
AfD-A 622 CN MEASUREMENT SYSTEM SOFTWARE SYSTEM MAINTENANCE 1/3
NANUAL(U) EG AND 6 WASHINGTON ANALYTICAL SERVICES
CENTER INC ALBUQJERGU. R NELSON ET AL. 82 APR 82

UNCLASSIFIED EG/G-AG-1435 DNA-6232F DNA81i-88-C-8298 NLEIIIIIIIIIIl
llhhlllllllll
IIIIIIIIIIIIIIfllflfl
IIIIIIIIIIIIII
IIIIIIIIIIIIII

Slflfllflfllfllfllflfl

IIIIIIIIIIIIII.

'j1

11 11.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A

0

S

---0

L °

DNA 6232F

N CW MEASUREMENT SYSTEM
• " N Software System Maintenance Manual

ID
__" EG&G Washington Analytical Services Center, Inc.

__ 2450 Alamo Avenue SE
Albuquerque, New Mexico 87106

2 April 1982

Final Report for Period 27 May 1980 -2 April 1982

CONTRACT No. DNA 001-80-C-0290

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B362080462 G52AAXEX40502 H2590D.

Prepared for DTIC
Director "IECTE

-. J.

\~MAR 22 19850..DEFENSE NUCLEAR AGENCY

0 Washington, DC 20305

IB

LA.

85 oa 06 007
0. , •

41-

Destroy this report when it is no longer
needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY,
ATTN: STTI, WASHINGTON, D.C. 20305, IF
YOUR ADDRESS IS INCORRECT, IF YOU WISH TO
BE DELETED FROM THE DISTRIBUTION LIST, ORa
IF THE ADDRESSEE IS NO LONGER EMPLOYED BY
YOUR ORGANIZATION.

-. _ . -. - . . : D :q .. - - L , . i . .- 2:. . . - . m i '

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (whlen Data Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
______ REPORT____DOCUMENTATION______PAGE_ BEFORECOMPLETINGFORM

DNA 6232R FUBE 2GVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (nd Subtltle) .TYEOF REPORT & PERIOD COVERED .
CW MEASUREMENT SYSTEM Final Report for Period
Software System Maintenance Manual 27 May 80-2 Apr 82

6. PERFORMING ORG. REPORT NUMBER

______________________________________AG- 14 35
7. AUTIHOR(s) S. CONTRACT OR GRANT NUMBER(s).

Rick Nelson DNA 001-80-C-0290 .
Pat Lindsey

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERSEG&G Washington Analytical Services Center, Inc.

2450 Alamo Avenue, SE Task G52AAXEX-40502
Albuquerque, New Mexico 87106
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE0

Director 2 April 1982
Defense Nuclear Agency 13. NUMBER OF PAGES
Washington, DC 20305 214
14. MONITORING AGENCY NAME &ADORESS(l different fromn Controlling Office) IS. SECURITY CLASS (of this report)

UNCLASSIFIED

ISa. DECLASSI FICATION/ DOWNGRADING
SCHEDULE________________________________N/A since UCSSIED

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the abstract entered In Block 20. it different from Report)

I1. SUPPLEMENTARY NOTES

This work was sponsored by the Defense Nuclear Agency
under RDT&E RTISS Code B362080462 G52AAXEX40502 II2b90D.

19 KEY WORDS (Continue on rewers& side it necessary and identify by block number)

PUP-11 Flecs FORTRAN Pseudo-Device
Software PCU Message
Firmware CW GPIB
Structured Programming Data Structure IEEE 488 Bus
EPROM Global Flag Logical Device
20 ABSTRACT (Continue an reverse side It necessary atnd identify by block number)

Manual for use by system engineers for maintenance of CWMS Upgrade software
system. Covers design details of PUP-11 software, and INTEL 8080 PCU software,
including system data structures, communication protocol, software module
descriptions, and description of coding practices and languages used to generate
the software.

DD JN, 3 1473 CDITION O I NOV 6S IS OBSOLETEUNLSIFE

SECURITY CLASSIFICATION OF THIS PAGE (1111en Data Entered)

A.UNCLASS IF IED

N. -

SECURISECURITYICLASSIFICATIONTOFS THIS(PAOn Dlan Data Endeue.)

., . . .- , • , o . . .

". "'A .. ' * . . . ' " .-. • "" '" ,. " '" .* ' ,-.; ' .' '- -... , "''' *.- -,-. .- L- .- ,-,. " ' . .' . . " -"-

7 7toTt d - .

CONVERSION FACTORS FOR U.S. CUSTOMARY

TO METRIC (SI) UNITS OF MEASUREMENT

To Convert From To klultiply Byl'

Angstrom meters cm) 1.000 000 X E -10 --

itosDhere normal) kilo pascal (kPa) 1.013 25 X E .2

Par kilo pasc*l (kPa) 1.000 000 X E -2

harn meter (m) 1.000 000 X E -28

3ritish thermal unit (thermochemical) joule (J) 1.054 330 X E -3

* : thermochemzcal, cm-5 mega joule/m "MJ,m') 4 134 900 K E -2

:alrie thermochemical)§ joule (J) 4.184 000

calarie .thermochemicall/gi joule per kilogram (J/kg)" 4.184 000 X .3

curiei giga becquerel (GBq)P 3.'00 000 X E -1

degree Celsius$ degree kelvin (K) t, - t*C : 73.15

Jezree angles radian (rad) 1.-45 329 x -2

Jeiree Fahrenhe:t degree kelvin (K) : < (:tF ' 459.67),1A

electron volti joule (J) 1.602 19 X F -19

erg§ joule (J) 1.000 000 x F --

ergsecond watt (W) 1.000 000 XE -

foot meter (m) 3.048 000 X E -1

foot-nound-force joule (J) 1.355 18

gallon U.S. liquid) meter3 (m) 3.85 412 X E -3

inch meter (m) 2.540 000 K E -2

,erk joule (J) 1.000 000 X E -9

,oule/kilogram (J/kg) (radiation
dose absorbed)i gray (Gv)" 1.000 000

kilotonsi terajoules 4.183

kip 0n,)O lbf) newton (N) 4.448 222 X E -3

ki inch ksi) kilo pascal (kPa) 6. 94 '57 X E .3 * ,.

ktao newton-second/m -N-s /m') 1.000 000 X E .2

i ron meter (m) 1.000 000 X E -6

,ii meter fm) 2.540 000 X E -s

mile international) meter (m) 1.609 344 X E -3

ounce kilogram (kg) 2.834 952 X E -2

nound-force (lbf avoirdupois) newton (N) 4.148 22

oound-force inch newton-meter (N-m) 1.129 848 X E -1

pound-frce inch newton/meter (N/m) 1.751 268 K E -2

pound-force/foot" kilo pascal (kPa) 4.788 026 X E -2

oound-force,inch (psi) kilo pascal (kPa) 6.894 -57

wound-mass Ibm avoirdupois) kilogram (kg) 4.535 924 X E -1, ,,

oound--,si-foor " moment of inertia) kilogram-meter (k -'m
"

4.214 O l K E -2

oound-mass foot' kilogram-meter (kV/I 1.b01 84b X E --1

tad radiation Jose absorbedl§ gray (Gy)* 1.000 000 8 F -E

r*oenr en 3 coulomb/kilogram CA g) 2.3 9 "60 8 -

e second 's) F. 0 ' 0 8 F -4

a kilogram (kg) 1.459 390 X E -1

rr n .i)' Z . kilo pascal kPa) 1.333 22 X E -1 F l

~Avvliablty Codes

Dist SpeciaIl

7". - -

TABLE OF CONTENTS

Section Page

CONVERSION FACTORS FOR U.S. CUSTOMARY TO

METRIC (SI) UNITS OF MEASUREMENT 1

SYSTEM OVERVIEW 7

2 DATA COLLECTION MODULES 11 -,

2-1 INPUT TASK ('INPUT') 11

2-2 CORRECTIONS AND BUFFERING TASK

('CORECT') 12

2-3 CRT DISPLAY TASK ('CRT') 19

2-4 INVERS. TASK ('INVERS') 24

2-5 HAARD COPY PLOTTING TASKS ('NHCPLT' AND

('NPSPLR') 32

2-6 TAPE OUTPUT TASKS ('STRTTP' AND

'TPWRTR') 33

2-7 DISK SAVE TASK ('ANLSAV') 34

2-8 SET UP THE DATA LINKS TASK ('ODL') 34

2-9 MISSION FILENAME TASK ('MISNAM') 34

2-10 PROM PROGRAMMING TASKS ('DEL AND AMPL') 35

2-11 ANALYTIC PROBE CALIBRATION TASK

('APROBE') 36

2-11.1 Background Discussion 35

2-11.2 Operation 37

2-12 INPUT WAVEFORM AND BUTTERWORTH FILTER -

TASK (THRTWV') 38

3 INTERACTIVE ANALYST PACKAGE 40

3-1 INTRODUCTION 40

3-2 COMMAND STRING PROCESSOR 44

3-3 ADD, MUL, DIV AND SUB 45..4

3-4 ADD HEADER PROCESS (AHD) 46

3-5 ANL 47

3-6 CTP 47

3-7 CVT 50

3-8 DED 52

3-9 FTR 55

2

TABLE OF CONTENTS (CONTINUED)

Section Page

3-10 ITR 55

3-11 LHD 56

3-12 LON AND LOF... 56

3-13 MISo 57

3-14 TPC 58

4 SYSTEM DATA STRUCTURES AND GLOBAL VARIABLES.. 59

4-1 INTRODUCTION 59

4-2 FILE STRUCTURES- 59

4-2.1 Operating System Constructs..... 59

4-2.1.1 UPD'S and UIC's 59

4-2.1.2 Filenames 62

4-2.1.3 Logical Units.......... 63

4-2.1.4 Pseudo- and Logical-

Devices 64

4-2.2 Disk and Disk .File Organization. 65

4-2.3 Locally Defined Disk File Struc-

tures..... 66

4-2.3.1 MENU Files 66

4-2.3.2 Data Files 71

4-2.3.3 Calibration Files....... 76

4-2.3.4 Threat Waveform Files.. 78

4-3 MESSAGE STRUCTURES 78

4-3.1 Panel Data Block (PDB) Struc-

tures... 79

4-3.2 Data Block Structures 80

* 4-3.3 Error Status Block (ESB) Struc-
t ures............................. 85

4-4 GLOBAL FLAGS 86

4-5 OTHER SOFTWARE SYSTEM STRUCTURES 98

* 4-5.1 Output Cassette File Structures. 88

4-5.2 Frequency Table Entries......... 90

4-6 1-DISK OPERATION 91

4-7 TERMINAL PORT ASSIGNMENTS- 92

3

3 - -

.%.*

TABLE OF CONTENTS (CONTINUED)

Section Page

5 OPERATING SYSTEM SUPPORT PROGRAMS 93

5-1 GENERAL 93

5-2 RSX-11M 93

5-3 THE EDITOR (EDT) 94

5-4 FORTRAN IV PLUS (F4P) 94

5-5 TASK BUILDER (TKB) 94

5-6 PERIPHERAL INTERCHANGE PROGRAM (PIP)... 95

5-7 MONITOR CONSOLE ROUTINE (MCR) 95

5-8 FILE DUMP UTILITY PROGRAM (DMP) 95

5-9 THE DISK INTEGRITY CHECKING UTILITY

(BAD) 95

5-10 DISK SAVE AND COMPRESS UTILITY (DSC)... 95

6 SOFTWARE DEVELOPMENT............................. 96

6-1 SYSTEM PROGRAM DESIGN LANGUAGE (PDL)... 96

6-2 PDL CONSTRUCTS 99

6-2.1 IF-THEN-ELSE Statement (See

Figure 6-1)................ 99

6-2.2 FOR Statement (See Figure 6-2).. 100

6-2.3 REPEAT Statement (See Figure

6-3) 101

6-2.4 WHILE Statement (See Figure 6-4) 102

6-2.5 CASE Statement (See Figure 6-5). 103

6-2.6 PROCEDURE Statement (See Figure

6-6)............................. 104

6-2.7 PROGRAM Statement (See Figure0I
6-7)... o .ooooooo........105

6-3 PDL UTILITY PROGRAMS........... 106

6-3.1 IPDL - Ident PDLs.. 109

6-4 CONVERTING PDLs to FLECS STATEMENTS-. 109

6-4.1 IF-THEN-ELSE............. 112

6-4.2 REPEAT-UNTIL 112

6-4.3 WHILE-DO 113

6-4.4 FOR 113
66-4.5 CASE..... . . .113-|

--4e • ~ s ooooooooe oo . oeeoo oo eo. 1

4

TABLE OF CONTENTS (CONTINUED)

Section Page

6-4.6 PROCEDURES 114

6-4.6.1 Procedure-names 114

6-4.6.2 Procedure Declaration.. 115

7 CONTINUOUS WAVE MEASUREMENT SYSTEM 117
7-1 INTRODUCTION 117

7-2 MAJOR FUNCTIONS 117

7-3 PROGRAM ARCHITECTURE 118

7-4 OPERATING MODES 118

7-4.1 Manual Mode 118

7-4.2 Semi-Automatic Operation 119

7-4.3 Automatic Operation 121

7-5 SINGLE CYCLE/MULTI-CYCLE TESTS 123
7-5.1 Single Cycle Test 123

7-5.2 Multi-Cycle Test 123

7-6 SYSTEM CONFIGURATIONS 124

7-6.1 Primary Cnfigurations...........124

7-6.2 Secniary Configurations 125

7-6.3 Tertiary Configuations 125

8 DESCRIPTION OF MAJOR ROUTINES... 126

8-1 INITIALIZATION 126

8-1.1 Reset Operation 12C

8-2 TEST CONFIGURATION 127

8-2.1 PINIT Operation 127

8-3 TEST CONTROL 128

8-3.1 CWTEST Operation 128

8-4 DATA ACQUISITION AND TRANSMISSION 129

8-4.1 SYSTEP Operation 129

8-5 GPIB INSTRUMENTS 130

8-5.1 PCU/GPIB Electrical Interface... 130

8-5.2 PCU-GPIB Command Interface 130

8-5.3 PCU/ZT-80 Communications 131

8-5.4 Typical PCU/ZT-80 Interface 132

9 UTILITY ROUTINES 133

5 '
'; -, .;.- 2 , " ." --- ','i2 i .--. -, ...-.. , .

• ,

TABLE OF CONTENTS (CONTINUED)

Section Page

10 BRIEF DESCRIPTION OF CWMS PCU ROUTINES 134

Appendix Page

A PERIPHERAL INTERCHANGE PROGRAM A-I

B EXAMPLE OF RSX-IIM SYSTEM GENERATION B-I

C FLEC'S USERS MANUAL C-i

D DEFINITION OF PUBLIC VARIABLES D-1

E SUBMIT FILE FOR LINK/LOCATE WITH CODE IN ROM. E-I

F SUBMIT FILE FOR EMULATION WITH CODE IN ROM.. F-i

G SUBMIT FILE FOR LINK/LOCATE WITH CODE IN RAM. G-1

H SUBMIT FILE FOR EMULATION WITH CODE IN RAM... H-i

I VALIDATION OF THE FORWARD AND INVERSE FOURIER

TRANSFORMS USED BY THE CW MEASUREMENT SYSTEM. I-i

LIST OF ILLUSTRATIONS

Figure Page

i-i Software System Flow Diagram 9

2-1 Test Network Configuration 15

2-2 Probe Calibratipn Configuratior 18

2-3 Example of Out-of-Range Point Interpolation.. 23

2-4 The Approximating Function g(w) 28

2-5 Derivative of g(&j) 29

2-6 Transfer Function Amplitude and Phase of

Analytic Probe with Int.egrator................ 37

2-7 Amplitude of Transformed Input Wave 39

6-1 Flowchart of the IF-THEN-ELSE Construct 99

6-2 Flowchart of FOR Construct 100

6-3 Flowchart of REPEAT Construct 101

6-4 Flowchart of WHILE Construct 102

6-5 Flowchart of CASEOF Construct 103

6-6 Flowchart of PROCEDURE Construct 104

6-7 Flowchart of PROGRAM Construct 105

6-8 Low-Level PDL Example Before Formatting 107

6-9 Low-Level PDL Example After Formatting 108

6

- ...-.-

SECTION 1

SY3TEM OVERVIEW

The CW Measurement Data Acquisition System is a real-

time, multi-task, event driven software system using the Digital

Equipment Corp's RSX-IIM real-time operating system and software

produced by EG&G WASC Albuquerque Operation Systems Group. The
operating system is documented by DEC in manuals supplied with

the sy,3tem. This documunt describes the application software

written by EG&G.

The CW Measurement System consists of two basic

s ctions: the cw generation and measurement subsystem built by

Boeing and modified by EG&G, and the Data Acquisition subsystem

consisting of a DEC PDP-lI/34A, two RL01 disk drives, an

HP-2648A operator's console and other associated hardware. The

data detected by the measurement subsystem receiver are

transmitted to the PDP-11 via an RS-232 data link as 36-byte

data records. These data are then processed in real-time; the

instrumentation and sensor effects are corrected, the data are

displayed on the operator's console and, optionally, saved on

cassette or disk for future processing and archival storage.

The software system includes the following:

Data input task, which receives data from the

measurement subsystem and sends it to the correc-

tions task.

0 Corrections and buffering task, which spools the raw

data received from the input task. As data are

received and time allows, the data are despooled,

sensor and instrumentation corrections are applied,

and the data are dispatched to the other system

tasks.

* Operator Console Monitor task (CRT) , which handles

the interface between the operator and the system.

It prompts the operator for information concerninj

the test, and controls the graphic display.

7
V.q

V.. -

S.. ..- ,. . . .-. . -

'.~ U

* Inverse Fourier transforin task, waich converts data

from the frequency domain into tne time domain,

applying the operator-selected Butterworth filter

threat waveform in the process.

* Hard-Copy plot task, which plots the corrected data

on the flatbed digital plotter, if requested.

* Tape task, which writes corrected and transformed

data to tape for storage and/or future processing,

if requested.

* Disk-Save task, which writes the requested data do-

mains to the disk for storage for future processing.

* Setup the remote data links task, which controls the

optical data links and VHF switch.

0 Name the mission file task, which allows the opera-

tor to request an old mission file or create a new

one.

These tasks communicate with each other by event 'lags

and system messages. Each task processes data as it arrives, at

its own speed, asynchronously. Figure 1-1 represents the task

architecture.

The CW Measurement Data Acquisition System includes a

number of programs which may be run either offline or concur-

rently with data acquisition if a second terminal is available.

These programs form the Interactive Analyst Package and enable

a data analyst to perform mathematical operations on data, to

* plot, list, scale and transform data, to edit data files, to

list the contents of file headers, to add headers to data files,

to list the contents of the mission file and to initialize

tapes, copy data from tape to disk and disk to tape.

The system also contains a number of stand-alone

utility programs for use in supporting the various facilities of

the system. These include:

* Analytic probe calibration task. This task gen-

erates a probe calibration file for B-dot type

sensors.

8

0 _j

(0 UJ'.
N > 0

00(.~zZ

o-)

021

U) 0 N 39

LU~~U Z.>Zu

LLI-

> >)
C) I.- 3
(A 4 4

Z==!)9a
U5 LL L-T- U)9

-C6 -

0 Threat waveform task. This task generates threat

waveform files. The values for a and 1 describing
the threat waveform and the high-frequency and low- :7

frequency cutoff points of a ninth order Butterworth

filter are specified by the operator.

* Delete frequency EPROM task. Burns EPROMs which

contain frequencies to be deleted from the CW

spectrum during measurements.

0 Amplitude control EPROM task. Burns EPROMs which

control the power output of the transmitter power

amplifier during a test.

The design of these tasks is described by Program

Design Language (PDLs). PDLs are described fully in Section 5

of this manual. The PDLs for these tasks are contained in
Section 1 of the Listings Manual.

Section 2 of this manual contains a description of all

the tasks in the data collection system, along with details of

data structures used by each task, and the files generated ir ..-

used by each. Section 3 describes the Interactive Analyst Pack-

age software. Section 4 describes the system data structures

and global variables. Section 5 describes the software develop-

ment tools used and Section 6 describes the RSX-11M environment .

and support programs. Sections 7 and 8 relate to the Boeing

Continuous Wave Measurement Subsystem (CWMS) . Section 7

describes the function of the Program Control Unit (CPU) and

Section 8 describes the software modules in the PCU firmware.

* I
10

• , h..

SECTION 2

DATA COLLECTION MODULES

2.1 INPUT TASK ('INPUT')

Tne data input task, INPUT, receives data from the

receiver program control unit (or the MFE tape unit) and sends

the data to the corrections task, CORECT, for spooling and dis-

tribution. This task is small and fast in comparison to other

tasks within the system. Since it is required that the task

have "immediate" turnaround of a received data record, it

operates at the highest priority of all tasks in the software

subsystem. This allows INPUT to process the data from the

receiver PCU as soon as it arrives and to immediately start

another read, insuring that no data are lost.

The task issues RSX-11M QIO directives to read the data

from the PCU. INPUT maintains two data buffers. When a record

from the PCU is received, control is passed to INPUT by the

RSX-11M system. INPUT then starts the read-and-proceed QIO

directive with the inactive buffer, and processes the data in

the active buffer (the buffer which the last read accessed).

When a data record arrives, the first byte of the

record is read to determine the record type. (See paragrah 4-3

for the particulars of the PCU record formats.) Data are then

extracted from the record and placed into messages which are

sent to CORECT via the RSX-11M Send Message directive. There

are three types of PCU records. One type is the Panel Data

Block (PDB) record containing information about the receiver PCU

front panel switch settings. The second record type is the Data

record containing raw data for spooling and reduction. The

tihird is the Error Status Block record containing an error code

for an error sensed by the receiver PCU. Each record type is

formatted differently. INPUT extracts the information and

formats a message (or multiple messages when the record contains

more data tnan can be packed into a single message) to send to

CORECT. If this is completed before the read-and-proceed QIO

11 i

4_ Aw
.. o]

* issued earlier, the task waits for the read to complete, freeing

the PDP-li so other tasKs can execute.

When the PCU sends an end-of-sweep Data record,

indicating the completion of a cycle, INPUT decrements a counter

which was initially set to the number of measurement cycles

contained in the panel data block. When the counter reaches 0,

the task goes to end-of-task. This allows INPUT to read data

which were previously recorded on cassette in the 'secondary'

configuration. If the tape cassette was previously written

upon, it may have extraneous data following the measurement.

The shut-off feature insures that this data are not read into

the system.

2-2 CORRECTIONS AND BUFFERING TASK ('CORECT')

CORECT accepts raw data from the input task ('INPUT')

and writes it to disk. The raw data are then read and processed

asynchronously with the other tasks. When the data are read,

CORECT applies corrections to it and spools the corrected data;

then dispatches the corrected data to the CRT task for plotting

and to the Inverse Transform task. CORECT controls up to seven

disk files which contain system and probe calibration data, raw

data and corrected data.

Internally, the task is in five parts. Each part is

• invoked by sensing an event flag, set either by another task or

o by CORECT itself. The task waits for one of these flags to be

set, then enters the appropriate section of code. The flags

signal one of the following events:

a Correction Data the raw data input task

Available has sent a data item to

CORECT.

* CRT Waiting for Data CRT is waiting for

corrected data.

* Inverse Waiting for the Inverse Transform task

Data is waiting for correctad
data.

120]

* . .._..* .~. 2

.

* Primary Menu Ready CRT is signaling that the

primary menu entries are

correct.

* Raw Data Waiting for there is data in the raw

Correction data file ready for cor-

rections (this flag is

controlled by CORECT it-

self).

When corrected data are requested by CRT or INVERS,

CORECT reads the next data point from the corrections file and

dispatches it to the requester using the Send Message facility

of RSX-1lM, and signals the requester by setting a global event

flag. When the INPUT task signals it has raw data to correct,

CORECT invokes the Receive Message facility of RSX-11M and

writes the data. The Primary Menu Ready flag causes CORECT to

open the primary menu file, extract the information it needs and

close the file. The Raw Data Waiting for Correction flag is set
when raw data are received from INPUT, and is reset when the raw

data file is empty. An abort flag is also used to signal error

conditions from which there is no recovery. Setting the abort

flag causes all tasks in the system to go to end-of-task

immediately.

The files used by CORECT are all kept in UFD (200,1].

(See the RSX-11M System Documentation Manual IA, the section

entitled 'EXECUTIVE' for a discussion of UFDs and UICs, also

refer to paragraph 4-2.1.1.) Volume SY: contains all system and

sensor calibration files, the menu files, and a composite
.4 correction file built whenever a multicycle test is performed to

save computation time. Volume CD: (the Classified data disk;

normally mounted on DLl:) contains the raw data file and the

corrected data file. All files are direct access, unformatted

files. Except for the menu files, which are discussed in the

next section, and the inverse transform file, all files contain

12 byte records. These records are subdivided into three fields

which contain the frequency, amplitude (in dB), and phase (in

degrees) respectively in internal single precision floating

13

" '~~~~~~~~~~~~~~~~~....'-....-i. ".......... .-"......... .. .,.".- - .• - ''-' ' ""''"--. ."'"'""' '' ,,

A

point format. For measurements which do not contain phase

information, the phase field is set to 0.

The names of the files used by CORECT are:

* MENU.PRI primary menu file

0 CORECT.DAT corrected data file

. RAWDATA.TMP input spool file

* ACOMP.TMP composite correct file for use

in multicycle tests

- SYSTF.CAL system calibration file for

transfer function measurements

* SYSRF.CAL system calibration file for

response function measurements

* XXXXXX.CAL sensor calibration file where

XXXXXX is the name (up to nine

characters) of the sensor as

entered in the primary menu

The equations for the corrections are derived from the

previous cw data reduction work done by EG&G. These equations

assume a measurement system similar to that used here.

The equation used for amplitude correction is:

Corrected Ampl. = K a(Smeas - Ra) + REFGAIN - SIGGAIN

+ RPROBE - SPROBE + NADR - SCAL (I)

where

a = conversion factor from millivolts to dB for the

network analyzer (here, Ka = .02)

Smeas-Rmeas = transfer function in millivolts of the signals

sensed at the reference and the signal channels.

In effect, this difference is the raw data

received by the corrections task.

REFGAIN = Signed gain added to the reference channel.

3IGGAIN = Signed gain added to the signal channel.

RPROBE = reference sensor transfer function.

SPROBE = signal probe transfer function.

NADR = network analyzer display reference in dB (set

on front panel of network analyzer).

14

" ." . * .. ., * L.]. . . - . ,

SCAL = transfer function of system instrumentation

exclusive of sensors (probes) and externally

introduced gains or attenuations (i.e., the

system cal).

This equation is derived from examination of the system

setup as diagramed in Figure 2-1

RPRO BE REFGAIN REDLA R 1 -1e ".-..

SIGNAL NETWORK

SOURCE ANALYZER

Figure 2-1. Test Network Configuration

The output of the network analyzer in dB is:

K a(Smeas - Rm) = S + SPROBE + SIGGAIN + SIMDELAY + So (2)

R + RPROBE - REFGAIN - REFDELAY - Ro

where S is the signal at the signal source into the signal

channel, R is the signal at the signal source into the reference

channel. SIGDELAY and REFDELAY are assumed to have transfer

functions of 0 dB and 0 degree phase distortion. So and R9 are

the effects of instrumentation in each channel.

The transfer function of the signal source is S-R, so

regrouping, and solving for (S-R) one gets:
IS-R) = K (S - Re) - SIGGAIN - SPROBE -0 + REFGAIN +

a meas meas (3)

RPROBE + 0 - (S0- R0)

the Os in the above equation are the effects of SIGDELAY and

REFDELAY. The quantity (S - R0) is the transfer function of

the effects of instrumentation on the system exclusive of

sensors or external gain added. This quantity is called SCAL,

the system calibration transfer function. Reducing the above

equation becomes:

15

-S • "'," " ., -.. --- --.-, - - : . - " .' , , : ..-.-." , : ."

(S - R) = Ka (S meas- R meas) + REFGAIN - SIGGAIN + RPROBE

- SPROBE - SCAL
(4)

The network analyzer can scale its output so that its 80 dB

dynamic range brackets the data. Changes in this value changes

(Smeas - Rmeas) by a value equal in magnitude but of opposite

sign. rherefore, adding this value, one gets the original

equation:

(S - R) = K a(meas - Rm) + REFGAIN - SIGGAIN + RPROBE - SPROBE

+ NADR - SCAL (5)

A similar derivation applies to the phase. Note that the phase

of any gains in either channel are 0. The equation used for

phase correction is:

Corrected Phase = K (PS - DR) + PHRPROBE - PHSPROBEmeas meas (6)

- PHCAL

where

Ko conversion factor from millivolts to degrees

for the network analyzer (here K= .1)

PS meas-PR meas= Phase in millivolts of signals sensed at the

reference and signal channels. This value is

the raw phase data received by the corrections

task.

