
I I-Ai51 892 FLOW OVER A BICONIC CONFIGURATION WITH AN AFTEROODY 11
COMPRESSION FLAP(U) AIR FORCE WRIGHT AERONAUTICAL LABS
WRIGHT-PRTTERSON RFB OH J S SHANG ET AL. APR 94

UNCLASSIFIED RFWRL-TR-84-3059 F/G 26/4 M

MENOEEEEE



1111.0 t 18 *25

L6

MICRCOP REOUTO TES CHAR
NATIONA BUREA OFSANAD 1%

%I7l



AFWAL-TR-84-3 059

FLOI OVER A BICONIC CONFIGURATION WITH AN4 AFTERBODY COMPRESSION FLAP

00

10 J.S. Shang
R.W. Mac~ormack

S Aerodynamics and Airframe Branch

I Aeromechanics Division

April 1984

Final Report for Period January-April 1984

[Approved for public release: distribution unlimited

LL.

SFLIGHiT DYNAMICS LABORATORY T
AF WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS CO 21ANDMA27 8
WRIGHT-PATTERSON AFB, OHIO 45433

85 03 12 106



NOTICE

When Governrnent drawing-'s, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
.any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

JOSE S. TOMMY J. Kt'f, Maj, USAF

Project Engineer Chief, Aer"dynamics & Airframe Branch

Aeromechanics Division

FOR THE COMMANDER

RALI'11 W. HOLM, Col, USAF
Chief, Aeromechanics Division

"If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer empioued by your organizaticn please notifyAAL/FT ,-
W-PAFB, OH 45433 to help us mai ntain a current mailing list".

Cori2s of this renort should not ! retL'rned unless return is required by security
cors;derations, concrac ual obliga-ions, or notice on a specific document.



UNCLASSIFIID
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
tos REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABiLITY Or REPORT

2b. OSCLASSI FICAT ION/DOWN GRA DING SCHEDULE Approved for public release: distribution
unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER (S) S. MONITORING ORGANIZATION REPORT NUMSE RIS)

AFWAL-TR-84-3059

6&. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL ?a. NAME OF MONITORING ORGANIZATION-[(If applicable)
FLIGHT DYNAMICS LABORATORY AFWAL/FIMM FLIGHT DYNAMICS LABORATORY (AFWAL,/FIM)

6c. ADDRESS (City, State and ZIP Code) (ArAII)7b. ADDRESS(Cl State and ZIP Codej (F.~LFM
FLIGT DYAMIC LABRATOY (AWAL/IMM)FLIGT DYAICSLABORATORY AWLFM

AF WRIGHT AERONAUTICAL LABORATORIES (AFSC) AF WRIGHT AERONAUTICAL LABORATORIES (AFSC)
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433 W4RIGHT-PATTERSON AIR FORCE BASE, OH 45433

Go. NAME OF FUNDING/SPONSORING B b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

Sc ADDRESS (City, State and ZIP Code)I 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELIEME NT NO. NO. NO. NO.

Al TiTLE OIncoudir Security Cluuadicateont FLOW OVER A BICONIC 2307 N6 03 2307N603
* ~CONFIGURATION WITH AN AFTERBODY COMPRESSION ______ ________________

12. PERSONAL AUTHORiS) FLAP
1.S. Shang and R.W. MacCormack

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (1'r* Mo., Day) 15 PAGE COUNT

17 ABSTRACTE ISntSnBJEoT TERMSa (Cntnu oneu,- rees feeesrnd identify by block number)

AlgRTm (Corneeretlye ieleayd thedetiled flo field stutueanmhebattanfr)n
fomtione-icmpaion waihexpoeimentluta.n weer te implci nuer abnia prour

*exhliit ansgifn imp rovmenii numerical cee.Rslsfficenc bove the explicit mthod Forici

fine mesh clustering near the solid body surface, necessary to resolve surface shear stres
and heat transfer rates, the implicit scheme achieved an order of magnitude reduction in
computing time.

