
COMPUTER S IMULATIO..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. D L PETTY

UNCLSSIFIED DEC 84 RFIT/GCS/ENG/84D-2i
F/G 9/2 H

EhDhhhhhhEEEE

l I

MICROCOPY RESOLUTION TEST CHART

-./ *iii- f , A N U•
-

v- IV

RtPRbDUC1ED AT GOVERNMENT EXPVNSE

00

*Lfl

* ~OF

p'

DEVELOPMENT OF A USER SUPPORT
PACKAGE FOR CPESIM II

(A COMPUTER SIMULATION FOR CPE USE)

THESIS

Daniel L. Petty
Captain, USAF

AFIT/GCS/ENG/84D-21

_____ ___ TICI~ and :'". s.WW 10 ;;.- I ELE CTENI

Idw IbUmiVESIT i omAPR 0 2 85

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

* 85 03 13 072

DEVELOPMENT OF A USER SUPPORT
PACKAGE FOR CPESIM II

(A COMPUTER SIMULATION FOR CPE USE)

THLSIS

Daniel L. Petty

Captain, USAF

AFIT/GCS/ENG/84D-21

Approved for public release; distribution unlimited

AFIT/GCS,/ENG/84D-21

DEVELOPMENT OF A USER SUPPORT PACKAGE FOR

CPESIM II (A COMPUTER SIMULATION FOR CPE USE)

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Daniel L. Petty, B.S.

Captain, USAF

December 1984

Approved for public release; distribution unlimited /

, .o"/

Preface

Dr. Thomas Hartrum provided the initial stimulus for

this project. Previous thesis students had attempted to

create for him a complete simulation package for use in

his CPE classes but he was still unsatisfied with the re-

sults. When he offered me the opportunity to do some user

friendly interfacing, I grabbed at the chance.

A previous assignment had given me some initial ex-

posure to user friendly interfacing and I was grateful to

Dr. Hartrum for offering me the chance to do more such work

and on a more independent basis. My only regret is that

required classwork took up time that I would rather have

put into this thesis effort to make it do even more than

Dr. Hartrum originally asked.

I encountered a classic problem while writing this

document; the matter of gender. To constantly read "his

or her" or, as I have often seen, "his/her", can soon be-

come irritating, particularly in a lengthy document. With

all due respects to the female of our species, whenever

a masculine pronoun appears in the text, its use is

generic; either gender can apply to the reference. If this

convention offends anyone, they have my humblest and sin-

cerest apologies.

I would like to thank Dr. Hartrum for the opportunity

he gave me and all the guidance he provided. I would like

4 ii

to thank Lt. Col. Thomas Clark (now retired) for his in-

sights into user friendly interfacing. I appreciate the

inputs of Maj. Walter Seward and am indebted to Maj. James

Coakley for serving on my thesis committee. I also owe

a debt of gratitude to my family for their constant and

much-needed moral support. I have saved my greatest

thanks, however, for my wife Tracy for her infinite pa-

tience when I neglected household duties and for her support

when I worked far into the night, all due to this project.

Her contribution, and that of Ms. Sharleen Hake (to whom

I am also greatly indebted), in the final frenzied typing

stage ensured the "timely completion" of this report.

Daniel L. Petty

U

r!
KI
KI

iii"

Conte-,. ts

Page

Preface....................

List of Tables...................vi

Abstract.....................vii

I. Introduction..................1

Background..................1
Problem...................3
Scope....................4
Assumptions.................5
Approach...................6
Order of Presentation.............7

0 11. System Requirements..............8

Environment.................8
Software Requirements.............9
Support Requirements.............11
Verification and Validation........12

__ 0Summary...................12

III. Interface Design................14

Underlying Objective.............14
The Language................15
The Database................16
Function Control 22
The Students' Program -- cpesim.......24
The Instructor's Program -- cpectl29

IV. Verification and Validation..........36

Verification................36
Validation..................38

V. Summary and Recommendations..........39

0 Summary...................39
Recommendations...............40

Appendix A: CPESIM II Interface SADT Diagrams. . A-1

Appendix B: CPESIM II Interface Implementation

Problems................B-i

iv

Appendix C: OPESIM II Database Relation Problems .C-i

Appendix D: CPESIM II Student Manual.........D-1

Appendix E: CPESIM II Instructor Manual.......E-1

Appendix F: The Abridged Report..........F-i

Bibliography....................BIB-i

Vita........................V-i

The following is maintained at AFIT/ENG:

Volume II

Section I: The Interface Code.....
Section II: Modified Simulation Code . . .I

V

List of Tables

Table Page

I. Data required by CPESIM II 17

II. The database relations for CPESIM 11 21

vi

4

Abstract

In 1983 a SLAM computer simulation was developed to be

used as an educational tool in CPE and Queueing Theory classes

at AFIT. Lack of user friendliness and additional require-

ments necessitated the development of a user friendly inter-

face, i.e. this thesis effort. The interface consists of

tw, programs: one for the instructor and one for his stu-

dents.

The students' interface allows them to modify and dis-

clay the initial or subsequently modified computer configura-

tions and to do a data reduction and histogram analysis on

output software monitor data after a simulation run. Any

student configuration changes are stored in an Ingres

database.

The instructor's interface allows him to easily create

the initial configuration, the catalog of available hardware,

and the system's workload of from one to ten jobstreams.

He can also display any or all configurations of any or all

student teams on his terminal or direct that display to a

file for later printing.

The interface as a whole is menu-driven, user friendly,

and very portable; it operates on any UNIX system (which has

Ingres and SLAM) regardless of the hardware (including ter-

minals) that the operating system is implemented on. A student

and instructor user's manual is provided.

vii

I

• - Development of a User Support Package for
CPESIM II (a Computer Simulation for CPE Use)

I. Introduction

Backaround

Sometime during the lifespan of every operational computer

system, the computer's workload exceeds the capability of the

system as configured. Historically, the solution to this prob-

lem has been to simply add more hardware to the computer, or

if the system is already at maximum hardware configuration,

to buy a new computer system without a thorough analysis of

the workload of the current system. Recently, however, more

and more effort has been placed on analyzing the current system

configuration to determine if additional hardware is actually

needed or if the current configuration can be modified or

"tuned" to handle the workload more efficiently.

In a 1972 study for the Air Force (1:6-9), Bell, Boehm,

and Watson suggested seven phases for a computer performance

*valuation (CPE) team to follow in successfully evaluating

the computer system and its environment:

1. Understanding the system

2. Analyzing operations

3. Formulating performance improvement modifications

4. Analyzing probable cost-effectiveness of modifica-

tions

D. Testing the specific hypotheses

6. Implementing appropriate combinations of modifica-

tions

Testing the effectiveness of implemented modifica-

tions

To effectively learn CPE techniques, the student must master

these seven phases. The first four can be mastered through

classroom instruction. However, the last three phases require

a more personal involvement and the student must have access

to CPE data from a real or simulated computer system. CPE

data usually includes hardware and software monitor data andWY
accounting data. Since many computer installations can ill

afford the price possibly incurred by allowing students to

experiment with an operational system, a computer simulation

is the optimal alternative. In 1979, Capt. Paul Lewis developed

a SIMSCRIPT II model to answer this need (2:1-56).

Capt. Lewis' model, CPESIM, was instrumental in allowing

students to test their CPE skills firsthand. Time, however,

brought to light several deficiencies in the model. The most

important of these was the fact the CPESIM's software monitor
failed to provide the necessary information for the student

to successfully analyze the problem. Also, due to the advent

of the SLAM and QGERT languages, the language in with the model

was written, SIMSCRIPT i1, was no longer being taught at AFIT

2

and thus created a lack of "local talent" to sufficiently sup-

ort it. Finally, the user interface was burdensome to both

instructor and student, making the model's use unpleasant at

best. In 1983, Capt. David Owen rewrote CRESIM in SLAM and

crovidod embellishments to produce the proper software monitor

data (3:1-35).

Problem

,While Caost. Owen's model, CPESIM II, satisfied the first

two of the aforementioned problems well enough, it was unable

to interact with its users in a friendly manner. Since

CPESIM II is intended as an educational tool, user friendli-

ness is hardly optional. Educational tools should ease the

task of solving or learning about a problem. If the tool is

not user friendly, valuable time is diverted from the task

to be solved or learned and is instead spent mastering the

tool. User friendliness in a tool minimizes this diverted

time.

Capt. Owen himself pointed out some areas in which

CPESIM Ii was lacking. The generation of workload data was

still ocing accomplished by the original SIMSCRIPT II program

and that program could only generate a single job stream at

a time. If the student wished to examine data from a multiple

job stream workload, the workload generator program had to

be run several times and the resulting files merged to form

Uh,: r. C!ued WCoY-kcad. Also, CPESIM II did little post pro-

accounting or sotware and hardware monitor data

3

J

files. Finally, the process of tracking the changes a student

makes to the simulated computer environment was a manual one.

The student changes should be collected into a database to

ease the instructor workload and to provide a "history" of

the evolution of the student's final computer system configura-

tion (3:38-39).

Scoe

Since the kernal of CPESIM II was already operational,

there were some limitations to the scope of this project.

CPESIM II models a classic von Neumann machine and no modifica-

tions to this basic design were made. An analysis of CPESIM Ii

was compared with the classroom needs of EE6.52 (Computer Per-

formance Evaluation), EE7.52 (Advanced Computer Performance

Evaluation), and EE6.47 (Queueing Theory), the primary users

of CPESIM II, to determine all the requirements of the model.

Those reauirements which were not already integrated into the

model were satisfied with additional modules or through modi-

fication of current modules. A total rewrite of the interface

(such as it was) in another language was in order and a docu-

mentation manual for the new program w-' written for both stu-

dent and instructor. Once developed, all new modules and pro-

grams were implemented, fully tested, and demonstrated to the

user's satisfaction.

4

Assumtions

" All projects which are accomplished stepwise have a

common premise; it is assumed that all completed, underlying

work is correct -- that it has been validated and verified.

Since this project was a refinement of a previous one, that

same assumption was made here. Also, it was assumed that the

requirements of the three aforementioned classes were imple-

mentable. A final assumption was added in the early develop-

ment phase of this project. It was at this time that an

announcement was made by the Aeronautical Systems Division

Computer Center concerning a billing change for time on the
I

Cyber computer. Since the change would adversely impact this

project if CPESIM II remained on the Cyber where it was orig-

inally developed, the sponsor decided that the entire project

should be moved to the VAX/UNIX computer. This would enhance

availability of the software to the students, eliminate the

need for dependency on a new and tenuous communications link

between the Cyber and the VAX (since the decision was already

made by the sponsor to implement the interface on the VAX),

and of course to avoid any economic crises imposed by the

billing change. This decision was based on the important as-

sumption that there is no significant difference bewteen imple-

mentations of SLAM on the Cyber and on the VAX -- that is,

that equal simulations run on each implementation would produce

equal results.

5

4

Approach

The first step in this project was to perform a complete

analysis on CPESIM II to determine its full capabilities and

its weaknesses. Then the requirements from the CPE and Queue-

ing Theory classes were obtained by interviewing the current

instructors of these classes. The requirements were compared

to the current capabilities of CPESIM II in order to determine

what modules needed to be added or modified. Each of the new

modules were then developed through a modular top-down tech-

ni.que, namely Softech's Structured Analysis and Design Technique

(SADT) . Upon completion of the SADT development, an appropriate

languace that could meet the needs of the modules was chosen

in coordination with the sponsor (who will be responsible for

program maintenance upon project completion). At that point

the actual coding of the modules began. Theoretically, coding

should have been the shortest phase of the project, but histor-

ically speaking that is seldom the case (and was not here,

either!). Next, each module was tested and verified for ac-

curacy followed by testing and verification of the new model

as a whole. Since some of the performance algorithms were changed

between CPESIM and CPESIM II, it was not possible to verify

the final product through parallel simulations. Therefore,

verification was intuitive -- "best guess" on the sponsor's

part. The only task left at this point was the writing of

the student and instructor user's manuals. Upon completion

of the manuals, the finished product was demonstrated to the

sponsor, I believe to his complete satisfaction.

6

Order of Presentation

Chapter I! describes the interface requirements in some

detail. Chapter III outlines the interface design and contains

a detailed discussion of thought processes and decisions which

went into the interface design. Alternatives which were not

*selected in the design process are also discussed where appro-

priate. Chapter IV discusses the procedure which was used

in testina the interface and provides some evaluation of its

performance. The final chapter, Chapter V, provides a project

summary and includes recommendations for improving the CPESIM II

system. Appendix A provides a formalized top-down design

structure utilizing Softech's SADT diagrams and Appendix B

* documents the problems and peculiarities the designer encount-

ered with the C language and the Ingres database management

system as implemented on the VAX/UNIX operating system. Appen-

dix C contains relation definitions from the Ingres database

storing the CPESIM II configuration and catalog data. Appen-

dices D and E contain the student and instructor user manuals

respectively. These provide the appropriate user with the

necessary guidance needed to effectively use CPESIM II. Ap-

pendix F contains an abridged version of this thesis in publish-

able form. Volume II contains program listings for the inter-

face and any modified simulation code.

7

0

II. System Requirements
U

Environment

The CPESIM II system is intended for use in graduate-

level CPE and Queueing Theory classes. These classes focus

on applying modern tools and techniques to evaluate an oper-

ating computer system. Specific case studies are presented

throughout the term and the student is given case studies to

which these techniques may be applied (3:7).

A requirement exists to give the student a real or simu-

lated system in which he can apply the presented techniques

to the given case studies. To successfully integrate CPESIM II

with the case study, the instructor must develop a scenario

describing the computer and its environment and either the

specific performance problem or the desired goal. The descrip-

tion may be prosaic in form or may consist of only the raw

monitor data and the accounting data of the system to be analyzed.

The student analyzes the given data and, if he determines that

the data is insufficient to allow him to propose a candidate

solution, he specifies certain monitor parameters in the

system's configuration and requests a simulation run. Once

sufficient accounting and hardware and software monitor data

has been accumulated by the student, he proposes a solution

to the problem and implements it on the CPESIM II model for

verification. Data from the next simulation run will verify

whether or not the student has, in fact, solved the problem.

8

If not, the process of data collection, "hypothesizing", and

candidate solution testing is reiterated until the problem

is indeed solved (3:7-8).

Software Requirements

It was the primary goal of this effort to establish a

user friendly interface to CPESIM II. To successfully accom-

plish this goal, it was necessary to meet requirements in two

areas -- those of the CPE classes and the Queueing Theory class

-- while still meeting the original system requirements (3:8-14).

The sponsor also requested that the interface utilize a "generic

terminal" concept; that is, that the interface would be able

to run, without modification, on any UNIX system regardless

of the terminal types available. This constraint tended to

limit the variety of formats that the interface could have;

complex graphics or other fancy terminal displays are generally

somewhat terminal-dependent features of software. However,

the advantage, beyond portability, is that the software can

withstand any changes to the configuration of the computer

that it is implemented on without having to be changed itself.

To satisfy the CPE classes' requirements, the interface

must allow students to change the configuration of the simulated

computer system and to elect whether or not to use the hard-

ware and/or software monitors. Additionally, the student must

be able to display the current system configuration or any

previous week's configuration utilized by his student team,

but should not be able to access any configuration of another

9

student team. As a group, students should be prohibited from

modifying the standard equipment file and the system workload

and they should be disallowed from initiating a simulation

run (5).

The instructor, on the other hand, should be able to easily

create the standard equipment file and the system workload

of from one to a maximum of ten jobstreams and also the initial

simulated computer configuration. Each of the parameters in

the workload generator are described by one of a variety of

the most often used (by computer simulations) frequency dis-

tributions. In particular, the sponsor requested that a user-

defined discrete probability function be made available, so

this was also included among the distributions which were "bor-

rowed" from the SLAM simulation language. Since the developers

of SLAM had already done a study of the most-needed frequency

distributions (7:29-42), the CPESIM II interface designer felt

that those distributions implemented in SLAM should cover the

needs of CPESIM II users.