PHRPROBE = reference probe phase

PHSPROBE = signal probe phase

PHCAL = phase of instrumentation exclusive of probes,

amplifiers or attenuators. This is the phase

of the system.
0 Again, consider Figure 2-1. The phase output of the network

analyzer is:

KO(PS meas- PRmeas) =S + PHSPROBE + PHSGAIN + PHSDEL +0
(7)

-O R - PHRPROBE - PHRGAIN - PHRDEL +ORO

16

where

PHSGAIN = phase of the signal gain = 0 as noted above

PHRGAIN = phase of reference channel gain = 0 as noted

above

PHSDEL, PHRDEL = Phase of reference and signal delays. These

are both zero due to the fact that on this

system delays will be introduced by extra

cabling, which, in and of itself, has phase 0.

0,R = phase of the signal source at the signal and

reference channels, respectively.

Since (0 S- OR) is what we want, by substituting and regrouping

one can get

0 = (OS - OR) = KO(PSmeas - PRmeas) - PHSPROBE -0 - 0 + PHRPROBE

+0 +0 - (0 - ORO) (8)

The quantity (OS- OR) is the phase of the system exclusive of

probes, gains, delays, etc., it is, in fact, the phase of the

system cal, otherwise known as PHCAL. So reducing, one gets

(OS -O0) - K (PS meas- PR meas) - PHSPROBE + PHRPROBE - PHCAL (9)

To do a system cal, the reference and signal sensors

are removed from the configuration, i.e., RPROBE, SPROBE,

. PHRPROBE, and PHSPROBE are removed from the respective

equations. Therefore, solving these equations for SCA. and

PHCAL, one gets:
0

SCAL = Ka(Smeas - R meas) - REFGAIN - SIGGAIN + NADR (10)

and
PHCAL = -(PSmeas PRm) (11)

To calibrate a probe, the reference probe is removed from the

system - that is the signal is run thru the system as shown in

Figure 2-2.

1
I% i L 17 .[

S -mr

mA
Power

SIGNAL IN REFGAIN EFDELA- R - -oRef

NETWORK

11 1 1;;;jjANALYZER

SROBE
4

Figure 2-2. Probe Calibration Configuration

Solving for SPROBE and going through the aforementioned -j

T S

derivations, one gets:

SPROBE = Ka (Smeas - R meas) + REFGAIN - SGAIN + NADR - SCAL (12)

and 2
PHSPROBE = KO(PS meas - PRmeas) - PHCAL (13)

When a multicycle test sequence is run, a signal-to-

noise ratio calculation is made. This calculation represents

the ratio of the ambient noise at the test point to the signal

plus the ambient noise at the test point. The ambient noise

measurement is the ratio of the signal at the test point to a I
zonstant reference level, provided by the reference synthesizer

in the CWII system. This can be abbreviated to

SN
Na N or SN - K in dB

and the signal-plus-ambient noise at the test point, which is

the ratio of the signal at the test point to the signal received

at the reference sensor, can be abbreviated

St 1Sa = -REF ,or S - SRE F in dBSa SE F REF

This is the test measurement. What is wanted is the ratio of St
to 3 N,

St
SS =- , or S -S in dB

NR S N t N1

18

l-.

When an ambient noise measurement is taken, K(is the value for

reference gain added in the primary menu. In order to calculate

SREF, a special measurement known as a reference sensor cali-

bration is made. This is done whenever the test configuration

is changed, or on some similarly frequent schedule. This

measurement is the ratio of the signal detected at the reference

sensor to a constant (K 2) reference level, again provided by the

reference synthesizer. This can be abbreviated

S
S REF -K indB
b 2 orSREF 2

K2 is the reference gain added from the primary menu when this

measurement is taken, and is saved for the signal-to-noise

calibration.

Now, we have (SN-K) , (St-SREF) and (SREFK2) , or N,

Sa, and Sb, and we have saved the constant values K and K2 .

S +S -N (S S +(S K
a b a t - SREF) + (SREF - K2) - (SN - K)

S t - SN - K2 + K

S -S S + S -N + K -Kt N a b a 2

The reference sensor calibration is saved on SY: in

UIC[200,1]. The filename is RFSNS.CAL. The ambient noise and

test data are extracted from the first and second parts of the

corrected data file (CD: [200,1] CORECT.DAT) . The reference

sensor calibration reference gain constant is saved in record 23

of the primary menu file, and the ambient noise reference gain

constant is extracted from record nine of the primary menu file. ..-

2-3 CRT DISPLAY TASK ('CRT')

CRT provides the interface between the operator and the

system. The program is run by the initialization indirect

oonmanu file, but is inactive until it receives a data block

from CORECT.

19

. .. ,- - - ----...---'-.." .-.

Initially, a data block is received which contains a

description of the front panel settings of the measurement

system (a panel data block). The information consists of the

test type (TFA, TFC, etc.), the decade switch settings and the

cycle number. The test type indicates to the CRT task whether

phase data were taken. The decade switch settings are used to

determine which decades contain measurement data so the CRT

graph can be drawn accordingly, and how many points will be in

each decade. These are decoded as A = 0, B = 25, C = 50, D =

*I 100, E = 250, F = 500, and G = 1000.

Next, the operator is prompted for the types of plots

to be displayed. Ambient noise, pick-up noise, amplitude and

phase plots can be overlaid. At this time, CRT requests the

IEEE-488 control task and suspends itself. The IEEE control

task, ODL, checks for the presence of an IEC-1IA bus controller

*" module. If the IEC-11A status is good, ODL proceeds to validate

the contents of the IEEE-488 device control menu. After the

menu entries are validated, ODL issues bus commands to set the

selected devices, verifies the settings, resumes CRT and sus-

pends itself.

The primary and secondary menu entries are then veri-

fied and changed if necessary. The primary menu entries are

displayed first. If approved, the program continues with the

secondary menu. Otherwise, the operator is prompted for new . -

entries to the menu.

The secondary menu entries are displayed. Again, the

old entries are displayed and if not approved the operator is

prompted fur new entries.

When the menu processing is completed, the CRT graphics

parameters are set to their default values. This is accom-

plished with the escape sequence '<ESC>*mR'. These values are

shown in Table 2-1.

Next, the axes are drawn according to which plots were

re2quested for the frequency scale, which decades contain data. I
The screen unit coordinates for the corners of the graph are

always (49,119), (669,119), (669,335), and (49, 335). The phase

alwas (4,11) , 669,19)20

Table 2-i. Default HP-2648A graphics parameters

Parameter Default Value

Pen Condition up

Line Type 1 (solid)

Drawing Mode set

Relocatable Origin 0,0

Text Size 1

Text Direction 1

Text Origin 1 (left, bottom

justified)

Text Slant 0 (off)

Graphics Text off

Graphics Video on

Alphanumeric Video on

Graphics Cursor off

Alphanumeric Cursor on

Rubber Band Line off

Zoom off

Zoom Size 1

Autoplot off

Autoplot Menu clear

Compatibility Mode

Page Full Straps 0 (out)

GIN Strap 0 (CR only)

labels appear on the right y axis and are always the same. The

Eimplitude axis (the left y axis) is labeled according to .e

value of the mid-range line. This is calculated by the

following equation:

MID (dB) -GS + GR + NADR - RV + RV (14)s r

21
Im

[. .'

wh z!r -3

GS = Signal Gain added

GR = Reference Gain added

NADR = Network Analyzer Display Reference

RVs = Representative Value of Signal Probe Calibration

RVr = Representative Value of Reference Probe

Calibration

The values GS, GR and NADR are taken from the ienu

entries made by the operator. The values RVs and RVr are taken

from the probe calibration files specified by the Signal Probe

and Reference Probe menu entries. These files are opened and a

representative amplitude value extracted from each. This is

done to insure that the effect of applying corrections from

these files does not force the plot off scale. The computed

mid-line value is then saved in the primary menu file. The

amplitude scale for the plot is +40 dB from the mid-line value.

When the axes have been drawn and labeled, a legend is

written below the graph which describes the test being run.

A global flag is set to inaicate that CRT is now ready

to accept data from CORECT. The points to be plotted are

teceived by CRT one at a time in twelve byte records each

containing a frequency, an amplitude and a phase value.

Frequency values are converted to screen units by the

following equation:

(Lgl0 (last frequency point) + Logl0 10- 6

Logr0 (maximum frequency value) (15)

Logl0 (minimum frequency value)Ix (669 - 49) +49 + .5

Logl0 (minimum frequency value)]

Phase values are converted to screen units, if a phase

plot was requested, using the following equation:

PHS = I((Last phase value) (-180 ((335 - 119) + .5 + 119
~((Last90. (l0)((180.9-.180.)) +()

/ 90. (6

22
0

* .- . . *--.--.**° -

Amplitude values are converted to screen units using the

following equation:

SVLast amplitude value) - (minimum dB value) 335 - 119Amp= 10. 8.

+ .5 + 119. (17)

As each phase point is plotted, it is saved as the last point

- and a line is drawn from it to the new point after it has been

I' converted to screen units.

Before an amplitude point is plotted it is checked to

see if the screen value falls outside of the axes lines (top or - -

bottom). If so, a calculation is made to find the point of

intersection, with the axis, between the point in bounds and the

point out of bounds. The line is drawn between the point in

bounds and the point of intersection. This is also the case in

drawing from a point out of bounds to a point in bounds. Figure

2-3 illustrates this feature.

Figure 2-3. Example of Out-of-Range Point Interpolation

*Lines between all points are solid. To differentiate

between the lines, a symbol unique to the type of plot will be

printed at evenly spaced intervals. The symbols used will be:

A - Ambient noise line

* P - Pickup noise line

M - Amplitude line

F - Phase line

Should a test be aborted for any reason, a message will

be displayed on the CRT screen indicating to the operator the

23

reason for aborting. The reason will be displayed as a code

number which is described in Appendix A of the Operating Manual.

2-4 INVERSE TASK ('INVERS')

INVERS generates an inverse Fourier transform of the

frequency domain data acquired by the measurement subsystem. '

The method used is a variation of the Guillemin Impulse Train

method and will be discussed in greater detail later. The

inverse transform also folds in a Threat waveform and a ninth

order Butterworth filter. The resulting time domain waveform

contains all three above-mentioned components.

DNVERS is event-driven and executes asynchronously with

the other data acquisition tasks. The task is compute bound,

and runs at a low priority (49). The task is activated by

CORECT which sends INVERS a message via a send message

directive. This message contains either a panel data block

(PDB) or an end-of-data message. The PDB message indicates the

start of an inverse transform, whereas an end-of-data message

indicates that no transform is to be calculated. To generate an

inverse transform, the task must retrieve from the primary menu

file the name of the Th reat waveform file selected by the

operator, the maximum time domain value and the B-field to

E-field conversion factor. The points in the time domain to

which the inverse is generated are then selected, the selected

threat waveform file is opened and CORECT is signalled that

INVERS is ready for data. Data are transferred from CORECT to

INVERS via RSX-11M Send/Receive directives using global flags to

signal when INVERS is ready and when CORECT has sent data. This

allows asynchronous operation of both tasks.

*hnen the inverse transform is completed, the Parseval
ener ies , 0Oenrs ff(t)1 2 dt and 2tIF(c)I 2 dw

-~ O

are calculated for the time and frequency curves, respectively.

Since the square of a straight line is a hyperbola, a hyperbolic

24
* I

- *..*

77 --7- -

rather than trapezoidal integration method is used. The results

are compared using the standard error formula

X - Y -x + Y
and Parseval values and the ratio are stored in the primary

menu. Then the file, CD: (200,1]INVERS.DAT;l, is created and the

time domain data are written to it as eight-byte records

containing two floating point numbers. Each record consists of

a time value in seconds and an amplitude point. There are

always 512 records in INVERS.DAT.

When INVERS finishes, it waits for two global event

flags. One indicates that CORECT is finished and the other

indicates that CRT is done. When both of these flags are set,

all front-end processing is complete and the data are ready for

post processing. The following operations are performed at this

time:

0 The operator is asked if a hard copy plot is desired

and to enter a comment text.

* ODL is resumed and turns off all the ODL-5Bs. Then

it terminates, releasing the IEEE-488 bus. When the

bus is released, all the other devices on the bus go

to front panel or standby operation.

* An entry is made in the mission file.

0 The operator is prompted to determine which files

are to be saved on tape and disk. The hard copy

plots and tape files are spooled and the files to be

saved for analyst are written to the analyst UFD

[200,1] on the classified data disk.

* If a CRT plot of the inverse transform has been

requested, the auto-plot task is started.
NHCPLT spools plots. The task which spools tape files

is called STRTTP, and the one which saves files for analyst use

is called ANLSAV. These tasks are installed when the data

acquisition system is initialized (by the UP indirect command

file) and are activated by CORECT when it receives the panel

data block from the measurement system. The tasks receive
messages from INVERS via system message directives. The

25

I

- .* * - .-•:

messages consist of a data type indicator and a filename. The

value of the data type indicator tells the tasks what kind of

data they are dealing with, and the filename becomes the output

filename. The data type indicator has the following values and

meanings:

0 - the ambient noise portion of a multicycle test.

1 - the test data portion of a multicycle test

2 - the pickup noise portion of a multicycle test

3 - inverse transform data

4 - transfer function calibration data, response func-

tion calibration data or probe calibration data

5 - reference sensor calibration data

6 - signal-to-noise ratio data

7 - end of test

3 - test data from a single-cycle test

If the data type indicator is 0, 1, 2, 3, 6 or 8, the

message " filename is as follows: the first byte is the test

facility code from the secondary menu, the next four bytes are

the test, sequence number from the primary menu, and the last

three bytes are the Julian date. If the indicator is 4 or 5,

the message filename is as follows: if the test is a reference

sensor calibrator's measurement, the first five characters are

"INREF". If the test is a system response function calibration,

the first five characters are "SYSRF". If the test is a system

transfer function calibration, the first five characters are

"SYSTF". If the test is a probe calibration, the first five
characters are the first five characters of the probe calibra-

tion file ID. In all cases, the last three characters are the

Julian date.

The method used for computing inverse transforms is a

variation of Guillemin's Impulse Train Method1 . Numerically its

results are equivalent to a Fourier integral transform of

* iErnst A. Guillemin, Theory of Linear Systems, New York: John

Wiley and Sons, Inc., 1963, pp. 387-393, pp. 509-510.

26

.6

q

sampled data, but it has the speed advantaje of operating on a

relatively small number of terms. The justification frr the

Impulse Train Method for the inverse transform follows.

The equation for the inverse Fourier transform is

- 0

where F(ico) is complex with real and imaginary parts designated

R(W) and X(wo) respectively. Consider initially only the
imaginary part. Let X(w) be the function of angular frequency

with n samples of X(co) at cj; X(woj) , j = 1, 2, ... n. X(cu) is
approximated by straight line segments between each sample; call

this g(w). Let hj (w) be the jth line segment of g(w):

(a + b .w, .D5(0+
h () = J] j+l

0 elsewhere
j = 1, 2 , n-l

Then
n-1

j =1 (20)

By using the Guillemin algorithm, only a simple

summation is needed in order to evaluate the contribution from

the imaginary part of F(iw). It Is not necessary to actually

integrate the approximating function. The Guillemin technique

can be used with polynomials of order n, assuming only that

Fk(iw) 0-for k=0, i, ... n ascj'.jOc. In this case linear
interpolation is used, and X(co) and X (cu) are assumed to go to

0 as co goes to -cc and +o. The algorithm is developed in the

following way, integrating by parts twice.

I 0

{€) e (t d = -- -- -tdw,",
.0*c 00

X'(u (w)o e ic~t
X (co) e d &1 it d c

(it) -

27

f * O * c**. .

K 7 - - -- ° • . °'°.

Now approximate X(w) by g(w), which is a broken line function as

for the linear transform (see Figure 2-4).

X()

Figure 2-4. The Approximating Function g(w)

Let hj(uj) be the jth line segment of g(w):

a ,• + b j w), U) 3 w c j+ l1

h (w) = (21)
0 elsewhere

j = 1, 2 , n-I

Then

n 1

g(w) = h.(w) (22)

Now n-1

g'(W) = h'j(w) (23)

0 bi WSS<

h'(w) = b j +1lI0 elsewhere (24)

and g' is a step function (see Figure 2-5).

28

* A

-. • - . ° , ... , . -.. o ° . .- . - .- ~ .°.o=. . .

,'°9'

--

Figure 2-5. Derivative of g()
6!

Now
n-i

g (W) h" (W) (25)

j=1 J|

and if 3(-) is the Dirac delta function, then

bj:(,-.) at j

h" (-) = -bh 6 (.-wj+l) at wj+l (26)

0 elsewhere

j = 1, 2 , n-i- -I
by virtue of the fact that h".() dw = h' ().

f .

Therefore
9 w-.i + (b b.3

g"(4) = b (b 2 - b2) ,(- 2) (27)