20 DISTRIBUTION,'AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

*UNCLASSIFIED/UNLIMITED NSAME AS RPT. C DTric USERS 01 UNCLASSIFIED

22s. NAME OF RESPONSIBLE INDIVIDUAL 2bTLPOENME 2 FIESMO

Joseph S. Shang(5325-45AWLFM

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE



FOREWORD

This report is the result of work carried on in the Computational

Aerodynamics Group, Flight Dynamics Laboratory, Wright-Patterson Air Force

Base, Ohio, by Dr J.S. Shang and Prof R.W. MacCormack. from June 1983 to

April 1984. During a part of this period, Prof MacCormack of the University--

of Washington was a visiting scientist at the Flight Dynamics Laboratory

under Contract F33615-79-C-3030.
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SECTION I

INTRODUCTION

The ever widening application of computational aerodynamics to complex

engineering problems makes the need for efficient numerical algorithms

more apparent. In the past few years, several numerical algorithms have

1
been developed , but additional research is still required to substantially

improve numerical convergence rate, geometric adaptability and reliability

of existing methods. Unfortunately, no attempt has been made to establish

a commonly accepted criterion for the evaluation of the aforementioned

requirements. One realizes that the magnitude of this undertaking is certainly

beyond the scope of a single investigation. However, this information is

vitally important to the application of computational aerodynamics in the

design process. Therefore, the evaluation process is frequently forced to

concentrate on the clearly defined issue of relative numerical efficiency.

In the present effort, a comparative study was focused on MacCormack's

explicit scheme and its implicit analogue. Specifically, the comparison was

carried out by using the two procedures to solve a practical aerodynamic

problem. The choice of solving schemes was based on the fact that the explicit "

scheme has frequently been used as a bench-mark3
'
4
' for new algorithm develop-

0 ment, and that the two investigated algorithms are easily adapted for vector

processing.

The numerical simulation of flow over a biconic body with an afterbody

compression flap (Figs. 1,2) was obtained in this study. The computation

was performed for flow with a nominal free stream Mach number of 7.97 and

a characteristic Reynolds number of 9.23 million. This particular geometric

configuration generates a wide variety of aerodynamic characteristics not

Figures begin on page 24.
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usually encountered in a single configuration. In particular, the flow

field contains an enveloping bow shock, rapid expansions at the juncture

of the biconic forebody and the sliced conical afterbody and finally an

inviscid-viscous interaction around the afterbody compression flap. The

solving procedure also offers the opportunity to evaluate the idea of

1,6
segmented and overlapped computational domains '6 . Basically, the problem

was separated into two interdependent computational domains. The forebody

was simulated by a simple axisymmetric numerical formulation. The

comparative study of the explicit scheme and its implicit analogue was

also limited to the axisymmetric forebody region. The more complex flow

field around the afterbody was then analyzed using the full three-dimensional

equations. The solution of the complete configuration is presented in

7composite form. The specific comparison with experimental data in terms

of surface static pressure and heat transfer distributions as well as pitot

pressure, Mach number and tangential velocity profiles will be given to

verify the accuracy of the numerical simulation. The entire flow structure

around the biconic configuration with the afterbody compression flap in

terms of density contours, cross-flow velocity distribution and surface

shear stress mapping will also be depicted. Finally, a detailed presentation

on the comparative study of the explicit scheme and its implicit analogue

will be delineated.

2
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SECTION II

ANALYSI S

The time dependent, three-dimensional Navier-Stokes equations in

mass-averaged variables and in the chain-rule conservation law form can

8
be given as

F (FI (1)

The dependent variables are U(p, pu, pv, pw, pe). The flux vectors, F, G,

and H are simply the Cartesian components of the continuity, momentum and

energy equations. The axisymmetric formulation is but a subset of the

governing equations.

Pu
2Pu -Txx

F = PUV-T (2)
xy

PuW-T P

Peu-YQ("- + -L -(U + VT +w WT
Pr P x xx xy xz

Pv-

yx
CPV -T (3)

yy

vwPr Prtay u.yx + VT y+ WT )z

p uw-t

H = PVW-T~ (4)

Pw Tzz

Pr Prt zx zy z

3



where, the component of shear stress is defined by

= (l+c)(Def u)i - [2(1+e)V'u+Pj 6i (5)

The closure of this system of equations is achieved by introducing the .. -

Baldwin-Lomax turbulence model 9 with a minor modification 8 and by assigning

a turbulent Prandtl number of 0.9. Specifically, the two-layer eddy viscosity

model is given by

Inner region:

= p(0.4LD)2 I1W (6)

In the present formulation, the vorticity of the flow w, the Van Driest

damping factor D, and the scaling length L are given as follows

W V x u (7)
P. b1 b b) 1/2

D l-exp [- ) L/26 (8)
b

L = [(x-xb)2 + (y-yb) + (Z-zb)2 I2 (9)

Outer region:

c= 0.0336 PF wake /[l+5.5(0.3L/L max) 6  (10) . =

The wake function, F is the minimum value of the two following

wak kma

expressions at any point in space.

