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NOMENCLATURE

Symbol

A excitation anplitude

A7  post-yield stiffness

Ed energy of dissipation

g a function of random variables

ti permanent set

k stiffness in the elastic range

Sm system mass

R maximum displacement, zmax

*- R(z) restoring force
t time'

tmax the time the system reaches its maximun displacement, Znax
,t the time the system first reaches its yield displacement, u7

u7  yield displacement

z response displacement

zmax maximum displacement response, R

excitation decay rate

damping ratio

u mean

y randon. variable

o correlation coefficient

standard deviation

S3 random variable

natural frequency (small displacement)

damped. fre•uency (small displacement)

; *,; post-yield frequency (- VAT-m
I'
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1.0 JMTRODUCTION

An above ground explosion generates a shock wave in air, or airblast,

and is accompanied by some duration of strong wind. Especially, the air-

blast from a nuclear detonation can cause extremely high air pressures and

has a relatively long period of duration. When structures under design may

be subjected to this sort of loading condition, it is necessary to analyze

the behaviors of the stuctures when subjected to this kind of input to

determine whether the structures can survive or not.----)//#73

When an airblast produces a high air pressure and has a long period of

duration, it will cause many structures to have an extreme response.' If

the structure can execute a response that has plastic deformation, the

designer must have some technique to analyze Inelastic response in the

design process. The designer needs the capability to predict such measures

of struc:ural response as the plastic deformation and maximum displacement.

When a structure executes an extreme response, it may behaveinelas-

tically, and during the response, offsets from the initial elastic ccnfigu-

ration may occur;.. When these offsets are large, residual deformation in

the structure may exist at the completion of structural motion, and the

magnitudes of cnese residual deformations may be Important. When they are

important, it is desirable to include the potential for these residual

deformations in the mathematical model of the structure so that they may be

predicted in the structural analysis. The models used in References, £1],

£2], C,] do account for some features of Inelastic response,, but do not

permit permanent offiet (residual deformation). The model used in the

current investigation' does account for permanent offset.

The properties of nuclear and high explosive airblasts are random.

The reason Is that the material and geometricproperties of blast sources

are random. In view of this, an airblast measurement is never repeated,

even when nominally i'dentical blast sources are used. An airblast signal

usually consists of, a rapidly increasing pressure follow.ed by a gradual

decay. Two properties of the, pressure wave are of great 'concern. The

first is tfe amplitude of the airblast;'the second is. the decay rate. The

first property describes the hignest air pressure the airblast produces

* * , .



throughout the time history. In general, tterise time is so brief that

the peakc amplitude is assumed to occur at the beginning of explosion. The

second property deals with the rate at which the airblast dies out. in
this report, these two properties are considered random.

In most applications the structure itself should also be considered
random. The material proper-ties of the structure determine the elastic
stiffness, yield stiffness, yield displacement, etc. Conseouently, the
natural frequency is affected strongly by the material properties. When

the material of the structure is considered to be random, then the proper-
ties of the structure must also be considered as random. In this report,
the material properties considered as random are natural frequency, yield
stiffness, yield displacement and damping ratio. These fou~r properties are
considered random because they affect the response significantly.,

The previous discuss-on points out that both the excitation and struc-
tural system can be regarded as random; in this study both sources of
randomness are considered. The response of the system, therefore, can be

regarded as a response random process,. and there is a relationship that
characteriz'ts the response in. terms of .the excitaion and system random
variables.

These random variables include input random variables which are peak

amplitude of air pressure and decay rate, and system random variables

which are natural frequency, yield stiffness, yield displacement, and damp-
ing ratio. It is desirable to develop a method to establish the relation-
ship among the i..put characteristics, the system characteristics, and the

response characteristics. The response randori process is then character-

ized in terms of thle relationship.

Many measures of structural response concern~ the designer. Some.
measures of special icprta r lsicdfrain maxim=m displace-

ment response, and energy dissipated by tie system sprin7q., or by the
damper. The plastic deformation, which is the offset from the static
configura-tionl must be cor.trolled in structures. The maximum displacement
response must be 'ess than the design value. The energy dissipated must
less than an allowable value since it is relatead, to 06~ fatigue and fai~lur-,
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of a structure. When the probibilistic character of the input excitaion
and system random variables are known, and when the relationship between

measures of response and the input and system variables has been estab-
lished, then it is possible to specify the response random process.

Certain probabilistic measures of structural response are obtained. Spe-
cifically, the mean and variance of-permanent offset, peak response, and
energy dissipted in an inelastic structure are obtined. The results can be
used to determine whether-design criteria are satisfied.

In past investigLtions, several mathematical models have been used
with structural identification procedures to studyý structural behavior.

Lutes and Hseih [I] used linear, third and fourth order equations to

approximiately simulate the response of an SOF hyszaretic system. 'They

found that the spectral density, or the autocorrelation functon of the

linear and hysteretic systems can be matched. Toussi and Yao [23 used the

response of a ten-story reinforced concrete test structure as a means to

study the feasibility, and praciticallity of a hysteresis identification
.technique. They considered the hysteresis to be a measure of damage. Yao,

Toussi and Sozen presented the state-of-the art on damage assessment of

existing structures in Reference £3]. 1Morrlson and Paez £4] proposed a

procedu~re for predicting the probability of survival of inelastic struc-

tures excited by blast. Inl this study the 'failure criterion was re'lated to

peak strain in the structural repsonse. A method for establishing9 the
probabilistic character of nonlinear structural repsonse was developed.

Rohani £5) presented a probabilistic solution of one-dimensional wave'
propagation phenomenon in earth media by using a deterministic model.

3ennett and ?aez [63 provided a means for' relating uncertainties of input

parameters to teuncertalin~y in reasponse' In a reinforced concrete s~lab.
jhe method used In the last th1ree-references is adopted in this investiga-

tion' to cnaracteri:e nonlinear measures, of inelastic structure response.

The ob'Jectives of this investigation are, first, to develop a model to

define the permanent offset in an inelastic struczu;e. Next, we develop
the relationship among input characteristic, system characteristic and

response characteristic through which the response random process is

'establ isted. Based on th4is response randcm process,' and gie he moments

3



of input and Syst'm variables, the response'characteristics are computed.

This provides a means to analyze the structural response when the structure

is subjected to blast type loading and uoth the input and the system are

considered random.

The structure considered here is a single-degree-of-freedom (SDF)

bilinear hysteretic systen which possesses an elastic stiffness and yield

stiffness. The natural frequency and yield natural frequency are therefore

defined. The hysteresis loop of a spring, stronglyinfluences the energy

dissipated in a structurel this will be discussed in detail. The airblast

input is modeled by a decaying exponential function. The value of peak air

pressure and decay rate of the input are obtained frcm che Air Force Design

Manual [7].



2.0 THE ANALYSIS OF MAXIMUM RE.-PONSE

The maximum response of a structure when subjected co blast type load

can be predicted through basik structure response analysis. Intuitively,
V ýhe maximum response must relate to the input parameters, which are peak

air pressures and decay rate, and system .arameters, which are natural

frequency, damping ratio, etc. All these properties affect the response.

Specifically, we can establish a mathematical function which governs the

maximum -eponse. The response randcm process can be simply expressed.

