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SUMMARY

As part of the study of the nonlinear response of structural
components we investigate in this report a single degree-of-freedom non-
linear response equation usually known as Duffing's equation. Previously the
response curves have been investigated analytically by many authors but
there seems to have been very little numerical work done in the nonlinear
cases. It is shown that a numerical solution is feasible and that some of the
standard analytical approximations are not accurate in the peak region of the
response curve.

RISUME

Dans le cadre d'une 6tude de la r6ponse non-lin~aire d'61hments
structuraux, les auteurs analysent une 6quation A un seul degr6 de libert-,
relative i la r~ponse non-lin~aire, connue g6n~ralement sous le nom d'6qua-
tion de Duffing. Les courbes de r6ponse ont d6jai t analys~es par de nom-
breux auteurs, mais il semble qu'on ait fait tr~s peu de travaux de nature
num~rique sur les cas non-lin~aires. Les auteurs d6montrent qu'une solution
num~rique est possible et que certaines des approximations analytiques
standard ne sont pas exactes en ce qui concerne le pic de la courbe de
r~ponse.
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Symbols

A final amplitude after transients have died down

A2 ,A3 ,A4  constants in linear solution

c damping coefficient

F amplitude of driving force

IMAX, IMIN step number at which maximum or mainimum x occurs

k stiffnessI

N number of steps per cycle of period 2-

t time

x displacement variable describing the motion

coefficient of x in the nonlinear equation

At time step in the integration process

damping ratio c/24k"

P spectral radius of the stability matrix

W amplitude of driving force

Subscripts

o initial conditions

.I

n at time t or nAt ;-

LN

F. 
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1.0 INTRODUCTION

In recent years there have been rapid developments in

structural analysis techniques and related computer codes. The

analysis of linear response of structural components has been well

studied and numerous numerical time marching techniques have been

developed for finite element structural analysis programs. Some of the

more commonly used time integration techniques are the explicit central - -

difference scheme and Houbolt's, Wilson's and Newmark's methods

(Ref. 1). In order for any algorithm to be useful in practice, it must

not lead to a divergent solution. Except for the explicit scheme, the

other three methods are unconditionally stable. A study of the

accuracies shows that all three schemes suffer from a period elongation

which increases with increase in time step. In addition, Houbolt's and

Wilson's methods have artifical damping resulting in the higher modes

being rapidly damped out in a system with a large number of degrees of

freedom.

In non-linear problems established methods for investigating

stability and decay as in linear responses are not possible. Various

formulations have been proposed and used with varying degrees of

success. The four methods described in [1] for linear problems can

readily be used for the nonlinear case. The choice of any particular

algorithm depends to a large extent on the type of problem to be

solved.-

The use of time marching techniques in flutter studies was

first reported by Ballhaus and Goorjian [2] who carried out the

aeroelastic response of a NACA 64A006 airfoil with a single I

. .- "...... ........ •-..- .-..... .
... . o. . . . . - . , . , . . . , , . . ::.
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degree-of-freedom in pitch at transonic speeds. Extensions of this

procedure to two- and three-degree-of-freedom have been reported by

Rizzetta [3] and Yang and Chen [4]. Only a linear response was treated

by these authors. In flutter studies, there are potentially many

sources of non- linearities present, some of which may give rise to

"limit-amplitude" oscillations. The nonlinearities may arise in many

possible ways, but the most commonly encountered ones are those having " -

structural or aerodynamic origin.

In aeroelastic applications unconditionally stable methods

like Houbolt's for linear problems is not very critical, since the

number of modes considered is usually not very large. Conditionally

stable schemes can then be used, provided a time step is chosen to

ensure the highest mode does not diverge. Also, it is important that

amplitude decay and period elongation should be as small as possible.

In the present study higher order implicit finite difference schemes

with greater accuracies than Houbolt's method are discussed. To study

the stability and accuracies of the higher order schemes, a linear

system is considered.

In the application to the nonlinear case the restoring force

is assumed to be given by that of a cubic spring. The equation to be

solved is essentially Duffing's equation [5]. In aeroelastic problems

a cubic restoring force corresponding to a hardening spring arises when

a thin wing or propeller is subjected to increasingly large amplitudes

in torsion.

The numerical solution to the nonlinear Duffing's equation

offered some interesting studies. For instance, it was not known how

* * -. * * * * ** * .. ..
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a multivalued solution could be computed and whether the jump

phenomenon from one branch of the response curve to another could be

forecast numerically. What would affect such a jump and would the jump

he consistent? Also would the unstable part of the response curve

cause numerical difficulties? Are the approximate analytic response

curves accurate?

