SNR levels, for tracking in
*slowO and *rapidg target fluctuation environments, and for tracking in
the presence of specular and diffuse multipath. A two-dimensional
tracking model and associated performance bound are also presented.).

'At high SNR levels, the CR bound results lower bounded the mean-
square tracking error (MSE), but for low SNR conditionb. the CR bound
results exceeded the XSE. The ZZ bound results indicate a tight lower
bound for the MSE at low SNR levels and in both the multipath and target
fluctuation environments. "Slow* target fluctuations and diffuse
multipath results indicate that target tracking capability is not
seriously degraded in either 'of these two surroundinga. Conversely,
1IRapidw target fluctuations and specular multipath environment results
indicate serious tracking deoradation is introduced in tk. monopulue
tracker.
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