The instructor should also have totalitarian control over

when the simulation will run and should be able to display

any system configuration of any student team. Each configura-

tion should be stored in a database to facilitate the quick

display of any given configuration, past or current. Finally,

the simulation must output raw software monitor data and the

interface must do some post-processing of this output. The

software monitor output should be collected and shown first

as a distribution of the amount of time all jobs spent in

10

. . *. *

each queue, and second as a list, by individual job, of the

- time spent in the various queues (5).

Queueing Theory class requirements match well with those

of the CPE classes. When presented with a scenario of a

"real-world" computer system (much like CPESIM II's simulated

system), the student must be able to describe the scenario

with an appropriate mathematical model. To accomplish this

end, the simulation must produce data concerning the number

of jobs passing through the computer system and time delays

encountered at each point. The interface must allow easy work-

load generation and configuration modification. The simula-

tion requirements are already met by CPESIM II as it is. The

interface requirements for the Queueing Theory class are

closely in line with those of the CPE classes (6).

Support Requirements

The instructor is advised to create scenarios which force

the student to make trade-offs; to give the student unlimited

free rein is not realistic. The scenario should offer the

student the total computer environment to aid him in learn-

ing the complexities involved in the decision-making process.

Some constraints which might be introduced into the scenario

include possible configuration limitations (due to space avail-

able or user preferences), a realistic cost budget (anyone

can solve a performance problem given enough money to do it

with), and intangible factors such as user and management needs

11i

and goals (this will give the instructor the opportunity for

* some role-playing) (3:14).

The student will also require access to a standard statis-

tical package (such as S or SPSS) in order to more easily

and effectively analyze data from the simulation. Since the

S package is available on the VAX, that package was selected

to do the histogram analysis of the data in the monitor post

processing program (3:15).

Verification and Validation

Since this effort was a program interface, with the excep-

tion of the software monitor data post-processing, any "veri-

fication and validation" merely involved checking that the

implementation matched the design and performed without error.

It took only the raw data and a bit of time to verify and vali-

date a few pilot runs of the software monitor data processing.

Examining the raw data and picking out all references to a

particular job by hand and then reducing that data selected

produced (after a great deal of time) the same results which

were produced by the software monitor data post processor.

Summary

This chapter has reviewed only the high-level require-

ments for the CPESIM II interface. A more detailed look at

the requirement is implicit in the SADT diagrams of Appendix

A. If the reader feels the need for such detail, he is

12

directed to that source. The next chapter will discuss the

design of the CPESIM II interface and include some detailed

comments on how and why various design choices were made.

13

III. Interface Design

Th is chapter details the thought processes which shaped

the design of the CPESIM II interface. If an alternative

choice was examined and discarded, details of this process

are discussed where possible.

Underlving Objective

There is an underlying objective which is the focus of

the intetface design; all software must be user friendly.

This is an objective which may be obvious to some, but is not

always inherent in a human-computer interface program. With-

out constant attention to user friendliness by the designer,

the interface cannot fulfill its potential. Thus, this "ob-

session" for such a detail is not without merit.

Whenever possible, the interface has been designed so

that it can be used independently of written documentation.

Such "on-line" documentation speds the learning process and

fuLthers the objective -f us-r friendliness. The designer

-elt that learning to use a new software tool should not be

a n:rocess whereby the student plants himself before a ter-

minal with the documentation propped up in view and engages

i; a repetition of reading a few lines of instruction, then

enturing some data via the terminal. Rather, the interface

should prompt the student with easy-to-understand, natural

14

language messages so that minimal dependence on the user manual

is necessary. The user manual should be a source of supple-

mentary assistance rather than of primary instruction. This,

then, was the overriding consideration throughout the design

process.

The Language

The first choice to be made was that of the language to

be used in the interface implementation. Obviously, it would

have to be a language already available on the VAX in order

to avoid unnecessary expenses and time delays due to delivery

of a new compiler. Available languages were FORTRAN, Pascal,

Lisp, and C. Of the four, C, FORTRAN, and Pascal were the

most familiar to the sponsor (who would have to maintain the

finished product).

Since the interface would have to interact with the user

in as natural a way to the user as feasible, the chosen lan-

guage would have to have superior string-handling capability.

This requirement discounted FORTRAN as an alternative as its

string 1/O is rather unwieldy. FORTRAN 77 (the VAX implementa-

tion of FORTRAN) requires any string input to be enclosed in

single quotes. This requires two additional keystrokes on

the user's part. Since this would tend to increase the user's
A

work unnecessarily (imagine entering 'Y' rather than Y for

an affirmative response) , FORTRAN was dismissed as an alter-

native.

15

The language would also have to allow complex data stor-

ace structures to avoid passing large numbers of arrays and

ccntrcl variables as arguments to subroutines. Both C and

Pascal have this capability: C with its structures and Pas-

cal ;ith its records. Neither language had an advantage over

the otner in this respect, so no choice could as yet be made.

Finally, the chosen language would have to allow modular-

itv in order to best support the application of good software

engineering techniques. Both C and Pascal are considered.

modular languages; their "black box" approach to subroutine

calls make the control of variable values much easier. Both

languages were clearly superior choices for this application.

Having eliminated Lisp because of non-familiarity by the

sponsor and FORTRAN because of its unwieldy way of handling

string 1,0, the choice of a language in which to implement

the interface was narrowed to Pascal or C. The only advantage

that C had over Pascal was that C executes somewhat faster

on the VAX, but that was not an overwhelming consideration.

A final decision still could not be made.

The Database

A choice of database type was the next consideration to

be dealt with. An analysis of the configuration data would

yield the ideal database type for this application. The con-

figuration data required by CPESIM II is summarized in

Table I.

16

TABLE I

Data Required by CPESIM II

CPU data Card reader data
Number of CPUs Name of card reader
Name of CPU Card reader data rate
Relative CPU speed Card reader cost
CPU cost Card reader connections
Timeslice of CPU to up to 5 IOMs

Partition data Printer data
Number of partitions Name of line printer
Name of partition Line printer data rate
Size of partition (kbytes) Line printer cost

Line printer connections
to up to 5 IOMs

IOM data
Number of IOMs
Name of IOM Software monitor data
IOM data rate Software monitor desired
1OM cost Starting day, hour,

minute, and second
Stopping day, hour,

Disk data minute, and second
Number of disks Queues to be monitored
Name of disk (up to 5)
Disk data rate
Disk cost
Disk connections to Hardware monitor data

up to 5 IOMs Hardware monitor desired
Starting day, hour,
minute, and second

Tape data Stopping day, hour,
Number of tapes minute, and second
Name of tape Sample rate
Tape data rate Timer probe connections
Ta:e Cost (up to 2)
Tate connections to Counter probe connections

uc to 3 IOMs (up to 3)

17

I~

Certain relationships were easily ascertained by sur-

face inspection. The disk, tape, card reader, and printer j
data all shared four common data fields. They could be lumped

together and treated as a group called peripherals. The soft-

ware and hardware monitors each held essentially the same type

of information. The major difference was that the hardware

monitor required a sample rate. The timer and counter probes

roughly corresponded with the five software monitor queues.

Thus, the nine groups of data items could be reduced to six.

Clcser examination revealed other relationships. For

example, the CPU, IOM and peripheral data all have an associ-

ated unit cost. No matter how many of a particular model

piece of hardware existed in the configuration, they would

all have the same cost. Also, the IOMs and peripherals all

have an associated data rate which is the same for all of a

particular model piece of hardware. Similarly, all CPUs with

the same model number will have the same relative CPU speed.

These items are all characteristics of a particular piece of

hardware and also appear in the hardware catalog. Since they

are duplicated here, it was decided to include catalog data

in the same database as configuration data. Thus, use of stor-

age space would be optimized.

There is some data missing, however. While CPESIM II

needs data concerning memory partitions, it does not seem to

need data concerning memory hardware. Memory modules have

a name, size, cost, and quantity that is not reflected in

the data required for the simulation. Yet this data is

18

required to maintain the integrity of the system. If students

are graded on their configuration partly on the basis of costs,

they could conceivably have much more memory indicated by the

sum of memory partitions than actually exists in the config-

uration as hardware (that is, the sum of the partitions ex-

ceeds the sum of the memory modules) unless some accounting

of the hardware is kept in the database.

Since it is optimal to store as little redundant data

as possible (in order to optimize use of secondary storage

on the VAX) , it is best to take advantage of these relation-

ships among the data groups. A relational database system is

based on this exact principle. In a relational database, data

can be organized into "tables", or relations, to reflect the

relationship one particular data type, or attribute, has to

another. Entries, or tuples, in these tables store duplicate

data only in some (but not all) of its attributes. If data

duplication appears only in some of the keys, the database

is said to be normalized.

To normalize relations, it is necessary to discern any

functional dependencies on the attributes. In examining the

data items, one can see that each piece of hardware has certain

characteristics which define it. For example, a CPU has a

model number, a name, a monetary cost, and a relative operating

speed. If the CPU appeared in a list or catalog, the list

would probably be organized on some key, generally the item's

model number. Thus, a model number determines a particular

19

pie-e of hardware and that item is functionally dependent on

the model number. In the example above, cost, speed and name

are functionally dependent on model number. These dependencies

are utilized to form the catalog relation where model number

is the key attribute and speed, name, and cost are dependent

attributes.

Similarly, other relations can be formed from the func-

tional dependencies among the data items. If the number of

identical memory modules is stored in a quantity attribute,

then quantity is functionally dependent on model munber. By

0 the same token, the quantity of partitions is dependent on

partition size. If hardware items are identified with an

identification (id) number, then CPU, IOM, and peripheral

model numbers are dependent on id number. Monitor start and

stop times and monitor connections are all dependent on the

monitor type (hardware or software).

To put the relations in third normal form, a requirement

for a relational database, it is necessary to make sure there

are no transitive functional dependencies between the attributes

in a relation. For instance, CPU speed and cost are functional-

ly dependent on model number, but model number is dependent

on id number. To put the relations in third normal form, these

attributes must make up two separate relations. With this

consideration in mind, the relations shown in Table II were

developed. The CPESIM II database which was developed is not

cuito normalized in the strictest sense. The reason that it

20

TABLE II

The database relations for CPESIM II

Catalog

model ratesize name cost type-

CPU

gtr team week idnum model timeslice

Memory

qtr team week model qty

Partition Password

qtr team week size qty qtr team pwd

Periph

qtr team week idnum model

IOM

qtr team week iomnum model

Connect

gtr team week idnum iomnum

Monitor

4 qtr team week type use startday starthr -

startmin startsec stopday stophr stopmin stopsec

samprate conl con2 con3 con4 con5 I

a

21

is not normalized is that the timeslice attribute of relation

CPU will hold the same value for all tuples which have the

same qtr, week, and team combination of values. This was done

to reduce overall storage as this one piece of data did not

warrant the creation of a new relation. The sacrifice of

total normalization was made in favor of the reduced storage

space achieved by merely tagging this attribute onto another

relation. Thus, an optimal data storage mechanism has been

achieved to store both the configuration and the catalog of

hardware.

There is only one relational database system available

on the VAX. The I:igres database management system (DBMS) is

an interactive relational database which has an embedded data

manipulation language interface to the C language. Since

Ingres is the only relational DBMS available and it can only

interface with C, by choosing the DBMS a choice of implementa-

tion language is also made.

Function Control

Having decided on an implementation language and chosen

a database system to store the data, it became necessary to

choose a construct whereby control of the CPESIM II system

could be maintained. Recall that the sponsor wished to keep

students from accessing another student team's configuration

data. Ingres has no facility to accomplish this end, but the

interface could easily do so by storing a password for each

team in the database. Thus, before accessing any other data

22

. , - Z C ~ -- ~ . - - . . * . • . -. . ' . - - .- . - *

in the database, the interface would check a student-supplied

password against the stored password to evaluate his authoriza-

tion to the information requested. This explains the existence

of the last relation in Table II, the password relation.

This z.assword concept effectively blocks one student team

from gaining access to information belonging to another student

team and thereby gaining an unfair advantage in a "graded com-

petition." If the instructor wishes to allow students to

access each other's data, he can make the passwords for all

teams identical. However, this would allow one student team

to alter the data of another team, and this should be dis-

couraged at all costs.

While a password construct effectively blocks one student

team from another, this is probably not an effective block

for preventing student access to areas reserved for the in-

structor. Also, forcing the instructor to enter a password

whenever he wishes to run a simulation or check on student

progress is hardly desirable when he is the only instructor.

Thus, a different protection scheme should be employed to pre-

vent access to what should be his and his alone. The simplest

course of action in this case was to take advantage of the

security in the VAX file system itself and split the inter-

face into two separate programs, one for the instructor and

one for the students. Now it was possible to locate the two

programs in different places in the VAX file system and deny

permission to anyone but the instructor for the instructor

program (called c:Drctl), yet give global permission to the

23

student program (called cpesim) . Now the requirements to

-- block one student team from another and to prevent students

from running the simulation or changing the hardware catalog

or workload files have been effectively satisfied. Naturally,

a bright student who has some knowledge of Ingres could bypass

the interface and access the database interactively, but he

would need to know the name of the database to do that. To

* prevent this, the instructor should not publish the name of

his database.

The Students' Program -- cpesim

The student program, cpesim, performs three basic func-

tions: to display a particular configuration, to change a

particular configuration, and to post-process a software mon-

itor file. Either of the first two actions requires a re-

trieval from the database if the configuration desired has

not already been retrieved. When a configuration is changed,
10

the interface determines the week number for the last config-

uration stored by that team and stores the new configuration

as that for the following week. Thus, the student need not

remember which week is the current week, only which week's

configuration he wishes to change. Any previous week's config-

uration may be changed to become the current week's configura-

tion. However the student must input all of his team's changes

in one interactive session. Once a set of changes are made

and saved, they are "cast in concrete" and cannot be further

modified; students have only append access to the database.

24

A

Since the database is to provide a history of the student

teams' evolving optimum system configuration, the reason for

append-only access is readily apparent.

The cpesim program is menu driven. It was felt by the

designer that this has become such a common and well-understood

practice in interfaces that the learning process could be short-

ened by such an approach. This also furthers the objective

of portability. A great deal of effort was expended to insure

that the form of the menus is consistent throughout the inter-

face in order the make the user as comfortable as possible

in working with it. The menus attempt to be crystal clear

4 in their meaning for the various alternatives, but there is

always room for misunderstanding. The menus are hierarchically

arranged, performing actual data manipulation tasks only at

the lowest levels. Full utilization of C language capabilities

are used with each menu to insure that only valid selections

are input; bad inputs result in the screen being cleared and

the menu redisplayed until a valid input is entered.

For the most part, any part of the configuration can be

changed and in any order. The exception to this is that the

student must add a memory module before he can add another

partition if the addition of that partition would exceed the

capacity of the current memory hardware. Cpesim keeps track

of the total amount of partitioned memory and the total amount

of hardware memory. At each partition change, the total

amount of partition memory is displayed. If the student at-

tempts to add a partition larger than the amount of unused

25

Ii

V..]

0/

memory, he will be warned and informed of the amount of unused

- memory left.

rJ This program was designed with the student in mind.

Since the cpesim user will use the program only 10 or 20

weeks at most, the learning curve for it should be very short.

Thus, as little dependence on the student manual (Appendix

" D) as possible was a major goal. Whenever the student de-

cides to add or replace a piece of hardware, the applicable

part of the catalog is displayed on the screen. The model

number and name is considered sufficient and any further de-

tail is left to the student manual.

The designer realized that it is very easy for the

student to get carried away with his modification of the sys-

tem configuration. For this reason, the student makes his

changes to a second copy of the configuration in the program.