Given the statistical noments of the input and system parameters, the

statistical moments of the responses can be computed. The response

considered here can be inelastic.

It is assumed that the systn under consi.deration has significant

elastic and yield stiffness so that the bilinear hysteretic system can be

used as the structural model. The offset function for blast type input

will behave as in Figure 2-1.

Again consider an SOF, bilinear hysteretic system, with small damping

ratio, 4, system mass, m, elastic stiffness, k. The equation of motion is

given by

Z" + • z + :;(z) -A,= t >_ 0 •1

Assume that the system starts from rest, z(O) * 0 and z'(0) 0 0. Let t7

denote the time the system first reaches its yield displacement, u7.
Within time t ( t7, the. system remains linear, so that Equation (2-1)

"can be written as

2t for t< O_ (2-2)

Secause the system remains linear during the initial portion of

response, the above equatlon can be solved immediately by using convolution

integral

z(t) - h(.7) X (t - t) dr (2-3)

5.
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whuiere h(t). is n e lijne6ar system im'pulse response function and x(t) is the

input forcing function. The impulse response function is

ta

where wd wrl C, ~and *x(t) aAe-t Carry out the integral; then

ZW z) A e Ce - d sin(wdt) - Wdco5(wdt)l e

fd6. 0 <.t < t7, .(2-5)

At time t' t7,.the disp~lacement response should be equal to0 u7.

Z(t) A je- Cwt[, Cw sn d7
w1d [a - CLwn LhJn~J

-wd Cos(wdt7  .4. (aIte (2-6)

*The time t7' at which yielding first, occurs must, be determined by
solving the above equation for t7. Since C and t7 are both small;

-ec"nt7 1 1. Simplify the notation by letting a - Cna p; WJ~P2 + 23
axj; Aix1 a, x,, Rewrite Equation (2-6) using the .above notation.

X2. Sln,(., 7) -d Cos(wdt7  w d e j u7 (2-7)

inTe value of a is about from 0.5 -6.0. This-.is usually m~uch smaller
4than the value Of Can; hence,

p * sln(wdt7)' << fdcosý(wdt7

and the quantity on the left is negligible.
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"at7
Using Taylor's expansion to express e and cos(wdt7) and, neglect-

"- ing the high order term, t 7 can finally be evaluated

t (e +,J+ 4C were 8 - 2a(4 + a2 ), C 2(u 7 )/A. (2-8)

After solving-for t 7 , the velocity at t = t 7 can be computed immedi-

ately. Let z(t 7 ) = z7 .

To th-is point, the only assumption used in determining the time of

first yield and the velocity at that time is that the system viscous

danoing factor is relatively small. No assumptions regarding the input

level or yield level have been used.

Next, we consider the phase of the response when yielding starts to

occur., Let tmax be the time the response reaches its maximum

displacement value. During the time interval (t 7 , tMax) the system has
entered the plastic region and permanent offset, starts to occur. If we let
'A7 denote the yield stiffness* then for time a < t7, the restoring

force function can be written as (refer to Fig. 2-2):

z + 24,n z A7 z (k -A 7 ) u7J Ae" ,, tmax>t>t (2-9)

* 1- or .- at 2 2tz + Z+gnZ + w z x - ( -y)u7 > t >t

where x ,l

The solution or z(t) can be expressed

*.•:i} z(t) - e (c.cos(Gdt) + q2 sin edt) + t ,< t < (2-11)

where ( /m2

9



Zp q, + q2 e'at

q, [(k "Y n zy mn/k

q2  A/[Ea " ;&aa + (k/m)]

By using q, and q2 in Equation 2-11, the constants C1 and C2 can be

solved by using as initial condition, z(t 7 ) = u7 and z(t 7 ) - z7 which were

obtained in the previous discussion.

Since the displacement response hIas been determined in Equation

(2-11), the maximum value can be obtained by maximizing Equation (2-11).

The maximum occurs when

z (tmax) 0 (2-12)

The tmax can be obtained from Equation (2-12). The corresponding ZMax

then can be evaluated by using tmax in Equation (2-11).

i -,
I."
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3.0 PROBABILISTIC ANALYSIS OF RESPONSE

In the previous section, the relationship among the maximum response

and input parameters and systen parameters was established. The response

random process is then characterized in'terms of the established relation-

ship. In many cases, the established function may be complicated. In

order to analyze some measures of the response, a method using Taylor's.

ecpansion is available and has been widely used. A brief discussion of

- that method is presented here.

Let R denote a random variable that is a measure of the structural
response random process. It is assumed that R is a function of n random

I variables. rnese n random variables are the parameters of the input and
m the structural system. Let the functional relation be denoted

"R g(Y1, Y2 ........ Yn) (3.1)

The yi' i-l...n are the random variable with mean values Uyl, i1l,...n.

The function g can be expanded in a Taylor series about the leans of the
parameters:

n
R g(U 0..... .... (3-2)

wtiere { 1y} is the vector of mean values~of the Yi.
Ti

The moments of R can be evaluated by using some portion of the series
in Equation (3-2). For example, the series can be truncated following the

"linear terms. When this is done, t'ie mean of R is

i'-i; ER]. g( , U (3-3)
•'2~Y y 2 I .,Uy

a.

A•
b11'



This mathematical expression shows that the mean value of the depen-

dent random variable, R, is closely related to the mean values of the

underlying random variables, u , and the function expression g(u y uy2Yi Y

Tn

"The variance of R can be computed as:

VarCR] ECR 2j - ECR]2

5';E, [2uy1' 4•Y2' ""UYn + E g (Y1,uYV, ""•Pyn).

n

Y ijy

E[i

1= n 2. (34)i=; i U7 i " J "

The ai and aj represent the standard deviations of yi and y, and pij here

represents the coefficient of correlation between TI and y•.

The analysis technique outlined above can be used in a wide variety of

cases; especially, it, is useful in the characteristics of the response of a
nonlinear system. When the moments of the underlying random variables are
known (means, variances, and covariances), then it is easy to apply. Bit

there are some cases where tne randcm variable R depends on some underlying
random variables whose characteristics are unknown, a prior., as well as

random variables whose characteristics are known. For example, we may be
interested in establishing the moments of energy dissipated during

inelastical response. This quantity can be expressed as a function of

11
Dq

*, 12..., .
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input parameters, system par~aneters and the peak response. The moments of

the input ard system parameters are probably known, a priori, but the

-' * moments of peak response certainly are not. To account for this, the first

" phase of an investigation can be aimed at analyzing peak response and its

statistical relation to the input and system parameters. After this is

done, the energy dissipated can be analyzed using the general approach

outlined above. In general, any sequence of analyses like this one can be

executed. At each step, a new random variable characterizing the response

can be introduced.

