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Preface

rhis report Ls the result of a twelve week study on the feasibility

of using the method of weighted residuals to determine approximations to

the discrete Graea's function or an analog to it. Included in the

report are derivations of the methods of Galerkin, collocation and

finite differences, for the one- and two-dimensional Poissonas equation.

The analytical solutions for various inhomogeneity terms are also

included. The problem of ill-conditioned matricies which arose in two

cases is discussed in Appendix A. All of the primary goals of the study

were met or explained.

During the twelve week period, I learned a great deal about the

theory of Green's functions, numerical methods, matricies and the

problems that can come about from solving matrix equations.

) I would like to acknowledge Dr. Kaplan for his support, and

seemingly never-ending list of reference sources. Iis suggestions

always opened up new avenues for research, and taught me more about the

subjects than I really wanted to know.

I must also thank my wife, Roxana, for her understanding during

this stressful period, and for being willing to share the computar aith

me despite needing it for work on her own thesis.

Dean K. Oyler

I

* * - *. . * . .. ". -_ . *o.,. . . . . , - - . . , . ... . * . -- . ,. ' . , ...,,. _ - .... .- . .. .. ..



rable of Contents

Page

Preface ........................ . " ........ . ................... **

List of Figures .............................................. v

List of Tables ...................................................... vi

Abstract ............................................................ vii

I. Introducton......o............ .......................... 5

faigonde Difr1aMto...

Soe..od....d......... d..... ......................... 8

proesac .... os....... og. .. .......................... 3

Ii. Poisson's Equation ia One-Dimensio ....... ................. 12

Analytical Soluteono.. .... ........................... 5

Numerical Approxiations .... .. .o..t. . ............... 16

Fnir ffere c. Method ... ......... .... .... ......... 7

Method of Weighted residuals ........t.o..xat . o......... 8

Cmalerkins liesod........ ........ . . . . . . . . 11

Collocation .Method..o............................ 11

Green's unctions and Analogs. ............. .... . 12

Finite Difference 4ethod........ . o................... 12

Hethod of Weighted Residuals .......................... 13

Computer Analysis ....... o........... ..... ........... 15

Inhomogeneity rerms and Exact Solutions ............... 15

Average Error ...... ... ........ ..... ..... .... .... ..... 13
Comparison of Approximations to Exact Solutions ........ 17

Computer Run Times .......... .................... ....... 17
overall Accuracy sad Comparison with Earlier aesults.. 23

Conclusions ....................O*......... -........ .... ... 23

111. Poisson s Equation in .o-.tmansions....... .... ....... 25

alytical ........... .................... . 25
N umerical Approxima tions ... ...............................o 26

finite Differeace Method .... ...... o................. 27
4-ethod of Wleighted Residuals ........................... 28

Galerkin* s M4ethod ..-................. o.o......... 31
Collocati~on 'ie thodo................o............... 32

Gre.en's Functions sad Analogs ... ..................... .. 33
C o m pu te r A na l y si s ... o o o o - o -o o o - -........ . . .. . . .. . . .. . . . . 34

_I nhomogeaeity rerms sad Exact solutions ........... ..... 35

A v e r a g e E r r o r .... ......................... ..- . .... o .... 3 6

"-Comparison of k pproximatioas to E-xact Solurtons ....o.... 37
Compute~r 'tun Tie s ........................ . . . ......o. 37

; _ 4 '; _ ; " ." : •" "'' ; ' '" "" ; ;";;:7-,; .: ..t -



Page

-~.Overall Accuracy and Comparison with Earlier Results ... 43
Conclusions ......................... .. ** ............ 43

IV. Conclusos adRecenation....... .................. 44

Conclusions ............... .. .. .. .. .. .. .. . .. . . . . . *........... 44
aecoinmendations. .. .. .. .. .. .. .. .................. . ..... 44

Appendix A: Ill-Conditioned Matricies .. .... ... ........... 0. .. 48

%ppe-adix B: Numerical Approxizations for the Problem Se.t..so 53

Appendix C: Program Litnso ........ o- ...... o... 604

Via.........................*..*.............oooo- 31

iv



List of Figures

Figure Page

I 1- ehwt neo oe .................. ....... 6

2 Tri-diagonal F.D. Matrix Equation for 5 3odes ............... 8

3 Average Error vs Number of Interior Nodes for g(x) - 10 ..... 18

2
4 Average Error vs 3umber of Interior Nodes for g(x) - x ... 19

5 AvrageErro vs umbe of nteror Ndes or gx) 2  1. 2
6 Average Error vs Number of Interior Nodes for gx .2

7 Computer Run Times vs Nu-her of Interior Modes .............. 22

3 2-D Hash with 10 Interior lodes ....................... 26

9 Average Error vs Number of Interior Nodes for g(x,y) - 10 ... 38

10 Average Error vs Number of Interior Nodes for g(x,y) - x .. 39

11 Average Er or vi dumber of Interior Nodes for

g(x,Y) - x I+ y ........................ ......... 41

13 Computer Rua Times vs Number of Interior Modes .............. 42

14 Average Error vs Numbe~ of Interior Nodes 2-D Collocation

Routine for g(x,y) -x ............................. 50

V



List of Tables

Table Page

1 Exact Solutions to Eq(48) .................................... 16

2 Exact Solutions to Zq(88) .......................... 36

3 Condition Numbers for the 2-d Collocation ,atrix ............. 51

4 Finite Difference Approximations for g(x) - 10 ............... 54

2
5Finite Difference Approximations for g(x) - x . .. 54

6 Finite Difference Approximations for g(x) - x + 1 ........... 55

2
7 Finite Difference Approximations for g(x) - x + x + 1 ....... 55

.3 "alerkin Approximations for g(x) - 10 ........................ 56

9 Galerkin Approximations for g(x) - x2 ........................ 56

2
10 Galerkin Approximations for g(x) - x + 1 ................ 57

2
11 Galerkin pproximations for g(x) - x - x + 1.............57

12 Collocation Approximations for g(x) - 10 ..................... 53

2
13 Collocation Approximations for g(x) - x .................. 53

215 Collocation Approximations for g(x) - x + x + I ............. 59

16 Finite Dlffeence A pproximation s for g(x,y) - 10 ............. 60

17 Finite Difference Approximations for g(xy) - 12.............60
" 17 Finite Difference Approximations for g(x,y) - x2 . .... .... ... . . 60

2 2
18 Finite Difference Approximations for g(x,y) - x + y ........ 61

2 2
19 Finite Difference Approximations for g(x,Y) - x + y + x .... 61

20 Galerkin Approxiuations for g(xy) - 10 ................. 62

2
21 Galerkia Approximations for g(x,y) m x ...................... 62

2 2
22 Galerkin Approximations for g(x,y) = x + y .............. 63

23 Galarkin Approximations for g(xy) x 2 + 2+ x ............. 63

vi



Abs trac t

- The purpose of this a was to determine the feasibility of using

the method of weighted residuals to obtain approximations to the

discrete Greenos function, or analogs to it. The weighted residual

methods of Galerkia and collocation, as well as the finite difference

method were programed on a Kaypro 1I micro-computer in M1icrosoft Basic.

These programs were used to generate approximations to the one- and two-

dimensional Poisson's equation. The two-dimensional case was restricted

to the geometry of a unit square. Various inhomogeneity terms were used

*i obtain approximate solutions to the discrete Graen's functions or

their analogs. The results were compared with the analytical values at

various interior nodal points on the mesh. The average percent error

for the approximations were reported for each case as the number of

interioc nodal points was increased. The areas of consideration were

the rate of convergence to the analytical solution, the amount of time

it took to run each program, and the accuracy of the approximate

solutions. rhe results of this study indicate that the Green's

functions or analogs obtained are valid approximations to the discrete

Green's functions. The method of weighted residuals proved to be very

sensitive to the choice of basis functions, resulting in ill-conditioned

matricies in some instances.

i
0
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S

INVESTIGATION OF THE NUMEICAL M.ErHOD OF MOMENTS FOR

DIGITAL COMPUTE& DETERMINATION OF DIFFERENTIAL EQUATIONS

I. Introduction

Background

the final step in the mathematical treatment of many problems in

prhysics and engineeriog is often ftuding the solutioa to a boundary-

value problem. The standard differential equations most often

encountered in mathematical physics include -

LaPlace's equation:

I vZV . o QI

Poissoa's equation:

V2 . -p (2)

the wave equation:

v2, - 1/c2 1 ,/,*1t 2 ] - 0 (3)

and the Helmholtz equation:

(V 2 + k2), f (4)

Frequently, the solutions to these equations can be represented in

terms of a Green's function. There are several advantages in the use of

Green's functions as solutions to these boundary-value problems. One

advantage is that it enables a differential equation with suitable

1- .-, , .; .. .. -> -



boundary conditions to be solved by an ordinary integral. Another

advantage is that once the Green's function for a particular

differen.ial operator and geometry has been found, it can be utilized

for all other problems involving the same differential operator and

geometry, but with different expressions for the inhomogeneity or source

term. If these Green's functions for different differential operators

and geometries could be tabulated, they could be used to solve boundary-

value problems quite easily, in a manner analogous to the use of a table

of integrals.

Although Green's functions have been obtained analytically for

certain standard geometries (planes, rectangles, spi2eres, cylinders),

for the usual equations of mathematical physics (Eqs(1-4)), a difficulty

arises in finding the Green's functions for mixed or irregular

geometries. In these situations, one must employ the use of numerical

methods techniques.

Previous thesis research and publications have successfully solved

the problem of numerically approximating Green's functions by means of

finite difference algorithms (1,3,6). In this method, one uses

approximations of derivatives (usually a truncated Taylor's series) to

convert the boundary-value problem into a large series of simultaneous

algebraic equations, which can than be solved with relative ease using

matrix methods on a digital computer.

This thesis will investigate the use of a different numerical

technique, the method of weighted residuals, to solve the necessary

differential equations. In this technique, the unknown solution is

expressed as a series of functions which can be manipulated to once

again reduce the problem to solving a series of simultaneous algebraic

2



A

equations. The inverse of the coefficient matrix of these equations is

analogous to the discrete Green's function for the differential

operator.

Objective

This research effort will compare the discrete Green's functions,

obtained by both the method of weighted residuals and tha method of

finite differences, for both the one- and two-dimensional case, with

re-oect to accuracy and feasibility for digital computation.

The current thesis problem is a follow-up to a previous 3.S. thesis

(1) that reported conflicting results for the one- and two-dimensional

cases, concerning which of the three methods was best. This study will

attempt to verify or refute the conflict between the two cases by

recreating parts of the previous thesis using a different computer coda,

and different matrix solving routines.

Sc op.

This study will only consider tne problem of the one- and two-

dimensional Poisson's equation, with Dirichlet boundary conditions. rha

solutions for both the one- and two-dimensional Green's functions will

be compared using the finite difference method and the method of

weighted residuals.

kpproach

The initial approach to this study will be to develop computer

programs which use the method of finite differences and two of the

3



methods of weighted residuals (Galerkin's method, and collocation) to

obtain approximations for both the discrete Grs.en's function, or its

analog, and the solution for the one-dimensional Poisson's equation.

3omogeneous Oirichlet boundary conditions will be assumed for all cases.

Once the initial programs have been developed, they will then be

modified to handle the two-dimensional cases.

The usefulness of the Green's functions obtained in the previous

steps will then be analyzed by varying the inhomogeneity term for the

Poisson's equation. Areas of consideration will include the number of

calculations required, computer run ttue for each method, the

convergence rate to the correct solution, the overall accuracy of the

approximations as compared to the analytical solution, and how the

results compare to the earlier study (1).

Finally, the feasibility and possible directions for continued

research into these approximation methods will be explored.