We present here solutions which answer the above questions

and hopefully this will clear the way to study higher order degrees-of-

freedom systems and to more practical applications.

2.0 THE RESPONSE EQUATIONS

2.1 The Linear Equation

In order to study our numerical schemes we first consider the

linear equation for damped oscillations i.e.

x + cx + kx = F sin wt

Its solution is

C t /2 . 2 ) ) t
x = e [A 2 sin w(l- 2 t + A 3cos /(i- W t]

+ A 4 sin(wt- )
4J

where

A 3  x 0 + A4 sin-

A2  0 + A3  n A4 cns]/ ( l - 2)

A4 - 9F 2)2 2]A F (lf + (

4 2 ~~
n
- c

2/k n W n
tan = 1. 2
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and x0, x0 are the initial displacement and velocity respectively. It

can be seen that transients represented by the first term for x die

down and leave the particular integral A4 sin(wt-0). Thus the initial

conditions x0, x0 are finally unimportant in this linear case. Only in

the nonlinear system will they be critical as shown by the numerical

solutions.

2.2 The Nonlinear Equation

Many articles have been written on the equation which

represents forced oscillations of systems with a nonlinear restoring

force. The equation can be written

x + cx + f(x) = F sin wt

for c ) 0. Most of the studies have centred on displacements large

enough to include linear and cubic terms in f(x) i.e. the equation

.3x + cx + kx + 8x = F sin wt (1)

is normally considered and this is the form we will concentrate upon in

this study. This equation is normally referred to as Duffing's

equation, since Duffing [5] was the first to make significant progress

in studying it.

Duffing in his study neglected the damping force c and, by

an expansion method, found that to first order the equation

2 3 2 FW= k + -$A (2) ,.

related w to the amplitude A of the oscillation. The equation (2) is

an interesting relation in that for certain values of the parameters

there are three values of A associated with one value of w as

illustrated in Fig. 1. This gave rise to speculation that a jump

phenomenon might exist in which the solution would suddently jump from

": .t " , . . " " . -' ... .- -. • ' - -' .
.
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one branch 5-4-6 say in Fig. 1 to the branch 1-2-3 with the branch 3-6

being unstable. A hysteresis effect may possibly be observed if the

amplitude follows the path 5-4-6-2-1 for increasing w and the path

1-2-3-4-5 for decreasing w. Figure 1 shows the situation for B > 0

(hard spring i.e. the stiffness increases with displacement). For

< 0 (soft spring) the curve tilts over to the left. Experiments

confirming this hysteresis effect are reported in [6].

A first order expansion can also be developed for equation

(1) which includes the damping term cx. This yields [see 7]

c2 A2 4
W2= 1 + .16A 2 + [1 A(3

4 A F2

where we have assumed that the linear coefficient, k, is 1. From (3)

we observe that

JAI < (4)

where F is assumed positive. A different expansion using the method of

Kryloff and Bogoliuboff [8] yields

2 2 28A 2  F c3 B 2 _c
W= 1 + . 8 2 --- A + F I- -- (1 + *. - (5)

F

from which an upper limit for A can be found namely

2 2 2 '21"A2 2 1- [ +4 (1 _ c + (6)
9i2  + 2 2 22 .(6

90 8c
in which the + sign will be used for 0 > 0.

Comparisons of the maximum amplitude given by eqs (4) and (6)

differ significantly as shown later where, in the case studied, the

estimate from eq (4) is grossly misleading.
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It should be stressed that these approximations do not yiei.d

any information about the effect of the initial conditions on the final

solution (after the transients have died down). In other words the

effect of the initial conditions on which branch 4-6 or 2-3 the

solution lies is not clear from the analytic studies. Only numerically

can we assess the effect of the initial conditions.

3.0 INTEGRATION METHODS

3.1 Central Difference Method

If we replace first and second derivatives in (1) at time t

by central difference expressions we obtain

x -2x + x x -1n -nn~ nl
+cn-1 Xn+1 n + kx + 8x 3  F sin wt

2 2At n n nAt 2

from which x n+1 can be found. Thus the step from time t to t + At can

4be made with accuracy O(At ) since the central difference formulas are

2
of O(At 2 ) for the derivatives.