Fwake L max max

F 0.25 • Lmax (u2+v 2 +W2 /Fm(2wake mxmx ax(12)

In the present analysis, L is the value of the length scale where
MAX

F=LDIwf reaches it's maximum value within the turbulent shear layer. The

system of equations is formally closed with Sutherland's equation for molecular

viscosity and the equation of state for a perfect gas.

4
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Since a composite solution obtained by overlapping computational

domains for the investigated problem was performed, different initial

and bound iry condition; were imposed for each subproblem. However, since

these conditions are quite similar, they will be discussed together. The

initial condition for the forebody solution consisted of freestream values

for all field points excluding the surface nodes.

U = U (13)

The initial condition of the three-dimensional afterbody solution is described

in part by the forebody calculation. The overlapping station is located at

a distance of 45.5 radii downstream of the blunt nose. The initial value

assigned to the overlapping surface also serves as the upstream boundary

condition for the afterbody calculation. This is the only link between the

forebody and the afterbody solutions.

On the solid body contour, the no-3lip condition for velocity components,

the isothermal condition for temperature to duplicate experimental conditions,

and the ortho-isobaric condition for pressure are imposed. The value of

surface density is deduced from the equation of state.

u, v, W = 0 (14)

T = 311.3 0K (15)

b

n. p = 0 (16)

where the outward normal of the body oriented coordinate is simply,

=Vn/I jvrI I.

Since the detached bow shock wave isolates the interacting flow domain,

the far field condition requires that the flow remain unperturbed.

U ( = U (17)

For the afterbody computation, the present analysis takes advantage of the

5p
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property of symmetry with respect to the y axis (Fig. 3). Only half of

the cross-flow plane is evaluated. A reflection condition is applied

which insists that the component of velocity be equal to zero on the

plane of symmetry.

au
-= 0, w= 0 (18)

Finally, the usual no-change condition is imposed at the downstream boundary

for each computational domain. This system of boundary conditions is known

to be well-posed and stable for the supersonic problem.

6
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SECTION III

COORDINATE SYSTEM AND GRID GENERATION

The numerical generation of body-oriented coordinates is straight-

10
rward. The adopted methods is the homotopy scheme

0
. Basically, it

is an interpolation procedure between grid control surfaces. Once the 7.

inner and the outer surface are given, any number of mesh surface points

is controlled by an exponential stretching function. For turbulent flow

this stretching is nearly optimum in describing the logarithmic velocity

profile. The mesh formulation is given by

e I- ek -1
y YOk - 1 + yi (1- k (19)

e -i e -i

ek n( i) ek -l (
z =Zo -Z) + Z. I k (20)"

o k I(l k20
e -i e -i

where O<n<l. The exponent of the stretching function is uniquely determined

by the minimum distanced between the body and the immediately adjacent

coordinate surface, and by the number of points used. Additional mesh clus-

tering around the bow shock wave is generated by increasing the total number

of nodes in n direction by four in this region and subdividing the mesh pre-

viously generated using the logarithmic coordinate surfaces locally near the

bow shock (Figure 2 and 3). For the baseline case of computation, the calculated

value of the exponent k is 4.820. The finest outward normal distanced from

the body surface is assigned a value of 0.00305 cm in the blunt nose region.

However, the grid spacing increases four-fold in the aft portion of the biconic
+

forebody, where the law of the wall variable y assumes a value of 5.901.

For the forebody calculation, the outer coordinate line, n=l, is described

by a curve consisting of a circle and a parabola matched to closely approximate

the bow shock wave. Care is also exercised to ensure that the generated

7
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coordinates are nearly orthogonal. In order to achieve a systematic

comparative study, various mesh distributions are generated by reducing

the An value (inversely proportional to the total number of nodes chosen)

and retaining the exponent k at the fixed value of 4.820. In this manner,

the coordinate systems are affine and the computational domains are unaltered.