K 4



* -. *II. POISSON'S EQUATION IN ONE-DLMENSION

The initial problem examined in this study is the one-dimansional

Poissonos equation. The general form of the problem caa be expressed as

L u(x) - g(x) (5)

where L is the linear differential operator, d 2/dx 2 , (x), the

inhomogeneity term, is the source or excitation (a known function), and

u(x) is the field or response (the unknown function to be determined)

(7:1-2).

Associated wigh the problem in this study are the homogeneous

Dirichlet boundary conditions

u(O) - 0 (6-a)

u(1) - 0 (6-o)

Analytical Solution

The general solution to Eq(5), with an inhoilogeneity term of the

* form

g(x) -Ax 2 + Bx + C (7)

can be found by direct integration to be

4 3 2u(x) -Ax4112 + Sx /6 + Cx2/2 + Dx E -

4 By applying the boundary conditions (Eq (6)), Eq (8) becomes

u(x) Ax4/12 + Bx 3/6 + Cx 2/2 - (A+2B+6C)x/12 (9)

4 5
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which is the analytical solution to the one-dimensional Poisson's

equa tion.

umerical ApproxLmatioas

All of the numerical approximations in this study make use of a

technique in which a mesh is superimposed over the region of interest of

the problem. For the one-dimensional case, this merely involves

subdividing the region by N equally spaced interior nodes. The

numerical method is then applied at these nodes resulting in a set of N

simultaneous algebraic equations, which can be solved to give the

41 approximate solution to the problem.

The accuracy of the approximation depends upon the number of

interior nodal points used. A fine mesh with many nodal points will

generally result in a more accurate solution to the problem. A sample

mesh for the one-dimeusional case is showa below in Figure 1

0X
1. 2 3 4 5

Figure 1. i-D Mesh With 5 Interior godes

6 6
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The mesh in Figure 1 has five interior nodes, with a step size h between

sach of the nodes equal to 1/(N+1), to ensure that they are equally

spaced.

Finite Differenca Hethod. The method of finite differencas makes

use of a truncated Zaylor's series to approximate the solution to the

problem. According to Taylor's theorem (14:6), when a function u, and

its derivatives are single-valued, finite and continuous functions of x,

then

u(x~h) u(x) + hu'(x) + h u'(x)/2 + hi u ...(x)/6 + (10)

and

u(x-h) - u(x) - hu(x) + h2u "(x)/2 - h3 u..(x)/6 + ... (11)

Adding these two expressions yields

u(x+h) + u(x-h) - 2u(x) + h2u (x) + higher order terms (12)

Neglecting the higher order terms and solving for u (x)

u -(x) - d2u/dz2 - (u(x+h) - 2u(x) + u(x-h))/n2  (13)

This equation allows an approximation to Eq (5) to be made so that

2(u(x+h) - 2u(x) + u(x-h))/h g(x) (14)

By applying this approximation to each nodal point in the mesh, the

equation becoues a series of N simultaneous algebraic equations which

can then be solved by matrix techniques. These equations can be written

7
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in matrix notation as

C U- g (15)

In all caaes when vector notation is used, a boldfaced capital letter

indicates a rectangular matrix, and a boldfaced lower case letter

indicates a column vector.

The coefficient matrix, C, formed from these equations is known as

a tri-diagonal matrix. A tri-diagonal matrix has non-zero values only

along the main diagonal, and the adjacent diagonals both above and below

the main diagonal. As an example, the tri-diagoaal inatrix equation for

five interior nodes is shown in Figure 2.

32 16 0 0 olru(X 1)1 g(x 1)
16 -32 16 0 0 U(x 2  g(xz)2

16 -32 16 0 U(x3) -g(x;)
0 016 -32 16 U(x 4) g(x 3

0 0 16 -32 [(x x

Figure 2. rri-diagonal F.D. Matrix Equation for 5 Modes

dethod of Weighted Residuals. In the various methods of weighted

residuals, the unknown function u(x) from Eq(5) is expanded in a serias

of functions, b (x), b2(x), b3 (x), . . . in the domain of L, as

U(X) -Za b (x)  (16)

where the a are constants, and the b (x) are expansion or basis
n n

functions (7:5-6). The basis functions are chosen so as to match the

boundary conditions of the problem. For the boundary conditions of

8



Eq(6), the basis functions were chosen to be a power series (7:7) of the

form

n+l
bM(x) X - n , 1,2,3, . . . (17)

By substituting Eq(16) into Eq(5) and due to the linearity of L, the

equation can be rewritten as

-anL (x) - g(x) (18)a a
,Now, a set of weighting or testiag functions w1 ' w2, w3, " " is defined

in the range of L (7:6), and the inner product of Eq(13) and the

weighting functions %a is taken so that

an <wm, L b a(x)> - <Wm, g(x)> m - 1,2,3,. . . (19)

p or in the more condensed matrix notation

C a - g (20)

where C is the square coefficient matrix

L bl(x)> <W2 , L b2(x)> . . (1

*iil •<2  ....) ~L 2 ,c. . (1

a is the column vector

S[a (22)

9
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and g is the column vector

(w 1 , g(K) >

<W 2 ' 32(W)> (23)

The column vector of constants, a, can be determined by

a -1 (24)

Once a has been determined, the approximate solution can then be written

as

u~x W b']; (25)

for a method valid over the entire region, or as

f or a method valid only at discrete points, where b' is the transpose

vec tot

[bl, b2, b, ... , b~, (27)

u(X)

and

1 b( 2) b2(x2  14. b( 2) (29)

.~~~~. ... .. .

b~ (x (xb (



The particular choice made for the weighting functions w,

determines which of the methods of weighted residuals is being used.

Galerkin's Method. The choice of letting the weighting

m+1
function w - b,(x) is known as Galerkinas method. For w - x - x ,

the values for the coefficient matrix, C can be found by taking the

inner product of w and L b (x). the result isn
.f tu+1l n+1

Can <w,, L bn()> (x - x ) d2/dx2(x - x ) dx (30)

Similarly, g is found to be

g, M <wm, g(x)> ( f(x - Xm+ 1) d2/dx2 (Ax2 + Bx + C) dx (31)

There are no limitations on the value of x, therefore the results

obtained by Galerkins method are valid over the entire region, and not

just at the nodal points of the ,nesh.

Collocation Method. This procedure, also known as point-

matching (7:10), makes use of the Dirac delta function as the weightiag

function. The inner product of wm and L b (x) is then

C n a <wm , L b -(x - xm) d2/dx2(x - xn+1 dx (32)

0

where x are the points equispaced in the interval 0 < x < 1,

(x a m/(0+1), m-1,2,3, . . N) corresponding to the nodal points. knd

gm is given by

g,'- <wm, g(x)> f f'&x - xm) d
2/dx 2(Ax2 + Bx + C) dx (33)

T

The collocation method limits the value of x to the values at the

11
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nodal points, therefore, the method of collocation approximations are

only valid at these nodal points.

Green's Functions and Analogs

This section will show how the various approximation techniques

utilized in this study may be related to the Greenos function or its

* analog.

Finite Difference Method. The relationship for the Green's

function for the differential operator L of Eq(5) has been defined

(15:6-7) to be

d2G(xix 0)/dx2 - B(x-xo) (34)

where G(xlx o) is the Greaen's function for Eq(5), x is the fiald point,

and x is the source point. The associated Dirichlet boundary conditions
0

for Eq(34) are

G(OIx ) - 0 (35-a)

G(llx 0 ) - 0 (35-b)

WIhen applied to a mesh with step size hN, Eq(34) takes the form of

the discrete Green's function (5:314-315)

dGN(xIx 0)/dx a 8(x-o )/h N  (36)

where 9 is once again the number of interior nodal points oa the mesh.

The derivative term can then be treated in the same manner as was

done earlier for the finite difference method, and be replaced by a

central difference equation

12
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22d2GN(xl ,o)/dx2

(G (x+h lx) - 2G (xjxo) + G (x-NIX))/h2  (37)

Substituting this equation into Eq(36) and multiplying through by h2,

the expression becomes

G (x+h lxo) - 2G.(xjxo) + G (x-Nlxo) - hN B(x-x o ) (38)

&pplying Eq(38) along with the associated boundary conditions to

each of the nodal points yields a series of M2 simultaneous algebraic

equations which can be expressed in matrix notation as

IC G hN4 14, (39)

where C is once again the coefficient matrix, G is the discrete :reen's

function matrix, and T,, is the identity matrix of order N. Che

coefficient matrix of the finite difference method of Eq(15) is

equivalent to the inverse of the numerical Gresn's function matrix

multiplied by h. The finite difference equations and -the Greea's

function equations yield identical approximations to the solutions.

1ethod of Weighted Residuals. For the one-dimensional Poisson's

equation (Eq(5)), and its associated boundary conditions (Eq(6)), the

Green's function for the problem can be determined analytically (15:1-

12). The solution to Eq(5) with its various inhomogeneity terms can be

found by calculating the integral

u(x) -fG(xlxo) g(x) dx0  (40)

0

where G()Cx o0) is the Green's function for Zq(5) and its associated

boundary conditions, x is the field point, and xo is the source point.

13
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Eq(40) can be writtan in matrix notation, for the discreta Greena'

function on a mesh of step size It as
Rv

a-t =h Gg (41)
'i 9-m

where A is the column vector of solutions at discrete points on the mesh

for the given inhomogeneity. The tilde has been placed over the left-

hand side of the equation to stress the fact that the discrete Green's

function solution may not necessarily be equal to the solution obtained

by the method of weightad residuals for a.

If Eq(24) is substituted into Eqs(25) and (26), they can be writtn

as

u. -bc -1 g (42)

and

- B C7g (43)

These two equations for the weighted residual approximations do not

contain the factor for the step size, a., as does Zq(41) This is due to

the fact that the weighted residual approximations Involve a summation

over 8 terms, while the discrete Green's function solution was developed

by approximating an integral equation (Eq(40)), where the step size, h.

corresponds to the dx term. The analog to the discrete Green's function

in Eqs(42) and (43) can be defined to be

G b C (44)

for a method valid over the entire region of interest, such as 3aler-

kin's method (the bar over the 5 is used to indicate a column vector ia

this case to avoid confusion with the Lahomogeneity term), and

14



G=o -i (45)

for a method valid only at discrete points, such as the collocation

method. The superscript asterisk indicatas that they are analogs to the

discrete Green's function. They are considered analogs since the

elements that make up the inhomogeneity vector, g, in Eq(23) may not

necessarily be equal to the inhomogeneity term g(x) because of the

weighting factor.

Computer Analysis

All of the numerical approximation routines were developed on a

Kaypro II microcomputer in Microsoft Basic, using double-precision

arithmetic. The program listings are included in Appendix C.

Inhomogeneity Terms and Exact Solutions. The same four functions

chosen by Clapp (1) for the excitation terms were also used in this

study so that comparisons could be made with the results obtained in

that earlier study. These four functions were

1) L u(x) - 10 (46-a)

2) L u(x) - x2  (46-b)

3) L u(x) - x2 + I (46-c)

4) L u(x) - x2 + x + I (46-d)

with the associated boundary conditions

u(O) - 0 (47-a)

u(1) 0 (47-b)

15
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The number of interior nodes were carefully chosen so that the

solution comparisons could all be made at the same nodal points, x-1/3

and x-2/3.

