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Preface

The purpose of this thesis was to develop a filter model

and failure detection/identification system for the initial

phase of an adaptive tactical navigation (ATN) simulation

program. This thesis topic was suggested by Mr. Brian Mahon

to support a current Air Force Avionics Laboratory research - .

effort.

The filter model, as well as the failure

detection/identification system (designed, tuned, and tested

against no-failure and failed sensor conditions in both

benign and highly dynamic flight scenarios) demonstrated good

performance and provided some expected results. However,

additional filter tuning and threshold adjustments are needed

to optimize the system's performance.

I am proud to have been associated with and am truly

indebted to my faculty advisor, Dr. Peter S. Maybeck and

thesis reader, Captain Stephen E. Cross. I also wish to

thank Stan Musick and Sandy Berning of the Avionics Lab for

their assistance. I wish to express a heart felt thanks to

my wife, Bonnie, and my sons, Brent and Greg. Their love and

untiring support has helped me through the thesis as well as

the academic program that has brought me to this point in my

formal education.

Gary R. Johnston
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Abstract .

This research effort aimed at the design of a suitable

filter model and failure detection/identification (FDI) pro-

cessor as a basis for the development of a fully simulated

adaptive tactical navigation (ATN) system. A 52-state "truth"

error model was developed from which a 26-state filter error
I

model was derived. The measurement process utilizes a six

measurement satellite positioning system (three velocity mea-

surements and three position measurements), a three measure- - -.

I

ment Doppler radar (three velocity measurements), and a ter-

rain correlation system (three position measurements). The

* filter residuals for the different measurement processes are

then utilized in N-step likelihood function computations to

observe the residual behavior. Two different testing criteria

have been developed for failure declaration. Simple threshold

establishment and the tracking of the likelihood function N-

step slope characteristics are utilized for this purpose.

Based on the statistics of the observed failure characteristics,

an isolation/identification processor isolates the fault and

makes the correct identification.

The analysis was performed by simulating both "soft" and

"hard" failures and monitoring the likelihood function behav-

ior. The observed failure characteristics then triggered the

appropriate isolation/identification logic and the failed sen-

xvi
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sor decision was made. The test results indicate that this

FDI process warrants further consideration. Readdressing the

basic issues of filter state reduction, tuning, threshold set-

tings, and "window" size will undoubtedly improve the perform-

ance of this system.

I

I

a, p.
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I.

INVESTIGATION OF A FAILURE DETECTION/IDENTIFICATION
SYSTEM FOR A TACTICAL AIRCRAFT NAVIGATION SYSTEM

I. Introduction

Overview

The requirement for precise weapon delivery has

generated the need for highly accurate navigation during a

tactical mission. Without this accuracy, weapon delivery

will most likely be ineffectual. During the tactical

mission, selecting sensors for updating the navigation system --p
can become very time consuming and complex for the aircrew.

This could force the aircrew to spend a substantial amount of

time concerned about what suite of sensors will ensure theL p
success of their particular mission. Their time could be

more effectively used for activities that may be important at

that particular mission phase. For the purpose of this

paper, accurate weapon delivery will represent the measure of

meeting the mission objective.

An automated system is desired which will use the
S

probability of target kill and the probability of aircraft -

survival when making a sensor suite selection. This

automated system may consider such data as prestored map

features, threat information, flight plan, sensor

characteristics (e.g., signatures to the enemy and the

sensor's accuracy in the current environment) as well as the

. -:,. :.-.:.
' .--

I



degree of navigation accuracy required for the particular

mission phase. Also, real-time information, such as radar

illumination from an unknown site (due to a sensor or sensors

presently in use), a change in route, a change in target, a

sensor failure/degradation, or sensor jamming must also be

taken into account when optimizing the navigation system.

A key element for this automated system, referred to as

adaptive tactical navigation (ATN), is the failure detection

and identification (FDI) system. The FDI system has the

essential job of ensuring that an accurate sensor suite is

functioning at all times. This will ultimately ensure the

peak performance of the ATN system. The FDI system must

continuously monitor the performance of the inertial

navigation system (INS) and any external aiding sensors to --

ensure that they are functioning within acceptable limits.

If a sensor or sensors are malfunctioning, the FDI system . -

must detect the malfunction, identify the failed sensor or

sensors, and then pass this information to the ATN system

computer for sensor removal, compensation, or reselection.

There are several FDI processes which have been developed

(30). Each of them have both positive and negative

attributes. Positive attributes would be represented by ease

of implementation and reduced computational load. Negative

attributes are exemplified by high false alarm rates

(declaring a failure when no failure has occurred) or non-

detection of low-level ("soft") failures. An "optimal" (in
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this case, optimal implies minimal false alarms and timely

detection and identification) FDI process is needed which has

a high degree of reliability. Without this reliability, the

ATN system will not achieve the peak performance needed to

contribute to the success of a tactical mission.

Background

The following information is included to provide the

reader with the historical perspective of FDI process

development and to make a distinction between the objective

of this thesis and the works of others.

Before an explanation of the FDI processes can occur, an

overview of the filtering process is in order (24:3-7). For

an aircraft navigation problem, the quantities that describe

j (0 the "state" of the system cannot be measured directly,

therefore, the desired values must be derived from the

available data (e.g., an air data system directly provides

static and pitot pressures, the aircraft heading and

reference system provides Euler angles, etc.). From this

data, velocity and position can be determined. The system is

typically driven by inputs other than those that are known

and the correlation among the states is only known with a

degree of certainty. The measurement of these quantities is -

also corrupted by noise, bias, and inaccuracy. If a number

of measuring devices are available, some means of combining

their measurement information in an optimal and systematic
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fashion is needed. The Kalman filter combines this available

measurement data with apriori information about the system

and measurement devices to provide a statistically error-

minimized solution.

The FDI process has the responsibility for the detection

of undesirable characteristics in the system. For actuators

these characteristics are exhibited by shifts in the control

input gains (B matrix), increased processing noise, or a bias

in the measurements. On the other hand, sensor failures

usually manifest themselves as abrupt changes in the

measurement gain (H matrix), increases in measurement noise,

or as biases in the measurements themselves. The

characteristics usually are strongly exhibited in the

residuals generated by the filter or in related difference

expressions (difference expressions not considered residuals

would be the equations which compare failed-state modeling to

Lhe measured quantity and the difference is not used for

filter update but for failure detection) (11:47). For the

purpose of this paper, the issue of sensor failure detection

will be addressed.

There are several FDI techniques which offer various

tradeoffs, advantages, and disadvantages. Based on the

general approach of the FDI technique, it can be placed into

one of the following categories (47):

(1) failure sensitive filter

(2) voting systems
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(3) multiple hypothesis filter-detectors

(4) jump process formulations

(5) innovations - based detection systems

Failure-sensitive filters (12:17;44) are aimed at the

"oblivious" filter. If the filter, because of its structure,

learns the state too well, (as a result of too small of a

filter covariance, P, and filter gain, K), it will tend to

rely heavily on old measurement data and will neglect new

measurement data. Therefore, if an abrupt change occurs, the

filter will not react in a timely manner. The 1964 work of

Fagin (12) produced an exponentially age-weighted filter.

This technique reduced the filter's reliance on old data in

an exponential fashion. In 1970, this technique was further

explored by Tarn and Zaborsky (17). The efforts of Jazwinski

in 1968 (44), produced the finite - memory filter. He also -

proposed methods such as increasing the noise covariance or

fixing filter gain in a 1970 paper (18). These techniques

offer indirect failure information, which means this type of

filter responds faster than the base filter to abrupt

changes. The drawback to this approach is the increase in

filter bandwidth due to the increased allowance of new data

to influence filter behavior. This increased bandwidth

degrades the performance of the filter under normal operating

conditions. One possible solution is a two-filter system (a

normal mode filter and a failure mode filter). Several

1-5
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methods have been developed which model the failure of

sensors as states in the filter which are then directly

compared to their nominal values, to declare or not declare a

failure based on the results of the comparison. This

technique provides quick response at the expense of increased

filter dimensionality and some performance degradation due

to the increased bandwidth caused by the additional states.

The further effort of Beard (46) and Jones (47) in 1973,

produced a design procedure which allows particular failure

modes to manifest themselves as residuals which remain in a

fixed direction or in a fixed plane in the failure subspace.

This failure subspace is the set of vectors which represent

the failure modes which could occur. These vectors generate

a subspace from which it is possible to determine the failure

mode. By the construct of this algorithm, the residual

remains in a fixed direction and has a magnitude which is

proportional to the failure size. The Jones method can be

used to detect a wide variety of failures and provides

detailed failure isolation information; however, it is not an

optimal estimator (optimal in the sense that it can only

handle specific types of failures with specific

characteristics). This implies this type of filter would be

slow or completely oblivious to detect a failure which has

not been addressed in the failure filter design.

Furthermore, its construct is only applicable to the time-

invariant system.
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Voting systems are useful in systems that possess a high

degree of parallel hardware redundancy. The work of Gilmore

and McKern (1970) (13) discusses the use of this technique to

detect "hard" gyro failures. Standard voting schemes require

at least three identical devices to determine which device

has failed (with two devices, only a discrepancy between them

can be determined but not an indication of which one actually

failed). In 1974, Broen (2) proposed a voter - estimator

scheme which generates a "soft" voting procedure that removes

the data from a failed sensor in a weighted fashion so as to

reduce false alarms caused by transients (rapid removal of

this sensor could cause a large change in the measurement

residual). This technique uses a variable which is a

function of the like - sensor measurements. This variable

has a small value if the measurement of a particular sensor

is different from the others and a large value if it is close

to the others. The variable is then used to find the value

of a filter state that minimizes a likelihood function for

the innovations sequence. Since the likelihood function

output is not directly used to determine which sensor has

failed, a failed sensor still has this "soft" vote. This

approach greatly lessens false alarms but requires on-line

computation of the filter gain. In general, voting schemes

are easy to implement and provide fast detection of hard

failures, but can only be implemented in systems that have a

high degree of parallel hardware redundancy. They cannot
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take advantage of information from unlike sensors and are

extremely poor at detecting "soft" failures.

Multiple hypothesis filter detectors are based on

different hypotheses concerning system behavior. A "bank" of

(linear) filters is utilized, each of which models a

different hypothesis. This approach requires both the filter

modeling of the hypotheses and a conditional probability

generated from the filter's residuals. This information is

then used to determine the probability that each hypothesis

is correct. The technique allows simultaneous state

estimation and failure identification. Willsky, Deyst, and

Crawford (1974, 1975) (48:51) applied the methodology

developed by Buxbaum and Haddad (1969) (4) for the detection

of failures in an INS. The theoretically optimum

implementation of the algorithm requires an exponentially

growing bank of filters due to the fact that each filter is

associated with a time history of hypothesis decisions, and

the number of such sequences grows exponentially with time.

Several approximation techniques have been proposed to

alleviate this problem. This proposal of Willsky, Deyst, and

Crawford used an "N-step" window. The "shift" (growth) of

the residual bias due to failed behavior is hypothesized as

occurring once in the N-steps. If no abnormal behavior is

observed in the N-steps, the N conditional densities (these

densities represent the probability of a shift conditioned on

the measurement history) are fused into a single density and
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the N-step process is repeated. The fused density allows the

filter bank to be reinitialized which means it will

essentially remain sensitive to new information. Another

approach using the N-step window was proposed by Newbold and

Ho (1968) (16). The approach is called a sequential

probability ratio test (SPRT). It operates based on a two-

hypothesis decision rule (e.g., system character

changed/didn't change) and compares aposteriori probabilities

of the two hypotheses by means of the log ratio of the two

probabilities. This log ratio is then compared to

predetermined thresholds (these thresholds have been

empirically established based on desired detection

sensitivity) and then either no decision is made, in which

case another measurement is brought in and added to the

previous N inputs, or a decision is made. This means that the

value of N is dynamic and enhances the detection capability

of the detection process; however, the "soft" failure of a

device which occurs in the middle of an N-step process may go

undetected until the next test occurs. Further techniques

proposed by Nahi (1969) (38) considered the use of multiple

hypothesis modeling to develop a linear estimator for the

system which accounts for any measurement that might contain

only noise. For a measurement that contains only noise, the
I

H matrix for that hypothesis is a matrix of zeroes. This in

effect models "hard" sensor failure which was unaddressed in

earlier work. The multiple decision process remains intact.
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This technique does not remove bad measurements or allow the

filter structure to adapt.

Jump process formulations are the result of the

requirement of an FDI system to detect abrupt changes in a

dynamic system in the shortest possible amount of time.

Basically, this technique involves the characterization of

apriori information concerning failure rates. The magnitude

of possible failures is assumed to be known value which

allows the designer to model the detection system to

hypothesize a certain threshold based on a detected rate of

growth in the residual. Work by Sworder and Robinson, (1973)

(41), and Ratner and Luenberger (1973) (40) have focused on

the finite jump of system matrices among a finite set of

possible matrices which are generated apriori for different

failures and for the no-failure condition. The major

deficiency in this approach is the unaddressed issue of

system randomness (e.g., the lack of statistically describing

the jump characteristics). Since the jump matrices are for a

specific set of failure descriptions, there is no flexibility

in this approach to detect unmodeled jump failures. Davis

(1975) (10) has worked the fault detection problem using

nonlinear methodology (e.g., he has modeled his detection

formulation based on nonlinear state equations and

measurement formulations). At the time of this writing, no

study of this technique had been made which would establish

its performance; however, this technique is suboptimal as a
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state estimator since its tuning has been based on failed-

sensor statistics. Chien (1972) (3) devised a failure

detection method which circumvents the suboptimal state

estimate problem and provides detection of a jump or ramp in

the system. The approach demonstrated detector simplicity

and use of a scalar stochastic equation which allows direct

failure estimates (one equation for each failure type). The

method also has built-in robustness to account for modeling

errors (through incorporation of white noise processes),

eliminates suboptimal filter performance for no-failure

operation, through the use of a time-probability description

for the failure description, alleviates the problem of the

previously addressed "oblivious" filter. The design method

utilizes a nominal size bias and steady-state evaluation of

the failure/residual relationship to establish a stochastic

differential equation for the probability of a failure given

the measurement.

Failure transients have not been properly addressed,

which means that a time delay for failure detection may

result while waiting for the failure to reach steady-state

condition.

Innovations - based detection systems involve the

residual monitoring of a filter based on normal and/or failed

hypotheses. Chien's method (30) which was addressed in the

previous paragraph, can also be placed in this group due to

his method of residual usage. The flexibilty of this
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methodology is obvious. Since the filter model operates

under no-failure conditions (statistics are for no-failure

condition), the FDI system uses the residuals generated by - -

the filter state estimate and the measurement to determine

the sensor or sensors' operating condition. This technique

exploits the characteristics of the residuals (e.g., the

residual should be zero-mean, white, Gaussian, and have a

covariance of (HP-HT + R), as computed in the filter if the

filter is well tuned, and if its hypothesis under no-failure

conditions is correct). The residuals under failed

conditions would exhibit biases or amplitude increases. The

FDI system may also have to distinguish between different

failure modes which would require techniques such as multiple

hypotheses or likelihood function or ratio formulations to

perform adequately. Mehra and Peschon (31) have proposed . -

several different statistical tests to be performed on

residuals. One proposed method involves the chi-squared test

as utilized by Willsky, Deyst, and Crawford (1974-75)

(48;50). This method relies on Np degress of freedom , where

N represents the residual "window" length and p represents

the p-dimensional residual vector. The operation of this

approach is based on the chi-squared random variable

exceeding some predetermined threshold which has been
I

established by the previously described residual

characteristics. The chi-squared variable is the (residual2/

sigma 2 ), where sigma was previously defined by HP-HT + R and

1-12 I

...........................................

............................................



the residual is the difference of the measurement and the

filter's estimate. Under the conditions of no uncertainty

this value would have a mean value of 1, since the filter's

estimated variance would equal the residual squared, on the

average. Deficiencies of the N-step window size (e.g., too..

large or too small a value of N) may result in the non-

detection or late-detection of failures due to too large a

value of N and on the other hand, too small a value of N may

result in a high false alarm rate. Merrill (1972) (30)

developed a technique whereby bad sensor data is suppressed.

Another technique compares the actual measurement at any

point in time to the predicted value of the measurement based

on the weighted history of previous data and incorporates

this into the algorithm as an additional measurement of the

present state. This method, which was researched by Peterson

(1975) (30), involves the incorporation of work done with

weighted residual tests done by Chow, Dunn, and Willsky

(1975) (8) and the previous work of Merrill (30). Another

technique which has been explored by such researchers as

Willsky, Jones, McAulay, Denlinger, Deyst, Deckert, Sanyal,
I

Shen, Chow, and Dunn (7;8;9;30;42;46), is the use of what is

referred to as the generalized likelihood ratio (GLR), which

was motivated by the deficiencies of the chi-squared
p

procedure. The GLR method utilizes knowledge of the effects

particular failures have on the measurement residual. In

general, this method provides an optimum decision rule for
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failure detection and provides failure identification

information to aid the system reconfiguration after a failure

has been detected. This technique utilizes the

precomputation of a "failure signature matrix" which provides

an explicit description of how various failures propagate

through the system. Also, the "time-to-failure", modeled as

a random variable, is determined from the maximum likelihood

function using the residuals of the measurement proces.

