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SUMMARY

As part of the study of the nonlinear response of structural
components we investigate in this report a single degree-of-freedom non-
linear response equation usually known as Duffing’s equation. Previously the
response curves have been investigated analytically by many authors but
there seems to have been very little numerical work done in the nonlinear
cases. It is shown that a numerical solution is feasible and that some of the
standard analytical approximations are not accurate in the peak region of the
response curve.

RESUME

Dans le cadre d’une étude de la réponse non-linéaire d’éléments
structuraux, les auteurs analysent une équation a un seul degré de liberté
relative a la réponse non-linéaire, connue généralement sous le nom d’équa-
tion de Duffing. Les courbes de réponse ont déja été analysées par de nom-
breux auteurs, mais il semble qu’on ait fait trés peu de travaux de nature
numérique sur les cas non-linéaires. Les auteurs démontrent qu’une solution
numérique est possible et que certaines des approximations analytiques
standard ne sont pas exactes en ce qui concerne le pic de la courbe de
réponse.

(iii)
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!; A . final amplitude after transients have died down
?;l AyrAgsA, constants in linear solution

E c damping coefficient

:::. F amplitude of driving force

E&ﬁ IMAX, IMIN step number at which maximum or minimum x occurs

k stiffness

N number of steps per cycle of period %1

t time

X displacement variable describing the motion
B coefficient of x3 in the nonlinear equation
At time step in the integration process

z damping ratio = c¢/2/k

o spectral radius of the stability matrix

w amplitude of driving force
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1.0 INTRODUCTION

In recent years there have been rapid developments in
structural analysis techniques and related computer codes. The
analysis of linear response of structural components has been well
studied and numerous numerical time marching techniques have been
developed for finite element structural analysis programs. Some of the
more commonly used time integration techniques are the explicit central
difference scheme and Houbolt's, Wilson's and Newmark's methods
(Ref. 1). In order for any algorithm to be useful in practice, it must
not lead to a divergent solution. Except for the explicit scheme, the
other three methods are unconditionally stable. A study of the
accuracies shows that all three schemes suffer from a period elongation
which increases with increase in time step. In addition, Houbolt's and
Wilson's methods have artifical damping resulting in the higher modes
being rapidly damped out in a system with a large number of degrees of
freedom.

In non-linear problems established methods for investigating

stability and decay as in linear responses are not possible. Various

formulations have been proposed and used with varying degrees of

"—TI.‘:'-'?"“"-I

success. The four methods described in [1] for linear problems can
readily be used for the nonlinear case. The choice of any particular
algorithm depends to a large extent on the type of problem to be

solved.

€

The use of time marching techniques in flutter studies was

T reew

first reported by Ballhaus and Goorjian [2] who carried out the

O gt

aeroelastic response of a NACA 64A006 airfoil with a single
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degree—of-freedom in pltch at transonic speeds. Extensions of this
procedure to two— and three-degree—-of-freedom have been reported by
Rizzetta [3] and Yang and Chen [4]. Only a linear response was treated
by these authors. In flutter studies, there are potentially many
sources of non- linearities present, some of which may give rise to
“"limit-amplitude” oscillations. The nonlinearities may arise in many
possible ways, but the most commonly encountered ones are those having
structural or aerodynamic origin,

In aeroelastic applications unconditionally stable methods
like Houbolt's for linear problems is not very critical, since the
number of modes considered is usually not very large. Conditionally
stable schemes can then be used, provided a time step is chosen to
ensure the highest mode does not diverge. Also, it is important that
amplitude decay and period elongation should be as small as possible,
In the present study higher order implicit finite difference schemes
with greater accuracies than Houbolt's method are discussed. To study
the stability and accuracies of the higher order schemes, a linear
system is considered.

In the application to the nonlinear case the restoring force
is assumed to be given by that of a cubic spring. The equation to be
solved is essentially Duffing's equation [5]. In aeroelastic problems
a cubic restoring force corresponding to a hardening spring arises when
a thin wing or propeller is subjected to increasingly large amplitudes
in torsion.

The numerical solution to the nonlinear Duffing's equation

offered some interesting studies. For instance, it was not known how

) .h\ A
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a multivalued solution could be computed and whether the jump
phenomenon from one branch of the response curve to another could be
forecast numerically. What would affect such a jump and would the jump
be consistent? Also would the unstable part of the response curve
cause numerical difficulties? Are the approximate analytic response
curves accurate?