The analytical solutions to the problem set were found by direct

integration to be

1) u(x) - 5x2 - 5x (48-a)

2) u(x) - x /12 -x/12 (43-b)

3) u(x) - x 4/12 - x2 /2 - 7x/12 (43-c)

4) u(x) = x 4/12 + x3 /3 + x2/2 - 3x/4 (48-d)

The exact solutions at the comparison points are listed in Table 1

TABLE I

Exact Solutions to Eq(48)

Problem # x - 1/3 x 2/3

2 -.026749 -.039095

3 -.137360 -.150263

4 -.187243 -.211934

Average Error. The average percent error was the criterion by

which the correctness of the approximations were measured. For the one-

dimensional case, the average percent error was defined to be

<E > - lu (1/3) - u(1/3)I + Iu (2/3) - u(2/3)1 100 (49)
u(/)u2/3) 2

where u., is the approximation at a specific point for a given number of

nodes, and u is the exact solution.
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Comparison of Approximations to Exact Solution. The plots of the

average percent error vs. number of interior nodal points are shown in

Figures 3-6 for each of the four equations in the problem set. rhe

actual values of the approximations are included in Appendix B.

Except in two instances, both of the methods of weighted residuals

(Galerkin and collocation) yielded approximiations to the exact solution

that were orders of magnitude better than the method of finite

differences. ln addition they were able to achieve tnese good

approximations using a relatively low number of interior nodal points,

whereas the finite difference approximations converged to the exact

solution more slowly. The only deviations from this trend were In the

case of problem I (Eq(46-a)) when all methods did equally well on the

average, and in problem 4 (Eq(46-d)), when approximations in the

Galerkin routine began to diverge rapidly from the correct solution for

eight or more interior nodes.

Computer aun Times. Each program was timed by hand using an elec-

tronic stop-watch to obtain values for the computer run time. The times

varied by only one or two saconds for the various inhomogeneity terms,

therefore the times reported are averages for each method. The plot of

program run times vs aumber of intarior nodes is shown in Figure 7.

In all cases, the method of finite differences took the least

amount of time to run. This method not only has fewer intermediate

calculations than the other methods, but ia addition, the coefficient

matrix was tr-diagoal; this allowed the use of an extremely efficient

routine expr.ssly written to solve tr-diagonal matricies (2:122).

Both methods of weighted residuals took considerably longer to

arrive at a solution (in some cases, 10 to 30 times longer), for a given

17
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number of nodal points. The collocation program was the slowest of the

--. three methods, largely due to the matrix solving technique used in this

program. This program was based on an inversion routine using 3auss-

Jordan elimination with column shifting (8:294-295), whereas the

Galerkin program required the use (see Appendix A) of a direct Gaussiaa

elimination routine with partial pivoting (9:192-193). Inversion

methods require more computations to arrive at the solution than do

direct methods, hence the large difference in the times between the two

methods of weighted residuals.

Overall Solution Accuracy, and Comparison with Earlier lesults.

The results of this study do not support those reported in the earlier

study (1). Clapp reported that in all cases, the finite difference

method was superior to the method of weighted residuals for the one-

di.Rensional case, yielding average errors of about one percent when 17

or more nodes were used. This study shows that both methods of weighted

residuals achieved average errors on the order of 10 percent after

only five interior nodes were used. This accuracy was matched by the

finite difference method only for a constant inhomogeneity term.

Lone of the oscillations reported by Clapp for the collocation

method were noted La this study.

Conclusions

From the analysis performed, it Is clear that the method of

weighted residuals is the best choice if few interior nodes are desired.

While these methods are more difficult to program and take longer to run

than the method of finite differences, the overall accuracy is much

superior.
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For the one-dimensional Poissoa's equation, it appears that the

* collocation inathod Is the more stable of the twio methods of weighted

residuals, and should therefore be the method of choice.
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III. POISSOdOS EQUArIO IN TWO DtMEMSIOSS

The other problem examined in this study is thLa two-dimensional

Poisson's equation. The general form of the problem can be expressed in

the same manner as Eq(5)

L u(x,y) g(x,y) (50)

2 2where L is now the two-dimensional linear differential operator, d /dx

+ d2/dy 2 , g(x,y) is the two-dimensional iahomogeneity term, and u(x,y)

is the unknown function to be detarmined. The Dirichlet boundary

conditions associated with the two-dimensional problem are

u(o,y) - 0 (51-a)

u(1,y) - 0 (51-b)

u(x,0) - 0 (51-c)

u(x,1) = 0 (51-d)

*Equations (50) and (51) define Poisson's equation for the region of a

unit square.

Anal ytical Solutioa

The analytical solution to Eq (53), with its associated boundary

"* conditions Eq (51), can be found by a Fourier series expansion (6:41-42)

to be* u(x,y)

4/ V2f 1gfv sin(mirx)sia(aV7y)3in(mir'f)sin(narT1 )g(f',i1)
. 2m-1 (52)-. (,u2 + n )

For a given excitation, g(x,y), the series solution to Eq (52) can

be found by integration. This solution can then be programed on a

* 25
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computer to provide a au-aerical solution, at a specific point, for the

desired number of summation terms. It should be noted that because the

solution involves a double summation process, obtaining the result may

take a considerable length of time.

Numerical Approximations

For the two-dimensional case, the mesh is superimposed over a unit

square, with 9 equally spaced nodes in the x direction, of step size h,

and t equally spaced nodes in the y direction, of step size k. The

total number of interior nodes In the mesh, N, is equal to s X t.

sample mesh for the two dimensional unit square, with the interior nodal

points numbered, is shown in Figure 8.

I)I

k

Figure 3. 2-D Mesh with 10 Interior Nodes

26
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Since the number of interior nodal points used determines the number of

simultaneous algebraic equations that must be solved, the x and y step

sizes were chosen not to be equal. This was done in order to keep the

matricies down to a manageable size.

Finite Difference Method. As was shown in section II (the one-

dimensional Poisson's equation) the finite difference matricies, and the

" Green s function matricies were identical, therefore, the development of

the finite difference method will only be done utilizing the Green's

function approach.

The Green's function for the two dimensional linear operator, L, of

Eq (50), is defined to be (15:1-18)

aG(XIXo;Ylyo)/fx2 + S 2 (xI;yo)/y2 - 0(X-xo)8(y-yo) (53)

with the associated boundary conditions (Eq(51)) being represented by

G(O xo;Yly o) = 0 (54-a)

G(11xo;yly) - 0 (34-b)

G(xx ;Oly) 0 0 (54-c)

G(xxo;lx y) -. 0 (54-d)

The discrete Green's function imposed on a mesh with step size h in

the x direction, and k in the y direction, can be written as (4:315)

* *2,(~*j )Ijx 2 + j2, (XJ yy)) 2  8(x-x )(- /k (5

The derivative terms can once again be replaced by central

difference expressions

2

* 2



2i2G (xx x;Yy y)/ax

(G..(X~hx ;Yyy)- 2GN(xlxo;ylyo) +* G (x-hlx ;yly ))/h2 (56%)

and

*2GN(xIxo;Yl y)ly 2

O(GN(Xxo;y+ky o) - 2G(xl.xo;yiyo) + GM(xlxo;y-klyo))/k2 (56-b)

and then substituted back into Eq(55), so that the final form of the

equation becomes

k2G, (x+hlxo;ylyo) - 2 G X ( ;yI ) + k2G (x-hlxo;ytyo)k o1. olo
+ hG 2G (xox;+'-iy) - 2h2G (XI o;Yl~y) + hG (XIXo;y-ki) (57)

= hk 8(x-o)6(y-, 0 )

Applying this equation, and its associated boundary conditions

(Eq(54)) at each of the 3 interior nodes of the mesh will result in a

series of N2 simultaneous algebraic equations. These equations can be

represented in matrix notation as

C GII h (58)

where C is the coefficient matrix, G% is the discrete Green's function

matrix, and 1 is the identity matrix of order 3. Eq(58) can be solved

using matrix techniques to find (, the approximation to the discrete

Green's function matrix.

lethod of Weighted aesiduals. For the two-dimensional method of

weighted residuals, the form of the solution is almost identical to the

one dimensional case (Eq(16))

u(XY) -(,y) (59)
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where the a are again constants, and the o n(x,y) are the basis

functions, which were chosen to satisfy the boundary conditions

(Eq(51)). Ozisik (13:340-344) developed basis functions for a

rectangular region as the product of a functioa f(x,y), and various

powers of x and y. For the geometry of the probl-m in this study, the

function f(x,y) was chosen to be

f(x,y) - xy(1-K)(I-y) (60)

and the basis functions were chosen to be the same as those used by

Clapp (1)

b n (xy) f(Ky) (for n-1,4,7,...) (61-a)
b 2 (n I )/3

b x f(xy) (for n-2,5,8,... ) (61-b)n

bn 2n/3 f(x,y) (for a-2,6,9,...) (61-c)

The basis functions were split into these three subgroups in order

to facilitate the necessary integrations that follow in the sections on

the Galerkin and collocation methods.

By substituting Sq(59) into Eq(50), the equation becomes

an LbU(xY) - g(x,y) (62)

As in the one-dimensional case, a set of weighting functions, w..

is then defined in the range of L, and the inner product of Eq(62) and

these weighting functions is taken so that

an<w , Lba (K,y)> - <wT, g(x,y)> m-1,2,3,... (63)
n

which can again be rapresented in the more condensed matrix notation as

29



.* -. l ! t_ .11 _- n * _:.

C a s g (64)

wdere C is the square coefficient ,iatrix

wit LbI(x,y)> <w1 , Lb2 (x,y)> " *

<w2
, Lbl(xy)> <w 2 Lb2(x,y)> . (65)

a is the column vector

Fal

2 (66)

and g is the column vector

<w 2P g2 (Xy)> (67)

The values of a can then be computed from

a-C g (68)

and the approximate solutions can then be written as

u(x,y) - b'a (69)

for a method valid over the entire region, or as
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nu~a (70)

for a method valid only at discreta points, whera

b-(bl, b, b3,.. ~ (71)

U u(x 2,y2) (72)

sad

b1(x 1,Py1 )f b 2(x 1,y1 ), b.N..,y

b (x2 y) b (x29 y2 ), b.. b(x 2,y2) (3

G2alerin's Method. In the two-dimensional method of Galerkia,

the weighting functions are again chosen as being equal to the basis

functions Eq(61). The values for the coefficient matrix, C can be found

by taking the inner product of w11and L b n(x,y), resulting in

C - (<w .1L (x,y)> ffm (d /dx + d /dy b (xy) dxdy (74)

and gcan be found in a similar lianner to be

g3 < w I, &(x,y) >

f jf% (d 2 Idx 2 + d 2/dy 2  (Ax 2 +By 2 + Cx +Dy + S) dx dy (5

0
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where in each case, wm is defined to be equal to b (x,y) (Eq(61)) for

*the various values of n.

There are no restrictions on the value of x or y in Zqs(74) and

(75), so the Galerkin approximations are valid over the entire region.

Collocation Method. In the two-dimensional method of

collocation, the weighting functions are chosen to be equal to the two-

dimensional Dirac delta function

In, 5(x-xlc )8(y-y M) (76)

where the coordinate x is defined to be the x coordinate of the m thI'

interior node and y is defined to be the y coordinate of the ruth

interior node. The values for the coefficient matrix, C can be found by

taking the inner product of w m and L b a(x,y)
0.

C nn <w m, Lbn (x,Y)>

" JJ(x-xm) (Y-y) (d 2/dx 2 + d2/dy2) b (x,y) dx dy (77)

00

and gm can be found to be

g <wi, g(x,y)>

2f ~ 2 2 2 2 2
(x-xM)(y-ym) (d/dx + d /dy (Ax + By + Cx (73)

• a + Dy + d) dx dy

The values of x and y are restricted to the coordinates of the

interior nodal points for the collocation method, therefore, the

approximations are only valid at these points, and not over the entire

region.
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Green's Functions and Analogs

Since the finite difference method was developed in terms of the

Green's function, only the method of weighted residuals will be

addressed in this section.