If the copy gets changed incorrectly to the point that it would

be easier to begin again, the program offers an abort option

which discards the second copy and the student still has the

original configuration copy intact. This seemingly strange

procedure becomes crystal clear when one has to wait an ex-

cessive amount of time for an overburdened system to make a

number of database retrievals to get the entire configuration.

If the first copy of this configuration remains intact, then

this retrieval need happen but once. When the student is

satisfied with his changes and wishes to save them, they are

saved to the primary configuration copy and then stored in

the database; the second copy is discarded.

26

0

Certain "irregularities" occurred to make the interface de-

sign somewhat less than easy, as is often the case when two

z.2ieces of software written by separate, non-communicating

parties are interfaced. The most cumbersome of these occurred

with the "software queue to be monitored" and "hardware monitor

probe points" selections. Capt. Owen used a sort of menu

originally in his interface program and passed the value of

the menu option to the simulation program. Thus, he "hard-

wired" his menu into the code. While this in itself caused

nc problem, the fact that he left out choices four through ten

on the hardware menu and five through ten on the software menu

did cause considerable difficulty. It would cause the users

no end of confusion to see a menu whose choices were not com-

pletely sequential; there would always be some doubt that the

entire menu was being displayed and the belief that "something

is wrong with the program." Thus, to interface directly, a

conversion would have to be made. Any time the user saw the

selections, either in the "change configuration" or the "display

configuration" selection of cpesim, the selections had to be

converted to the menu selection values that they had seen.

Yet, when the values were stored in the database to be later

extracted and fed to the simulation, they had to correspond

to the numbers hardwired by Capt. Owen. Clearly, this is not

very efficient, but time constraints precluded rewriting mas-

sive sections of the simulation to correct this problem.

The last option available to the student, post-processing

the software monitor data, is somewhat of on "after the fact"

21

oction. When the simulation has completed, the student may

use this cpesim option to perform a data reduction and histo-

:,ram analysis on the software monitor data. The student is

t rompDted for anything when this option is selected. In

-act, it may appear that nothing has been done at all. What

does happen is that a background job is spawned and that back-

fround -ob performs the required task. The data is collected

and written as records, one record per job, which summarize

now much time the job spent in each of the system queues.

,nen each oueue is summarized graphically in a histogram re-

Xfecting the amount of time the various jobs spent in it. The

histogram analysis is done by the S Statistical Package sys-

tem. Histogram cells are hard-coded into the program and were

selected on the basis of expected ranges for time in various

qcueues. S is the only statistical package currently available

on the VAX, an overwhelming factor in its selection for use

here.

Overall, the cpesim program provides a fairly easily under-

stood interface to the CPESIM II simulation. The menu struc-

ture tends to "lead the student by the hand" through the

tasks he must perform to get the simulation data he requires.

Once the student enters his "simulation requests" into the

database, the instructor must use the cpectl program to ex-

ecute those requests.

28

.4 -

The Instructor's Proaram -- cpectl

While the instructor's portion of the CPESIM II inter-

* face, program cpectl, was designed to be very user friendly,

it presumes much more foreknowledge on the user's part than

the student portion does. After all, it is not likely that

the turnover for CPE course instructors will be as high as

that for CPE students. The instructor is presumed to under-

stand what is required as input at the various points in the

program where input is required, but every effort is made to

"protect the instructor from himself." It is assumed that

the instructor will use the interface for far longer than the

student will and will thereby have more familiarity with it.

Although cpectl appears to the user to be one program,

it is actually two distinct programs. The main portion is

written in C and assists the instructor in generating the hardware

catalog, running the simulation, listing the student teams'

configuration histories, and generating the initial config-

uration. There is a subroutine, however, which is written

in FORTRAN. This subroutine, jobgen, was written in FORTRAN

to take advantage of certain random-number generating routines

which exist in the IMSL system library. Rather than writing

such routines from scratch and "re-inventing the wheel" so

to speak, it was a vast time-saver to instead write a program
II

in FORTRAN which could use the existing routines. IMSL routines

are written in FORTRAN and, as such, are best utilized by

FORTRAN programs. The function of jobgen is to generate a

workload to be used by the simulation.

29

Subroutine jobgen can create a workload of from one to

a maximum of ten job streams. Each job stream can, of course,

have completely different characteristics. For each job

stream, the instrutor must select a frequency distribuLion

concerning job interarrival time, CPU time required for job

completion, memory required (in 1K blocks) by the job, a rela-

tive job priority, the number of allocatable devices required

by the job, the number of input cards in the job, the number

of lines the job will output, the number of system disk

blocks needed, and the number of allocated device blocks the

job will need. Possible frequency distributions include ex-

ponential, uniform, Weibull, triangular, normal, lognormal,

Erlang, gamma, beta, and Poisson distributions. The instructor

may also define a step distribution if none of the aforemen-

tioned will meet his needs. By selecting one of these dis-

tributions to characterize each of the aforementioned data

items, the instructor can create a rather large number of dif-

ferent jobstreams.

Another of the functions of program cpectl is to generate

the hardware or equipment catalog. This is a rather simple
I

procedure which involves a continuous iteration of entering

a model number, name for the piece of equipment, data rate

or size or speed or whatever associated quantitative measure

is required, hardware type, and the associated cost. The itera-

tion is ended when a model number of zero is entered.

An early approach to storing the catalog information

lid not have a type attribute. Instead, certain key names

30

were required to be placed in the name field. This was nec-

-ssarv to retrieve the appropriate catalog information when

a niece of hardware was being added to the configuration. Re-

call that the written documentation was not to be a crutch,

out a su-uLement; the on-line documentation was to be as help-

as 1ssble. It was undesirable for the students to have

Sze :ne ecuipment catalog. But limiting the names

.:ieces o4 equipment was immediately recognized

as an u:;Jos~rablo approach. For one thino it was far too

ri~td. r i: i-v, that avoroach did not allow for a

new tv:e o .- "u:ent t be added to the catalog. For

instancea, i : vr someone discovers how to store 300

:ri ion bvses c: n:ntroation on a dime sized crystal, a new

::2>r < lea ed a cry'stal drive:) would have to be added(COv

a ne. attrib ste, the type attribute, to the cata-

S relatian oroed to be the best answer. It allowed the

nclus ion of any conceivable device to any of five classes:

X:'s, :rmarv memory modules, add-on memory modules, IOMs,

or perioherals. A device outside one of these classes could

not be added anyway because the simulation would not be

~euipped to handle it. Thus, maximum flexibility is maintained

through a relatively simplistic structure. The classes are

gi:en two character codes; cc for CPUs, ml for primary memory

modules, m2 for add-on medules, io for IOMs, p! for disk drives,

2 for tace drives, p3 for card readers, and p4 for printers.

With these coded types, retrieving, say, all peripherals

31

becomes a much simpler matter ('retrieve peripherals where

- type = "p?"' as opcsed to 'retrieve peripherals where name =

ri "disk" or name = "tape" or name = "card reader" or name =

"printer"'!)

Another function of cpectl is generating the initial

system configuration for the students to analyze. This is

done in exactly the same way as the students make changes to

configurations and with virtaully the same routines. The minor

difference is that the instructor specifies which week number

the initial configuration will have. Arguments can be made

for this number to be zero or one and both arguments are equal-

ly valid. Although the initial week number can be anything,

zero or one is probably the best choice.

Program cpectl also prints out the history of each team's

evolving configuration. This allows the instructor to recap

his students' performance, to determine where they made mis-

takes, if any, and to determine if and when they discovered

the errors and what they did to correct them. It also gives

him the ability to do so correctly, as the data, once stored,

cannot be altered by a student. The instructor has the abil-

ity to print out all of a given team's configurations or any

particular one of them singularly. This allows him to not

only review the history as a whole, but to check periodically

during the term on any team's work. This section of the pro-

gram is virtually identical to the "display configuration"

routine in program cpesim.

32

Th flnal carab~I~t. of program cpectl is the ability to

Lnitaate tne simulation run. The instructor can initiate a

4 mulation for all student teams or, if something has gone

wrong with a single team's simulation in a previous run, a

single simulation for any given team may be selected. In

either case, there are several steps to this process. The

instructor is prompted for the week number of the simulation

run, the total number of student teams (or, alternatively,

which single team's simulation will run), and the name of the

-ie contalnino the system workload. The instructor is ad-

.:sed t3 create the workload prior to attempting to initiate

the simulation run. While only three inputs are needed to

begin the "initiate simulation" process, many steps are in-

volved. The program first reads the SLAY. network code from

file sims and writes it to a file called siminX where X is

the team number. Then cpectl retrieves the configuration of

team X for the current week and appends it to file siminX.

Finally, the workload file is appended to siminX and the file

closed. Next the SLAM subsystem is called using file siminX

as the input file to the simulation. The process is then re-

peated for all the other teams. The reason that the three

separate entities are written to the same file is simple.

SLAM, being written in FORTRAN, is a relatively inflex-

bile system. It can recognize an input file and an output

file, but any other filenames must be hard-coded into the dis-

crete portion of the simulation run. Under normal circum-

stances this might cause no major problem, but there will be

33

several unique simulations running concurrently which were

initiated by cpectl. If the configurations, for example, were

written into file config, all simulations would be looking

for a file called config. The UNIX operating system will not

allow several files with the same name to exist in the same

directory. The alternative would seem to be consecutive sim-

ulation runs. But these simulations are anticipated to take

a great deal of both CPU time and wall clock time. Consecu-

tive simulations are not a feasible alternative. It might

be possible to use a tape file as input, but the SLAM subsys-

tem is called by a UNIX system macro which would have to be

changed to accomodate this procedure.

Fortunately, SLAM has a standard input file (which can

be named at system level) which it internally calls "ncrdr."

All SLAM network code is placed into this file as well as any

other data the program may wish to read. Therefore, the net-

work code, the configuration data, and the workload data can

all be copied into a uniquely-named file and passed to SLAM

without fear of conflict with a concurrent simulation. Further-

more, this method reduces the number of extraneous files in

the system which would have to be later deleted.

At the termination of the simulation, all simulation out-

put is written to a file name SIMOUTX where X is the team num-

ber. This is the data that the students will need to examine

to determine their next step in optimizing the simulated com-

puter's performance. The instructor should advise the stu-

dent to move this file into his own area as the information

34

will be overwritten at the next simulation run.

Extensive modification of CPESIM II I/O was necessary

to accommodate the new method of inputting configuration and

workfile data. Previously, CPESIM II had hard-coded file names

from which to input this data, but with the relocation of the

simulation software to the VAX system and the potential for

an overlarge number of extraneous files on the system some modi-

fication was warranted. Except for some relatively minor error

fixes, no other modifications to the simulation programs were

necessary. This is not to say that none should be made.

Some rather gross inefficiencies exist that even Capt. Owen

was apparently aware of (3:39). These should be streamlined

in the interest of better overall performance.

3

35

4

IV. Verification and Validation

This chapter discusses the procedure that was used in

testing the CPESIM II interface. The validation process and

how it applies (or fails to apply) here will then be dis-

cussed. The reader is reminded to consider briefly the focus

of this project (see "Underlying Objective", Chapter III)

before proceeding in order to gain the proper perspective.

Verification

The testing of the interface programs was so straight-

forward and simplistic that it is barely worth mentioning.

The approach was done on two levels. First, the places in

the program which required an input from the user were tested.

Most of these were menu selections. Due to the way the menus

were implemented, it would be nearly impossible to get an in-

valid selection past them. The selections were tested anyway,

first to see if an invalid selection could be made and then

to see if a selection performed as intended. As expected, the

menus performed flawlessly. The other places for input were

the places where actual data was being input. As much as was

practical, the data input was verified as valid before accep-

tance. For example, when the user wished to change the value

of the use field from 'n' to 'y' or vice versa, the mere selec-

tion of that memu option toggles the value from one to the

other. In this way, only a valid value can be in the use

36

field. Also, the connections between hardware items are repre-

sented graphically on the screen by ones and zeros. If the

user enters anything other than a zero, it is transformed into

a one. Thus, no bad values can appear here either. In most

places, however, little editing of data values can be done.

Therefore, the program relies on the ability and intelligence

of the user to validate his own data. The program enhances

this ability by allowing users to change any data item, in-

cluding one which has previously (in the same interactive

session) been changed.

The second approach was to test that the user friendli-

ness objective had been achieved. This was accomplished

first by programmer testing and then through testing by "dis-

interested third parties." About 20 classmates were asked

to sit down at a terminal and try to use the CPESIM II system,

without benefit of any written documentation, after only a

two minute briefing on what they were trying to achieve and

how to access the system. This test was passed with great

success; even without any written documentation, the students

were able to use the system intelligently and understand what

it was they were doing. No questions were answered by the

test monitor (the designer) while the students used the inter-

face program. In spite of this, the students were able to

figure out how to use the program in a very short time. It

was not necessary to run the test for more than 20 minutes.

Some valuable feedback from the test participants resulted

in several cosmetic changes to the interface to promote under-

standability.

37

Having passed this phase of testing, a user was selected

" who was somewhat computer literate (the person was accustomed j

to using a word processor on a minicomputer system) and asked

to take the same test under the same conditions as the gradu-

ate-level computer students. Once again, the test was easily

passed in the 20 minute time period, even though this person

had no idea of how computers are configured or what CPE is.

Of course, the testee was not able to do any CPE analysis,

but there was no difficulty encountered in trying to use the

software.

Validation

It is not altogether certain that program validation

applies in this case. An interface program either works or

it does not work; it has only one basic function. The proof

of whether or not the system is indeed user friendly will be,

so to speak, in the pudding. That is to say that only through

actual use over a period of six months or so will any prob-

lems or accolades come to light. The system as a whole could

possibly be validated by comparing the input file created by

the interface to the input files created under the old CPESIM II

system while both systems are supporting the same scenario.

If the simulation inputs are the same, the outputs should be

the same. Unfortunately, the old CPESIM II system could not

be reloaded onto the Cyber and made operational due to an oper-

ating system change since CPESIM II's original development, so

this validation test was not made. Other testing, however, has

turned up no potential problem areas.

38

. 7

V. Summary and Recommendations

Summary

This project has provided a user friendly interface to

a previously unfriendly and cumbersome CPE simulation. The

system as a whole provides the student with a chance to

develop and hone his CPE skills by providing a computer en-

vironment in which he can freely operate.

The system allows the student to receive a scenario about

a fictitious (or simulated real) computer installation which

has one or more problems in providing reliable or effective

computer support. The student has the ability to monitor com-

puter operations and change the configuration of the computer,

within any budgetary constraints imposed, if he so desires.

The instructor has the ability to create a scenario, a

compatible computer configuration, a hardware catalog of avail-

able equipment, and any number of workloads that he wishes.

He can track the student's progress and render any assistance

or advice that he deems necessary. It also allows the instruc-

tor an escape from the frequent tedium of the classroom by

providing a chance for some role playing. The interface

greatly reduces the instructor's workload in utilizing this

simulation in class.

39

0

.. i

Recommendations

Although the CPESIM II system is now fully operational,

it is by no means complete in itself. There are several

things remaining to be done which, although not worthy of a

thesis effort, are perfectly suitable as independent study

or class projects. The following enhancements are suggested:

1. Add a "help" capability to all menus and data entry

points within the interface. If the user has any confusion

at all as to what is being requested, he could respond " "

and receive a short description (printed from an external file)

about what the program is looking for at that point.

2. Add a cost-tracking feature to the system. At present,

the tools and structures for accounting for costs associated

with many student actions or configuration changes are present

in the interface program. Lack of time, however, prevented

implementation of this nice-to-have feature. Any cost track-

ing must still be done manually.

3. Make the "clear screen" module terminal independent.

Some effort was made in this direction (documented in Appendix

B), but time constraints made abandonment of this path a nec-

essity. The module should be able to determine what kind of

terminal the user is working with, possibly by using the

"termcap" UNIX utility or even by querying the user, and use

the appropriate control sequence to clear the screen.