-For example, the analysis referred to above can be accomplished in the
following way. Let R'be a function of n random variables, si i-l,2,...r,

m+l,m+ .... n. The moments and cross moments of the ai, ial,2,....m, are

known, a priori, and the moments and cross moments of the Ri,i-m+l, .... n,

are not known. 'However, the moments of the ni,iam+1,....n, can be deter-

mined from the Bi,i=, .... m. Let si,i-m+l,....n be expressed as

* follows:

i hi(SS 2e ... s i)s lm+1,...n (3-5)

The Taylor expansion for the above expression can be writteft as in Equa-

tion (3-2).' The series can be truncated at some point and the result can

be used to approximate the moments and cross moments for all the

,i~.-m+1,...n. For example,, wen the series are truncated following the.

linear term, the covariance between two of the Si's, one from the group

i=1,...m, and the other from the group, i-m,1,...n, can be expressed as

Cov(pa q)

r h

-C E. {C',j
q psi as

• 3•



S, for 1<pjm, rn+1<qj'n, r<m

The covariaice between two of the Si's, for vvhich i=n.+1,....n, can

be expressed as

Ccv Epsq]

~ ,*~r, ah

3E h p 31  3r) (B UB)z si 38 +..}

=~~~* ~ B ... S , for m+1<, q n, r,s < m

The means and variances of the jim,..nare obtained in the

sane way as Equations (3-3) and (3-4). Given these mcments and cross

moments, the mean and variance of R can be obtained using Equation (3-3)

and (3-4), as they are -iitten.

*The response rancam process can be accurately characterized using

.three measures: the permanent offset,, the maximum' response, and the energy
dissl~ated, Using the techniques described above, the means and variances

of each random variable can be computed. rhe folloigscinwl
present more detail about those random variables.

3.1 The Maximum Response Random Process

Fran Section 2.0, the maximum displacement response is governed by 5

random parame'Lers and can be represented as:*

q g(YI, Y2 ... Y6)

14



where R = maximum displacement response

YJ = input peak air pressures (A), y2 = decay rate (=)

a natural frequency (), Y4  A

Y5 ' yield displacement u7 , Y6 = damping ratio (C)

Using Equations' (3-3), (3-4), the mean and variance of R can then be

computed.

3.2 Tha Permanent Offset Random Process

The relation between permanent offset, H, and maximum displacement, R,

iS:

A7
H - (R -u 7 )(1 -) (3-8)

So we can let

H - h(a1, a2, B3, 24)

where 9 Writ SZ w ' 3 8 u7 , 34 = R; Then the mean and variance

of H can be computed using the technique as stated above.

3.3 The Energy Dissipated Random Process
The energy dissipated by a bilinear hysteretic system includes two

parts. The first part is the energy dissipated by the spring. The second

part is the energy dissipated by the damper. The system will reach its
ýnaximun offset within the first cycle. Then the energy is dissipated by

the spring only during this time. After-tane .ystem reaches Its maximum

offset, then 'the system remains linear in a new equilibrium configuration.
The energy Is then dissipated by the damper only. The energydissipated by
a linear systen is related to the danper onl'y and has already been studied

(Reference 8). In this report, only energy dissipated by the spring is

considered.

Refer to Figure (Z-2,. The energy dissipated by the spring can be

computed as:

15,



Ed- 57k•u +*.(Zma - u7 )A7 + k U7 (zMax -u 7 ) maxk(Zma - 9)2
(3-9)

therefore Ed M( 22 2 . 2 2 W

d (~ n ~7  . aax - u( 7) Onu7(Zmx U7 )

2. 2 2
il~max- u7 )wi/, + u 7aan

In other words, the energy dissipated can be expressed as:

Ed a S(nls, n2, n, nl), (3-10)

where we denote n n, •y, n • uV, n4 * ax Again using

Equation (3-3), (3-4), and (3-6), the mean and variance of energy

dissipated can be computed.

.16



4.0 NUMERICAL EXAIMPLE

In Section 2.0 an approach for computing the maximum displacement for

a bilinear hysteretic system subjected to blast type load was developed.

In Section 3.0 an approach for the probabilistic analysis of the response
was developed. A computer program, called VARE.F is used in this section

to calculate the means and variances of the response, which includes

maximum displacement, permanent offset and energy dissipated by the sprin.

In Section 3.1 the technique used to evaluate the variance of a
response random variable, which depends on n underlying random variables

and whose statistical moments are known, refers to the partial derivatives

with respect to the underlying random variables. In order to calculate the

partial derivatives with respect to the underlying variables, an

approximated method is used here. let R be, a random variable which depends

on n underlying variables yt, i1, .... n (for example, maximum

displacement which is expressed in Equation 3-i.). Then

R = g(Y1, Y2z...Yn) (4-1)

and the partial derivative-of R with respoect to yj can be approximated

g (Y 1 , Y Z " " T Y i + ' lti o oy d -) g ( Y i " Y 2  ...Yt " A ly t " " 1 ( 4 -2 )
aT1  (42)

This approximation can be computed even though g(y 1 ,y2 , ... n may

not be a function that can be written explicitly. Writing g(y 1 ,y 2 ,...y.)

here Implies that a computer program can be run using the Y1 , i*-,...n, as

inputs. to obtain a result 1. The program can be run twice to obtain the
above approxlmatlon., using aoove approximation in the program VARE.F the

first order partial derivative wiA= respect to any given underlying random
variable can be calculated. The maximum displacement, permanent offset and

energy dissipated are considered in the following section.

4.1 The Maximum Oisplacement
It is mentioned in Section 3.1 that te maximum displacement is

rel ted to six random parameters. The functional expression is

17



R g(y 1 , Y2, Y3, "U, Y&, Ys, Y6)ý

where R is maximum displacement, YJ = input peak air pressure

72 = decay rate of input force, Y3 = natural frequency, wn

-4a a' / T5 a damping ratio,
Y6 " yield displacement, u7

The means and standard deviations of the above six randc variables

are given in Table 4.1.

Table 4.1

The Means and Standard Deviation of.Yi, i=1,6

Yi Mean Value, u Standard Deviation, lYj " j

i4 O.121428e+04 .1 •Y "
i=2 O.120000e+Ol . Y

i=3 0.358568e.02 . 3

i=4 O.113389e+02 .1 =Y•

J=5 O.119523e-dl .2

I=6 O.100000e+O1 .2 U

The covariances between random variable pairs In yi, i=l,6 are given

in Table 4.2.
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Table 4.2

The Covariance Matrix

01. ~ 2 0. 0. 0. a.

010 U~ 2 4  ~ U

215 *JUJ 0U0 30

2,1~ 0. 0

______ 1.04 u 5  0

The aRai i-1,6 are computed using Equation and the computer
progr-am 'ARE.F. The results are shown in Table 4.3.

TABLE 4.3
Partial Derivative of Peak Response

i

ja1 0.57023e-02
1*2 -0.36344eO00
1 -3 -0.17445e+00
1&4 -0.34095e-01.

1-5 -0.13495e+02
is$ -O.42679e01l

using Fquation 3-3 and, the c%,dmputer progran VARE.F, tthe mean of maxI.-
"Ian :24splacemenit is computed.- The'results is:

E7R) .2.65 (in)

Using Equation 3-4 and the-computer program VARS..F, the variance of
mnaxý,iun displacement is computed., Eachi term in %Equation 3-4,Is listed in

Table 4.4.iS
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Table 4.4.

The Terms in Variance R

.47943+0o -.3o2e-02 0. 1 o. 0 o. 0 o.1.1902e-021 0. 0 . 0 . 0 .
___.3913eýo I-.2418e-02 .2017e-02 .5339e-0o

i ____ .1494e-02 0. 1 0.

(symmetric) "_-__-__,°'.1041e-02 .