For the two-dimensional Poisson's equation (Eq(50)), and its

associated boundary conditions (Eq(51)), the Green's function for the

problem can be determined analytically (6:42-43). The solution to

Zq(50) with its various inhomogeneity terms can be found by calculating

the integral

u(x ,ylyo) g(x,y) dx° dy°  (79)

00

where G(xIxo;yly o ) is the Greenos function for Eq(50) and its associated

boundary conditions, x and y are the field point coordinates, and xo and

70 are the source point coordinates.

Eq(79) may be written in matrix notation, for the discrete Green's

function on a mesh of step sizes h in the x direction, and k' in the y
s t

direction, as

84~ hk G g (80)

where U is the column vector of solutions at discrete points on the mesh

for the given inhomogeneity, and the tilde again signifies that the

discrete Greens function solution may not aecessarily be equal to the

solution obtained Dy the method of weighted residuals, a.

The two-dimensional forms of Eqs(42) and (43) are the approximate

solutions

ur4 9bC (31)
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and

u BC1 g (32)

Again, the weighted residual approximations do not contain the factors

for the stap sizes h and k. This is due to the fact that the weighted

residual approximations involve a summation over M terms, while the

discrete Greenas function soltdon was developed by approximating an

integral (Eq(79)), where the step sizes h and k correspond to the dx and

dy terms. The analog to the discrete Graens function in .qs(31) and

(82) -an be defined to be

-, * -1

GM -bC (3)

for a method valid over the entire region, such as Galerkinos method

(where the bar notation again indicates a column vector, and was used to

prevent confusion with the inhomogeneity term), and

* C-1
- (84)

for a method valid only at discrete points, such as the collocation

uethod. The asterisk indicates that they are analogs to the discrete

GreeaOs function, and that the elements that make up the inhomogeneity

vector, g, may not necessarily be equal to the inhomoganaity term g(x,y)

because of the weighting factor.

Computer Analysis

For the two-dimensLonal case, new programs were developed from the

one-dimensLonal programs to handle the approximations for the three

techniques. The program listings are included in Appendix C.
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Inhomogeneity Terms and Exact Solutions. The same four excitation

S"" terms chosen by Clapp (1) were used in the two-dimensional case so that

comparisons could be made with the results obtained in his study. The

four problams were

1) L u(x) -13 (85-a)

2) L u(x) - x2  (35-b)

2 2
3) L u(x) - 2 + y2 (35-c)

4) L u(x) - X2 + y2 + x (85-d)

with the associated irichlat boundary cotc!tions

u(O,y) - 0 (86-a)

u(1,y) - 0 (36-b)

u(x,O) = 0 (86-c)

u(x,l) - 0 (36-d)

The number of interior nodes were carefully chosen so that tie

solution comparisons could all be made at the same four x,y nodal

points; (1/3,1/3), (2/3,1/3), (1/3,2/3), and (2/3,2/3).

The analytical solutions to the problem sat wera found by

integrating Eq(52) with a genaral form of the equations used for the

inhomogenei ty tern,

g(x,y) = Ax2 + By2 + Cx + Dy + E (87)

where A, B, C, D and E are all constants.

The solution for the general inhomogeneity term with the boundary

conditions of Eq(86) is
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y) -4/ 2 ' YJ Y si'(M rx)sin(nry)l(M2 + n2
R-1 n-1

(A[(2/m 3V3 _ t/m')(-i)' - 2/m3V 3 1 (i/nir)(1 - (-)a1)

+ B[ (2/a' 3 - /n')(-) _ 2/n3 r 3 (1/mr)(1 - (-l)) (38)

-C[M/mnr2 1(1 - (-i)") - D(-1)aIn)(i - m

2 i+ Z.[1/mai(..) 1(-) u -)

This solution was then programed on the computer, and the numerical

values for the inhoogeneitias at each point were geaerated by sumnming

over both m and n from one to seventy. Each numerical value then was

obtained using 4900 summation teras. The numerical values for th3 four

problems are listed in Table 2.

TABLE 2

0 Exact Solutions to Zq(38)

Problam 0 (1/3,1/3) (2/3,1/3) (1/3,2/3) (2/3,2/3)

1 -.6034615 -.6034615 -.6034615 -.5034615

2 -.0126051 -.0230496 -.0126051 -.0230496

3 -.0252102 -.0356547 -.0356547 -.0460993

4 -.0501611 -.0710501 -.0606056 -.0814946

Average Error. For the two-dimensional case, the average percent

error was defined to be

< -" ju,(Point i) - u(point *()

where uN is the approximation at a specific point, and u is the exact

solution.
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Comparison of Approximations to the Exact Solutions. The plots of

-* the average percent error vs number of iatarior nodal points for each of

the four equations in the problem set are shown in Figures 9-12.

As in the earlier study (1), tne collocation method failed to

converge to the correct solution despite using a direct Gaussian

elimination routine instead of perforing a matrix inversiou. A more

detailed discussion of the problem with the collocation method can be

found in Appendix A.

In eacn of the four cases for the other two techniques, the

Galerkin method yielded better results than the finite difference

method, which is not only consistent with the results reported for the

one-dimensional case, but also with the results reported by Clapp.

Computer Iun Times. Each program was timed by hand using an

electronic stop-watch to obtain values for the computer run time. The

times were again averaged, since they differed by only one or two

seconds. The plot of program run time vs number of interior nodal

points is shown in Figure 13.

In all cases, the method of finite differences was again the

quickest of the three programs to run. While the two-dimensional finite

difference coefficient 2atrix was not a trn-diagonal matrix (as in the

one-dimensional case), it was still a relatively sparse one (ie. few

non-zero terms). Because there were fewer computations required to

create the finite difference coefficient matrix than for the other two

methods, it ran faster (despite being based on a matrix inversion

routine). Both methods of weighted residuals were developed using the

direct Gaussian elimination routine.
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Overall Solution Accuracy, and Comparison with Earlier Results.

rhe results of this section of the study support those reported by Clapp

(1), the Yalarkin method yielded better results than did the finite

difference method, with iaitial average errors from 1.5 to 3.0 percent,

compared with 13.5 to 27.0 percent. rhe Galerkin method converged to

within one percent after 34 interior nodes were used, while the finite

difference method remained above four percent.

A slight oscillation in the Galerkin results was noticed for 22

interior nodal points.

Conclusions

From the analysis performed, the method of weighted residuals was

once again superior to the method of finite differences, for fewer

interior nodal points.

Neither method was as accurate as its one-dimensional counterpart.

rhis is most likely due to round off error caused by the larger matriK

sizes, and to the rather lena'thy recursion relations used to create the

coefficient matricies.

While the Galerkin method was clearly better than the finite

difference method, it is also more difficult and tedious to change the

inhomogeneity term, or the form of the differential equation, due to the

integrals that must be solved. Despite this difficulty, the Galerkia

approach is clearly the method of choice for solving the two-dimensional

Poisson's equation.
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IV. Conclusions and aecoamendations

Conclusions

Several points should be made concerning the use of the method of

weighted residuals for determining approximations to the discrete

Green's function.

First, both the Galerkin and collocation methods yield analogs of

the Grean's function, which are as useful as the discrete Green's

function itself, and they can be used (at least theoretically) to find

the solution to the one- and two-dimensional Poisson's equation with

various inho.uoganeity terms. A major drawback to the use of the method

of weighted residuals is that the inaomogeneity matrix must be

recalculated for each different inhomogeneity term. This involves the

calculation of a lengthy double integration in the two-dimensional

problem, especially in the case of Galerkiu's method.

The next point is the criticality of the choice of basis functions.

Both the one-dimensional Galerkin routine, and the two-dimensional

collocation routine seemed to show the effects of the choice of basis

functions resulting in ill-conditioned matricies.

Finally, the method of weighted residuals takes more time to run on

the computer than does the finite difference method. For low numbers of

interior nodes, this may not be much of a problem, but in the two-

dimensional programs, calculations involving 34 nodal points took 25

minutes to arrive at a solution.

2 ecommandations

The first step in any follow-on study should be the actual

calculation of the Green's function for the various metnods, so that
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they can be compared for accuracy.

tn addition, one other major araa requires further study in

utilizing the method of weighted re3iduals - the choice of basis

functions. An in-depth study of the orthogonal collocation method, and

the choice of basis functions in general would be most beneficial.

The choice of using a micro-computer for d-veloping the programs

was probably not very wise. Although the results were as accurate as

those done on mainframe computers, the programs took too long to run.

Future work should be done on a larger, faster machine.

0
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Appendix A

Ill-condi tioned Matricies

The divergence from the correct solution reported for the oae-

dimensiooal Galerkin routine with g(x) - x + x + 1, and for the two-

dimensional collocation routine, were both the results of ill-

conditioned matricies.

Ill-coaditioned matricies'are nearly singular systems (ie. those

that have no unique solution) which are extremely sensitive to small

changes in the coefficient matrix, C, and the right hand side, g. For

example, tne solutions to the following two similar matrix equations

differ greatly:

j 1(90)
1 1.0000][] 0

and

- (91)
0.999 21

The solution to Eq(90) is [10001 1000001, and the solution to Eq(91) is

*-99999 -100000) (11:343). This shows that a relatively small change

in the value of C22 by .00002 can cause a large change in the solution.

It is easiest to interpret what is happening geometrically. Each

solution may be thought of as representing the point of intersection of

two nearly parallel lines. Any slight shift in either of the two lines

will greatly change the point of intersection.

tll-cQnditioning of a system may be attributed to any of the

following sources (11:345-347):
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1. For well-conditioned physical problams, ill-conditioned

equations ,may be caused by a correct, but very fine mesh idealization.

No numerical problems are encountered wnen the problem is solved with

coarse idealizations. As the mesh is repeatedly subdivided, the

condition number increases. Eventually the buildup of error due to

round off in the calculations swamps any accuracy improvement due to the

finer discretization.

2. the form of the right-hand-side vector can have a significant

effect in many applications. For example, in the bending and stretching

of a flat plate, the stiffness matrix may uncouple into an ill-

conditioned submatrix and a well-conditioned submatrix. In complex

structural systems, weak coupling can occur so that a force vector

acting on the ill-conditioned part will excite the ill-conditioning;
(0

whereas if it acts on the well-conditioned part, highly accarate

solutions are produced.

3. The condition of the system is influenced by tne choice of

basis functions.

The two-dimensional collocation routine seemed to exhibit the

traits listed in source 1. The program was run for different numbers of

interior nodal points than the ones used for the other programs. Figure

14 shows a plot of the average percent error vs number of interior nodal

points for the collocation method when fewer nodal points were used.

The plot shows that the collocation mathod was in fact convergig to the

correct solution until the aesh size passed a critical value.

The one-dim.ensional Galerkin routine seemed to exhibit the traits

of source 2. It worked perfectly well for all other inhomogeneity
2

terms, but failed for g(x) - x + x 1 1 beyond It interior nodal points.
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One way of determining if a matrix is ill-conditioned is to observe

whether the condition number increases significantly as the size of the

matrix is increased. The condition number for a matrix can be

calculated by multiplying the value of C by C where Ci,max i,max' i,max

is defined to be the summation of all of the terms within the column of

the matrix leading to the greatest value, and C 1  is the same
i,max

calculation performed on the lnverse of the matrix.

table 3 shows how the condition number for the two-dimensional

collocation coefficient matrix increased as the size of the matrix was

increased.

table 3

Condition .4umbers for the 2-d Collocation .atrix

Size of Matrix Condition Number

4 4 2.7 X 101

6 X 6 5.9 K 10

a X a 1.6 X 103

10 K 10 2.6 K 105

20 X 20 3.9 10 12

Little can be done to improve the solutions obtained from an ill-

conditioned matrix. One improvement though is to use a direct method of

solving the matrix, rather than an inversion routine. This was done for

the one-dimensional Galerkin progra.a when it das discovered that the

approximations were all diverging from the correct solution after only

eight interior nodes. Once the matrix inversion routiae was replaced

with a direct Gaussian elimination routine, the results improved

significantly, except in "the aforementioned case.
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Changig the matrix solving routine was not enough however to make

a differenca in t ne two-dimensional collocation program. Others

(11:345-347, 12:60-65) have suggested that the ill-conditioning may be

the result of the improper choice of basis functions; that orthogonal

polynomials would be better suited for use in this situation. A

detailed discription of the orthogonal collocation method can be found

in Finlayson (4:97-107).
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Appendix B

- Numerical Approximations for the Problem Sets

This Appendix contains the values for the finite difference,

Galerkin, and collocation approximations to Eq(46) and the finite

difference and Galerkin approximations to Eq(85) (the results of the

two-dimensional collocation routine are discussed in Appendix A).