We present here solutions which answer the above questions
and hopefully this will clear the way to study higher order degrees-of-

freedom systems and to more practical applications.

2,0 THE RESPONSE EQUATIONS

2.1 The Linear Equation

In order to study our numerical schemes we first consider the
linear equation for damped oscillations i.e.
X + cx + kx = F sin wt

Its solution is

-ct/2 [Azsin /(1-;2) w t + Ajcos /(l-Cz) wnt]

sin(wt-¢)

3

+A4

where

A, = X + Ah sing

. 2
by = D+ 4y 0, = ageostl 1D,

F
A, = [(1—{22)2 + (2;9)2]§
w
n
g = -J%:; w = vk ;= %—
vk n
tanp = 3527
1-Q

|
o
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3
-
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and Xg» ;O are the initial displacement and velocity respectively. It
can be seen that transiants represented by the first term for x die

down and leave the particular integral A, sin(wt—¢). Thus the initial

4
conditions Xg» ;O are finally unimportant in this linear case. Only in
the nonlinear system will they be critical as shown by the numerical

solutions.

2.2 The Nonlinear Equation

Many articles have been written on the equation which
represents forced oscillations of systems with a nonlinear restoring
force. The equation can be written

; + c; + f(x) = F sin wt

for ¢ » 0. Most of the studies have centred on displacements large
enough to include linear and cubic terms in f(x) i.e. the equation

; + cx + kx + Bx3 = F sin wt (1)
is normally considered and this is the form we will concentrate upon in
this study. This equation is normally referred to as Duffing's
equation, since Duffing [5] was the first to make significant progress
in studying it.

Duffing in his study neglected the damping force ex and, by
an expansion method, found that to first order the equation

-k +3pa? -k (2)
related w to the amplitude A of the oscillation. The equation (2) is
an interesting relation in that for certain values of the parameters
there are three values of A associated with one value of w as

illustrated in Fig. 1. This gave rise to speculation that a jump

phenomenon might exist in which the solution would suddently jump from

Lo o e e, e,
. . L L
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one branch 5-4-6 say in Fig. 1 to the branch 1-2-3 with the branch 3-6 ;::»;;
being unstable. A hysteresis effect may possibly be observed if the Sha
amplitude follows the path 5-4-6-2-1 for increasing w and the path
1-2-3-4-5 for decreasing w. Figure 1 shows the situation for 8 > 0 [ .;:
(hard spring i.e. the stiffness increases with displacement). For

B < 0 (soft spring) the curve tilts over to the left. Experiments

, ,
e

Cet .

LR LA o

confirming this hysteresis effect are reported in [6]. M ji
A first order expansion can also be developed for equation
(1) which includes the damping term cx. This yields [see 7] I
1
2.2 % 1
2 3 2 F c A . _ 4
W =1+ 2 8A" t & [1- 5] (3) ?
F
where we have assumed that the linear coefficient, k, is 1. From (3) - k
we observe that g 1
F T g
< - 4
la] < < (4) : !
where F is assumed positive. A different expansion using the method of : f':Q
Kryloff and Bogoliuboff [8] yields -
2 2 2 4
2 _ 3,42 _c¢ [ F . _c o 3 2.2 _ ¢
W™ = 1+ 78" -t 1 —F—2-[1+Z-BA )] (5)
from which an upper limit for A can be found namely
2 22 2 4 T
2 2 4 4F < .
A =‘§B_(1-'2_')i[ 2(1_%') + 2] (6) _,__7__*
98 38c T

in which the + sign will be used for B > O, ;‘}; B

Comparisons of the maximum amplitude given by eqs (4) and (6) o

AR AL SN A AR (L S P
. A . 1K _

—]

differ significantly as shown later where, in the case studied, the _,‘,!!

estimate from eq (4) 1s grossly misleading. R
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It should be stressed that these approximations do not yie.d
any information about the effect of the initial conditions on the final
solution (after the transients have died down). 1In other words the
effect of the initial conditions on which branch 4-6 or 2-3 the
solution lies 1is not clear from the analytic studies. Only numerically

can we assess the effect of the initial conditions.