However this explicit method is unstable unless At is less

than a critical value and so in practice the method is not normally

used [I]. Implicit methods given below have better stability and/or

accuracy.

3.2 Houbolt's Method

In this case we replace the derivatives at time t + At with

backward difference formulas using values at three previous points.

Thus

Xn+l = t[2xn+ 1 -5xn +4xn-i Xn-2 + O(At 2 )

and

13
x .- [llx -18x + 9x -2x ]+ ) O(.t

n 6At n+l n n-1 n-2

* "U
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These formulas and others are found in convenient form in Appendix III

of Kopal's book [9].

On substituting these formulas into (1), written at t +At

we obtain an implicit formula for xn+1 , namely

3
Ox +BX = R (7)n4-l n+l

4with accuracy O(At 4) on each step, where

B- 2 11c + k
At 2  6At

5x -4x 4-x
R =F sin wt+ + n n-i n-2 + 6 [18xn-9xn-+2xn-2

]

The cubic equation (7) is solved by exact methods (see for example

[10]) using Fortran's complex arithmetic ability. Since B is positive

(c and k being positive) it can be seen from (7) that there is only one

real root if 8 is positive. If 8 is negative (but small) there will be

three real roots since in (7) the left hand side tends to +- for

xn+l + - and vice versa for x + 4- whereas for typical values of
= n+1

x n+l the predominant slope of the left hand side is positive. However

R
we can expect the two roots away from Xn+I = to be rather large since

we assume 8 is small. Thus in our algorithm to find the root we select

the one nearest to R/B.

Note that for nonlinearities which are more general than

cubic a Newton-Ralphson scheme could be used on each step with first

estimate equal to R/B.

3.3 A Higher Order Method

As shown above Houbolt's implicit method is accurate to

O(At ) on each step as is the explicit central difference method. We

4now seek an implicit formula with errors of higher order than At4
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This can be done by simply using terms in a backward difference

approximation at time t + At; the error will decrease as we use more

terms in the difference expression. To keep computations manageable

we investigated up to ninth order schemes and, as shown later, found

the eighth order scheme the most stable. This scheme replaces

A
derivatives by

(131 3 2x -561 96x+110 754 xn1--132860xn- 2+103320xn- 3-50652xn4
xn+l = 2520 At 2

+14266x n 5-1764xn 6 ) 6
_ +O(At 6 )

x (13068xn+1 -35280x +52920x 1-58800x 2+4 4100x 3-21168xn-4
n 5040 At

+5880x n 5-720xn 6) 7
"-O(At-

On substituting into (1) we obtain

Ox + B'x =R'nn+1 -

which can be solved as before for Xn+l . The accuracy of the

8
integration is O(At ) on each step.

A comparison of Houbolt's and the eighth order scheme is

presented in section 4.0

3.4 Starting Procedures

Houbolt's scheme requires x(t-2At), x(t-At) and x(t) in order

to determine x(t+At). Thus at time t = 0 a special starting procedure

is needed. A Taylor series scheme is an obvious choice. Firstly, on

writing the equation at t - 0 as

x 0 + c 0 + kx 0 + x0 0 (8)

we can find x0 from the initial conditions x0  p and x0  q. Then

can be determined from the Taylor series

0~
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X-1 =x 0 -At x 0  x0 + O(At 3 ) (9) "-

and x1 from

x= x0 + Atx 0  2 _ x0 + O(At) (10)

For the next step we can now use Houbolt's scheme since we know x_, x

4
and x The accuracy of Houbolt's scheme is 0(At 4 ) on each step.

However the application of the expansions (9-10) limits the accuracy to

O(At 3). Note that the above scheme is equivalent to some authors'

application of (9) followed by a central difference approximation to

(8) about t 0.

In our scheme, which is accurate to O(At ) on each step, we

require a knowledge of x(t-6At), x(t-5At),. ..... x(t-At) and x(t) in

order to advance to x(t+At). Thus we seek a starting scheme which

determines x-3 , x-2  x- x1 ' x2 and'x3 to an accuracy O(At ). Our

7
total integration scheme will then be accurate to O(At7). Note that a

7
starting accuracy higher than 0(At ) is not essential as in one cycle

our scheme will yield an error

8N OtO(At .

where N f and so the error per cycle is 2 O(At). We employ a

Taylor series expansion around t f 0 in order to compute x_ 3 , X_ 2, X-1 ,

xl, x 2 and x3 i.e.