The values listed are the outputs from the computer routines listed

in Appendix C, rounded to seven decimal places. These values are listed

by Inhomogeneity term within each method, and are tabulated according to

the number of interior nodes used. The average percent error is also

listed for each set of values.
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Table 4

Fiaite Difference Approximatioas for g(x) - 13

Number of Average
interior x - 1/3 x 2/3 Error
dodes ()

2 -1.1111111 -1.1111111 0.0

5 -1.1111109 -1.1111109 1.1 E-5

3 -1.1111111 -1.1111111 0.0

11 -1.1111113 -1.1111113 2.1 E-5

14 -1.1111110 -1.1111110 6.3 E-6

* 17 -1.1111108 -1.1111108 2.3 E-5

table 5

Finite Difference ApprQximations for g(x) x 2

Number of Average
Interior x 1/3 x - 2/3 Error

Nodes (Z)

2 -.0246913 -.0370370 6.5

5 -.0262346 -.0385802 1.6

8 -.0265203 -.3386602 0.7

4 11 -.0266204 -.0389661 0.4

14 -.0266666 -.0390123 0.3

17 -.0266913 -.0390375 0.2

q
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Table 6

Finite Differenca Approximuations for g(x) - X2 + 1

Numbar of Average
Interior x- 1/3 - 2/3 Error
4odes (M)
2 -.1358025 -.1481481 1.4

5 -.1373457 -.1496913 0.4

8 -.1376315 -.1499771 0.2

11 -.1377315 -.1500772 0.1

14 -.1377777 -.150234 6.0 E-2

17 -.1373029 -.1501486 4.0 E-2

rable 7

Finite Difference Approximations for g(x) x 2 + x + 1

Number of Average
Interior x - 1/3 x - 2/3 Error
Node s (%)

2 -.1851852 -.2098765 1.0

5 -.1867284 -.2114197 0.3

8 -.1370142 -.2117055 0.1

11 -.1871142 -.2118056 6.0 9-2

14 -.1371605 -.2118518 4.0 E-2

17 -.1371856 -.2118769 3.0 E-2
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Table 3

Galerkin Approximations for g(x) -1.0

Number of Ave rage
Interior x - 1/3 x - 2/3 Error
Modes M________________ %

2 -1.1111111 -1.1111112 6.1 E-6

5 -1.1111111 -1.1111112 6.1 E-6

8 -1.1111111 -1.1111112 6.1 E-6

11 -1.1111111 -1.1111112 6.1 E-6

14 -1.1111111 -1.1111112 6.0 E-6

17 -1.1111111 -1.1111112 16.1 :1-6

Table 9

2
ja lerkin Approximations for g(x) X

Number of Average
Interior x -1/3 x -2/3 Error
A4oda s M-h

2 -.0271605 -.0395062 1.3

5 -.0267490 -.0390947 3.5 E-6

3 -.0267490 -.0390947 3.5 E-6

411 -.0267490 -.0390947 3.5 E-6

14 -.0267490 -.0390947 3.5 E-6

17 -.0267490 -.0390947 13.5 E-6
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Table 10

Galerkin Approximations for g(x) - x' + I

Number of Average
Interior x - 1/3 x = 2/3 Error
Nodes (Z)

2 -.1382716 -.1506173 0.3

5 -.1373601 -.1502058 5.4 E-6

8 -.1378601 -.1502058 5.4 E-6

11 -.1378601 -.1502058 5.4 E-6

14 -.1378601 -.1502053 5.4 Z-6

17 -. 1378601 -.1502053 5.4 E-6

Table 11

Galerkia Approximations for g(x) = x + x + 1

Number of Average
Interior x - 1/3 x - 2/3 Error
lode s (%)

2 -.1876543 -.2123457 0.2

5 -.1872426 -.2119341 1.7 E-5

3 -.1872351 -.2119680 1.0 E-2

11 -.1884510 -. 2118339 0.3

14 -.2158807 .1950268 103.7

17 -.2414421 .1324444 95.7
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Table 12

Collocation Approximations for g(x) - 10

Number of Average
Interior x- 1/3 x - 2/3 Error
Nodes (M)

2 -1.1111111 -1.1111112 6.1 E-6

5 -1.1111111 -1.1111112 6.1 E-6

8 -1.1111111 -1.1111112 6.1 E-6

11 -1.1111111 -1.1111112 6.1 E-6

14 -1.1111111 -1.1111112 6.2 E-6

17 -1.1111111 -1.1111113 3.8 Z-6

Table 13

Collocation Approximations for g(x) x 2

Number of kverage
Interior x - 1/3 x - 2/3 Error
3odes (M)

2 -.0246914 -.3703704 6.5

5 -.0267490 -.0390947 3.5 E-6

8 -.0267490 -.0390947 3.5 Z-6

11 -.0267490 -.0390947 3.5 E-6

14 -.0267490 -.0390947 3.5 E-5

17 -.0267490 -.0390947 6.1 E-6
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rabl 14

Collocation Approximations for g(x) x2 + I

Number of Average
Interior x - 1/3 x - 2/3 Error
lodes ()

2 -.1358025 -.1481482 1.4

5 -. 1378601 -.1502058 5.4 E-6

8 -.1378601 -.1502058 5.4 Z-6

11 -. 1373601 -.1502053 5.4 S-6

14 -.1378601 -.1502058 5.4 9-6

17 -.1373601 -.1502058 7.6 E-6

rable 15

Collocation Approximations for g(x) x 2 + x + I

Number of Average
Interior x - 1/3 x - 2/3 Error
lodes (7.)

2 -.1851852 -.2098766 1.0

5 -.1372428 -.2119342 5.4 E-6

8 -.1872423 -.2119342 5.4 E-6

11 -.1872423 -.2119342 5.9 E-6

14 -.1372423 -.2119342 5.1 E-6

17 -.1372423 -.2119341 8.9 E-6
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Table 16

Finite Difference Approximations for g(x,y) = 10

Humber of Average
Interior x - 1/3 x - 2/3 x - 1/3 x - 2/3 Error
lodes y - 1/3 y - 1/3 y - 2/3 y - 2/3 (Z)

4 -.5128205 -.4059829 -.5341880 -.5128205 13.5

10 -.5653312 -.5469123 -.5684183 -.5640845 7.0

16 -.5734571 -.5674212 -.5744274 -.5729557 5.2

22 -.5759343 -.5732613 -.5763574 -.5756971 4.7

28 -.5769715 -.5Y;534 -.5771928 -.5763423 4.4

34 -.5774941 -.5766637 -.5776240 -.5774169 4.3

Table 17

Finite Difference Approximations for g(x,y) -x

Number of Average
Interior x - 1/3 x - 2/3 x -I1/3 x - 2/3 Error
N1odes yi-l/3 yi-l/3 y - 2/3 y - 2/3 (.)

4 -.0092593 -.0146605 -.0100309 -.0135135 25.8

10 -.0114660 -.0202691 -.0115141 -.0210923 9.4

16 -.3118848 -.0213449 -.0119352 -.0216323 6.1

22 -.0120202 -.0216807 -.0120430 -.0213120 5.1

28 -.0120784 -.0218200 -.0120906 -.0218904 4.6

34 -.0121082 -.0218888 -.0121155 -.0219309 4.4
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Table 18

Finita Difference Approximations for g(x,jr) x -

N4umber of Average
Interior x -1/3 x -2/3 x -1/3 x -2/3 Error
N4odes y - 1/3 y -1/3 y - 2/3  y -2/3 M%

4 -.0185185 -.0200617 -.0293210 -.0370370 26.9

10 -.0222856 -.0304095 -.0321973 -.0415052 11.4

16 -.0229319 -.0321670 -.0327394 -.0423317 8.8

22 -.0231333 -.0325936 -.0329224 -.0426666 7.9

28 -.0232130 -.0329065 -.0330028 -.0427894 7.5

34 -.0232607 -.0330099 -.0330447 -.0428522 7.4

Table 19

Finite Difference Approximations for g(x,y) -x 2 + + x

qumber of Ave rage
Interior x -1/3 x - 2/3 x- 1/3 K -2/3 Error
~4odes y -1/3 y - 1/3 y -2/3 y - 2/3 MZ

4 -.0391733 -.0437441 -.0512227 -.0669516 23.4

10 -.0455917 -.0621753 -.0556990 -.0744159 9.6

16 -.0466739 -.0652647 -.0565486 -.0758624 7.2

22 -.0470070 -.0661833 -.0568259 -.0763281 6.

28 -.0471457 -.0665529 -.0569463 -.0765270 6.1

34 -.0472151 -.0667312 1-.0570084 -.0766231 6.0
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Table 20

Galerkin Approximations for -(x,y) -10

Number of Wverage
Taterior x- 1/3 x - 2/3 xc - 1/3 x - 2/3 Error

4odas y - 1/3 y -1/3 y - 2 /3  y -2/3 ()

4 -.6076859 -.6163949 -.6107867 -.6331380 2.1

10 -.6123007 -.6074556 -.6272431 -.6072230 1.7

16 -.6049013 -.6045481 -.6156474 -.6135822 1.0

22 -.6098773 -.6021091 -.6093475 -.6135225 1.0

28 -.6049922 -.6015982 -.6120686 -.5115899 0.3

34 -.6047867 -.6014126 -.6131791 -.6112015 0.9

t~able 21

Galerkia Approximatioas for g(x,y) x2

Number of Ave rage
Interior x -1/3 x -2/3 x -1/3 x -2/3 Error
.odes 7 y1/3 y -1/3 y -2/3 y -2/3  (M.

4 -. 0123723 -. 0231150 -. 0125778 -. 0239163 1.5

*10 -.0126388 -.0235861 -.0126556 -.0230530 0.7

16 -.0128219 -.0232945 -.0125344 -.0231736 1.0

22 -.0129926 -.0232655 -.0124429 -.3232417 1.5

*28 -.0128474 -.0232133 -.0124303 -.0231501 1.0

34 -.3128156 -.0232270 -.0124837 -.0231587 1.0
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Table 22

GalerkrL Aoproxdiaations for g(x,f) x + y

lumber of Average
Interior x- 1/3 x -2/3 x a1/3 x -213 Error
N~odes y -1/3 y - 1/3 y -2/3 y -2/3 (7')

4 -.0293536 -.0363258 -.0318393 -.0473203 7.9

10 -. 0281930 -. 0354759 -. 0344257 -. 0476206 4.7

16 -.0269155 -.0353635 -.0349360 -.0473580 3.1

22 -.0271406 -.0357392 -.0350872 -.0474593 3.1

28 -. 0262410 -. 035735- .---35338 -. 0476,101 1.9

34 -. 0262175 -. 0356544 1-.0356701 -. 0475470 -.