This variable keeps the detection system open to new data and

gives the system's FDI processor time to adjust to dynamic

characteristics of the flight. Full implementation of this

technique requires a linearly growing bank of matched

filters. Simplifications, such as "windowing" the "time-to-

failure" random variable, will help eliminate the growing

complexity of the detection scheme. Further simplification

of the "failure signature matrix" to eliminate transient

effects (e.g., develop a steady-state matrix which neglects

the time-varying characteristics of the matrix design) and

specifying the failure magnitude apriori will reduce the

computational burden.

The work of these researchers has highlighted key issues

that should be considered when weighing the various detection

methods. The most important issues are:

(1) Types of failure modes that can be detected

(2) Complexity of implementation
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(3) Performance as measured by false alarms,
delays in detection, missed alarms

(4) Robustness in the face of modeling errors.

Each of the various addressed detection schemes have both

p advantages and drawbacks which must be measured against the

aforementioned criteria.

Problem

This thesis will address the issue of performance with

respect to the four criteria just listed, for prospective

designs of the FDI system of a high performance aircraft

operating in a highly dynamic environment.

Scope

The investigation of this problem will consist of an

analysis of the present FDI technical groupings as previously

discussed in this chapter. Computer modeling of the FDI

technique or techniques which warrant further consideration

will then be addressed.

The computer model to simulate the real world

environment consists of a local-level strapdown INS and an

external aiding sensor set consisting of a global (satellite)

positioning system (GPS), a radar altimeter, a terrain

map/correlation system, and Doppler Radar (see Figure 1.1).

The INS/external aiding package will then have the FDI

modeling package appended for an analysis of the various FDI

features.
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The externally sensor-aided INS/FDI package will then be

"flown" against a simulated (computer generated) flight

profile which will offer different dynamic features to

exercise the FDI system fully and establish its strengths and

weaknesses. Further, this will provide a basis for the

simulation of various sensor failure/degradations due to the

presence of noise/jamming or their own internal failures.

Assumptions

The following list of assumptions represent the

practical limits which will be placed on the development of

this thesis:

1. The modeling of the basic INS will be based on a 35-

state error model (1:35) for a dry-tuned strapdown system

'a that maintains navigation information in a local-level

coordinate frame.

2. The states associated with the external aiding

sensors will be augmented to the basic INS to generate the

desired "truth" model.

3. The error analysis will be based on a set of

linearized INS/external sensor error equations.

4. The FDI techniques addressed in this thesis

represent those that are currently known and documented.

5. The generic modeling information for the sensors and

INS to be used is accurate.
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6. The information to be derived from available

computer simulation program for the flight profile and the i

filter design program are accurate. .

7. Information gathered from published documents

represent facts which require no proof.

Standards

The measure of the performance of the FDI processor will

be based on its ability to detect failures/degradations and

to report the deficiency in a timely manner. Also, the

deficient sensor must be properly identified.

Approach

The first phase of the thesis will be the generation of

a "truth" model for the INS and the sensors. From this

model, a Kalman filter package will be developed which will

be tuned against the error-state "truth" model to provide an

accurate on-board filter representation.

The second phase will be the design of an FDI system.

This system will be developed as the result of an in-depth

analysis of currently documented FDI techniques. Based on

this analysis, a decision will be made as to which technique

or techniques will be addressed further. The FDI system will

then be combined with the INS/sensor package to provide a
I

satisfactory computer model for the flight test.

The third phase will result in the test of this FDI

system with the flight profile simulation. The complete " "
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package will be exercised to simulate various sensor

failures/degradations due to excessive measurement noise,

jamming, and internal sensor failure.

Performance sensitivity analyses will also be performed.

The analyses will focus on the adequacy of the FDI system as

a function of the measuring device accuracy. This approach

will separate the issues of how FDI performance is affected

by measurement inaccuracy from the fundamental performance

bound of tne FDI system with perfect measurements.

Phase four will be the analysis of post-flight data to

establish the performance characteristics of the FDI system.

Recommendations and conclusions will then be extracted from

this analysis to provide a basis for further research.

to Outline of Thesis

This thesis is divided into five chapters. Included in

Chapter I is an overview of the ATN concept, a discussion of

the research in FDI methodology which provides a basis for

this thesis, and a discussion of the assumptions and

limitations pertaining to the objective of this thesis.

Chapter II includes a description of the "truth" model,

a discussion of the simulation philosophy, a description of

the simulation software, a definition of the flight profile,

a description of the Monte Carlo technique for the simulation

and analysis, and a presentation of the simulation results for

an unaided INS. The unaided INS results provide credibility
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for the truth model since the plots are representative of

errors seen in flight testing (45).

Chapter III includes a definition of the reduced error --

model used in the filter, the filter time propagation and

update equations, and the presentation of aided INS

simulation results under no-failure conditions.

Chapter IV presents the currently documented FDI

methodologies and a decision as to which techniques will be

incorporated into the FDI system. A failure mode analysis

will be included in this chapter. Also included in this

chapter are the simulation results for this FDI system.

Chapter V presents an analysis of the FDI system based

on its performance with the INS/sensor package. The

performance measure will be based on the comparison of the

time and type of failure/degradation and the system's ability

to identify the failed sensor. Finally, conclusions and

recommendations will be set forth to provide a basis for the

next step in establishing the benchmark for an ATN system.

I

I
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II. The System Truth Model

The Truth Model

A "truth model" is what the system designer perceives to

be the best description of the real world behavior of the

system. This particular system consists of the basic INS, a

baro-altimeter, a satellite-positioning system, a terrain

correlation system, and Doppler radar. In this section, a

52-state system error model is developed in the form of a

linear stochastic vector differential equation as shown in

Eq(2-1).

x(t) = F x(t) + G(t) w(t) (2-1)

t where:

x(t) is the 52-dimensional state vector

F(t) is the (52 x 52) fundamental matrix

w(t) is a (15 x 1) vector of white noise forcing
functions, and

G(t) is a (52 x 15) input matrix

Eq(2-1) represents a set of 52 first-order linear 5

differential equations which model the errors and error

sources in the externally-aided INS.

The INS which is modeled in this thesis is an 0.8 S

nautical mile per hour (NM/HR), local-level, strapdown

system. It is designed to be representative of medium

2

2-1 ".-

-. ..



[ I f . r . 7 b .. . - - -. . . -r 1 -. . . -- _ .- . - .-- - .--- t--r W -- -

accuracy INSs currently developed for tactical aircraft.

Gyroscopes and accelerometers are mounted on a navigation

base or platform that is directly attached to the vehicle.

No gimbals isolate the instruments from the angular velocity

of the vehicle. To keep track of accelerometer orientation,

gyros or other rate sensors are used to measure the angular

velocity of the vehicle in inertial space. Transformation

from platform to geographic ("navigation") coordinates is S

handled by maintaining the current solution for the direction

cosine matrix differential equation (45:72):

CN =CN inp p (22N

p p p2 Pi.~n Cp 22

where:

Qji is a skew symmetric matrix of angular velocity of the

platform (in platform coordinates as measured by rate gyros).

S2N is the skew-symmetric matrix form of the angular .-
in

velocity of the ("navigation") local-level frame in inertial

space, and CN is the direction cosine transformation matrix
p

from the platform to the navigation frame.

A barometric altimeter is used to aid the INS by

controlling the unstable INS errors in the vertical channel.

The INS has a position growth error of approximately 0.8

NM/hr RMS due to Schuler effects, instrument errors (input p
axis misalignments, instrument biases, drifts, and scale

factor errors), and environmental errors (gravity

uncertainities and pressure variations).

2
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The following equations represent the mechanization

equations that are in the INS computer to determine velocity p

and position (45:10-17):

X= Ve/(RA + h)cos L (2-3)
P

L = VN/(RL+h) (2-4)

h Vz - Kl(h - href) (2-5)

Vx = fx + gx - (wy y y)Vz + (Wz +Q2z)Vy (2-6)

V =f + gy - (wz + Q )Vx + W Vz  (2-7)

0D

Z= + g - Wx Vy + (wy + Qy)Vx

- K2 (h - href)-%a (2-8) -

a,
Ve =V Cos- Vy sina' (2-9)

Vn = V x sina + V y cosa (2-10)

a = -V e tan L/R (2-11)

= K3  (h - href) (2-12)
3 ref)

where,

= longitude

L = geographic latitude

h = INS indicated altitude

VX Vy, Vz = velocity in wander azimuth frame

Ve, Vn = east and north velocities

2-3
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a= wander azimuth angle: (angle between local-
level axes and wander azimuth horizontal axes):
a is the clockwise rotation of X,Y,Z from E,N,U
about the vertical axis

5a= best estimate of acceleration error due to " '.
accelerometer and gravity errors based on
altimeter input

fx,y,z = specific forces in wander azimuth frame 0

gx,y,z = gravity components in wander azimuth frame

href = baro-altimeter indicated altitude (see truth
state 35)

KI,K2,K 3 = damping loop gains of vertical channel third-
order damping of INS vertical channel with
baro-a 1 timeter)

Qy,z = components of earth angular velocity in wander
azimuth frame (x is orthogonal to 9

RXL = east-west/north-south radius of curvature of
the earth reference ellipsoid (9)

. Wx,y,z angular velocity of wander azimuth frame with
respect to inertial space.

These equations could then be reproduced in computer software

to compute position and velocity in the wander azimuth frame.

From these equations, the following basic INS error equations

are derived wrt the east, north, up (ENU) frame. By fixing

alpha (a) in Eqs (2-9) and (2-10) to -90 degrees referenced

from north, the following solutions are found:

Ve =Vx (2-13)

VN = Vy (2-14)

These solutions can then be substituted into Eqs (2-3) thru

(2-8) and the appropriate attitude error equations (45:26) to
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produce the following results:

6X (Pz/cos L)bL -(PN/R Cos L)ah +bVe/R Cos L (2-15)

6t (Pe/R)6h + 6VN/R(-6

6h=6v2 - Kldh (2-17)

6%e ( 2 (QnVn + -QzVz) + Pn Vyn Cos 2 L)6L

+ (PnPe + PnKz)6h - (Petan L + KZ)dVe

+ (W z +-Qz)Vn - (wn +9 n)c6Vz + 6 fe + 6ge (2-18)

OVn =-(2Qgn Ve + Pn Ve Cos 2 L)6L

(P~nPz -PeKz)6h -2z
6Ve -Kz 

6Vn

+ Pe 6 V + 6 f n+ 6gn (2-19)

6; 2 Qz e6LP p2 P2 )dh

+
2wn 6Ve -

2Pe 6 Vn '. + 6gz -K12 6h (2-20)

Ee =(-Pe/R)6h -
6 Vn/R +Wz En -Wn Ez +

6 We (2-21)

En .Qz 6L -(Pn/R)dh 6 Ve/- Wzfe e Wez + n (-2

Ez =(Wn +Pn tan L) -(pzIR) 6h

+(tan L/R) 6Ve +Wnfe 6+ Oz (2-23)

6! K3 #Sh =K 3  hrf (2-24)
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where:

e,n,z = platform misalignment angles (see (45:193-195) 0
for an explanation of transformation to E-N-U
frame)

f z= accelerometer errors, as transformed to E-N-U
frame (gravity knowledge errors are not

explicitly modeled)

6we,n, z = gyroscope errors, as transformed into ENU
frame

Pe,n,z = angular velocity of ENU frame w.r.t. earth
(45:12)

6h = altitude errors, where h and href were
previously defined.

Other errors and their equations are gyroscope errors, •

gravity uncertainties, baro-altimeter errors, satellite

positioning system receiver errors, terrain correlation

errors, radar altimeter errors, and Doppler radar errors.

Components of these errors are modeled as random constants,

random walks, and first-order Markov processes.

A random constant is modeled as the output of an

integrator with zero input and a (Gaussian) random initial

condition which has a zero mean and a variance, P . This

type of model is suitable for describing an instrument bias S
that changes each time the device is turned on, but remains

constant while it is on.

A random walk is the output of an integrator driven by

zero-mean, white, Gaussian noise. The defining equations are

given below:

M(t) = w(t), x(t0 ) = 0 (2-25)

2-6
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E(w(t)) =0 (2-26)

E [w(t) w(t +-)] = Q (r) (2-27)

E [x2  (t)] = Q(t - t0 ) (2-28)

where Q is the strength of the white Gaussian noise and O1r)

is the Dirac delta function. The random walk is suitable for

describing errors that grow without bound or are slowly

varying (a pseudonoise driver addition to a random constant

integrator model).

A first-order Markov process is the output of a first-

order lag driven by a zero-mean, white, Gaussian noise of

strength, Q. The model is described by the following

equations:

0- X(t) = (-lI/T) x (t) + w(t) (2-29)

[x(t) 2] = Q T/2 (2-30)

where:

Q = 2a2 /T (2-31)

a=(E [x(t)2])k (2-32)

T correlation time

A first-order Markov model is used to represent the

exponentially time-correlated noises. The autocorrelation.

kernel function for this process is (24:178):

E [x(t) x(t + )] = a2e-II /T (2-33)

2-7
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where,

aand T are defined above

r= time interval

All modeled errors are assumed to be independent (45:20)

with initial covariances described by:

Pij(0) = 0, i A j (2-34)

Pii(o) = xi 2  (2-35)

where xi is the initial condition on the standard deviation

of the ith truth state at time to

The gyroscope errors (45:75-101;9) are gyro drift (g-

insensitive, g-sensitive and g2 -sensitive), scale factor

errors, and input axis misalignments.

G-insensitive gyro drift exhibits growth in time. It is

modeled by a random walk for each gyro and is one of the most

significant error sources for the INS. G-sensitive drift

produces a gyro output drift which is proportional to the

specific force and is applied to each gyroscope. The g-

sensitive drift is modeled by a random constant coefficient

which is multiplied by the appropriate component of actual

specific force. G 2-sensitive gyro drifts are the result of

anisoelastic torques and are also modeled by random constants

and coefficients which are then multiplied by products of two

appropriate components of true specific force. For the

purposes of this research, gyro drift will be modeled as a

random constant and a random walk to account for the gyro

2-8
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drift errors; i.e. g-sensitive and g2-sensitive components

are not explicitly modeled.

Gyro scale factor errors and misalignment are the result

of the error occurring from the measured voltage being

translated to a torque reading and installation errors. The

scale factor error is modeled as a random constant. The six

misalignment angles are due to the three gyros being

rw displaced into directions about the rotational axis.

The gyro drift model is shown in the following equations

(one equation for each platform axis):

Ex = DXf + Wicy XGy + wicz XGz + wicx GSF x  (2-36)

Ey =DYf + wicx YGx + wicz YGz  + Wicy GSFy (2-37)

Ez = DZf + wicx ZGx + wicy ZGy + Wicz GSF z  (2-38)

where,

Cx,y,z = total error along x,y,z axes ..

DXf,DYf, DZf = gyro drift rate bias error (see Table I)

Wicx,y,z = computer frame angular rate w.r.t. inertialspace.

X,Y,ZGx,y,z = gyro input axis misalignment (see Table I)

GSFx,y,z = gyro scale factor errors

Fig. 2.1 represents the typical model for gyro errors in the

X-sensitive direction.

Accelerometer errors (45:105-118;9) are modeled as input

axis misalignment, scale factor error, and biases.

2-9
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There are six accelerometer misalignment angles which

follow the same argument as gyro misalignment. Each

misalignment angle is modeled as a random constant.

Accelerometer biases induce a constant force measurement

error and are adequately modeled by random walks. Scale

factor errors are the result of translating voltage to

specific force readings and each is modeled as a random

constant since the scale factor is assumed linear over the

operating range of the accelerometer.

The total accelerometer error model is shown in the

equations below:

6Ax= ABx + fx ASFx + fy XAy + fz XAz (2-39)

6 y ABy + fy ASFy + fx YAx + fz YAz (2-40)

6Az = ABz + f ASFz + f ZAx + fy ZAy (2-41)

where:

A z= total error in x,y,z direction

ABx,y,z = accelerometer bias error (see Table I)
f z = specific force in x,y,z direction
x,, z

ASFx,y,z = accelerometer scale factor error (see Table I)

X,Y,ZAx,y,z = accelerometer misalignment error (see
Table I)

The total error model for x axis accelerometer errors is

shown in Fig. 2.2.

Gravity errors are not explicitly modeled. The gravity

errors are typically generated by using a reference ellipsoid

2-10
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for the specific force computations. This modeling fails to

accouxt for the geoidal local variations which produce an

acceleration error in the three axes. Gravity modeling

requires modeling these local variations and correcting

acceleration error for the gravity modeling error. This error

does not represent a serious correction until one is

interested in generating a .25 NM/hr or better INS. For this

reason, gravity errors are not modeled for this research.