3.0 INTEGRATION METHODS

3.1 Central Difference Method

If we replace first and second derivatives in (1) at time t

by central difference expressions we obtain

X - 2x_ +x
n

At2

X - X

20t

n+l n-1 n+l n-1
+ c

+ kx + Bx3 = F sin wt
n n n

from which X 4 can be found, Thus the step from time t to t + At can
be made with accuracy O(Ata) since the central difference formulas are
of O(Atz) for the derivatives,

However this explicit method is unstable unless At is less —

than a critical value and so in practice the method is not normally

!
]
il

used (1], Implicit methods given below have better stability and/or

Yy orrTYTYvw
“o T
1

accuracy., -

P

3.2 Houbolt's Method

14

In this case we replace the derivatives at time t + At with

» g b

o backward difference formulas using values at three previous points. —

h
:
[ s, .
L RN . . .
T JKIERNWIORY I

Thus

ey ey

S W
n+l At2

2
[2xn+l - 5xn + Axn—l xn_2] + 0(at")

Lot )

and

. 3
x = —l—-[llx - 18x + 9x -2x | + o)
n 6At n+l n n-1 n-2

L e aen Zau um aen ma
AP T
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These formulas and others are found in convenient form in Appendix III
of Kopal's book [9].
On substituting these formulas into (1), written at t + At,

we obtain an implicit formula for xn+l’ namely

3
an+1 + an+1 = R (7)

with accuracy O(Ata) on each step, where

2 llc

B=—"4=C¢4k
At2 6At
an-4xn_1+xn_2 c
R = F sin we ot Atz + Sat [18xn-9xn_1+2xn_2]

The cubic equation (7) is solved by exact methods (see for example
{10]) using Fortran's complex arithmetic ability. Since B is positive
(c and k being positive) it can be seen from (7) that there is only one
real root if B is positive. If B is negative (but small) there will be
three real roots since in (7) the left hand side tends to +» for
Xaq® ™ and vice versa for X 41 + 4o whereas for typical values of
X041 the predominant slope of the left hand side is positive. However
we can expect the two roots away from X 41 =-§ to be rather large since
we assume B is small, Thus in our algorithm to find the root we select
the one nearest to R/B.

Note that for nonlinearities which are more general than
cubic a Newton-Ralphson scheme could be used on each step with first

estimate equal to R/B,

3.3 A Higher Order Method

R N ] et -, ) R TR S e -t
PRSP AN S AP T W T DA B I INEN U TS S TR VAN ST TR SR JN_ TP SN ST, S0 s Gy Sl Wy S o

As shown above Houbolt's implicit method is accurate to
O(Ata) on each step as is the explicit central difference method. We

now seek an implicit formula with errors of higher order than Ata.




This can be done by simply using terms in a backward difference

Lf} approximation at time t + At; the error will decrease as we use more
terms In the difference expression. To keep computations manageable
we investigated up to ninth order schemes and, as shown later, found
the eighth order scheme the most stable., This scheme replaces >':%

derivatives by

1

o+l 2

—56196xn+110754xn_1—1 32860xn_2+103 320xn_3—50652xn_4 . _i
2520 At 1

+14266x__ -1764x__ )

+0(At6)

(13068x ., -35280x +52920x _-58800x . +44100x
. n+l n n-1 n-2 n
*n T 5040 At
+5880x -720x
n-5

-21168x
n

-3 -4

b
q
L.:
. - (13132xn+
1

1

h

b,

3
"
| @
X

n-6)

+0(At7)

On substituting into (1) we obtain .

3 ' .
an+1 + B xn+1 R

which can be solved as before for x The accuracy of the

n+l*

integration is O(Ats) on each step.
A comparison of Houbolt's and the eighth order scheme is
presented in section 4.0

'. 3.4 Starting Procedures

Houbolt's scheme requires x(t-2At), x(t-At) and x(t) in order
to determine x(t+At). Thus at time t = 0 a special starting procedure
. is needed. A Taylor series scheme is an obvious choice. Firstly, on
' writing the equation at t = 0 as

N w“ . 3
* Xg + cxg + kxy + Bxy =0 (8)

. we can find X0 from the initial conditions Xy = P and Xy = Q. Then X_y

can be determined from the Taylor series



X = xp - At X+ ’% xo *+ 0(at™) (9)
and 3] from
. At2 .- 3
X = xg + btx, + = X t o(at™) (10)

For the next step we can now use Houbolt's scheme since we know X_1s %

0

and X, The accuracy of Houbolt's scheme is O(Ata) on each step.
However the application of the expansions (9-10) limits the accuracy to
0(At3). Note that the above scheme is equivalent to some authors'
application of (9) followed by a central difference approximation to
(8) about t = 0.