2 3 6t) 2 t (nAt) 3 +- (nAt) 6 V1 7""[

Xfn X 0 + nAtx 0 + (nAt) + "'" *** + n! Vl + O(At 7 )

for n =-3, -2, -1, 1, 2, 3, where x0 is found from substituting the

0 V
initial conditions into the differential equation. x0  X0 and higher

derivatives are found from continued differentiation, viz

~. * • .
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x +cx 0 +kx 0 + 3 xX 0 = cos wt

determines x0 while

IV " 2"" 2 2 t2A
x0  + cx 0 + kx 0 + 3 0 xX0 + 6 0 x 0 -F sin wt

determines x0 , etc.

7
Thus we have a starting procedure of accuracy OCAt which is

consistent with our main integration scheme.

3.5 Stability

In order to test stability of schemes of higher order than

Houbolt's we follow [11 to derive the growth matrix on each step

assuming zero damping (c=0). The spectral radius (p) of the matrix

indicates that the method is stable if p < 1. This quantity is

computed numerically using the IMSLlB package EIGRF and is plotted in
Ot9

Fig. 2 for Houbolt's scheme and higher order schemes up to 0(At ). It

can be seen that Houbolt's scheme is unconditionally stable as expected

6
whereas, for example, the 0(At ) scheme is unconditionally unstable and

8
the O(At ) scheme is stable provided At/T < 0.11 i.e. more than 10

steps/cycle are required. Since the latter condition is not a

practical restriction and can easily be imposed we will use this scheme

for our integration.

The higher order scheme requires more computations per step

step length is possible for the same accuracy, we can expect an overall

. increase in efficiency. The results section to follow shows a

comparison of efficiency to acquire a certain accuracy. Good accuracy

is important when we come to study the nonlinear problem, in which case

the starting conditions will be critical in deciding which

l-: . . .. ° - ' -' • - . .. . . . . . . .- " " .: . -:: . ... :.::"... - .:-

-'6 ,, "'" " " : - - - '''' '' . '" - ' . . " " - " ' - - -' . .- , - . . .- ., _, "
• m s.=..lt ..m.,7. *l. * u .~ 4 .b.m a



I.. -- -- ."'.. ..- . - - - - .1* -

- 11 -

amplitude-frequency branch the solution will settle upon. Thus the

effect of the starting conditions must be computed accurately as we

proceed forward in time.

4.0 RESULTS

4.1 Linear Equation

Our first test was to compare our eighth order results with

results from Houbolt's scheme. The test was made on a case having

higher frequency transients i.e.

x + O.lx + 25x = 25 sin t

with x0 = 0.1 and x= 0. It can be seen from Figs. 3A and 3B that

with 64 steps/cycle the eighth order scheme gives a good prediction of

the exact solution whereas Houbolt's scheme, as expected, has large

errors. Even with 256 steps/cycle, Figs. 3C and 3D, Houbolt's scheme

is showing larger errors than the 64 steps/cycle eighth order scheme.

Thus, although the new scheme requires twice as many computations per

step, the number of steps can be reduced so that the overall efficiency

is about twice that of the Houbolt scheme for the same or better

accuracy.

The next case, Fig. 4, is the simplest case of no damping "'

i.e.

x + x 0 " "i

It can be seen from Fig. 4A that the new scheme after 16 cycles with 32

steps/cycle is almost exact whilst Houbolt's scheme shows a marked

phase shift and amplitude decrement. Even with 128 steps/cycle and

after 16 cycles (Fig. 4B), a slight phase shift is still detected.

4.
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Thus the new scheme is shown to be more efficient than

Houbolt's by at least a factor 2. In order to check linear accuracy in

other cases a numerical integration of both the linear and nonlinear

equations was simultaneously carried out in all our further

computations and the linear solution was always compared to the exact.

Some of these examples are covered in the next section.

4.2 Nonlinear Equation

To study the numerical behaviour in the nonlinear case we

choose for our model the constants

c = 0.1

k 1

B = 0.1

F =0.4

The response curve JAI versus w is shown in Fig. 5A for 0.2 < w < 1.4

and in Fig. 5B for 1.18 < w 4 1.38. In the latter case we observe more

clearly bending over of the response curve to the right. It can be

seen that the Kryloff and Bogoliuboff approximation given earlier

(Eq. 5) is much more accurate than the more frequently used formula

(Eq. 3) in the peak region A 3. Also shown is Duffing's

approximation based on zero damping (c-0).