+ (b 3 -b 2) (- 3) + + (-b n) (

29

~~~. . . . . . . . . . . .....°- • -.- -...-- -. .. .. - - . . . .• . ... .. , . . - .. , .- .%..- .. °•.

- .. . . • - . . .".. '- " .ff- ' ." " -. .- "... " -. .- . • i- -.- ' - - ' . -- .- . . - -.A " . , .. ,: '" - - . ,



So

X~ eu~ 1 Ix" 2(w1 e1 t dw (28)

i f e"w e1~t (29)

b e 1t'e~l + (b - bl) el-2t
2 V1 2 1

+ +b e ni (30)

* Similarly,

fR (w) e ~ 2it) 1 + (c 2 -cl) e1'w2t

* where cj is the jth second derivative (impulse value) of R(w.).

Since the limits of integration are from -- to +c and

R(w) and cos wt are even functions while sin w~t is an odd

function, the total contribution from the real part is

2r*
2 Lcl 1Cos W 1t + (c 2  c1) Cos W2 t+ +. +C nCos W tJ (32) .6

t

* Likewise, since iX(w) is an odd function, the total contribution

*from the imaginary part is

S 2 r
+ - Ll si w t + (b2  b) sinl ~t + * + b sin nt] (33)

t

30



Scaling the integrals by then yields the inverse transform in

impulse foim as

f (t) b sin wt + (b2 - b) sin

7Trt 7 1 w t

+ b sin wnt - CI cos t (C C Cos 2 t (34)

- Cos t

If f(t) = 0 for t < 0, the function is considered

causal. Physical systems of the cw type may be so considered,

and it can be shown2 that for a causal system

flt) = - fR(w) cos wt dw - X(w) sin wt dw t<0 (35)

0 o

Since 0

X(w) eidt = 2 X(w) sin wt dw
(36)00 0

2 [b1 sin 1 t + (b2 - bI) sin w2t + + bn sin wnt]

then

f(t) = - 1 [2 fX(wi) sin wt dw] (37)

- +-2 [b1 sin lit + (b2 - b1 ) sin 12t + ... + bn sin int]

(38)

2 Anthanasios Papoulis, The Fourier Integral and __s"

Applications, (New York: McGraw Hill Book Co., Inc., 1962),

pg. 13.

31a

. -. . -~~~~~~~~~~~~~. ... ... ....... I;,; .. .. ,.,,... .- - . .' '"'.....-.'-..-....-.............



_oeraion. N\s indicated earlier, this task uses a

subroutine which is a variation of Guillemin's Impulse Train

Method. The subroutine uses only the imaginary portion of the

frequency function; hence it is a sine inverse. It is called to

operate on all time elements (inner loop) for each frequency

data point (outer loop). Thus, with each entry it augments a

partial sum for each time point allowing it to operate in near

real time. This results in the completed inverse being

available as soon as possible afte2r corrections have been

applied to the final data point. The amplitude of time 0 is

forced to 0 since the cw system does not record dc voltage.

Jpon the first entry, a trigonometric sine function

table is created with increments of one degree. For any given

sine argument with times greater than or equal to 100 ns, a

linear interpolation is performed between bracketing values of

the table. For time less than 100 ns the FORTqAN library SIN

function is used directly bEcause any inaccuracy resulting from

the table look-up operation is amplified by the scaling factor

1/It 2 . This inaccuracy is tolerable above 100 ns where the

table look-up feature saves considerable time.

As stated before, to use this method it is assumed that

X(o) and X' (w) go to 0 as w goes to - and +o0. In order to make

this true the integral is calculated as if there were a point

(0,0) before the first frequency point and a point (10*con ,0)
after the last frequency point at wn"

2-5 HARD COPY PLOTTING TASKS ('NHCPLT' AND 'NPSPLR')

NHCPLT and NPSPLR interface between the data collection

tasks and the hard-copy plotter. NHCPL formats the data and

builds the data header. NPSPLR spools the header information

and data points to the plotter.

NHCPLr receives the Panel Data Block from CORECT, then

waits until LNVERS has finished processing the data and has sent

the filename to be plotted. NHCPLT then builds the plot file.

The main and secondary menus are opened and the data file header

is built. See paragraph 4-2.2.2 for the data header

32

0..



" description. he data points are then copied from the input

disK file to the plot file. NILCPLT thien sends the filenane to

NPSPLR using the system send directive.

When NPSPLR receives the plot filename and data type
from NHCPLT, it initializes the plotter and waits for the

operator to prepare the plotter. When the plotter is ready for

operation, it writes the data header on the top portion of the -

plotting paper. Then it plots the desired data domains.

FreIuency-Magnitude, Frequency-Phase and Time-Nknplitude plots

mjy be generaced. NPSPLR recycles through its procedures until

no more plot filenames have been queued by NHCPLT.

2-5 TAPE OUTPUT TASKS ('STRTrP' AND 'TPWRTR')

STRTTP and TPWRTR write data files to cassette for

archival storage. See paragraph 4-5.1 for a description of the

cassette file structure. STRTTP sets up the file to be spooled

to tape by formatting the file to make it compatible to the data

files used in the Interactive Analyst Package. It receives the

Panel Data Block from CORECT, then waits until INVERS sends a

data filename and data type. Only the files that the operator

has requested to be placed on tape are processed. STRTTP then

opens the menu files to extract the needed header information.

(Paragraph 4-2.2.2 contains the data file header description.)

The header information and data are copied to a new data file,

then the filename and data type are sent to TPWRTR via the send

directive.

TPWRTR initializes the tape unit, dequeues a message

from STRTTP, opens the output file, then determines the number

of records in the file. The tape identification number is con-

pared to the tape number in the data header; if they don't match

the operator is informed of the error. The room rf:raining on

the tape is compared to the number of records required by the

data file. If there is not enough empty tape, the operator is

requested to replace the tape with an initialized tape. The

tape nuraber in the data header is increased by one to match the

new tape number. TPWRTR then copies the data file to the

33

4

L . .. .'..:-**i -



cassette. While the data is being transferred, the minimum and

imaximum values are calcul3ted, then placed into the file header

on the tape. TPWRTR will continue processing the data files

until no more filenames are in the receive directive queue.

2-7 DISK SAVE TASK ('7NLSAV')

ANLSAV writes the requested data files to disk for use

in the Interactive Analyst Package. It receives the filename

and data type wnich INVERS has sent via the send directive.

ANLSAV opens the main and secondary menu files to obtain the

information needed to form the data file header (Paragraph

4-2.2.2 describes the data file format.) It then copies the
data file header and data to UFD [200,2] on device CD:. ANLSAV

continues copying the data files until there are no filenames in

the receive directive queue.

2-8 SET UP THE DATA LINKS TASK ('ODL')

ODL controls the Optical Data Links (ODL-5B) and VHF

switch. It is requested to run by CRT after the type of plots

have been selected. CRT pauses until ODL has completed setting

up the instrumentation. ODL opens the ODL menu file and re-

quests the operator to update the entries. (See paragraph 5-3.2

of the CW Measurement System Operating Manual for a descrip- -*

tion of the ODL menu entries.) First, ODL will set switch A and

B on the VHF switch to the desired channel. It then turns on

the requested data ODL-5B and sets it up. A five second pause

occurs after the ODL-5B is turned on before it will accept any

further commands. The reference ODL-58 is then turned on and

set up. If no errors have occurred, ODL restarts CRT and

pauses. When data collection is completed or the test is

aborted, INVERS restarts ')DL which turns off the ODL-5B units.
ST

2-9 MISSION FILENA-E fASK ('AiSNAM')

IISNAM is run by the startup command file whenever the

system is booted. It asks the operator to enter a inission

filename. The extension .MIS is appended to the name entered by

34
6i! :';



the operator. If the mission filename is accepted, thie

secondary nenu is opened and the name is entered into te cnt.1

record. INVERS will try to open the mission file specified in

the menu after all data processing is completed. If the file

doesn't exist, a new file is created. Every time a data set is

successfully processed, the filename along with key fields in

the menus are written to the mission file. The Intecactive

Analyst Package routine, MIS, will list the contents of the

mission file to the operator's console.

2-10 PROM PROGRAMMING TASKS ('DEL' AND 'AMPL')

After accepting the data that will be programmed onto

the PROM, and checking with the operator for its validity, the

data is formatted and written to the PROM programner.

To start programming the PROM, the letter 'X' must be
sent to the programmer first so that the automatic speed

selection function of the PROM programmer can determine the

input baud rate. A pause of approximately 2.5 seconds follows

due to the time the PROM programmer takes to select this baud

arate. Next, the address span to be programmed (i.e., 000-3FF)

is sent to the programmer in ASCII. Each ASCII character sent

to the programmer must be followed by a wait of approximately

1/30 second. Following the six-digit address span, the letter

'P' is sent, which sets the programmer to PROGRAM mode.

If the PROM is not blank, the programmer sends back and,

ASCII <NAK>; otherwise, if everything is ready, an ASCII <\CK>

<STX> sequence is sent. Once this process is complete, the data

* may be sent to the programmer starting with address 0 and

continuing to address X-'3FF'. The data for each address is sent

. as two ASCII characters with a time delay of 1/30 second after

each character. After all the data are sent, the remainder of

the PROM is padded with zeros. The programmer then programs the

PROM and, if successful, sends back an ASCII <ACK>. If the

programming was not successful for any reason, the programner

sends a <NAK>. The program will report to the operator whether

* the PROM was successfully programmed.

35



The tasKs perform input range checks and checks to

insure that frequency data is in dscending order. Once the P 134

writing sequence begins, the handshaking between the M900 and

the POP-11 is checked for validity as described above, and also

timed-out. This is done by setting a timer while waiting for

the read of the M900 response to complete, using the RSX-11M

Mark Time directive and checking various System Local Flags.

(Local Flags are identical to Global Flags except that their

scope is limited to the task itself.) i response time-out

causes an error condition to be noted within the task and the

read to be halted. If either a time-out or handshaking failure

occur, an appropriate error message is logged to the terminal,

and the operator is given the opportunity to abort the task or

to retry. This feature allows the operator to correct "soft"

errors (e.g., PROM not blank) and retry the writing step without

having to re-enter the data.

2-11 ANALYTIC PROBE CALIBRATION TASK ('APROBE')

2-11.1 Background Discussion

Transfer functions of certain probes are obtained

analytically rather than empirically (e.g., the MCL B-dot

probe). Analytic transfer functions of electronic integrators

may be multiplied to yield a composite transfer function.

The probes handled analytically by APROBE are the

derivative type:

V(t) = KF where

V(t) = output voltage as function of time

k = a constant determined by the probe

F = d (Field Unit)
dt

in the frequency domain this transforms to

( ) icokF(w)) volt - seconds where
2•

) = 2 r x frequency radians/second

3 60



The transfer function of the RC integrator is

Vo ut () 1 (39)

V(c) -1 + iwRC

Note that if no integrator is used, RC = 0, and the integrator

transfer function becomes unity.

The transfer function of the composite is therefore

Vout i-.k (40) , -. ,

F(w) 1 + iRC

having amplitude and phase characteristics similar to Figure

2-6.

900

IAMPLITUDE -t I 20 logl 0 (k/RC)

AMPLITUDE 450 PHASE
(degrees)

Vout (W)

(d B)
Amplitude Slope Phase

20dB/dec I--.

00
w=1/RC

LOG 10 w ---
4|

Figure 2-6. Transfer Function Amplitude and Phase of

Analytic Probe with Integrator

2-11.2 operation

The program opens the requested file as TYPE 'OLD',

implicitly assuming the file already exists. If the file

exists, the operator is given the option to supersede with new

3-7
4!. .



AJ

-data o r to exit. If he elects not to exit or if the file did

not exist, a new file is opened and the operator is prompted for

the scaling constant (k) and integrator time constant (RC).

Having obtained this information, the program calls subroutine

FGEN which generates 450 predefined frequency values. The

program then generates the resultant transfer function as dB and

degrees for each frequency and writes these values as real

valued triplets to [200,1] PROBE ID.CAL;l on volume SY: where

PROBE ID is the probe identifier entered by the operator (e.g.,

B201).

After all such triplets have been written, a final

triplet whose first value is -1 is written and the file is

closed. This record, as in all data files generated by the

system, indicates end-of-file to tasks which later read the

file.

2-12 INPUT WAVEFORM AND BUTTERWORTH FILTER TASK ('THRTWV')

If a network's response to a unit impulse is convolved

with an input waveform, the result is the waveform at the

network output. Since convolution in the time domain is

equivalent to multiplication in the frequency doman, and the

frequency domain transfer function is the forward transform of

a unit impulse response, one may inverse transform the product

of an input waveform and transfer function in order to get the

predicted output in the time domain.

Of particular interest is the input waveform of the

* type:

E (t) = A(e - t - e - t) v/m 0<0<a (41)

where

A 15 x 10 + v/m (42)a I.&21

38



The analytic forward transform, Ei (f) , has the

following amplitude and phase:

Si(f) [(a2 2 (- +w2)] -sec/m where w= 27f (43)

=-tan- 1 ( + a) rad (44)

On a log-log plot, the amplitude appears as Figure 2-7.

20 dB/decade

-40 dB/decade

LOGIEi ()

f-3/2r f- i/2r

LOG f

Figure 2-7. Amplitude of Transformed Input Wave

Prior to performing an inverse transform, the product

is multiplied by a ninth order Butterworth filter in order to

reduce truncation effects. The Butterworth amplitude is essen-

tially unity except near the lower and upper cutoff frequencies.

Beyond these frequencies the amplitude slopes at -54 dB/octave

(nearly -180 dB/decade). It is convenient to apply the filter

to the transform of the input waveform.

Finally, since the data is stored in dB and degrees,
the product is converted to these units and stored on the

classified data disk (CD:).

39

Kq

6 . 2 , a l a' ' ' .e 'J- J j ' ' : . .. .



. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 -o- -F- I --- • • . - - , , °,j _ r , j . • . _ . r A 0 !11 14 Rq 0- Q -

SECTION 3

INTERACTIVE ANALYST PACKAGE

3-1 INTRODUCTION

This section describes the tasks that comprise the

Interactive Analyst Package (IAP). The processes provided by

the IAP are:

Name Process

ADD Addition process. Performs an addition of

two data sets in frequency or time domain.

AHD Add header process. Add header to time and

frequency domain files for CWII compatibility.

ANL Analytical waveform process. Generates a

time domain waveform based upon operator

entries of coefficients of an analytical

expression. This process issues subsequent

prompts.

CTP Cassette tape transfer process. Transfers

data from cassette to the CD: disk for

subsequent manipulation. Also transfers

data from the CD: disk to the cassette.

CVT Convert tape process. To convert tape files

copied onto disk by TPC from the CWI file

format to the CWII file format.

DED Data Edit process. Performs editing on the

data by allowing corrections, insertions,

deletions and appendages to the data. DED

will also accept entries in a tabular

form for data in both frequency and time

domain. Data can also be listed from an

existing file using this process.

DIV Division process. Performs a division of

two data sets in frequency or time domain.

40
61

. . .t



.7I

FTR Forward Fourier Transform process. Performs

a forward transform using the Guillemin

algorithm...

ITR Inverse Fourier Tranform process. Performs

an inverse transform using the Guillemin

algorithm. j
LHD List header process. Lists all records of

the header for a specified file.

LOF Log-off process. Logs the user off the

system and allows the deletion or preser-

vation of all or selected files created

during the processing sequence. When no

processing has been done LOF allows dele-

tion of previously created data file.

LON Log-on process. Logs the user onto the

system and allows the operation of the

other IAP processes.

MIS Mission file listing process. To list the

contents of a requested mission file on

the screen.

MUL Multiplication process. Performs a multi-

plication on two data sets in frequency or

time domain.

SCL Scaling Process. Performs scalar arithmetic

on either time or frequency data files.

SUB Subtraction process. Performs a subtraction

of two data sets in frequency or time domain.

TPC Tape copy process. Copy all of a cassette

tape into a disk file. Primarily used for

the conversion of old format tapes.

When the operator wants to use the analyst package, the

following command should be entered. The proper tasks will be

installed.

41
68



9NNAL (C-R>

wnere <CR> is carriage ceturn. J
The commands used in the IAP are designed to give the

analyst a flexible set of operations to manipulate data taken by

the real-time data acquisition software. The commands used to

run all of the processes are structured using a syntax very

similar to that of the standard DEC RSX-I1M system utilities and

language processors, like PIP (Peripheral Exchange Program) and

FORTRAN IV-PLUS.

The command syntax uses the concept of a process acting

upon a source of input, yielding an output. The basic command

syntax is as follows:

PRC output.list=input.list

where PRC is a three-character process name, input.list is a

list containing specifier(s) of input source(s), and output.list

is a list containing specifier(s) of the output(s) of the

process. These lists can contain filenames, terminal or device

specifiers, and process modifiers (called "switches") in various

combinations, depending on what is valid for the process.

Switches are indicators by which the process can be signalled of

special conditions or of changes in the normal processing that

the operator requires. Switches consist of a slash ("/")

followed by a switch identifier and an optional list. The

switch syntax is illustrated below:

/SID: parm.l ist

where SID is the switch identifier and parm.list is the list of

parameters. Note that the parm.list is preceded by a colon and

0 may or may not appear, depending upon whether parameters are

required by the switch. If a switch requires more than one

parameter in its parm.list, each parameter is separated by a

colon. An example of a switch with a parm.list of six * -

parameters is given below:

/SID:pl:p2:p3:p4:p5:pG

Switches can be applied to a command's input.list or output.list

(or both), depending again on what is appropriate for a given

0 process and switch.

42

0. * ii]



Processes can use the information in the command line

to complete the process, or can optionally prompt for More

information, data, etc.

Processes generally work with disk or tape based data

files. A file is identified by a fully qualified name of up to

eight characters and an extension of up to three characters.

Within the IAP, a convention provides a means of identifying the

*- source of the data and the date of creation of the file.

A general rule of thumb should be followed in naming a

data file and its extension. The name is an eight character

name with a three character extension which is in the following

form:

FSEQNJDT. EXT

where

F--- is a character A-Z or 0-9 representing a

6 code to identify the test facility

SEQN is four integer numbers defining a unique

test sequence number

JDT is three integer numbers defining the Julian

date of the measurement. This value is

appended to the facility code and sequence

number by the software.

EXT is the three character extension where:

E -is one of the following six characters:

A - indicating ambient noise

U- indicating pickup noise

C - indicating cw measured test data

' - indicating time data

P - indicating pulse measured test data

F - indicating frequency data

43

- ~ . -- . .- * - . * .. *- ..- * -



is one of the following 3 characters:

C - indicating calculated data

D - indicating defined data

M - indicating measured data

T - is an "A" except in the case of converted

CWI data where a sequence number was used

for more than one measurement. In this -

case, the last character will be incremented

through the alphabet as many times as

necessary.

The entire extension is also appended by the software. Cali-

bration files saved for analyst use are an exception to the

above convention. They will be named using the five-character

q sensor name found in the header. The Julian date and extension

will be used as described above.

When an analyst is naming a file to be created by any

operation, the first five characters can be used in any way as

an identifier. These five characters must be unique from those

used to name another file. The Julian date and an extension

will be appended to the five characters as above.

The IAP software will store the data on disk to a

device named CD:. This device is usually assigned to DLI:, and

is used for data storage only. The software will assure that

* the data are stored on CD: so the operator need not specify this

0 device name.

3-2 COMMAND STRING PROCESSOR

All of the IAP processes use a macro program to inter-

6 pret their command lines. Each macro program is essentially the

- same except for the number of switches and input files that are

. allowed. The system routine CSI is called by the macro program.

- Each process command string is described in detail in Section 3

* of the CW Measurement System Operating Manual.

44

* -. .4 4 -.* * '-. v **-

. ,**'



3-3 ADD, MUL, DIV AND SUB

The basic arithmetic functions are essentially the same

programs except they perform different operations. They allow

the operator to apply a function of two data sets. The command

line syntax for ADD, MUL, SUB and DIV is:

ADD 1
DIV outfile = infilel.ext,infile2.ext
MUL

Infilel and infile2 are the data files which are

to be multiplied, added, divided or subtracted.

Infile2 is optional.

Outfile is the resulting file.

In the case where only one input file is specified, the

input data are simply copied to the output file. If a switch is

specified for the output file, the output data are interpolated

to the time interval or number of points per frequency decade

specified by the switch; otherwise, time data are copied point-

for-point to the output file. Frequency data are interpolated

to the number of points per frequency decade specified in the

file header.

In the case where two input files are specified, the

output data file reflects the mathematical result of the applied

function: addition, subtraction, multiplication or division.

For time domain data, the output data are interpolated to a

regularly-spaced interval, calculated either by dividing the

minimum time spanned by the two files (the maximum of the

respective minimum times to the minimum of the respective

maximum times) by 500, or input by the operator as part of the

command line. If the value input by the operator results in

more than 1,000 intervals, an error message is generated and the
number of intervals is set to 500.

For frequency domain data, the output data are inter-

polated to a number of frequency points per decade, either input

by the operator or gotten from the header of the first input

file. If either input file header indicates no frequency points

for a decade, no output data is calculated for that decade.

45

q

• -...-.,. -" .. " " K. .... : ' . .. ' . , -' ' -.' "" -," : -.", .' .- , -
,",'[ .- ,', '- '. i." - " " '-i"'',, "-. ." i" .. " ' ... . . *" ' " - ' .* .* .-. *, *. " * " " " " '



. - -7 " -- -, -7_ .- . ...

Empty decades may occur between non-empty ones. The total

number of frequencies may not exceed 1,000 in either the input

or the output files.

The selected function is applied to the data, and the

result is stored in the output file, along with an updated

header (see paragraph 4-2.2.2 for header format). For addition

and multiplication, the order of operation is important only

insofar as default values such as points per frequency decade

are taken from the first file specified in the command line.

For subtraction, the second file specified is subtracted from

the first, and for division the first file specified is divided

by the second.

3-4 ADD HEADER PROCESS (AHD)

AHD adds a header to a CWl data file to make it com-

patible with the IAP. The command to run AHD is:

AHD outfile/switch= infile.ext

The switch specifies whether the outfile is to be a time or fre-

quency domain file.

AHD opens both input and output files and interpolates

the time or frequency values to the requested interval. It then

calculates the maximum and minimum data values while copying the

data to the new file. The following records are entered into

the outfile data header:

Record Field

1 Data domain0I
3 Date

4 Time

5 Input filename

7 Function code and date

12 Comments

13 Comments

23-29 Maximum and minimum data point values

37-42 Points per decade

45 Time domain At

46
S

- ...-. i-.
-*. . - .-



The remainder of the header is left blank. All the

data points are then copied to the output file.

3-5 ANL

ANL generates an analytical waveform in the time

domain. ANL is run by entering the command string:

ANL outfile

The maximum time value and/or the desired number of points may

be specified. To create the waveform, ANL will ask the opera-

* tor to supply values for the following equation:

A[ B( eCt + DteCt + EeFt Cos ((21TGt)-H) +

After the constant coefficients have been entered, the time

value and amplitude are calculated and written to the output

file. The minimum and maximum time values are calculated. The

- appropriate values are written into the header records.

3-6 CTP

The cassette tape task allows analyst manipuloation of

data files between the disk and the cassette tapes. Using CTP,

the operator can transfer files from disk to tape, from tape to

disk or list the tape directory. The functionto be performed

when CTP is invoked is determined by the syntax of the command

line. To transfer a data file from disk, enter the following:

CTP/TP:number [/NEW]= infile.ext

Infile.ext is the fully qualified name of the file to be trans-

ferred. This name must be unique on the tape. If the name is

not unique, the operator is given three choices for eliminating

the problem. One is to change the name of the file going to

tape, another is to insert another tape, or, last of all, the

operator may exit the program.

If the operator chooses to change the name of the file,

a unique name of up to five characters must be entered. A three

character representation of the current Julian date will be

concatenated to the five character name entered. The extension

remains the same as the original file specification.

When the operator desires to change the tape, the pro-

gram reads the input from the terminal until the operator enters

47



a <CR>. Then che program tries again to write the r lested

file to tape.

To write a file from disk to tape, each 12 by, disk

header record is copied to an 86 byte tape header reco The

data is converted from one triplet or one doublet (in ternal

binary format) in a 12 oyte disk record to two ASCII tri ts or

three ASCII doublets in an 86 byte tape record. After _ file

is copied to the tape, the operator is given the option place

the file name in the analyst log so that it can be delet from -

the disk directory at log off.

/TP:number in the above command line specifies a tape

number to which the file is to be copied. This numb must

agree with the number actually written on the tape. if the

numbers are not the same, the operator is given the ch -e of

changing the tape (as described earlier) or exiting the Dgram.

The optional switch, /NEW, in the command line,

specifies that the tape is to be initialized. When a ape is

initialized, the requested tape number is written in th first

six bytes of the first two tape records. The remainde. of the

two records are filled with blanks. These two records nprise

the tape directory. If no file is specified in the comm J, the

task will exit after the tape is initialized. Otherw a, the

file is written to the initialized tape.

When a file is to be copied from tape to di , the

following command line must be entered.

CTP routfile] =infile.ext/TP: number

Outfile, when specified, is up to five characters used w h the
0I

three character Julian date to name the disk fil The

extension will remain the same as that on the tape file. If no

outfile is specified, the disk file is named the sam 3s the

tape file requested. The filename must be unique on tn isk or

the task will exit. When the file transfer is comple , the

filename is added to the analyst log.

Infile.ext is the fully qualified name of the Ie to

be copied from the tape. The tape directory is sea. ted to

determine if the file exists on the tape.

48

. --. °*,. . ' "°".

i i i, i - . .. • . 2 . ' ' • ; - - -- .



/TP:number is a switch indicating the number of the

tape from which to copy the file. If the number on the tape and

the number specified are not the same, the operator is given the

option of changing tapes or exiting the program.

To get a directory listing of the tape currently in the

drive, the following command is used:

CTP 'LP /DIR

jTI:, is an optional device specification requesting

LP: the terminal or line printer, if available.

The directory listing shows the tape number, the file-

namnes in the directory, and the number of tape records occupied

by each file. There is a maximum of eight files permitted in

the tape directory.

Tapes are organized so the first two records are the

directory of the files contained on that tape. Each directory

record begins with the tape number comprised of a maximum of six

digits. A maximum of 12 characters (eight characters, a period

(' .') and a three character extension) -can be used for a

filename. File names are followed by an equal sign ('=') and an

integer of up to four digits, indicating the number of tape

records used by that file. There are no more than four files

. per directory record. The number of records used by each file

are added together in CTP to determine if sufficient room is

available to write the requested file to the tape. These num-

bers are also used to calculate the number of records to skip to

get to the beginning record of a file to copy or to reach the

next available record.

Each file on the tape begins with a record containing

a '%0' and the filename. Then 57 records follow containing the

file header. Only 12 of the available 86 bytes of tape record

are used for each header record.

The data is in ASCII, 33 characters per data value with

six data values per record. The file is ended with a '%,/ E1MD OF
FILE' record.

* FDisk files are arranged with 57 ASCII records, each 12

bytes in length, containing the file header. Following the

49

- - - - - ."



header are data records of 12 bytes which contain one triplet or

one doublet (depending on the data type) written in real
internal binary format. The files are direct access so the end

of file is determined when a read error occurs.

RSX's command string interpreter is used to check for

proper syntax in the command line. The operator must have -+

logged on using LON in order for CTP to run.

For communication to take place between the tape and

the disk, the tape unit must be attached using a Wait Queue I/C

command. When data are transferred from the tape to the disk,

the proper function value must be sent to the tape unit to start

sending. During the sending process, a five second timer is st

so that when nothing is received from the tape, the send request

is cancelled.

For data transfer from disk to tape, the function value

to start the tape receiving must be sent to the tape. A status

returned from the tape must be checked, until only the ready bit

is set, before the program continues. A function value to. stop

the tape receiving-must also be sent.

Files used by CTP are found on the disk assigned to

device CD: in UFD[200,21.

3-7 CVT

The convert tape task is used to convert the CWI for-

matted tape files created by TPC into individual CWII formatted

disk files.

Prior to invoking CVT, the operator must have logged on

using SON. CVT can be started by entering CVT<CR>.

When CVT begins, the operator is prompted for the tape

number to convert. The number entered is concatenated onto a

string of zeros to create a six digit name. An extension of

'.OTP' is added to make a fully qualified filename. The file to

be converted is expected to be found on the disk assigned to

device CD: in UFD[200,2].

50



CVT searches for a '%' in the first byte of each

recorC. Whatever character is in the second byte determines the

type of file to be created.

When the character is a 1', a 32 record "storybook"

follows. These records are used to create a 57 record file

containing the header to be used in the new CWII files. The

test sequence number and the creation date are retrieved from

the storybook. After converting the date to a three character

Julian date, the operator is prompted for a one character test

facility code. The test facilty code, the sequence number and

Julian date are concatenated to form the filename which will be

used for each file created for any data type using that sequence

number. The files will be distinguished by their extension.

When the character following the % is a 2, the

following data are ambient noise and the extension is '.AMA'.

A 3 indicates test data and the extension is '.CMA'. '.UMA' is

the extension used when the second character is a 4 specifying

pickup noise. A 5 is used when inverse transform data are

present. In this case, the extension is '.TCA'. Last of all,

a 0 indicates the end of the current file.

Each filename is required to be unique. If this is not

the case, the last character of the extension is incremented

through the alphabet until a unique name is found.

The files consist of 57 12-byte ASCII records

containing the header, followed by 12 byte records of real

internal binary data values in triplets or doublets depending on

the data type of the file. As each file is created, its name is

placed into the analyst log. The entire tape file is converted

in the following manner until no more data exists.

When a record beginning with '%' is found and the data

are determined to be in the frequency domain, two triplets are

assumed to be in each record. The data values are converted

from ASCII to real internal binary and written to the new file

in a 12 byte record with one triplet per record.

A group of data determined to be in the time domain is

assumed to be in records of three doublets each. These values

51



-I

are converted like the frequency data and written to the new

file with one doublet per 12 byte record.

Minimum and maximum values of the data are calculated

as the conversions are done. When the conversions for each data

type are completed, the minimum and maximum values are written

to the header.

3-3 DED

The data edit task has two primary functions. DED can

be used to create a new file from tabular data entered by the

operator or to edit an existing data file.

When creating a new file, DED is invoked by the

following command line:

DED outfile/CR

Outfile is a five character name specified by the operator. The

data entered by the operator is stored in a disk file using

outfile, a three character representation of the current date

and a three character extension concatenated together. The

extension is 'TDA' for time domain data and 'FDA' for frequency

domain data. After concatenation, the resulting filename must -

be unique.

Data editing is started by entering the following

command line.

DED infile.ext

Infile.ext is a fully qualified filename consisting of up to

eight characters in 'infile' followed by a three character

extension. This name is used to identify the file to be edited.

Files created by DED, whether new or edited, are stored

on the device assigned to CD: in UFD[200,2].

Once started, DED first determines if the operator has

logged on using LON. Next, the command string interpreter,

provided by DEC, is used to parse the input command line for . -

valid syntax.

When creating a new file, DED ensures chat t:le filename

is unique by first opening the file as 'old'. If the open is

52



successful, the operator is informed the file already exists and

the program exits.

If the open fails, the file is opened as 'new' and the

operator is prompted to enter triplets (frequency, magnitude and

phase) or doublets (time and amplitude) depending on the data

type. The values can be entered in integer, real or E-formats.

Each frequency or time value must be positive and must be

greater than the previous frequency or time value entered

(maintain monotonicity) . When these conditions are not met, the

operator is informed of the discrepancy and prompted to re-enter

the value. As each data set (doublet or triplet) is entered,

the values are compared with the existing minimum or maximum

values. These existing values are updated if necessary.

When a <CTRL Z> is entered for the frequency or time

* value, the prompting is stopped. The header for the new file is

created. If the file is in frequency domain, the operator is

- prompted to enter the number of points in each decade. These

-,values are written to the header. Once the header is completed,

the file is closed and the filename is entered into the analyst

log.

For data editing, a menu of six processes is displayed.

This menu is displayed again after the completion of each

process except number six, EXIT.

The first process, LIST, reads each record of data,

converts it to ASCII and prints it on the screen. This option

is intended for use by the analyst to locate where data editing

is necessary.

Process two is used to append data to the file. The

operator must specify the location in the file where appending

is to be done. The original data are copied to a temporary file

up to the position of appending. Then as many data sets as

desired can be entered, as long as they follow the restrictions

as described for new data entry. When a group (one or more) of

- data sets has been appended, the operator is prompted for more

0appending. The original data are again copied to the temporary

file to the next position for appending or the end of the file

53
0



if no more appending is requested. More than one appending

process can be requested only if the selected positions occur

sequentially in the file.

Data insertion can be accomplished be selecting process

three. This process is identical to appending except the

position selected by the operator comes after the inserted data,

whereas the position comes before appended data.

Process four is selected when modification to a data

set is desired. More than one data set can be changed if they

are requested sequentially through the file. The original data

are copied to a temporary file except for the data sets

requested for modification. The operator is given the option to

change each value in the data set. Entering a carriage return

causes the value to remain unchanged.

The deletion process is started when five is selected. -*

Selection of the first deletion position is required by the

operator. With a single deletion request, any number of

consecutive data sets can be deleted. Other data sets can also

be deleted if requested sequentially. Except for the deleted

data sets, the original data are copied to a temporary file.

Exiting from DED is accomplished using process six.

First the program determines if a file was edited since DED was

started. If it was, the operator is given the choice of

deleting the original file. Then, if desired, the temporary

file can be named the same as the original file. Otherwise, a

five character name must be entered. A current three character

Julian date and the proper three character extension are

concatenated for a fully qualified name for the new file.

After the new filename has been determined, the

temporary file is copied. As they are copied, the frequency or

0 time values are checked to ensure they are monotonically

increasing. If the check fails, a message is written to tell

the operator, but it does not stop the file creation. Minimum

and maximum values are also checked as the data are copied anu

then written to the header when the copy is completed. The

original filename, 'DED', and the current date are written to

0 54. . . . * ** A '



, .*.- , - - -. . -- " - . - . -o .- .r r V., rr .- -- . - -. - -L - , - - - .

the header records five through seven. Points per decade art

not updated.
When more than one process is requested during an edit

session, the temporary file most recently created becomes the

original file for the next process. After the last temporary

file is copied to the new file, all the temporary files are

deleted from [200,2] and the new filename is placed in the

analyst log.

3-9 FTR

This task performs a forward Fourier transform on time

domain data using the Guillemin's Pulse Train Method described

in the section on the task INVERS. After the time data are read

in, the program builds the frequency output array, evenly

*@ spacing the points within each decade and using the numbers of

points per decade requested by the operator or the defaults. A

.' warning is issued if the maximum frequency requested is greater

than half the sampling rate of the time data (the Nyquist

criteria) but processing continues.

Calculations of the integral proceed as if a point

*" (0,0) exists before the first time point and a point (tn * 10,0)

.e exists after the last point at time tn. Both real and imaginary

values are calculated for each frequency point. After all

points have been processed, the Parsevals are calculated and

compared as described in the INVERS write up.

3-10 ITR

Using a frequency data file as input, this routine

* [performs an inverse Fourier transform using the same method as

' the on-line task INVERS. After the frequency data has been read

in, the time array is built using the number of points and

* maximum time requested by the operator or defaults of 500 points

and a maximum time equal to the number of points minus one times

one over the maximum frequency present.

The magnitude of time 0 is set to 0 and calculations

proceed as if a point (0,0) existed before the first frequency

55

, -... - *....° - .. . . . . . . -.. . * . . . ~-
' * . - .- .° . . - . . .. . . . . .... ° .o.- .° . .. / ' f' . "°,.. .. .° °" -. .. . . . °.--* ..*' . .



1poii. (cn * 10,0) existed after the last frequency point at

frequency wn. The frequencies are converted to radian

frequencies and the program loops over all of the frequencies

(inner loop) for each time point (outer loop).

When all of the time points have been processed, the

Parseval energies and their ratio are calculated as described

for INVERS and stored in the header of the output file.

ITR assumes that the data has no dc value, therefore it

should not be used with data that has a dc value.

3-11 LHD

The list header task is used to list the contents of

the header in a specified analyst file on the terminal screen.

LHD is started with the following command line:

LHD infile.ext

.Infile.ext is a fully qualified name with up to eight characters
in the filename followed by a three character extension. The

operator is required to have logged on using LON prior to

invoking LHD. The file specified is expected to be on the disk

assigned to device CD: in UIC [200,2]. LHD uses logical unit 1

assigned to the terminal to write the header. This unit number

can be assigned to the line printer, if available, to get a hard

copy of the file header.

The header titles and contents are printed in such a

way that the entire header can be viewed on the screen at one

time.

RSX's command string interpreter is used to parse the

command line to be sure the syntax is correct.

Each of the header records read by LHD in the file are

12 byte ASCII records. The records are read into a 12 byte

* buffer and written with the appropriate title to logical unit 1.

3-12 LON AND LOF

LON and LOF log the operator ont.o and off tie sstem 

allowing full use of the analyst package. LON sets the "log o" _

event flag and initiates the log task 'which records all the

56



analyst files created until the operator logs off. LOF sends a

message to the logging task to initiate the shutdown of user

activity and to allow the user to save or delete the files

created during this session. Each IAP process checks the 'log

on' event flag. The data filename log file is in UFD [2,21 on

the system disk and is called LOGTSK.Q. -

3-13 MIS

MIS lists the contents of the mission file. It is

initiated by entering the command

MIS infile.mis

The contents of the mission file is information selected from

the menus. It will be listed on the terminal in the following

80 column format, first line:

Columns Field

1-4 Test number

6-13 Filename

15-18 Tape ID

20-28 Date

30-37 Time

39-42 Test type

44-55 Test point ID

66-73 Test engineer

Second line:

Columns Field

1-80 Test comments

A blank line will separate each data set. The listing

is divided into pages of 15 filenames per page. The operator

must use <CTRL S> and <CTRL Q> to stop and start the output for

closer examination.

57
6°.



qq

3-14 TPC

The tape copy task is used to copy the contents of an

entire cassette tape into a single disk file. The task is

invoked by entering

TPC<CR>

TPC sends a function value to the tape unit so it begins to send

a record from the cassette unit to the PDP-II/34. Each record

is 86 bytes long containing only ASCII characters. When a

record is sent, it is received in an 86 byte array which is then

". written to a sequential disk file with records 86 bytes in

length.

As each record send is attempted, the status returned

from the tape unit is checked. When the busy bit is turned off,

the next send is begun. If a CRC error, receive error, or fault

occurs, an error record is written to the disk file. The error

record is '%/ TAPE RECORD ERROR DURING COPY'. When the tape

leader is reached before the tape copy is complete, the error
record '%/ END OF FILE NEEDED' is written. '%/' is used to

begin the record for compatibility with the tape conversion

routine. Prior to invoking the converson task (CVT), the DEC

editor TECO must be used to correct the error records in the

file.

When a request to send is issued to the tape unit, a

five second timer is started so if no record is received within

that amount of time the send request is cancelled and the task

completes.

TPC begins by prompting the operator to enter the tape

number provided LON has been used to log on. The number entered

is concatenated onto a string of zeros to make a filename of six

digits. An extension of '.OTP' is used on the filename. The

file is written to the disk assigned to device CD: in UFD

(200,2]. After the file is closed on the disk, the filename is

entered into the analyst log.

58
6%



SECTION 4

SYSTEM DATA STRUCTURES AND GLOBAL VARIABLES

4-1 INTRODUCTION

This section addresses the definition of data
structures and global variables used in the CW Data Acquisition

Subsystem software. The definition of data structures will

start with a discussion of some operating system constructs used

extensively throughout the real-time system. Discussion of disk

and file structures used by the. software will follow.

Communication structures, specifically the message structures

and RSX-11M Global flag definition follow the file structures.

Global flags are used for intercommunication between tasks.

Other structures used for archival cassette storage and

the PCU frequency table entries are discussed along with a

discussion of 1-disk vs 2-disk system operation.

4-2 FILE STRUCTURES

The system, during data acquisition, may have as many

as seven files open at a time. This section discusses some of

the relevant system constructs, the file formats and access

methods that are used.

4-2.1 Operating System Constructs

This information also appears in the RSX-11M Documen-

tation Package. Reference to the relevant sections of the

package is encouraged for a more detailed discussion of these
4

and related constructs.

4-2.1.1 UFD's and UIC's. The term UFD is a mnemonic for User
File Directory and UIC is a mnemonic for User Identification

Code. Both constructs have identical format and are sometimes

interchangeable. The form of a UIC or UFD is

[g,m]

where the brackets are required syntax and g and m are octal
4 numbers in the range 1-377.

590%



In order to be able to access portions of a disk in a

random fashion (as opposed to sequentially scanning the disk

looking for a particular file) a data structure called a

directory is imposed on the disk. The directory contains

various pieces of information concerning files including a

*file's name, its starting location, its block allocation, etc.

By scanning the directory, a given file can be found much

quicker than if the entire disk were to be scanned. In a multi-

tasking environment, where many users may be accessing files on

a disk simultaneously, it may be desirable to keep a user from

accessing or writing upon another user's file(s). RSX-lIM's

file system uses the construct of multiple directories, one for

each user or class of user, containing that user's files exclu-

sively. Each such directory is termed a User File Directory

(UFD). When a user wishes to use the system, he (or she) is

given access to files in a User File Directory by waX of a User

Identification Code (UIC). The UIC is assigned in one of two

ways: either by "signing on" under a UIC in systems with an

option built into them called Multi-user Protection (not

supported on this system) or by use of the MCR SET/UIC command.

A UIC is associated with a terminal if Multi-user Protection is

not used, or with a user if Multi-user Protection is used. A

UIC allows a user full access to all files in the associated

UFD. Limited access rights are allowed to files in different

UFDs, depending on the file, the UFD, the UIC, and how the

system is built. The four access privileges allowed by the

system are read, write, extend (allowing the user to modify the

file by making it bigger), and delete. UICs with the value g

(called the 'group') between 1-7 are called 'system' UICs and

are privileged. The value m is called the 'member' and users

whose UIC match the group and member of a UFD are said to be the
'owner# of the UFD. Users whose group matches a UFDs group but

whose members differ are said to be in the UFD's group. A UFD

whose group and member do not match a given user's TIIC and do

not belong to a system group are said to belong to the 'world'.

These subgroupings (system, owner, group and world) determine

60 I0 i i

S- * . * ** . . * . .. . * *~ d n



the access privileges that a user has given his UIC and the UFD

to which a given file belongs. All files in this system have

the following access privileges.

0 System UICs (g is between 1 and 7) have read, write,

extend, and delete privileges to all files.

* Non-system UICs have read, write, extend and delete

access privileges to all files that they own (UIC g

and m = UFD g and m).

* Non-system UICs also have read, write, extend and

delete access privileges to all files in their group

(UIC g = UFD g, but UIC m <> UFD m).

0 Non-system UICs only have read access to files in

the world (UIC g <> UFD g).

It is possible to have files in a UFD owned by a

* different UIC. This generally happens when a file from a system

UFD is copied to a non-system UFD without transferring file

ownership, or a file is created in a non-system UFD by a user or

task running under a system UIC. Refer to the PIP manual for a

further discussion vf this in the description of the /FO switch.

For the CW system seven UFDs have been generated. They

are:
)  11,11 (system) Contains system libraries,

Fortran libraries and system genera-

tion data.

0 [1,2] (system) Contains the system boot startup

file and text of Fortran and system error

messages.

* [1,54] (system) Contains system image, and task

images of system tasks like PIP, Fortran,

etc.

0 [2,2] (system) Contains source and task files

- . of software generated for the CWI system

by EG&G, like INPUT, AUTPLT, etc.

'7,11, (system) Contains source and task fi2es

of software generated for the CWII system

by EG&G, like FTR, MIS, etc.

61

----------------------------------------~"-~---.-~ _ -



* [200,1] (non-system) Contains data files generated

by or used by the software system, like

the menu files.

* [200,2] (non-system) Contains analyst formatted

data and log files generated by the soft-

ware system.

Tasks are all run under UIC [2,2]. The operator's terminal is

nominally set to [2,2].

4-2.1.2 Filenames. Filenames are of the form:

DEV: [g,mjFILENAME.EXT;VER

where

DEV: is the mnemonic of the file structured device

where the file is to be accessed. On this system,

DEV: is either DLl: or DLO: or a 'pseudo-device'

discussed in paragraph 4-2.1.4.

[g,m] is the UFD. Its default is the UIC the user is

working under.

FILENAME is the name of the file. It is an up-to-nine

character alphanumeric name and may start with a digit.

There is no default.

.EXT is the file extension. It is generally used as a I
file type descriptor. It is an up-to-three alpha-

numeric character name, or it may be blank. It may or

may not have a default, depending upon the context in

which the filename is used.

;VER is the version. It is an octal number in the

range 1-377. It is used to differentiate between files

with the same name and extension. Its default is the

highest version that currently exists.

-62:



In the CW system, certain default extensions are assumea. These

are:

.FLX Files of this type contain Flecs source --

code.

.FTN Files of this type contain Fortran source

code. These are usually generated as

output of the Flecs processor.

•MAC Files of this type contain Macro-li source

code.

.OBJ Files of this type contain object code.

These are the output of the Fortran

and Macro-li processors.

.TSK Files of this type contain task images

and are the output of the Task Builder.

4.CMD Files of this type contain commands to

MCR or other processors.

4-2.1.3 Logical Units. A Logical Unit is the system construct

by which communication to actual devices is done. Tasks write

output or read input using logical unit numbers rather than

specific device or filenames. The system maintains a table

which cross references the logical unit number to the device.

This allows the programmer to write the program with device

independence, and change devices easily without having to

re-compile the program.

The Logical Unit Numbers (LUN) are initially assigned

at task build time using the ASG task build command. These

assignments can be altered using the system directive ASSIGN LUN

or its Fortran equivalents (CALL ASSIGN, OPEN). All LUNs which

are to be assigned to a file are generally assigned to the

device upon which the file is kept, and calls to the various

file handling routines are made to build the File Descriptor

Block (FDB) (a data structure maintained in the task space used

to control a file) and open the file. in the C'A system, this is

the method that is used.

63



4-2.1.4 Pseudo- and Logical-Devices. The operating system

allows the users to dynamically re-direct data transfers from

one peripheral to another. Such a transfer is effected by the

REDIRECT command. Transfers mediated by a REDIRECT behave in

the following fashion. A program is written and task built to

transfer data to a device, TTO:, via a logical unit. Should

TTO: be unavailable (for example, if the device was down), all

transfers to TTO: could be REDIRECTED to a different terminal,

TT3:, or perhaps a completely different kind of device,

LPO: (line printer). The system mediates any special formatting

required via the device drivers, and this transfer between

devices is, therefore, completely transparent to the user.

To give an added degree of device independence, the

system also supports the concepts of logical devices and pseudo-

0 devices. Pseudo-devices have device mnemonics which do not

correspond to a given device; rather, they are dynamically

assigned by the users to various devices as required. The

assignments are made on either a local or global (system-wide)

basis. The pseudo-device mnemonics-and their meanings are:

SY: The system volume for the users, that is,

the volume containing the user files.

LB: System library device, that is, the

volume containing the system's file.

CO: Console output device.

CL: Console listing device.

NT: Network communication device (not

supported in the CW system).

TI: The user's terminal.

Pseudo-device TI: is always the user's terminal. A task which

communicates with device TI: communicates with the terminal upon

which the command was entered to start the task. General

practice is to task build tasks using pseudo-devices wherever

possible, and setting up pseudo-devices (via the REDIRECT and/or *

ASSIGN commands) to direct traffic to the desired devices 3t run

time.

64



Along with pseudo-devices, the system supports logical

devices. Logical devices are the same as pseudo-devices, except j
that logical device mnemonics have no default meaning to the

system; their meaning and scope are wholly determined by the

user. The CW system currently supports one logical device, CD:,
the classified data disk volume.

Further explanation on logical devices and pseudo-

devices can be found in the RSX-11M Operator's Procedures

Manual, Volume 2A. This manual also describes the REDIRECT and

ASSIGN commands and their use.

4-2.2 Disk and Disk File Organization

The Data Acquisition subsystem has two disk drives,

which are identified to the operating system as DLO: and DLl:,

indicated by the '0' and 'I' on the drives' 'ready' lights. It

is sometimes necessary, due to security constraints, to seg-

regate classified or sensitive data from non-classified data.

The Data AcquisiLion subsystem uses two logical device

names - SY:, which is the system disk, and contains all system

files and non-classified data; and CD:, which is the classified

data disk. SY: is normally assigned to DLO: and CD: is normally

assigned to DLl:. All programs in the Data Acquisition sub-

system refer to SY: and CD: instead of the actual device names.

This allows the redefinition of disks should a drive fail, with-

out having to re-task-build all the tasks. See paragraph 4-6

for single disk operation particulars.

The BAD utility (see paragraph 5-9 of this manual) is

used to declassify disks. This utility was selected because it

writes a test pattern in every sector (block) of the disk to see

if the pattern can be re-read successfully. This obliterates

data previously written on the disk, thereby making it accept-

able for declassifying a disk. It also obliterates all system

data structures on the disk, including directories, identifica-

tion blocks, headers, etc. The INI command rebuilds the system,

data structures, and the UFD command rebuilds the user file

65
*,



directories. Whereas the system disk contains a number of UFDs,

the classified data disk contains only two UFDs, [200,11 and

(200,2]. On the classified data disk all threat waveform files

generated by the program THRTWV (see Section 2), file INVERS.DAT

generated by INVERS (see paragraph 2-4) and the files

RAWDATA.TMP, CORECT.DAT, and ACOMP.TMP generated by CORECT

(paragraph 2-2) are kept. CORECT.DAT, ACOMP.TMP and INVERS.DAT

and overwritten each time a test is performed; whereas the

contents of CORECT.DAT are not classified, they may be sensitive

and so this file appears on the classified data disk for added

integrity. All analyst files are also maintained on this disk.

The users of the system are responsible for maintaining the

integrity of the data on this disk. It should also be noted

that two utilities, AUTPLT (uses the AUTO PLOT capabilities of

*the HP-2648A terminal to plot data files) and FYLDMP (dumps data

files) can access data from this disk if the operator specifies

files founds on the CD: disk. The system manager and operator

are responsible for security when these utilities are used.

4-2.3 Locally Defined Disk File Structures

Following is a description of the format and structure
of the files generated by the software subsystem itself.

4-2.3.1 MENU Files. The 'menu' files are unformatted, direct-

access files which contain data used to describe various aspects

of the environment of the test. Three files are used to contain

this information, named MENU.PRI, MENU.SEC and MENU.ODL. These

files reside on the system disk (SY:) in UFD [200,1].

MENU.PRI is the file containing the 'primary' menu.

This file contains information necessary for the proper correc-

tion and reduction of the raw data supplied by the measurement - -

subsystem. It is a random-access file containing 23 records of

16 bytes. The records each contain one piece of information, so

66

66 "

6,



accessing a given record access a particular parameter. The

record asignments for MENU.PRI are:

Record No. Use

1 Contains the date of the current

test in ASCII as 'DD-MMM-YY' where

DD and YY are the day and year,

respectively; and MMM are the first

three letters of the month.

2 Contains the time of the current

test in ASCII as 'HH:MM:SS' where

HH, MM and SS are the hour (24-

hour clock), minute and second,

respectively.

S3 Contains the type of run being

done. Run type if one of five

character strings: 'RFSN', 'RCAL,

'TCAL', 'PCAL', or 'TEST'. Any

other string is treated by the

software the same as a 'TEST'.

4 Contains the up-to-five character

filename of the signal probe (the

signal probe ID)

5 Contains the up-to-five character

filenames of the reference probe

(the reference probe ID) or the

0 string 'SYN', indicating the

synthesizer is being used in

reference channel.

6 Contains the test point ID.

This record is only used for

annotation.

7 Contains tape number. This entry

is of the form NNNN where NNNN is

the tape cassette number.

67
"6 ' " . ."" "" " "-" T - '"< """ ""' ": ' " "



II

8 Contains the up-to-five character

filename of the threat waveform

(threat waveform ID).

9 Contains the ASCII representation

of gain added to the reference

channel in dB.

10 Contains the ASCII representation

of gain added to the signal channel

in dB.

11 Contains the ASCII representation

of the delay added to the signal

channel in ns.

12 Contains the ASCII representation

of the delay added to the reference

channel in ns.

13 Contains the ASCII representation

of the network analyzer display

reference in dB.

14 Contains the ASCII representation of

the delta time for use in building

the inverse Fourier transform.

15 Contains the ASCII representation

of the threat waveform scaling

factor. This string must resemble

the input form of a floating point

number.

16 Contains the tape file number of the

transfer function system calibration

run. Format is the same as for record

seven.

17 Contains the tape file number of the

response function system calibration

run. Format is the same as for record

seven.

68

68-" '
6_



18 Contains hard-copy plot and tape storage

enable flags in the first and second

bytes, respectively. Bytes set to 'YI'

enable the corresponding function.

19 First full word contains, in internal

integer format, the calculated ampli-

tude plot centerline in dB.

20 Contains the ASCII representation of

the Parseval time values.

21 Contains the ASCII representation of

the Parseval frequency value.

22 Contains the ASCII representation of

the Parseval ratio.

23 Contains the ASCII representation of

the reference sensor calibration

reference gain in dB.

The file MENU.SEC contains the secondary menu, which

has data that does riot figure in the data reduction aspect, but

is used for annotation. Each record of this random access file

contains 32 bytes which contain only ASCII text. The records

are assigned thus:

Records Use

1 Contains test location.

2 Contains test type.

3 Contains test element.

4 Contains log ID. This is intended

as a way to cross-reference a data

run with an externally maintained

test log.

5 Contains the test engineer's name.

6 Contains the sequence number of

up to four digits.

7 Contains a one letter test facility

code.

69



8-9 Contains remarks entered by the

operator at end of test. The first

32 characters (bytes) of the remarks

are stored in record eight and the

remainder appear in record nine.

10 Contains the Mission filename of

nine characters + '.MIS'.

The file MENU.ODL contains the ODL menu, which has data

that sets up the IEEE-488 bus devices. Each of the 12 records

of this random access file contains four bytes which contain

only ASCII text. The record assignments for MENU.ODL are:

Record Use

1 Contains the ID number of the data

ODL to turn on and set up.

2 Contains the channel or calibration

setting (A, B or C).

3 Contains the channel attenuation

setting (0-79) in dB.

4 Contains either 'IN' if the integrator

should be placed into the data path

or 'OT' if it is to be left out.

5 Contains a 'Y' if Vin = 0 is desired

for the data ODL, else an 'N'.

6 Contains a 'Y' if the reference ODL

is to be turned on, else a 'N'.

7 Contains the reference ODL channel

or Calpulse (A, B, or C).

8 Contains the reference ODL attenuation

(0-79) in dB.

9 Contains 'IN' if the integrator is to

be included in the reference data

path, else a 'OT'.

10 Contains a 'Y' if Vin = 0 is desired

for the reference ODL, else an 'N'.

70

S-

...................................... ... .... .....



• q

11 Contains the channel to be selected

on the VHF switch A.

12 Contains the channel to be selected

on the VHF switch B.

4-2.3.2 Data Files. The software subsystem generates five

types of files for storage of test data. Four of these files

are deleted and re-allocated before each test, and are therefore

available for inspection by stand-alone utilities FYLDMP and

AUTPLT between tests only for the previous test. The files are

allocated on device CD: in UFD [200,1]. They are unformatted,

direct access files and contain data in internal single-

precision floating point format. Their filenames are

RAWDATA.TMP, CORECT.DAT, INVERS.DAT, and ACOMP.TMP. The fifth

type of data file is the files that have been saved for use with

the interactive analyst software or written to tape.

RAWDATA.TMP is the raw data spool file. Data from the

receiver PC.U is obtained by the task INPUT and. sent via the

*Send/Receive Message facility of the operating system to the

corrections task, CORECT. CORECT converts the data into the

internal single precision format and stores data in RAWDATA.TMP

as records of triplets of frequency in Hertz, amplitude in

millivolts, and phase in millivolts; one triplet per record.

CORECT.DAT is the file which contains corrected data.

CORECT de-spools data from RAWDATA.TMP and applies corrections

to it to remove the effect of instrumentation, sensors, etc.
This corrected data are then written into CORECT.DAT as records

of triplets of frequency in Hertz, amplitude in dB, and phase in

degrees (+180); one triplet per record.

INVERS.DAT is the file which contains the results of

the inverse Fourier transform. When the inverse task, INVERS

needs a piece of corrected data to build the inverse transform,

the task signals CORECT, which responds by sending a message

with the next available piece of corrected data. When all daca

points are received, INVERS writes the data to INVERS.DAT in the

form of records of doublets. Each record contains a time point

71



in seconds, and a magnitude in units determined by the units o f

the signal probe used in the test.

ACOMP.TMP is a file used to store composite correc-

tions. To save computation and I/O time, corrections generated

by CORECT are saved in ACOMP.TMP during the second cycle of a

multicycle test and are read back during the third cycle. Data

are stored as triplets of frequency in Hertz, amplitude

correction in dB, and a zero (since phase correction does not

apply in the third cycle of a test); one triplet per record.

Both RAWDATA.TMP and CORECT.DAT use a special record to

denote end of test. This record has a frequency value less than

zero. This convention was needed to delimit each cycle of a

multicycle test. These files also use the convention of a

record with the frequency value equal to zero to denote a

deleted frequency or deleted frequency range.

Interactive Analyst and tape data files all have the

same format. These files are placed in UFD [200,2] on the

classified disk, CD:. They are unformatted, direct-access files

and contain a data header and the data points in internal

single-precision floating point format.

Data filenames are built by the system to reflect the

type of data within. The data filename formats are:

AAAAAXXX.EXT

where AAAAA is the file identifier

XXX is the Julian date the file was created

EXT is the extension that signifies the data state

The file identifier is determined by the test type

field in the secondary menu.

Test Type File Identifier

RFSN INREF

RCAL SYSRF

TCAL SYSTF

PCAL Five character probe ID from main menu

TEST Facility code file sequence number
from the secondary menu

72

,- --. . " -- . .,, . - " .. . "- **, . .. ,. - .'..- . . ,..--* - , .* - * "- *. -. -..



depending upon the data state:

EXT Data State

AMA Ambient noise measured data

UMA Pick up noise measured data
CMA CW measured test data

TCA Time (transformed) calculated data

TDA Time (transformed) defined data

PMA Pulse measured test data

FCA Frequency calculated data

FDA Frequency defined data

The data file header contains 57 ASCII records each 12

bytes long. The contents of the data header are:

q•

Record # Contents Format

1-2 Byte 1 (of Rec#l) indicates Char

CW file - '1'

Byte 2 (of Rec#2) indicates

data type

'i' - frequency domain

'2' - time domain

Bytes 3,4, and 5 (of Rec#l)

Record # of first data point

Presently the remainder of

record 1 and record 2 are

unused

3 Date of origination 'DD-MMM-YY'

4 Time 'HH:MM:SS'

5-7 File Origin Char

Record 5- input file 1

for an ANL file contains

the value of A

73

*0

.-. y .. : :.. .: .. : . . - ::.: : -. ... : . .:: .::. ..: :.........:.: ... . .. ....... -. ..... .. .- . .. . . .. .:
~~~~~~~~~~~~~~~~. ............. ... ...... .. ............. :... .... ......... ..... ............... .. .............