I *1*_____'I j7268e+'00

The variance of maximum displacem~ent is the sum of every term as shown in
Table 4.4. The result is

VarfR] a 1.617 (in 2

Table 4.4 shows that only the variance of input peak air pressure,

natural frequency and yield displacement have significant effect on the

variance of maximum displace-ment. The rest of the terms are. almost
negligible.

4.2 The Permanent Offset

In Section 3.2, the permanent offset is expressed using Equation 3-8.

Let H represent tie permanent offset; then

- h(1s, 3 93.-1)

*iere H a permanent offset,
a1 a natural' frequency, •

,32 "'VA r/m

a3 a yield displactement, u7

-34 a• maximun displacement, R

The means and standard deviations of jig I-l,4 are given In Table 4.5.
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Table 4.5

The Means and Standard Deviations of ai, 1-1,4

Mean Standard Deviation

I

J-u 0.358569e+02 .1,9
1-2 0. 113389e+02 .1
1-3 O.lO0000e+01 .2 u8 3

1-4 0.265600e+01 .12717

Again using Equation 3-3 and the computer progran VARE.F, the mean

value of H is evaluated and the result is

ECH] £ 1.4907 (in)

The first order derivatives of H with respect to si,i-1,4 are ccmputed

directly frc.n Equation (3-8) and are shown in Table 4.6.

Table 4.6

Partial Derivative of H

i i 12 1-3 1-4

* H as. /0.92387e-02 -0.29215e-01 -0.90000e+00 0.90000e+00

The covariance between s4 and sj,i-1,3 is computed using Equation

(3-6). The covariance between two Bsi-l,3 is aknown quantity. There-

fore, Mien the variance of permanent offset is expressed by the form of

Equation (3-4), in which g represents permanent offset at this stage, each
term in Equation (3-4) is computed and is listed in Table 4.7.

Table 4.7
The Terms in Variance H

.0011 - .00011 -. 00006 1 '.0191
S.0011 0 .0o302

T .0324 .1393
(symmetric) 1.13100
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The variance of H is the sum of every term of Table 4.7; the result is

" Var (H) - 1.5906 (in 2 )2

'Fran Table 4.7, it is observed that the maximum displacement has great

influence on th~e variance of permanent offset. The covariance between

maximum displacement and yield displacement has less influence, and the

rest of the terms are' almost negligible.

'4.3 The Energy Dissipated

In Section 3.3, the energy dissipated in a bilinear hysteretic system

is separated into two parts. The first part is energy dissipated in the

spring and the second part is energy dissipated in the damper. Here, only

the energy dissipated by the spring is considered. From Equation 3-9, the

energy dissipated by the spring can be expressed as

Ed ' S (Ill n2 n113,4,)

where nj w ,1nI r2 u /A7/m, n3 a u7, n4 a R.

The means and variances 6f the ni, ial,4 are the same as given in

Table 4.5. The first order derivati'es of Ed with respect to ni, 1-1,4

are obtained directly from the expression of Ed which is given in Equation

(3-10). The results are

Table 4.8

The Derivatives of Ed

•i Jl ij2 1-3 1-4

aEd/nji .'838372e+03 - .887.303e+02 .56783e+03 .944165e+04

The m:ean value of Ed is computed by using Equation (3-3) and computer

progran, VARE.F and the result' is E(Ed) a .161578e+05 (lb-in). when using'

Equation (3-4) to compute the variance of Ed, the variable g in Equation

(3-4),represents Ed at this stage. Each element in Equation 3-4 can be

obtained using the approach of Section 4-2. Table 4.9 lists each term of

Equation (3-4).

22
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Table 4.9

The Terms in Variance Ed

-.903687e+07 -. 302450e+0O I .341400e+04 -. 181982e+08
_ .101225e+05 0 [ .961467e+05

"• I '. 128976e+05 -. 921978e+06

The variance of Ed is the sum of every element of Table 4.9' The
result is

V,- (E . o.0.115133e+09 (lb2- in')

"From Table'4.9, it is observed that the maximum displacement has great
* Influence on the variance of Ed, and the rest of the terms are almost

negligible.

..
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S5.0 SUMMARY

"The objectives of this study were, first, to develop a model that

characterizes the permanent offset of an SDF, bilinear hysteretic system

- subjected to blast type load; and second, to probabilistically characterize

the features of the inelastic structural response. In this report, the

response characteristics considered were: (1) maximum disolacement

response (2) permanent offset (3) energy dissipated by the Inelastic

spring. The statistical properties characterizing these measures of

response are the mean and variance.

In Section 2, the maximum dispiacement, response was computed. The

response 'random process was then established," Section 3 discussed the

techniq:es of probabilistic analysis of a complicated, function, Snine the

response random process which was established in Section 2 could not be

expressed in a closed form, the computer program VAREF was developed to

compute the moments of critical measures of inelastic response.

Several numerical results were shown in Section 4; One of the impor-
tant results showed that the maximuai-Idlsplacement response has great Influ-

ence on the variance of permanent offset and energy dissipated. The
results developed in this study are restricted to blast Wpe inputs, and

bilinear hysteretic, SDF systems.

The results developed in this report can be used In the probabilistic

design process. For, example, the computer program VARE.F may be used to
determine the mean and variance of some critical, response measures and the
designer may determine if the response satisfies certain design criteria.

Or, the response may be restricted to some extreme level, then the system
parameters may be determined by using computer program YARE.F with a trial
and error method. Also we can predict the mean and variance of the

"response 'in an assessment of an existing building.

S•Future study might apply the present techniques to multi-degree-of-

freedom systems. Or response models that characterize response to other

-- than blast inputs might be sought.

4'.
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APPENDIX

COMPUTER~ PROGRAM VARE.F
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C

c Equation of motion.
c m7 y" + c7 y' + k7 Cy-O )=fm exp(-alpha t
c or
c y 2 zita wn Y'+ wn**2 (.y-O )=A exp (-alpha t)
c where
c g is z-max =C (batal,bata2 ....... ,bata6)
c batal=A, and xmu(l)=E (batall
c bata2=alpha, and xmu(2)=E [bata2]
c bata3-wn, and xrnu(3)=E (bati3]
c bata4-wnl, and xmu(4)=E [bata4)
c bataS~zita, and xmu(5)=E (bataS]
c bataG-v7, and xmu(6)=E [bata6l
c
c and:t~i
c xrho(i,j) are coe-fficient of correlation between bata.i
c xsigma(i) are corresponding STANDARD DEVIATION
c xvar (i,j) are vi.riance matrix
c pgwb(i) =d C /d bata(±)

c offset is the max offset of the response,ie:.
c offset~rJ( gammal, gamma2, gamma3 ,gamma4.)