Our experience in generating the response curve showed that

steady state solutions were obtained in typically 10-40 cycles of

period 2w/w. Away from the nonunique parts of the curve i.e. W < 1.18

and w > 1.31 solutions were obtained in fewer iterations. In the range

1.18 < w < 1.31 the branch of the response on which the solution lay

depended upon the initial estimates xo, x0 . For instance with x0 = 0

* *,. .

* *, .* 4_* . ,

-.. 4-., . 77,1
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several computations were made with various starting values x0 . With

x0 = 2 the jump from the lower branch occurred at about w = 1.22 while

with x0  -3.5 the jump occurred at about w = 1.32 as shown on Fig.

5B.

Other starting values produced jumps as shown on Fig. 5C,

which also shows a finer determination of the cut off jumps for non

uniqueness. The corresponding phase angles relative to the driving

force are given in Table I. It was initially expected that there would

be a trend of the jump values of w with changing xO . However as can be

IIseen there is no apparent trend in the jump-rather there seems to be a

randomness which is unexplainable. This is disconcerting particularly

as there is no consistent way to produce the limits of the upper branch

to the right and of the lower branch to the left. These limits in our

case were determined by trial and error to be near w = 1.18 on the

lower branch and near w =1.31 on the upper branch taking x0  4

for the lower branch and x0 = -3.5 for the upper branch. In these

areas near the vertical slopes solutions would often take a long time

to settle on the final branch. The amplitude would tend to stick

around the value on one branch for many cycles and then quite suddenly
U

the amplitude would change to a value on the other branch. An example

of this is shown in Fig. 6 for x0 . -3.5 and w - 1.32.

The unstable part of the response curve shown as path 3-6 on

Fig. 1 was never predicted numerically and did not cause any problems.

The final amplitude would either lie on the lower or upper stable

branches.

.°

4 -'
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The drastic change in solution from one branch to the other _

can be seen by comparing Fig. 7A to Fig. 7B. These figures show

converged solutions over one period of the driving force i.e. 27/w for

w = 1.20 and w = 1.22 respectively (with x0 = 2). It can be seen that

there is a large phase shift as well as an amplitude change.

Since the branch solution chosen by the numerical procedure -"

is so dependent on initial conditions it was considered worth

investigating the effect of step size At on the branch chosen. This is

because a numerical truncation error might affect the solution to such

an extent that it will jump at a different w value for the same x0.'

Tb-s we repeated the computations of Fig. 5C, which use 64 steps/cycle,

with 128 steps/cycle. It was found that the results were identical,

except for x 0 = 10, when the jump shifted right over to between 1.30

and 1.32 (compared to 1.18 to 1.20). However there was still no trend

in results even with the smaller truncation error.

5.0 CONCLUSIONS

As a first step to studying the nonlinear response of

structural components we have investigated numerically a one-degree-of-
II

freedom nonlinear response equation. It has been shown that the

multivalued response curve of amplitude versus frequency can be

obtained using a numerical method of integration which is more

efficient than the more standard Houbolt's scheme. The jump phenomenon

from one branch of the response curve to another has been investigated

but no trend can he detected in relating the frequency at which the

jn
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Table 1. Phase Angle, , In degrees.

X =

-4 -3 -2 -1 0 1 2 3 4 . .

1.20 56 56 56 56 163 56 56 56 163

1.22 62 62 62 169 169 169 169 169 169

1.24 62 62 62 169 169 169 169 169 169

1.26 67 67 169 169 169 169 169 169 169

1.28 73 73 169 169 169 169 169 169 169

1.30 84 84 174 174 174 174 174 174 174

1.32 174 174 174 174 174 174 174 174 174

X0  = !

-6 -8 -10 10 8 6

1.20 56 56 163 56 163 56

1.22 62 62 169 62 169 62

1.24 62 62 169 62 169 62

1.26 169 67 169 67 169 67

1.28 169 169 169 169 169 168

1.30 174 174 174 174 174 174

* - *~~~- ~- . ** - -
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FIG. 1: SCHEMATIC OF THE RESPONSE CURVE FOR 3> 0. SHOWING
JUMP PHENOMENA--
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X0 XOO ZETA K BETH F OMEGA AfEXCT) R(0JJ)
0.10 0.00 0.01 25.00 0.00 25.00 1.00 1.131 1.133