In our scheme, which is accurate to O(Ats) on each step, we
require a knowledge of x(t-6At), x(t-5At), +..., x(t-At) and x(t) in
order to advance to x(t+At). Thus we seek a starting scheme which
determines X_3s X_p» X_p» X5 X, and'x3 to an accuracy 0(At7). Our
total integration scheme will then be accurate to O(At7). Note that a
starting accuracy higher than 0(At7) is not essential as in one cycle
our scheme will yield an error

N - O(Ats)
where N = n_ and so the error per cycle is %1 0(At7). We employ a

wht

Taylor series expansion around t = 0 in order to compute X_3> X_ps X_g»

X155 X, and Xq i.e.

2 3 6
- . (nAt)” © (nAt)” = (nAt)” V1 7
X = X + nAtx0 + 51— Xg + e X, * ee. + =T — %o + 0(At")

31 0
for n = -3, -2, -1, 1, 2, 3, where Xq is found from substituting the

initial conditions into the differential equation. ‘;0, xév and higher

derivatives are found from continued differentiation, viz
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-
) X+ cx. + kx. + BXk. = F @ cos wt
X X X, XX cos w
l: determines Xg while
1iv - 2" «2 2
xo + cxO + kxo + 38x0x0 + 6Bx0x0 F w sin wt

determines xév, etc.
Thus we have a starting procedure of accuracy O(At7) which is
congistent with our main integration scheme,

3.5 Stability

In order to test stability of schemes of higher order than
Houbolt's we follow [1] to derive the growth matrix on each step
assuming zero damping (c=0). The spectral radius (p) of the matrix

indicates that the method is stable if p < 1, This quantity is

B ot Y © O G gl S R — PRI
e POV ) ENTRI

_‘v‘——-
v
'

computed numerically using the IMSL1B package EIGRF and is plotted in
Fig. 2 for Houbolt's scheme and higher order schemes up to O(Atg). It

can be seen that Houbolt's scheme 1is unconditionally stable as expected

whereas, for example, the 0(At6) scheme 1s unconditionally unstable and
the O(Ats) scheme is stable provided At/T < 0.1l i.e. more than 10

steps/cycle are required. Since the latter condition is not a

Al

practical restriction and can easily be imposed we will use this scheme vff%
R

for our integration. E?E?i
The higher order scheme requires more computations per step i ;:

than Houbolt's by a factor of about 2. However, since a much larger ';35?
step length 1s possible for the same accuracy, we can expect an overall i?ii

increase in efficiency. The results section to follow shows a
comparison of efficiency to acquire a certain accuracy. Good accuracy
is important when we come to study the nonlinear problem, in which case

the starting conditions will be critical in deciding which

CelT e - - - A e e te ™ R I W I I
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amplitude-frequency branch the solution will settle upon. Thus the

effect of the starting conditions must be computed accurately as we

proceed forward in time,

4,0 RESULTS

4,1 Linear Equation

Our first test was to compare our eighth order results with
results from Houbolt's scheme. The test was made on a case having
higher frequency transients 1.e.

x + 0.1% + 25% = 25 sin ¢
= 0.1 and x, = 0. It can be seen from Figs. 3A and 3B that

0 0
with 64 steps/cycle the eighth order scheme gives a good prediction of

with x

the exact solution whereas Houboltis scheme, as expected, has large
errors. Even with 256 steps/cycle, Figs. 3C and 3D, Houbolt's scheme
is showing larger errors than the 64 steps/cycle eighth order scheme.
Thus, although the new scheme requires twice as many computations per
step, the number of steps can be reduced so that the overall efficiency
1s about twice that of the Houbolt scheme for the same or better
accuracye.

The next case, Fig. 4, is the simplest case of no damping
i.e.

; +x=0

It can be seen from Fig. 4A that the new scheme after 16 cycles with 32
steps/cycle 1s almost exact whilst Houbolt's scheme shows a marked

phase shift and amplitude decrement., Even with 128 steps/cycle and

after 16 cycles (Fig. 4B), a slight phase shift is still detected.




A A AR N R B I A3 e Ala K dn bt A te YIS A i Sad el Sl Sl A AN AN SN RSl T G i SN i " o T o A Mttt B e T A T S A

-12-

Thus the new scheme is shown to be more efficient than
Houbolt's by at least a factor 2, In order to check linear accuracy in
other cases a numerical integration of both the linear and nonlinear
equations was simultaneously carried out in all our further
computations and the linear solution was always compared to the exact.
Some of these examples are covered in the next section.