Table 23

Galerkin Approxiuantions for g(x,y) X2 y x

Number of Average
laterior x-113 x -2/3 x -1/3 x- 213 Zrror
Nodes y -1/3 y -1/3 y a2 /3 y -2/3 (M

4 -.0542012 -.0715187 -.0569433 -.0835635 4.3

*10 -. 0530931 -.0715547 -.0596482 -.0832595 2.6

16 -.0521139 -.0709353 -.0599984 -.3831042 1.3

22 -.0527126 -.0712927 -.0599824 -.0833457 2.2

* 28 -. 0515650 -. 0711891 -. 0605779 -. 0833215 1.3

34 -. 0514336 -. 0711403 -. 0606128 -. 0832310 1.2
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Appendix C

Program Listings

This appendix contains the listings of the microsoft basic programs

written for this study. The programs are listed by method for the one-

and then the two-dimensional case.
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FINITE DIFFERENCE ROUTINE - (ONE-DIMENSION)

10 REM***********************k**********
20 REM rAIS PROGRAM UTILIZES A ROUTINE THAT WAS TAKEN FROM ELEMENTARY
30 REM NUMERICAL ANALYSIS, BY CONTE AND DE BOO&, PG 122; AND
40 REM TRANSLATED INTO BASIC. ALL VALUES ARE IN DOUBLE-PRECISION.
50 REM ****AAA-AA ********** AA ********

60 PRINTENTE& N, THE NUMBER OF STEPS';
70 DEFDBL Q,&,H
80 INPUT N
90 LPRINTFINITE DIFFERENCE ROUTINE USING DIRECT, TRIDIAGONAL APPROACH"
100 LPRINT
110 LPRINT"N- ";N
120 Q-N
130 H-1#/(Q+I#)
140 DIM A#(N),B#(N),C#(N),D#(N)
150 FOR I- 1 TON
160 R-1

180 C#(I)-A#(I)
190 D#(I)-2i*(Q+I#)"2
200 B#(I)-1#+4#*(a*H)2
210 NEXT I
220 GOSUB 290
230 P&INT"THE SOLUTION IS:"
240 FOR Is 1 TON
250 PRINT I,B#(I)
260 LP3.INT t,B#(I)
270 NEXT I
280 END
290 IF N>1 THEN 320
300 3#(1)-B#(1)/D#(l)
310 RETURN
320 FOR I- 2 TO N
330 R-A#(I)/D#(I-1)
340 D#(I)- D#(I)+.*C#(I-1)
350 8# (i)-B# (I)+a*B# (I- 1)
360 NEXT I
370 8#(N)-B#(N)/D#(N)
380 K-.
390 FOR J- 2 TO N
400 K-K-i
410 B#(K)-(#(:K)-C#(K)*#(K+41))/D#(K)
420 NEXT J
430 RETURN

65



FINITE DIFFERENCE ROUTINE- (TWO-DIMENSION)

* 2.  1 REMr****#**********k************ ***** *** ***k*~**** *k* *

2 REM T IS PROGRAM USES AN INVERSION ROUTINE TAKEN FROM NUMERICAL
3 REM HETHODS Bf a.w. HORNBECK, PG 294-295. TE ROUTINE EMPLOYS
4 REM GAUSS-JORDAN ELIMINATION WITH COLUMN SHIFTING TO MAXIMIZE
5 REM PIVOT ELEMENTS

10 DEFDBL S,TR,K,A-G,X,Y
20 PRINT CdR$(26)+CIR$(27)+CRSt$(13)
30 PRI'T"TWO-DIMENSIONAL FINITE DIFFERENCE GREEN'S FUNCTION ROUTINE"
40 PRINT:PaINT:PRINT
50 PRINT-INPUT S, THE I OF X DIVISIONS; AND T, THE I OF Y DIVISIONS"
60 INPUT S,T
70 PRINT S,T
80 N-S*T
90 LPRINT"N-";N
100 H-i#/(S+i#):K(1#/(r+l#)
110 tPRINT"H"; I; "K-"; K
120 DId G#(N,N),J#(N+25),F#(N),U#(N)
130 ftj**********A....JJ.A..AAAA******************

140 REM CIEATES INITIAL COEFFICIENT MAT&IX FOR tHE GaEEN S FUNCTION
*150 REM**********k*************** * * * * *A * *A * A * *A * * ** *A * *

160 FOR 1-1 TO N
170 IF I MOD S al THEN 190
180 g#(I,I-1)'KC
190 G#(I, I) -2.4*(*K+H*i)

0 •  200 IF I MOD S-O 'THEN 220
210 G#(I,I+)-K*K
220 IF (I-S)<-O THEN 240
230 G#(I,I-S)-H*H
240 IF (I+S)>-N THEN 260
250 G#(I,I+S)-H*{H
260 NEXT I
270 FOR 1-1 TO 9
230 FOR J-1 TO N
290 PRINT G#(I,J);" ";

300 NEXT J
310 PRINT
320 NEXT I
330 *
340 REm MATRIX INVERSION ROUTINE
350 REM *********k***********
360 PD-I
370 FOR L-1 TO N
380 D=-
390 FOR P-1 TO N
400 D=D+G#(L,P)*G#(L,P)
410 NEXT P
420 D-SQR(D)
430 PD-PD*D
440 NEXT L
450 DETM-1
460 FOR L"i ro N
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470 Q-L
4 f80 J# (L+20) -Q
490 lEXT L
500 FORk L-1 TO S
510 C-0 :AIiL

*520 FOR P-L TO N
*530 IF (ABS(C)-ABS(G#(L,P)))>-o THEN 560

540 ri-P
*550 C-G#(L,P)

560 NEXT P
570 IF L-Ml TrHEN 660
580 *.-J#(L*420)

* 590 J$(ttI20)-J#(L4.20)
600 J#(L+20)-&
610 FOR P-1 TO N4
620 S-GD(P,L)
630 G#(P,L)-G#(P,MI)
640 G#(P,M)-S
650 NUKT P
660 G#(L,L)-l#

*610 D9'rM-D9T4*C
680 FOR M-1i TO
690 G#(L,L4)-G#(L,,4)/C
700 AEXT Mv
710 FO& M1 to ti
720 IF L-Hv 'NEAI 790
730 C-G#(t1,L)
740 IF C-0 MHEN 790
750 G#(Ii,L)-0
760 FOR P-i ro 3i
770 G#(Mv,P)hG#(f.1P)-C*G#(L,P)

* 780 NIEXT P
790 NIEXT M
3 00 NEXT L
810 FOR L-i TO H
820 Q-L
330 IF J#(L4.20)-Q THIEN 950
840 L
350 M-14+1
360 IF J#G*+20)-Q THIEN 880
370 IF N>H THEN~ 850
380 J#(L*20)-J#(L+20)

*890 FOR P-1 TO N
900 C-G#(L,P)
910 %-#(L,P)-G#(M,P)
920 G#(fI,P)-C
930 NEXT P
940 JI(L+20)-Q
950 NEXT L
960 OETM4-ABS(DErM)
970 DW&R -0EMhPD
980 PP.INTrD NaM-"; DTMNRkM
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1013 REM MULTIPLIES uiNvEmt LI~tIX BY RitK*IDEmrlTY MATRIX

1030 FOa i-i To m
1040 FOR J-1 TO i
1050 G#(t,J)-G#(L,J)*h*C

*1060 NEXT J
* 1070 sEut I
* 118 PRiN1r:pRINT:PRI!Ir*C0LUNN VECtfOR OF EQUATION4"

- 1200 REM! CREATES COLUMN VECTOR OF EQUATrION TO BE EVALUATED, MULTIPLIED BY h*k

-1220 PRINT"THE FE~dCTIONS TO BE EVALUATED ARE OF tHE FOLI: AX2B2+CX+DY+Z"
* 1230 PRINT'INPUT A":INPUT A

1240 PR.IST"IdPUT B":LNpLI B
1250 muIr"IN'UT C":IHPUT C
1260 PRINTINPJT O":IdP(JT D
1270 PilAT"INPUT L':INP'Jt E
1280 FOR i-1a fQ N
1293 Q-I
1300 IF E(-N/2 THEN Y-1/(T+l) ELSE Y-2/(T+l)
1310 IF 1<-6~/2 THEN XuvQ/(Sf1) ELSE X-(Q-d/2)/(S+1)

*1320 F#(t)-(A*X-2+B*2+C*K4D*Y4E)kH*K
1330 PRINT F#(I)
1340 N4EXT I
1350 PaI3T:PRI9T:P&IST"SOLutioN MArRIX"
1360 FOR 1-1 TO N4
1370 UD(I)-0

* 1380 FOR .3-1 to N
* 1390 US(I)=IJ#(I)+G#(I,J)*F#(J)

1400 HEXT J3
*1410 LP113T U#(I)

1420 9EXT I
*1430 P-1D
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GALERKIN ROUTINE - (ONE-DIMENSION)

10 REM k*******k*********************k***~*

20 REM ris PROGRAM USES A DIrECt GAUSStiA ELIMINATION ROUTIE WIr.
30 REM PIVOfING TAKEN FROM APPLIED NUMERICAL MET.ODS FOR DLGITAL COUTkfIOli
40 REM Bf JAMES, SMITH, & WOLFORD, PG 192-193. IN ADDITION, tHE INITIAL
50 REM COEFFICIENT HATRIX HAS BEEN HODIFIED SO THAT THE LARGE& NUMBE&S ARE
60 ,EM I4 TlAZ UPPER LEFT OF THE MAt"aIX; THIS WAS DONZ TO IAXIMIZE THE
70 REM EFFECTIVENESS OF THE PIVOTING.
80 REM k******k******** A A AAA k*************

* =90 PRIT CHR$(26) CR$(27)+CHR$(13)
1"0 PRINT ALERKIN (METHOD OF MOMENTS) ROUTINE"
110 PRINT:PRINT:PRINT
120 PixrINPUT N, THE NUMBER OF DIVISIONS-;
130 INPUT N
140 LPRINT"N= ";N
150 -c+1l
160 L-N-1
170 DIM A#(N,M),X#(N),ALPHA#(N),U#(N)
1"30 DEFD3L Q-T,Y
190 I M***************** ****b* * * A*****k*******k*k*k** *****

200 REdk**k**HIS CALCULATES THE L41T1&L L MATRX********,**
210 FOR I1 TO N
220 FOR J-1 TO N
230 QM-- 1 :R-M-J
240 A#(I,J) -(Q*) /(Q+R+I)
250 NEXT J260 ,AIT~ I

270 PINT:PRINT:PRINT"PICK A FUNCTION TO EVkLUArT"
280 PRINT:PRINT"1- G-1O"
290 PRINT"2- G-X-2"

- 300 Pmr"NT3- G-X2 + 1"
310 PRINT"4- G-X-2 + X + 1"
320 PRINT"5- G-4X-2 + 1"
330 INPUT Z
340 F I-L TO R
350 S-,- I
360 ON Z GOSUB 960,980,1000,1020,1340

. 370 NEXT I
380 FOR K-1 TO L
390 H-K
400 &-ABS(k#(K,K))
410 EB-K+l
420 FOR I-B TO N

* 430 S-ABS(.k#(I,K))
440 IF (&-s)>-O ziN 460
450 M-S:H-I
460 NEXT I

• 470 IF (ti-)-O rhEN 530
4S0 FOR J-i( TO M

*490 Q-A#(H,J)
500 A#(H,J)-A#(K,J)
513 A#(K,J),Q
520 NEXT J
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530 FOR t-B To N
540 Q-AD(I,K)/A#(K,C)
550 FOR J-B TO M
560 AO(I,J)-AJ(I,J)-Q*A#(K,J)
570 NIEXT J
580 NIEXT I
590 FOR I-B TO N
600 A#(I,K)-0
610 N~EXT I
620 LiEXT K(