c gammal=G and zmul=E [gammall
c gamma2=wyl and zmu2=E [gamma2l
c gamma3=wn and zrnu3=E (gamrna3l
c gamma4--v7 and zmu4-E (garnma4l
c and zrho(i,j) zsigrna(i),zvar(i,j),ph(i) represent the same
c characteristic as in xrnu
c
c In energy dissipation part

c srnu(i) are related to the sprinig

c smu(l)=E(wn]
c zmu(2)=E~wylJ
c sr.nu(3)=E~v7]
c smu (4)=E (zmaxl
a T~he svar(i,,j),s3rho(i-,j)',pes(i) are corresponding
c variance matrix',, coeff. of correlation, and first order
;7 derivitive w.r.p to those parameter.
c
c drnu(i) are4 related to the damping
c Therefore
C. d.-nu(l)=a'
c dmu(2)=alpha
c dmu(3)-wn
c dimu(4)=zita
c dmU(S)=thita
C
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C

dimension xmu(6) ,,sigma(6.),xr~ho(6,6),xvar(6,6),pgwb(6)
dimension zrnu(4),zsigma(4),zrhlo(4,4),zvar(4,4),ph(4)
dimension smu(4),ssigma(4),,srho(4,4),svar(4,4),pes(4)
dimension dmu(5) ,dsigma(5)
dizr,..ision ff(1024),offset(1024),tryl(l000),qql(ICOO),'v(1024)
real 1-7, m7Uc

c define input parameter
0m=85 00.
c7=6.
m7=7.
k7=9000.
a7=. *k7
v7=1.

nb=1024
a~fr/m7

* alphal1.2
wn=(k7/m7)**.S
wyl=( a7/r.n7)w**.5
zita~c7/(2. *m7*wn)

do 80 i.=l,nb

ff (1I)=fr*exp( -alplha*tx)
80 continue

C
c define the moment value of random parameter

xmu(!)=aI xmu(2)=alpha
XMU.(3)-wn
xmu(4)-wyl
xmu(S)=z-ta

* xmu(6)-v7
C

xsiqxna(2)=0.I*xnmu(2)
xuiqma(3)=0.14*xmu(.3)
X31gma(4)=O.I*xmnu(4)
xsigma(S)=.2*zita

C xsigma(6)=.2*v7

xr~ho (1, 2)1
xrho(3,4)=.l
xrho(.3,5)=.l
xcrho(3, 6)=.01
do 90 il,'6

* do 90 jl1,6
if (i.eq.j) go to 91
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xriho(j ,i)=xrho(i6,j)
go to 90

91 xrho(i,j)1l.
90 continue

* C
C
C
c find the value of q which is t-he parameter'to be identify
c in offset

call sbilin (FF,c7,m7,k7,a7,v7,dt,nb,v,offset,ened)
thcon~offset (nb)
write (6,10) ened, thcon
10 fomat (~nerg dissipated and offset from sbilin is ~
c el3.6,2x,f9.5)

C

C In order to prevent of fset oscillating, check if the max offset
"c equal to perment offset , if not, it means thiat the forciJnG'
"c function ,or the system itself , does not practical.
c

offmax0O.
nbl~nb-1
do 75 il,.nbl
offmax=anaxl (offmax,offset(i))

75 continut
i~f (offmax.eq.0.) go to 3000
if (offmnax.ne.thcon) go to 3001

-C
c
c identify the parameter q1 and q2

q1=1000.
qx~ql
p~thcon*2 ./3.1415926
d if f=l.
cycle=l.

c
1001 call search (offset,p,ql,nb,dt,epsiln)

try1(1)=epsiln
kuZ 1
aql(ku)q1g

C
dq I qx/ (di f f10.7.).

C
102.1 qIlqI~dql

call search (offset,p,q1,nb,dt,epsi2.n)
ku~ku-,.
~ql(ku)=q
tryl(ku)=epsil~n
if (tryl(ku),..lt.tryl(ku-1)) go to .1021
if (ku.ge.3) go -,o 2000

C
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'y1(ku-1)) go to 2000

2)

.i), xsigrna(±) i=!, 6)

zmax is'4.)
:' " 6X1

1xsigma(f±j is '

f , V7, a7 ,dt, n, pmoxpg)

IMI

JXsigmna(iqq)
xrho!PO~qq).q. 90 gotb 99Dto 98

z to 97
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* pga-pgwb(i4cn)

pgb-pgwb( icn)
xvar( ipp, iqq)=pga*pgb*sigx*xrho (ipp, igq)
gonto 00

* pga-pgwb(icn)
xvar(ipp, iqq)=(pga)**2ksigx*xrho(ipp, iqq)
go to 100

98 xvar(ipp, iqg)=xvar(iqq, ipp)

go to 100

*99 xvar(ipp,igq)=0.
*100 continue

do20 =,

do 200 i=1.,6

varx--varx~xvar( i, j)
*200 continue

write (6,24)
write (6,25) ((xvar(i4'j),j=1,6),i=1,6)
write (6,26) varx

24 format (/'X-variance matrix I

25 format (5e16.6)
26 format ('var [G] is ',2x,.e13.6).

c

C
C

c compute E [offset]
off=(pmr-v7) *(1. -a7/3c7)

C

C.
c

c COMPUTE VAR (of-,set]
c
c ph(l)=dl/d(gaznmal)
c ph(2)=dh/dlgamrna2)
c ph(3)=dh/!:(gamma3)
c ph(4)=dh/d(gamma4)

c * * * * * * * * * * ¶ * * * * * * * * * * * * * * * * * * * *

C
C

ph(2)z(pmrav7)*(-2. )*Yyl/'wn**'A



ph(3 )=(pmr-v7) *2. *wy1**2/wn**3

zmu(l1)=pmr
zmu(2)-wyl
zmu(3 )=,wn
zmu (4) -v7

C
zsigma(l1)-varx** *5
zsigrn~a(2)=xsigma( 4)
zsigina(3)=xsigma(3)
zsigma( 4)=xsigma( 6)
write (6,55)
write (6,S6)(zmu(i),zsijma(i),i=1,4)
write (6,27) off

27 'format (/'7- (offsetj ',4115.8)
55 format ('zmu ( 4) is :',6x,':-sigma is:)
56 format (e14.6,3x,e14.6)

c

C defi4ne zrho(i~j)
zrhio(2,3)=xrhio(3, 4)
zrhIlo(3, 4)=xrho(3, 6)
do 320 i=1,4
do 320 j=1,4
if (i.eq.j) go to 321,
zrkio(j,i,)=zrho(i,j)
go to 320

321 zrho(i,j)=l.
320 continue

c
C

c cmpue cv(Gwyll' cov(G wnl, covfG v71, EIG**21
do 350 i=1,4
if (i.eq.1) go to 351
call egr (x-.u,xsigma,xrho,pgwo,zmu(i),epaxra)
zvar( 1, ±.)=para~ph(1) *ph,(i)
go to 350

35 continue
C

do '400 i=2,4
do 400 J=2,4
if (i.qt.j) go to 400
zvar(i, J)zzrho(i, J) *=31gMa(i) *ZSigM%(J) *ph(i-)*ph(j)

4 0 continue
Ido 410'1=1A

* do 410 J=1,4
Izvar(j~i)-=zvar(.4J)

4 ~0 continue

writs,(6,28'



write (6,29)' (ph(,i),i=1.,4)1
write*(6,30)
write (6,31y ((zvar(-i.J ),j=1,4),-i=1,4)

28 format (/'ph(i) ist'
29 format (eI6.7),
30 format (/'Z-variance matrix is '
31 format (4fl5.6)

C
varof0O.
do 500 i=1,4
do 500 j=1,4
varof--varof~-zvar( i, j)

500 continue

write (6,.32') varof
32 format (/'Var foffsetl = ,16. 8)

C
C

C
C
C
"C commrute E[D
"C ED ENERGY DIssipated

c ED1= dissipate by spring
c ED2= dissipate by damping

*c

C
C
c define m~earn value and standard ds-ýiation

smu( 1)wn
smu(2)--wyl
smu(3)=v7,.
srMU(4pm~r

C
ssigma(l)=Xsigma(3)
33igma(2)=xsiq~n&(4)
ssigma(3)=Xsigma(6)'

dmu(l)a&
dmu(2 )al:-.a
dmu (3) -wn
drnu(4)=zita
drnu(5)soff,

C
dsigma('1)=xsicqma( .)