4,2 Nonlinear Equation

To study the numerical behaviour in the nonlinear case we
choose for our model the constants

0.1

c
k =1 (11)
8 = 0.1
F = 0.4
The response curve |A| versus w is shown in Fig. 5A for 0.2 < w < 1.4
and in Fig. 5B for 1.18 € w < 1.38. 1In the latter case we observe more
clearly bending over of the response curve to the right. It can be
seen that the Kryloff and Bogoliuboff approximation given earlier

(Eq. 5) 18 much more accurate than the more frequently used formula

[V
b (Eq. 3) in the peak region A = 3. Also shown is Duffing's
¢
} approximation based on zero damping (c=0).
; Our experience in generating the response curve showed that
$w steady state solutions were obtained in typically 10-40 cycles of
¢
[~ period 2n /w. Away from the nonunique parts of the curve f.e. W < 1.18
b,
Q- and w > 1.31 solutions were obtained in fewer iterations. In the range
ES 1.18 < w < 1,31 the branch of the response on which the solution lay
q

depended upon the initial estimates Xg» ;0. For instance with ;0 =0

yrvveryyy
R I
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several computations were made with various starting values x With

0*
Xg = 2 the jump from the lower branch occurred at about w = 1.22 while
with Xy = -3.5 the jump occurred at about w = 1.32 as shown on Fig.

5B.

Other starting values produced jumps as shown on Fig. 5C,
which also shows a finer determination of the cut off jumps for non
uniqueness. The corresponding phase angles relative to the driving
force are given in Table 1. It was initially expected that there would

be a trend of the jump values of w with changing However as can be

X5°
seen there is no apparent trend in the jump-rather there seems to be a
randomness which is unexplainable, This is disconcerting particularly
as there 1s no consistent way to produce the limits of the upper branch
to the right and of the lower branch to the left. These limits in our
case were determined by trial and error to be near w = 1.18 on the
lower branch and near w = 1.31 on the upper branch taking Xy = 4
for the lower branch and Xg = -3.5 for the upper branch. In these
areas near the vertical slopes solutions would often take a long time
to settle on the final branch. The amplitude would tend to stick
around the value on one branch for many cycles and then quite suddenly
the amplitude would change to a value on the other branch. An example

of this 1s shown in Fig. 6 for x, = -3,5 and w = 1,32,

0
The unstable part of the response curve shown as path 3-6 on
Fig. 1 was never predicted numerically and did not cause any problems.

The final amplitude would either lie on the lower or upper stable

branches.

.
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The drastic change in solution from one branch to the other

can be seen by comparing Fig. 7A to Fig. 7B. These figures show
converged solutions over one period of the driving force i.e. 2n/w for
w = 1,20 and w = 1.22 respectively (with Xy = 2). It can be seen that
there 1is a large phase shift as well as an amplitude change.

Since the branch solution chosen by the numerical procedure
is so dependent on initial conditions it was considered worth
investigating the effect of step size At on the branch chosen. This is
because a numerical truncation error might affect the solution to such
an extent that it will jump at a different w value for the same X
Th.s we repeated the computations of Fig., 5C, which use 64 steps/cycle,
with 128 steps/cycle. It was found that the results were identical,

except for x. = 10, when the jump shifted right over to between 1.30

0
and 1.32 (compared to 1.18 to 1.20). However there was still no trend

in results even with the smaller truncation error.

5.0 CONCLUSIONS

As a first step to studying the nonlinear response of
structural components we have investigated numerically a one-degree-of-
freedom nonlinear response equatfon, It has been shown that the
multivalued response curve of amplitude versus frequency can be
obtained using a numerical method of integration which is more
efficient than the more standard Houbolt's scheme. The jump phenomenon
from one branch of the response curve to another has been investigated

and the branch chosen is found to depend upon the initial conditions

_a

but no trend can be detected in relating the frequency at which the

jump occurs with inttial conditions,

Py
PR

P S - . " * A‘-’_- T . N . e . Cte . . = - - S y
M&LMMM“MAJ‘A A M S T T T T



LIRS A AL (it

Lo S a0 4

Y T R T W T Y ME TN T A T e T U LR WU YWY

6.0

REFERENCES

Bathe, K-J and

Wilson, E.L.