Record 6 - input file 2,

if present - for an

ANL file contains the

value of B

Record 7 - 3 character function

code and present date

8 Test # (Sequence) 4 char

(signed integer)

9 Test Location char

10 Test Description char

11 Test Engineer char

12-16 Test Comments char

for an ANL file contains

values for D, E, F, G, H

4 17 Test Point ID <=12 char

18 Filename of signal probe >0, <=9 char

19 Signal gain added in dB 4 char

(signed integer)

20 Signal delay added in ns 4 char

(signed integer)

21 Threat Wave scaling factor char (lPEI2.5

format)

22 Filename of threat waveform >0, <=9 char

23 Minimum of the file (first char (IPEI2.5

triplet or doublet value) format)

24 Minimum of the file (second char (IPEI2.5

triplet or doublet value) format)

25 Minimum of the file (third char (lPEl2.5

triplet value) format)

26 Maximums of the file (first char (1PE12.5

triplet or doublet value) format)

27 Maximums of the file (second char (IPEI2.5

triplet or doublet value) format)

28 Maximums of the file (third char (1PE12.5

triplet value) format)

29 Type of test 'XCAL' / 'TEST'

74 'i

i. . . .-. .-,,' .-,- .' ,-... - ".'-.- " - . . -'- " - .- " - " - " - "

30 Filename of reference probe >0, <= 9 char

31 Reference gain added in dB 4 char

(signed integer)

32 Reference delay added in ns 4 char

(signed integer)

33 Network analyzer display 4 char

reference dB (signed integer) - -

34 For ANL file contains the char

value for C

35 For ANL file contains the char

value for J

36 Plot format 3 char

37 # points in decade 1 4 char

38 # points in decade 2 4 char

39 # points in decade 3 4 char

40 # points in decade 4 4 char

41 # points in decade 5 4 char

42 # points in decade 6 4 char

43 Multi or single channel test 'Multi'/

'Single'

44 Tape file ID (4 digits (tape 4,7

no.), 7 char)

45 Time domain delta T if char (IPEl2.5

applicable format)

-1.0 entered in converted

data due to unevenly

spaced data

46 Transfer function calibration 4,7

tape file

47 Response function calibration 4,7

tape file

48 Test Element char

49 Log ID char

50 Parseval time value char (IPE12.5

format)

51 Parseval frequency value char (IPEl2.5

75

.
. - ~ .. -- ~ - - - . .- .. -.- -. . --. . - -- -. ..- .

* -. - - - - -- - .-.-...~*.v..*.**-. - . -. . ----

r*.

format)

52 Parseval Ratio char (lPEI2.5

format)

53 Phase unwrap delay time char (IPEl2.5

format)

54-57 Reserved for future use Blank

The data are written in 12 byte records. Each data

record contains either two or three data values depending upon

the domain of the data. Frequency domain data records contain

a triplet of frequency, magnitude and phase data. Time domain

data records have two values per record of time interval and

amplitude. The data values are stored in real internal binary

format.

4-2.3.3 Calibration Files. In order to correct for the effect
of instrumentation and sensors, the transfer functions of these

devices must be known. To find these functions, calibrations

are performed on the instrumentation and sensors. The data from

these calibrations are then stored in calibration files. The

data from the cal files are used in the corrections phase of the

data reduction.

To correct for the effects of instrumentation, two cal

files are used. These files are SYSTF.CAL and SYSRF.CAL.

These, and all other cal files, are on volume SY: in UFD

[200,1]. SYSTF.CAL is the calibration file for transfer

function measurements. This cal file is used for all tests when6i
the receiver PCU 'PLOT FORMAT' thumbwheel is set to 'TFA',

'TFB', or 'TFC', except during the first cycle of a multicycle

test. The transfer function cal assumes the presence of a

reference measurement and a signal measurement being made simul-

taneously.

The file SYSRF.CAL is the cal file used to correct

response function measurements, which assume that the reference

channel has the rf source driving it directly, the result is the

response of a test point given the fixed reference level. The

76

6]

7.~~~ -7 7 -

response function file is used for tests when the receiver PCU

'PLOT FORMAT' thumbwheel is set to 'RFA', 'RFB', or 'RFC' , and j
in all tests during cycle one of a multicycle test.

Sensor cal files are used to correct for the effects of

sensors. These files have names of XXX.CAL, where XXX is an up-

to-nine character name which identifies the sensor. The system

assumes that the first character of the sensor identification

denotes the units that the sensor measures. Currenty, the

following sensor types are supported:

First Letter Units

Ot Sensor ID Measured

I Amps

V Volts

B Teslas

Should any other character appear as the first charac-

ter of a sensor ID, no units are assumed. The file UNOO.CAL is

a special cal file designed to have amplitude and phase of zero.

This 'unity sensor' is used primarily for testing. When a

sensor ID is entered in response to the menu prompts for

reference sensor or signal sensor, the software system appends

the extension CAL to the entered ID and accesses the file.

All cal files are unformatted, direct access files

consisting of records each containing one triplet of frequency

in Hertz, amplitude in dB, and phase in degrees (+180 degrees).

All data in cal files are in internal single-precision floating

point representation, and contain an end-of-file record as the

last record. This record contains a triplet consisting of a -1

(in the frequency field; this is the end-of-file mark), the

6 delay in seconds computed when the calibration file was 0

generated (in the amplitude field), and a 0 (in the phase

field).

77

776 -1
* . - '

' " " " ' !." ". " " ." "' " "" " •" "' - " '- .• . - - .- .

4-2.3.4 Threat Waveform Files. Threat waveform files are used

in generation of the inverse Fourier transform. The data in the

file is multiplied (in the frequency domain, which is equivalent

to convolving in the time domain) with the corrected data to

generate the inverse transform. These files are created by the

THRTWV stand-alone utility and are placed on device CD: in UFD

[200,1]. Threat waveforms have a name of the form XXX.WAV,

where XXX is an up-to-nine character filename which is also the

waveform identifier. When the waveform ID is entered in re-

sponse to the menu prompt for the waveform, the software system

appends the extension .WAV to the entered ID, and access the

file. Threat waveforms are stored in the frequency domain. The

file is an unformatted, direct-access file and consists of

records containing one triplet each. The triplets are organized

as a frequency in Hertz, amplitude in dB, and phase in degrees

(±1800) . These files contain two end-of-data records. The

first end-of-data record contains a -1 in the frequency field,

the value of a in the amplitude field,)3 in the phase field.

The second record contains a -2 in the frequency field, the

high-frequency filter cutoff point in the amplitude field and

low-frequency filter cutoff point in the phase field. All data

in these files are in internal single-precision floating point

format.

4-3 MESSAGE STRUCTURES

The software system, as stated earlier, consists of a

number of tasks whose only global structure is the RSX-11M

Message. A Message is a 13-word block which the sender task

fills with data and dispatches to a receiver task. The receiver

task gets the 13-word block prefixed with a two word block con-

Staining the sending task's name. In the following discussion,

only the contents of the 13-word data portion will be discussed.

Messages in the CW system are one of four types, the

type teing denoted by the second byte of the messaje. Each. tv e

will be discussed separately.

78

4-3.1 Panel Data Block (PDB) Structures A
The Panel Data Block (PDB) contains data on the front

panel switch settings of the receiver PCU (also the transmitter

PCU as the settings must be identical). The PDB data record is

the first record from the PCU and is denoted by an asterisk in

the first byte of the record. The record from the PCU is 86

bytes and is organized as follows.

Byte # Contents

1 *1 - the PDB descriptor

2-4 Plot format setting - ASCII characters

which are the same as the characters

on the Plot Format thumbwheel.

5-10 Samples per decade - each byte contains

a character as defined below. Byte 5

contains the samples/decade for the 7.

first decade (1-10 kHz) up through

byte 10, which contains the samples/

decade for the 6th decade (100-1000 MHz).

The samples/decade code is:

A = 0 samples/decade

B = 25 samples/decade

C = 50 samples/decade

D = 100 samples/decade

E 250 samples/decade

F = 500 samples/decade

G 1000 samples/decade

H = KFD setting

11 Cycle number in ASCII. '0' indicates

a single cycle test, whereas 'I' - '3'

is the cycle of a multicycle test.

12-13 <CR><LF>

14-86 Blank pad.

79

* -.* ' *~*' °.

The software system encodes this information and distributes it

to each of the modules. The PDB message format is:

Byte # Use

1 - Unused -

2 PDB descriptor (=l).

3-5 Plot format setting. Data are

encoded the same as in the PCU

record.

6-11 Samples/decade. Data are encoded

the same as in the PCU record,

with byte 6 containing the first

decade data and byte 11 containing

decade six data.

12 Cycle number in internal byte

representation. 0 (numeric value

as opposed to the ASCII representa-

tion) is the single cycle number,

whereas 1-3 is the cycle number of

a multicycle test.

13-26 - Unused -

4-3.2 Data Block Structures

Data blocks from the PCU to the PDP-11 arrive in one of

three formats. In tests that have phase information (plot for-

mat of 'TFA' or 'TFC') the blocks arrive in records containing

up to five triplets of frequency, amplitude and phase. In tests

that do not contain phase information (plot format of 'TFB'--

'RFAII 'RFB', 'RFC'), the data blocks arrive in records con-

taining up to seven pairs of frequency and amplitude. For all
tests, the end of a sweep is denoted by a record containing an

exclamation point (!) as the second character. All data rec-

ords are started with a number sign (#) as the first character.

The formats are summarized below.

80

-*-,. ,. ., .*. .-... ,, , , *-,. ' .-.. : -:

For Tests with Phase Data

Byte # Use

1 - the data block descriptor.

2-5 A four digit integer in ASCII which

is the mantissa of the frequency.

A decimal point is assumed between
bytes 2 and 3.

6 Power of ten by which the frequency

mantissa is multiplied.

7 A plus (+) sign or minus (-) sign.

8-11 Amplitude output of the amplitude DVM.

This, along with the sign in byte 7,

is the amplitude measured in milli-

volts. 50 mV = 1 dB.

12 A plus (+) or minus (-) sign.

13-16 Phase output of the phase DVM. This,

along with the sign in byte 12, is the

phase measured in millivolts. 10 mV = 1.

17-86 Bytes 2-16 are repeated up to four times.

A <CR><LF> sequence follows the last data

entry in the record. The PCU will fill

all records, except in the case of the

last record sent before the end-of-data

record. Any extra bytes in the record

are blank-padded, and padding occurs

after the <CR><LF> sequence.

For Tests Without Phase Data

Byte # Use

1 '' - the data block descriptor.

0 2-5 A four 'igit integer which is the

mantissa of the frequency. A decimal

point is assumed between bytes

2 and 3.