4. Change the simulation to allow boolean operations

on the values at the hardware monitor probe inputs. This is

a common enough practicL in a real environment that the

40

4

capability should exist in the simulated environment. No

research into this modification has yet been done.

5. Add new relations to the database to store workload

parameter data and modify the cpectl program code to store

and retrieve parameter data to the new relations. Currently,

all workload parameters are entered every time a new workload

is created. If the parameters are stored, the instructor need

only enter the parameters he wants to change to create a new

workload.

In addition to these enhancements to the interface, some

work needs to be done on the simulation itself. For example,

the simulation currently can only throughput 50 jobs before

terminating abnormally. This is an unacceptable constraint

to practical use of the system in the classroom. This problem

must be resolved before the CPESIM II system can be implemented

in the classroom. Also, the problem of the hard-coded menu

values which were documented in Appendix B remains a burden

to the interface. By changing the simulation so that the

selections are sequential, the interface operation can be

streamlined somewhat.

41I

Appendix A

CPESIM II Interface

SADT Diagrams

A-1

CLa

-2

A0 CPESIM II

Abstract: This system allows an instructor to create a

scenario within which CPE students may freely practice

honing their CPE skills.

A! Student Interface -- Performs all the functions which

the student requires and the instructor allows within the

instructor's scenario.

A2 Instructor Interface -- Performs all the functions

necessary to allow the instructor to implement his scenario.

Also aids the instructor in evaluating his students'

performance.

A3 Simulation -- Simulates the computer system's operation

within constraints provided by both instructor and student.

A

0

~A- 3

Ia

Lu

CL~

A-4

0

UI Al Student Interface

Abstract: This activity performs all the functions which

the student requires and the instructor allows within the

instructor's scenario.

*" •All Validate User -- Determines whether or not the user has

-. proper access to the information he is requesting.

A12 Get Config -- Retrieves the computer configuration from

the database and puts the data into an internal structure.

A13 Display Config -- Displays the retrieved configuration

onto the screen or, in the instructor's case, into a file.

A14 Modify Config -- Accepts changes to the retrieved config-

S uration from the student and, when all changes have been

input, stores them in the database as a new configuration.

A15 Process Monitor Data -- Performs a data reduction and

*] a frequency analysis on the software monitor data output

from the simulation.

A16 Clear Screen -- Clears the user's terminal screen.

0

A-5

0-

LJ

z

I.'

:I '

I I

.

L

-6

* II: ---

F *i " -

= ' i '-

0 Li J i ,,.-

-:: .- - t_ 1I % A.

All Validate User

Abstract: This activity determines whether or not the user

has proper access to the information he is requesting.

All1 Get Quarter, Team & Password -- Like it says, requests

from the user the current quarter, his team number, and his

team's password.

A112 Validate Password Against DB -- Checks the password

input by the user against the password stored in the database.

If the passwords are identical, the routine returns a value

of 'true', otherwise returns a value of 'false'.

A-7

JA

LaJ

uKi

CLC

A-8J

A14 Modify Config

Abstract: This activity accepts changes to the retrieved

configuration from the student and, when all changes have

been input, stores them in the database as a new config-

uration.

A141 Modify CPU -- Accepts changes to the system's CPUs.

A142 Modify Memory -- Accepts changes to the system's

memory modules.

A143 Modify Partition -- Accepts changes to the system's

memory partitions.

A144 Modify Peripheral -- Accepts changes to the system's

CO) peripheral devices.

A145 Modify Monitor -- Accepts changes to the system's use of

hardware and software monitors.

A146 Modify IOM -- Accepts changes to the system's IOMs.

A147 Modify Connections -- Accepts changes to the system's

IOM-to-peripheral device connections.

A148 Redefine Partitions -- Enables the user to redefine

all (vs. one at a time) of the system's memory partitions.

A149 Save Config -- Stores the new configuration to the

database.

A-9

•: -- ; _. --. - -

.0 -

C ~-Y-7I

9
- I

La

I

.1
I -

I 17L
I. I

6 A-
La .. ~--

~L&J
I - IL-

wL1* I -

~L&J

-i T' i ,

* fYr~

0

--9
0 L&J I,- - La

0
0

z
A-iO

6

A145 Modify Monitor

Abstract: This activity accepts changes to the system's

use of hardware and software monitors.

A1451 Modity Hardware Monitor -- Accepts changes to the

system's use of the hardware monitor.

A1452 Modify Software Monitor -- Accepts changes to the

system's use of the software monitor.

II

II

I.

I,

A-11"

LLJ

-A 12

A2 Instructor Interface

Abstract: This activity performs all the functions necessary

to allow the instructor to implement his scenario. Also aids

the instructor in evaluating his students' performance.

A21 Generate Catalog -- Accepts the instructor's entries

into the equipment catalog and then stores them into the

database.

A22 Generate Jobstream -- Accepts the instructor's parameters

for describing the required system workload and then generates

that workload.

A23 Display History -- Displays whichever team's configura-

tion history (or single configuration) the instructor selects.

He may also opt to see all configurations of all teams.

A24 Run Simulation -- Builds the SLAM input file from the

SLAM network code, the configuration (which it retrieves),

and the specified system workload. Unless the instructor

opts to abort it, the simulation is then initiated.

A-13

I~ - z

A -

LLJ

I~~~ dc-L

IA 1

A22 Generate Jobstream

Abstract: This activity accepts the instructor's parameters

for describing the required system workload and then generates

that workload.

A221 Get Workload Parameters -- Accepts the parameters from

* the instructor concerning each attribute of the jobs from

a particular jobstream.

A222 Generate Workload -- Accepts the parameters and actually

generates the workload for the instructor.

A-15

Lua

ICL I
A- 16

A23 Display History

Abstract: This activity displays whichever team's config-

uration history (or single configuration) the instructor

selects. He may also opt to see all configurations of all

teams.

4j

A-17

Ig

Lai

M

4D

LaJ

OLu

4A 1

A24 Run Simulation

Abstract: This activity builds the SLAM input file from the

SLAM network code, the configuration (which it retrieves),

and the spedified system workload. Unless the instructor

opts to abort it, the simulation is then initiated.

A241 Get Simulation Parameters -- Accepts from the instructor

the quarter, week number, and how many teams for which the

simulation will run as well as the workload to be used.

A242 Create Simulation Input File -- Creates the SLAM input

file according to the input parameters and, if the abort flag

is off, calls the SLAM subsystem to begin the simulation.

A-19

LA.J

z

L'.2

CLC

A42

Appendix B

CPESIM II Interface Implementation Problems

0

B-i

CPESIM II Interface Implementation Problems

Various problems with Ingres, the C language compiler,

and the VAX/UNIX computer were encountered during implemen-

tation of the interface for CPESIM II. These problems are

documented here in the hope that perhaps, being forewarned,

other thesis students will be able to avoid them and the time

loss they can represent to a project.

Ingres Problems

There are several problems, or at least undocumented

limitations, with Ingres as implemented on the VAX/UNIX.

First, the Ingres preprocessor often creates C code which,

when compiled and executed, will give a bus error. There

appears to be no good or consistent reason for this error.

If fact, it is also possible that the error is the fault of

the C compiler or even of the combination of the preprocessor's

code and the compiler. At any rate, some minor shuffling

of code, even something as minor as swapping the order of at-

tributes in an Ingres target list, can cause the error to

disappear.

When the designer of cpesim sought to avoid the above

error by using a parameterized retrieve, he found an appal-

ling lack of documentation on its use. The documentation,

such as it is, discusses the use of parameterized quel state-

ments (quel is the embedded C language interface to Ingres)

B-2

- . ? • - . - *
,

. .,1 * . - . . -. .

and gives an example of how to use them if one is not doing

a parameterized retrieve to C variables. For the parameter-

ized retrieve, the documentation says, "On a retrieve to

C-variables, within [the target list], instead of the

C-variable to retrieve into, the same '%' escape sequences

are used to denote the type of the corresponding [argument

vector] entry into which the value will be retrieved." This

statement makes very little sense until one compares the

example given for any parameterized quel statement (except

the retrieve into C variables) with the example which should

have appeared in the documentation for the parameterized

retrieve into C variables. Both examples appear below.

The documentation example as included:

char *argv[10];

argv[0] = &double var;
argv[l] = &int var;

param append to rel
("doml = %f8, dom2 = %i2", argv)

The example that should also have been included:

char *argv[10;

argv[O] = &doublc var:
argv[l] = &int var;

range of r is rel
param retrieve

("%f8 = r.doml,%i2 = r.dom2", argv)

B-3

A

Ir

The procedure for using a parameterized retrieve into C

variables is now made very clear by the inclusion of the pro-

posed example. The documentation as it stands leads the user

to the procedure used by the cpesim designer -- trial and

error.

Another problem with Ingres is that it does not suffi-

ciently document its limitations. For example, the docu-

mentation specifies that, "A relation cannot have more than

49 domains and the tuple width cannot exceed 498 bytes."

What the documentation does not say is that the preprocessor

cannot handle a single Ingres statement which is longer than
about 220 characters (no tests were done to definitively

pin down the exact figure; the number 220 is within about

15 characters of the correct figure). This means that the

user will be unable to retrieve all the attributes of a rela-

tion in a single retrieval unless the relation has far less

than the limit of 49 attributes. Worse, the user would cer-

tainly be unable to store such a large tuple from inside his

program as all attributes would have to be specified at once.

A more realistic limit for a relation is about 14 attributes;
a few more if the names are very short, a few less if the

names are more than about five characters each.

The Ingres proprocessor, equel, is capable of producing

bad code. For example, the source lines

param append to cpu

("qtr=%s,team=%i4,week=%i4,tieslice=%i4,idnum=%i4, rmodel=%i2",

argv)

B-4

when processed by equel become

IIwrite ("append cpu (qtr=") ;IIcvar (qrtr,3,0) ;IIwrite(",tea= ";
IIcvar(&tmn,6,4) ;IIwrite (",wee= °) ;IIcvar(&weak,6,4) ;

IIwrite (", timeslice=") ;IIcvar(&timle, 2,4) ;IIwrite (", idnum=") ;

IIcvar(&j,6,4);IIwrite(",model=");IIcvar(&stopd,1,2);

,2,4) ; IIwrite (")"); Isync (0);

The underlined code is a fragment from the previous line of

code and is the cause of the compile error (when compila-

tion is attempted). The only apparent remedy to this situa-

tion is to repair the preprocessor's bad code with an editor

before attempting a compilation. The appearance of this

error is sporadic.

Finally, equel statements to Ingres can take a very long

time to execute, especially when the system user load is high.

When the user load is light, interaction with Ingres seems

to take almost no time at all -- on the order of five seconds

or so. But when the user load is heavy, a configuration

retrieve can take 5 to 10 minutes, a very long time to look

at a terminal screen which is doing nothing. The Ingres user

is advised to keep his database accesses to a minimum.

C Language Problems

Some problems also exist within the C compiler. A

program which is by all appearances error-free can nonethe-

less compile and execute with a bus error. By shifting the

order of variable declarations, this error can be made to

disappear. The error occurs most often when character

B-5

--.

arrays are declared before integer variables or integer

arrays. Apparently, the character arrays force the integer

variables off of full-word boundaries and storage problems

arise. The C language programmer is advised to always de-

clare floating point variables first, long integers, and char-

acter arrays. This ordering tends to avoid this problem.

Another problem which exists is a lack of documentation

on long and short integers. Kernighan and Ritchie document

the storage requirements for these types in their book "The

C Programming Language" for the PDP-11, Honeywell 6000, IBM

370, and Interdata 8/32 computers, but not for the VAX com-

puter. The cpesim designer has discovered that VAX storage

requirements for these types most closely resemble those of

the IBM 370. A short integer requires two bytes while a long

variable requires four bytes. However, unlike the PDP-1l,

if the programmer declares a variable as 'int', the VAX will

give it four, not two bytes of storage. This is relevant

when the programmer is utilizing parameterized statements

in Ingres, where the variables' storage format must be de-

scribed. Apparently, expecting uniformity among Digital

Equipment Corporation compilers is an act doomed to some dis-

appointment.

VAX Computer System Problems

The usage of the phrase "VAX computer system" here im-

plies not only the central hardware itself, but also the ter-

minals attached to it in room 133 of building 640; the

B-6

reference is to the AFIT Engineering configuration of the

VAX/UNIX system. Severe user loads encountered during im-

plementation and testing of the CPESIM II interface helped

reshape the interface design somewhat when it was realized

what possible time delays could be encountered during student

execution of the interface. The extreme user loads forced

"turn-around time" on the system to be extremely long. Thus

it was realized that, in view of the slow speed on Ingres

previously mentioned, an economy of Ingres calls was in or-

der. Also, since a configuration retrieval could, at extremes,

take minutes rather than seconds, any changes being made to

a configuration should be made to an auxiliary copy of the

configuration. Once all changes were complete, the auxiliary

copy would replace the primary copy and then the new config-

uration would be stored to the database. If changes were

made to the primary configuration copy and the student had

made sufficient errors to warrant starting over again, it

would be necessary to retrieve the configuration from the

database again, the current copy would no longer be intact.

This "double copy" strategy insures the integrity of the

original configuration when a gross number of errors are made

and negates the requirement for duplicate retrieval of the

same data.

Another problem area was with the VT100 terminals. The

CPESIM II interface was to be as generic as possible in de-

sign to facilitate portability among UNIX systems. Unfor-

tunately, the VT100 buffer is apparently very small. The

B-7

original design had a "clearscreen" function which just

scrolled the old display off the screen and printed the new

display. At 9600 baud, the VT100 buffer would lose half the

display being sent it. It is very difficult to pick options

from a menu whose middle is missing. To remedy the situation,

VT100-specific control sequences were used to clear the

screen. However, this impacts upon the desire to make the

code as generic as possible. If the interface is to be moved

from the VAXVUNIX system to another, changes may be required

in this module.

L

B- 8

Appendix C

CPESIM II

Database Relation Definitions

C-1

The Ingres Database

At the heart of the CPESIM II interface is the Ingres

database where the catalog and all the student teams' con-

figuration data is stored. Program cpesim is written to ex-

pect the database to be named cpedata, but if the instructor

wishes to change the name, there is only one source code line

that need be modified. The instructor should look for the

line

ingres cpedata

and change the name to whatever he wishes.

The relations of the Ingres database must not be altered

in any way from the way they have been originally implemented.

The instructor is advised not to attempt to rename any rela-

tions or to change the way the domains have been typed. To

do so involves more than casual modification of the source

code. In order to insure that the instructor has created

a database compatible with the cpesim program, the following

relation definitions have been extracted from the Ingres data-

base which was created and populated to test the original

program implementation.