* dsigma(2)=xsigma(2*)
ds~gm&(3 )=xs±J'ma(3)
dsigma(4)=Xsiqma(5)
dsigMa(5)=varof"*.S

C

3,3



c~.11 eng;1(srnu,m7,edI)
--all eng2(rdmu,nb,q,m7,ed2)
write (6,60)
write (6,61) (srnu(i),dmu(i),i=1,4)
write (,i,62) dmu(S)
write (6,33) edl,ed2

60 format (' smu(iJ) is ',8x,'drnu(-i) is '
61 format (2el5.6)
62 format (15x,e15.6)
33 format (/'E[Edlj iJs ',e15.6,' E[Ed2] I,! ",e13.6)

c compute va.- tEd1
do 600 cn=1.,4
call pen~gl(cn,smu,m7,pedl)
i cnr-cn
pes(icn)--pedlI

600 Contintie
write (6,34)
write (6,3S) (pes(i),i=!,)

34, format (/'pes(-i) is:)
35 format (e13.6)

C

c define srho(i4j),j=1,3 i=.,3
cwhere sroij sthe coefficient of correlation

c in spring inergy dissipate case
c

sr~ho(1,2)=xr~hAo(3,4)
srho ( 1,3 )=xrno (3',6)
do 650 i=1,4
do 650 J-1, 4
if (±. eq.j) go to 651

srho~~i~sro(±,j
go to 650

631 srho(i,j)zl.
650 continue

do 700 i1l,3
do 700 J=1,3

if ±.q.~)go to 700

7C0 cont±inue
c
* svar(4,4)wiarx~pes(4)**2

C
do 800 i=',3
call. egr (xnu, zsigma, xr~ho, pqwb, smu t.) ,covhs)

*svar(i,4)=covhs*pes(i)*pe3(4)

* 34



800 continue
C
C

do 900 i=1,5
do 900 j=1,5
svar(j,i)=svar(i,j)

900 continue
write (6,36)
write (6,37)((svar(i,j),j=1,4),i=1,4)

36 format (/'S-variance matrix is :')
37 format (4e15.6)

c
do 920 i=1,4
do 920 j=l,4
svarl=svarl4svar(i,j)

920 continue
c

write (6,38, svarl
38 format (/'var (ED1] IS ',e13.6)

go to 6000
3000 WRITE (6,18)
18 FORMAT ( ' NO YIELDING OCCUR')

GO TO 6000
3001 WRITE (6,19)
19 FORMAT ( ' THIS CASE DOEN NOT PRACTICAL')

C
.6000 STOP

END
* c

C

subroutineipgl(icn,i =u,ff,k7,a7,dtnb,pmo,pg)
Sc •"This subroutire .ompute dG/db, denote it as pg ;
c Where b is random parameter.
c cn = control number;
C if.
c cn=l. : compute dG/dA
C =2. : compute dG/dalpha
c =3, : compute dG/dwn
c =4. : ccmpute dG/dwyl
c =5. : compute dG/dzi-a
c =6. : com pute dG/dv7
c

dimension f(1024),.xu( 6,)
real K7,M7,k71,k72

c
a=xmu (1)
alpha=xmu(,)
wfl7xmu(3)
wyl=xmu( 4)
zita=xmu(5)
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v7xmu(6)

c r~aij(5,*) error
errorS=0O.
if(ccq.)ot

if (icn.eq.6).go to 5
if (icn..eq.4),go to 5
if (icn.eq.3) go to 4
if (icn.eq.2) go to 2
if (icn.eq.1) go to 1
if (c*q1 go to 499
go to49

1 n=7/w*2
1 frna=m7/w*2
df~mfm/ero
dad~fm/er7o
daJ~adam
al~a-da
c2all gal~lhd~y~iavfk,7d~bsmhr

c cwrit g(6l,22) hair y~ia~7f~7at~bsm~
cwrt (62)ti

glpm
* - ca~ll = 2alh-nSyPitM7fOk,7dtn~pm~hr

calga2apa2nwl~sav7fpmo7d~n~po~hr
pg2glg2/(. da
pmo-glg2/ .*a
gmo tog0
got `0

2 apclh/ro
2 alphal=alpha/dalpha

alpha2~alpha-dalpha
* c~all ga2alpha-dlpwhyait~7f~7,7d~bpotir

c cwrit g(6,22) hirw~y~ia~7f~7at~bsm~h
cwrt (62)1-i

glcm
call ~~lh2,nwlztavpkmaotbspo.hr
calg2,lpanylzt~7,f~7,m7-don~~no..ir
pg2g-g),(2*dlpa
pmo-(gli, /2*dlpa
gmo to500
gotC00

3 k=7/ro
3 k71=k7/edk7

k72=k7-dk7

m7=a7/(wyl**2)
*mn=(k7l/n,7)**.5

* wn2=(k72/m7)**.5
caln-wl gaapawlwyn2avf~7,7d~zbsm~kr

c cwrlt g(6,22) hirn~y~it~710k~~7d~bsm~hr
c Crt 62)ti

g1 sphio



-all g(a,alpha,wn2,wyl,zita,v7,ff',k72,a7,dt,nb,spmo,thir)
g2=spmo
pq=(gl-g2 )/(2. wdwn)
pmo=gl
go to 5000

C
4 da7=a7/error

a71=a7+da7
a72=a7ý-da7
m7=k7/(wn**2 )
wyll=(a7l/rn7)** .5
wy12=(a72/m7)**.5
dwyl--wyll-wyl2
call g(a,alpha,wn,wyll,zita,v7,..., k7, a71,dt, nbý,spno,thi-r)

c write (6,22) thir
C

gl~spmo,
call g(a,alpha,wn,wyl2,zita,v7,ff,k7,a72,dt,n-b,spmo,thir)..
g2=spmo
pg=(gl-g2)/(2.*dwyl)
pmo~gl
go to 5000

c
5 dzita~zita/error

zital~zita~dzita
zita2=zita-dzita
call g(a,alpha,wn,wyl,zi-tal,v7,ff,k7.,a7,dt,nb,spn~o,thir)

.c write (6,22) thir
C

gl~spmo
call g(a,alpha,,wn,wyl,z-ita2,v7,ff,k7,.a7,dt-,nb,spmo,thir)
g2=s?,mo
pg-(g'-g2.)/(2.*dzita)
pmo~gl
go to 5000

c,

6 dv7-v7/error

v "2--v7-dv7
call g(a,alpha,wn,wyl,zita,v7Jl,ff-,k7,a7,,dt,nb,spmo,thir)

*c write (6,22) thir
.c

gl~spmo
* call. g(a,alphýa,,wn,wyl,zita,v72,ff~k7,a7,dt,nb,spmo,thir).

g2=spmo
pg--(gl-g2)/(2. *dv7)
pmo~gl

* go to 5000
*c

22 format (thita ratio is ',,113.7)
4999 write (6,19)

19 format ('ontrol Number Wrong')
* c
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500return

C.