81

0 - - - - ,: - .. - > .- - : . . - . . - - . -

6 Power of 10 by which the mantissa

in bytes 2-5 is multiplied.

7 A plus (+) or minus (-) sign.

8-11 Amplitude output of the amplitude DVM.

This, along with the sign in byte 7,

is the amplitude measured, in milli-

1286 volts. 50 mV 1 dB.

12-86 Bytes 2-11 are repeated up to six more

times. A <CR><LF> sequence follows the

last data entry in the record. The PCU

will fill all records, except the record

just before the end-of-data record. Any

extra bytes in a record are blank-padded,

and padding occurs after the <CR><LF>

sequence.

End-Of-Data Record

Byte # Use

1 '#'1- the data block descriptor.

2 - the end-of-data mark.

3-4 <CR><LF> sequence.

5-86 blank-pads

Data messages also have varied formats. When the data

input task INPUT receives a data message, the ASCII characters

representing the values are converted into integral integers.

The values generated are the mantissa of the frequency, the

power of ten, the amplitude in mY, and the phase (if phase data

is included) in millivolts. The assumed decimal point is

* ignored by the INPUT task but is re-inserted into the number by

CORECT during the spooling operation. This scheme generates

four words of data if phase is included, and three words if

phase is suppressed, for each measurement point. Since, in a

* 13-word message, one word is reserved for the descriptor, there

.-. are 12 words available for data: For tests where ptase is

82

included, three data entries will fit in a message, and four

data entries will fit in a message if no phase is included. The

tasks key on the plot format of the PDB to determine whether

phase information is present. Since a full data record from the

PCU always requires more than one message to send the data from

INPUT to CORECT, the first byte of the message is used to tell

CORECT how many data entries are in the message. The format of

messages from INPUT to CORECT follows: (all data is in internal

integer format unless otherwise noted).

For Tests with Phase Data

Byte Use

1 Number of data entries in this message

in internal byte format.

2 The data descriptor (=2) in internal

byte format.

3-4 Frequency mantissa. The corrections

task divides this by 1000 before

applying the power of 10 multiplier.

5-6 Power of 10 multiplier.

7-8 Amplitude measurement in millivolts.

9-10 Phase measurement in millivolts.

11-18 Same as bytes 3-10.

19-26 Same as bytes 3-10.

For Tests Without Phase Data

Byte # Use

1 Number of data entries in this message

in internal byte format.

0 2 The data descriptor (=2) in internal

byte format.

3-4 Frequency mantissa. The corr-ctions

task divides this by 1000 before

applying the power of 10 multiplier.

5-6 Power of 10 multiplier.

83

.'.............'......,...'...

7-3 Amplitude measurement in millivolts.

9-14 Same as bytes 3-8.

15-20 Same as bytes 3-8.

21-26 Same as bytes 3-8.

Once the data are corrected by CORECT, the data are

then distributed to the tasks CRT (for plotting on the terminal)

and INVERS (for use in building an inverse Fourier transform).

The message format still uses the data descriptor, but the

format is different. All data are in internal single-precision

floating point format, and only one point is distributed at a
time. Therefore, the data count subfield of the descriptor word

in the message is unused in this form of a data message. The

format follows: (all entries are in internal single-precision

floating point format unless otherwise noted).

Byte # Use

1 - Unused -

2 The data descriptor (=2) in internal

byte format.

3-6 The frequency point in Hz.

7-10 The correct amplitude in dB.

11-14 The correct phase in degrees (set

to zero for tests without phase

data).

15-18 The composite delay, in seconds.

This entry is only sent to the

task INVERS, and is used to correct

the phase for the inverse transform.

It is unused otherwise.

19-26 - Unused -

When the input task (INPUT) senses an end-of-data

record from the PCU, it generates a message with a special

descriptor and no data. This message is propagated throughout

the system. Its format is:

84

-" -" -? -.- :-. -"-:- . • .'-i ",." . . .*.- -.. .- * *-.-. .-.
, i *.".' *:.*. " ".' -.-: * * -.--.."*.*. -",.* ,, -- *- *.*"*_**,--* .

Byte t Use

1 Set to 1 (internal byte format) when

Tan end-of-data block is sent to the

inverse task (INVERS) task from the

corrections task (CORECT) if:

1) The test is not one which generates

the inverse transform, and

2) The test is a multicycle test.

-- 2 The end-of-data descriptor (=4) in

internal byte format.

3-26 - Unused -

4-3.3 Error Status Block (ESB) Structures

The receiver PCU generates a record known as an Error

_ Status Block (ESB) whenever it encounters an error condition for

which *there is no recovery. Included in the ESB is a code for

* - the error condition. The PDP-11 software also generates error

codes in a similar fashion when it encounters an error condition

from which it cannot recover. These codes can be found in

Appendix A of the Operating Manual. The format of the ESB from

the PCU is:

Byte # Use

1 &'- the Error Status Block descriptor

2-3 Two ASCII digits which are the error code.

4-5 <CR><LF> sequence.

6-86 Blank pads.

. When the ESB is sensed and decoded, it is sent in a

" message to CORECT, which propagates it to the terminal monitor

task (CRT) , which displays the code in an error message on the
0

CRT display. The format of an ESB message is:

Byte it Use

1 - Unused -

2 The ESB descriptor (=3) in internal -

byte format.

85

>.......,- ...'. -. * . . . *.... * * , . . - ,. ,.• , -. '- '. .'-..-'- -,
, • - . o , -.- , o • =....** ' *- - * o , . - . .- - . . o. . . * . * .- . -. . .-

: = ,' =._'- : " '-' -. I % % _ ". - ., , ._ ,- [" -," ,' <_. ." . j

3-4 Two ASCII digits which are the error

code.

5-26 - Unused -

4-4 GLOBAL FLAGS

Each task in the RSX-11M environment has access to 64

single-bit 'flags'. These flags are numbered 1-64. Flags 1-32

are associated with the task itself; these are called 'local

flags'. Local flags can be used to coordinate intratask events,

* timing, and other such uses. Each task has its own set of local

flags. Local flags 25-32 are reserved for system use. Global

flags (also called 'common flags') are numbered 33-54 and are

fully accessible by any task currently executing. (Global flags

57-64 are reserved for the system's use.) Refer to the RSX-11M

0 Executive Manual for a more in-depth discussion of event flags

and some examples of their use.

In the cw system, 11 global flags are defined for use.

In addition, two global flags are used for intratask coordina-

tion. This is necessary because the 32 global flags are split

into two groups of 16 each (flags 33-48, and flags 48-64). The

local flags are also split into two groups. The flag manipula-

tion directives only allow operations of multiple flags in a

particular group. So a directive to 'WAIT FOR LOGICAL OR' of a

number of flags can only wait for flags in the global group; the

directive is unable to support a wait for flags in both a global

group and a local group at the same time. To remedy this, two

global flags were reserved for use as 'local' global flags.

The global flags defined for use in this system are

listed below:

0
Number Name Use

23 ABORT Signals all tasks in the system

to go to end-of-task immediately.

Set on encountering an error

condition from which there is no

86

recovery.

34 CRT READY Set by CRT to indicate that the

task CRT is ready to accept a

corrected data point for plotting.

35 INVERS READY Set by INVERS to indicate that the

INVERS task is ready to accept a

corrected data point for calcula-

tion of the inverse Fourier trans-

form.

36 CRT DATA Set by CORECT to indicate to CRT

AVAILABLE that a data message has been sent

to CRT containing a data point for

plotting.

37 INVERS DATA Set by CORECT to indicate to INVERS

AVAILABLE that a data message has been sent

to INVERS containing a data point

for inclusion in the inverse Fourier

transform calculations.

38 CORECT DATA Set by INPUT to indicate to CORECT

AVAILABLE that a data message has been sent

to CORECT containing raw data from

the PCU for spooling.

39 PRIMARY MENU Set by CRT to indicate to CORECT

AVAILABLE and INVERS that the primary menu

has been approved by the operator

and that the file MENU.PRI con-

taining the primary menu data is

available for data extraction.

40 CORECT CLEAR Set by CORECT to indicate to INVERS,

STRTTP, and NHCPLT that CORECT has

completed its processing, and that
CORECT.DAT, the file containing the

corrected data, is available for

data extraction.

41 CRT CLEAR Set by CRT to indicate that the CRT

task has completed processing. This -

87

-',.-2 v .'< " b" " - .7 " '. . . . " ".. •. .,. ' '... ", . . • "

flag, along with CORECT CLEAR (t40)

is used by INVERS to tell when to

start the tasks NHCPLT and STRTTP.

43 QLOOK Set by CRT if the inverse transform

plot is to be displayed on the

terminal.

45 INVCMP Set by INVERS to signify to CRT

that INVERS is running.

47 PCU READ Set by the system when the QIO

COMPLETE directive which INPUT issues to

read data from the PCU completes. -.

This is a 'local' global flag and

is only used by INPUT.

48 RAW DATA Set by CORECT when raw data are spooled

WAITING for corrections and remains set until

the raw data spool file is depleted.

This is a 'local' global flag and

is only used by CORECT.

4-5 OTHER SOFTWARE SYSTEM STRUCTURES

4-5.1 Output Cassette File Structures

The MFE-5450 cassette drive and associated tape

cassette are used for storage of test data. A record on the

cassette consists of 86 data bytes (and two bytes of CRC

validity code which are not available to the user). This length

is hard-wired into the drive. The first two records on the tape

are directory records. The directory structure can control up

to eight data files per side of a cassette. There is room for

2000 records on a cassette (including the directory records).

The two directory records are followed by data records which are

separated logically into files. Each file has two parts: a

"header" in which text data describing the test is kept, and a

data section.

The directory records contain ASCII data (as do all

tape records). The first six characters of each directory

record contain the tape number. This tape number only applies

88

to one side of a cassette. Following the tape number are four

directory entries. Each directory entry contains 17 bytes of

information. The 17 bytes are used thus:

Byte # Use

1-12 The up-to-eight character filename

followed by a period and the file

extension (filename.ext).

13 An equal sign (=)

14-17 The number of records the file occupies.

This number is always four digits long.

The first record's directory entries are filled before

the second record's directory entries are accessed.

The Control records delimit the data files. Each

Control record starts with a percent sign (%) as the first byte

of the record, followed by a 0 or a 1. This descriptor indi-

cates the nature of the Control record. The records used are of

the following form:

Record Meaning

%0 filename.ext=xxxx 'filename' is the up-to-eight character

filename followed by the extension.

'xxxx' is the number of records in -.-

the file. This record starts the

file and identifies the file.

Following this record is the 57

record header.

%1 END OF FILE This record is always the last

record of a file. It is the

end-of-file marker.

The 57 record header contains data from the PDB, the

primary :zenu, and tnhe secondary menu. The header immediately

follows the %l control record. See paragraph 4-2.3.2 for a
description of the header record contents.

89

The data records follow the header records. Data

records consist of six ASCII entries. Each entry is a Fortran

E-format floating point number. Data is written to tape using

a Fortran FORMAT of 6(X,lPEl3.6), yielding 84 bytes of data.

Bytes 85 and 86 contain a <CR><LF> sequence. Data records for

ambient noise, test data, and pickup noise contain two triplets

each. Each triplet contains a frequency in Hertz, amplitude in

dB, and phase in degrees between -180 and +180 . Should an odd

number of triplets result from a test, the last record is blank

padded to byte 84. Data records for the inverse transform

contain up to three pairs. Each pair contains time point in

seconds, and a magnitude in the units of the signal probe. The

last record contains only two doublets (as there are always 512

data points in the inverse transform) and is blank padded to

byte 84.

4-5.2 Frequency Table Entries

The PCUs contain firmware tables which contain the

mantissas of the frequencies 'to be generated for a test. These

mantissas are then scaled to the proper decade and these data

are fed via the GPIB to the frequency synthesizers. It is

necessary to match these table entries whenever a program

interacts with the PCU, as with the Amplitude PROM program AMPL

and Delete Frequency PROM program DEL. To do this, a table of

mantissas can be generated by the formula

I/

This formula, when coded in PDP-11 Fortran, becomes

FTAB(I) = DINIT ((l.DO * (DFLOAT (I-1) ** l.D-3) * 1000)

where FTAB(I) is the ith frequency table entry (i ranges from 1

to 1000), DFLOAT is the integer to double precision floating

point conversion, and DNINT is the double precision nearest

integer conversion. The result is an integer (in floating point

representation) in the range 1000 to 9977. .h!n less t-an I OC *,

points per decade are selected for a given decade, the PCU

90

...... .. .

47 7

selects frequencies from the table in evenly spaced intervals,

starting with the first table entry.

In scaling table entries for a given decade, low

frequencies will have their least significant digits truncated.

This occurs because the synthesizers' resolution is only 100 Hz.

A frequency of 2626 Hz, for example, when passed to the

synthesizer, is truncated to 2600 Hz because the synthesizer

cannot resolve a frequency closer than 100 Hz. Due to this

truncation, duplicate frequencies may be generated in the low

frequency decades. The software system only accepts data from

the first of any duplicate frequencies.

4-6 1-DISK OPERATION

The system is designed to operate with only one of the
two disk drives functioning. The disk drive which is func-

tioning must have the system disk installed in it and must be

unit DLO: (refer to paragraph 2-3.1.2 of the Operating Manual,

the UNIT SELECT subsection, to determine how to set a drive unit

number). When the system is booted, the operator enters the -

command

@lDISK<CR>

to establish single-disk operation. This causes volume CD: to

be assigned to DLO: (along with SY:).

IMPORTANT

CLASSIFIED DATA MUST NOT BE ACQUIRED, NOR CAN
CLASSIFIED THREAT WAVEFORM FILES BE BUILT,
WHILE IN A SINGLE-DISK CONFIGURATION.

When returning from a single-disk configuration to a

two-disk configuration, the data files from the system disk must

be erased and the CD: volume reassigned to unit DLI:. The -

operator effects these operations by entering
L

92DISK<CR>

9I

91 ,

6 "- . :ii i . . :" • .: :! ! - . '.. " I.

7F

4-7 TERMINAL PORT ASSIGNMENTS

The back panel of the PDP-11 cabinet contains five male

EIA RS-282 connectors, each of which is labelled with the type

of peripheral to be connected to it. Each port in the back of

the cabinet has a device mnemonic of TTnn:, where nn is the unit

number (leading Os can be suppressed). The colon (:) is

required syntax indicating a device name. The device mnemonics

are assigned to the peripheral ports in the following manner:

Mnemonic Peripheral Port

TTO: GRAPHICS TERM HP

HP-2648A

TTl: RCVR PCU

TT2: TAPE UNIT

MFE-5450

TT3: PROM PROGRAMMER

PRO-LOG M900

TT4: PLOTTER

TEK-4662

92

AD-R5i 622 CI MEASUREMENT SYSTEM SOFTWARE SYSTEM MAINTENANCE 2/3
MRNUAL(U) EG AND G WASHINGTON ANALYTICAL SERVICES
CENTER INC RLBUQUERQU-. R NELSON ET AL. 02 APR 82

UNCLASSIFIED EG/G-AG-1435 DNA-6232F DNAAi-8-C-029U

EmhmmmhhhhlsmhhhEE|h|hh|hI
IIIIIIIIIIIIIIffllfllf
EllE~llEE~lllE

111.6

11111L2.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963A

S"

.. - 7 7,-

SECTION 5

OPERATING SYSTEM SUPPORT PROGRAMS "

5-1 GENERAL

The software supplied by Digital Equipment Corporation

for use with the PDP 11-34 computer includes the Operating Sys-

tem (RSX-IIM); an editor (EDT) for manipulation of text files; .

a Fortran compiler (F4P); a "task builder" (TKB), which is DEC's

name for their linking loader; the Peripheral Interchange Pro-

*gram (PIP), which is the programmer's primary file maintenance

utility; the Monitor Console Routine (MCR), which controls

operator/operating system communication; and the Dump utility

(DMP), which provides a way to display data files in various

formats.

65-2 RSX-11M

RSX-11M is a real-time multi-programming operating sys-

tem designed for fast response to external interrupts and with

numerous functions to facilitate intertask communication and

control. Refer to Digital Equipment Corporation Manuals RSX-11M

Beginner's Guide, Introduction to RSX-IIM, and RSX-11M Executive

Reference Manual. This system uses version 3.2 of RSX-lIM.

Intertask communication is accomplished by means of

global event flags, shared data files, and send/receive direc-

tives. The global event flags used by the software system are .1
listed in Section 4 of this manual.

Refer to the RSX-11M Executive Reference Manual, Chap- -

ter 2, for a discussion of event flags.

Shared data files are files which are accessible to

more than one program. The files the software system uses are

described in Section 4 of this manual. Refer to RSX-IIM I/O

Operations Reference Manual, Chapter 2.

Send-Receive directives pass a 13-word data buffer

btween tasks. Refer to tle RSX-IIYM Executive Reference ,lanua"

and Section 4 of this manual.

0 93

Indirect command files are a feature of the RSX-11M

operating system. An Indirect Command File is a file that con-

tains the commands the operator would enter from his terminal.

Indirect Command Files are created with the editor

(EDT), and have file names of the form NAME.CMD, where NAME can

be any valid filename. They are executed by typing @NAME<CR> on

the operator's terminal; the system will access the file and --

execute the commands therein. Refer to RSX-11M Operator's Pro-

cedures Manual and Appendix A of this manual.

5-3 THE EDITOR (EDT)

EDT is the Digital Equipment Corporation trans-

operating system editor. It allows creation and modification of

Flecs, Fortran, or Macro-ll source files. Commands are provided

* to find, modify, insert and delete text from pre-existing files,

to create new files, save text and transfer text from one file

to another. Refer to the DEC Editor Reference Manual.

5-4 FORTRAN IV PLUS (F4P)

The Fortran compiler supplied with the software system
is Digital Equipment Corporation's PDP-11 Fortran IV PLUS, which

conforms to American National Standard FORTRAN X3.9-1966, with

certain enhancements. Refer to the PDP-11 Fortran IV PLUS

Language Reference Manual and the IAS/RSX-II Fortran IV PLUS

User's Guide. The Fortran compiler accepts the output of the
Flecs pre-processor discussed in Section 6. For details of

Flecs operation consult the Flecs User Manual, Appendix C.

5-5 TASK BUILDER (TKB)

The Task Builder links compiled programs with subrou-
tines from the Fortran and other libraries and assembles the

0
whole into a zero-origin task image ready for relocation and

execution by RSX-IIM. Refer to the RSX-11M Task Builder Refer-
rnc an u,7.

94
* 5

* % M TT

5-6 PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Digital Equipment Corporation's Peripheral Inter-

change Program (PIP) is the programmer's primary means of file

. manipulation. With PIP, files can be created, deleted and

renamed, transferred from one device, logical unit, file, disk

* drive, user account, etc., to another; disk space utilization

can be checked; and a number of other functions connected with

* files and input/output devices performed including unlocking

'locked' files. Refer to RSX-I1M Utilities Procedures Manual,

and Appendix A of this manual.

5-7 MONITOR CONSOLE ROUTINE (MCR)

The Monitor Console Routine monitors the operator's

console and communicates information between the operator and

the operating system. Refer to the RSX-11M Operator's Pro-

cedures Manual.

5-8 FILE DUMP UTILITY PROGRAM (DMP)

This program is used to print out the contents of any
file or disk area. The output may be displayed in various

formats such as octal or decimal digits or in character format.

Refer to the RSX-11M Utilities Procedures Manual.

5-9 THE DISK INTEGRITY CHECKING UTILITY (BAD)

The BAD Utility is used to erase a pack of all data (as

[in the case of freeing a classified pack). This is done by

writing over each and every sector on the disk and checking for

any errors that might occur when the sector is re-read. Refer
to the RSX-11M Utilities Procedures Manual.

5-10 DISK SAVE AND COMPRESS UTILITY (DSC)

The DSC Utility is used to copy from one FILES-11

medium to another. The utility is distributed in two forms: as

a utility whicn can be run under MCR in a fasnion similar c3 thc e

other utilities, or as a stand-alone system. Refer to the

RSX-11M System Procedures Manual (Vol. 2B) for instructions.

95

- . .* - . . r...r.7% - .. 777 -. r.- *.--- - w.-

SECTION 6

SOFTWARE DEVELOPMENT

6-1 SYSTEM PROGRAM DESIGN LANGUAGE (PDL)

The system design is written in a Program Design

Language (PDL) which is an English description using structured

programming concepts/constructs of the logical program flow and

conditions of program execution.

Program design languages are used to facilitate the

design, development and implementation of structured software.

The advantages of structured design include clarity, brevity,

modularity, self-documentation and ease of maintenance.

There are two levels of program design language (PDLs):

a high level (HPDL) and a low level (LPDL).

A system is first outlined at a high level. The basic

structure of the program is described, including inputs and

outputs, the basic logical functions, and the media involved.

Next, using the HPDL listing as a template, a low level

outline is produced which includes and identifies data types and

structures, variables, procedures and error handling. If any

logical difficulties are encountered at this stage, the pro-

grammer returns to the HPDL stage, corrects the difficulty, then

re-enters the LDPL effort. This level of PDL appears in the

listing manual. A
There are five basic logical constructs associated with

structured programming. These will be briefly described here

and more fully illustrated, with flowchart examples, later. -

They are:

The If-Then-Else construct, in which one of two

logical paths is chosen depending upon a decision

made upon entering the block of code;

The Repeat-Until construct, in which a block of code

is repeated until a logical condition at the end of

the block is satisfied;

40

96

*

*' . - ' -, '' ' ''. " - . ' - " L . " " " • ,' j ' ' - . . " " . ' ' ' ' . - ' . . ' . ' ' " . ' . -.

The While-Do construct, in which a block of code is A-A7)

repeated while a logical condition at the beginning .1.
of the block is satisfied;

The For construct, in which a block of code is

executed until a specific numeric condition is

satisfied, and

The Case construct, in which a single block of code

is chosen from a number of such blocks, based on an

input variable.

Procedures are delimited by the keywords PROCEDURE and

ENDPROC. A procedure may require additional parameters from the

calling routine or it may not. Parameters may be global in

scope or may be explicitly passed between the procedure and the

calling routine. The following are examples of procedures and

procedue invocations.

PROCEDURE NOWAIT;
* statements

ENDPROC;

Procedure NOWAIT is invoked by the statement NOWAIT,
*i.e.,•

FOR INDEX :=l TO 2;

NOWAIT;

ENDFOR;

Either there are no parameters for NOWAIT or the

parameters are global.

PROCEDURE WAIT (HR,MIN,SEC);
* statements

ENDPROC;

Procedure NOWAIT is invoked by the statement WAIT in

the code with explicit parameters, i.e.,

WHILE JOB.NOT.DONE DO;

WAIT (C,5,3C)

ENDWHILE;

97

. . . . i-

The literals 0, 5, and 30 are passed to procedure WAIT.

Variables may also be used.

Programs are delimited by the keywords PROGRAM and END

as they are generally in actual code. The PROGRAM and END

keywords cause a level of indentation in the PDL listings.

Included at the end of this chapter are examples of a

high level and a low level PDL which use all of the basic

logical constructs and illustrate the development of a program

using PDLs.

This is a list of the symbols used in PDLs and their

meanings:

1. Relational Symbols

=equals

zgreater than

<less than

>=greater than or equal to

<=less than or equal to

<-not equal to

2. Assignment Symbol

=becomes; the variable to the left of

this symbol is assigned the value of

the expression to the right of it

3. Mathematical Operators

+ plus

-minus

*times

/divided by

**raised to the power of '

98

*1

98

.. ".. ..-: . . - -' -. . -. , " , . '" . . ." ,

5-2 PDL CONSTRUCTS

6-2.1 IF-THEN-ELSE Statement (See Figure 6-1)

IF logical.expression THEN;

statements

ELSE;

statements

ENDIF:

Statement Statement--'
* -J

Figure 6-1. Flowchart of the IF-THEN-ELSE Construct

The logical.expression is evaluated upon entering the block. If

the expression is true then the statements immediately following

the IF-THEN clause are executed; if the expression is false and

there is an ELSE clause the statements immediately following the

ELSE are executed; otherwise, control is passed to the ENDIF .1
statement. The ELSE clause is optional.

99

. . - .]

*

6-2.2 FOR Statement (see Figure 6-2)

FOR loop variable initial value TO [or DOWNTO] final
value [BY step] ;

statements

ENDFOR;

LOOP VARIABLE: =
INITIAL. VA LUE;

STATEMENTS

INCREMENT

(DECREMENT)
LOOP. VARIABLE

Figure 6-2. Flowchart of FOR Construct

The FOR construct repeatedly executes the contained statements

until the value of the loop counter exceeds a limit value. The

* loop counter is set to the initial value when the block is
entered and incremented or decremented (according to whether TOSi
or DOWNTO is used) until it becomes > (< for DOWNTO) the final

value. The keyword TO specifies that the loop variable is
incremented (by one or by the optional stepsize) eacn time the

loop is executed; the keyword DOWNTO specifies that the loop

variable is decremented. Care must be exercised assigning

initial and ending values, increment and decrement values and

using TO and DOWNTO; it is possible that t~re loop may never

execute or fail to terminate.

100

. 4. . - ... - -.

.* -... . " . .* . '

A . p~~~. - .,

. -. " W

6-2.3 REPEAT Statement (see Figure 5-3)

REPEAT; .'..*

statements

UNTIL logical.expression

6

STATEMENTS

* i1

Figure 6-3. Flowchart of REPEAT construct

The REPEAT construct repeatedly executes the contained state-

ments until the logical.expression becomes TRUE. The statements

are always executed at least once.

101

I. -. -- -- -- --

-: .~.--c-.. * ,

. - .

6-2.4 WHILE Statement (see Figure 6-4)

WHILE logical.expression DO;

statements

ENDWHILE;

STrue

SSTATEMENT

Figure 6-4. Flowchart of WHILE Construct

The WHILE construct repeatedly executes the contained statements

as long as the logical.expression remains TRUE. If the

logical.expression is FALSE initially; the statements are not

executed at all.

SI

"I

102
. .I

.1q

2.5 CASE Statement (see Figure 6-5) .

CASE selection.variable OF;

CASE value (,value); .

statements

ENDCASE;

CASE value (,value);

statements

E

ENDCASE;

OTHERWISE;

statements

ENDOTHER; I/ Select Variable :'

STATEMENTS STATEMENTS STATEMENTS-

Figure 6-5. Flowchart of CASEOF Construct

The selection.variable is matched against the values specified

in each CASE section and if a match is found, the associated

statements and no others are executed. If no match is found,

tntn the CTHERWISE statements if present are executed. n 3

match is found and no OTHERWISE is present, then all statements

are skipped.

103

%-2.G PROCEDURE Statement (see Figure 6-G)

PROCEDURE procname;

or -4

PROCEDURE procname (varl,var2,....varn);

ENDPROC;

BEGIN

END

Figure 6-6. Flowcnart of PROCEDURE Construct

The procedure is entered and the included statements are

executed. When the ENDPROC statement is encountered, control

returns to the calling program.

10-

104

6-2.7 PROGRAM Statement (see Figure 6-7)

PROGRAM progname;

* i

END.]

BEGIN

END

Figure 6-7. Flowchart of PROGRAM Construct

The program is entered and the included statements are executed.

When the END. statement is encountered, execution terminates.

105

6-3 PDL UTILITY PROGRAMS

The Program Design Language (PDL) used by EG&G to

design, develop and document computer programs is based on

block-structured programming languages such as ALGOL and PASCAL.

Two utility programs are used to facilitate formatting and I
listing PDL programs.

The term "block-structured" means that a program is

written as a sequence of logical "blocks", each having only one

entrance and one exit. The program is built of these blocks;

the interconnection of the various blocks is the "structure" of

the program.

Program structure may be illustrated at the listing

level by making the logical blocks of which the program is

constructed visually distinct from each other. This is done by

indenting the beginning of each source statement inside the

logical block a certain number of spaces relative to the

beginning of the lines preceding the block; thus nested logical

blocks present a "stair-step" appearance in the left margin of

the listing. Indentation is controlled by the language keywords

* and associated "END" statements; the listing is indented one

level for each keyword and de-indented one level for each "END"

statement.

The two utility programs mentioned relieve the pro-

grammer of the necessity of keeping track of identation levels,

provide a formatted and numbered listing with logic nesting

levels flagged. The first program does the indentation and

* produces a new version of the source file. This means that U
columnar placement of source lines in the original code is ir-

relevant. The second program numbers the source lines, flags

the indentation levels and produces the listing on a specified

physical I/O device.
S

Following this introduction is documentation for the

utility programs and an example shown formatted and unformatted

(see Figures 5-3 and 5-9)

106

%7.. .

PROGRAM EXAMPLE1.LPD;

* THIS PROGRAM READS A STRING OF UP TO FORTY ASCII CHARACTERS
* INTO A BYTE ARRAY, CALCULATES THE EQUIVALENT HEXADECIMAL REP-
* RESENTATION OF THE STRING AND PRINTS IT IN ASCII. AN INPUT SE-
* OUENCE OF TWO ESCAPES TERMINATES THE PROGRAM. 'CHARACTERS' IS
* AN ARRAI OF THE HEXADECIMAL NUMERALS O-F. 'CHARACTER' IS THE
* INDEX INTO THE ARRAY, 'NIBBLE' IS THE TOP OR BOTTOM HALF OF
* A BYTE.