The streamwise numerical resolution is also evaluated by using two different

streamwise mesh systems which comprise (62x40) nodes and (90x40) nodes,

respectively.

The three-dimensional afterbody calculation, the coordinate system

is constructed by a series of consecutive axial cross sections evenly spaced

to achieve optimal numerical resolution. The first thirteen streamwise

step-spacings upstream of the compression flap have the value of 0.859 cm,

which is less than half the boundary-layer thickness at the overlapping

plane. A finer streamwise step size (0.4276 cm) is used for the rest of "

the streamwise stations. The body geometry variation is relatively mild

with two sliced surfaces on the top and bottom of the conic body and a 20°

compression flap. Therefore, only 38 circumferential points were used to

define the cross-sections. All the mesh points have an even angular dis-

placement of 5*. The first two and the last two arrays of mesh points were

astriding the plane of symmetry. A total of (33, 40, 18) mesh points were

used for the afterbody calculation. In Figure 3, four typical cross-sectional

grid point distributions are presented.

8



SECTION IV

SOLVING SCHEME AND NUMERICAL PROCEDURE

The well-known MacCormack's explicit unsplit algorithm is used as

the basis of the present comparative study. The unsplit scheme can be

easily coded to exploit computer architecture resulting in a minimum amount

of data movement to and from the memory unit of vector processors. The

explicit scheme, however, is conditiouially stable; the inviscid allowable

time increment for arbitrary coordinates have been derived and can be

given by
8

x nx x 2AtCF CFL/{u /A + u /n + u /A + c[( - + 'E +

tCFL n +

n + 2 z 1z C z 211/2}

+ ( + _X+ + (- + -- + -) (21)
AE An AC A&A

where the contravariant velocity components are defined as

u = xu + yv + zw (22)

un  nxU + yv + rw (23)
r~ X y z

u Cx U+y v+ zw (24)

Since this stability condition for time step size does not contain viscous

terms, the maximum allowable time increment for the actual computation must

be determined numerically. For the present analysis, the highest and most

consistent CFL number is 0.8 and is used throughout as the, criterion for

the numerical efficiency study.

The detailed description of MacCormack's implicit algorithm is documented

in reference 3 and therefore will not be elaborated on here. The implicit

algorithm can be directly implemented into the existing code, with the basic

9
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idea being to convey the locally determined solution evolution globally

in a stable manner. The implicit propagation of local solution changes

in time are given by the following equation.

an+l 9n
aA t aB au

(I+At + At -) at =(25)a at

where A and B are the Jacobians of F and G with respect to the dependent

variable U. The notation in the (A., B-) above expression simply indicates
aUn+l

that the spatial derivative also operates on the time derivative at
The numerical procedure is first performed for the explicit predictor sweep,

then followed by the implicit sweep for the nodes where the time-step

exceeds the CFL limit locally. This procedure is repeated for the corrector

sweep. The implicit differencing operator is parallel to that of the explicit

differencing operator. The alternative one-sided difference approximates

the first derivative and the second derivative are centrally differenced.

A+IAI A+ BI
(I-At --- )(I-At 6U U (26)

A JAI AlnBI
____ *~+*' n+l n~(7(I t -Eg-(I+At 6Uf - A un

(IAt A I(27)

where
=~ a13n +

l

Un+l At at

ataun
AUn = At at

The matrices JAI and IBI are the matrices with positive eigen values and

are related to the Jacobians A and B. Specifically, the matrices A and B

can be expressed by it's diagonalized matrices and the similar transformation

matrices in terms of the general coordinates

10
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(28)
A- S 1n D ASn

B S 1 D Bs (29

where

2 2 ,2 0c
1-BUIC~ Ouc VIC -6/

nx y
(30)

n-V /P n /p n /P 0
n y x

( a02 -(n c+Bu)/2 (qi c+av)/2 6/2

22 2 -/ 2

1-ci0/c 2 u/c 8v/C -I

(cz-un c)/2 (n c-601/2 (n c-ev)/2 0/2
T1 x y

s (31)
i-V /P -n /P 71 /P 0

n y x

(u c+c~a)/2 -(n c+Bu)/2 (~c+Bv)/2 6/2
nl X y

U 0 0 0
n1

0 u +C 0 0
D =(32)A 0 0 u0

0 0 0 u -c



u 0 0 0

0 u +c 0 0C ~(33) .i

B 0 0 u 0

0 0 0 u-c

KL

The flux change in either the n or the C directions are easily given as

S a ', and S 1 aU, respectively.