Baro altimeter error (15:3-46) is represented as a

single state model which accounts for calibration and

reference bias, weather variations, and static pressure error

changes with airspeed. This bias model is modeled as a

first-order Markov process to account for isobaric variations

which have constant correlation distances and thus much lower -

correlation times for high-performance aircraft, letting the

"correlation time'; be the correlation distance divided by

vehicle velocity..

The barometric-altimeter error model is shown in the

equation below:

epo = (-V /D alts epo w(t) (2-42)

where,

epo is the error due to variation in altitude of a
constant pressure surface

V is the ground velocity of the aircraft

Dait is the correlation distance

w(t) is the white noise driving process P

2-13
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Dal

Fig. 2.3. Baro-Altimeter Error Model

The GPS satellite positioning system is modeled under

the assumptions that the satellite clocks are synchronized

(and periodically updated from ground stations) and operate

with negligible error, and tranmissions are accurate. With

these assumptions, satellite positioning errors can be

attributed to the user receiver clock alone. The clock error

is the sum of four processes (15:C-9-15); initial phase error

accounts for the actual difference between the user clock and

the master clock; initial frequency offset errors refer to

the difference in frequency between the user and master clock

immediately after synchronization; long term stability errors

are used to account for crystal aging; random errors account

for short-term stability errors, temperature variations, and

vibration-induced errors.
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The clock errors are established along three orthogonal

axes such that no clock errors are shared between any two

axes, i.e., such that error ellipsoids are perfectly

spherical (this implies a particularly convenient orientation

of the satellites w.r.t. the navigation frame and it is

assumed that satellite selection algorithms will produce

results similar to this performance). Since clock errors are

established in both phase (position) and frequency

(velocity), these errors will be used to correct INS errors

in both position and velocity. The measurement model takes

both position and velocity measurements.

The saeellite positioning system error model is shown in

the equation below:

atu = dtbu + dtru + wl(t) (2-43)

where,

6tu is the total phase (position) error

6tbu is the frequency bias

4tru is the random frequency error (modeled as
first-order Markov)

wl(t) is the white noise process.

Doppler radar is modeled to compensate for errors in

beam direction, temperature, installation alignment, INS

attitude, tracker time constant, surface motion, and

beamwidth (15:3-32-40). Under the assumption that Doppler

errors are dominated by alignment/pitch calibration errors

2-15
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dt % u(O) 6t 6 u(0)w (t,. ....
-. W. .-)

+

ru (0)

w(t) + ' ru

1/T

Fig. 2.4. User Clock Error Model

and scale factor errors, these errors will be explicitly

represented in the "truth" model (15:3-40-42). This

simplification is also possible due to the restriction to

overland flight which eliminates the surface motion errors.

The alignment/pitch calibration errors will be modeled as 0

random constants, and the scale factor errors will be modeled .

as first-order Markov processes (15:3-35-37).

The Doppler radar error model is shown in the following

equations:

6VD V b + 6Vs (2-44)
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6VDu = Vubu + dVsu (2-45)

*VDh = Vh bh + &Vsh (2-46)

where,

6VD is the total Doppler velocity error

V is the along-track, cross-track, and vertical 
0

velocity

6Vs is the scale factor error

Radar altimeter errors are typically modeled as two

errors (15:3-46-47). The largest errors in using this as an

altitude reference are the zero offset and scale factor.

Both of these errors are modeled as random constants. This

model does not account for terrain variation effects since no

actual data for ground characteristics are available.

&o-

. .. . .

16V0 (0) +

W(s (O .) &V[--

Fig. 2.5. Doppler Radar Error Model"
For Along-Track Error _
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The flight profile tape does not provide any knowledge

of terrain characteristics such as altitude-above-sea-level,

slopes, tree-covered, rocky, etc.

The radar altimeter error model is described by the

following equation:

6hRA -- hgn + 6hzo (2-47)

where,

6hra is the total radar altimeter error

Y is the scale factor error

hgn is the aircraft altitude above ground

6hzo is the zero offset error

t i O) h g

6.-.h-

S6h zo(O) -.. .

Fig. 2.6. Radar Altimeter Error Model
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Terrain correlator errors can be modeled as map errors.

These errors are modeled with a 5-state "shaping filter".

Three states account for errors in north, east and vertical.

The other two states are north and east velocity errors. The

velocity errors are modeled as random constants with

pseudonoise addition. The positional errors for horizontal

are driven by the velocity states with a random constant.

The vertical position error is modeled as a random constant

and a pseudonoise.

The terrain correlation system is modeled by the

following equation:

6 = V + w(t) (2-48)

6= wZ(t) (2-49)

IL where,

6P represents the east and north position errors

6V represents the east and north velocity errors

w(t) is a white noise process for east and north
velocity.

4A is the vertical position error

wz(t) is the vertical white noise process

I

611e,n(O )  6E(0) ,6N(0) -. '
. ~6AJ 0) .;[

W , zt) 6,V 6EJ.

Fig. 2.7. Terrain Correlation Error Model

2-19

.. . -. . - .. ... - - " - . . ...' " - " - . ,- ' . " , . .. • . , •.-" • " " -. , . . .. . • . . . , , . .- - " " " - ' - • ". .' ' " '. . ." " . . . . . ". '- ' - i-. ."
.,.,.-. - . . , -'' 2 . L -,'t ' 'i L , .:.' ' : , . . .. '- ._,'-'''',... . ._ ' ' _.' . : t .



The 52-state variables are summarized with their initial

conditions in Table I. The Fundamental Matrix, F(t), is

represented by Figures 2.1 - 2.5. A list of error source

initial values and statistics is shown in Table III. The

initial conditions are representative of a medium-grade

strapdown INS.

Table I

Error Model State Variables

State Variable Initial Condition
(Standard Deviation)

Basic Inertial Navigation Errors

1. east longitude error .05 arc min

2. 6L north latitude error .05 arc min

3. dh altitude error 30 ft

4. 6Ve  east velocity error .1 ft/sec

5. 6Vn  north velocity error .1 ft/sec .

6. 6Vz vertical velocity error .1 ft/sec j -

7. Ee  east attitude error .05 arc min8. En north attitude error .05 arc mi

9. Ez  vertical attitude error .4 arc min

Vertical Channel Error Variable

10. 45 vertical acceleration
error .006 ft/sec 2

2-20
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Table I. (cont'd)

State Variable Initial Condition
____________________________ (Standard Deviation)

Gyro Drift

NOTE: This drift is an approxi-
mation to account for
g-insensitive, g-sensitive
and g2-sensitive
errors.

11. DXf x gyro drift .0080/hr

12. DYf y gyro drift .0080/hr

13. DZf z gyro drift .0080 /hr

Gyro Scale Factor ErrorD

14 G~x X gyro scale factor 2 ppm

15. GSF~ Y gyro scale factor 2 ppm
yI

4L16. GSFZ Z gyro scale factor 2 ppm

Gyro Input Axis Misalignment

17. XGy X gyro about Y 5 arc sec
18 y yoaou r e

19. YG~ X gyro about Z 5 arc sec
2.Yz Ygr bu r e

19. ZG~ Y gyro about X 5 arc sec

22. ZG y Z gyro about Y 5 arc sec

Accelerometer Biases

23. ABX X accelerometer bias 40 pg

124. AB~ Y accelerometer bias 40 jug

2-21
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I

Table I. (cont'd)

State Variable Initial Condition
(Standard Deviation)

25. ABz Z accelerometer bias 40 pg

Accelerometer Scale Factor Error 0

26. ASFx X accel scale factor 60 ppm

27. ASFy Y accel scale factor 60 ppm

28. ASFz Z accel scale factor 60 ppm

Gravity Uncertainties

NOTE: Gravity uncertainties are
not modeled due to medium
accuracy INS

Accelerometer Input Axis NOTE: X,Y,Z are for
Misalignment platform not wander

azimuth frame

29. XAy X accel about Y 10 arc sec

30. XAz  X accel about Z 7 arc sec

31. YAX Y accel about X 10 arc sec

32. YAx  Y accel about Z 7 arc sec33. YAz Z accel about X 1 arc sec

33. ZAx  Z accel about X 10 arc sec

34. ZA y Z accel about Y 10 arc sec

Barometer Altimeter Error

35. epo error due to variation
in altitude of a
constant pressure
surface 500 ft
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Table I. (cont'd)

State Variable Initial Conditions
(Standard Deviation)

Satellite Positioning System Error

36. dtu clock phase bias 1000 ft

37. dtu clock frequency error 1 ft/sec

38. 6tu clock aging bias 2 x 10- 7 ft/sec 2

39. 6tRu clock frequency bias 10 ft/sec

Doppler Radar System Errors

40. 6BP longitudinal beam error 2 arc min

41. 6Bk latitude beam error 2 arc min

42. 6Bh vertical beam error 2 arc min

43. dVsP along-track scale factor .3 ft/sec

44. 6VsX across-track scale .3 ft/sec
Afactor

45. 6Vsh vertical scale factor .3 ft/sec

Radar Nltimeter System Error

46. 6hzo zero offset error 2 ft

47. 6Y scale factor .025

Terrain Correlation Errors 0

48. 6E easting map error 320 ft

49. 6N northing map error 320 ft

50. 6A vertical map error 98 ft S

51. 6Ve east velocity error 2 ft/sec

52. 6Vn north velocity error 2 ft/sec

p
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XDOT (1) = F9x9 (1)*XS(2)+F9x9 (7)*XS(3)+F9x9(16)*XS(4)
XDOT (2) = F9x9 (8)*XS(3)+F9x9(22)*XS(5)
XDOT (3) = F9x9 (9)*XS(3)+XS(6)+CK1*XS(35)
XDOT (4) = F9x9 (2)*XS(2)+F9x9(10)*XS(3)+F9x9(17)*XS(4)

+F9x9 (23) *XS (5) +F9x9 (28) *Xg(6) +F9x9 (34) *XS (8)
+F9x9 (38) *XS (9)
+CNP (1) *XS (23) +CNP (4) *XS (24) +CNP (7) *XS (25)
+CNP (1) *FX*XS (26) +CNP (4) *FY*XS (27) +CNP (7) *FZ*XS (28)
-CNP (1) *FZ*XS (29) +CNP (1) *FY*XS (30) 4CNP (4) *FZ*XS (31)
-CNP (4) *FX*XS (320-CNP (7) *FY*XS (33) +CNP (7) *FX*XS (34)

XDOT (5) =F9x9 (3)*XS(2)+F9x9(11)*XS(3)+F9x9(18)*XS(4)
+F9x9 (24) *XS (5) +F9x9 (29) *XS~(6) +F9x9 (30) *XS (7)
+F9x9 (39) *XS(9)
+CNP (2) *XS (23) +CNP (5) *XS (24) +CNP (8) *XS (25)
iCNP (2) *FX*XS (26) +CNP (5) *FY*XS (27) +CNP (8) *FZ*XS (28)
-CNP(2) *FZ*XS (29) +CNP(2) *FY*XS (30) +CNP(5) *FZ*XS (31)
-CNP (5) *FX*XS (32) -CNP (8) *FY*XS (33) +CNP (8) *FX*XS (34)

XDOT (6) =F9x9 (4)*XS(2)+F9x9(12)*XS(3)+F9x9(19)*XS(4)
+F~x(25*XS5)+~x931)*S(7+F~9(3)*X(8) -XS (10)

+CNqP(3) *FX*XS (26) +CNP (6) *FY*XS (27) +CNP (9) *FZ*XS (28)
-CNP (3) *FZ*XS (29) +CNP (3) *FY*XS (30) +CNP (6) *FZ*XS (31)
-CNP (6) *FX*XS (32) -CNP (9) *FY*XS (33) +CNP (9) *FX*XS (34)
+CK2*XS (35)

; XDOT (7) =F9x9(13)*XS(3)+F9x9(26)*XS(5)+F9x9(36)*XS(8)
U +F9x9 (40) *XS (9)

+CNP (1) *XS (11) +CNP (4) *XS (12) +CNP (7) *XS (13)
+CNP (1) *WCX*XS (14) +CNP (4) *WCY*XS (15) +CN'P (7) *wCZ*xS(16)
+CNP (1) *WCZ*SW(17) -CNP (1)*WCY*XS (18) -CNP (4) *WCZ*XS (19)
+CNP (4) *WCX*XS (20) +CiP (7) *WCY*XS (21) +CNP (7) *WCX*XS (22)

XDOT (8) =F9x9 (5)*XS(2)+F9x9(14)*XS(3)+F9x9(20)*XS(4) -'

+F9x9 (32) *XS (7) 'F9x9 (41) *XS (9)
4CNP (2) *XS (11) +CNP (5) *XS~(12) +CNP (8) *XS (13)
+CNP (2) *WCX*XS (14) +CNP (5) *qCY*XS ( 15) +CNP (8) *WCZ*XS (16)
*CNP (2) *WCZ*XS (17) -CNP (2) *WCY*XS (18) -CNP (5)*WZX( 19)
+CNP (5) *WCX*XS (20) +CNP (8) *WCY*XS (21) -CNP (8) *WCX*XS (22)

XDOT (9) =F9x9 (6) *XS (2) +F9x9 (15) *XS (3) +F9x9 (21) *XS (4)
+F9x9 (33) *XS (7) +F9x9 (37)*XS (8)
+CNP (3)*X( 11) +CNP (6) *XS (12) +CNP (9) *XS (13)
+CNP (3) *WCX*XS (14) +CNP (6) *WCY*XS (15) 'CNP (9)*WCZ *XS (16)
+CNP(3) *WCZ*XS (17)-CNP(3) *WCY*XS (18) -CNP (6) *WCZ*XS (19)
+CNP (6)*WC*X(20) +CNP (9) *WCY*XS (21) -CNP (9) *WCX*XS (22)

XDOT (10) = CK3*XS(3)-CK3*XS(35)
XDOT (11) thru, XDOT (34) = 0
XDOT (35) =(-V /D )XS(35)

g alts

Fig 2.9. F1 , Partition 35 x 35 of Fundamental Matrix
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Table II

Notation Used in Figure 2.9

F9x9(1)-F9x9(41) Basic 9 x 9 non-zero locations
for Fundamental Matrix (45:26)
baro-altimeter terms added

XS(1)-XS(35) Error states 1-35

CK1, CK2, CK3 baro-altimeter damping
coefficients

CNP(1)-CNP(9) Direction cosine matrix for

transformation from platform
to navigation frame

Fx , Fy, Fz specific forces

WCX, WCY, WCZ Angular velocity of E-N-U 5
frame w.r.t. inertial space

V /D Aircraft ground speed/
g alts correlation distance
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36 37 38 39

36 0 1 0 1

37 0 0 1 0

38 0 0 0 0 0

39 0 0 0 -1/7200

Fig. 2.10. F22 Partition 36-39
0 Fundamental Matrix

40 41 42 43 44 45

40 0 0 0 0 0 0

41 0 0 0 0 0 0

42 0 0 0 0 0 0

43 0 0 0 -1/900 0 0

44 0 0 0 0 -1/900 0

45 0 0 0 0 0 -1/900

Fig. 2.11. F33 Partition 40-45
O Fundamental Matrix
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48 49 50 51 52

48 0 0 0 1 00

49 0 0 0 0 1

50 0 0 0 0 00

51 0 0 0 0 0

52 0 0 0 0 0

Fig. 2.12. F 4 Partition 48-52
of4 Fundamental Matrix
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Table III

Error Source Statistics

Random Walks (x = w)

State Variable Noise Spectral Density (Q)

11 X Gyro Bias (.0020/HR)2 /HR

12 Y Gyro Bias (.0020/HR)2 /HR

13 Z Gyro Bias (.0020/HR)2 /HR

23 X Accel Bias (3 ug)2 /HR

24 Y Accel Bias (3 ug) 2 /HR

25 Z Accel Bias (3 ug) 2 /HR

36 Clock Phase error (.2 ft) 2 /sec

50 Terrain Vertical Pos. Error (30 ft) 2 /sec

51 Terrain East Velocity Error (1 ft/sec) 2 /sec

52 Terrain North Velocity Error (1 ft/sec) 2 /sec

First-Order Markov Processes (x=-(i/T)x+w) Q=2a 2 /_r

value Correlation Time P
35 Baro-Altimeter Error 500 ft (500 nauticl

miles Vg

39 Clock Random Frequency 10 ft/sec (7200 sec)

43 Doppler along-track
Scale Factor Error (Vx)5xl0-4ft/sec (900 sec)

44 Doppler across-track
Scale Factor Error (Vy)5xl0-4 ft/sec (900 sec)

45 Doppler Vertical Scale
Factor Error (Vz)5xl0-4 ft/sec (900 sec)
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Simulation

The results obtained in this effort were generated using

the SOFE (36) Monte Carlo evaluation, PROFGEN (35) flight

profile generator, and SOFEPL (37) sample statistics --

generation and plotting software packages.