* ~630 ()-(N)/(,)
640 FOR 0-1 TO L
650 T0O
660 I-Si-a

*670 C-I+1
680 FOR J=C TO N~
690 TTA(,)XJJ
700 tIr J
713 Xi#(I)-(A#(t,M)-T)/A#(t,I)
720 NEXT 0
730 FOR 1-1 TO N
740 ALPRlA#(t)-X(#(M-I)
750 NEXT I

* 760 ?&INTMPINT:LRIMT"INPUT THE P0111 YOU WANT EVALUATED";
770 INPUT Y
780 X-Y
790 FOR lal TO NI
300 UD(I)-Y-Y^(I+1)
810 NEXT I

*320S-0
*330 FOa i-i To m
* 840 Q-U#(I)*ALPIIA#(I)

350 S-S+Q
860 NEXT I
370 LPRI IT"U(";X;")- ";S
880 MAIT:PRINT"D0 YOU 'WI2T TO EVALUkTE ANOTHIER POINT";

7890 IdPUT Y$
900 IF Y$-Y" THIEN 760
910 END
920 Rkf.t***k***********************k********
930 %EI THESE SUBROUTINES CALCULATE THE INHO!1. rERN TO ADD TO MrE AUGMENTED
940 &Ed COEFFICIENT mAFrIx
950o E4****h***********************~***~~

* 960 A#(t,k441)i5#*S(Se21)
970 RETURN

*980 A#(t,R+1)mS/(4#*(S+44))
990 RETURN
1000 AJ(t,N+1)-S*(3#*S+1O#)/(4#*(S-+4#)*(S+2#))
1310 RETUMi
1020 A#IN1-1#(+#*S3)(S2)1 (#G214S2#)/(12#*(S+4#)

1030 RETURN
* 1040 A#(l,N+1)mS*(34#*S+8#)/(2#*(S+2#)*(S+4#))
*1050 aLTURN
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GkLERKIN ROUTINE- (TWO-DIMENSION)

10 REM *'**************k***k**k*********k**

20 REM TAiIS PIOGaAM USES A DIRECT GAXSSIAN ELIAIIATION ROUTIAE vlIrA
30 R.EM PIVOfING TAKEN FROM APPLIED NUMERICAL MdTHOOS FOR DIGITAL COPUTArIoN
40 REM BY JAMES, SMIle, & WOLFOD, PG 192-193.
50 &EM(********k**hkk~*k~k***k****kk***k~**
60 PRI.T CHR$(26)+CH$(27)+Caq$(13)
70 P&INT"GALERKIN (METHOD OF MOMENTS) ROUTINE"
30 P&INT:PI.INT:P&INT
90 PRINT-INPUT N, THE NUMBER OF DIVISIONS";
100 INPUT N
110 LPIN'r"N- ";N
120 M N+1I
130 L-N-1
140 DIM A#(N,M),X#(N),ALP.A#(N),U#(N)
150 DEFDBL A-iI,Q-T,Y,X

170 ,EX****earLS CALCULATES THE INITIAL. L MATIX***********
130 FOR I-I ro 9
190 FOa J-1 TO N
200 Q-I:R-J:S-2*(Q+I)
210 P-I MOD 3:V-J MOD 3
220 IF (P-I AND V-i) THEN GOSUB 1200
230 IF (P-I AND V-2) THEN GOSUB 1250
240 IF (P-2 AND V-i) rHEN 250 ELSE 270
250 Q-J:R-I
260 GOSUB 1250
270 IF (-1 AND V-0) THEN GOSUB 1320
280 IF (?-0 AND V-i) THEN 290 ELSE 310
290 Q=J :i-I
300 GOSUB 1323 -

310 IF (P-2 AND V-2) THEN GOSUB 1390
320 IF (P-2 AND V-O) THEN GOSUB 1440
330 IF (P-O AND V-2) THEN 340 ELSE 360
340 Q-J:R-I
350 GOSUB 1440
360 IF (P-0 AND V-0) rEN GOSUB 1510
370 NEXT J
380 NEXT I
390 PRINT caa$(7)
400 PINr:PRINT"rHE FUNCTIONS TO EVALUATE ARE OF rE FORM: AX-2+BY-2+CX+DY+E"
410 PRINT"INPUT A";
420 lIPUt A
430 PRIAr"INPUT B";
440 INPUT B
450 PRLINT"INPUr C";
460 INPUt C
470 PRINTINPUT D';
480 INPUT D
490 PRINT"INPUT E";
500 INPUT E
510 FOR I-I TO N
520 Q-I:1-2*Q
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530 P-Q 40D 3
* 540 IF P-1 MM. GOStJB 1560

550 IF P-2 THiEN GOSUB 1620
560 IF P-0 MEN GOSUB 1680
570 H4EKT I

* 5a0 F02. K-I TO L.
590 H-K
600 &-ABS(A#(C,-K))
610 B-iK+l
620 FORt 1mB TO NI

*630 S-ABS(A#(L,K))
*640 IF (&-S)>-0 THEN 660

650 3Si-
* 660 NI!xr I

670 IF (R-0)-0 THEN4 730
680 FOR J-K TO H
690 Q-AI(R,J)
700 A#(H,J)-A#(t(,J)
710 AI(K,J)inQ
720 NIEXT J
730 FOR 1-3 To g

I 740 Q-A#(L,K)/A#(C,)
750 FOR J-B TO M
760 A#(I,J)inA#(I,J)-Q*A#(K,J)
770 NEXT J
780 N4EXT I

IDS 790 FOI I-B TO I

810 N4EXT I
820 NiEXT iC
830 ~AN-#~,)A(4~

*340 FOR 0-1 TO L
350 T-O
860 I-N-0

*870 %1-1+1
*830 FOR J-C to N

890 T-'r+A#t(I,J)*XiI(J)
900 NIEXT J

*910 XI(I)-(A#(I,M)-T)/A#(I,I)
* 920 NIEXT 0

930 FOR 1-1 rO N4
940 ALPII&D(L)-X#(I)
950 AEXT I
960 PRim4t CHR$(7)

4 970 PRUc4T:P&IAT:P.I4IT"INIPUT THE XC,Y POINTS YOU WAMI! EVALUATED";
980 INPUJT X,Y
990 FOR 1-1 TO 9i
1000 Q-1
1013 ?-1 M4OD 3
1020 IF P-1 THiEN U#(I).X*Y((2#*Q+li)/3#)*(lI-X)*(1#-Y)
1030 IF P-2 THEN U#(I)-X^((2#*Q45#)/3#)*Y*(l#-X)*(1#-Yt)
1040 IF P-0 THEN U#(I)-i((2#Q3#)/3#)*X(I#-K)*(1#-Y)
1350 mzx~r I

*106'0 S-0
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1070 FOR 1-1 T0 N
1080 Q-U#(t)kLPHiA#(I)

1130 tExCr I
1110 LPRINT "0C";X;Y;")-"*;S
1120 PRIT: PRINT"DO YOU W1ANT TO EVALUATE ANOMhER POII-T";

*1130 INPUT Y$
1140 IF f$inWY" THEN 970
1150 END
1160 Ri*****a****k************************
1170 REM THE FOLLOWINMG SUBROUTINES ARE USED TO CREATE TR AUGMEN4TED LIIN

*1180 REM COEFFICIENT MATRIX
1190 RM**************,.d~...****~.........****
1200 REM CALCULATES LLIN xmralx VALUES FOR M-14,7 .... AND N-1,4,7....
1210 A-DI/(S+5#)-2#1(S4.31).1D/(S+11#)
1220 Bi(R-1#)/(S-1#)-(21*Rt+1#)/(S+2#)+(Z+27)/(S+51)
1230 A#(I,J)-4*(2*+j#)*A*B
1240 RETURN
1250 REM CALCULATES WI'N HATIUX VA.LUES 7& L-1,4,7,.... AID N-2,5,3,....
1260 A-1#/( 2#*Q+7#)-2#/(20*Q10#)+1#/( 2#*Q+13#)
1270 B=(R+l#)/(S+3#)-(2#*R+5I)/(S+6O#)+(a+4#)(S+9#)

* 1280 C-l#/(S+9#)-2#/(S12#)+l#/(S15A)
*1290 0m1U/(2#*Q+7#)-1#/(2#*Q+4#)

1300 A#(I,J)-(2l7*A*B*(2#*R+5#)+18#*C*D)
1310 RETURN
1320 REM CALCULATES LKH HATIRLX VALUES FOR K-1,4,7,... A60 8-3,6,9,....
1330 A=1#/(2#*Q47#)-21/(2P*Q*1OI)+11/(2#*Q+13#)

Le 1340 a-/S1)(#i+#/S4)(t3)(+#
1350 c-1#I(S+7#)-21/(s+1O#)+1#/(S+13#)

1360 Di1#/(2#*Q7#)-l#/(2#*Q44#)

1330 RETURN
1390 REM CALCULATES LM4 mAtrIX VALUES FOR M-2,5,3,.... AND 9-2,5,8,....
1400 Am(R1+1#)/(S+7#)-(2#*i.+5#)/(S+10#)+(+4#)/(S-13#)
1410 s-1#/(S+13#)-20/(SI.16#)+1#/(S+19#)
1420 X#(I,J)-(A*(2#~*R+5#)/45#-B)
1430 19TURN
1440 REM CALCULATES LMN MATRIX VALUES FOR H-n2,5,8,.... AND R-3,6,9,...
1450 Ai1If(2I*Q11#)-2#I(2i#*Q+14I)+1#/(2#*Q+17#)

* 1460 B-R/(2#*13#)-(2*4.+3#)/(2#*R+6#)+(R+3#)/(2*RI9#)
*1470 C-1DI(2j*R+9#)-2#/(2#*at+12#)+l#I(2#*a+15#)

1480O om1#/(2#*Q+11#)-1#/(2#*Q+8#)
*1490 AD(t,J)-(2#kA*B*(2*+3#)184*C*3)

1500 RETU&N
*1510 REM CALCULATES LIN 4ATRIX VALUES FOR M-3,6,9 .... AND 4-3,6,9 ....

1520 A-R/(S+3#)-(2J*R+3#)/(S+6#)+(R+6#)/(S+9#)
1530 B-1#/(S+9#)-2k/(S+12#)+.1#/(S+15#)
1540 A#(L,J)in(A*(2#*R,+3#)/45#-B)
1550 RETURN
1560 REM CALCULATES GM FOR d-1,4,7,..

6 1570 F-(A4.B)*(1#/(R+10#)-0/(U-13i
*1580 G-(C+D)*(1#/(R+7#)-1lI/(R*+10#))

1590 H-E*(1#/( (a+4#)*(a+4#) )-2#/( (a.I4#)k(a+7#) )4-#/( (g*7#)*(a.7#)))
* 1600 AI(I,N+1)in9#*((F+G)*(I/(R.4#)-1#/(R.7#))Nt)
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1610 R&TURS
* 1620 REM CALCULArES G41 FO. :A-2,5,8....