Since the procedure is implicit, the treatment of boundary conditions

is critical to further improve the rate of numerical convergence. At this

writing, the transmitted flux change at the = 0 boundary is swept

immediately back into the flow field, leaving no corrections to be performed

later. However, the present procedure stored the transmitted flux received

at the inner boundary (n = 0) during the predictor implicit sweep, and then

later sweeps it back out during the corrector step. Although flux changes are

rigorously conserved, there is a time lag. The implementation of implicit

boundary condition is a vital area for future research and continuous efforts

are currently still being undertaken.

For the investigated case, the static pressure jumped seventy-four fold

across the bow shock wave enveloping the blunt nose region. Numerical

damping was required to surpress numerical oscillations, therefore, fourth-

i1.
order pressure damping terms are used in the present analysis. The

magnitude of the artificial viscosity-like terms are restricted to a value

not to exceed 0.5.

3 2 2 2 112 C  1a2

At An3 [Ju 1+(nx+ny+n) 1 ] - I I < 0.5
n~ x y z p 2~an

12
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A transient damping term representing a measure of the change in

entropy primarily induced by viscous dissipation is also used to maintain

3
stability

j6plc 2 - 6pI/(-n p

This additional precautionary measure vanishes when the asymptotic steady

state solution is reached.

The aforementioned implicit numerical procedure results in matrix

equations to be solved that are either upper or lower block bidiagonal.

Since no recurrent relationship is required to invert the system of equations,

the vectorization of the implicit procedure is easily achieved. The

implicit calculation needs only twenty-three percent more CPU time to process

the data than the explicit scheme. The additional computing resources

required for the implicit code are nearly identical for either scalar or

vector processors. Finally, the numerical convergence criterion for the

present analysis is defined as a change in the Stanton number of less than

one percent per one half of a characteristic time. The time scale is the

period for a fluid particle to travel from the upstream to downstream boundaries

of the computational domain at the freestream velocity.

13
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SECTION V

DISCUSSION OF RESULTS

The present results will be discussed in two parts. In the first

topic, the comparative study of the explicit method and it's implicit

analogue applied to simulate the biconic forebody is presented. A brief

discussion is also included on the relative numerical efficiency between

the full and the parabolized Navier-Stokes solutions for the investigated

configuration. The rest of the presentation concentrates on the delineation

of the detailed flow structure around the afterbody with a 200 compression

flap and a sliced conic shape. All of the comparisons and validation are

accompanied by experimental data collected under identical conditions.

The comparative study of MacCormack's explicit scheme and it's implicit

counterpart is focused on the axisymmetric forebody from the following ration-

al. First, the major attraction of using an implicit scheme to simulate a

given problem is that of the favorable stability characteristic of the implicit

scheme leading to a decrease in the required computing resources. In principle,

the implicit scheme always requires more arithmetic operations than the explicit S

method to advance a given time step. Thus the favorable allowable time step

size must overwhelm the conditionally stable explicit scheme to gain an overall

advantage in data processing time. For most aerodynamics applications, the S

mesh refinement for the viscous dominated region usually is not required along

more than two coordinate directions4 '5 '8 '9  Therefore, the implicit procedure

may not need to be implemented for all the coordinates in order to achieve the p

most efficient results. Second, the forebody numerical simulation offers a

severe challenge for any numerical algorithm in simulating the strong bow

shock wave around the rapidly changing curvature of the blunt nose and the 9

14
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resulting rapid flow expansion that follows. Finally, each transformed

coordinate must rotate 900 to accomodate the definition of the body.

In the following table, the data processing rate and the total CPU

time used to meet the convergence criterion mentioned eariler are given. It

is observed that the ratio of data processing rates between the explicit

scheme and the implicit scheme remains nearly identical, regardless of whether

the codes were performed on scalar or vector processors. This is a clear

indication that MacCormack's implicit scheme is more readily vectorized than

Other implicit methods which require tridiagonal block matrix inversion.