0 ~~subroutine g(a,alp~ha,wn,wyl,zita,V7,fk7at.6pr~hr
r. C This subroutine is to predict the max offset for blast load

C pmo=predicted max response
c pmr=100: represent jmrn expired (in do loop)
d pmrl10l: represent something trouble in finding tmax
C

dimension ff(1024),VV(1024),OFFSET(1024),SLOPE(30)
REAL K7,M7
WD=((1.-ZITAN**2)**.5)*WN
m7=k7/(wn.**!)
c7=2. *zit-a*wn*m7
V=-ZTTA*WDI
.7ALHA+V

C
C

wy-(wyl**2-(zita*wn)**2)**.5
0=(WN**2-WYI**2)*V7

call sbil-in (Off,c7,m7,k7,a7,v7,dt,nb,vvfof.Oset,ened)

C
C CALCULATE T7

B=2. *ALPHA/(WD**2.ALP.tA**2')r C=2.*V7/A
L T7=(B+(B**2+4. WC)**w5)/2.

T671-T7
F c WRITE (6,1) T7

c 1 FORMAT ( 'THEE TENPERLATORY T7 =',Fll.7)
c
*C CALCULATE EXACT, T7

0O 700 JII=1,2000
* xx=jII*.QOOO1l

T7-T71kXX

X2=A/Xl
X3=EXP (-ZITA*WN*T7)
X4=(ALPHA-ZITA*WN) *SIN1(WD-T 7)
X5=WD*COS (WD*T7)
X6=WD*EXP ( ALPF.A*T7)

* ,C CHECK Z ATT7 IFIT IS EQUALTO V7
ZTj7X2*(X3*(X4-k5).X6)
7RR1=ABS(l.-ZT7/V7)
IF (ERRl.LE.0.0005) 'GO TO 701

*700 CONTINUE,

c compute, the z'(tý)
701 X7.=WD*(ALPH.A-ZIT~k*WN)*COS(WD*T7)
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X8=WD**2*SiN(WD*T7)
X9=-ZITA*WN*X3* (X4-XS)
ZDOT7=X2w (X9+X3* (X7hX8 ) ALPHA*X6)

C
C
c calculate trnax (using approached method)

rx=2.*zita*wn
gl~a*(l.-exp(-rx*t7))
g2=(wn**2)*v7*(exp(-rx*t7)-i.)
gx=-(gl~g2 )+zdot7*rx

c. hl~a*exp(alpha*t7)
h2=a*rx/( alpha-rx) +(wn**2 )*v7
h3=awalpha*exp(t7*(alpha-rx) )/(alpha-rx)
-h4=gx*exp( rx*t7)
hS~hl-h3
h6=h2+h4

c
pl~h5*alpha**2+h6* (rx**2)
p2=h5*alpha4~h6*rx

* p3=#5+h6-(wn.**2)*v7
c

ux~p2**2-4.*p1*p3'
* ifux.le.0.) go to 2700.

uu--ux** 5
* trnaxl=(p2+uu)/(2. *pl)

tmax2=(p2-uu)/(2.*pl)
if (tmaxi.le.0.17.and.tr-naxl.ge.0.) go to 70
t.rnax~trax2
goto 71

70 tmax=tmaxl
7 1 tmaxt~tmax

*c
c'
.c. compute ci and c2

c ql=-d/(wy1**2)
c xapa*

qx2l2.lpia**2 alh
qx2=-y.**2a~nal

* -~: a~a/(qxwy +q*2.a3
-. 1 cx~*A+a3

c aep zt~nl7
xa2~exitai ' t*co wyt7).

xa3=-wy*sin(wy*t7)
xat7=xaI* (xa2.xa3)

-: * c xbl=-zita*wn*sin(wy*t7)
* xb2-wy*cos(wy*t7)

*xbt7=xal*( xbl+xb2)

xct7=-alpha*qý*4xp( -alpha*t7)
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xdt7=xal*co s(wy*t7)
c

xet7=xal*sin(wy*t7)

xft7=ql~q2*exp( -alpha*t7)

C
xgt7=-v7-xft7

C
xht7=zdot7-xct7

C

deno~xat7*xet7-xdt67*xbt7
cl=(xht7*xet7-xbt'/*xgt7 )/deno
c2=( xat7*xgt7-xdt7*xht7 )/deno

K ~c compute exact trnax, since z' =0 when t~trax.
tmx=trnaxt
dtx~tmaxt

880 tx~dtx/30.
do 900 j==1,30
tmx~tmx- tx
xa1=exp(-zita*wdn*-6rnx)
xa2=-zita*wn*cos ( .y*tflx)
xa3=,-wy*sin(wy*tmx)

C xattax~xal* (xa2+xa3)

xbl=-zita*wn*sin(wy*trnx)

* xb2z-wy*cog(wy*tmx)

xctmx=-alpha 7'q2*exp( alpha*tnc),

czdtmx~xatmx*c 1+xbtr.nx*c2 +xctm&x
slope(jmm)=zd-rnxIif (jmm.eq.1.and.slope(jmm).gt.0.) go to 899
if (Jmm.eq.L) go-to 900
prod~slope(.jmm)*31ope(jmm-1)
if (prod.le.0.) go to 902

900 continue
write (0,,10)

10 formnat ('something WRIONG in t-mixfsubcl'
9C2'if (slope(jrnm-1).q:.-.0001),go to 902.

dtx~dtx/3 0..
tmx~tmx+tx
go to 880

A c
899 do 920 Jmml1,1000

tx( Jmm-1) *0. 0001
tr.nx~tmaxt+tx
xal~exp( -zita*wrn*tmx)
xa2=-zi~tx*,wn*cos (wy*tmx)
xa3=1wy*sin(wy*tmx)
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xatmx~xal* (xa2+xa3)

xb1=-zita*wn*sin(wy*tmx)
I ~ xb2-wy*cos (wy~tmx).

xbtmx~xal* (xbl+x2)
C

xctmx=-alpha*q2*exp( -alpha*tmx)
C

zdtmx~xatmrx*cl+xbtmrx*c2+xctmx
if (zdtmx.le.O.O1) go to 90.1

920 continue
go to 2100

c
c compute exact z(at exact tmax)
901 xdtmx~xal*cos(wy*tm.x)

xetmx~xal*sin( wy*tmx)
xft=m=ql+q2*exp( alpha*tmx)
ztmx~xdtmx*cl~xerm.,x*c2,xftmx

c
* c calculate predicted max-offset

pmo=(ztmx-v7)*(1.-a7/k7)
thir~pmo/offset(nb)

* pmr--ztmx.

¶ go to,3000
c
2100 write (6,98,)

98 format (',fmm expire')
pmr=100.
go to 3000

2700 write (6,99)
99 format ('U less than zero')

pmrl101.
3000 return

END

SUBROUTINE SBrLIN(F,C7;M7, K7,A7,V7,D9,N,VVO,ened)
* ~DIMENSION F(1.024),V0(1024),V(1024)

DIMENSION V1('L024),V2(1024)
RE.AL M7,K7,KS,K9
U7=K7*V7
1(9=1. -A7/K7

*C
* C INITIALIZE VA-RIAkBLES

V(1)=0.
VO (1) =0.