1640 GCk-/2#*(1#/(R+110)-1#/(R+14#))
1650 H-l/'lS)l/21#)(#B2#D4+/#
1660 A#(t,4i1 )=F+G-ii

1670 RETURNt
1680 K~EN CALa~JLATES G4 FOR .4-3,6,9,..

1700 G-B/2if*(I#/(a+12#)-l#/(1*15#))
1710 kF.D/20*(1D/(L+9#)-1D/(9+12#))
1720 AD(I,t4+1)-F+G4H
1730 B.ETU3.t
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COLLOCArION ROUTINE - (ONE-DIMENSION)

20 1EM THIS PROGRXA USES AN INVERSION ROUTINE TAKEN FROM NUMERICAL MErODS
30 REM BY &.W. HORNBECK, PG 294-295. THE ROUTINE EMPLOYS GAUSS-JORDAN
40 REM ELIMINATION WITH COLUMN SRIFTIgG TO AAXIMIZE Pivor ELEMENTS.
50 RE *************h*********** * ** *********k** **
60 PRINT CHR$(26)+CH$(27)+CHa$(13)
70 LP&INV"CO-LOCATiOr4 (METHOD OF MOdETS) ROUTINE"
80 PRINT: PRINT: LPRINT
90 PRINTINPUT N, THE NUMBER OF DIVISIONS";
100 INPUT N
110 LPRINr"N- ";N
120 DIN C#(N,N),ALPRAI(N),G#(N),J#(1+25),U#(N)
130 DSFDBL Q-S,Y,C,D
140 REM******* A** *******,***** ***********kkkk****

150 REM C#(N,N) CONTAINS THE INITIAL L MATRIX, THEN THE INVERTED L MATRIX;
160 REK J#(N 25) IS USED ONLY IN THE INVERSION ROUTINE
170 REM ** ** * * * * * * * * ************
180 REM******THlIS CALCULATES THE INITIAL L MATRIX****r*k******
190 FOR I-i ro N
200 FOR J-1 TO N
210 Q-I:i -J:S-
220 c#(I,J)=R*(a+t )*(Q/(S+t#)) (a-1#)
230 NEXT J
240 NEXT I
250 PD-I
260 FOR L-1 TO N
270 D-0
280 FOR K- 1 TO N
290 D-D+C#(L,&')*C#(L,X)
300 NEXT K
310 D-SQR(D)
320 PD-PD*D
330 EXT L
340 DerM-1
350 FOR Li TO .4
360 Q-L
370 J# (L+20)-Q
380 NEXT L
390 FOR L-I TO H
400 C-0
410 M-L
420 FOR K-L TO N
430 IF (ABS(C)-ABS(C#(L,K))) >-0 TEN 460
440 1inK
450 C-C (L,K)
460 NEXT K
470 IF L-M T.HEN 560
480 R-J#0(420)
490 J#(C+20)-Jl(L+20)
500 J#(L+20)-R
510 FOR K-I TO N
520 S-C#(K,L)
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530 c(,)c(,1
540 C#(K,Mi)-S
550 1 EXT K
560 C#(L,L)-l#
570 DETM-DErM1*C

* 580 FO& 31-1 TO S
590 C#(L,M1)-C#(L,M)/C
0600 NEXT M4
610 FOR .4-1 TO H
620 IF L-H rThEN 690
630 C-C#(Mi,L)

-640 IF C-0# TZHES 690
650 C#(M,L)-0
660 FOR K-1 TO N
670C(,Kc(,)cc(,)
680 NEXT K
690 NEXT 4

*700 NEXT L
* 710 FOR L-1i ro N4

720 Q-L
730 IF J#(L+20)-Q THEN 850

I740 H- L
750 %-:M+ I

* 760 IF J#(MI-20)-Q -MEN 730
770 I,1 N)IM TI1M 750
780 J#(M4+20)-J#(L420)
790 FoK Kai TO N
300 C-CO(LK)
310 C#CL,K)-C#(HI,K)
820 C#(,IK)-C
830 NEXT K
340 J#(LI20)-Q
350 NEXT L
360 DETM-ABS(DETM)
870 DTM-DETM/PD

* 330 lEM***k*****CALCULArES gmn, 'THE INER eooucr O3F THE 4JEIGHIT FN & g******
390 FOa I-i ro Ni

*900 Q-I:R-N
4 910 U14*****rl{E NEXT LINE CAS BE CHANGED FOR OHrM ISHOMOGEEITIQ-S**k'kk*

* ~~920 ~(~1+#(/i4I)
930 PRtIN"G(;I;")n ";G#(I)
940 431T I

* 950 &EZ4******CALCJLAT9S kLPHA********
960 FO& I-i TO 3

4970 ALPHA#(I)-0
980 FOI J-1 TO N
990 ALPHA#(I)-ALPHA#(I)+CI(I,J)*G#(J)

*1000 NEXT J
*1010 P&INT-ALPHA(";I;")- ";AkLPIIA#(I)
*1020 NEXT I
4 1330 PRIIT"INPUT THE TAiL POINT YOU WrANT EVALUATED";

1040 INPUT Y
1050 XCY
1060 FOR 1-1 TO N
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1070 U#(t-Y-Y (I+1)
1080 PMIT iJ#(t)
1090 MEK 1

1110 FOR tin1 TO a
1120 Q=U#(I)*ALPHiA*(L)
1130 SinS-U#()*ALPRA#(t)
1140 Pa~j"(;;) ";Q
1150 t4Kxr I
1160 PRINT"U(";X;")- ";S
1170 LPRIiT"U(";7C;")- ";S

* 1180 PRIIT:PRINT"DO YOU WANT TO EVALUJAI! IMOTIIER POINT (Yf,NI)";
1190 INPUT Y$
1200 IF Y$-Y" THEN 1030
1210 IND
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COLLOCATION ROUTINE - (TWO-DIMENSION)

20 REM rdIS PROG.AII USES A DIRECT GAUSSIAN ELIMI4ATION ROUTINE WIrd
30 REM PIVOrING rAK?.N FROM APPLIED NUMERICAL METIODS FOR DIGITAL
40 REM COMPUTATION BY JAMES, SMITH & WOLFORD, PG 192-193.
50 REM k***AA.A.A.********************~k*kkk**

60 PRINT CiR$(26)+CHa$(27)+Caa$(13)
70 PRINT: PRLT: PRINT
S0 DEFDBL T,Z
90 PRINT"INPUT THE NUMBER OF X DIVISIONS, AND THE NUJBE& OF Y DIVISIONS"
100 INPUT T,Z
110 ,,Z*Tr
120 M N+:L--l-
130 LP&INT"N=";N
140 DIM C#(N,M),ALPHA#(N),X#(N),U#(N)
150 DEFDBL Q-S,XY,A-E,V,T

170 RE%******TIS CALCULATES mE NiTAL L iAaIXkk********* -*********
180 REM**** A***** *** ******** ** **k***** ***A * AA AA A *

210 FO& I-l "tO R
220 V-I
230 IF I<-N/2 THEN Y-I/(Z+I) ELSE Y-21(Z+l)
250 IF I<-N/2 THEZ X-V/(T+) ELSE X-(V-N/2)/(T+I)
270 FOR J-1 rO N
280 Q-J
290 P=J MOD 3
300 IF ?-l THEN GOSUB 1140
310 IF P-2 TIEN GOSUB 1210
320 IF P-0 THEN GOSUB 1260
340 NZXT J
360 HEXT I
370 RE ********CALCULATES gin, THE ININER ?RODUCT OF THE WEIGHT FN & g*******
375 Pk&IAr CHR$(7)
380 PRINT:PRINT"THE FUNCTIONS TO BE EVALUATED ARE OF THE FORM: AhC2 + BY-2

+ CX + DY +Z"
390 PRINT"INPUT A";
400 INPUT A
413 PRINT"INPUT B";
420 INPUT B
430 PRINTVINPUT C";
440 INPUT C
450 PRINT"INPUr 0";
460 INPUT D
470 PRIAT"INPUT E";
480 INPUT E
490 FOI 1-1 TO N
500 Q-I
510 IF I<-NI2 THEN Y-1I(z+1) ELSE Y-21(Z+1)
520 IF 1<-N/2 THEN X-Q/(T+I) ELSE X-(Q-N/2)/(r+1)
530 C#(T,M)mA*X*,( + B*i*Y + C*K + D*Y + .
540 NEXT I
550 FOR K-I roL
560 =l-K
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*570 a-AES(Cf(K,K))
*580 B-M+l
* -590 Fo0i i-B To m

600 S-ABS(C#(I,0))
610 IF (I-S)>-0 THIEN 630

* 620 a-S:Hi-I
630 NEXT I

*640 IF (H-K)-O fIHEN 700
650 FORL J-K TO 11
660 Q-C#(-I,J)
670 C#(aI,J)-C#(iC,J)
680 CD(KtJ)-Q

*690 MEATJ
*700 FOR I-B TO N
* ~710 QC~,)C(,C

720 FOR J-B TO Hi
730 C#(I,J)mCD0(1,J)-Q*CI&(K,J)
740 NEXT J
750 NIEXT I
760 F3a 1-B TO N
770 c#(I,K)-O
780 NEXT I
790 3EXT KC
800 X 1 N-INM/DNN
810 FOR 0-1 TO L
320 S-0
830 I=-I-0
340 C-1+1
350 FOR i-c TO N1
860 SmS+C#Il,)*Xf(J)
370 14EXT J
880 K~)(#tM-)C*tt
890 NEXT 0
900 FOR 1-1 TO M
910 ALPt{A#(L)-X#(L)
920 NEXT I
925 PR.INT dna$(7)
930 ?RIMT"ir4puT raz xY POINT YOU WAIT EVALUATED";
940 INPUT K,
950 FOR i-1 to di
960 Q-1
970 P-1 3i0D 3
980 IF P-I THEN4 (#(I)i(*Y)((2#*Q410)/3#)*(1#-X)*(l#-Y)
990 IF P-n2 rimE U#(t)inX((2#*Q+5#)/3#)*'f(lI-X)*(II-Y)
1000 IF P-0 THEN U#(I)mY^((2#*Q+3#)I3)*X*(L#-K)*(1#-Y)
1010 NEXT I
1020 S-0
1030 FO& I-1 TO N
1040 Qm-jI(I)*ALPHAI(I)

*1050 S-S+U#(I)*ALPIA#(I)
1060 ?&tNT"U(";I;")- ";Q
1070 NEXT I
1080 PRItT"U(";X;Y;")- ';S
1090 LPRINT"U(";X;Y;")in ";S

79



* 100o koRI1:?tUIT"DO YOU vJAdrI TO EVALUATE AN4OTHER POINT (Y,N)";
1110 INPU.T Y$

*1120 IF Y$-"Y" rqEN 930
1130 PA 1
1140 XEM CALCULATES DE IJMN MAYrIXC VALUES FOiK A-1,4,7,....
1150 k-X^((Z#*Q-5#)/3#)*(Y^((7#*Q+1#)/3#)-Y((2#*Q+4)3t))
1160 BiY((2S*Q-5#)/3#)*(X-((20*Q+1I)/3#)-yXp((2#*cQ+4#)/3#))

1130 D-Y-((2#*Q-2#)/3#)*(X-( (2#*Q+4#)I3#)-X-((2#*Q+1D)/3#))
1190 CI(t,J)i((2I*Q-2#)*(A4B)+(2#*Q4)*(CtD))kt(2#kQ+19)/9#
1200 aETU&:4
1210 REM CALCULATES THE LIIN MATRIX VALUES FOR N-2,5,3....
1220 A-( 21*Q+2#)*X-((21*Q-I)/3#)-(2#*Q+8#)*X-((2*Q+2#)13#)
1230 B-2#*(X^((2#*Q4.8#)/3#)-X-((2#*Q.5#)/3#))
1240 C#(I,J)-A*(2#*Q+3I)k(Y-Y*Y)/9#+B
1250 METURNi
1260 RSICALCULATES rdE LM-B MAT'IC VALUES FOR 9-3,6,9,....
1270 A-(2#*Q)*C^((2#Q-3#)3)-(2#*Q+6#)*Y-(2#*QI3#)
1230 B-#(-(#Q6)34- (#Q3)3)
1290 C#(t,J)-A*(2#*Q+3#)*(X-K*X)/9#+B
1300 RErU~xI
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solution, the amount of time it took to run each program, and
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