This advantage in application is critical for large scale data processing

at present. The allowable time step size for the implicit algorithm is

recorded for a stringent application standard; the accepted CFL number must "1

be sustained until the evolving solution meets the convergence criterion.

No prolonged relaxation period was allocated to diminish the larger temporal

truncation errors. Most important of all only the practical fine grid

spacing adjacent to the surface sufficient to resolve the heat transfer was

used. In the eddy viscosity formulation, the laminar sublayer thickness

is normalized by the law of the wall variable y+ with a value of 26. Based

on early investigations of strong inviscid-viscous interactions, a y value

less than 10 is usually adequate to resolve the shear stress and heat transfer

information12 '1 3  Further refinement of the mesh adjacent to the surface

would yield a higher CFL value, but may not be cost effective. Nevertheless,

+for the case of y = 5.901, the implicit procedure can consistently process

data at a time step value 4.125 times higher than the explicit scheme. The

net total computing resources savings amounts to a factor of 3.3 in comparison

with the explicit procedure. As the surface mesh spacing reduces to correspond

15
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+

to a y value of 3, the implicit scheme performs at a consistent 
CFL

value of 16.1. The computational resource savings increases to an

impressive factor of 10.09. The difference in predicting the Stanton

number distribution between the fine (y + 3) and the course (y = 5.9)

mesh solution is less than one percent. For our purpose, the numerical

results are considered identical.

+ At
Algorithm Mesh Spacing y Computer DPR Total CPU tCF L  .ii

Explicit (62,40) 5.9 CYBER 175 6.1xlO- 4  15123.0 1.0

implicit (62,40) 5.9 CYBER 175 7.5xi0 -4  4582.7 4.125

Explicit (90,40) 5.9 CRAY IS 1.78x0 5  641.9 1.0

Implicit (90,40) 5.9 CRAY IS 2.21xi0 - 5  194.5 4.110

Explicit (62,40) 5.9 CRAY IS 1.72xi0 - 5  426.00 1.0

Implicit (62,40) 5.9 CRAY IS 2.13x0 5  129.10 4.110

Explicit (62,41) 3.0 CRAY iS 1.72x0 5  1864.2 1.0

Implicit (62,41) 3.0 CRAY IS 2.43x0 5  142.0 16.1

The afterbody calculation was accomplished using a (33,40,48) mesh system to

describe the flow field around the 200 compression flap. The initial condi-

tion for the afterbody simulation was prescribed by the value of the over-

lapping plane, which is a much better guess than the forebody initial condi-

-5
tion. At a data processing rate of 6.1xlO seconds, the numerical solution

converged after 2,374.8 seconds CPU time. On the other hand, the numerical

solutions generated by various parabolized Navier-Stokes codes 14 '15 of a

similar configuration (100 flap) required a range of 291 to 537 seconds of

16computer time on a CARY computer . The numerical efficiency of parabolized

Navier-Stokes procedures is impressive. However, the cited CPU time excludes

the Navier-Stokes calculations of the blunt nose which these procedures need

as an initial condition. The difference in total computing resources for the

16
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entire numerical simulation between the full Navier-Stokes and the para-

bolized Navier-Stokes equations is less than an order of magnitude.

In Figure 4, the comparison of the surface pressure distributions

on the forebody reveals excellent agreement. The solutions by the explicit

and implicit methods are indistinguishable. The maximum discrepancy between

experimental data and calculations is limited to less than four percent.

The Stanton number distributions and the accompanying data is given in

Figure 5. The over-all agreement between data and the calculations is very

good. The maximum discrepancy is near the high expansion and recompression

region where laminar turbulent transition might occur. Since a tripping

device was used for the experimental measurement to ensure a fully developed

turbulent flow, the numerical simulation would not be expected to duplicate

the local phenomenon. However, downstream of the junction of the biconic

configuration, agreement between the experimental data and the calculation

is excellent. The prediction by the Navier-Stokes equations indicates a

16comparable result to that of the parabolized Navier-Stokes equations . In

this comparison, the implicit solution reveals merely a 1.6 percent higher

value in Stanton number evaluation than the explicit result. This is

also the maximum disparity between the implicit and the explicit solutions

investigated.