Ballhaus, W.F. and

Goorjian, P.M,

Rizzetta, D.P.

Yan, T.Y. and

Chen, C.H.

Stoker, J.J.

Stockard D.,P, et al.

Mickens, R.E.

Kryloff, N. and

Bojoliuboff, N,

R I G e " Ba" i U S i Shul Si Sl Ui Sal U A L L S AT A e B T i A A S A A A

-15-

"Numerical Methods in Finite Element
Analysis”, Prentice-Hall, Inc., Englewooil

Cliffs, New Jersey, 1976,

“"Computation of Unsteady Transonic Flows by
the Indicial Method", AIAA Journal, Vol.

16, No. 2, 1978, pp 117-124.

"Time-Dependent Response of a Two-—
Dimensional Arifoil in Transonic Flow"”, AIAA

Journal, Vo 17, No. 1, 1979, pp 26-32,

"Transonic Flutter and Response Analyses of

Two 3-Degree—of-Freedom Airfoils", J.

Aircraft, Vol. 19, No. 10, 1982, pp 872-884,

“"Nonlinear Vibrations", Interscience

Publishers Inc., New York, 1950,

"Study of Amplitude Jumps”, American Journal

of Physics, Vol. 35, 1967, pp 961-963, —

. e 8, - -
P e
[P )
A AR A 4
. PR
I 4
o [EARTRE IR
p e T .
. A o e B

A
I PO

"An Introduction to Nonlinear Oscillations”,
Cambridge University Press, Cambridge,

1981,

"Introduction to Nonlinear Mechanics"”,

Translation by Solomon Lifschitz, Princeton - -

.
A

e
v A@LL L

l’l '’

University Press, Princeton, 1947,

»

i)
|
'
!

SO, P



AT e TR T T RT O T E T e T T TR LA A e e . S A A AT A AP I AP N

-16 -

9. Kopal, Z. "Numerical Analysis”, Chapman and Hall Ltd.,

London, 1961,

10. Massey, H.S.W. and "Ancillary Mathematics”, Pitman and Sons R

Kestelman, H. Ltd, London, 1964, - ‘

RSN PR A
- Co i T
]
|
i

ERY )
1

o - B -
"ete . - .

- - . - - - - . -
a * .t - Tt y o~ - . B P - . L Te t . L. - - .- - > * et e T a - - et . . .
i. B R S T R VI « By S T O A T T S R S T i P S SO W T, VN R



et it W e ¥ - v " v
- P AL AR TN P e A A A R e v P Aty Pl Sl onil M RS AR i deciete St auen A Sk S Bl e By |

-17 -

q

Table 1. Phase Angle, ¢, in degrees. o

XO = . .

" -4 -3 -2 -1 0 1 2 3 4 - -4

1.20 56 56 56 56 163 56 56 56 163

1.22 62 62 62 169 169 169 169 169 169 »'54:7'

1.24 62 62 62 169 169 169 169 169 169 .

1.26 67 67 169 169 169 169 169 169 169 ;l".-_7'_;;':

1.28 73 73 169 169 169 169 169 169 169 L i

1.30 84 84 174 174 174 174 174 174 174 ]

1.32 174 174 174 174 174 174 174 174 174 ,

—

® -6 -8 -10 10 8 6 i

. 7

1.20 s6  s6 163 56 163 56 —
1.22 62 62 169 62 169 62
1.24 62 62 169 62 169 62
1.26 169 67 169 67 169 67
1.28 169 169 169 169 169 168

1.30 174 174 174 174 174 174

m om  om  te L e e
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FIG. 1: SCHEMATIC OF THE RESPONSE CURVE FOR > 0. SHOWING
JUMP PHENOMENA -
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k\ FIG. 3(b): ACCURACY OF THE EIGHTH ORbER SCHEME WITH 64 STEPS/CYCLE
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FIG. 3(c): ACCURACY OF HOUBOLT'S SCHEME WITH 256 STEPS/CYLE
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FIG. 3(d): ACCURACY OF HOUBOLT'S SCHEME WITH 256 STEPS/CYCLE
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FIG. 4(a): ACCURACY OF EIGHT ORDER SCHEME FOR SIMPLE HARMONIC
WITH 32 STEPS/CYCLE
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FIG. 7(a): SUDDEN CHANGE IN SOLUTION ACROSS THE JUMP
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FIG. 7(b): SUDDEN CHANGE IN SOLUTION ACROSS THE JUMP
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