REPEAT:
READ FORTH CHARACTERS FROM USER FILE INTO INPUT ARRAY;
ESCAPES := ZERO;
INDEX := ONE;
WHILE INDEX <= NUMBER OF CHARACTERS READ AND ESCAPES < TWO DO:
IF INPUT ARRAY(INDEX) = ESCAPE THEN;
ESCAPES "= ESCAPES + ONE:
ELSE:
ESCAPES ZERO;
ENDIF:
ENDWHILE:
CONVERT-STRING;
WRITE OUTPUT ARRAY TO OUTPUT FILE;
UNTIL ESCAPES = TWO;

PROCEDURE CONVERT-STRING;
ARRAY POINTER := ONE;
NIBBLE := TOP;
FOR INDEX := ONE TO NUMBER OF CHARACTERS READ;
FOR I := ONE TO TWO;
CASE NIBBLE OF;
CASE TOP;
CHARACTER := (INPUT ARRAY(INDEX) AND OCTAL360)/16;
OUTPUT ARRAY(ARRAY POINTED) CHARACTERS(CHARACTER);
NIBBLE--= BOTTOM;--
ENDCASE;
CASE BOTTOM;
CHARACTER := INPUT ARRAY(INDEX) AND OCTAL17;

*OUTPUT ARRAY(ARRAY-POINTED) "= CHARACTERS(CHARACTER);
NIBBLE := TOP:
ENDCASE:
ENDCASEOF;
OUTPUT ARRAY POINTED "= OUTPUT ARRAY POINTER + ONE:
ENDFOR;

* ENDFOR;
ENDPROC"
END EXAMPLE1. LPD;

* Figure 6-8. Low-Level PDL Example Before Formatting

107
_6

0001 01- PROGRAM EXAMPLE1.LPD;
0002 * THIS PROGRAM READS A STRING OF UP TO FORTY ASCII CHAR-
0003 * ACTERS INTO A BYTE ARRAY, CALCULATES THE EQUIVALENT HEXA-
0004 * DECIMAL REPRESENTATION OF THE STRING AND PRINTS IT IN
0005 * ASCII. AN INPUT SEQUENCE OF TWO ESCAPES TERMINATES THE
0006 * PROGRAM. 'CHARACTERS' IS AN ARRAY OF THE HEXADECIMAL
0007 * NUMERALS 0-F. 'CHARACTER' IS THE INDEX INTO THE ARRAY.
0008 * 'NIBBLE' IS THE TOP OR BOTTOM HALF OF A BYTE.
0009 *
0010 02- REPEAT:
0011 READ FORTY CHARACTERS FROM USER FILE INTO INPUT ARRAY"
0012 ESCAPES := ZERO;
0013 INDEX := ONE;
0014 03- WHILE INDEX <= NUMBER OF CHARACTERS READ AND ESCAPES<TWO DO;
0015 04- IF INPUT ARRAY(INDEX) = ESCAPE THEN;
0016 ESCAPE9 := ESCAPES + ONE;
0017 04* ELSE;
0018 ESCAPES : ZERO;
0019 -04 ENDIF;
0020 -03 ENDWHILE;
0021 CONVERT-STRING;
0022 WRITE OUTPUT ARRAY TO OUTPUT FILE;
0023 -02 UNTIL ESCAPES TWO;
0024 *
0025 02- PROCEDURE CONVERT-STRING:
0026 ARRAY POINTER := ONE;
0027 NIBBLE := TOP;
0028 03- FOR INDEX := ONE TO NUMBER OF CHARACTERS READ;
0029 04- FOR I := ONE TO TWO;
0030 05- CASE NIBBLE OF:
0031 06- CASE TOP;
0032 CHARACTER := (INPUT ARRAY(INDEX) AND OCTAL360)/16" '
0033 OUTPUT ARRAY(ARRAY POINTER) " CHARACTERS(CHARACTER)"
0034 NIBBLE-:= BOTTOM;
0035 -06 ENDCASE;
0036 06- CASE BOTTOM;
0037 CHARACTER -= INPUT ARRAY(INDEX) AND OCTAL17;
0038 OUTPUT ARRAY(ARRAY-POINTER) := CHARACTERS(CHARACTER).
0039 NIBBLE := TOP;
0040 -06 ENDCASE;
.0041 -05 ENDCASEOF;
0042 OUTPUT ARRAY POINTER " OUTPUT ARRAY POINTER + ONE:
0043 -04 ENDFOR;
0044 -03 ENDFOR:
0045 -02 ENDPROC•
0046 -01 END EXAMPLE1.LPD;

Figure 6-9. Low-Level PDL (LPD) Example After Formatting

1080]

6-3.1 IPDL - Indent PDLs

This program makes a new version of the same file with

all the indenting done automatically (2 columns per indenta-

tion). To run the program, type:

IPDL (filename)

If a filename is specified, the execution of the

program begins. If no filename is specified, the program will

*. print a prompt as follows:

IPDL>

The program will now wait for a filename to be entered.

In either case, a default extension of 'PDL' is assumed.

When the program finishes executing, a message

ENDING LEVEL = nn

is printed. nn is the number of levels unclosed in the file

0 that was input.

No files will be deleted by this program, and a file

named the same as the filename entered but with the next highest

version number will be created.

- 6-4 CONVERTING PDLs TO FLECS STATEMENTS

• The conversion from PDLs to Flecs is a straightforward

process with the restrictions documented below.

In the sections which follow, "condition" denotes an

, expression which yields a boolean result (i.e., TRUE/FALSE);

"statement" denotes a single statement or a series of statements

*terminated by the Flecs "FIN" statement; brackets "[]" are used

to denote optional parameters. Each of the PDL control

structures is covered in the sections which follow.

The following restrictions apply:

- Flecs must invent many statement numbers in creating

the Fortran program. It does so by beginning with a large
0

number (in our implementation 32767) and generating successively

smaller numbers as it needs them. Do not use a number which

will be generated by the translator. A good rule of thumb is to

avoid using five digit statement numbers.

109

- - - . - o o

70

The Flecs translator must generate integer variable

names. It does so by using names of the form "Innnn" when nnnn

is a five digit number related to a generated statement number.

Do not use variables of the form Innnnn and avoid causing them

to be declared other than INTEGER. For example, the declaration

"IMPLICIT REAL (A-Z)" leads to trouble. Try "IMPLICIT REAL

(A-H, J-Z)" instead.

The translator does not recognize continuation lines in

the source files. Thus Fortran statements may be continued

since the statement and its continuations will be passed through

the translator without alteration. However, an extended Flecs

statement which requires translation may not be continued. The

reasons one might wish to continue a Flecs statement are 1) it

is a structured statement or procedure declaration with a one

* statement scope too long to fit on a line, or 2) it contains an

. excessively long specification portion, or 3) both of the above.

Problem 1) can be avoided by going to the multi-line form.

* Frequently problem 2) can be avoided when the specification is

an expression by assigning the expression to a variable -in a

preceding statement and then using the variable as the specifi-

cation.

In scanning a parenthesized specification, the trans-

lator scans from left to right to find the parenthesis which

matches the initial left parenthesis of the specification. The

translator, however, is ignorant of Fortran syntax including

Hollerith parenthese as syntactic parentheses. Thus, avoid

placing Hollerith constants containing unbalanced parentheses

within specifications. If necessary, assign such constants to

a variable, using a DATA or assignment statement, and place the

- variable in the specification.

Incorrect Example: Corrected Example:

If (J.EQ.'(' LP =

If (J.EQ.LP)

The Flecs translator will not supply tne statement nec-

10 . essary to cause appropriate termination of main and subprograms.

Thus, it is necessary to include the appropriate RETURN, STOP,

110
. ."

1
" •

_7 7.

.o

or CALL EXIT statement prior to the first internal procedure

declaration. Failure to do so will result in control entering

the scope of the first procedure after leaving the body of the -i
program. Do not place such statements between the procedure

declarations and the END statement.

Blanks are meaningful separators in Flecs statements;

don't put them in unnecessary places like the middle of identi-

fiers or key words and do use them to separate distinct words

like REPEAT and UNTIL.

Let Flecs indent the listing. Start all statements in

Column 7 (tab may be used) and the listing will always reveal

the true structure of the program (as understood by the trans-

lator)

As far as the translator is concerned, FORMAT state-

ments are executable Fortran statements, since it doesn't recog-

nize them as extended Flecs statements. Thus, only place FORMAT

statements where an executable Fortran statement would be

acceptable. Don't put them between the end of a WHEN statement

and the beginnning of an ELSE statement. Don't put them between

procedure declarations.

Incorrect Examples: Corrected Examples:

WHEN (FLAG) WRITE (3,30) WHEN (FLAG)

30 FORMAT (7H TITLE:) . WRITE (3,30)

ELSE LINE + LINE+I 30 . FORMAT (7H TITLE:0

.. .FIN
ELSE LINE = LINE+I

TO WRITE-HEADER TO WRITE-HEADER

• PAGE = PAGE+l . PAGE = PAGE+I

. WRITE(3,40) H,PAGE . WRITE(3,40) H,PAGE

...FIN 40 . FORMAT(70AI,I3)

40 FORMAT(70A1,I3) ...FIN

The translator, ueing simple-minded, rZcognies ex-,

tended Flecs statements by the process of scanning the first

identifier on the line. If the identifier is one of the Flecs

Ill .-

• .. ".I .'i . .'" - . . . " .i i ' '' : . ' < -' ' i i. . < i ' [i ~

Keywords, IF, WHEN, UNLESS, FIN, etc., the line is assumed to be

a Flecs statement and is treated as such. Thus, The Flecs

keywords are reserved and may not be used as variable names. In

case of necessity, a variable name, say WHEN, may be slipped

past the translator by embedding a blank within it. Thus, "Wf.

EN" will look like "WH" followed by "EN" to the translator which

is blank sensitive, but like "WHEN" to the compiler which

ignores blanks.

The following is a brief description of the Flecs

language. For further information, refer to the Flecs manual,

Appendix C of this manual.

Despite the many differences between the appearance of

the Flecs code and ANSI Standard Fortran 66, it must be

remembered that Flecs is a 'translator' and that the Flecs code

is translated into pure FORTRAN code which can be seen by in-

specting the .FTN file that Flecs generates for a given program.

6-4.1 IF-THEN-ELSE

The If-Then-Else is provided in two forms for true and

false conditional execution, with a separate form for If-Then-

Else. To execute when "condition" is true:

IF (condition) statement

To execute when "condition" is false:

IF (.NOT.condition) statement

or UNLESS (condition) statement

Neither of the previous structures supports an ELSE clause. To

use an ELSE clause a different structure is required:

WHEN (condition) statement

ELSE statement

The WHEN-ELSE keywords are required as a pair.

6-4.2 REPEAT-UNTIL

Flecs provides two structures for the REPEAT-UNTIL con-

szruct, for true and false conditionil exit.

To execute statement(s) until "condition" is false:

REPEAT WHILE (condition) statement

112 i ° S

To execute statement(s) until "condition" is true:

REPEAT UNTIL (condition) statement

6-4.3 WHILE-DO

For the WHILE-DO construct, Flecs provides a true and

false conditional exit.

To execute statement(s) while "condition" is true:

WHILE (condition) statement

To execute statements while "condition" is false:

UNTIL (condition) statement

6-4.4 FOR

This construct is similar to a Fortran DO statement and

is coded as:

DO (Index = start, end, increment) statement

where index, start, end, and increment must be integers. If not

specified, increment = +1.

For a FOR statement with a DOWNTO clause, a negative

increment must be specified.

6-4.5 CASE

The case statement in Flecs is a SELECT statement.

This statement works the same as a CASE and allows the user to

specify an optional OTHERWISE clause also.

FORMAT:

SELECT (expression)

(Case-l) statement

(Case-2) statement

(Case-n) statement

(Otherwise) statement

F :

Each of the cases is compared for equality with
"expression". Because of the way that Flecs builds the

113

, ." : . . ,? . - " u. _' _ . - _" -... " '' ', , .. - .'° ,...' . ' '.*. " , - - . -

.% - -. :- . " . -. .- .5 , - - . - - o - o - -. . . .* ., - , ,

structures, it is wise to make "expression" a simple expression

by pre-evaluation.

The otherwise clause is optional.

6-4.6 PROCEDURES

Procedures consist of two types: external procedures

which may pass parameters, and local procedures which reference

- local and/or global data structures. The coding for these types

of procedures is different.

For external procedures, the CALL statement of Fortran

is used.

CALL ZAP

or

CALL TRY (Al, A2, A3, ... An)

Where Al, etc., represent passed parameters.

For local procedures with no arguments passed:

Procedure invocation:

Procedure-name

Procedure definition:

TO procedure-name

statements

6-4.6.1 Procedure-names. Procedure-names may be any string of

letters, digits, and hyphens (i.e., minus signs) beginning with

a letter and containing at least one hyphen. Internal blanks

are not allowed. The only restriction on the length of a name

is that it may not be continued.

Examples of valid internal procedure names:

INITIALIZE-ARRAYS

GIVE-W'vARNING

SORT-INTO-DESCENDING-ORDER

INITIATE-PHASE-3

114* I
- . . .*

- *. . .. §...........

5-4.6.2 Procedure Declaration. A procedure declaration

consists of the keyword "TO" followed by the procedure name and

its scope. (The set of statements comprising the procedure is

called its scope.) If the scope consists of a single simple

statement, it may be spaced on the same line as the "TO" and

procedure name, otherwise the statements of the scope are placed

on the following lines and terminated with a FIN statement.

For example:

To INITIALIZE-ARRAYS statement

To GIVE-WARNING

statement

FIN

The Flecs translator will not supply the statements

necessary to cause appropriate termination of main and sub-

programs. Thus, it is necesary to include the appropriate -

RETURN, STOP, or CALL EXIT statement prior to the first internal

procedure declaration. Failure to do so will result in control-

entering the scope of the first procedure after leaving the body

of the program. Do not place such statements between the

procedure declarations and the END statement.

All internal procedure declarations must be placed at

the end of the program just prior to the END statement. The

appearance of the first "TO" statement terminates the body of

the program. The translator expects to see nothing but pro-

cedure declarations from that point on.

The order of the declarations is not important. Alpha-

betical by name is an excellent order for programs with a large

number of procedures.

Procedure declarations may not be nested. In other

words, the scope of a procedure may not contain a procedure

declaration. It may, of course, contain executable procedure

references.

Any procedure may contain references to any other

procedures (excluding itself.

Dynamic recursion of procedure referencing is not

permitted.

115
Io

- . . " .- .-. . . •% .'. . .. -. . • , ** • .** * * . • .• . . *

All program variables within a main or subprogram are
global and are accessible to the statements in all procedures

declared within that same main or sub-program.

There is no formal mechanism for defining or passing

parameters to an internal procedure. When parameter passing is

needed, the Fortran function or subroutine subprogram mechanism

may be used or the programmer may invent his own parameter

passing methods using the global nature of variables over

internal procedures.

The Flecs translator separates procedure declarations

on the listing by dashed lines.

1

L 116

" " " . . . " ' .. ii - - . ." • , " . , * . . .

SECTION 7

CONTINUOUS WAVE MEASUREMENT SYSTEM

7-1 INTRODUCTION

This section describes the operation of the Program

Control Unit (PCU) program which is executed by both the Trans-

mitter (XMTR) PCU and the Receiver (RCVR) PCU. It will first

describe the general operation of the program, then describe tn

major sub-routines. The details of these major sub-routines art:

described by the comments imbedded within the program code.

Refer to the PCU listings manual for the code used by the PCUs.

The PCU program is designed to control th: instrumen-

tation required to irradiate a target with a spectrum of radio-

frequency (RF) signals, acquiring digitized signals which

represent the RF phase and arnnlitude at the target, and

transmitting these signals to a PDP-11 for analysis and

plotting. The program may also plot the digitized data

directly, while transmitting the digitized data to a cassette

recorder. Additional description of this hardware may be

obtained from the CWMS Operating Manual, AG-1425.

7-2 MAJOR FUNCTIONS

The PCU program performs the task described above by -- =

performing several major functions. These functions are: -

0 Initialization of the hardware and software.

* Configuration of the CW test in response to

the front panel switch values set by the
operator.

* Synchronization of the XMTR PCU and RCVR PCU.

* Control of the RF generator and the data

acquisition instrumentation.

* Format data for transmission to PDP-lI or

recorder.

* Perform compu-ations and controis cor p.:)t nj

data.

117

0 i - - "' . '

." *" " '' : - - - -' *.- , *._ ,*" * * , ,* , , " " . - _

- o - . - • ° r -. " o . - . ° . , - ° i ° L , - ,

'he implementation of eacn of these functions is -zs-

cussed in detail in Section 8.0. However, a few more general

comments are in order before that discussion begins.

7-3 PROGRAM ARCHITECTURE

The PCU program is designed to be event driven. That

is, the program remains in an idle state, CWOS, until an event

,interrupt) occurs. At Power Up, or upon activation of the

Reset switch, the PCU is forced to execute the RESET program.

The PCU enters the CWOS state from RESET and remains there in-

definitely while awaiting an event.

When the correct event occurs, activation of the Piot/

Init switch, the PCU will leave the CWOS state, perform a set of

tasks and wait in a different state for another particular event

* to occur. This process is continued until the CW test is S

completed, at which time the CWOS state is re-entered.

To insure that the proper sequence of events occurs,

the PCU sets software flags and enables/disables hardware at

certain points in the program. 0

7-4 OPERATING MODES

At this point, a description of the various operating

modes of tne CWMS may facilitate the understanding of the CWMS

program.

There are three modes of operation for the CWMS. Two

of these set up and verify the operation of the instruments.

The remaining mode is used to control the instruments and

acquire data.

7-4.1 Manual Mode

The Manual Mode of operation permits the use of the

front panel controls on each of the CWMS instruments. In this .

mode, the PCU has no control of the instruments and is unable to

-i 1. ' a-2 . Coorination oL t-e XMT7Z and RCVR PCU frequency"

is done by the operators. This mode may be used to set up the

instruments.

118

Manual operation of the instruments associated witn the

PCU may be achieved by setting the Plot Format switch to '000'.

The PCU will be in the idle state, CWOS, while the

Format switch is set. To begin manual operation, activate the

Plot/Init switch. This drives the PCU through the PINIT state,

where it is determined that manual operation has been selected,

and into the CONFIG state. While in this state, the PCU sets

the DVM's into the free running mode, inhibits the pulses from

the synchronizer, and places all of the GPIB instruments into

local mode. The PCU then waits in this state for an interrupt

from the Start switch. When the Start switch is activated, the

RF coax relay is closed and the PCU waits for the Stop switch to

be depressed. Activation of the Stop switch causes the PCU to

open the RF relay and return to the CONFIG state. Here it waits

"* for another interrupt from the Start switch.

Several important characteristics of the manual opera-

tion should now be summarized.

0 All instruments are controlled by their front panel

switches.

0 There is no synchronization between transmitte. and

receiver.

* The PCU does not read the DVMs.

o The RF frequency is not advanced by the PCU. -

* The RF transmitter is on from the time its Start

switch is activated until its Stop switch is

activated.

9 To terminate manual operation, it is necessary to 4

depress the reset switch.

7-4.2 Semi-Automatic Operation

The semi-automatic mode allows the operator to control
n

the rate at which the frequency spectrum is scanned. One

frequency is sampled each time the operators depress the Start

switcn. in tnis moJe U ie PCU controls C; n str inhnLs

associated with tne CWMS, and determines the frequencies to be

sampled.

119

.. , . I - . . - - . - .- . . , .

L

The PCU and its related instruments may be operated in

a semi-automatic mode by setting the Format switch to any value

other than '000' and setting the Step Mode switch to MANUAL.

The PCU is in the idle state, CWOS, while the switches

are being set. Depressing the Plot/Init switch will drive the

PCU to the PINIT state where it determines the table of frequen-

cies to be scanned, transmits the switch values to the PDP-11 or

plots the grid, enables the Start switch, and enters tne CWTEST

state. The PCU will loop between the CWTEST and CWPLOT states

waiting for data to be acquired and plotted, and testing for the

end of a test cycle. No data is acquired until the Start switch

is depressed.

Depression of the Start switch enables the synchronizer

to generate a step pulse. This pulse drives the PCU into the

SYSTEP state which initiates the data acquisition sequence and

sets the RF frequency and amplitude for the rf frequency synthe-

sizer. The data acquisition sequence is controlled by the TIMER

which interrupts the PCU from the CWTEST or CWPLOT states.

The TIMER forces the following sequence to occur.

0 Upon receipt of the first step pulse of a test

cycle, delay-250 ms before controlling the RF relay.

If the test is in cycle 1 of a multi-cycle test, the

relay is opened, otherwise, it is closed. The RF

relay then remains in this state throughout the test
cycle.

9 After a 550 ms delay from receipt of the step uplse,

the DVMs are commanded to convert the analog RF

phase and amplitude signals into digital data. At

this point the synchronizer pulse is inhibited.F After a 660 ms delay from receipt of the step pulse,
the phase and amplitude data are transferred from

the DVMs to the PDP-lI, or to the MFE recorder and

the plotter buffer.

Each time the Start switch is activat:ed, til sejuence

of events described above will occur until the last frequency is

sampled. If the plotter is connected to the PCU, the phase data

120

•.

will be plotted after the last frequency of the spectrum has

been sampled. If the test consists of multiple cycles, the PCU

will then return to the PINIT state to begin the next cycle;

otherwise, the idle state is entered.

Some important characteristics of the Semi-Automatic

mode of operation are itemized below.

0 The transmitter and receiver are not synchronized.

To obtain valid data it is necessary for each

operator to alternately depress the Start switch,

with the transmitter operator always going first.

i Only one frequency is sampled with each depression

of the Start switch.

* All of the instruments are under the control of the

PCU.

* * The front panel switches of the transmitter and the

receiver must have the same settings.

7-4.3 Automatic Operation

The automatic mode of operation allows a complete test,
consisting of a single cycle or multiple cycles, to be conducted

with a minimum of operator intervention. In this mode the PCU

controls the instruments associated with the CWMS, determines

the frequencies to be sampled, and automatically scans the

desired spectrum.
The PCU and its related instruments may be operated in

* the automatic mode by setting the Format switch to any value

other than '000', setting the Step Mode switch to AUTO.

The PCU is in the idle state, CWOS, while the switches

are being set. Depressing the Plot/Init switch will drive the

PCU to the PINIT state where is determines the mode of opera-

tion, initializes the GPIB instruments, creates the table of

frequencies to be scanned, transmits the switch values to the

PDP-11 or plots the grid, enables the Start switch, and enters

t:le CWTEST st.ate. The PCU will loop between the CWTEST anJ

CWPLOT states waiting for data to be acquired and plotted, and

121

°S .

testing for the end of a test cycle. No data is acquired until

the Start switch is depressed.

Depression of the Start switch enables the synchronizer

to generate a series of step pulses after the DataChron clocks

reach the 'start time' previously set into the clocks at the

receiver and transmitter. Each pulse drives the PCU into the

SYSTEP state which initiates the data acquisition sequence and

sets the RF frequency and amplitude for the rf frequency syn-

thesizers. The data acquisition sequence is controlled by the

TIMER which interrupts the PCU from the CWTEST or CWPLOT states.

The TIMER forces the following sequence to occur.

0 Upon receipt of the first step pulse of a test
cycle, delay 250 ms before controlling the RF relay.

If the test is in cycle one of a multi-cycle test,

the relay is opened; otherwise, it is closed. The

RF relay then remains in this state throughout the

test cycle.

* After a 550 ms delay from receipt of the step pulse,

the DVMs are commanded to convert the analog RF

phase and amplitude signals into digital data.

* After a 660 ms delay from receipt of the step pulse,

the phase and amplitude data are transferred from

the DVMs to the PDP-II, or to the MFE recorder and

the plotter buffer.

Each step pulse forces execution of the sequence of

events described above until the last frequency of the spectrum

is sampled. If the plotter is connected to the PCU, the phase

data will be plotted after the last frequency of the spectrum

has been sampled. If the test consists of multiple cycles, the

PCU then will return to the PINIT state to begin the next cycle;

otherwise, the idle state is entered.

Some important characteristics of the Automatic mode of

operation are itemized below.

* If remote start is seltcted via front Panel

switches, the transmitter and receiver are synchro-

nized by the DataChron Clocks. Before the Start

122

• - - " . --S. " . . . " " " ' "i-

7

switch is depressed, eacn operator must be the same

'start time' into each DataChron. Depressing the

Start switch then enables the synchronizer to

generate the step pulses when the 'start time' *1
arrives. The step pulses are not inhibited until

the test is completed.

0 The front panel switches of the transmitter and

reciever must have the same settings.

* All of the instruments are under the control of the
PCU.

7-5 SINGLE CYCLE/MULTI-CYCLE TESTS

The CWMS PCU is capable of conducting a single cycle

test or a multi-cycle test. This selection is made with the

Single/Multi switch on the PCU front panel. In a single cycle

test, the Hold switch has no function.

7-5.1 Single Cycle Test

When the single cycle test is selected, the frequency

spectrum is scanned one time only. The RF transmitter is active

and the RF probe is in place at the unit under test. As the

spectrum is scanned the data from the RF probe is acquired and

transmitted to the PDP-11 or the MFE recorder. Upon completion

of the spectrum, the PCU enters the idle state.

7-5.2 Multi-Cycle Test

When a multi-cycle test is selected, the frequency

spectrum is scanned three times. Each of the three scans is

termed a cycle. The first cycle determines the ambient noise

during the test. During this cycle, the RF probe is in place at

the unit under test, but the RF transmitter is not energized.

Cycle two measures the RF phase and amplitude at the unit under

test with the transimtter energized for each selected frequency

cf : ne speztrun. The tnird cycle measures tiie pn-up noise o:

the RF probe when it is not connected to the unit under test.

12

123

.*'.' '.. . ."' " " "." '- "

°- .

The transmitter is energized for each frequency selected in the

spectrum.

Data is transmitted to the PDP-ll or the MFE recorder

during each of the cycles.

During a multi-cycle test, the Hold switch becomes
functional. The Hold switch allows the operator to extend the

time interval between cycles. Normally, the interval between

the end of cycle one and the start of cycle two will be a few

seconds, and the interval between cycle two and cycle three will

be a few minutes. However, if the operators each depress the

Hold switch before the start of the next cycle, the cycle will

not be initiated. To facilitate coordination of this action by

the operators, the Hold switch may be depressed at any time

during cycles one or two. The switch will not be effective

until the end of the cycle. If the operators exercise the Hold

option, it becomes necessary to enter a new 'start time' on the

Datachron Clock for the start of the next cycle if remote start

is selected on the°front panel.

7-6 SYSTEM CONFIGURATIONS

The CWMS is capable of operating with three different

hardware configurations with the same software program. This

offers a degree of back-up operation in the event that certain
sub-systems fail to operate. The data acquisition capability of

each configuration is equal; however, the data reduction and

presentation capabilities are reduced in the back-up modes.

7-6.1 Primary Configuration

The primary hardware configuration for the CWMS consist

of the PCU, Plotter, and the PDP-11 with its peripherals. The

data acquired by the PCU in this configuration is transmitted to

the PDP-ll for analysis. Plotting of reduced data is under con-

trol of the PDP-ll. =*

124

* S!
- -;-...................-....-•.."-.. ."................... . . .-...... "....".i..."i..

/-6 .2 Secondary Configuration

If the PDP-11 becomes inoperative, it may be replaced

by an MFE cassette tape recorder. The cable between the PCU and -- 6

the PDP-11 is replaced by a cable between the same PCU connector

and the MFE recorder. The PCU will now transmit the acquired

data to the recorder. At a later time, when the PDP-11 becomes

operational, the recorder may be connected to the PDP-1l on the - 6

same connector to which the PCU was tied and the data may be

transmitted to the PDP-l1.

In this configuration, the Plotter may be disconnected

from the PDP-I1 and connected to the PCU via the plceter address

switches to obtain graphs while the data is being acquired.

Plotting may also be controlled by the PDP-11 by setting the

plotter switches. The data plotted is then the reduced data

from the PDP-l1.

7-6.3 Tertiary Configuration

If both the PDP-ll and the MFE recorder are inopera- .-

tive, data may still be acquired and sent to the plotter. It is

necessary to replace the cable from the PCU to the PDP-11 with

a jumper connector. This will allow the PCU to send data to the

plotter. The plotter must be configured to 'talk' to the PCU by-

setting the address switches on the back of the plotter as

described in the CWMS Operating Manual, paragraph 3-1.4, Table

20.

1-2

125 a6

SECTION 3

DESCRIPTION OF MAJOR ROUTINES L

The major functions, outlined in paragraph 7-2, per-

formed by the PCU programs are implemented by four groups of

subroutines whizh will be discussed in the following paragraphs.