The comparisons of pitot pressure and tangential velocity profiles

are given in Figures 6 and 7, respectively. The detailed flow field survey

was performed at 41.5 radii downstream of the blunt nose in the meridian plane.

The agreement between experimental data and the calculations is very good.

Again, differences between the solutions achieved by the explicit method

and the implicit scheme are indistinguishable. The major deviation between

17



the experimental data and the numerical solutions is confined within

the entropy layer induced by the bow shock curvature in the stagnation

region, and in the definition of the shock wave. This is a fundamental

short coming of a shock capturing scheme.

In order to better organize the discussion of the three-dimensional

afterbody calculation, the density contour of the entire biconic configura-

tion with a 200 compression flap in the meridian plane is depicted in

Figure 8. The enveloping bow shock wave, the rapid expansions downstream

of the stagnation region and the conic junction and finally the coalesced

compression shock waves over the flap are clearly indicated. In the lower

half of the meridian plane at the end of the conical section, a continuous

expansion is also observed over the bottom sliced surface. To give a proper

perspective of the three-dimensional flow field structure, four cross-

sectional density contours are given in Figure 9. The systematic development

of the expansion zone over the slice and compression flap is obvious. The

most interesting feature is that the coalescing shock wave system over the

flap is isolated by the expansion domain above the slice. Therefore, the

distortion of the envelopiig bow shock is rather limited.

The surface pressure distributions on the body surface in the meridian

plane are presented in Figure 10. The agreement on both the upper and the

lower surfaces are excellent. A good agreement also is reached for the

circumferential Stanton number distributions between data and calculation

in two streamwise locations, when experimental measurements are available

(Figure 11). The angular displacement, defined to be zero in the upper

meridian plane, increases in the clockwise direction until the lower

meridian plane is reached. The streamwise Stanton number distribution is

also calculated and the agreement with data is very good.

18 .
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Four pitot pressure surveys, one upstream of the location of the

compression flap (x/rN = 49.01), one roughly one boundary-layer thickness

downstream of the flap junction and two locations near the end of the

compression flap are illustrated in Figure 12. The last survey data set

was collected in the model centerline and near the spanwise edge of the

compression flap. Very good agreement between data and the calculation is

observed. The maximum deivation is estimated to be confined within a few

percent and is mostly limited to the domain of the entropy layer and the

definition of the bow shock. The peak values of the pitot pressure around

the coalescing shock wave are predicted with increasing accuracy in the

fine mesh distribution near the body surface.

The surface shear over the entire afterbody is presented in Figure 13.

The 0 = 0 ordinate indicates the upper meridian plane and the 0 = 180'

represents the lower. This picture reveals the flow structure in remarkable

clarity over the two sliced surfaces where the flowstream expands rapidly

toward the meridian plane. However, the flow over the conic section

(450<(<1350) possesses no swirling motion. On top of the upper sliced

surface, which is followed by the 200 compression flap, the expansion outward

to the conic section of the body and the expansion inward to the meridian

plane stands out. Three-dimensional phenomena are clearly evident. Reversed

flow is indicated at the junction of the sliced surface and the compression

flap. In an enlarged streamwise velocity distribution plot in the meridian

plane (Figure 14), the reversed flow is embedded in an extremely small domain.

In the last figure, Figure 15, the cross-flow velocity distribution due

to the configuration asymmetry is presented. The cross-flow velocity com-

ponents are given in radial and tangential components. This picture not

19



only reinforces the observations made in the surface shear pattern but

also reveals the drastic stream particle path variation across the boundary

layer. The stream deflection from the surface changes rapidly across

the boundary layer until emerging into the entropy layer.

2.
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• . .. .. .

SECTION VI

CONCLUSIONS

The numerical simulation of flow over a biconic body with a compression

flap is successfully accomplished at a Mach number of 7.97, a Reynolds

number of 9.228 million and at a zero degree angle of attack. The numerical

results duplicate all the experimental measurements in pressure, pitot

pressure and heat transfer within a few percent. The numerical results

simulate the intricate flow field structure around a three-dimensional

configuration.

The application of the MacCormack's implicit algorithm indicates the

procedure is easily vectorized for large-scale data processing, and a
p

significant gain in computer resources is realized. However, continuous

research efforts to achieve a greater numerical efficiency are still needed.

21
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