C-2

Relation: catalog
Owner: dpetty
Tuple width: 32
Saved until: Tue Dec 31 00:00:00 1985
Number of tuples: 18
Storage structure: ISAM file
Relation type: userrelation

attribute name type length keyno.

model i 2 1
ratesize f 4
name c 20
cost f 4
type c 2

Relation: connect
Owner: dpetty
Tuple width: 8
Saved until: Tue Dec 31 00:00:00 1985
Number of tuples: 50
Storage structure: ISAM file
Relation type: user relation

attribute name type length keyno.

qtr c 4 1
team i 1 2
week i 1 3
idnum i 1 4
iomnum i 1 5

0

0

c- 3

02

Relation: cpu

Owner: dpetty

Tuple width: 13
Saved until: Tue Dec 31 00:00:00 1985
Number of tuples: 10
Storage structure: ISAM file
Relation type: user relation

attribute name type length keyno.

qtr c 4 1
team i 1 2
week i 1 3
idnum i 1 4
model i 2
timeslice f 4

Relation: iom
Owner: dpetty
Tuple width: 9
Saved until: Tue Dec 31 00:00:00 1985
Number of tuples: 15
Storage structure: ISAM file
Relation type: user relation

attribute name type length keyno.

qtr c 4 1
team i 1 2
week i 1 3
iomnum i 1 4
model i 2

C-4

Relation: memory
Owner: dpetty
Tuple width: 10
Saved until: Tue Dec 31 00:00:00 1985
Number of tuples: 10
Storage structure: ISAM file
Relation type: user relation

attribute name type length keyno.

qtr c 4 1
team i 1 2
week i 1 3
model i 2 4
qty i 2

Relation: monitor
Owner: dpetty
Tuple width: 33
Saved until: Tue Dec 31 00:00:00 1985
Number of tuples: 10
Storage structure: ISAM file
Relation type: user relation

attribute name type length keyno.

qtr c 4 1
team i 1 2
week i 1 3
type c 1 4
use c 1
strtday i 2
strthour i 1
strtmin i 1
strtsec f 4
stopday i 2
stophour i 1
stopmin i 1
stopsec f 4
samprate f 4
conl i 1
con2 i 1

con3 i 1
con4 i 1
con5 i 1

C-5

Relation: partition
Owner: dpetty
Tuple width: 11
Saved until: Tue Dec 31 00:00:00 1985
Number of tuples: 20
Storage structure: ISAM file
Relation type: user relation

attribute name type length keyno.

qtr c 4 1
team i 1 2
week i 1 3
size f 4 4
qty i 1

Relation: password
Owner: dpetty
Tuple width: 13
Saved until: Tue Dec 31 00:00:00 1985
Number of tuples: 5
Storage structure: ISAM file
Relation type: user relation

attribute name type length keyno.

qtr c 4 1
team i 1 2
pwd c 8

C-6

€ 4

Relation: periph
Owner: dpetty
Tuple width: 9
Saved until: Tue Dec 31 00:00:00 1985
Number of tuples: 45
Storage structure: ISAM file
Relation type: user relation

attribute name type length keyno.

qtr c 4 1
team i 1 2
week i 1 3
idnum i 1 4
model i 2

C-

II

a1

I1

C- 7

41

Appendix D

CPESIM II

Student Manual

D-1

4

Contents

List of Figures D-3

List of Tables D-4

I. Introduction D-5

CPESIM II Output to Students D-7
Student Inputs to CPESIM II D-8

II. ABC BITBUCKET Computer System D-11

Introduction to the ABC ComputerD-11
Hardware Specifications D-12
Software Specifications D-18
Accounting Data D-25
Software Monitor D-26
Hardware Monitor D-29

III. Modifying the ABC Computer Configuration . D-30

Program cpesim D-30
Displaying a ConfigurationD-32
Changing a Configuration D-33
Processing the Software Monitor Data D-35
Addendum D-36

D-

VW

D-.2

List of Figures

Figure Page

1. Typical Job Flow.................D-19

0

D- 3

List of Tables

Table Page

I. ACTLOG Record Format..............D-26

II. SWMON Record Format..............D-27

III. Possible SWMON Names................D-28

IV. HWMON Record Format..............D-29

D- 4

CPESIM II
Student Manual

I. Introduction

CPESIM II consists of a major computer system simula-

tion and its operating environment. It was designed as a

laboratory aid to allow students to apply computer perfor-

mance evaluation (CPE) tools and techniques to a hands-on

computer system. The use of an actual operating computer

system by students for such CPE studies is impractical for

several reasons. First, the overhead required and the dis-

ruption caused by some measurement tools is prohibitive to

* e use in an actual computer installation. Second, if measure-

ment data is available, it may not be academically useful;

the system may be operating as it should and therefore pro-

viding no problem-solving opportunities, or it may suffer

under several interacting problems which, although realistic,

cannot practically be resolved by a student as a one-quarter

course project. Finally, if there is enough data to permit

the student to do an analysis and propose a solution, an

operating computer installation is unlikely to allow the solu-

4 tion's implementation or, alternatively, to be able to choose

from several conflicting solutions which were proposed by

the student teams. CPESIM II solves these constraints by

providing a simulated environment in which the student can

D-5

gather whatever data is desired, analyze it, recommend and

implement a feasible solution, and finally verify the effec-

tiveness of the modified system.

CPESIM II consists of two parts. The heart of CPESIM II

is a computer simulation (written in SLAM) of a large-scale

computer system which executes on a host machine -- the VAX

system. Because it is a simulation, there are many simpli-

fications and limitations which restrict its representation

of reality. The second part of CPESIM II is a simulated oper-

ating environment for the computer system simulation. This

includes a computer-generated workload, a written scenario,

budgetary constraints (if desired by the instructor), and

system data in a form that can be manipulated and analyzed

by the student, who is playing the part of a CPE analyst

and/or a data processing manager.

The written scenario provides the student with operating

details about the particular computer installation he is to

investigate. The instructor configures the hardware, oper-

ating system, and workload to illustrate a particular problem

or situation. Measurement data is then provided as requested

to the student for analysis and decision-making on a periodic

(e.g. weekly) basis. In order to force the student analyst

to make tradeoffs (a real-world constraint), only a subset

of the available data can be accessed during a given period.

D

D-6

CPESIM II Output to Students

Many types of information are available to the student

to aid in the analysis. Some of these are free and automatic;

some must be specifically requested. There is a cost as-

sociated with many, while some are mutually exclusive. The

student must choose what data he wants and how he wants to

use it. This section briefly describes the outputs available

and directs the student to further information where it is

available.

Manufacturer's data -- Literature of varying value

which describes hardware and software features is avail-

able in printed form.

Installation documentation -- In-house documen-

tation of the local configuration, parameter values,

modifications, problems, etc. may be available in

printed form. These are specific to a given problem

and will be provided, if available, as a separate handout.

Accounting system data -- The computer's account-

ing system files are available at no cost to the stu-

dent in a file on the VAX named ACTLOG followed by the

student's team number (e.g., ACTLOG2 for team 2). Such

data is in raw form and the format is defined in the

manufacturer's literature for the appropriate oper-

ating system.

Hardware monitor -- A hardware monitor exists for

D-7

.-- 4" . "" • °, ..

the simulated computer, but may have to be purchased

or leased. Particular probe points, sampling periods,

and sampling frequency must be specified by the student.

As with a real hardware monitor, its use has no effect

on system performance. The output data is available

in a file on the VAX namTed HWMON followed by the stu-

dent's team number.

Software monitor -- A software monitor is avail-

able for the simulated computer, but, like the hardware

monitor, may have to be purchased or leased. As with

real software monitors, this monitor requires memory,

runtime, and system overhead to operate. Output data

is available in a file on the VAX named SWMON followed

by the student's team number.

Student Inputs to CPESIM II

One of the advantages of a simulation is that students

can easily make radical (or not-so-radical) changes to the

system. Thus, there are a number of inputs that the stu-

dent may (or must) provide to CPESIM II as well as some that

he cannot. This section briefly describes the CPESIM II in-

puts available to the student.

Workload -- The student has no control over the

workload at all. The instructor controls the work--

load and may choose to vary it as often as he desires

D-8

0l

or in response to situational developments (e.g. in

response to a student-initiated "user education program").

Interview requests -- Student analysts may submit

written questions to "installation personnel." The

questions, however, may or may not be answered.

Monitor purchase -- Student analysts may submit

purchase orders for the purchase or lease of any available

hardware or software monitors.

Monitor input parameters -- If a monitor is being

used, students must provide to the simulation a starting

and stopping time for monitor operation. The software

monitor, in addition, needs to know which queues are

to be monitored, while the hardware monitor needs to

know where the probes are to be connected and what the

sample rate will be. These parameters are input while

making any other changes to the system configuration

prior to simulation run time.4
Reconfiguration requests -- Students may direct

reconfiguration of the existing hardware and operating

system parameters. Any degradation of system perfor-

mance, however, will be frowned upon by installation

management.

Purchase of system options -- Additional hardware

or operating system modules may be purchased and in-

stalled by submitting an appropriate purchase order.

Information on current cost and availability will be

D-9

provided with each particular project.

Personnel hiring -- Requests for hiring additional

r personnel (e.g. for an additional shift) or for over-

time authorization may be submitted.

D-10

a "k . ma . . ,- . , ,,- m , ., " "

- -k , -: "-"> - • -' ,. ' S C'.S - - - - - - - - - ----- - - -< , % , .< . r c . - = -.

II. American Business Computer (ABC)
(BITBUCKET Computer System

Introduction to the ABC Computer

The ABC computer system was designed to provide flex-

ible, custom computer power to any organization. This sys-

tem consists of a variety of hardware and software options

which can be configured in many ways to tailor the BITBUCKET

to the computing needs of the individual installation. This

document provides abbreviated specifications of both the hard-

I ware components and the software options available to the

ABC customer.

a

I

D-I

I: : : : i i] : : :)

-ADfl-Ai~i 899 DEVELOPMENT OF A USER SUPPORT PACKAGE FOR CPESIN 11 (A 2/2
COMPUTER SINULATIO .(U) AIR FORCE INST OF TECH
&RIGHT-PATTERSON AFA OH SCHOOL OF ENGI. D L PETTY

UNCLASSIFIED DEC 84 AFIT/GCS/ENG/84D-2i F/6 9/2 U

Kmn

. i•-- . ..

~4 11111l!2.2

I--

111111=2 11111-

MICROCOPY RESOLUTION TEST CHART

W. v) N A h , M j.. . .

Hardware Specifications

Model 2000 CPU

The model 2000 represents ABC's standard central pro-

cessing unit. The Model 2000 provides for an extensive in-

struction set with an average execution speed of 250,000

instructions per second (IPS).

Model 3000 CPU

The Model 3000 provides essentially the same capabili-

ties as the Model 2000 except that it operates at a faster

speed. The Model 3000 has an average execution speed of

333,333 IPS.

Model 4000 CPU

The Model 4000 CPU is considered the crown jewel of ABC

computing power. The Model 4000 provides the same instruc-

tion set as the Model 2000 and the Model 3000, but has an

average execution speed of 500,000 IPS! The Model 4000 is

truly state-of-the-art hardware!

Model 20 Core Memory

The primary main memory unit for the BITBUCKET system

is the Model 20 Memory Module. This multi-port, 96K word

module permits connection to up to 5 IOMs and up to 99 CPUs.

The module can be expanded using Model 21 and/or Model 22

Add-on Memory Modules to have up to 20 partitions of 1000K

D-12

words each.

Add-on Memory Modules

Model 21 and Model 22 Add-on Memory Modules provide

essentially the same capability except that a Model 21 Memory

Module adds 32K words of core memory, while a Model 22 Memory

Module adds 64K words of core memory to a Model 20 Core

Memory.

ABC Input/Output Modules (IOMs)

The ABC IOMs are sophisticated I/O channels, each cap-

able of interfacing several peripheral devices to main

memory.

Model 3110

Model 3110 is a byte-multiplexed channel capable

of multiplexing up to ten devices, each with a maximum

transfer rate of 2.5K bytes per second. The primary

function of this IOM is to provide an overlapped inter-

face for the system's printers and card readers.

Model 3117

Model 3117 is a high-speed multiplexor channel cap-

able of multiplexing block-oriented devices such as

magnetic tape drives, disk drives, and drums. Up to

ten high-speed devices can be connected to each Model

3117. Each device can transfer data at a rate of up to

D-13

0

500K bytes per second. The IOM itself is capable of

transferring 500K bytes per second and can multiplex

the transfer of multiple blocks as long as the sum of

the data rates of the devices concerned are within the

transfer rate of the IOM. This IOM requires intercon-

nection to an accessed disk drive or drum during speed

and rotational latency. In the case of high-speed drums,

the IOM is dedicated during the entire delay period.

For slower disk drives, the wait time can. be multiplexed

between several drives as long as the total transfer

rate of the connected devices is less than the maximum

transfer rate of the IOM.

Model 3119

The Model 3119 has all the capabilities and restric-

tions of the Model 3117 except that it can multiplex

up to 15 devices.

Model 2700 Drum

The Model 2700 Drum has a fixed read/write head for each

of 25 active tracks. It has a rotational speed of 3600 revol-

utions per minute and a transfer rate of 410K bytes per second.

The storage capacity for each track is 7K words.

Model 2714 Disk Drive

The Model 2714 Disk Drive consists of a controller and

one single-spindle disk drive which connects directly to the

D-14

- -

IOM. The storage capacity of each mounted disk pack is 20.48

megabytes. Each drive provides access to 200 recording cylin-

ders via a column-type access mechanism with 20 vertically

aligned read/write heads, one read/write head per disk surface.

Each cylinder position provides access to 102,400 bytes of

storage.

Each drive accommodates one IBM 2316 disk pack (or

equivalent) which contains 11 platters and 20 recording sur-

faces. The track-to-track head positioning time is 30 milli-

seconds with an average head positioning time of 74 milli-

seconds. The maximum positioning time is 156 milliseconds.

The average transfer rate is 312,000 bytes per second and

the rotational speed of the disk pack is 3600 revolutions

per minute.

Model 6051 Magnetic Tape Drive

The Model 6051 Tape Drive has been one of ABC's standard

workhorse models for many years. Although of lower data den-

sity and slower speed than more recent models, the 6051's

low cost and high reliability account for its continued

popularity in many installations. Since the Model 6051 uses

industry standard 9 track 1/2 inch magnetic tape, it utilizes

the same physical medium as all other ABC tape drives, thus

requiring an inventory stock of only one tape type.

The Model 6051 records data at a density of 800 bytes

per inch on standard 2400 foot length tape reels with 1/2

D-15

p•.

inch interblock gaps and using NRZ encoding. The tape speed

is 37.5 inches per second and the average data transfer rate

is 30,000 bytes per second.

Model 6110 Magnetic Tape Drive

The Model 6110 is ABC's standard high-speed 9-track tape

drive. The high transfer rate of 120,000 bytes per second

combined with the reliability of 800 bytes per inch data

density makes the 6110 an effective tape storage drive.

ABC's patented Quicloc mechanism speeds tape mounting. The

6110 has a tape speed of 150 inches per second and an inter-

block gap size of 1/2 inch.

Model 7001 Magnetic Tape Drive

The Model 7001 is ABC's top of the line high-speed

9-track tape drive. Although actual effective data storage

capacity depends on the block size used, due to the need of

a 0.4 inch interblock gap the Model 7001 allows a storage

capacity of 40 megabytes. Unlike other ABC tape drives, the

data density of the 7001 is 1600 bytes per inch. The tape

speed is 150 inches per second and the average data transfer

rate is 240,000 bytes per second. ABC's patented Quicloc

mechanism speeds tape mounting. The Model 7001 has proven

itself as a highly reliable tape drive in many installations.

D-16

* ~ ~ ~ ~ '(- -- --- . '.9 W -jW ~~ ~

Model 2920 Card Reader

The Model 2920 Card Reader reads industry standard 80

column cards at a rate of 1000 cards per minute. The input

card bin holds up to 5000 cards.

Model 1200 Line Printer

The standard ABC chain printer, the Model 1200 prints

on standard 11 by 14 inch fanfold paper at a rate of 1000

132-character lines each minute. The Model 1200 has an ex-

cellent performance record.

Model 1250 High-speed Printer

The belt-driven Model 1250 High-speed Line Printer is

a quality line printer which prints 2000 132-character lines

each minute. The Model 1250 is ABC's best line printer.

Model 1400 Laser Printer

The Model 1400 is a state of the art laser printer which

prints 20,000 lines per minute. Variable pitch controls al-

low up to 187 characters on a single printed line. The

Model 1400 prints on 20 pound roll paper and features

variable size page cutting and optional three-hole punching,

all of which are controlled by a microprocessor which is the

heart of the Model 1400's operation.

D-17

Software Specifications

There are two different operating systems that can be

run on the ABC BITBUCKET computer. These operating systems

can handle either a single-cpu configuration or a multiple-

cpu configuration.