In addition, a description of the subroutines associated with

the ZT-80 GPIB controller will be presented, as they play an

important role in the operation of the PCU. The subroutines are

grouped as follows: i) initialization, 2) test configuration,

3) test control, 4) data acquisition and transmission, and 5)

ZT-80 controls.

3-1 INITIALIZATION

Initialization of the PCU hardware and software is per-

formed by the RESET routine whenever power is turned on or the

Reset switch is depressed. The RESET routine invokes 20 sub-

routines to initialize the CWMS. When initialization has been

completed, the RESET routine passes control to the monitor,

CWOS, where the PCU awaits an interrupt from the Plot/Init

switch.

8-1.1 Reset Operation

The Reset switch generates a level 0 interrupt which
causes the PCU to terminate its current task and execute the

RESET routine. The RESET routine performs the following

sequence in initializing the PCU hardware and software.

0 Set the parallel input and output ports.

0 Set the serial link to the PDP-ll.

0 Set the flags of the measurement block procedure.

* Set the flags of the operating mode procedure.

* Set the flags of the XMTR amplitude control procedure.

* Calculate the delay length after cycle one and

ycle t wo of a multicycle test.

* Open the RF coax relay.

* Inhibit the system step pulses.

126 2
* 0

4.- * * - -*.ii]

* Inhioit the DVMs.

0 Set the DVMs to accept an external trigger pulse

* Blank the CRT of the Network Analyzer.

* Set the interval timer hardware and software.

0 Set the interrupt manager hardware and software

and enable the PCU interrupts.

* Wait 100 ms for the ZT-30 to load its program fromi

ROM.
Set the ZT-30 flags and put the GP13 instruments .A
into remote operation.

* Determine if the DVMs are on.

* Transfer the delete ROM ID to RAM.

* Set the frequency, amplitude, and mode of each

SD 1702 rf synthesizer.

* Command the Plotter pen to the 'home' position.

* Enter the idle state, CWOS.

8-2 TEST CONFIGURATION

In preparing for a CW test, the operators set the front

panel controls of the PCUs to provide the functions prescribed

for the test. The PCU is instructed to examine the switches,

after they are all set, by depressing the Plot/Init switch of

each PCU and set the program flags in accordance with the switch

values.

8-2.1 PINIT Operation

The Plot/Init switch generates a level two interrupt

which takes the PCU from the CWOS state to the PINIT state. If

the PINIT routine has already been invoked by a currently

running test, the interrupt is ignored and PCU control returns

to the interrupted test. Otherwise, PINIT proceeds with con-

figuring the test being requested as follows:

* Determine if a single or multicycle test is to be

done and whether the PDP-11 or the MFE recorder will "

receive the transmitted data.
4 9 Set the DVMs to accept an external trigger pulse.

127

* Transfer the front panel switzh values to the PDP-11

or the MFE recorder.

- If operation is to be manual, then invoke the START

routine and loop there waiting for the Start switch

and the Stop switch. A Reset is the only exit from

this mode of operation.

* If operation is not manual, then generate the table

of frequencies to be sampled if this is a single

cycle test or it is is cycle one of a inulticycle

test.

* If the Plotter is on the PCU and a grid is required,

then draw the grid and label the axes.

a Command the Plotter pen to the origin corresponding

to the plot format selected.

* Enable the Start switch.

* Enter the CWTEST state and await the system step

pulse.

8-3 TEST CONTROL

The test is controlled by the CWTEST routine. Con-

trolling the test consists of aborting the test if requested,

plotting the magnitude data as it becomes available, plotting

the phase data at the end of a test cycle, and preparing for the

next cycle of a multicycle test if necessary.

8-3.1 CWTEST Operation

The CWTEST routine controls the cw test by performing

the following sequence of operations:

* If the Stop switch has been activated, abort the

test in progress and return to the idle state.

Otherwise, continue below.

* If there is no data in the FIFO buffer or it con-

tains Plotter control characters, then loop back to

be.j inning.

12

128

S..". *

°.q
0 If the FIFO contains RF data, then transfer the, data

to the Plotter buffer, draw it, and loop back to

beginning.

* If the FIFO contains an end of cycle flag, then draw

the phase data if it is required.

* Command the Plotter pen to the origin.

* Mute the RF transmitter.

* If a multicycle test is in progress, then regenerate

the table of frequencies to be sampled, wait for the

cycle delay to expire, and test the Hold switch. If

the Hold switch is on, disable the step pulses and

wait for the Start switch interrupt.

0 If another cycle is to be performed, enter the PINIT

state; otherwise, enter the idle state.

I|
3-4 DATA ACQUISITION AND TRANSMISSION

The data acquisition and data transmission to the

PDP-11 or MFE recorder is handled by the SYSTEP routine. This

routine is inter-rupt driven to acquire RF data, transmit the

data, and set the RF synthesizers for the next frequency to be

sampled. Normally the PCU will be in the CWTEST or CWPLOT state

when the interrupt for SYSTEP occurs.

8-4.1 SYSTEP Operation

A system step pulse from the synchronizer PC card will

generate a level 0 interrupt. In response, the PCU executes the

following sequence:

* If the test cycle is done, generate the appropriate --

delay before beginning the next cycle. Otherwise,

continue this sequence.

0 If this is the first pass through SYSrEP for this

test cycle, then enable the data acquisition time,

initialize the plotter flags, set the synthesizer

for the first frequency and its correspondin3 ampli-

tude, and return to the interrupted routine. (Refer

129

.* . : . ..- v - , , .*," " ,. . ., . , -.

W- %'

to 7-4-2 for a description of the data acquisition

timer sequence.)

* If this is not the first pass through SYSTEP for

this test cycle, then enable the data acquisition

timer, read the DVMs for the RF data from the

previous frequency, transmit the data to the PDP-ll

and the Plotter, set the synthesizer for tile next

frequency and amplitude, and return to the inter-

rupted routine.

0 If this is the last frequency sampled, then send the

last data points to the PDP-lI. If this is a single

cycle test, disable the system step pulses. Return

to the interrupted program.

8-5 GPIB INSTRUMENTS

The General Purpose Interface Bus (GPIB) is used by the

PCU to communicate with the Plotter and the Frequency Synthe-

sizers. There is a significant amount of software devoted to

these devices so it is appropriate to discuss it here.

8-5.1 PCU/GPIB Electrical Interface

The PCU controls the GPIB instruments through a 3PIB

controller, the ZT-80. The ZT-80 is a PC card with the same

form factor and electronic interface as the SBC 80/20 micro-

computer used in the PCU. The ZT-80 also has the electronic

interface for the GPIB. The GPIB timing and signal level

characteristics are detailed in the IEEE standard 1475, which

the ZT-80 satisfies.

8-5.2 PCU/GPIB Command Interface

IEEE standard 1475 specifies a fandamental set of

commands which allow the instruments on the GPiB to control one

another and to pass data between one another. This command set

o pass -ata oetveen one another is 'ery basic and :r1,i:l

becomes tedious to use. The ZT-80 allows the PC to use a more
*

130

* 0

e Ileg ant command se t The PC'J commands are transiat- d by t~ie

Z,'-80 into the basic set to operate the bus.

8-5.3 PCU/ZT-80 Communications

The PCU communicates with the ZT-80 by very abbreviated

commands which direct the ZT-80 to execute programs loaded from

its user's PROM. Before proceeding, some definitions are

needed.

0 An INSTRUMENT PROGRAM is a string of kSCIL charac-

ters which an instrument on the GPIB interprets as

a set of commands. For example, the Frequency

Synthesizer sets its output to the frequency 100 MHz

when it receives the string GN10000000.

* A CHANNEL COMMAND is an instruction which the ZT-80

translates into a set of basic GPIB commands.

0 A CHANNEL PROGRAM is a sequence of channel commands.

The channel program is created by the user and

placed into the ZT-80 user's PROM.

* A DEVICE LIST is a list of the GPI3 instruments

which are to receive a particular instrument program

or data block transfer.

a The PROGRAM ADDRESS TABLE is a list of the starting

address of each channel program that the ZT-80 will

execute.

The procedure followed in utilizing the ZT-80 is now

described. First, an instrument program was designed for each

function required of each instrument. These instrument programs

reside in the ZT-80 PROM and are loaded into the ZT-80's

volatile memory at power up or reset. The instrument programs . -

are defined in the ZTBUF routine.

Second, a channel program was designed for each instru-

ment program. The channel program specified the device list and ...

data or command buffer to the ZT-80 for each instrument program.

The :hannel programs also reside in the ZT-30 P'"M and at_

loaded into the ZT-80 RAM at power up or reset. The channel

programs are defined in the ZTCHAN routine. The device lists

131I

.Sso2 iied with the channel projran are defined in trie DEV.ST

routine.

Last, the program address table is defined. This table

is transferred to the ZT-80 from the PCi PROM at power up or

reset. The PNT routine contains this definition. Each channel

program has a priority for execution by the Zr-So which is set

by the position of the program in the program address table.

3-5.4 Typical PCJ/ZT-80 Interaction

A typical sequence of events between the PCU and tne

ZT-80 in controlling a GPIB instrument is outlined below.

* The PCU examines the ZT-30 busy/not busy flag an!

waits for it to be 'not busy'. This is done by the

CWAIT routine.

* The PCU transfers the ID number of the channel

program to be executed by the ZT-80 and commands the

ZT-80 to begin execution.

* The ZT-80 may set an interrupt to the PCU upon com-

pletion of the channel program and it will set the

'not busy' flag.

0]

132S'"" ""

,..- ,...- - - ,- - -

- - .- - - - i, - , - . I - . - r. .*,r r , - . _, ° -

SECTION 9

UTILITY ROUTINES

There are numerous routines contained in the CWMS PCUl

program which perform dedicated tasks. These routines are

utilized by many of the routines included in the four groups

described in Section 8. These routines are isolated from the

program flow and their function may be understood by examining

the program listing of each utility routine. Included in this

set of utility routines is a subset used to control the

Tektronix plotter. Refer to the PCU software listings manual.

L
133

L 133

0ig

..~ .. .

SECTION 10

BRIEF DESCRIPTION OF CWMS PCU ROUTINES

This section contains a brief description of each

public routine in the PCU program. The routines are listed in

alphabetical order.

ASCBIN ... converts five or less ASCII digits into a corres-

ponding 16 bit binary value.

BCDBIN ... converts a five digit BCD number to a 24 bic binary i
value.

BCDBNY ... converts five or less packed BCD digits into a cor-

responding 16 bit binary value.

BINASC ... con';erts a 16 bit binary value into a corresponding

five digit ASCII character string.

DNASC ... converts a 16 bit binary value to a five character

ASCII representation.

CKDVM1 ... determines if DVMs are connected to PCU and powered

up.

CKMIDS ... checks the STOP input line to determine if a mid-test

stop has been requested.

CNVINT ... calculates the number of step pulses required to

generate the delays after cycle one and cycle two.

CONFIG ... inputs Format switch and sets program flags accordingly.

CWAIT ... waits for the ZT-80 to become available for a command.

CWPLOT ... transfers MAGNITUDE and PHASE data from FIFO buffer

to Plotter.

CWTEST ... supervisor for controlling, plotting, and terminating

CW test.

CYCCHK ... examines the status of the single/multicycle switch
and determines whether the PDP-11 or MFE recorder are

connected to the PCU.

CYCINV ... at the end of a test cycle it checks for a multicycle

test and delays the next cycle if the Hold switch is

on.

CYCTIM ... provides delay between test cycles of a multicycle

test.

134

. * .i < .

-- - . - .. . ,. - - -' U • --. , , . ,, -.+ . .. - +. +. * , ,+ . . . I, . ,. +. ,:+ I . + i +

DATAI ... data tables for use by the Plotter in generating

labels and grids.

DBMDBW ... converts RF amplitude values from DBM to DBW for the

RF synthesizers.

DECADE ... transfers the log grid marks from a table in ROM to

a buffer in RAM for the number of active decades on

a test.

DECDAT ... sets the frequency buffer header block as a function

of the decade switch buffer value.

DELAY ... provides a one millisecond delay via a program loop.

DELAY1 ... provides multiples of one millisecond delay via a

program loop.

DELBLK ... inserts into the measurement data block a flag for

each single delete frequency or each group of mul-

4 tiple delete frequencies.

DELID ... prints the deleted frequency ROM identification on

the Plotter.

DELPT ... sets the frequency delete pointers for the next

decade.

* DELROM ... data tables containing delete frequencies for test

site.

DEVLST ... data table containing addresses of GPIB devices for

each ZT-80 CHANNEL PROGRAM.

DIV16 ... refer to MATH routine below.

DVCNVT ... converts the packed BCD DVM data into signed binary

data.

DVMASC ... converts the packed BCD data of the DVM buffer into

ASCII characters for transmission to the PDP-lI.

DVMPOL ... outputs converted DVM data to FIFO buffer or fre-

quency buffer for magnitude or phase data respec-

tively.

DV1INT ... services that interrupt from both DVMs by setting

interrupt flags and inputting each DVM measurement.

EqMSG . .. causes CW test to stop and passes error nessa3e to

Plotter.

135

-,t - o . , . , . , •. .. - ,, . . -.+-. +- .,

+ +, ..+ ++ , ,' ,.;+ +,, ". .. .++-+. +, ..- +,,+ - +. . .. ,+ + -,+ +. ,'+ . + . + .•. , .- . , ,. .,

FDUMP . oves two bytes of lat3 from the FIFO buffer to

CPUs BC register.

FLOAD ... moves two bytes of data into the FIFO buffer from

CPUs BC register.

FRET ... sets carry bit to zero, indicating an unsuccessful

task execution.

FWRAP ... maintains the input and output pointers of the

FIFO.

3ENFRQ ... creates a c"7 test frequency projram, for the Frequency

Synthesizer, in a RAM buffer.

GENGRD ... creates an INSTRUMENT PROGRAM for the Plotter to draw

grids as a function of the Format switch setting.

HLDTST ... examines the status of the Hold switch and sets

a flag.

INCK ... corrects the scale pointer for the TFB and RFC

grids.

INTIO ... initializes the interrupt hardware and software upon

power up or reset.

LABAXS ... creates an INSTRUMENT VROGRAM for the Plotter to

label the axis.

LODPLT ... converts binary data from FIFO buffer to five ASCII

digits and loads them into buffer for Plotter.

LOGSCL ... data table containing log grid marks for Plotter as

a function of the number of decades to be plotted.

LOGTAB ... data table containing 1000 logarithmically spaced

values between 1 and 10.

LSL ... this module is included in XLABEL and helps to label

the X axis.

MATH ... provides a 16 by 16 multiply and divide operation.

MODSET ... examines the status of the single/multicycle switch

and the hold switch, and sets flags accordingly.

MOVE ... moves a block of data from one memory buffer to

another.

MPY16 ... refer to MATH routine above.

136

°u.- , . * . V . .
".i.-' "-,# ;+•- . ,""' ".". - .3-" : -"." " / "": "- - - "" - . . .- ,-° - .-" " . - "'" "

'
* % ** '"" " ." "-

.SBN ... initial izes flIag4s and buf f ers which are requi red by the

MSR*BLK procedure. This procedure is located in the

MSR*BLK module.

MSRBLK ... transmits blocks of measurement data to the PDP-11 via

the serial link.

MSRDON ... completes transmission of the measurement block at the

end of a test cycle.

MTCYCO ... initializes flags associated with multicycle OW tests.

This procedure is located in the CYC$CiPK module.

MVCTR ... moves characters from ROM to the plot buffer as part

of creating an INSTRUMENT PROGRAM for the Plotter.

NOMEN ... prints all annotation on the Plotter.

NXDEC ... increments the log scale table pointer when generating

a plot grid.

PACK ... loads the Plotter buffer with the X and Y coordinates

along with Plotter control characters.

PARIO ... initializes the parallel input and output ports of

the PCU upon power up or reset.

PARIOS ... contains all of the output port control programs.

PAT ... data table containing the starting addresses of

all CHANNEL PROGRAMS executed by the ZT-80.

PAUSE ... this routine is not used.
PINIT ... services interrupt from Plot/Init switch by

inputting front panel switch values, labelling

plots and initializing program flags in preparation

for a cw test.

PLOTO ... moves the Plotter pen to the origin which cor-

responds to the plot format selected by the operator.

PLOTS ... loads the Plotter buffer with control characters and

X, Y coordinates for plotting tic marks on the grid.

PNLBLK ... transmits to the PDP-11 the PCU front panel switch
values.

PROMP ... commands the Plotter pen to the hone position and

turns on the prompt light.

RAMBO ... contains random access storage for all public variables

used in the CWMS program.

137
0 _

. . ."

RAM116 ... contains the buffers to store the frequency, a:nplitude,

and phase data while performing a CW test.

REFLV ... prints the reference synthesizer level label on the

Plotter.

RESET ... initializes all of the hardware/software upon power

up or reset.

RESTOR ... restores the CPU registers at the end of an interrupt

serv ice.

RFFRQ ... maintains the current frequency value in tne measure-

ment data block for transmission to the PDP-ll.

ROTATE ... sends a command to the Plotter to rotate labels

90 degrees.

RSTR ... adjusts the log scale pointer back to the previous

value.

Le SAMPLE ... prints the number of samples per decade on the

Plotter.

SERIO0 ... initializes the serial communications link from the

PCU to the PDP-ll. This procedure is located in the

SERL10 module.

SETIMI ... activates timer for controlling RF data acquisition

by the DVMs.

SDAMPL ... sets the amplitude of the transmitter frequency

synthesizer as a function of frequency.

SDDEC ... calculates the position of the frequency buffer

pointer as a function of the exponent of the frequency.

SDAMPO ... initializes flags for the SD*AMPL procedure.

SDFRQ ... sets the output of each Frequency Synthesizer to the

next frequency to be sampled.

- SDINIT ... initializes the Frequency Synthesizers to cw mode

with correct frequency and amplitude.

SDXMTR ... controls the Frequency Synthesizer amplitude thru .

the ZT-80.

SRET ... irdicates successful completion of a task to the

calling routine.

138

' " °'.- .•o. . ,,..~ -... * ° .

SR LINT ... handles the transmission of ASCII character strings

to the PDP-11 via the serial link as an interrupt

driven service.

STABLK ... transmits status code data blocks to the PDP-11

which normally indicate error conditions in the

test.

STAND ... prints all of the standard annotation for a test

on the Plotter.

START ... services interrupt from Start switch by closing

and opening the RF relay when in MANUAL operation.

STEP copies the test frequencies for a decade, exluding

the delete frequencies.

STOP ... disables the PCU interrupt manager and halts execution

of the program. Only a Reset will resume operation.

0 STNANT ... routine contains the ASCII strings which constitute

the standard annotation printed on a test plot.

* STRTEN ... forms the INSTRUMENT PROGRAM which commands the

. Plotter to move the pen to a specific location.

SUB1 ... converts packed BCD into two ASCII aharacters.

SWPOLE ... inputs the front panel switch settings.

SYSTEP ... controls data acquisition and data transmission to

the PDP-ll.

TIMER ... services interrupt from interval timers for con-

trolling the RF relay and the DVM triggering.

TIMERO ... initializes the interval timer hardware and software.

UNPACK ... transmits Plotter coordinates as ASCII values to the

Plotter buffer.

WHODAT ... polls the CWMS devices to determine which are con-

nected and powered up.

XINITS ... initializes the Plotter buffer for the origin which

corresponds to the plot format selected.

-XLABEL ... generates the X axis decade labels as a function of

the number of active decades selected by the operator.

XPO SN ... processes frequency buffe r .ontr-l flags, Jpdat !s

frequency pointer, and computes the X axis coordinate.
1

" 139

hO . . % ° -- ' ." ,",' - " " " % -"- J " °°. " ."." .
.

' . ° ' °" J " ° ,-
-

Y.3L .. generatza the Y axis labels of the Plotter as a function

of the plot format switch setting.

YLNS ... generates the tic marks for the Plotter Y axis. q
YPOSN ... moves the phase data from the real time buffer (FRQBUF)

to the post test phase buffer (FIFBUF).

ZTBUF ... data table containing GPIB INSTRUMENT PROGRAMS to

be loaded into instruments by ZT-80.

ZNOC ... dummy routine which unconditionally sets device flags

to indicate the device is active.

ATCHAN ... data table containing CHANNEL PROGRAMS to be executed

by the ZT-90.

ZTINT ... services interrupt from the ZT-90 by setting a program

flag.

ZT10 ... activates a CHANNEL PROGRAM when the ZT-80 becomes
aveail able. ,

ZTIDO ... initializes the ZT-80 hardware and software upon power

up or reset.

ZTMSK ... initializes the ZT-80 interrupt masks.

ZT80 .-.. appends the Plotter buffer termination characters to

the INSTRUMENT PROGRAM.

140

- .- . * - -. . - -. |

:9 >.:~j&_ _J: _j

APPENDIX N

PERIPHERAL INTERCHANGE PROGRAM

The Digital Equipment Corporation (DEC) supplied

Peripheral Interchange Program (PIP) is the system maintainer's

primary file access and control utility. With it he may:

rename; delete, and purge old versions of files; -

transfer data between files and I/O devices;

list file directories;

unlock files; and

spool files.

Usage of the PIP program is covered in the DEC RSX-11

Utilities Procedures Manual; Chapter 2. A useful subset of PIP

will be covered below.

Filename Conventions

DEC filenames are specified as

DEV: [UIC]FILENAME.EXT;VERSION2

If an ASN command has been executed so that the device on which

the file is resident in the system output device (refer to the

DEC RSX-11M Operator's Procedures Manual; Chapter 5, ASN) the

DEV: may be omitted; otherwise, specify DLO: (DL: is also

acceptable) or DLI:. If the terminal [UIC] (user identification

code) has been set to the UIC account number of the file

directory containing the desired filename, the [UICI may be

omitted; otnerwise, the UIC is specified as [BBB,BBB] where B is

an octal digit. Refer to the DEC RSX-11M Operator's Procedures

Manual, Chapter 5, the 'SET' command. FILENAME is an up-to-nine

alphanumeric character string; EXT is an up-to-three alpha-

numeric character string. Refer to the DEC Utilities Procedure

Manual, Section 1.3. The version is an octal number of range

0-377 and will be discussed under File Maintenance.

Example: to copy a file named USER.EXA in account

f333,2111 on disk Irive DLl: to his terminal, the user iijht-

specify:

PIP TI:=DLI: [333,210]USER.EXA<CR>

A-1

," .<.?.i .-,?.i<." . ."/.?.,-.-., , . . ".. ".... 4- . ".. -. . . .'...--' •' ,

-- J

whi-zh would access the file and copy it (provided it was -n

ASCII file) to his terminal. Note: in this and all subsequent-

examples <CR> denotes carriage return.

Example: to set the terminal UIC and system output

device to the UIC and device of the file, the user would type:

ASN DLI:=SY0:<CR>

SET /UIC=[333,210]<CR>

PIP TI:=USER.EXA<CR>

File Maintenance

File maintenance generally includes maintaining ade-

quate storage space on the disk packs, deleting unused files and

unlocking files which may have become inaccessible due to system

malfunction. Whenever a file is created under RSX-INIM, a

version number of one is assigned to it. Whenever a new file

with the same name is created, the previous file is not deleted;

the new file is simply assigned a version number one higher than

the previously highest-numbered version. This can lead to an

accumulation of obsolete files on disk packs; eventually the

packs will become full, at which time some of the files must be

removed. This condition can be detected by using the PIP /FR

switch, and remedied by using the /PU switch.

Example: to find out how much free space is left on a

disk pack, type:

PIP DEV:/FR<CR>

where DEV:=DL: or DLO:. PIP will respond with the message

DEV: HAS AAAA. BLOCKS FREE, BBBB. BLOCKS USED OUT OF 10240

where AAAA and BBBB are decimal numbers which total to 10240.

Example: If the operator wishes to delete all old

versions of files on DEV:, he may type:

PIP DEV: [*,*]*.*/PU<CR>

where DEV: is as above. * is the DEC filename "wildcard"

specifier, which means "any or all". Caution is urged;

programmers sometimes object to having their "obsolet, " versions

indiscriminately purged.

A-2

j

Example: If the operator wishes to delete all old

versions of a specific file in a specific UIC account on a

specific device, or any combination of these, he may do so by

using appropriate combinations of the ASN, SET, and PIP

commands. For instance:

or PIP DLl:[333,210]USER.EXA/PU<CR>

or

ASN DLI:=SY:<CR>

SET /U1C=['333,210]<CR>

PIP LSER.EXA/PU<CR>

will both delete all but the latest version of USER.EXA in

account (333,210] on device DLl:.

If a file is no longer used at all, and the operator

wishes to delete it entirely from the disk storage medium, he

may specify the PIP /DE switch.

Example: The operator wishes to delete the file

USER.EXA;21 from UIC account [333,2101 on device DLI:; he may

type

PIP DLl:[333,210]USER.EXA:21/DE<CR>,

or

ASN DLl:=SY0:<CR>

SET /UIC=[333,210]<CR>

PIP USER.EXA;21/DE<CR>

In both the above examples the version number (21) is

required; if the operator desires to delete all versions he may

specify USER.EXA;*. If it is desired to delete all extensions

of a particular filename, for instance USER, the operator may
specify USER.*;*. If it is desired to delete all files of a

particular extension, for instance all .DTA files, *.DTA;* may

be specified, and so forth. If the string *.*;* is entered, all

files in the specified UIC on the specified disk will be

deleted. If is obvious that the delete command must be used

with extreme care.

Example: to unlock a locked file:

PIP DEV: [UICIFILENAME.EXT;version/UN

* where DEV:,(UIC] and ;version are as discussed previously.

A-3

.- .

A "locked" file is a file whose descriptor block indi-

cates that it has been opened by some pro gram. If the openiny

program terminates abnormally, this condition will persist even

though in fact no program currently has the file open. When the

same or another program subsequently attempts to access the

file, the request to open will be rejected by the file manager

on the grounds that the file is still open; generally an error

condition will be reported by the operating system at this time.

Locked files can be detected by use of ruhe DIP /LI

command. When the operating system reports that a file is

inaccessible, it also gives a brief reason and the FILENAME part

of the file specified. Use PIP to list the directory entry for

the file; if it is shown locked (an 'L' before the date in the

directory entry) use the PIP /UN command to unlock it. If the

FILENAME is unknown, simply list the entire directory for the
S|

UIC in which the program was running, and look for locked files.

File Utilities

Using PIP, files may be, transferred, directories

* listed, files renamed and files spooled to a list device.

Example: To transfer files from an input file or

device to an output file or device:

PIP DEV:=DEV: or

0PIP DEV:=DEV:[UIC]FILENAME.EXT;VERSION or

PIP DEV:[UIC]FILENAME.EXT=DEV:[UIC]FILENAME.EXT;VERSION

or

PIP DEV:[UIC]FILENAME.EXT=DEV:

0. where the mnemonics are as in the preceding examples. If a

filename is specified, DEV:, [UICI and VERSION are optional.

PIP defaults to the currently assigned terminal UIC and system

output device; on input PIP accesses the highest numbered

* version of the specified file; on output PIP creates a version

one higher than the previous (if any) version.

0T

Ci.i

A-40-

.. • , 4 - . .~ - - -.- . . . -" - . : . .: .

Example: To list a directory:

PIP DEV:[IC]/LI<CR>

will list all directory entries on DEV: in [UIC}. If DEV: or

[UIC] are omitted, PIP defaults to the current terminal and

system assignments.

Example: To list a file entry in a directory:

PIP DEV:[UIC]FILENAME.EXT;VERSION/LI<CR>

will list the directory entry for filename.ext if the specified

version is present on DEV:[UiC]. If DEV: and [lJIC] are omitter,

PIP defaults to the current system device and terminal UIC. If

;VERSION is omitted, PIP lists the directory entry for the

highest version number present; if * is specified for the

version, PIP lists all versions.

Example: To rename a file:

PIP DEV:[UIC]FILENAME.EXT;VERSION=DEV:[UIC]FILENAME.EXT;VERSION/RE

where DEV:, [UIC], and ;VERSION default as previously discussed.

Example: To spool a file to the system list device:

PIP DEV:[UIC]FILENAME.EXT;version/SP

The specified file will be copied to the line printer. The

spooling to the printer assumes the presence of the task PRT in

the active task list. Refer to the RSX-11M Operator's

Procedures Manual (Vol. 2A), Section 5.5, the INS command to

find out how to install PRT. See the RSX-11M Utilities

Procedures Manual (Vol. 2A) Appendix C for a description of PRT.

A-

A-5

6v

" • - "- "'" '". - . ' . -' . ,,.., ,-. . i " ' - " ' *. '

APPENDIX B

EXAMPLE OF RSX-11IM SYSTEM GE'NERATION

6 B-i

LSYSGEN

SYSGEN FAiRE 1 VERks (ON (03

*COPYRIGHT (C) 197, 1976. 19,7
['161 iAL EL(O F'MENTI Ciici . .'i (MWill F' MA' - (1 :'5yi

H FLrL F SYS I LO F I 1ll 141)','I ~z ii' I HEl LXFlI FLUE.)