Flight Trajectory

The flight trajectory is generated with the AFAL program . .

PROFGEN and stored on magnetic tape. Table IV demonstrates

the characteristics of the flight trajectory (e.g., takeoff,

climbout, dive, jinking (tactical manuever, etc.). It is a

7236 second high-performance aircraft flight profile with

many dynamic manuevers. This profile was chosen to be

representative of regions of benign dynamics and harsh

dynamics to test the ultimate robustness of the FDI system.

Fig.'s 2.13 thru 2.17 demonstrate the flight characteristics.
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Table IV

Flight Profile Statistics

Segment Duration Manuever Acceleration Roll Pitch Heading
Number Seconds -_._

1 30 STRT 0.0 grav 0.0 0.0 0.0
2 20 VERT .250 0.0 10.00 0.0
3 205 VERT .050 0.0 26.00 0.0
4 85 VERT .250 0.0 -36.00 0.0
5 942 STRT 0.0 0.0 0.0 0.0
6 11 VERT 1.573 0.0 1.70 0.0
7 16 VERT 3.071 0.0 -19.90 0.0
8 4 VERT 4.212 0.0 18.20 0.0
9 37 HORZ .200 0.0 0.0 14.10

10 439 STRT 0.0 0.0 0.0 0.0
11 345 VERT .0358 0.0 -10.0 0.0
12 66 VERT .197 0.0 10.0 0.0
13 91 JINK 8.528 0.0 13.0 30.00
14 319 HORZ .200 0.0 0.0 90.00
15 29 VERT 3.000 0.0 13.20 0.0
16 10 VERT 4.000 0.0 -45.40 0.0
17 2 ROLL 0.0 113.40 0.0 0.0
18 2 ROLL 0.0 113.40 0.0 0.0
19 21 VERT 6.000 0.0 53.90 0.0
20 18 VERT 1.278 0.0 -21.70 0.0

jO 21 40 JINK 9.258 0.0 20.00 45.30
22 20 VERT 4.000 0.0 10.50 0.0
23 10 VERT 3.000 0.0 -20.60 0.0
24 30 HORZ 2.000 0.0 0.0 85.00
25 10 VERT 5.000 0.0 10.10 0.0
26 61 VERT 5.000 0.0 15.00 0.0
27 20 ROLL 0.0 78.80 0.0 0.0
28 10 ROLL 0.0 -78.80 0.0 0.0 "
29 50 VERT 3.000 0.0 -15.00 0.0
30 1863 STRT 0.0 0.0 0.0 0.0
31 45 VERT .500 0.0 15.50 0.0
32 25 VERT .500 0.0 -15.50 0.0
33 5 ROLL 0.0 50.90 0.0 0.0
34 5 ROLL 0.0 -50.90 0.0 0.0
35 1493 HORZ .500 0.0 0.0 11.20
36 527 STRT 6 0.0 0.0 0.0
37 300 VERT .500 0.0 -6.90 0.0
38 30 VERT .050 0.0 6.90 0.0
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Monte Carlo Analysis

The results obtained were generated from 10 runs of

SOFE. Each run produced a different sequence of random

numbers to generate the samples of input white noise

processes. Sample statistics were computed for each time

point using the equations:

N
(1/N) x. x (2-50)

^2 N
O (1/N-DL xi 2 

- (N/N-i) R2 (2-51)
i=l

where,

x is an estimate of the mean of x,

$ 2 is an estimate of the variance of x,;

N is the number of computer runs.

Ten runs were chosen to reduce the variations in the computed

standard deviations in the computed standard deviations of

the samples for xi below an acceptable value. This produces

an essentially unbiased estimate of the state's standard

deviation (37:8).

The Unaided Simulation

The position, velocity, and attitude errors for this

unaided INS are shown in Fig.'s 2.18 thru 2.27. These plots

represent the magnitude of errors that would be seen if a

tactical aircraft's INS were operating in an unaided mode
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(except for the baro-altimeter which provides vertical

channel stability). These plots represent a minimum
0

performance bound against which to evaluate the filter's

performance.

The performance plots also verify the desired values -

expected for this medium accuracy INS. Also evident in the

plots are the effects of Schuler frequency and aircraft

manuevering.
e

The unaided simulation serves as a means of validating

the truth model states. In Chapter Three, a reduced order

model (derived from the truth model) is generated.
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III. The Filter Design

Introduction

Typical Kalman filter design is an iterative process.

The design is based on incorporating modifications and

evaluating any such modifications to determine the

performance capability of the resulting filter. Performance

requirements such as reaching specified RMS errors, and

constraints such as cost, sequencing, storage, and

computation time, play a major role in the design decision

process.

The design of such a filter would be typically

structured into the following pattern:

4. (1) Develop a "truth" model as the best, all inclusive

representation of the real world.

(2) Propose a Kalman filter design based on the "truth"

model.

(3) Reduce the order of the system model assumed in the

filter and incorporate any other purposeful simplifications

such as ignoring small matrix coefficients, etc.

(4) Conduct a covariance analysis and "tune" the filter;

iterate back to step 3 as required.

(5) Perform a Monte Carlo analysis on best designs.

(6) Study the performance/loading trade-offs and

implementation requirements.

3-1
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(7) Implement the final design on onboard computer.

(8) Perform checkout, final tuning, and testing.

The filter proposed in this study is based on a 26-state

model derived from the 52-state "truth" model of the previous

chapter. It is composed of the basic 9-state Pinson-Widnall

(45) error model for the basic INS errors plus the following

additional states:

Table V

Additional Filter Error States

Model States No. of States

Vertical Acceleration Error
(needed for 3rd order vertical 1
channel damping for the INS)

4 Gyro Drift 3

Accelerometer Bias 3

Baro-Altimeter (error due to the
variation in altitude of a 1
constant pressure surface

Doppler radar (1 -scale factor 2
and 1-bias)

Radar Altimeter (1-zero offset 2
and 1-scale factor)

Terrain Correlator (I for each 3
position error state)

Satellite Positioning (1-position 2
and 1-velocity)

The effects of the unmodeled states from the "truth"

model were incorporated into the appropriate states in the

3-2
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- filter by increasing the strength of the associated white

noise inputs or by changing the physical process as required

(e.g., a first-order Markov process with a long correlation

time may be somewhat appropriately modeled as a random walk

and incorporated into another state).

The basic, driving consideration for the design of this

filter model is the conceptual study of an FDI system. The

filter was generated to provide the FDI system with a cross-

section of sensor error states to examine the effects of

different failure modes on the overall filter and also

examine the FDI system itself.

The remainder of this chapter provides an overview of

the error modeling for the various sensors and also displays

the specific error model for each sensor incorporated into

the filter.

The Baro-Altimeter

The baro-altimeter operates by measuring atmospheric

pressure and then scaling the output to obtain the proper

exponential altitude versus pressure relation. The error

sources which affect barometric measurements are attributable

to turbulence and pressure drops at the static pressure vent,

temperature variations, and low-pressure gradients. Since

*. the atmospheric pressure decreases exponentially with

altitude, the accuracy of the altimeter is greatly reduced

above 20,000 feet. Horizontal weather fronts can also induce

errors in the barometric altimeter. ---
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The error model for the barometric altimeter can be

characteristically generated as a random bias for

calibration, reference, weather changes, and static pressure

changes. The bias modeling of weather changes and static

pressure is appropriate if the aircraft has a slow ground

speed for the correlation distance, which produces a large

time constant; however, for this particular application, the

changes would be more appropriately modeled (45:3-46) as a

first-order Markov process with a correlation distance of 500

nautical miles to model isobaric variations on the order of

500 feet. The altimeter lagging effect is not modeled in the

filter. For the purposes of this research, the baro-

altimeter is primarly utilized as a measurement device at

constant altitude to support the terrain correlator. Because

of the constant altitude criteria, lagging effect can be

ignored. The model utilized for this study is given in the

following equation:

eo (-Vg/D 1.t 0 + w (3-1)

where,

V = velocity w.r.t. ground in ft/sec

Dalts = correlation distance (500 n.m.)

w = white noise process

p i

E [w] = 0, E [w(t) w(t +T )] = Q6() (3-2)

Q = 2a2 /T = 2(500 ft) 2Vg/Dalts = 1.6 Vg (3-3)
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For this particular model, the total error contribution to

the baro-error process is: 0

6hB = epo (3-4)B .po

The measurement process is given as: p

hMEAS = htrue + epo + va (35)

where:

v represents zero-mean, white Gaussian measurement
noise.

Doppler Radar

Doppler radar is used to provide a direct measure of

aircraft ground speed. The relative motion between the

source of the radar beam (e.g., the aircraft) and the target

(e.g., the ground) causes a frequency shift in the reflected

signal which is proportional to the velocity. By

transmitting and receiving several of these beams, a

simultaneous measure of the beams will provide information

about vehicle ground speed in an along-track, cross-track,

and vertical direction (vertical velocity is not an accurate

quantity). This system model is based on a four-beam

arrangement (two forward-looking and two aft-looking). The

system is also modeled as being rigidly attached to the

aircraft. The signals are then transformed into navigation

coordinates in the navigation computer. .-.
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Although the Doppler output is not actually continuous

(it is actually a pulse train of several pulses per second),

it is modeled as a continuous system. This is reasonable

since the time constants of the navigation system errors are

much longer than those for the Doppler.

There are several sources of error in the Doppler radar

system. Fluctuation noise is due to the variations in the

scatter of the beam due to terrain (or water surface)

characteristics. These errors are typically modeled as

first-order Markov processes in the along-track, cross-track,

and vertical directions with correlation times of .25 to 1.0

seconds (45).

Beam direction errors are caused by misalignment or

I. post-calibration uncertainty in antenna direction, refraction

from the radome/aircraft boundary, and thermal displacement

of the antenna elements. These errors are typically modeled

as random constants.

Random scale factor errors are due to aircraft vibration

and ground scattering variations with terrain. These errors

are modeled as first-order Markov processes with a

correlation tin.e of 15 minutes (45:3-36).

The Doppler model used for the study does not account

for over water errors since the flight profile does not pass I

over water.

The filter model is a two-state model which accounts for

along-track beam direction error and random scale factor

3-6

I[



errors. These errors are then transformed to the navigation

frame through the proper direction cosine matrix. This

transformation generates a portion of the along-track error

in the east, north, and up direction._-ijj

6 V

V"a
P (across X tak

track) .

6Ve

(z axes coincident)

Fig. 3.0. Vehicle Track To Navigation
Frame Transformation

To go from an A, u, z (alonc-track, cross-track,

vertical) frame to a E, N, U (east, north, up) frame requires

the following set of equations:

6Ve = 6V cosO - 6VsinO (3-6)

6Vn = 6VX sinG + 6V sCoS (3-7)

6Vz = 6V( (3-8)

where,

*VA'U,z = vehicle track velocities

dve,n,z = navigation frame velocities
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0 = angle between aircraft heading and
navigation frame.

Since the error model for the Doppler radar is only tracked

for dV,, then the above equations will simplify to:

Ve = 6V x cos@ (3-9)

dVn = dVx sine (3-10)

For the Doppler model, the beam direction error is modeled as

a random constant:

b =0 (3-11)

where,

b. is the along-track beam error in ARC MINutes.

For the random scale factor error, a first-order Markov

process is used for the error model and is described by the

following equation:

6Vs =-Bs 6Vsk+ WS (3-12)

where,

dv = along-track scale factor error

Bs = inverse time correlation (T = 900 secs)

ws is the white noise process with the following

statistics (15):

E [ws ] = 0, E [Ws (t)WS (t + r )] = Qlr) (3-13)
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-" -T. r r f

Q - 2(KV£ )2/e (3-14)

where:

K = 2 x 10 for good Doppler

[ sec-[ a= .5 sec-

Vx = along-track velocity

The total error model for the Doppler is then:

6VED =b x [Vx cos 0 - Vu sin 93

+ dVsx [Cos 8] (3-15)

-VND = b. [V sin 0 + VMcos ]

+ Vs [sin 01 (3-16)

where:

6VEDND = Total Doppler error for the navigation frame

V. = along-track velocity

b = beam direction error

dvs) = scale factor error

8 = angle between aircraft heading and
navigation frame.

The measurement error is modeled as:

VE = VE(TRUE) + 6VED + vde (3-17)

VN = VN(TRUE) + 6VND vdn (3-18)

3-9
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where:

V is the zero-mean, white Gaussian measurement noise

Radar Altimeter

Radar altimeters measure delay between transmission of a

signal and the reflection of the signal from the ground. A

radar altimeter has an inherent accuracy of 25 - 100 feet

(15:3-45); however, an unattractive feature of the radar

altimeter for use with an INS is that vertical distance is

given relative to the surface topography rather than the

reference ellipsoid. The direct use of the radar altimeter

will not stabilize the vertical INS channel because the radar

altimeter errors are not related to the vertical channel INS

(. errors. The radar altimeter "raw" measurements produce a -

high frequency signal of varying amplitude due to the . -

roughness of the terrain. This high frequency data is usable

by the INS but has poor quality for vertical channel damping.

The radar altimeter is primarily used for landing, terminal

guidance, or as a terrain mapping aid. The radar altimeter

used in this study is used as part of the terrain correlation

system.

The dominant errors for the radar altimeter are

instrument biases and scale factor variation. Another

potentially large error source is from interference effects

due to terrain irregularities. In addition, the time

distribution of the returned signals within the beam pattern

3-10
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K7. 7

cause the generation of an average for the terrain height

over the beam area.

The simplified error model (15:3-46) which accounts for

the scale factor errors and bias is given below:

V= 0 (3-19)

where:

Y is the scale factor error

4hzo = 0 (3-20)

where:

6hzo is the zero offset error

These errors are then combined into the total radar altimeter

44 error model in the following equation:

6hA =Y hgn -hzo (3-21)

where,

6hRA is the total error

hgn = altitude above ground

Yand hzo were previously defined.

The measurement process is given by the following equation:

hMEAS - hTRUE + dhRA + Vra (3-22.

where:

v represents zero-mean, white Gaussian measurement
noise.

3-11
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Since this particular error model does not have any

noise added to account for measurement uncertainty, a

pseudonoise will be added to account for finite word length

and roundoff errors associated with the airborne computer.

It is also needed to prevent filter divergence.

Map Correlator

Map correlation techniques involve the comparison of

real-time measurements of earth surface properties with a

computer stored map. A position-fix is then made when an

"in-tolerance" match is made between the measurement data and

the map. The actual measurement may be "active" (e.g.,

radar) or "passive" (resulting from natural phenomena). For

this study, the radar altimeter is used as a measurement

4. device.

The actual measurement process utilizes measurements

from the radar altimeter and the baro-altimeter to provide a

vehicle altitude reference above the terrain. The irregular -

features of the terrain generates a topographic signature

which is then compared to the prestored map.

The error modeling for this terrain correlator is

accomplished by assuming errors are appropriately tracked as

random walks for the three position error states with the

appropriate initial conditions (45). The model for terrain

correlation errors is given in the following equations:

dE = we (3-23)
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6N = wn  (3-24)

dA = wz  (3-25)

where,

6E,N,A are the terrain correlation errors for east,
north, and vertical position.

We,n,z are white noise processes.

where:

E [w] = 0, E [w(t) w(t +7r)] = Q 6(r) (3-26)

The strength of the white noise process, Q, is computed based

on the maximum error in velocity in the three coordinates.

The equation for Q is:

-Q (VE,VN, Vz,max 2 /((21 min) (60 sec/min)) (3-27)

where:

6VE,6VN,6Vz max represents the maximum velocity error

21 minutes represents the time to quarter wavelength
of the Schuler frequency.

The measurement process for this error model is:

EMEAS= ETRUE + 6E + vce (3-28)

NMEAS = NTRUE + 6N + vcn (3-29)

". 1o

AMEAS = ATRUE + 6A Vca (3-30)
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where:

v represents zero-mean, white Gaussian noise. p

Satellite Position System

The satellite positioning system is typically modeled

based on a four satellite measurement scenario. Range and

range rate error information is derived from a pseudo-range

measurement (from the satellites), and an estimated pseudo-

range computed from the INS-indicated position, and the S

satellites' position and motion. The observed range and

range rate errors are a measure of the user's position,

velocity, and clock errors. Clock errors are transformed to

distance and velocity by multiplying the clock phase error

and frequency error by the speed of light.

-0 Typically, errors in both satellite ephemerides and

clock errors will constitute the modeled errors for the

measurement process. Since satellite clock synchronization

errors and transmitted navigation data errors (transmitted

periodically from ground stations to the satellites) are

assumed negligible when compared to errors from the user's

clock, only user clock errors will be modeled in this study.

The clock errors are also not affected by coordinate frame

transformation since the errors are not peculiar to any

particular orientation of the receiver (15:4-54). Satellites

are always assumed chosen such that resulting even ellipsoid

in GPS position information is essentially spherical.