Batch Uniprocessor Multi-Programming System (BUMPS)

BUMPS is ABC's multiprogramming operating system in-

tended for use in a batch environment with a single processor.

BUMPS comes as standard equipment with the BITBUCKET computer.

This operating system is described in more detail in the

following sections.

System Jobs

The BUMPS operating system consists of a nucleus which

is core resident, requires 96K words, and includes such tasks

as memory loading, input/output control, and processor sched-

uling. In addition there are three system programs which

definitely have impact on the flow of user programs. The

job scheduler, although core resident in the nucleus, must

go through the execute queue like any other job. The input

spooler and the output spooler are not normally core resident

and must acquire resources in the hold queue like any user

job. The operation of these programs and the resources they

require is described in greater detail below.

D-18

Job Flow

A typical user program gets into the system through the

input spooler (Figure 1). After the job is spooled, it is

placed into the hold queue to await resources. The job

scheduler examines the jobs in the hold queue and, according

to job priority and the job's arrival time into the hold queue,

allocates memory partitions and allocatable input/output

devices to each job. When the job is allocated all of its

required resources, it proceeds to the execute queue.. As

the cpu becomes free, it takes the highest ranking job in

the execute queue and performs a cpu burst.

USER JOB SPOOL ASSIGN
ARRIVAL I JOB RESOURCES

TMEOUTU

A' EXECUTE _ OUTPUT -
,.~ OBLJOBB

PERFORM
I/O

B - FREE RESOURCES __ JOB LEAVESB AND COLLECT STATS: SYSTEM

Figure 1. Typical Job Flow

D-19

Job ranking in the execute queue is done by job

type. The job scheduler gets the highest rank, followed by

the software monitor start-up job, output spooler, input

spooler, and user jobs, respectively. The cpu burst con-

tinues until one of four things happen: an I/O is issued

for an allocatable I/O device, an I/O is requested issued

for an unallocatable device, a timeout occurs, or the job

finishes. If an allocatable device I/O occurs, then the job

gets placed in the smallest channel (IOM) queue which is con-

nected to the requested I/O device. The I/O is performed,

the channel is freed, and the job is placed back into the

execute queue. If an unallocatable device I/O occurs, the

job gets placed into the proper device queue. Once the

device has been acquired, the job is placed in the smallest

channel queue which is connected to the device. The I/O is

then performed. After completion of the I/O, the channel

and the device are freed and the job is placed back into the

execute queue. If a timeout occurs, then the job is placed

back into the execute queue to wait for another time slice.

If the job is completed, then the job is placed into the out-

put queue and it waits for the output spooler to print the

job. Also upon job completion, the memory partition used

and the allocatable devices assigned to the job are released

0

back to the operating system.

D-20

Input Spooler

The input spooler takes the user's programs from the card

reader and spools them onto the disk. When a new job ar-

rives at the input queue, the operating system checks to see

if the input spooler is already in memory. If not, the

spooler is placed in the hold queue where it must compete

for resources and cpu time like any other job. The input

spooler requires a memory partition of 4K for execution. When

the input spooler acquires the cpu, it first schedules an

I/O to read the 80-byte cards into a 1K system buffer. After

the buffer is loaded, the spooler is placed back into the

execute queue. The next time the spooler gets the cpu, the

buffer is spooled to the disk. This two-step process continues

until the entire job is spooled. At that time, the operating

system checks to see if there are any more jobs in the input

queue. The input spooler continues until all the jobs in

the input queue are spooled. The input spooler is then re-

leased from the system and the memory partition is returned

t, the operating system. The input spooler requires one

millisecond of cpu time each time is acquires the cpu.

Output Spooler

The output spooler takes the job's output file which

is stored on disk and prints it. Whenever a job arrives at

the output queue, the operating system checks to see if the

output spooler is loaded. If necessary, the output spooler

D-21

will be placed into the hold queue where it will wait until

it can acquire a partition nf at least 4K words. When the

output spooler executes it will perform an I/O which will

load a 1K system buffer from the disk file. The spooler will

be placed back into the execute queue so that it can print

the buffer in the form of 132-byte lines. This process con-

tinues until the entire job has been printed. Like the

input spooler, the output spooler continues to operate until

its associated queue is empty. In order to set up a trans-

fer, the output spooler consumes one millisecond of cpu time

each time it acquires the cpu.

Job Scheduler

The job scheduler allocates memory *-artitions and allo-

catable I/O devices (tapes) to jobs in the hold queue. The

job scheduler is loaded into the execute queue (if it is not

already there) each time a new job arrives in the hold queue

or when resources are freed at the termination of any ex-

ecuting job. The job scheduler is always core resident as

part of the operating system and therefore does not count

against the multiprogramming level. When the job scheduler

obtains the cpu, it looks at every job in the hold queue to

see if it can assign resources. Resources are assigned to

jobs according to a priority system. The job scheduler ranks

the jobs according to each job's priority attribute. This

attribute is part of the job's input parameters. If there

D-22

"4 ,- & i : -

is a tie, the jobs are ranked according to hold queue arrival

time. After ranking, the job scheduler checks to see if a

memory partition which can handle the job is free. If so,

the scheduler then checks to see if there are enough allo-

catable I/O devices available. When both conditions are met,

the job is assigned resources and moved from the hold queue

to the execute queue.

Static Partition Memory Management

With this memory manager, the user may specify up to

20 partitions of any size from 1K to 1000K words. Partitions

are defined in terms of 1K word increments. The memory

manager uses a "first fit" algorithm. When the job scheduler

executes, it starts with the first free memory partition,

checking to see if the job will fit. If necessary, the mem-

ory manager will check all free memory partitions.

Process Scheduler

The process scheduler selects jobs from the execute queue

and forwards them to the cpu for a cpu burst. The process

scheduler uses a priority round robin scheme. Jobs in the

execute queue are ordered first by their job type and second

by their arrival time to the queue. The job scheduler has

the highest priority, followed by the software monitor start-

up job, output spooler, input spooler, and user jobs, respec-

tively. When the cpu becomes free, the process scheduler

takes the highest-priority, longest-waiting job from the

D-23

.,

execute queue. The job will execute until its time slice

is used up, an I/O is issued, or the job terminates. If a

timeout occurs, the job will be placed last in the execute

queue. If an I/O occurs before the timeout, the job will

perform its I/O and then return to the end of the execute

queue. The process scheduler is part of the operating system

nucleus and consumes no visible resources.

I/O System

To facilitate I/O data flow, all data transfers are done

in fixed 1K blocks. The high-speed multiplexed ABC IOMs allow

concurrent block transfers to or from several devices if the

sum of the devices' effective transfer rates is within the

transfer rate capability of the IOM itself. Each I/O request

results in the transfer of a block of data from the specified

devices, even if only a small portion of the block is re-

quested. Inorder to make such a transfer, both the de-

vice and the IOM must be available. When an I/O is issued,

the job first acquires the appropriate I,'D device; if the

device is busy, the job waits in the device queue. The de-

vice queues use a "first-come, first-served" algorithm.

After the job acquires the device, it tries to allocate an

IOM which is connected to the device. If all the IOMs are

running at capacity, then the job will wait in the smallest

of the channel queues. Only after the I/O device and the

channel are free is the data transfer started. Where possible,

D-24

6 ,- " : '' - '~ . . _ ' . ' - ' i . .. ' . ': - i . .

0

the I/O scheduler tries to distribute usage across the system

of disks and drums.

Each job may have four types of I/O. First it must read

all of the spooled cards from the disk. It must write all

printer lines to the disk file (for later transfer by the

output spooler). In addition, each job may require a number

of disk/drum I/Os and a number of tape I/Os.

Batch Multiprocessor Multi-Programming System (BMMPS)

The BMMPS operating system is exactly like the BUMPS

operating system, except that it supports multiple proces-

sors. BMMPS can have a maximum of 99 cpus connected at one

time. There is still, however, only one execute queue from

which all the cpus acquire jobs to process. Thus, a job may

at one time or another be executed on all of the system cpus

during a single run. All of the cpus in the system appear

identical to the operating system and each can process any

job.

Accounting Data

The ABC BITBUCKET computer records accounting data on

every user job that goes through the system. The accounting

file contains one record per job. The contents and the file

format are listed in Table I.

D-25

0

TABLE I

ACTLOG Record Format

FIELD VARIABLE FORMAT

1 Arrival Time 1X,F15.4,IX
2 Job Nme F10.0,1X
3 CPU Time F5.0.1X
4 Memory F5.0,1X
5 Priority F5.0,1X
6 Allocable Devices F5.0,1X
7 Cards F6.0,1X
8 Lines of Print F6.0,1X
9 Disk blocks F6.0,1X

10 Alloc'able Dev. Blocks F6.0,1X
11 Job Type (Note 1) F2.0,1X
12 CPU Time Used F10.3,1X
13 I/O Time Used F10.3,1X
14 Memory Size Used F10.3,1X
15 Departure Time F15.4

NOTE 1: ACTLOG records only user jobs, so job type
will always be 1.0.

Software Monitor

The software monitor is like any other job in the ABC

BITBUCKET computer system. It is entered into the system

and must compete for computer resources. The monitor is

loaded into the hold queue at the user-specified starting

time. It stays in the hold queue until a partition of at

least 4K is available. It then moves from the hold queue to

the execute queue where it stays until it can acquire the

cpu. At that point, the monitor begins the tracing of jobs

through up to five user-specified queues. The software

D-26

I

monitor then releases the cpu back to the operating system.

Once the trace has started, the monitor will record data

about every job that enters one of the five monitored queues.

The queue name, the time spent in the queue, where the job

came from and where the job is going is recorded every time

a job leaves a queue. When the software monitor is monitor-

ing queues and recording data, it puts an additional burden

on the system which causes the computer to run at a maximum

efficiency of 95%. When the scheduled stopping time of the

monitor occurs, the memory partition is freed and the cpu

returns to 100% maximum operating capability. The software

monitor writes its data to a file called SWMON followed by

the student's team number. This file is available for post-

processing. The contents and record format of the file appear

in Table II.

TABLE II
SWMON Record Format

FIELD VARIABLE FORMAT COMMENTS

1 Queue Name 1X,A15,1X See Note 1
2 Time in Queue F8.3,1X In seconds
3 Came from? A15,1X See Note 1
4 Going to? A15 See Note 1

NOTE 1: See Table III for possible contents of these

6 variables.

D-27

p.!

TABLE III
Possible SWMON Names

Variable Nme Comments

JOB ARRIVAL
INPUT QUEUE
HOLD QUEUE
EXEC QUEUE
OUTPUT QUEUE
ARVL SPOOL Input Spooler arrival in system
ARVL OSPOOL Output Spooler arrival in system
ARVL S/WMON S/W Monitor arrival in system
ARVL JSCHED Job Scheduler arrival in exec. queue
JOB FINISHED
TAPE 1 QUEUE
TAPE 2 QUEUE
TAPE 3 QUEUE
TAPE 4 QUEUE
TAPE 5 QUEUE
TAPE 6 QUEUE
TAPE 7 QUEUE
TAPE 8 QUEUE
TAPE 9 QUEUE
TAPE 10 QUEUE
DISK 1 QUEUE
DISK 2 QUEUE
DISK 3 QUEUE
DISK 4 QUEUE
DISK 5 QUEUE
DISK 6 QUEUE
DISK 7 QUEUE
DISK 8 QUEUE
DISK 9 QUEUE
DISK 10 QUEUE

CHAN 1 QUEUE IOM 1 queue
CHAN 2 QUEUE
CHAN 3 QUEUE
CHAN 4 QUEUE
CHAN 5 QUEUE
CPU
GENERAL CHAN Used only in "Going to?" because

channel # not yet determined
SPOOL QUEUE Input Spooler queue
OSPOOL QUEUE Output Spooler queue

D-28

Hardware Monitor

Unlike the software monitor, the hardware monitor does

not use up the BITBUCKET computer resources. The hardware

monitor has its own timers, counters, and data recording

devices. It is an event-driven monitor which can be con-

nected to any I/O device, IOM, or cpu. The hardware monitor

has two timer probes and three counter probes. These probes,

along with the starting time, stopping time, and the sample

rate, are specified in the configuration file. One limita-

tion to the hardware monitor is that the monitor treats

multiple cpus as one. The timer or counter connected to the

cpus will be pulsed every time any cpu is activated. The

output of the hardware monitor is written to a data file at

the end of each interval specified by the sample rate. The

output file is called HWMON and the record contents and for-

mat appear in Table IV.

TABLE IV

HWMON Record Format

Field Variable Format

1 Time of Recording 1X,F15.4,1X
2 Timer #1 F8.3,1X
3 Timer #2 F8.3,1X
4 Counter #1 15,1X

* 5 Counter #2 15,1X
6 Counter #3 15

D-29

III. Modifying the ABC Computer Configuration

The ABC BITBUCKET computer can be modified to any

rational configuration by using the menu-driven program

cpesim. The program stores the configuration into the data-

base for later extraction by the simulation.

Program cpesim

Program cpesim was designed to be virtually independent

of this manual. However, some written documentation is

always necessary in the event of unanticipated confusion.

To execute cpesim, the student needs the location of the

program from his instructor. The student may or may not wish

to change his working directory to the directory containing

cpesim; in either event, it is unnecessary and will make no

difference in program execution. To begin, the student need

only enter the word cpesim into the terminal (followed, of

course, by a carriage return) and the program's "on-line

help" mechanism will take over. The first thing the student

will be queried for is the current quarter. Valid choices

are fa (fall), wi (winter), sp (spring), or su (summer) fol-

lowed by the last two digits of the current year. An example

appears with the program's prompt. The student will then

be asked for his team number. This number will be assigned

by the student's instructor. Then the student will be asked

to enter the password that his instructor has assigned for

D-30

I:):i::. .

his team. The program will take a few moments to verify this

password against the one stored in the database for his team

number. An example of this first interchange appears below.

What is the current quarter?
(Example: wi85)
fa84

What is your team number?
2

Please enter the password for team 2
dentist

Verifying password...

If the password as entered is not valid, the student will

receive the message

"You are not authorized access to that information."

and the program will terminate.

If the student's password matches the stored password

for that team, he will be offered the following menu:

_* What would you like to do?

1) Display a configuration
2) Change a configuration
3) Process software monitor data
4) Exit the program

Please enter choice:

D-31

If either of the first two menu items is picked, cpesim will

ask the student for the configuration number that he wants.

Configurations are stored by week. If the initial configura-

tion is to be retrieved, the instructor will have to give

the students the week number under which it is stored; very

likely it will either be zero or one. If a configuration

has already been retrieved in this interactive session, cpesim

will remind the student what number configuration has already

been loaded.

Which week's configuration do you want?
(Current week is #1)

If a new configuration is to be retrieved, cpesim will then

display "Retrieving configuration..."

Displaying a Configuration

Once the desired configuration is loaded (some configura-

tion will always be loaded before cpesim tries to display

it), cpesim will prompt "Enter 'go' for XXX" where XXX is

some portion of the configuration (e.g. CPUs, IOMs, parti-

tions, etc.). This is done to keep large configurations from

scrolling off the screen before the student has a chance to

examine them. The student need not enter 'go' specifically

to see the next portion of the configuration. Hitting any

key followed by a carriage return will perform the same func- 0

tion, but 'go' is a short word and adequately describes the

intention, so it was selected as the mnemonic response.

D-32

Si

Changing a Configuration

Changing a configuration is a very simple matter with

cpesim. After the configuration to be changed has been

loaded, the following menu will appear:

What would you like to do?

1) Change CPU
2) Change memory module
3) Change memory partition
4) Change peripheral device
5) Change monitor usage
6) Change IOM
7) Change peripheral - IOM connection
8) Redefine all memory partitions
9) Save all changes for simulation

10) Abort all changes

Please enter choice:

Selection of any but the last three options will put the stu-

dent at another menu which will genera~ly resemble this one:

What would you like to do?