* V2(1)=F(1)/M7
C START T= RESPONSE CYCLE

Q1=6.*M7/D9**2
Q2=3,.*C7/D9

* Q3=6.*M7/D9
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Q4=3.*M7
Q5=3.*C7
Q6=0.5*D9*C7
Q7=3 ./D9

W Q8=3.
Q9=5*D9
K8=K7
NM=N-1
ENED=O.
DO 1199 I=1,NM

Ul=Ql+Q2+K8
U2=Q3*V1( I)+Q4*V2( I)
U3=QS*Vl(I).Q6*V2( I)
V5=(F( I1)-F(I )+U2+U3)/U1
V6=Q7*VS-Q8*V1 (I) .Q9*V2 (I)
V(I1)=V(I)+V5
VI(I!)=V1(I).V6

C COMPUTE THE STIFFNESS AT T+DT

X1=A7*(V( I1)-V7)+U7
X2=A7*(V(I1)+V7) U7
-IF (XO.GT.X1) GO TO 1150
IF (XO.LT.X2) GO TO 1160
KS=K7
VO ( i) V ( I)
GO TO 1170

1150 IF (V1(I1).GT.O.),K8=A7
IF (V1(I1).LE.O.) K8=K7

3:0 TO 1170
1160 IF (V1(I1L.LT.0.) K8=A7

IF (V1(I1).GE.O.) KS=K7
'VO(11)=(V(I1).V7)*K9

* ~1170 V2( I1)=(F( I1)-C7*V1(I1)-K7*(V(I1)-VO(I1)) )/M7
ened-ened+d9*.5*(v1(i)*(f(i)-m7*v2(i) )+

1199 CONTINUE
Cl. RETURN

subroutine fift (a,n,ab,isgn,dt,)
complex a(nb),u,w4,-1

* c. dividing all element by n~b
* do 1 3=1,nb

1 a(l)=a(j)/nb

-. c reorder 9equencr
nbd2=-.b/2

* nbml~nb-1
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do 4 1=1,nbml
if (l.ge.j) go to 2
t~a(j)
a(j)=a(l)
a(l)=t

2 kn-bd2
3 if (k.ge.j) go to 4

k--k/2
go to 3

4 j=j~k
c calculate fft

pi=3. 1415926
do 6 ml,n.
U=(1.0,0.0)
ME=2**M
k-me/2
w-cmplx(cos(pi/k) ,isgn~*sin(pi/k))
do 6 j=l,k
do 5 1=j,nb,me
lpkz-l+k

a( lpk)=a( l)-t
5 a(L)=a(l).t
6 u--u'w

tt=(nb-1) *dt

if (isgn.eq.1) go to 99
do 110 i1l,nb
a(i)=a(i)*tt

110 c o Wti4nu e
go to 100

C
99 do 120 i1l,nb

a(i)=a(i)/dt
120 continue
100 returnI

subroutine engl (smu,m7,endl),.

c this subroutine compute the E [E:)i]
dimension smu (4)_
real 1c7,m7
c7=(smu(l)**2)*m7
a7=(smu('2)**2)*m7
v7=smu( 3)
zmax=!mu(4)

thia(1~a -k7) (z.-nax-v7)
c

x1=. *k7*v7**2
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x2=a7* (zmax-v7.)**2/2.
x3=lt7*v7* (z.-ax-v7)
x4=k7* (zmax-tluta) **2/2.

c
9 endl=xl~x2+x3+x4

return
end

C

subroutine ang2 (dmu,nb,g,m7,ed2)
c this subroutine compute E [ED21

dimension dmu(5),fl(1024)..f2(1024),w(1024),deno(.512)
complex ff1(1C24),f6f2(1024),ff-(512),hh(512)
real. m7

C
a=dmu(1)
alpha~dru (2)
wn~dmu (3)
-ita=dmu( 4)
t:hita~dmu(5)

P-thit'a*2 ./3.1415926

dt0. 01
tt=(nb- ) *dt

c
do 100 i=1,1024

fi ( i)a*exp( -alpha*tx)
f2(i)-wn**2*p*atan(q*txi**4)
ffl(i)=cmplx (fl(i),0-.)

w(ij)=(i-l) *2. *3* 1415926/tt
100 .continue

call fft~ffI,10,nb,-1,dt)
call ff*%t(ff2,10,nb,-1,dt)

c
nb2--nb/2
do 200 i1l,nb2
f f()=f"(i) +f f2 (i)

deno ( i)=re**Z~x-4m**2
h(i)=cmplx (re~xim)./deno(i)

200 continue
C

end2O0.
do 400 im1.~nb2
xel-cabs(hh(i))
xe2=cabs(ff(i))
0d2=ed2.(Xel*xe2*w(i) )**2

400 continue
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ed2=2. *d
return

* end

.subroutine pengl(cn,smu,m7,pedl)

c this subroutine compute d ED1/d bata
c cn=1d EDl/d wn
c cn =2'd EDl/d wyl
c cn =3 d ED1/dv7
c cn =4 d EDl/d zmax
c

dimension smu(4)
real m7
wn~smu( 1)
wyl~sru(2)
v7=smu(3)
zmax~smu (4)
Const-( zmax-v7) *wyl**2/wn~v7*wn

if(cn.eq.l.) go to 100
if (cii.eq.2.) go to 200
if (cn.eq.3.) go to 300
if (cn.eq.4.) go to 400
go to 600

C
100C constl~const*(v7-(zmax-v7)*(wyl/wn),**2)

pedl=(wn*v7**22.*2 ~v7( zmax-v7) -const ) *m7
go to 700

200 pedi=(wyl*(zr.nax-v7)**2-2'.*(zmax-v7)*wy1*const/wn)*rn7
go to 700

300 const2=const* (w**2..wy1**2 )/wjn
pedl=(zmax-v7) *(wni**2-wy1**2 )-constý2
go to 7C0

400 pedl=( (zmax-v7)*wyl**2.v7*wn**2,-const*Wyl**2/wn)*m7
go to 700

600 write (6,1)
1 format ('control number wrong')

700 return
end

c
C

C.
C

subroutine egr (xrnu,xsigma~xrho,pgwb,gamma, eparaL)
c this subroutine compute E,[R,gammal
c where R~zmax P
c xrnu: mean value of bata
c where bata see main program



c pgwb: d g/d bata(i)
C

dimension xmtu(6),xsLg~ma(6),A-h'-,o(G,6),pgwb(b)
C

do 100 i=1,6
if (xmu(i).eq.gamma) go to 101:

100 continue
write (6,1)

1 format ('gamma is not equal to xmu(i) in subroutine egr,W?.0NC!!')
101 nj~i

C
epara=0.
do 200 j=1,6
exl=xrho(nj,j)*xsigma(nj)*xsigm~a(j)
ex2=(exl)'*pgwb(j)
epara=epara~ex2

200 continue
return
end

c
subroutine search (thita,p,a,nb,dt,,epsiJln)
dimension t~hita(nb)
sum.i&O.
do 100 1i1,hb

ty=pwatan(a*(tx**4))
suml~sum".l+(thita(i )-ty)**2

100 continue
epsi ln~surl
return
end
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