3-14
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The filter error model for the satellite positioning

system (9:53) is given in the equations below:

6t =W (3-31)

where,

6tu = clock phase error

W= white noise process

E [wl] = 0, E [wl(t)w,(t +r)] = Q (-r) (3-32)

Q = 1 ft 2 /sec (3-33)

6tRu : (-l/T) 6tRu + w 2  (3-34)

where,

(e 6tRu = clock frequency error

T = 7200 seconds

w2 = white noise process

E [w2] = 0 E 1w2 (t) w 2 (t +')] = Q(7)

-2a2 /T - 2(10 ft/sec) 2 /7200 sec = .028 ft 2/sec 3 (3-35)

As can be seen from Eq (73), the position error is modeled as

a random walk with the appropriate initial condition and

covariance. The velocity error is modeled as a first-order

Gauss-Markov process.

The measurement process is modeled as:

Ve(meas) - Ve(true) + 6tRu + Vve (3-36)
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Vn(meas) = VN(true) + *tRu + Vvn (337)

Vz(meas) = Vz(true) + tRu + Vvz (3-38)

and,

EMEAS = ETRUE + tu + ve (3-39)

NMEAS = NTRUE + 6tu +v n  (3-40)

ZMEAS = ZTRUE + 6tu + v z  (3-41)

The filter model is summarized in Table VI. The

standard deviations of the states are based on the initial

conditions for the truth model. These standard deviations

represent the filter's own measure of its estimation

uncertainty. These values are identical to the initial

conditions seen in Table II except for states 24-26. The

increased standard deviations are primarily due to the lower

dimensional filter model and the increased acquisition

uncertainty for the map measurenent process.

Gyro and Accelerometer

The reduction in the number of states from the "truth"

model for the basic INS to the filter model is due to the

elimination of 18 gyro and accelerometer error states.

The gyro error states for misalignment and scale factor

were eliminated and their error contribution was modeled as a

white noise contribution to the three attitude error states

in the filter.

3-16

.......................................................................



Table VI

The Filter Error Model S

State Variable Initial Condition
(Standard Deviation)

Basic Inertial Navigation Errors

The 9-state model is identical same as "truth" model
to the "truth" model

Vertical Channel Error Variable

10. 65 vertical acceleration .006 ft2 /sec
error

0
Gyro Drift Error

11. DXf X gyro drift .008 0 /hr

12. DYf Y gyro drift .008°/hr

13. DZf Z gyro drift .008 0 /hr

Accelerometer Bias

14. ABx X accelerometer bias 40pg P

15. ABy Y accelerometer bias 40Mg

16. ABz Z accelerometer bias 40pg

Baro-Altimeter Error

17. epo variation in altitude
of a constant 500 ft
pressure surface

3-17
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Table VI (cont'd)

State Variable Initial Condition
(Standard Deviation)

Satellite Positioning Error

18. 6tu clock phase error 1500 ft

19. 6tRu clock frequency bias 15 ft/sec

Doppler Radar System Error

20. bk along-track beam error 1.75 arc min

21. 6Vs, along-track scale
factor error .4 ft/sec

Radar Altimeter System Error

22. 6hzo zero offset error 2.5 ft

23. Y scale factor error .045

(0 .

Terrain Correlator Errors

24. 6E east map error 500 ft

25. 6N north map error 300 ft

26. 6A altitude error 100 ft

The accelerometer states for misalignment and scale

factor error were handled in the same manner as the gyro

error states except that the noise contributions were added

to the filter's velocity states.

Initial noise strengths for the velocity and attitude

states were calculated by taking the initial covariance, Poll

of the unmodeled gyro and accelerometer states through a
31
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direction cosine transformation. This transformation takes

the initial covariances from the platform to the navigation

frame. The noise strengths are a benchmark Q, from which

final tuning of the filter is accomplished. Final noise

strengths are given in Table VII.

Filter Tuning

The tuning for the filter was accomplished by an

iterative process. The dynamic driving noise matrix, Q, and

the measurement noise matrix, R, were adjusted to provide a

"tuned" filter which is usable for the entire mission (e.g.,

during periods of both benign and highly dynamic behavior).

This type of tuning approach requires the filter to

overestimate its own errors, especially in benign regions, in

order to "capture" harsh dynamic behavior.

- . The tuning process for the terrain correlator

measurements produced poor results. The longitude and

latitude error states had no significant error reduction

occur as a result of the measurements. Also, the terrain

correlator error states, themselves, showed divergent

behavior. Even after repeated attempts at adjustments of Q

and R, no improvement occurred. Because of this, a 3-state

"truth" model for the terrain correlator was proposed. This

was a reasonable solution since a 3-state model is typical

for a terrain correlator acquisition filter model. This 3-

state "truth" model is identical in structure to the 3-state

3-19



Table VII

Q Values For Filter Tuning

Filter State Q (noise strength)

Random ialks and Pseudonoise (P)

1 Longitudinal Error (P) 20 ft2 /sec

2 Latitude Error (P) 2 ft2/sec

3 Vertical Position Error (P) .025 ft2 /sec

4 East Velocity Error (P) .025 ft2 /sec 3

5 North Velocity Error (P) .025 ft2 /sec 3

6 Vertical Velocity Error (P) .05 ft2 /sec 3

7 East Attitude Error (P) .001 rad 2 /sec

8 North Attitude Error (P) .001 rad 2 /sec

9 Vertical Attitude Error (P) .002 rad 2 /sec

11 x Gyro Drift .002 deg2 /hr3

12 y Gyro Drift .002 deg 2 /hr3

13 z Gyro Drift .002 deg 2 /hr3

14 X Accelerometer Bias 3 pg2 /hr

15 Y Accelerometer Bias 3 pg 2/hr

16 Z Accelerometer Bias 3 pg2 /hr

18 Satellite Clock Phase Error 40000 ft2 /sec

24 East Terrain Correlator Error 50 ft2/sec
2 /sec
25 North Terrain Correlator Error 50 ft2/sec

26 Vertical Terrain Correlator Error 10 ft2 /sec .

3-20
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Table VII (cont'd)

Q Values For Filter Tuning

First Order Markov Processes (x=Bx+w) N=2B a 2

Inverse
Filter State la value Correlation Time(B)

17 Barometric 500 ft V/(500nm)
Altimeter Error

19 Clock Frequency 10 ft/sec 1/(7200 sec)
Error

21 Doppler Scale .3 ft/sec 1/(900 sec)
Factor Error

32
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filter model. Initial conditions for the "truth" model are

identical to the filter's.

During the retuning of this new terrain correlator truth

model and the subsequent measurement simulation, a divergent

condition still existed in the longitudinal and latitude

error states. This was eliminated by adding a "pseudonoise"

to these states. This added uncertainty in the positional

error states, in effect, allowed the benefits of the external

aiding device (the terrain correlator), to improve the

knowledge of the positional error states and generated a

convergent or bounded filter.

The final Q values for the filter are shown in Table

VII. The results of the tuning are shown in Figures 3.1 thru

3.26. These figures are plotted for the true mean + one sigma, super-

imposed on the filter-ccnputed 0+one sigma (- - -). The measurenent

process begins at 360 seconds.

3-22
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S

IV. The FDI System

Background

The basis for many FDI systems lies in the generation of

a filter model which represents some "real world" set of

equations. The filter model is usually a scaled-down version

of a larger, more inclusive and accurate "truth" model

because of the necessity to conserve computer memory in an

on-board computer. The most common form of filter model is

usually a linear set of state equations. The linearization

of the typically non-linear "real world" description has been

performed about some nominal set of parameters which typify

an acceptable operating condition. The formulation of the

t Kalman filter represents the best set of filter equations

based on such a linear model. The prior statement is factual

since the filter's performance is statistically better than

any other type of linear filter construction, and it is

superior to nonlinear forms as well if all uncertainties can

be described as Gaussian processes.

In order to establish the quantities which are the

essential inputs to the FDI system from the operational

navigation Kalman filter, a brief description of the

equations which are the basis for, and describe, this filter p

are essential. The system dynamics equation which describes

any general state in the real world is assumed to be a linear

stochastic equation of the form

4
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x(k + 1) -0(k) x(k) + B(k) u(k) + w(k) (4-1)

where

x(k) = real world description of x at time k

O(k) = state transition matrix

B(k) = input gain matrix

u(k) = input quantities

w(k) = zero-mean, white, Gaussian noise with statistics

E[w(k)] = 0 E[w(k)2 ] = Q(k) (4-2)

The sensor equation for the filter which describes the

measurement process is:

z(k) = H(k) x(k) + J(k) u(k) + v(k) (4-3)

where

z(k) = measurement of state x(k)

H(k) = measurement matrix

J(k) = input gain matrix

v(k) = a zero-mean, white, Gaussian noise process
independent of w(k), with statistics:

E[v(k)] =0 E[v(k)2 ] = R(k) (4-4)

If there are no failures in the system, the optimal Kalman

filter state estimator is described by the following set of

discrete equations:

R(k + l/k) = O(k) R(k/k) + B(k) u(k) (4-5)

4-2



R(k/k) = S(k/k - 1) + K(k) Y(k) (4-6)

Y(k) = z(k) - H(k) (k/k - 1) - J(k) u(k) (4-7)

where Y is the zero-mean, Gaussian residual and the gain K(k)

is calculated from:

P(k + 1/k) = O(k) P(k/k) OT(k) + Q(k) (4-8)

V(k) = H(k) P(k/k - 1) HT(k) + R(k) (4-9)

K(k) = P(k/k - 1) HT(k) v-1 (k) (4-10)

P(k/k) = P(k/k - 1) -K(k) H(k) P(k/k- 1) (4-11)

where

P(k/k - 1) is the estimation error covariance of state

estimate R(k/k - 1) -

P(k/k) is the corresponding error covariance of R(k/k)

V(k) is the covariance of V(k)

The above equations represent the "normal mode" filter (i.e.,

the filter is operating with no-failure parameters).

Failure Detection Concept

Sensor failure detection is concerned with the detection

of changes in the system. As was stated in Chapter II, the

failure of a sensor is usually manifested as an abrupt change

in the H matrix, increases in measurement noise, or as biases

in the measurement process equation.

4-3
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All FDI logic is based on a comparison of actual system

output quantities and some established values which represent

either an acceptable value or a failure declaration bound.

These reference values are usually predetermined based on -

preset constants, historical averages of output, related

sensor output, or the outputs of dynamically related models

(14:2). Outputs which are compared to these pre-established

values are derived from actual measurements, state and

parameter estimates based on these measurements, or various

statistical measures such as variance or variance ratios.

The level of the malfunction caused by a particular

failure, in effect, categorizes that failure. "Soft" faults

result from small changes in the system characteristics and

are interpreted as degraded system performance; however, the

overall system performance does not change significantly.

Examples of soft failures are increased sensor bias or

measurement noise. Hard failures are large in magnitude and

affect system performance significantly. Examples of such

failures are computer hardware failure and gimbal lock.

Combinations of hard and soft type failures are composite

failures or "mid" failures (14:8).

As was previously stated, sensor faults are manifested

in H, the measurement matrix, or in increased bias or

measurement noise in the measurement process equation.

Sensor failures reduce the observability of the system (as

measured by eigenvalues of observability Gramian). This may

4-4
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degrade mission effectiveness without any effect on

controllability. An example would be radar failure which

would cause poor navigation accuracy without affecting the

closed-loop aircraft response.

Observability Criteria

Observability from a certain set of measurement devices

can be determined mathematically. One observability test for

instrumentation involves the 0 (state transition) matrix and

the H (measurement) matrix. This test is described by the

following equation:

Os  rank [HT,OT HT, (5T)2 HT,..., (0T)N-1 HT]  (4-12)

where

* OS represents the dimensionality of the observable
subspace for all measurements represented in H. Any
variation of 0 with changes in H indicates the effects
of faults on te observable subspace. (Notes this test
is only for time-invariant systems).

Detectability Criteria

Detectability refers to the ability to distinguish

between no-failure and failed conditions based on measured

output. Faults are detectable if the statistics of the

output under failed conditions are statistically different

from the no-failure outputs. Detectability of a faulty

condition does not imply that one sensor fault can

necessarily be distinguished from another.

4-5
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Fault Isolation

Fault isolatability refers to the FDI system's ability

to distinguish, based on the output measurements, among the

faulty conditions which may occur in the system. Any two

faults can be distinguished from each other if they are

statistically different from each other in their effect on

sensor outputs.

FDI Technique Review S

There are three major components of an FDI approach:

(1) Type of statistical technique used

(2) Modeling requirements

(3) Computer implementation

The statistical technique should provide an acceptable degree

of detection and isolation delay, and acceptable false/missed p

alarm probabilities, yet be easy to implement. Modeling

requirements are determined by the type of fault which must

be detected and/or identified and the statistical techniques p

used. The computer implementation should consider the

question of whether parallel processing is available.

Parallel processing would be desirable as would the

utilization of several simple steps rather than a few complex

steps for software implementation.

Stochastic Failure Detection

Deterministic methods fail to differentiate between

random disturbances (noise) and true system faults.

4-6 S ,.
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Stochastic design methods, which model dynamic noise

(generated by sensor's internal hardware and external

environment), measurement noise (environmental effects), and

modeling errors (usually incorporated into the appropriate

noise strengths) are necessary modeling features to generate

acceptable tradeoffs between missed/false alarms and

detection delay.

Either a single Kalman filter or a bank of Kalman

filters can be utilized for the fault detection/isolation

process. In the single Kalman filter, the states and

covariances are propagated under the no-failure condition.

With this approach, the observed characteristics of either

the filter measurement residuals or some other filter outputs

are then used to detect and isolate failures. This techniquet
was used in early developments by Mehra and Peschon (31) and

was further redefined by Willsky, Deyst, and Crawford (50)

and Willsky and Jones (49). The main idea of this approach -..
is that the internally computed statistics of the Kalman

Filter will be different from the true observed behavior of

residuals or other variables if a fault occurs. Banks of

Kalman filters were first proposed by Magill(21) and

Lainiotis (19) and were applied by Montgomery (32) for

redundancy management. The concept is basically two-fold; one

Kalman filter is propagated for the no-failure condition and

an additional Kalman filter is propagated for each of the

failed states. Deckert and Deyst (11) compute the likelihood

4-7
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ratios sequentially in what is referred to as a sequential

probability ratio test (SPRT).

The SPRT

A typical SPRT is generated upon the basis of two

hypotheses: the hypothesis of no-failure (Ho ) and failure

(HI ). The probability ratio is defined as:

YN(i) = p(YN(i)/H
P (UNi)7HI  (4-13a)

where

N = the number of most recent measurements to be used (a
moving window)

and the SPRT yields the decisions:

YN(i) > A = HO is correct

VN(i) < B = Hj is correct (4-13b)

A Y N(i) < B = No decision

The SPRT overcomes the problem of not being able to decrease

the probability of false alarm and the probability of missed

alarm simultaneously. This is accomplished by setting the

threshold values A and B until the probabilities of missed

and false alarm are minimized.

The SPRT has the following advantages and disadvantages

(14):
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S

Advantages

(1) If there are only a few simple hypotheses to test,
SPRT is attractive.

(2) Given acceptable probabilities of false and missed
alarms the method will detect faults with minimal time
delay, if the a priori distributions are known exactly.

Disadvantages

(1) Thresholds for probability of false and missed
alarms are difficult to select because of the complex
distribution functions.

(2) To detect faults in minimal time, many SPRTs must be
run each using data of different duration (i.e., soft
faults require long duration and hard faults require
short duration).

(3) The number of SPRTs increase as the square of the
number of hypotheses (very large if there are unknown
parameters).

Voting Systems

The process of fault detection and isolation using like

sensors (3 or more) will not be addressed further in this

thesis. Without system hardware redundancy being considered,

the only possible application of voting for the system under

consideration would be in gyro and accelerometer fault

detection; however, this must be ruled out since the three

gyros and accelerometers are mounted orthogonally by

assumption. Because of the orthogonality, they do not

measure any shared component of attitude or acceleration

which would be a necessary requirement for voting. Note,

there are nonorthogonal 4 and 6 gyro and/or accelerometer

INSs which would allow such voting.

4-9

.... . . . . .. .. .. .. . . . . . S.--.. * q ......

.% %.. . .. .. . . . . . . . . . . .



I

FDI System Design

The purpose of this thesis is to find a suitable FDI
D

system to incorporate with the aided navigation system. The

FDI system must meet the aforementioned requirements of

simplicity, accuracy, and speed. All of the process
I

techniques which have been addressed to this point have

advantages and disadvantages when measured against these

requirements.

Based on this process review and the FDI requirements,

innovations - based detection systems offer the greatest

accuracy, constrained by the need for simplicity and speed

(time from actual failure to declaration) (47:609).