o CYCLE IMAX IMIN PHASE SHIFT STEPS/CYCLE
(N] 1 12 47 174.4 -5.6 64

EXACT
------- ORDERS

........... HOUBOLT

%~ 
11 

1

0. 00160.0 270. 0 360.0
wtf

FIG. 3(a): ACCURACY OF THE EIGHTH ORDER SCHEME WITH 64 STEPS/CYCLE
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X0 X00 ZETA K BETA F OMEGA R(EXACT) A(DJJ)
0.10 0.00 0.01 25.00 0.00 25.00 1.00 1.082 1.071

o CYCLE IMAX IMIN PHASE SHIFT STEPS/CYCLE
2 16 49 180.0 0.0 64

Ln~
____-EXACT

------- ORDERS

........... HOUBOLT

x. 9

0. 9.010.0 270.0 360.0

FIG. 3(b): ACCURACY OF THE EIGHTH ORDER SCHEME WITH 64 STEPS/CYCLE
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XO XOD ZETA K BETA F OMEGA A(fEXRCT) A(DJJ)
0.10 0.00 0.01 25.00 0.00 25.00 1.00 1.136 1.136 -

CYCLE IMAX IMIN PHASE SHIFT STEPS/CYCLE
1 46 175 170.2 -9.8 256

EXACT

ORDER8

HOUBOLT

.4n

1-

.>-...

uj

0':0

0.0 90.0 180.0 270.0 360.0
(Aot

FIG. 3(c): ACCURACY OF HOUBOLT'S SCHEME WITH 256 STEPS/CYLE
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X0 X00 ZETA K BETH F OIIEGR RfEXACT) RIWJJ)
0.10 0.00 0.01 25.00 0.00 25.00 1.00 1.084 1.084
CYCLE IMAX IN1IN PHASE SHIFT STEPS/CYCLE

2 48 178 174.4 -5.6 256

24 ___EXACT

------- ORDERS

........... HOUBOLT

oH

0.0 90.0 180.0 270.0 360.0

-r-- - w-

FIG. 3(d): ACCURACY OF HOUBOIT'S SCHEME WITH 256 STEPS/CYCLE
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XO XOD ZEfR K BETA F' OMl.,ft R(EXFOT) R(DJJ)
1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.000 0.999

S CYCLE IMAX IMIN PHASE SHIFT STEPS/CYCLE
16 8 24 101.3 -78.8 32

EXACT
ORDER 8
HOUBOLT - .

. . . . . . . . . .. .

- -i.-- - rF.-

0.0 90.0 180.0 270.0 360.0
wt

FIG. 4(a): ACCURACY OF EIGHT ORDER SCHEME FOR SIMPLE HARMONIC
WITH 32 STEPS/CYCLE
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XO XOE) ZETfI K BETA F MtEWA A(EXACT) R(DJJ)
1.00 0.00o 0. 00 1 .00 0.00 0.00 1.00 1.000 1.000

o CYCLE IMAX IMIN PHASE SHIFT STEPS/CYCLE
"l 16 2 66 92.8 -87.2 128

EXACT

---- --- ORDER8

........... HOUBOLT

0f

X i \

0

0.0 90.0 IT 180 .0  270.0 360.0

FIG. 4(b): ACCURACY OF HOUBOLT'S SCHEME FOR SIMPLE HARMONIC MOTION
WIH128 STEPS/CYCLE
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XO0 X00 ZETA C K BETA F OMEGA A(LIN) A(NL]
2.00 0.00 0.05 0. 10 1.00 0.10 0.40 1.20 0.885 2.699

CYCLE IMAX IMIN PHASE SHIFT STEPS/CYCLE
22 25 57 56.3 -123.8 64

EXACT LINEAR
-------- LINEAR (ORDER 8)
........... NONLINEAR (ORDER 8)

>cJ

c I \j

0.0 90.0 180.0 270.0 360.0

FIG. 7(a): SUDDEN CHANGE IN SOLUTION ACROSS THE JUMP
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XO X00 ZETA C K BETA F OMEGA A(LIN] AtNL)
2.00 0.00 0.05 0.10 1.00 0.10 0.40 1.22 0.794 0.897

CD CYCLE IM'AX IM]N PHASE SHIFT STEPS/CYCLE
32 45 13 168.8 -11.3 6

EXACT LINEAR

-------- LINEAR (ORDER 8)
NONLINEAR (ORDER 8)

CD

c0

*C

C)U

0.0 9.0 1,0.0 70.0360.
0w
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