1) Add a CPU
2) Remove a CPU
3) Replace a CPU
4) Change the time slice
5) Display CPUs
6) Return to previous menu and save CPU changes

Please enter choice:

L These lowest menus generally put the student into the

routines where actual changes to the configuration are entered.

Any number of changes, even to a changed item, may be made.

The last menu option refers to saving changes. This "save"

D-33

means to save changes in thu "accuiulate" sense, rather than

in the "write to database" sense. The option to write the

changes to the database appears in the main change configura-

tion menu.

All the menus have been designed to be as informative

as possible. In general, the student need not fear the lowest

level change menus as any change made in error can itself

be subsequently changed. If the student finds that he has

made so many errors that it would be easier to start over

rather than try to change the errors, it would be best to

pick the "Abort all changes" option in the main change menu.

All changes that the student has made will be discarded and

the configuration he began with will be intact. It is better

to pick this option than to "break" out of the program as

picking the abort option means avoiding another configura-

tion retrieval which, during peak system load, may take several

minutes. Configuration changes will not be saved to the data-

base until the "Save all changes for simulation" option is

picked. The student is cautioned not to pick this option

until he is sure that all the desired configuration changes

have been made. Once changes are saved to the database, they

cannot be altered; they can only be the basis for a new week's

configuration. The student has no power to change this situa-

tion. Only under the most extreme of circumstances might

the instructor be persuaded to save a student from this

D-34

dilemma; it is a most painstaking and time-consuming procedure

which only the instructor has the ability (and access permis-

sions) to perform.

Processing the Software Monitor Data

When the student picks this option, he should have the

file containing his software monitor data (SWMONX, where X

is the student's team number) in the working directory. The

cpesim program may appear to do nothing more than pause a

few moments and then re-display the same menu when this op-

tion is picked. What has, in fact, happened is that the cpesim

program has called another program to process the file and

it is now doing so in background mode. This program may take

some time to complete and it is not anticipated that the stu-

dent wishes to stare at a frozen terminal screen while it

is doing so. Thus, the job is spawned as a background job

and the student may later look for results in a file called

SWMONX.dat where X is the student's team number.

The SWMONX.dat file will contain entries, one per job

that entered the BITBUCKET computer, which summarize the time

spent by the jobs in the various queues. Also, each queue

will have a histogram which describes the distribution over

the population of jobs of time spent in that queue. The stu-

dent may find this information useful in his analysis.

L

D-35

Addendum

The cpesim program was designed to be as homogeneous

as possible. The menus were purposefully designed with the

same construct to breed comfort through familiarity. This

strategem may have been carried too far, however. At first

glance, many of the program's menus look alike, so the stu-

dent is cautioned to glance a second time to be sure that

he does, indeed, have the proper menu before him. This pre-

caution will help prevent errors and unwanted configuration

changes.

0

D-36

0

Appendix E

CPESIM II

Instructor Manual

E-1

I . .. ; -' . . - ' . . • ... , -" ' . . > ' k " '

Contents

List of Tables....................E-3

I. Introduction..................E-4

CPESIM II Output to Students.........E-5
Student Inputs to CPESIM II E-7
Student Inputs for Grading.........E-9
CPESIM II Interface Structure.........E-10

II. Workload Generation..............E-11

Introduction.................E-11
Frequency Distributions...........E-11
Job Parameters...............E-12

III. Hardware Catalog Generation..........E-13

IV. The Initial Configuration...........E-14

V. Listing the Configuration Histories E-15

VI. Running the Simulation.............E-16

Setting up the CPESIM II System E-18

VII. Summary....................E-22

E-2

List of Tables

Table Page

I. CPESIM II E-21

E-3

1

I-I

. i " " "~~~~~~- ii i i. . .- '- .'.- . '

CPESIM II
Instructor Manual

I. Introduction

CPESIM II consists of a major computer system simula-

tion and its operating emvironment. It was designed as a

laboratory aid to allow students to apply computer perform-

ance evaluation (CPE) tools and techniques to a hands-on

computer system. The use of an actual operating computer

system by students for such CPE studies is impractical for

several reasons. First, the overhead required and the dis-

ruption caused by some measurement tools is prohibitive to

use in an actual computer installation. Second, if meas-

urement data is available, it may not be academically use-

ful; the system may be operating as it should and therefore

providing no prDblem-solving opportunities, or it may suffer

under several interacting problems which, although realis-

tic, cannot practically be resolved by a student as a one-

quarter course project. Finally, if the data does permit

the student an analysis and solution proposal, an operating

computer installation is unlikely to allow solution imple-

mentation or to be able to choose from among conflicting so-

lutions proposed by several students. CPESIM II solves these

constraints by providing a simulated environment in which

the student can gather whatever data is desired, analyze it,

recommend and implement a feasible solution, and finally

E-4

.. 1

verify the effectiveness of the modified system.

CPESIM II consists of two parts. The heart of

CPESIM II is a computer simulation (written in SLAM) of a

large-scale computer system which executes on a host machine

-- the VAX system. Because it is a simulation, there are

many simplifications and limitations which restrict its

representation of reality. The second part of CPESIM II

is a simulated operating environment for the computer sys-

tem simulation. This includes a computer-generated work-

load, a written scenario, budgetary constraints (if desired

by the instructor) , and system data in a form that can be

manipulated and analyzed by the student, who is playing the

part of a CPE analyst and/or a data processing manager.

The written scenario provides the student with opera-

ting details about the particular computer installation he

is to investigate. The instructor configures the hardware,

operating system, and workload to illustrate a particular

problem or situation. Measurement data is then provided as

requested to the student for analysis and decision-making

on a periodic (e.g. weekly) basis. In order to force the

r student analyst to make tradeoffs (a real-world constraint),

only a subset of the available data can be accessed during

a given period.

CPESIM II Output to Students

Many types of information are available to the student

to aid in the analysis. Some of these are free and

E-5

LS

--

automatic; some must be specifically requested. There is

a cost associated with many, while some are mutually exclu-

sive. The student must choose what data he wants and how

he wants to use it. This section briefly describes the out-

puts available and directs the student to further informa-

tion where it is available.

Manufacturer's data -- Literature of varying value

which describes hardware and software features is

available in printed form.

Installation documentation -- In-house documenta-

tion of the local configuration, parameter values, mod-

ifications, problems, etc. may be available in printed

form. These are specific to a given problem and will

be provided, if available, as a separate handout.

Accounting system data -- The computer's account-

ing system files are available at no cost to the stu-

dent in a file on the VAX named ACTLOG followed by the

student's team number. Such data is in raw form and

the format is defined in the manufacturer's literature

for the appropriate operating system.

Hardware monitor -- A hardware monitor exists for

the simulated computer, but may have to be purchased

or leased. Particular probe points, sampling periods,

and sampling frequency must be specified by the stu-

dent. As with a real hardware monitor, its use has no

effect on system performance. The output data is

E-6

available in a file on the VAX named HWMON followed by

the student's team number.

Software monitor -- A software monitor is avail-

able for the simulated computer, but, like the hardware

monitor, may have to be purchased or leased. As with

real software monitors, this monitor requires memory,

runtime, and system overhead to operate. Output data

is available in a file on the VAX named SWMON followed

by the student's team number.

Student Inputs to CPESIM II

One of the advantages of a simulation is that students

can easily make radical (or not-so-radical) changes to the

system. Thus, there are a number of inputs that the student

may (or must) provide to CPESIM II as well as some that he

cannot. This section briefly describes the CPESIM II inputs

available to the student.

Workload -- The student has no control over the

workload at all. The instructor controls the work-

load and may choose to vary it as often as he desires

or in response to situational developments (e.g. in

response to a student-initiated "user education pro-

gram").

Interview requests -- Student analysts may sub-

mit written questions to "installation personnel". The

questions, however, may or may not be answered.

E-7

Monitor purchase -- Student analysts may submit

purchase orders for the purchase or lease of any a-

vailable hardware or software monitors.

Monitor input parameters -- If a monitor is be-

ing used, students must provide to the simulation a

starting and stopping time for monitor operation.

The software monitor, in addition, needs to know

which queues are to be monitored, while the hardware

monitor needs to know where the probes are to be con-

nected and what the sample rate will be. These pa-

rameters are input while making any other changes to

the system configuration prior to simulation run time.

Reconfiguration requests -- Students may direct

reconfigurationof the existing hardware and operating

system parameters. Any degradation of system perfor-

mance, however, will be frowned upon by installation

management.

Purchase of system options -- Additional hard-

ware or operating system modules may be purchased

and installed by submitting an appropriate purchase

order. Information on current cost and availability

will be provided with each particular project.

Personnel hiring -- Requests for hiring addi-

tional personnel (e.g. for an additional shift) or

for overtime authorization may be submitted.

E-8

Student Input for Grading

Grading structures are, of course, the prerogative of

the individual instructor. This section describes a poten-

tial grading structure which might be used in conjunction

with CPESIM II to grade a CPE project.

Final Report: The final report represents the single

most important input to the student's final grade. The

report should be typewritten and should include drawings,

tables, and graphs of a professional quality. The report

should consist of two parts; the analyst's report and the

student's critique. The analyst's report should include a

clear statement of the perceived problem, a systems analy-

sis and description, stated hypothesis of the specific prob-

lem(s), analysis done to confirm or deny the hypothesis,

recommended solutions(s), and verification that the imple-

mented solution(s) solved the problem(s). Also included

should be a cost analysis and recommendations for the future.

The student critique should include an evaluation of the

CPESIM II system as a learning tool along with a discussion

of problems encountered and recommended changes.

Interim reports: Various interim reports may be re-

quired throughout the quarter, depending upon the scenario.

These should be of quality similar to that of the final

report and will count toward the project grade.

Software tools: Some specific software tools (e.g.

data reduction packages) may be required during the quarter.

These will count toward the project grade. For any tools

E-9

that the student may develop, the source code should be sub-

mitted as an appendix or addendum to the final report.

These programs will influence the final grade.

Oral presentation: Each team will be required to make

a final oral presentation to the class and possibly an in-

terim oral status briefing as well. Although the central

purpose of the final presentation is to share each team's

analysis and findings with the rest of the class, the pre-

sentation is a graded part of the project and should there-

fore be done in a professional manner.

CPESIM II Interface Structure

The instructor's interface to CPESIM II, program cpectl,

has five main functions: generation of the simulation work-

load, generation of the hardware catalog, generation of the

initial system configuration, listing the configuration his-

tories, and running the simulation. These functions are

utilized via a system of helpful menus in cpectl and are,

for the most part, self documenting. As a additional aid

to their utilization, however, they are covered in some de-

tail where necessary in the following sections.

E-10

- - 3 -. •. L.- . . . ,- , ,-;

II. Workload Generation

Introduction

Generation of the simulation workload is actually

accomplished by a FORTRAN program called jobgen. The pro-

gram, called by the interface program cpectl, allows the

instructor to create the workload with from one to ten job-

streams, each of which can be completely different from or

virtually identical to another. The instructor must select,

for each jobstream, a frequency distribution concerning

various job parameters. The details for this are covered

in the two sections which follow.

Frequency Distributions

There are eleven different frequency distributions in

cpectl from which to select. The instructor may create a

rather large variety of workloads by selecting one distri-

bution from the eleven to describe each job parameter.

Possible frequency distributions include exponential, uni-

form, Weibull, triangular, normal, lognormal, Erlang, gamma,

beta, and Poisson distributions. These distributions were

selected as being the most often used in computer simulation.

If these are insufficient, however, the instructor may de-

scribe his own step distribution to cpectl and it will be

used to describe whichever job parameter he selects.

E-11

Job Parameters

Each of several parameters must be described by one

of the aforementioned distributions in order for the work-

load to be generated. These parameters include job inter-

arrival time, CPU time required for job completion, memory

required (in 1K blocks) by a job, a relative job priority,

the number ot allocatable devices required by a job, the

number of input cards in a job, the number of lines a job

may output, the number of system disk blocks needed, and

the number of allocated device blocks a job might n:eed.

Program cpectl will go through this list of parameters for

each job stream and query the instructor for a distribution

to describe it. The program will also offer the instructor

the chance to provide his own random number seed; if one is

not provided, the seed has a default value. The program

will then actually generate a simulation workload and put

it in a formatted file with whatever name the instructor

has input to the program. The procedure for all this is bet-

ter explained through actual execution rather than by this

description. The instructor is referred to the program it-

self tor the best instruction.

E -

III. Hardware Catalog Generation

Generation of the hardware catalog for the CPESIM II

system is a very simple process. The instructor is placed

into a query loop which asks for a model number, a data rate

(or size or speed factor), a name for the item (up to 20 char-

acters), a device type, and an associated cost. To exit the

loop, the instructor enters a model number of zero. The in-

structor will then be given the opportunity to change, delete,

or add to anything he has entered into zhe catalog. When

the instructor is satisfied with what he has entered, he

picks a menu option which causes the data to be stored into

the database.

This same program can be used to make later changes to

the catalog. This is a menu-driven operation and is best

explained through actual use of the program. The menus al-

low the instructor to add, delete, or change any item in the

catalog. This operation, however, is a "real-time" opera-

tion with the database. That is to say, unlike the student

program which makes changes to the configuration first and

then stores the new configuration, this operation stores

each change into the database as it is entered. If the sys-

tem user load is high, this can be a time-consuming affair.

E-13

Ai

IV. The Initial Configuration

The initial BITBUCKET computer configuration is creat-

ed by virtually the same set of modules that the students

use to change the configuration. The only significant dif-

ferences are that the instructor's version of the modules

do not try to retrieve a configuration to make changes to

and the program offers the user the ability to specify what

week the configuration will be stored under. For more de-

tailed instruction on the use of these modules, the instruc-

t&r is referred to the student manual. The query for which

w-e:e the configuration will be stored under follows the se-

ion of the menu item "Save the configuration to the

Eatabase".

E-J14

V. Listing the Configuration Histories

Like the creation of the initial configuration, the

listing of student team configuration histories is accom-

plished by virtually the same modules that the students use.

There is a greater difference in these instructor modules,

however. The instructor may display any one configuration

on the terminal, display all the configurations for one team,

display all the configurations forall teams, or perform these

same functions writing the output to a file. Students may

list only a single configuration at a time and only on the

screen. Also, they can only list their own configurations,

while the instructor can list the configuration of any team.

The selection of these instructor options is achieved via

a menu.

This list option is intended to allow the instructor

to follow the progress or evaluate the achievement of his
A

student teams. He may use it to spot check any given con-

figuration as well. Students should at least summarize

their configuration evolutions in their final reports, but

this option "offers the story" at a glance. It is suggest-

ed that the instructor utilize this option in conjuction with

his evaluation of the student's final results. With a com-

plete historical record before him, he can see what the stu-

dent has done and where the student has made any errors.

E-15

VI. Running the Simulation

A minimum of input is required from the instructor to

allow the execution of this option. The instructor may

start the simulation for all student teams or only one stu-

dent team. He may also, at his discretion, abort any sim-

ulation just prior to its execution.

When the "run simulation" option is selected, many

things happen which are invisible to the instructor. He is

first prompted for the week number of the simulation he is

running and the name of the workload file that he will use.

He will be asked if he wishes to change the default simula-

tion run length. He then selects, from a menu, whether he

wants to run the simulation for all teams or for one team.

Selecting the latter option is useful if, for some reason,

a student team failed to store a configuration for the cur-

rent week prior to simulation run time. (If this situation

occurs, the program will inform the instructor that a par-

ticular team's data is missing and continue processing the

next team's data; no program abort will occur.) This op-

tion allows the simulation to occur at another time (at the

discretion of the instructor, of course) when the configu-

ration has finally been stored and without having to unnec-
0

essarily rerun a simulation for the other teams. If the in-

structor selects a one-team simulation run, he will be asked

for the number of the team for whom the simulation is being

run. If he wishes to start a simulation for all teams, he

E-16

0.'

will be asked how many teams there are.