Since a navigation system does not necessarily require

the rapid detection/isolation accuracy that an aircraft

L flight control system requires for aircraft survival, a p

certain delay of time-to-failure declaration can be tolerated

witliout endangering the aircraft or crew. This time-to-

failure declaration allows the FDI system to recover in

effect from harsh dynamical characteristics caused by harsh

maneuvers. The occurrence of a harsh maneuver will cause

gyro and accelerometer error states to grow at a significant

rate due to rotational rates about the IMU axes. These error

states could then, themselves, cause thresholds to be

surpassed when no failure has occurred or, since they drive

attitude and velocity error states, cause these states to

incur violation of thresholds. Because of this, a time-to-

4-10
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failure parameter would prevent inadvertent threshold

violation. Consistent surpassing of thresholds would indicate

failure whereas transient passage would not.

Failure Detection System

The failure detection system for this thesis will

utilize likelihood function statistical testing. This

technique is very simple to implement compared to various

likelihood ratio tests. The likelihood ratio techniques

addressed in this thesis require additional filter states to

model failed conditions which can result in a large number of

additional states. The likelihood function only utilizes

information which is readily available from the Kalman filter

as part of its no-failure measurement/update algorithms.

This makes it attractive when measured against the desire of

accuracy, speed, and ease of implementation. Moreover,

likelihood ratios must be established for each hypothesized

form of failure, and failures of a different form can go

undetected.

The Kalman filter (designed for no-failure operation)

generates outputs in the form of estimates of certain

quantities in the system dynamics. When these values are

compared to measured values of the same quantities, error

signals (residuals) are generated. These residuals can then

be utilized to determine if the system is operating normally

or if a fault has occurred.

4-11
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A likelihood function provides one way of making a

statistical test for a failure. A time-history for the error

signals being tracked is "windowed" to keep the likelihood

function computationally tractable. In order to "window" the

residuals, the N most recent values are examined to compare

them to a statistical description (in effect, approximating

statistics (ensemble average) with temporal averaging (N-

step)) of their values assuming no-failure conditions. This

value of N can be adjusted to maintain reasonable detection 9

performance. Use of a single sample would not be advisable

since single samples of large value could be expected due to

harsh flight dynamics, large noise values at a given sample

time, etc. This could generate a false alarm when no failure

actually exists. On the other hand, too large a value of N

I. could make the likelihood function "insensitive" to a change

and no failure might be detected when a failure has actually

occurred. Therefore, an (iterative) adjustment in "window"

size is necessary during the design process to establish

acceptable performance.

The formulation of the likelihood function begins with

an expression for the joint probability density function for

the N most recent residuals based on the past residuals:

p[e(i), e(i - i , . ,e(i -N + 1)/e(i -N),...,e(1)] 1

where e(i) is a residual value and p(x/y) is the conditional

probability of the variable x, conditioned on the value of y.

4-12
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The basis for this conditional density is found in estimation

theory.

Baye's Rule for conditional density functions is given

in the following equation:

p[a,b/c] = p[a/b,c] p[b/c] (4-14)

Applying this equation to the residual conditional density

function produces

A

p[e(i),e(i - 1),..., e(i - N + 1)/e(i - N),...,e(l)]

= p[e(i)/e(i - 1),..., e(1)] x

p(e(i - 1),..., e(i - N + 1)/e(i - N),.., e(1)] (4-15)

Applying Baye's Rule repeatedly to the last density function
e in Eq(4-15) produces

p~e(i), e(i - i , . ,e(i -N + )/e(i -N),..., e(1)] - ,

S 17 p[e(j)/e(j - 1),..., e(1)] (4-16)
j=i-N+l

This equation is then the product of the conditional

densities of the N most recent residuals, each conditioned on

the previous time-history of residuals. A likelihood

function is then derived which is the natural logarithm of

the derived conditional density as given by Eq(4-16):

4-13
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LFN(i) l n (p[e(i),..., e(i-N+l)/e(i-N),...,e(llj3

i
- r L n (p[e(j)/e(j-1) ,..., e(l)]3 (4-17)
j =i-N+l

Under the assumption that the residual sequence is a set of

independent, zero-mean, Gaussian random variables, Eq(4-17)

can be written as

i
LFN(i) i 1 n 1 expt(-1/2)e 2 (j)/ ar2 (j)] (4-18)

j=i-N+i (2ff)12g j

Note: the use of e in this development assumes that e is a
scalar residual out of many possible residuals 0

where a(j) is the filter estimated standard deviation of the

( jth sample from the formulation

or (j) IIT'j) P (j/j -1) h (j) + R (j) (4-20)

where

h=measurement matrix row

P-= propagated filter covariance

R =measurement noise variance

By substituting the N most recent residual values into Eq(4-

19) the likelihood function for the observed data is: -

LFN(i) =(-N/2)ln(2,r ) l n a(j)
j=i-N+l

-1/2 [ e2(j)/ a 2 (j)] (4-21)
j =i-N+l

4-14



Since the residuals from the Kalman filter generate the

likelihood function, then each of the densities described by

Eq(4-17) is in fact a Gaussian density with the following

statistics:

E[z(j)/e(j - i),..., e(1)] = hT(j)R(j/j - 1) (4-22)

where

hT(j) is the measurement matrix row corresponding to the
scalar residual under investigation

R(j/j - 1) is the state vector before measurement update

and the conditional variance

E(e2 (j)/e(j - I),..., e(1)) - E 2[e(j)/e(j - l),...,e(1))

=hTjf) P(j/j- 1) h (j) + R(j) (4-23)

where

h(j) is the measurement matrix row as given above

P(j/j - 1) is the filter covariance before measurement
update

R(j) = measurement noise variance

For real-time likelihood function generation, the N most

recent residuals and filter estimated covariances are used.

As time progresses, the next residual and estimated

covariance are brought in and the next likelihood function
S

value is generated. As can be seen in Eq(4-21), if the

squared residual becomes consistently larger than the

4-15
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estimated variance, then the likelihood function will become

more and more negative. A negative threshold level that the

likelihood function should not surpass can then be determined

(providing satisfactory performance). A failure is declared

if the likelihood function becomes consistently more negative

than this threshold. Another aspect to failure declaration

is a time-to-failure-declaration parameter which minimizes

false alarms by allowing temporary transient behavior (due to

harsh maneuvers and other phenomena) to die out over the

time-to-failure-declaration window. In a general sense, soft

failures would be handled by tight thresholds plus a time-to-

failure-declaration parameter and hard failures by a larger

threshold only.

For this thesis, measurements are being made as shown in

Table VIII.

Table VIII

Measurement Processing

External Aid # of measurements

Satellite Position 3

Satellite Velocity 3

Doppler Radar 3

Terrain Correlator 3
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Each of the measurements produces a residual which is

individually tracked (along with the estimated variance) by

its own likelihood function. After the desired number of

residuals and associated variances are stored, i.e., at time --

tN, the likelihood function is initialized and likelihood

function tracking can begin. In order to minimize computer

loading and also track the likelihood functions, an

approximated version of Eq(4-20) is employed:

i
LFI(i) = ((-1/2) [e 2 (j)/ a 2 (j)]3 (4-24)j=i-N+l

A failure can be declared if

LFI(i) <-T (4-25)

where

LFI(i) is the likelihood value

T is a desired threshold (there may be more than one
value, to detect both hard and soft failures)

Eq(4-24) can be rewritten to incorporate the threshold.

Z [e 2 (j)/ o 2 (j)] > 2T (4-26)
j =i-N+l

Initially, each of the measurement devices is run

against the flight profile using a Monte Carlo process to

generate a likelihood function baseline for normal (no

failure) operation. Once the baseline likelihood function
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has been identified for the measurement device, various

failures (different magnitudes and devices) will be injected

at a scheduled time to study their effect on the likelihood 0

functions over the identical flight profile. When the

likelihood function characteristics have been determined for

the measurement processes, and appropriate thresholds for the •

no-failure case have been established, the characteristics of

the failed conditions can then be exploited to establish the

identification process. S

The failures which will be modeled in this thesis are

characteristic of real world faults. For instance, a gyro

failure can be "soft", modeled to portray a gyro float leak;

a "hard" failure can be used to simulate electrical failure

or bearing failure. It is also useful at this point to

II distinguish between "hard-over" failures and hard failures

(i.e., loss of signal content). A hard-over failure is

characterized by an extremely large signal which is abnormal

for the particular device. Mathematically, it could be P

modeled as:

z = Hx + v + b (4-27)

S

where the value of H is much increased over the normal range

of operation or a large magnitude bias b appears. Eq(4-27) .

can also be used to model a "hard" failure (loss of signal P

content) in which, in this scalar measurement case, H is set

equal to zero and only measurement noise remains in the
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scalar case. Simulations of both "soft" and "hard" faults

will be performed (hard-over failures are not addressed).

Soft failures of the various sensors will be accomplished by

generating a one-sigma ramp contribution to the particular

error state for the sensor being considered. This is

mathematically expressed as 0

x =a x  (4-28)

where S.

x = sensor error state

ax = ramp/slope chosen to be the initial condition of
the bias error state per second. p

Both "hard" failures and measurement noise increases can be

modeled by using the measurement equation given by Eq(4-27).

L. Hard failures for a particular sensor are modeled by simply P

setting the appropriate H matrix row elements equal to zero.

The resulting measurement would then only have a measurement

noise contribution from that particular sensor. Increases in

the strength of measurement noise (see Eq(4-27)) for a

particular sensor are representative of jamming or other

external noise increases which mask the desired sensor

signal. The effect of "hard-over" failures, modeled by the

addition of a bias, b, as shown in Eq(4-27) will not be

simulated in this thesis due to time constraints. Table IX

gives a list of the various sensors, the type of fault, and

its characterization.
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Table IX

Sensor Fault Classification

Sensor Fault Classification
Type Modeled

gyro float leak soft

gyro bearing failure hard

accelerometer quantization fault soft

accelerometer pendulum lock hard

satellite
receiver clock overheating soft

satellite
receiver clock clock failure hard

Doppler frequency drift soft

Doppler beam failure hard

Radar Altimeter gimballing errors soft

Radar Altimeter beam failure hard

Baro-Altimeter calibration drift soft

Baro-Altimeter transducer failure hard

Table X gives an example of how both gyro and

accelerometer bias errors affect the dynamic motion states,

x, - x9 , i.e., position errors, velocity errors, and tilts in

the INS. x11 , x 1 2 , and x 1 3 are gyro bias states. x2 3 , x2 4,

and x25 are accelerometer bias states. The x's in the table

denote how the various states are coupled. It can be seen

that gyro error states are direct drivers on the attitude

4-20
.....................................
.............................................



differential equations and accelerometer error states are

drivers on the velocity differential equations. This infers

that accelerometer failures should be noted earlier than a

gyro failure for a velocity measurement since the

accelerometer failure is one integration from velocity and a

gyro failure is two integrations away. Of course, eventually

such errors would corrupt all INS outputs. The structure

of the measurement residuals has an impact on the detection

of these faults. This aspect of identification will be

addressed in the following chapter.

Table X

Gyro and Accelerometer Error Tracking

States x, x2 x3 x4 x5 x6 x7 x8 x9 x1l x12 x1 3 x2 3 x24 x25

xi x -x

x x

x2x
x 3  x x , ,

x4  x x x x x x x x x x

x6 x x x x x x x x x

x x x
x x x x x x x x x
x7 x x x x x xX x
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The appropriate likelihood functions should react to

these faults by having an increasingly negative value. Once

the established threshold (whether soft or hard failure) has

been surpassed, a failure is declared and the

isolation/identification process begins.

The Isolation/Identification Process

The isolation/identification of a failed sensor is more

time consuming than the failure detection process. The

formulation of an isolation/identification process that is

rapid, efficient, and as fault-free as possible, is the

ultimate goal. Some of the statistical data which will be

gathered during the failure process will aid the

isolation/identification of a failed sensor. For instance, a

gyro failure may affect only two of the three velocity error

states initially, unlike the effects of any other failure,

which may aid isolation/identification. If two unlike

sensors (i.e., accelerometer and Doppler) affect identical

states, then such information as time between any likelihood

function threshold violations and magnitude may offer

information which will aid the isolation/identification

process. These various features, which should become evident

during failure simulation, will be exploited if it is

feasible.

The isolation/identification process to be implemented

in this thesis will be based on information gathered during
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the failure simulation. Each failure will have the following

information gathered from it:

(1) Which likelihood functions violated thresholds

(2) The order of likelihood function threshold violation

(time of failure)

(3) Magnitude of likelihood functions (growth after

failure declaration)

(4) Magnitudes of other likelihood functions which may

be large, but not past their thresholds.

With this information in hand, an isolation/identification

algorithm will be developed, implemented, and tested. The

actual formulation for the isolation/identification processor

will appear in Chapter 5. It will be exercised against the

(O- same flight profile as was used for the failure simulation.
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V. FDI Analysis

Simulation Overview S

The formulation of an effective isolation/identification

algorithm can rely on many characteristic of the likelihood

function over the time duration of the residual tracking pro-

cess. Certain characteristics of the likelihood function such

as the time-of-failure declaration (with respect to the time of

threshold passage of other likelihood functions for the same

measurement process) after a failure is simulated, magnitude

of the likelihood function value, and the rate of growth of

the likelihood function due to the failure (i.e., the nega- 5

tive slope characteristics of the likelihood function after a

simulated failure) can all aid the development of a suitable

L isolation algorithm for the particular application. P

The initial data gathered for this isolation algorithm

development consisted of the simulation of a specific set of

failures (hard and soft) for each of the measurement processes P

(satellite, Doppler, and terrain correlator). The likelihood

functions for each of the simulated failures were then analyzed-

for specific characteristics to establish a suitable basis for P

an isolation processor.

Tables XII thru XV, to be presented subsequently in this

chapter, demonstrate the results achieved by the likelihood S

function detectors with magnitude singled out as the primary

parameter for failure declaration. The failures were simulated

in both benign (straight and level) flight and dynamic (hard

5-1

o • . , ° .. . . ° . ... . . . °. "° ,'.. . .



dive, jinking, turns, etc.) flight environments. Furthermore,

time histories of actual likelihood functions are used to dis-

cern important characteristics to be used for failure detec-

tion and isolation. Chapter II, Table IV contains the flight

profile which highlights the manuever sequence. All such fig-

ures referenced in this chapter are located in the Appendix.

The failure detection processor was simulated over a 550 sec-

ond portion of the flight profile given in Chapter II (0 thru

550 seconds for the benign flight and 2300 thru 2850 seconds

for the dynamic case).

As a result of the characteristics observed in the ini-

tial no-failure runs, the detection logic was not initialized

for operation until 60 seconds after the measurement process

had actually begun (for benign flight, the measurement process

began at 2500 seconds). This delay was necessary to ensure

that the filter transients had dissipated themselves and a

reasonable steady-state condition had been achieved. The simu-

lation times of interest are shown in Table XI.

Table XI

Simulation Times of Interest

Initial Simulated
Type Start Meas Failure Finish

Benign 0 secs 360 secs 450 secs 550 secs

Dynamic 2300 secs 2500 secs 2640 secs 2850 secs
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No-Failure Likelihood Functions

The satellite measurement process consists of six measure-

ments (3-position, 3 velocity). Each of the measurement pro-

cesses is tracked by its own likelihood function processor.

The thresholds shown in Tables XII and XIII list the maximum

values for each likelihood function for the benign and dynamic

cases, respectively. The N-step "window" for each of these

likelihood functions, is set at 10. This value is justified

based on the work of Maybeck (22). Fig.'s A.24 thru A.29

demonstrate the no-failure likelihood function plots for be-

nign flight. Fig.'s A.38 thru A.43 demonstrate the no-failure

likelihood function plots for dynamic flight.

The Doppler measurement proceso consists of three velo-

city measurements. Again, as in the satellite measurement pro-

cess, each measurement is tracked by its own likelihood func-

tion. The "windows" for the likelihood functions are set at

10. Fig.'s A.44 thru A.46 are the likelihood function plots

for the benign case and Fig.'s A.76 thru A.78 are the likeli-

hood function plots for the dynamic case.

Terrain correlator processing consists of three position

measurements. Three likelihood functions track this measure-

ment process and are "windowed" at a sample size of 10 (same

as previous cases). Fig.'s A.89 thru A.91 provide the likeli-

hood function plots for the benign flight and Fig.'s A.92 thru

A.94 apply to the dynamic case.

The threshold establishment for all measurement processes

was selected by adding a value of minus one-tenth (-.1) to the
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maximum values for the no-failure likelihood functions shown

in the no-failure figures. This decision is primarily based

on the small Monte Carlo sample size (10 samples) which was

used in the simulations. By adding this value, a conservative

threshold has, in fact, been proposed. Any simulated failures

which have magnitudes beyond this value are then declared.

Tighter thresholds would cause a greater sensitivity and gen-

erate false alarms. The false alarm/missed alarm trade off

is an issue in itself. S

Satellite Failure Detection (Benign)

Table XII, found later in this Chapter, lists the simulated

failure results for the benign case. The tabulated results

provide a significant insight into the failure characteristics

of each of the simulated faults.

Soft gyro failures, (SGYl:x-axis, SGY2:y-axis, SGY3:z-axis)

were not detectable in the benign case. This is attributable

to the integrations that the soft gyro failures (these failures

are simulated by one-sigma ramps for the particular gyro error

state as discussed in Chapter IV) must pass through before af-

fecting the velocity and position error states which are observ-

able in the measurement process. The integration processes,

in effect, filter out the failure effects before they can sig-

nificantly influence the measurements. These soft gyro fail-

ures can then be classified as unobservable for this satellite

measurement process with failure magnitude as the single detec-

tion parameter.
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Hard gyro failures (modeled as 100-sigma jumps at the

given failure time; this value was chosen to generate a rea-

sonable time-rate-of-change for the failure growth (one order

of magnitude) over the detection sample interval) are plotted

in Fig.'s A.19 thru A.23. These failures are readily observ-

able as can be seen in Table XII. A gyro 1 ,or 2 hard failure

(HGYI, HGY2) is observable in measurements 4, 5, and 6 which

are physically the 3 velocity error states. However, a gyro

3 hard failure is not detected by any of the measurements.

Gyro 3 measures angularities about the Z platform (aircraft

axis for strapdown) axis. This lack of gyro 3 sensitivity
S

is a possible indication of the impact of the coordinate frame

transformation for platform to navigation frame. Because of

the direction cosine matrix transformation, the gyro 3 failure

characteristics are lost in the transformation possibly due

to the multiplication by a very small sine or cosine term or

terms.

Soft accelerometer failures (SACl: x-axis, SAC2: y-axis,

SAC3: z-axis) (Fig.'s A.15 thru A.18) produce a more pronounced

effect on the likelihood functions than those observed for soft

gyro failures. SAC1 magnitude growth was observed in measure-

ments 4 and 6, corresponding to east and vertical velocity

error states, respectively. SAC2 growth is observed in mea-

surements 4 and 5 (north velocity error state). A SAC3 failure S

was also detected by measurement 6. The increased observabil-

ity of the soft accelerometer failure as compared to the soft

gyro failure is due to the faster influence of th-e accelerometer
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error states on the velocity error states (i.e., gyro failures

must pass through attitude error states before affecting the

velocity error states, whereas, accelerometer errors states

affect the velocity error states directly).

Hard accelerometer failures (HACI, HAC2, HAC3) (Fig.'s

A.7 thru A.14) are also observable in more measurements and

are of greater magnitude than gyro failures (a function of the

error state equation coupling).

Soft and hard satellite failures were observed in mea-

surements 4 5, and 6, respectively. Soft satellite failures

(SSATF) (Fig.'s A.4 thru A.6) do not appear in measurements 4,

5, or 6 since no direct coupling occurs in the states that

affect these measurements. The hard satellite failures (HSATF)

(Fig.'s A.1 thru A.3) produced results that are somewhat con-

0 trary to the expected results (soft failures affected measure-

ments 1, 2, and 3 and thus, one would expect hard failures to

have even more impact on these measurements). The explanation

of these results is attributable to the way the hard failures

are modeled. These hard failures are simulated by zeroing the

satellite error states in the measurement equation (this tech-

nique for modeling is discussed in Chapter IV). These errors

are small compared to the other measurement states and are

quickly compensated for by the filter. These soft failures

are one-sigma ramps continuously applied to the error states

and cannot be compensated for by the filter, thus producing

large residuals and eventual likelihood function growth.
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Satellite Failure Detection (Dynamic)

The dynamic simulation for the satellite measurement pro-

cess produced results for the likelihood functions that were

surprising. As can be seen by Table XIII (found later in this

chapter), the likelihood functions were generally insensitive

to both hard and soft failures. In the dynamic simulation,

the failures were initialized at 2640 seconds. During this

period of time, the aircraft is performing vertical dives,

jinking, and climbing manuevers; it could well be the case that S

these failures are being masked due the the rapid changes in

the direction cosine matrix for platform to navigation frame

transformations. The cosine and sine terms in this matrix are P

of rapidly changing angles which most likely results in mini-

mizing a large failure. This is a practical explanation for

gyro and accelerometer failures, but what about the change in

behavior of the satellite failures?

The soft satellite failure (SSATF) produced the same mea-

surement failures, but the dynamic case produced failures that

were of greater magnitude that the benign case. However, the

time to failure detections is much longer for the dynamic case

(See Fig.'s A.30 thru A.32). One could surmise that the dy-

namic case is less sensitive to the soft satellite failure;

it is harder to distinguish failure effects from dynamic ef-

fects in a harsh dynamic setting than in a benign case. t

Hard satellite failures were unobservable in the dynamic

case. The hard satellite failure has the same explanation as j
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given for the benign case (i.e., small magnitude of failure

compared to the other measurement states). The velocity error

states are being rapidly perturbed by the harsh maneuvers which

most likely causes their values in the measurement process to

"overshadow" the hard failures and, in essence, make the fail-

ure unobservable.

Hard accelerometer failures (HACI, HAC2, HAC3) were de-

tected in all measurements. However, the number of measure-

ments which were excited by the failure represents a signifi-

cant reduction compared to the benign case. Fig.'s A.35 thru

A.36 provide the likelihood function plots for these failures.

The decreased measurement sensitivity was also observed

for the soft accelerometer failure (SACI, SAC2, SAC3). Fig. .

A.37 shows the tracking of SAC2 failure in measurement process

4.

Doppler Failure Detection (Benign)

The results for Doppler likelihood function failures de-

tection are shown in Table XIV which is found later in this

chapter. The Doppler measurement process was utilized to det-

ermine (through likelihood function testing)what effect that

hard and soft gyro, accelerometer, and Doppler failures have

on the likelihood functions. Further, this was done to estab-

lish what characteristics of these failures could be exploited

for isolation and identification processing. The dynamic

flight results will be discussed after the benign results.

Measurement 7 corresponds to the east velocity error state,
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measurement 8 corresponds to the north velocity error state and
!. measurement 9 corresponds to the vertical velocity error state. ~z

Soft gyro failures (SGYI, SGY2, SGY3) were not observable

in the likelihood functions. The explanation of this condition

is the same as given in the satellite measurement process.

Hard gyro failures (HGYI, HGY3, HGY3) were detected in

two of the simulated cases. A HGYI failure was detected in

measurements 7 and 8 (See Fig.'s A.47 and A.48). A HGY2 fail-

ure was detected in measurements 7 and 8, also (See Fig.'s A.49

and A.50). A HGY3 failure was not detected by any of the nea-

surement processes. A HGY3 failure would not be expected to be

observable in a benign flight since no vertical rate changes

are taking place. This is an observability situation which would

drastically affect the INS once the vertical channel becomes

excited by a maneuver. Refer to Chapter IV for a discussion of

failure types (soft, hard, hard-over).

Soft accelerometer failures (SACI, SAC2, SAC3) were de-

tected in two of the simulated cases. A SAC1 failure was de-

tected in measurement processes 7 and 8 (See Fig.'s A.53 and

A.54). A SAC 3 failure was not observed by any of the likeli-

hood functions. Again, the unobservable nature of the SAC3 fail-

ure is due to the benign flight environment which does not per-

turb the vertical states. If the sensor error states had been

used explicitly in the measurement process then drastic effects

would have been noted.

Hard accelerometer failures (HACI, HAC2, HAC3) followed

the same pattern as the soft accelerometer failures except for

5-11
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the HAC3 failure (See Fig.'s A.55 and A.56). The HAC3 failure

was detected by measurement processes 7 and 9 (See Fig.'s A.57

and A.58). O

A soft Doppler failure (SDOP) was detected by all three

measurements (See Fig.'s A.59 thru A.61). A hard Doppler fail-

ure (HDOP) was only detected by measurement process 9 (See Fig. 0

A.62). This is most likely due to the rapidrecoveryof the mea-

surement process from the zeroing of the particular H matrix

entry for the Doppler error state. .

Doppler Failure Detection (Dynamic)

The dynamic flight simulation for Doppler failures showed

a tremendous lack of sensitivity for various failures that were

observable in the benign case. The only failures that produced

observable values were the following: hard accelerometer fail-

Iures; HACI (See Fig.'s A.71 and A.72), HAC2 (See Fig.'s A.67 .

and A.68), and HAC3 (See Fig.'s A69 and A.70); soft accelero-

meter failures, SAI and SAC2 (See Fig.'s A.64 thru A.66); soft

and hard Doppler errors, SDOP (Fig. 's A.64 thru A.66) and HDOP .

(See Fig. A.63). The only tractable explanation for this lack

of sensitivity is the fact that both soft and hard failures

(except for HDOP) were injected through that state differen-

tial equations. These errors must first be transformed through

a direction cosine matrix which carries the error states from

the platform frame to the navigation frame. Because of the

harsh manuevers during this time frame, certain angles of the

coordinate frame transformation become both extremely large and

extremely small. When these angles become arguments for co-

sines and sines, the failures can be significantly reduced
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and hard to distinguish, resulting in missed failures.

The explanation for HDOP is related to the higher no-fail-

ure dynamic likelihood function magnitude for the vertical mea-

sure and lower value for measurement 8 which make the failure

detection sensitivity for measurement 8 greater than for mea-

surement 9.

Terrain Correlator Failure Detection (Benign)

The terrain correlator measurement process results are

shown in Table XV which appears later. Both benign and dyna-

mic results are given in this table. The discussion initially

deals with the benign case. Dynamic results will be discussed

at the end of this section. Measurements 10, 11, and 12 cor-

respond to the east position error state, north position error

state, and vertical position error states, respectively.

Soft gyro failures (SGYI, SGY2, SGY3) did not change the

likelihood function values from the no-failure condition. This

is consistent with the findings for both the satellite and Dop-

pler results and the same explanation is proposed for this case.

Hard gyro failure (HGYI, HGY2, HGY3) were not detected for

any of the cases. This is consistent with the satellite posi-

tion measurements and the conditions for this unobservable be-

havior are explained in the satellite position.

Soft accelerometer failures (SACI, SAC2, SAC3) were basic-

ally only observable in measurement 10 (See Fig.'s A.79 andA.86)

Their magnitude (related to the no-failure condition) is not a

significant increase. A failure declaration for these failures

would require extremely tight thresholds. One could state that

these failures are slightly observable.

Hard accelerometer failures (HAC1, HAC2, HAC3) produced

5-14
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significant changes in the likelihood functions for all 3 mea-

surements. A HACI failure was observable in measurements 10

and 11 (See Fig.'s A.87 and A.88). A HAC2 failure was observ-

able in measurements 10 and 11 ( See Fig.'s A.84 and A.85).

A HAC3 failure was detected in measurement 12 (See Fig. A.82).

When compared to the satellite position results, a greater

sensitivity was seen in HACI, HAC2, and HAC3 failures for the

terrain correlator. The exact reason for this greater sensi-

tivity is not clear. It is possible that the filter tuning

for the satellite position measurement process requires add- B

itional effort. Filter tuning will be discussed in the Chap-

ter VI, Recommendations.

A hard radar-altimeter failure (HRAF) was found in mea-

surement process 3 (See Fig. A. 80). Again, this is what

was expected. The magnitude of this failure was significant

L and rapid detection of this type of failure should occur.

A hard baro-accelerometer failure (HBAF) was highly ob-

servable in measurement 3 (See Fig. A.83). The failure mag-

nitude should make the detection processor react quickly. .

Terrain Correlator Failure Detection (Dynamic)

The dynamic flight results shown in Table XV, demonstrate

a different type of behavior than that which was seen in both .

the satellite and Doppler measurements. Satellite and Doppler

dynamic results demonstrated a tremendous decrease in failure

sensitivity compared to the benign case results, which was

attributed to coordinate frame transformation conditions. The

terrain correlator dynamic flight results show a "redistribu-

tion" of the failure magnitudes. However, one has to hypothe- 4
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size the same explanation for this condition since the "re-

distribution" could only take place through a direction cosine

matrix transformation.

Both soft and hard gyro failures were not observed. This

is consistent with the results noted for the satellite posi-

tion measurements.

Soft accelerometer failures (SACI, SAC2, SAC3) were found

in measurement process 10 (See Fig.'s A.95 and A.96). Again

the coordinate frame transformation is assumed to be respons-

ible.

Hard accelerometer failures (HAC2, HAC2, HAC3) had mixed

results. A HACI failure was detected in measurements 10 and

11 (See Fig.'s A.97 and A.98). A HAC2 failure was found in

measurement 10 (See Fig. A.99). A HAC3 failure was observed
in measurement 10 (See Fig. A.100). Again, the strong coup-

ling into measurement process 10 is consistent with the other

dynamic results.

A soft radar-altimeter failure (SRAF) was detected in mea-

surement process 12 (See Fig. A.103). This failure induced

increase in likelihood function magnitude was extremely small.

A hard radar-altimeter failure (HRAF) was observable in

measurement 12 (See Fig. A.104). The measurement 12 results

were expected since this failure was injected through the vert-

ical measurement process.

A hard baro-altimeter failure (HBAF) was detected by mea-

surement process 12 (See Fig. A.105). The strong magnitude

of the failure seen in measurement 12 was expected for the same
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reason given for the hard radar-altimeter failure.

Another Detection Approach

The results discussed for satellite, Doppler, and terrain

correlator measurement failure detection demonstrated a signif-

icant lack of sensitivity utilizing failure magnitude as the

sole condition for failure declaration. The use of thresholds

(magnitude limits) for failure declaration needs to be com-

plemented by some other form of "trigger" which monitors an-

other characteristic of the likelihood function. The two

failure detectors working together should improve the detec-

tion process. Evaluation of the likelihood functions for the
S

various measurement processes offered a possible parameter

which could be utilized. Under failed conditions, likelihood

functions for observable failures demonstrate a negative value
L increase (i.e., magnitude increase). However, these increases

may be unobserved because the use of a conservative threshold

will not detect the failure. This "negative increase" char-

acteristic of the failure can be exploited. Additionally, one

could also use tighter threshold with time-to-failure declara-

t ion.

A negative slope detector with variable sample size can 5

be developed which slides along the likelihood function. This

slope detector functions by working with the N-step likelihood

function "window" to observe the negative growth of the like P

lihood function. The slope detector is thus an M-step "window"

in which the likelihood function operates. The equation for

the likelihood function is given in Eq. 4-24. The slope de-
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tector takes each N-step likelihood function value and compares

it to the next likelihood function value. If the next value

is more negative than the preceeding value, the next likelihood

function value is tested. This process continues until such

time as the preestablished Mth-step has been reached (at which

time a failure is declared), or, if a sample fails the test,

the M-step process is reinitialized from this negative sample.

The sensitivity (window size) can be established based on the

no-failure flight characteristics. Once this is done, a fail-

ure should be declared if the M-step window found M samples

in which each successive sample was more negative than the pre-

ceeding sample or samples.

This additional detection will be exercised against the

same flight profiles as the magnitude detector in a stand alone

fashion. Once this has been done, the results of threshold

testing and the slope detector will be combined to determine

their joint capability.

No-Failure Slope Detection

The establishment of the suitable "window" size for the

slope detector was based on finding the sensitivity point

(point at which no failures are declared under no-failure con-

ditions) for each of the likelihood functions for both benign

and dynamic flight. Exercising each of the measurement pro-

cesses over the same flight profiles (same likelihood function

results), the slope detectors were tuned to be insensitive to

the slope characteristics for no-failure operation. The end

results of this tuning produced the following "windows" for B
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the slope detector:

1.) Satellite (Benign) 4

2.) Satellite (Dynamic) 7

3.) Doppler (Benign) 6

4.) Doppler (Dynamic) 7

5.) Terr Corr (Benign' 6

6.) Terr Corr (Dynamic) 6

Satellite Slope Failure Detection (Benign)

Tables XVI and XVII, found later in this chapter, contain

the results of the failure simulations for this measurement

sequence. The most significant impact of this failure detec-

tion process is found in the hard accelerometer failures and

soft satellite failures. A lesser capability is found for

soft accelerometer failures.

Satellite Slope Failure Detection (Dynamic)

Tables XVI and XVIII demonstrate a reduced detection cap-

ability when compared to the benign slope detection capabil-

ity. However, when this information is added to the simple

threshold test, additional failure information has been made

available.

Doppler Slope Failure Detection (Benign)

Tables XVI and XIX provide the information for this mea-

surment sequence. As can be seen in Table XVI, there is very

litcle information to make a distinction between failures with

slope detection as the sole test. Table XIX provided the se-

quence for a particular failure and does provide insight as

to which failure is identifiable dependent on the time of fail-

5-20

. . . . . . . . . .. . . . . . ..- . . . . . . . .



ure declaration.

Doppler Slope Failure Detection (Dynamic)

The results for this test are provided in Tables XVI and

XX which are found later in this chapter. The information shown in

Table XVI demonstrates a greater sensitivity to failures than '

the benign case. Table XX reveals that this failure informa-

tion should contribute significantly to the decision process.