Another rationale for a one-team simulation is that per-

haps one team has instituted a user-education program which

impacts the system workload. For that team, then it would

be necessary to run the simulation with a different work-

lead, one more akin to the results of their influence. The

workload, of course, need not necessarily reflect a positive

effect due to their influence. It may, in fact, be the case

that the "simulated Ltsers" rebel against any changes made

by the students and actually cause the conditions existent

to worsen! This, of course, would all happen at instructor

discretion.

The program begins to do several things when all the

parameters have been entered. First the SLAM network code

is copied into a simulation input file. The program then

extracts a configurations from the database and copies it

into the simulation input file. Next, the workload file is

copied. The file is closed and the instructor is offered

the opportunity to abort the simulation. This is done to

allow the instructor to create the input file without actually

running the simulation. This file may then be sent to a sim-

ulation other than the standard CPESIM II simulation, perhaps

a modified version. Simulation results appear in the files

which are documented in the student manual.

E-17

Setting up the CPESIM II System

At some point in time, it will be necessary to take the

CPESIM II source code and make it executable. This section

was written to make that task a simple one. Table I con-

tains a list of all the needed files and indicates what they

are.

The Interface. Four programs make up the CPESIM II inter-

face: one FORTRAN program (jobgen) and three C programs

(cpesim, cpectl, and procmon). Program jobgen should be com-

piled as follows:

F77 jobgen.f -o jobgen -limsl

Two of the C programs, cpesim and cpectl, contain embedded

EQUEL code which will have to be precompiled. This is ac-

complished with the following:

equel cpesim.q

equel cpectl.q

EQUEL will produce a X.c file (where X was the name of the

file with the embedded EQUEL code minus the ".q") for each

of these. Now all three C programs can be compiled with

c

cc -w cpesim.c -o cpesim -lq

cc -w cpectl.c -o cpectl -lq

cc procmon.c -o procmon

E-18

These commands produce the files cpesim, cpectl, and procmon

respectively. If the source files exist on a backup medium

(removable disk or tape), the X.q and the X.c files can be

deleted.

The cpesim and procmon files should be moved to a direc-

tory which has global read, write, and execute permissions.

These are the student programs and the directory containing

them becomes known as the student work area. The directory

is likely to become somewhat littered with files, so it is

a good idea to start it out empty except for the two inter-

face programs. The other programs, cpectl and jobgen, should

be placed where only the instructor has permission to execute

them.

The Simulation. Two files comprise the CPESIM II simula-

tion: sim.f and sims. Only one of these files needs to be

compiled. Issue the following command to UNIX:

F77 sim.f -o simf -limsl

to create the simulation object code. Once the program is

compiled, if the source files are on a backup medium, delete

the sim.f file. Move files simes and simf to the directory

containing cpectl.

Using the System. As the instructor runs each simulation,

several data files will be created for the students. He

has two options: he can allow general read permissions on

the directory containing cpectl, jobgen, simf, and sims

E-19

without giving any general permissions to the aforementioned

programs, or he can copy all the students' data files to the

student work area. The former option involves less work.

With global read permissions (only) on the directory, the

instructor can set general read permissions on the data files

(if they don't already have them by default) and the students

can copy their data files to their own areas. Advise students

to do this because the existing files will be overwritten

during the next simulation run.

E-20

.

TABLE I.

CPESIM II Files

Filename Contents

cpesim.q Source code for the student interface.
Contains embedded EQUEL code.

cpectl.q Source code for the instructor interface.
Contains embedded EQUEL code.

jobgen.f Source code for the workload generator.
(FORTRAN)

procmon.c Source code for the software monitor data post
processor.

sims Network simulation code. Do not try to
compile!

I) sim.f FORTRAN simulation code.

E-21

Jw

VII. Summary

The instructor's interface to CPESIM II offers a

variety of options and functions. These functions include

generation of the BITBUCKET system workload, generation of

the catalog of hardware available to the installation, gen-

eration of the initial BITBUCKET configuration, displaying

the histories of the final (or current) configurations.dev-

eloped by each student team, and initiating the simulation

run. The operation of each of these functions is facilitated

by helpful and informative menus which were designed to

operate independently of written documentation.

E-22

Appendix F

Development of a User Support
Package for CPESIM II

(A Computer Simulation for CPE Use)

Publishable Article

-Z- F-i

022

Development of a User Support
Package for CPESIM II

(A Computer Simulation for CPE Use)

Recently, more and more computer installations are

turning to computer performance evaluation (CPE) as a first

means to providing more effective computer support. In order

to learn CPE techniques, students may best profit from a com-

puter simulation. Such a simulation was developed in SLAM

in 1983 by Capt. David Owen as an upgrade of a similar simula-

tion developed in 1979 in SIMSCRIPT II by Capt. Paul Lewis.

However, Capt. Owen's simulation, CPESIM II, lacked the user

friendly interface which should characterize a learning tool.

This thesis effort was an attempt to rectify this situation

while at the same time meeting some new requirements from

CPE and Queueing Theory classes at AFIT.

The new CPESIM II system was required to allow students

to easily display or modify an initial computer configuration

which was part of a case study in performance evaluation.

The students were to be allowed to make any number of changes

over the course of several weeks in order to resolve the per-

formance problem being illustrated and restore effective com-

puter support. The students were to be able to add, remove

or replace any hardware they deemed necessary to achieve their

goal. Data for analysis of the system was to be obtained

through hardware and software monitors which are available

to sample a student-defined subset of all the computer's

F-2

performance data and from the accounting log of the computer.

The interface was also to be capable of doing a data reduction

and histogram analysis of the output software monitor data.

All configuration changes were to be stored in a database

in order to provide the instructor with a stored history of

the evolving configurations.

The new system was also to provide support to the in-

structor. He was to be able to easily create the initial

computer configuration, a catalog of equipment (hardware)

available for use, and a random workload of from one to ten

jobstreams. The parameters of each job in the workload were

each to be defined by one of eleven frequency distributions

supplied to the instructor, one of which was to be an instruc-

tor-defined discrete probability distribution. The instruc-

tor was also to be able to display any or all configurations

of any or all student teams and to be able to easily initiate

the simulation run.

All software in the interface program was required to

be portable: that is, to run on any UNIX system and be indepen-

dent of the hardware, terminals included, that it was imple-

mented on. This would allow the use of CPESIM II outside

of the AFIT/EN environment and also allow the system to

withstand any changes in the hardware it was implemented on.

The finished interface was implemented in the C language

and heavily depends on the use of the Ingres relational DBMS.

Starting with the initial configuration, all student-changed

configurations are stored in an Ingres database to be

F-3

V.I

%i

displayed by the students and extracted for use at simula-

tion runtime. Students are prevented from seeing the config-

urations of another student team through a team password

construct. They are also prevented from utilizing any in-

structor capabilities by the fact that the interface is, in

fact, basically two separate programs. The student program

exists with global read and execute permissions while the

instructor program exists with permissions allowing only the

instructor to access it.

The student program allows the student to modify or dis-

play the initial configuration or any configuration modified

by his student team. He may also do a data reduction and

histogram analysis on the software monitor data after the

completion of the simulation run. The program is driven via

a set of hierarchically arranged menus which do actual data

manipulation only at the lowest levels. It was felt that

the menu structure is so commonplace as to be familiar to

students and thereby shorten the learning curve for its use.

Also, menus can be a very user friendly construct and can

best filter out erroneous user entries into the system.

The instructor program, also menu driven, allows the in-

structor to create the initial configuration and display the

students' configurations using virtually the same modules

the students use to accomplish their tasks. The instruc-

tor, however, may direct his displays to a file for later

printing or may elect to display on the screen; students may

only display on the screen. The instructor may also create

F-4

as many workloads as he needs as defined by the requirements.

He must do so before running the simulation which will use

them, however. When the instructor chooses to start the simu-

lation, the SLAM network code, the configuration (which is

extracted from Ingres at this time), and the workload are

all copied into one file to be used as simulation input.

Capt. Owen's simulation required these to be separate files,

but the new method reduces the plethora of files which would

soon litter the system. The program also allows the instruc-

tor to easily create the equipment catalog which is also

stored in the Ingres database with the configurations.

Upon completion, the system was programmer verified and

then subjected to some scrutiny by 20 volunteers, who provided

some valuable feedback which resulted in several cosmetic

changes. The volunteers found the interface easy to use and

understand, but had complaints about the speed of Ingres ac-

cesses when the UNIX user load was high. Validation of the

CPESIM II sys m as a whole was not possible, partly because

it was known that the simulation terminated abnormally after

throughputting 50 jobs and partly because of difficulty get-

ting the simulation reloaded onto the system owing to an inter-

vening operating system change. After a "best guess" scru-

tinization of the system as a whole and especially the simu-

lation input, the system was declared "probably valid", the

best that could be done under the circumstances.

The interface achieved its objectives, but has room

for improvement. It could benefit from the implementation

F-5

0

- I . . - S ~ -

of a "help" system which would provide on-line aid to users.

It could also benefit from a feature to track monetary costs

of student changes and actions. Also, the programs did not

have a terminal-independent clear screen function. Such a

function is possible, but time constraints prevented its devel-

opment. Currently, the clear screen function operates only

for VT100 terminals. Also, workload parameters are not

stored in Ingres, so they must all be entered each time a

new workload is created. It would be less taxing on the in-

structor if the parameters were stored so that a few changes

only would be necessary to create a new workload. At present,

the hardware monitor data must be taken as is; no boolean

operations on probe points are allowed. A change to effect

this would improve the quality of the analysis data. Finally,

the simulation itself requires some error corrections and

streamlining. Since this was outside the scope of this

effort, no work was done in this area. When these recommen-

dations are effected, a truly superior learning tool will

result.

F-6

S

VITA

Captain Daniel L. Petty was born on 14 January 1955 at

Wright-Patterson Air Force Base, Ohio. He graduated from high

school in Falls Church, Virginia, in 1973 and attended the

University of Georgia from which he received the degree of

Bachelor of Science in Computer Science in 1978. In January

1979 he entered Officer Training School and was commissioned

in April 1979. He was assigned to the Air Force Data Ser-

vices Center, Pentagon, Washington DC, where he served as

Financial Systems Programmer/Analyst, Chief, Presidential

Budget Computer Support, and Presidential Budget Computer

Systems Analyst until entering the School of Engineering,

Air Force Institute of Technology, in June 1983.

Permanent address: 8807 Gramercy Lane

Laurel, MD 20708

V-I

Ui

Bibliography

1. Bell, T. E., B. W. Boehm and R. A. Watson. Computer
Performance Analysis: Framework and Initial Phases for
a Performance Improvement Effort. A report prepared
for United States Air Force Project Rand, November, 1972.
(R-549-1-PR)

2. Lewis, Paul C. A Computer Performance Evaluation Educa-
tion Tool. MS Thesis GCS/EE/79-8. School of Engineer-
ing, Air Force Institute of Technology (AU), Wright-
Patterson AFB, Ohio, December 1979 (AD A080154).

3. Owen, David L. CPESIM II: A Computer System Simulation
for Computer Performance Evaluation Use. MS Thesis
GCS/EE/83D-16. School of Engineering, Air Force Insti-
tute of Technology (AU), Wright-Patterson AFB, Ohio,
December 1983.

4. Hartrum, Thomas C., Computer Performance Evaluation
Instructor. Personal interview. Department of Elec-
trical Engineering, School of Engineering, Air Force
Institute of Technology, Wright-Patterson Air Force Base,
Oh., 14 May 1984.

5. ------ Computer Performance Evaluation Instructor.
Personal interview. Department of Electrical Engineer-
ing, School of Engineering, Air Force Institute of Tech-
nology, Wright-Patterson Air Force Base, Oh., 18 July
1984.

6. Seward, Walter, Queueing Theory Instructor. Personal
interview. Department of Electrical Engineering, School
of Engineering, Air Force Institute of Technology,
Wright-Patterson Air Force Base, Oh., 18 July 1984.

7. Pritsker, A. Alan B. and Pegden, Claude Dennis. Intro-
duction to Simulation and SLAM. Halsted Press, New York,
NY, 1979.

8. Svoboda, Liba. Computer Performance Measurement and
Evaluation Methods: Analysis and Applications. American
Elsevier Publishing Company, New York, NY, 1976.

9. Ferrari, Domenico. Computer Systems Performance Evalua-
tion. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978.

10. Kenighan, Brian W. And Ritchie, Dennis M. The C Pro-
gramming Language. Prentice-Hall, Inc., Englewood Cliffs,

4 NJ, 1978.

BIB-I

I.

11. Plum, Thomas. Learning to Program in C. Plum Hall Inc.,
Cardiff, NJ, 1983.

12. Ageloff, Roy and Mojena, Richard. Applied FORTRAN 77
Featuring Structured Programming. Wadsworth Publishing
Company, Belmont, CA, 1981.

13. Madnick, Stuart E. and Donavan, John J. Operating Sys-
tems. McGraw-Hill Book Company, New York, NY, 1974.

14. Becker, Richard A. and Chambers, John M. S: A Language
and System for Data Analysis. Bell Laboratories, 1981.

BIB-2

I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

.!IREPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICA'IION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DiSTRIBUTION/AVAILABILITY OF REPORT

Approved for punlic release;
2b. DECLASSIPCATI ON/OOWNG RADiNGSCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
If tappxcable.

School of Engineering AFIr/ENG

6c. ADDRESS rCty. State and ZIP Code, 7b. ADDRESS (City, State and ZIP Codej

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
O RGAN IZATI ON (if applicable)

8c. ADDRESS iCity. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE 'Include Security Classification)

See Box1_ _

12. PERSONAL AUTHOR(S)

Petty, Daniel Lustcr, Capt. USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT IYr., Mo.. Day) 15. PAGE COUNT

MS Thesis FROM TO 1984 December 150
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. CPE, Computer Performance Evaluation,
09 02 Computer Simulation, User Friendly

I Interface
19. ABSTRACT 'Continue on reverse if necessary and identify by block numberI

Title: DEVELOPMENT OF A USER SUPPORT PACKAGE FOR CPESIM II

(A COMPUTER SIMULATION FOR CPE USE)
tr.:, ;jxl 190-1,.

Thesis Chairman: Dr. Thomas Hartrum ,.-f I,

I q~y (MICI

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED X SAME AS RPT - DTIC USERS E UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
,lInclude .Ar ea Code i

Dr. Thomas Hartrum 513-225-2024 AFIT/ENG

DO FORM 1473, 83 APR EDITION OF I JAN 73 'S OBSOLETE. UNCLASSIFIED
*1 SECURITY CLASSIFICATION OF THIS PAGE

, : ' ,- ' ... - -. . - - -, " , .- - * : . .. , . i _ . :. i .. i : . - , , ,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

In 1983 a SLAM computer simulation was developed to be
used as an educational tool in CPE and Queueing Theory classes
at AFIT. Lack of user friendliness and additional require-
ments necessitated the development of a user friendly inter-
face, i.e. this thesis effort. The interface consists of two
programs: one for the instructor and one for his students.

The students' interface allows them to modify and display

the initial or subsequently modified computer configurations

and to do a data reduction and histogram analysis on output
software monitor data after a simulation run. Any student
configuration changes are stored in an Ingres database.

The instructor's interface allows him to easily create the
initial configuration, the catalog of available hardware, and
the system's workload of from one to ten jobstreams. He can
also display any or all configurations of any or all student

4 teams on his terminal or direct that display to a file for
later printing.

The interface as a whole is menu-driven, user friendly,
and very portable; it operates on any UNIX system (which has
Ingres and SLAM) regardless of the hardware (including terminals)
that the operating system is implemented on. A student and
instructor user's manual is provided.

UNCLASSIFIED
SECURITY CLASSIFICATION OF TA'& PAGE

ri

, FILMED

_, 5-85

I

4" DTIC
... q.

. *.. .

tS"