Terrain Correlator Slope Failure Detection (Benign)

A small failure detection capability is found in Tables

XVI and XXI. The only failures which were detectable with this

technique were hard accelerometer failures. Table XXI provides

the time-of-failure sequence for these failures.

Terrain Correlator Slope Failure Detection (Dynamic)

IA significant change from the benign case is noted in

Tables XVI and XXII. The detection capability diminished for

the hard accelerometer failures but improved for soft accel- . -

erometer failures. p

Slope Detection Analysis

This technique has demonstrated a notable contribution to

the failure declaration decision process. Especially in the 5

dynamic case, a significant improvement in failure detection

was achieved. The most r.otable class of failure was hard ac- .

celerometer failures. Soft accelerometer failures also gained

additional information for failure isolation. It can be sur-

mised that the combination of these results with those achieved

by simple threshold establishment should offer a more divers- -.
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Taole XVI

Slope Failure Detection Results

Failure Satellite Doppler Terrain
Simulated Sequence Sequence Correlator

Sequence

__Benign Dynamic Benign Dynamic Benign Dynamic

ScYl NF NP NP NF NF NF 0

SGY2 NP NP NP NF NF NF

SCY3 NP NF NF NP NP NP

HGYl NF NP NF NF NP NF

HGY2 NF NP NF NF NP NP

HGY3 NP NF NP NF NP NF

SACI 5 NP 8 7 NP 11,10

SA2 5,4 5 NP 7 NP 11,10

3AC3 NF NP NF NF NP NP

HACI 4,6,3,5 4,2 8 9,8,7 10 11,12 .

6,4,
HAC2 5.3.2 2,5 8,7 9,8 10,11 NF

HAC3 5,3,2 2.5.6 9 NF 12,11 10

SSATF 6,2,1.3 1,2.3,4 N/A N/A N/A N/A

HSATF 5 NF N/A N/A N/A N/A

SDOP N/A N/A 8 8,7,9 N/A N/A

HLOP N/A N/A NP 997 N/A A

SRAP N/A N/A N/A N/A NP NF

HRAF N/A N/A N/A N/A NF NP

t HBAF N/A N/A N/A N/A NP NF 2
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Table W IX

Slope Failure 3ecuence For Doppler
Likelihood Functions (Benign Flight)

Failure1
Simulation LF# Time LF# J Time
S A C1 8 535 - -

HAC1 8 525 - -

HAC2 8 495 7 515

HAC 3 9 525--j -

SDCF 7 495 ______500

V Table X
Slope Failure Sequence For Doppler

Likelihood Functions (Dynamic Flight)

Failure

Simulated LF# Time LF# Time LF# Tit-e

SAC1 7 2815 - -- -

SAC2 7 2830 - -- -

HACl 9 2690 8 2700 7 2780

H-AC2 9 2690 8 2695 -- --

SDOP 8 2675 7 28 15 9 2825

FLOP 9 2760 7 26 5 --
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Taole (XI

Slope Failure Sequence For Terrain Correlator

Likelihood 2~;ici (en 211

FailureI__________

Simuated LF# Time LF# Tm

HAC2 10 535 1 4

_____ 10_ 535 11 54

HaC3 12 520 11 545

XlII

Slope Failure Sequence For Terrain Correlator

Likelihood Function:. (Dynamice Flight)

Fai lureI_____
Simulated LF# Time LF# Time

SACl 11 2815 10 [ 2845

SAC2 11 2820 10 2835

HACI 11 2720 12 2725

HAC3 10 2765 - j -
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ified failure isolation algorithm. This failure information

for the joint detection logic is given in Tables XXII thru

XXIX.

The FDI Detection Processor

The failure detection capability for each of the mea- ._

surement processes is shown in Tables XXIII thru Xxix. The

information derived from these tables will be utilized to

develop a suitable isolation/identification algorithm and

software implementation. The significant aspect of this

complete detection processor will be the reliance on both

simple threshold and slope detection failure sequence for

a decision. For instance, as noted inTables XXIII and XXIV

a HACI failure during satellite measurement (benign flight)

would result in the following sequence for each detection

method:

Threshold Slope

5-470 sec 4-490 sec
4-480 sec 6-495 sec

6-485 sec 3-510 sec

5-520 sec

As can be seen from this data, four additional votes are avail-

able from the slope detector to, in effect, enhance the fail-

ure decision process. This same argument can be repeated for

all Table XXIII entries where both simple threshold and slope

detection logic have generated a measurement failure sequence

for a particular fault. The pattern for each type of failure

would hopefully generate a simple decision set. One point that
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should be made is, the hard failure of an INS sensor (gyro

or accelerometer) dictates a failed INS. Therefore, the sim-

ple logic of declaring an INS failure vs. a specific INS com-

ponent is justified. In some cases (soft failures) the iso-

lation to a specific gyro or accelerometer could allow the

sensor to continue to operate if the additional error from 0

the soft failure could be compensated for in the filter struc-

ture (e.g., increasing the measurement noise strength, R).

For external aiding devices, the same argument as given O

in the previous paragraph holds. This simplifies the isola-

tion process where the desire for simplicity is a key issue.

The isolation capability of the processor demonstrate a

diversified decision table which decreases the ambiguities

and increases the probability of a correct isolation.

Table XXIV demonstrates a significant isolation capa-

bility for the satellite benign case with the only ambiguities

noted for the hard gyro failure isolation. However, once a

hard gyro failure of any kind has been noted, the INS has .

failed so isolation to a specific sensor is not necessarily

important. Table XXV contains the information for the satel- -

lite dynamic case. Although this is a significant reduction .

in capability, the isolation process for those failures that

were detectable had an enhanced failure isolation capability

vs. a single test of either type. P

Table XXVI contains the information for the benign Doppler.-

case. As can be seen from the table, ambiguity exists for the

hard gyro failure isolation capability. All other failures

5-27
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are distinct from each other. Table XXVII provides the data

, - for the dynamic Doppler detection isolation capability. Again,

. there is an ambiguity; however, this time it is for the soft

accelerometer failures. If one is willing to use a time-

to-failure declaration algorithm, then this ambiguity can be

removed. All other failures generated distinct failure se-

quences.

Table XXVII demonstrates a severe ambiguity problem for

the terrain correlator benign case. Ambiguities exist in

both soft accelerometer failures, soft and hard radar alti-

meter failures and hard baro-altimeter failures. The only

way to begin to overcome this problem would be a failure

growth rate test or some other form of test to isolate the

failures based on a single measurement failure. Table XXIX

which provides information for the dynamic terrain correlator

case, demonstrates ambiguity problems, also. Soft accelero-

meter failures, hard radar-altimeter failures, and hard baro-

altimeter failures had ambiguity problems. Again, some form

of time-to-failure parameter or growth rate test would aid

the isolation capability.

Table XXIII summarizes the combined failure detection

capability for this FDI processor. As demonstrated by this

table, all soft gyro failures (SGYl, SGY2, SGY3) were unde-

tected by the measurement processes (LF l thru LF#l2); there-

fore, some other failure detection methodology must be em-

ployed to discern failures of this type. Hard gyro failures

(HGY1, HGY2) were detectable by LF#4 thru LF#8 for the benign

5-28
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case. As seen in Tables XXIV and XXVI, HGYl and HGY2 fail-

ures were ambiguous in the particular failure sequence; how-

ever, the use of a time-between-failure test (e.g., the fail-

ure time between LF*7 and LF#8) could remove this ambiguity.

No hard gyro failures were observed in the dynamic case.

Table XXIII also demonstrates the fact that there are no

ambiguities for soft accelerometer failures (SACl, SAC2,

SAC3) in the benign case. A SAC1 failure is discernable

from a SAC2 failure because LF#6 detects a SAC2 failure but

does not detect the SAC1 failure. In the dynamic case, this

same argument holds except LF#5 detects a SAC2 failure but

does not detect a SAC1 failure. Hard accelerometer fail-

ures (HACl, HAC2, HAC3) did not produce any ambiguity prob-

lems for either the benign or dynamic case. This is evi-

0. denced by the results shown in Table XXIII and further re-

fined by Tables XXIV thru XXIX. The remaining failure types

shown in Table XXIII will not be addressed since they are

aiding device peculiar.

In summary, this analysis indicated an enhanced deci-

sion capability for the total (threshold and slope) FDI sys-

tem. However, ambiguity problems exist that need to be ad- - -.

dressed.
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Tacl'. C-ll B

Combined Failure Detection Capability

Simulated Satellite Doppler Terrain

Failure Detection Detection Correlator
Detection

3enign Dynamic Benign Dyna'mic Benign Dynamic

+NF +NF +Np +Np +N2 + NF
SGYI *NY *NF *NF *NP *NIF *NP

+NF +NF +NY +NF +N? +NF 0
3 GY *NF *NF *NF N _ *NF NF

+N? NF +N' +NF +Ni +:-
SGY3 *Nj' * *NF *NF *N' *NF

+4N56 +NF *7,8 +NF +NF +NF-
HGYl *N -PN ' *N 6'T :1 'H G I* F* N F * N P * N F 11.1 1 - - .

+4,5,6 +NF +7,8 +NF +-NP +N .
HGY2 *NF *NF *NP *NF *NP *%TF

+NF +NF +NP +N? +NF +NF
HGY3 *N? *NF *NP *N2 TI F *!F

+4,6 +s +7,8 +8 '10 -'.
SA'__ 5 *NF 8 '7 NF ' 11i 10"

+4,5 !+4 -7,8 +8 +10 +10 "
SAC2 *5,4 *5N *7 *NF 11,lO

0 oNF +NF +NF +NF +TF

SAC3 *NF *NF *NF *NF *NF *N?

4,5, 4,5 +7,8 +7,9 +10,11 10,11
HACI *4,6,3,5 *4,2 *8 "9.8.7 *0 *1-12" '-

+4,5 +4 +7,8 +7,8 +1C,1I +I
HAC2 6,4,5,3,2 2,5 "8,7 "9,8 _01 N_'

+3,4,5,6 +3,6 +7,9 4.8,9 +12 +1c
________ *,4,3,5, 2,5,6 *9 *NF *12011 *1-

,1,2,3 192,3
SSATF *6,2,1,3 *1,2,3,4 N/A N/A N/A N/A

+4,5,6 NF I -
_____ *5 N/A N/A N/A N/A
HSAT? 5 INF _ N/A ,

SDOP I/A I/A 8 ,9 I 7,,9 A
4,9 +8 -. -

D.P V)A /A F 1'9,7 N/A lN/A

+12 i12

SRA? /A /A N/A N/A *F *P
+12

HAF N/A I/A N/A N/A '?F

IBAF ,I/A .1/A NIA N/A **%IF -1F

+ magnitude whreshold v-olation; * slope failure declaration
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Table XXVI

Combined Failure Isolation Capability Doppler

Likelihood Functions (Benign Flight)

Failure Failure S2quence +=Thre.hc.. lope -

Simulated #1 #2 3 #4

HGYI LF 7+ 8+ ....

STime 490 495 ....

H GY2 L + I +

Time: 485 495 -- t --

.... I LF a+7,iSAC1 LF 17+ 8+*- , - .,

_i__ F 515 515 55 --

SAC2 ILF 8+ 7+ ....

4A Time 500 515 4- 515

HAC LF i7+ 7+ 8* --

_ _ _ Time 485 515 525 I ..

SF S 18+ 7+ 7* _-..

Time 475 485 495 515 .

,, , 0*-..

SDOP i ' "+ 7+, 9+ 7* I8* p"

-- ___ _ Ti.me, 470 475 495 . _00___i.

LP 7+ -- -- .1
I....,. I T i me 455 - -" '
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Table XXVIII

Combined Failure Isolation Capability For Terrain
Correlator Likelihood Functions

(Benign Flight)

Failure Failure Sequence (.mThreshold *=Slope
Simulated

________ #1 #2 #3 #4

10+ - --

SAMi
____ ____ ____ 495 - --

10+ - --

SAC2-
____ ____ ___ 495 - --

10+ 11+ 12* -

HACI
__________ 495 505 535 -

11C l+ 10+ 10* 11*

________ 475 495 535 540

12+ 12* 11* -

HAC 3
__________ 515 520 545 -

12+ - --

SnAP
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Table XIX

Combined Failure Detection Capability For Terrain
Correlator Likelihood Functions

(Dynamic Flight)

Failure Failure Sequence (+=Threshold *-Slope)
Simulated

_7_#1 #2 #3 #4

LF 10+ 1i* 10* --

Time 2715 2815 2845 --

LF 10+ 11* 10 --SAC2-
Time 2715 2820 2835 --

LF 10+ 1I* 11+ 12*
HAMi

Time 2715 2720 2725 2725

SHAC20+

Time 2715 .... .--

LF 10+ 10*
HAC3 -_:-_._ _

Time 2715 2765 ...--

LF 12+ ......
HRAF

Time 2650 ....

LF 12+ ......-
HBAF -2+

Time 2650 ..... --
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VI. Conclusions And Recommendations

Conclus ions

This thesis has dealt with the development of a suitable

filter model and failure detection/identification (FDI) pro-

cessor for and adaptive tactical navigation (ATN) system

model. A thorough review of the present FDI techniques was

conducted and, based on this information, an innovations-

based approach was selected. A likelihood function resid-

ual monitoring methodology was developed for the measure-

ment processes. Based on the characteristics of the observed

likelihood function values, a suitable failure detection

algorithm was developed. The observed failure "signature"

due to an introduced soft or hard failure was then tabu-

4 - lated to establish the basis for an isolation processor. -

The performance of the FDI processor provided a base-

line insight into its limitations and capabilities. The

processor, as it is presently implemented, lacks sensitivity

to gyro failures. This is due to the number of integrations

between the injected failure and the error state which is

present in the explicit measurement equation. The use of both

simple threshold settings and the slope detection methodology

in the failure detection processor provided generally accept-

able results. Suggestions for areas of future consideration

with respect to FDI methodology will be made in the Recom-

mendation section.

The filter model which was developed for this thesis

6-1
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resulted in a 26-state representation for a 52-state "truth"

model. The proper tuning of this filter presented some pro-

b-lems due to the model reduction for certain sensors. The

establishment of suitable values for the dynamic driving noise

strength, Q, and the measurement noise strength, R, warranted

the addition of pseudonoises to the position error states of

the INS to prevent divergence. The addition of this pseudo-

noise provided satisfactory performance but better perform-

ance may be achieved by readjustment of dynamic noise strengths

for other filter states.

The software development has now reached the point

where the isolation/identification algorithm can be imple-

mented.

Recommendations

The following recommendations are being made to improve

the overall performance of the FDI system and provide more

insight into the FDI methodology.

1.) The state reduction for the filter model results

in the addition of noise to compensate for un-

modeled error states for various sensors. Fur-

ther sensitivity studies should be conducted to

determine what practical changes may be necess-

ary to provide a filter that indeed contain the

states needed for proper operation. The evalu-

ation of the present filter suggests there may

be unmodeled states which affect the filter per-

formance (especially in a dynamic flight environment).

6-2
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2.) The present failure detector is based on simple

threshold surpassing and slope detecting cri-

teria. Other innovations-based detection schemes

are available which could be augmented with the

existing detection structure to establish a lower

rate of missed and/or false alarms, etc. One

such technique which was addressed in Chapter I

is the generalized likelihood ratio (GLR). This

method can be implemented easily since the quan-

tities are already available in the existing de-

tection software. Also, one could utilize tight-

er thresholds with time-to-failure declaration

plus looser thresholds with immediate delcaration

for tracking soft and hard failures, respectively.

Another method could utilize additional filters

for detection only. These filters are not updated

N-sample periods to enhance their failure sensi-

tivity. Further, one could implement a multiple

model filter in which specific failures are ex-

plicitly modeled in the filter structure.

3.) Further "tuning" needs to be accomplished on the

detection thresholds to develop a desirable trade

off between false and missed alarms. As part of

this "tuning" process, the detection window size,

N, should be evaluated and adjusted to maximize

the sensitivity of the likelihood function, but

constrained by the need to prevent trivial (no-

6-3
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failure) singularly large residuals from genera-

ting false alarms.

4.) The window adjustment for the slope detector also

has a sensitivity which must be adjusted to mini-

mize the false alarms/missed alarms. This adjust-

ment should also be considered for failure detec-

tion enhancement. Also, some form of algorithm

could be developed for adaptive window sizing

based on the dynamic environment. This in es-

sence allows sensitivity adjustment for failure

detection.

5.) The Monte Carlo process should be based on a

larger number of samples to generate statistics

which are more accurately representative of true

performance. The reason that only 10 samples were

used for this research was due to time constraints.

Increasing the number of Monte Carlo runs will un-

doubtedly require a retuning of the filter which

will even carry over to the threshold settings for

the likelihood functions. This retuning was pre-

viously addressed in (3).
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Appnx: Likelihood Function Plots

This appendix contains the plotted results for the various failures

K which were simulated. The information1 gathered from these plots support

the discussion presentedI in Chapter V.
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