FX17ANDLD COMMENTS FF0'.'11 l F 173CR 11 N OF CY[:'.i, S i 1T 1i5
; SYSGLN COMMANDL FILLt. ON 11-HE 01E!1-F. H-ANE' .' 30011Llill I-
;F-P.ovil CE vmt~-iLY mo I LLCu-I.I

Ito' YOU WAN r EXPANEDcOu E comms' rc/1.
*DO YOIJ HAVE THE SIGER DSEISTREIBUTION KIlT? LY/i 1:

* [DO YOU HAVE THE DUAL RK05 ['[S RIBLII ION It.[IC 10/1
* DOl YOU I-AVE THE RLO 1 u'151Ki Elia c 11 [1T', ill :y

You MUST MAul. A C~lTY OFC 1il IF *.i rI: 01 tUI' NI.I i
HAVE rIOT DOtNtE SOuRL3F'0

*HAVE YOU COF IFF TilE RLOI [':ISIR18-uTION NITE? L t/Nt :Y
* *. *ARE YOU BUILDING AN KSX -11S SYS3TEM? E Y/N]J

*ARE YOU 1FiUILUINU G MAPP'F.Y IL'i i /141: f
*ARE YOU RUNN ING UN A rmi)C 1JL Wit I AfI ' I. i. I' 2 41' WOl D16? FYIN] I Y

*ARE YOU RUNNING ON A MACHINE WITH A LINE FININYLPc? (YI'N]:
*WILL YOUR SYSTEM INCLUDE DISS-11 SJPFURTY LY /N]:
*WILL YOUR SYSTEM INCLUDiE 117311CR-LI ;(JFUR.OFZ', [Y,/N]

*WILL YOUR SY'rS TEM IiJCLIJLE IIL I:FIh I" L N I

PIP ---- CANNOT FIN DIRE&COR FILE
S YO [E11 P.20iJ* .O0 ffJ;*
]'IF' -- CANNOTE F IHD ['I RIC TOP r [ILE
w'f J CIl r21)1. ULiIC
PI' I--.(CANNOT I IND141 L' Lki C, I OKY/ F fL F
5YO(L I1 *20J*.1ICA%; t
PIP --- CANNOT1 FIND flI-.,rLOR' FILL
SYO:Llt,203*.IDS!;*

fI ill 51110 FIii C
Svoaii .24i*.OIJ;*
PIP- --- MU SUCH VILE(S)
SYO:rl1 .241*.UD.C;*

* PIP - NO SUCH FILE(S)
SYo:rClI24J*.ICR;*

S YO: C11 P24J1f'. 1 I/fiG Ii1E;.ttt .'S1* it H

IPF --- CANNOT VINE'i DiIRECWRoY F [lA-I
!5-;O: I11. P.30]IUL'CUM. Ls r;*
F'IP- - COONOT F INE' r1 iEcrY rnF:

510:111. 0D2!iF100 it lI IIL

I-''P -- CAIINUI P114 1LLECUKI FILL

; PIP Ell, v3-JJUOM . L-E *101 v, C Ab + # Clfii;*v .FF ;I' I * [S'IIM
VIP'- NO SUCH FfTIE (':1

B- 2

bYO:[ll Y.4JUDCOM.L2;I;
PIP NO SUCH FILE(S)
SYO: Eli,34JIC'TAB;*
PIP -- NO SUCH FILE(S)
SYO:Lll ,34]ICOM;*
PIP -- NO SUCH FILE(S)
SYO:Cl ,34]DSSDI.
PIP -- NO SUCH FILE(S)
SYO:EC11,34]ISCOM;*
:P.P I[II l0]SXM(]MA:;*IICL, ;;;,i(:TAB; i.RSB4L.. TMP;*
PIP --- NO SUCH FILE(S)
SYO:11IIOICTAB-
PIP -.. NO SUCH FILE(S)
SYO" 11, IOJRXBL['. rMP;.
>PIP II 1,20]RSXASM.CMLI;*/DE, R'XbLLE-*
F'IP - CANNOT FIND' DIRECTORY FILL
SYO: El 12ORSXASM.CMD;*
PIP -- CANNOT FIND DIRECTORY FILE
SYO:[11,2ORSXBLD;*
;>PIP El,24]RSXASM.CMD;*/IIERSX4LD-;*
PIP -- NO SUCH FILE(S)
SYO: El ,24]RSXASM.CMD*;
PIP -- NO SUCH FILE(S)
SYO:Ell 24]RSXBL[I*
">SET /UIC=,l 0 lO

>; NOW WE BEGIN THE SYSGEN QUERY SECTION TO SELECT THE EXECUTIVE
.; FEATURES AND PERIPHERAL DEVICES WE WANT IN THE NEW SYSTEM.

::.* LONG DIALOGUE DESIRED FOR EXECUTIVE/PROCESSOR OPTIONS? [Y/N.]:
:* ASSEMBLY LISTING FILES DESIRED? [YIN]:
: TASK BUILDER MAP DESIRED? [Y/N]:

BEGIN EXECUTIVE SERVICE OPTIONS.

* **DO YOU WANT FILES-11 ACP SUPFPFORT? [Y/N]:Y
'* DO YOU WANT RMS RECORD LOCKING AND PLACEMENT CONTROL SUPPORT? Y/N].:Y
. **DO YOU WANT CHECKPOINTING? EY/NI:Y
. DO YOU WANT DYNAMIC CHECKPOINT ALLOCATION? EY/N]:Y
. DO YOU WANT DYNAMIC MEMORY ALLOCATION SUPPORT? [Y/NJ:Y
* DO YOU WANT AUTOMATIC MEMORY COMPACTION? [YIN]:Y
* DO YOU WANT THE MEMORY MANAGEMENT DIRECTIVES? EY/N]:Y
. DO YOU WANT THE SEND/RECEIVE BY REFERENCE DIRECTIVES? [Y/N]:Y

>* DO YOU WANT THE GET MAPPING CONTEXT DIRECTIVE? [Y/N]:
'* DO YOU WANT MULTI-USER PROTECTION SUPPORT? EY/N]:
- DO YOU WANT ANSI MAGTAPE ACP SUPPORT? [YIN]:
:* DO YOU WANT SUPPORT FOR ONLINE, USER MODE DIAGNOSTICS? EY/N]:Y
'. *DO YOU WANT LOADABLE DEVICE DRIVER SUPPORT? EY/NI Y
>* DO YOU WANT NETWORK ACP SUPPORT? EY/N]
.-* DO YOU WANT ASTF SUPPORT? EY/N]:Y
'* **DO YOU WANT TASK TERMINATION AND DEVICE NOT READY MESSAGES? EY/NJ:Y
'. DO YOU WANT POWERFAIL RECOVERY? [Y/N]:Y
-* **DO YOU WANT GET PARTITION PARAMETERS DIRECTIVE? EY/N]:Y
** DO YOU WANT GET SENSE SWITCHES DIRECTIVE'? [YIN]:
> **DO YOU WANT GET TASK PARAMETERS DIRECTIVE? [Y/N]:Y

DO YOU WANT SEND/RECEIVE DIRECTIVES? EY/N:]:Y
: > DO YOU WANT ALTER PRIORITY DIRECTIVE? EY/N]:Y
.. DO YOU WANT CONNECT TO INTERRUPT VECTOR DIRECTIVE? [Y/N]:
' DO YOU WANT EXTEND TASK DIRECTIVE? EY/N]:Y
* DO YOU WANT QUEUE I/O SPEED OPTIMIZATIONS? [Y/NJ:Y
. HOW MANY I/O PACKETS SHOULD BE PRE-ALLOCATED? ED R:1.-15.1: 10.
* ENTER SIZE OF DIATA TRANSFER VECTOR IN WORDS ED R:4.-33.3: 8.
* *DO YOU WANT INSTALL, REQUEST, AND REMOVE ON EXIT SUPPORT? EY/N]:Y

>* *DO YOU WANT LOGICAL DEVICE ASSIGNMENT SUPPORT? CY/N]:Y
>* *DO YOU WANT A NULL DEVICE? EY/N]3Y
>* *DO YOU WANT THE BASELINE TERMINAL DRIVER? [YIN]:

B-3

6 ";. -- . . ;. . L"7 -- "::.''. " i : ., " ,7 " " ; -" . T .i '

• ""- ' " "' "" ' - " " " " " ' " ' . " " "' . '.." " , - ' " : "-". . " , ,' ,' - -l'. ," ". "']

%'-..

LID£1 YOU WANT I HE USER OR I ENTEE' TERM I Neil- OR IV1~ r N 1y

.:' IF YOU HAVE AN LA120 OR LAIBOS, YOU MUST ANSWER YES O THE NEXT
>; QUESTION.

. DO YOU WANT FORM FEEDS PASSED DIRECTLY TO TERMINALS? EY/N]Y

. DO YOU WANT SUPPORT FOR A 20K EXECUTIVE? EYIN]:

.4 DO YOU WANT EXECUTIVE LEVEL ROUND ROBIN SCHEDlJLING? [Y/N):
*s DO YOU WANT EXECUTIVE LEVEL DISK SWAFFING? EY/NJ:
:4 ARE YOU PLANNING TO INCLUDE A USER WRITTEN DRIVER? LY/NJ;
.4 DO YOU WANT TO INCLUDE THE EXECIJrIVE DEBIJ'tAING TOOL? EY/N J:Y
:. DO YOU WANT REGISTER AND STACK DUMP AT SYSTEM CRASH? I'(/NJ:Y
:- ENTER DUMP DEVICE CSR ADDRESS EO R:160000-177700 D:177564J:

04 D0 YOU WANT CRASH DUMP ANALYSIS SUPPORT? [YIN]:
0 DO YOU WANT THE PANIC DUMP ROUTINE? EYIN]:Y --

. ENTER THE DUMP DEVICE CSR ADDIR [0) R:160000-177700 D:1775141:
: DOES YOUR PROCESSOR HAVE A CONSOLE SWITCH REGISTER? EY/NJ:Y

0 DO YOU WANT DEVICE ERRORS AND TIMEOUTS LOGGED? [Y/N]:
>-* DO YOU WANT UNDEFINED INTERRUPTS LOGGED? [Y/N":
> DO YOU WANT PARITY ERROR TRAPS LOGGED? EY/N):
.4 **ENTER SIZE OF DYN. STORAGE REGION IN WORDS ED R:256.--16304.i: 256.
: 0 DO YOU WANT ROTATING PATTERN IN DATA LI(GHTS'? fY/N):

END EXECUTIVE SERVICE OPTIONS.

>; BEGIN PROCESSOR OPTIONS. -

.4 IS YOUR TARGET PROCESSOR A PESP-11/70? [Y/N):
- ENTER SIZE OF PHYS. MEMORY IN 1024 WORD BLOCKS ED R:16.-124.]: 124.

>. DO YOU WANT FLOATING POINT PROCESSOR SUPPORT? [Y/Ni:Y
* DO YOU HAVE A PROGRAMMABLE CLOCK? [Y/N]:

.* IS YOUR LINE FREQUENCY 50 HERTZ? (Y/N):

. DO YOU WANT KW11-Y WATCHDOG TIMER SUPPORT? (Y/N):

. DO 'YOU WANT PARITY MEMORY SUPPORT? [Y/NJ:Y
>* DOES THE TARGET PROCESSOR HAVE A CACHE MEMORY? CY/N]:

>; END PROCESSOR OPTIONS.

BEGIN PERIPHERAL OPTIONS.

.4 EXPANDED COMMENTS DESIRED FOR PERIPHERAL OPTIONS? [Y/N]:

.>PIP RSXBLDTMP;*/DE
PIP -- NO SUCH FILE(S)
SYO:E11, O]RSXBLD.TMP;*
>* DO YOU WANT DISK WRITECHECK SUPPORT? [Y/N]:
. DO YOU HAVE ANY PROCESS I/O OR LABORATORY PERIPHERALS? [Y/N]:
: HOW MANY CM/CR11 CARD READERS DO YOU HAVE? ED R:O.-16.]:
. HOW MANY TAll DUAL CASSETTES DO YOU HAVE? ED R:O.-16.])
>* HOW MANY RJ/RWP04-05-06 DISK CONTROLLERS HAVE YOU? ED R:0.-16.]:
>. HOW MANY RF11 DISK CONTROLLERS DO YOU HAVE? ED R:0.-16.]:
:- HOW MANY RK11 DISK CONTROLLERS DO YOU HAVE? ED R:O.-16.:.
4 HOW MANY RL11 DISK CONTROLLERS DO YOU HAVE? ED R:O.-16.]3 I
>, DO YOU WANT THE DRIVER TO BE LOADABLE? EY/N.:
: ENTER VECTOR ADDRESS OF THE NEXT RL11 CO R:60-774 D:330]: 160
. WHAT IS ITS CSR ADDRESS? [O R:160000-177700 D:1744003:
: HOW MANY DRIVES DOES IT HAVE? ED R:1.-4.3: 2

: HOW MANY RK611 DISK CONTROLLERS DO YOU HAVE? ED R:O.-16.3:
.:4 HOW MANY RP11-C/E DISK CONTROLLERS DO YOU HAVE? ED R:O.-16.]: - -
:. HOW MANY RWM03 DISK CONTROLLERS DO YOU HAVE? ED R:O..-16.,
. HOW MANY RJ/RWS03-04 DISK CONTROLLERS DO YOU HAVE? [D R:O.-16.,.

.4 HOW MANY TC11 DECTAPE CONTROLLERS DO YOU HAVE? ED R:O.-16.]:
:* HOW MANY RXI DISK CONTROLLERS DO YOU HAVE? ED R:E.-I6.:
.* DO YOU HAVE A VT11 GRAPHICS DISPLAY SUBSYSTEM? EY/N]:
. DO YOU HAVE A VS60 GRAPHICS DISPLAY SUBSYSTEM? (Y/N):
:: HOW MANY LP/LS/LV11/LA180 LINE PRINTERS DO YOU HAVE? ED R'0.-16.]: 1 6
>* DO YOU WANT FAST PRINTER SUPPORT? [Y/N]:

B-4

% %

"' B - --°

, DO YOU WANT THE DRIVER FO BL LukoA.LE.L. Lf.'I]: f
* ENTER VECTOR ADDRESS OF THE NEXT LINE FRINrER Lt) R:60--774 Ii OJ

.-* WHAT IS ITS CSR ADDRESS? [0 R:160000-177700 D:177514J:
>* IS IT AN LS11, LA180, OR LP11-V/W? EY/N].*Y
>* IS IT A 132. COLUMN PRINTER? LY/NJ:Y
>* DO YOU WANT 15. SECONDS BETWEEN PRINTER NOT READY MESSAGES? [Y/N:
>* HOW MANY SECONDS BETWEEN NOT READY MESSAGES ED R:0.-255. D:15.3: 60.
>* HOW MANY TM02/03 MAGTAPE CONTROLLERS HAVE YOU? ED R:O.-16.3:
>* HOW MANY TM/TMA/TMB11 MAGTAPE CONTROLLERS HAVE YOU? ED R:0.-16.J:

* HOW MANY PC11 PAPER TAPE READER/PUNCHES DO YOIJ HAVE? ED R:O.-16.]:
:* HOW MANY PRIl PAPER TAPE READERS DO YOU HAVE? LD R:O.-.16.]:

INCLUDE CONSOLE IN THE ANSWER TO THE NEXT QUESrION.

:4 ENTER NUMBER OF DL11 LINE INTERFACES ED R:1.-16.J: 5
>* DO YOU WANT THE DRIVER TO BE LOADABLE? [YIN]:
: ENTER VECTOR ADDRESS OF THE NEXT DLII [0 k:60-774 D:601:
: WHAT IS ITS CSR ADDRESS? [0 R:160000-177700 D:1775603:
'* ENTER VECTOR ADDRESS OF THE NEXT DL11 [O R:60-7743: 300
;, WHAT IS ITS CSR ADDRESS? [0 R:160000-177700]: 176500
-* ENTER VECTOR ADDRESS OF THE NEXT IL11 [0 R:60-7741: 310
:* WHAT IS ITS CSR ADDRESS? [0 R:160000-177700]: 1716510
. ENTER VECTOR ADDRESS OF THE NEXT DL1l [O R:60--774J: 320

WHAT IS ITS CSR ADDRESS? [0 R:160000-177700J: 176520
:4 ENTER VECTOR ADDRESS OF THE NEXT DL11 [0 R:60-7743: 330
>4 WHAT IS ITS CSR ADDRESS? [0 R:160000-177700]: 176530

ENTER NUMBER OF DH11 ASYNCHRONOUS LINE MULTIPLEXERS ED R:0.-16.]:

:* ENTER NUMBER OF DJll ASYNCHRONOUS LINE MULTIPLEXERS ED R:0.-16.]:
, ENTER NUMBER OF DZll ASYNCHRONOUS MULTIPLEXERS ED R:O.- 16.i
.D DO YOU HAVE ANY INTER-PROCESSOR COMMUNICATION DEVICES? [Y/N]:

> ; END PERIPHERAL OPTIONS.

'PIP RSXMC.MAC=[11 ,10]RSXMCO.MAC/AP
>PIP RSXBLD.CMD=RSXBLD. TMP;*
>PIP RSXBLD.TMP;*/DE

END SYSGEN QUERY SECTION

::0 P C11,241/RE/NV=RSXASM.CMDi*,RSXBLD.CMD;*
>* DID YOU ANSWER THE SYSGEN QUESTIONS TO YOUR SATISFACTION? EY/N]:Y
>. DO YOU WANT TO EDIT ANY OF THE QUERY SECTION OUTPUT FILES? [Y/N]?*
>INS SBIGMAC/PAR=PAR14K

>; ASSEMBLING THE EXECUTIVE TAKES ANYWHERE FROM 20 MINUTES (ON AN 11/70)
> TU 4 HOURS (ON AN 11/04). TAKE A BREAK.

>SET /UICZ[11,24]

13:50:27 15-AUG-79
>MAC @RSXASM

>TIM
14:20:28 15-AUG-79
.REM MAC
>PIP RSX.OBS=*.OBJ
>PIP RSX11M.OBJ/RE=RSX.OBS
>SET /UIC=[200,200]
>SET /UIC=[1,24]
.>PIP /NV=11,24]RSXBLD.CMDRSXlIM.OBJ
>PIP E200,200]/NV/UF=E11,IO]RSXMC.MAC
>SET /UIC=C2OO,2OO.
.:* DO YOU WANT TO GO DIRECTLY TU THE NEXT PHASE OF THIS SYSGEN? [Y/N:Y
'SET /UIC200,200]."

>; SYSOEN PART 2 -<VERSION 03.1.*--

B--5

,. C. C - , . - - o -. . , : .- . , - - - - - -

UCOFYRIGHT (C) 1975P 19;6, 19,'."
; DIGITAL EOUIPMENT CORP., MAYNARD, MASS. 01754

>;
>; BUILD THE EXECUTIVE AND ALL REOUIRED TASKS

EXPANDED COMMENTS PROVIDE A DESCRIPTION OF EVERY STEP IN THIS
>; SYSGEN2 COMMAND FILE. ON THE OTHER HAND, SHORT COMMENTS
:.; PROVIDE VIRTUALLY NO EXPLANATORY TEXT.

.*1DO YOU WANT EXPANDED COMMENTS F'OR SYSUEN fARr L LY/N.I:

.* HAVE YOU ALREADY BUIL.T THE EXEC'? [YIN]:
::-SET /UIC=[1,54-
PIP PPIP. TSK/I'U, EDI, 'T'KB, BIGTKB, VR,v BOO(

:-INS SLBR
SET /UIC:=[ltl.

>* DO YOU WISH TO ADD 'THE UDC/LPS/ICS/DSS ROUTINES TO SYSL IB? [Y/N):
>SET /UIC=l1,24]
>REM LBR
>PIP RSXBLD.CMD/PU
.PIP RSXl 1M.OLB; */DE
PIP -- NO SUCH FILE(S)
SYO:[1,24]RSX11M.OLB9*
P:PIP [200,200]RSXMC.MAC/1'U
>INS $LBR
>LER RSX11M/CR:80.:640.:128.=IRSXl1M.OBJ
>PIP RSX11M.OBJ/PU ! DELETE ALL BUT LATEST OBJECT MODULE FILE
:: DO YOU WISH TO ADD USER WRITTEN DRIVER(S) TO THE EXEC'i [Y/i14:
INS SBIGTKB

>SET /UIC=[1,24]
*: TKB @RSXBLD
>* DID THE EXECUTIVE BUILD SUCCESSFULLY? [YIN]:Y
.REM LBR

0 DO YOU HAVE THE MAP ALREADY? [YIN]:Y
' DO YOU WANT TO CONTINUE AND BUILD THE TASKS NOW? [Y/N]:Y

.:INS SEDI

.,SET /UIC=[1,24]
: DO YOU WISH TO BUILD THE BIG (5.5K) AND FASTER FILE SYSIEM " [Y/N]:

1 DO YOU WANT TO BUILD THE 2.5K MULrI-.HEADER FCF:"F [Y/NJ:Y
1:- DO YOU NEED TO EDIT THE TASK BUILD COMMAND FILE FOR FCF ' P [v/N);

>* DO YOU WANT TO BUILD THE MULTI-USER VERSION OF MCRv [Y/N]:Y
'; YOU MUST EDIT THE BUILD COMMAND FILE FOR MCR(MU) TO

REFLECT THE SIZE OF SYSPAR.
>EDI MCRMUBLD.CMD
{00019 LINES READ IN]
[PAGE 1]
*L PAR
PAR=SYSPAR :0:10000
*C/100/105
PAR=SYSPAR:0: 10500

[EXIT)

:4 DO YOU HAVE TO EDIT THE TASK BUILD COMMAND FILE FOR TKTN? [YIN]:

:9 IF THE ALTER-PRIORITY DIRECTIVE WAS NOT INCLUDED IN THE

9 EXECUTIVE, YOU MUST EDIT THE COMMAND FILE FUR TASK AT.

: DO YOU HAVE TO EDIT ANY FILES FOR MCR TASKS? [Y/N):
.0 DO YOU WANT TO BUILD THE MULTI-USER PROTECTION TASKS7 [YiNl:
'8 DO YOU WANT TO BUILD THE ERROR LOGGING TASKS? [Y/Nl:
. DO YOU WANT TO BUILD TASK ACS? [Y/N]:Y
* DO YOU HAVE TO EDIT TASK ACS'S BUILD CUMMAND F[LE? [Y/N]:

:- DO YOU WANT TO BUILD *TASK PMD? [Y/NJ:Y
.>* DO YOU HAVE TO EDIT PMDS BUILD COMMAND FILE'? [YIN]:

B-6

0 , *' .

-- - - - --.- - - - • <-,- %. .--.- - - - - ,- . % .- %~-,, . - , " ' I' = :I

L IU YUU WANI 10 BIJILL fAIK Hf1 Lr,'NJ;I
. DO YOU HAVE TO EDIT TASK SHF'S BUILD COMMAND FILEil EY/NJ:Y
>EDI SHFBLD.CMD
(00015 LINES READ IN]
[PAGE 1]
*C/\/\./CP.
[NO MATCH]
*L /CP
1 1,54JSHF/F'R/MM/CP/AL/'-FP, MP: EC1,34]SHF/-SF'= [,24SHUFL
*C./CF.

C 1,54JSHF/FR/MM/AL/-FF',MF': E I1341]SHF/'-SP=I: ,24]SHUFL
*EX
[EXIT]

:I ,O YOU WANT TO BUILD TASK RMDEMO'? [:YINJ:
: DO YOU WANT rO BUILD TASK PRT (PRINT SFOOLER)? -Y/N]y:

: THE DEFAULT PRINT SPOOLER WILL ONLY DELETE' FILES NAMED
LP.LST, LP.MAF, *.PMD, AND *.DMP. IF' YOU WANT THE SPOOLER
To DELETE ALL FILES, YOU MUST EDIT THE BUILD COMMAND F*ILE.

* DO YOU HAVE TO EDIT TASK PRI"S BUILD COMMAND FILE? [:Y/N.]:
'REM EDI
>SET /UIC=E1,24-
).PIP *.CMD/PU
- DO YOU WANT TO GENERATE THE MAPS FOR THE ABOVE TASKS? EY/NJ: .

>ASN NL:=P:
rKB @BOOBLD

> TKB @DMOBLD
TKB @FCPBLD

>TKB @INDBLD
>TKB &INIBLD
>TKB @INSBLD
>TKB @MCRMUBLD
>TKB @MOUBLD
.;-TKB @SAVBLD

TKB @TKNBLD
.TKB @UFDBLD
, "TKB @LOABLD
>TKB @UNLBLD
>TKB @PMDBLD
>TKB @SHF'BLD
>TKB @PRTBLD
>TKB @ACSBLD
. DO YOU WANT TO BUILD ANY LOADABLE DRIVERS NOW? EY/N]:Y

>SET /UIC=[200,200]

YOU MAY NEED THE TASK BUILD MAPS FOR THE DRIVER(S) FOR
>; YOUR PARTITION LAYOUT.

* DO YOU WANT THE MAPS? (Y/N]:
SET /UIC=[1,24J

WHEN ALL DRIVERS ARE BUILT, STRIKE CARRIAGE RETURN WHEN ASKED
FOR DEVICE MNEMONIC.

: WHAT IS THE DRIVER 2-CHARACTER DEVICE MNEMONIC 1s: LF
* WHAT IS THE DRIVER PARTITION NAME ES]: GEN
T::-TKB 9[E200,200JLPDRVBLD)

.-PIP [200,200]LPDRVBLD.CMD;*/DE
* WHAT IS THE DRIVER 2-CHARACTER DEVICE MNEMONIC [S:-

>SET /UIC=[1,54]
>PIP LPNEW, TSK/NV/RE=LPDRV * TSK
>PIP LPNEW.STB/NV/RE=LPDRV.STB
>REM TKB

B-7

.1

IF YOU WISH TO REBU[Lo TfII L LJ IrT T .'i .1-; ,Y ToN"OR EUILi rFHE AI MowIL. I
D DIAGNOSrICS, YOU MUST DO SO 5AFER 5SfGEN FARI 2 HAS BLLN COMFLEIF_.

>; AT THAT TIME, MOUNT THE DISK LABELED 'UTILITY OBJECTS* AND
.;; RUN THE INDIRECT COMMAND FILE [200,200]SYSGEN3.CM-_

)SET /UIC=[1,54J
>* IS YOUR TARGET SYSTEM LARGER THAN 32K WORDS? EY/N]:Y
* DO YOU WISH TO CREATE A LARGER COPY OF YOUR SYSTEM? EY/N]:Y

NOTE: SAVED IMAGES ON THE 11/70 ARE CIURRENTLY
SUPPORTED ONLY TO A MAXIMUM OF 124K WORDS
(I.E. N=498.). ALSO, THE NUMBER OF BLOCKS
IS ASSUMED TO BE OCTAL. TO SPECIFY A
DECIMAL NUMBER, APPEND A TRAILING DECIMAL PfNT.

FOR SINGLE RK05 DISTRIBUTION KITS, THE
-; MAXIMUM SYSTEM IMAGE SIZE IS 64K (258.

BLOCKS) DUE TO A LACK OF CONTIGUOUS SPACE.

>* ENTER THE NUMBER OF BLOCKS FOR YOUR SYSTEM IMAGE FILE IS]: 130.
:PIP RSX11MSYS/CO/NV/BL:130.:=RSX11M.TSK
:SET /UIC=[1,54]

1DO YOU WISH TO DELETE THE SYSTEM BACKUP FILE RSX11M.TSK? [YIN]:A

>; YOUR TARGET SYSTEM IS NOW READY TO SET UP PARTITIONS AND INSTALL
>v THE REQUIRED TASKS. THE PROCEDURE TO FOLLOW ONCE VIRTUAL MCR

; IS RUNNING IS:
1) EXrEND POOL SPACE TO BASE OF FIRST PARTITION
2) SET UP YOUR PORTITIONS
3) INVOKE THE INDIRECT FILE INSTALL.CMD IN VMR TO

INSTALL THE PRIVILEGED TASKS YOU JUST BUILT
>; 4) LOAD ANY LOADABLE DRIVERS THAT YOU WANT RESIDENT
>-; IN .THE SYSTEM IMAGE. IF THE TERMINAL AND/OR SYSTEM

DISK DRIVERS ARE LOADABLE, THEY MUST BE LOADED USING
* VMR.

5) EXIT FROM VIRTUAL MCR AND BOOT IN YOUR TARGET SYSTEM

DO YOU WANT A VMR EXAMPLE DISPLAYED? EY/N]:

;:' DO YOU WANT TO EDIT INSTALL.CMD? [Y/N]:
.:,PIP LPDRV ° TSK/RE/NV=LPNEW. TSK
>PIP LPDRV.STB/RE/NV=LPNEW.STB
>INS SBO;-1 41
"INS SVMRP-l
"ASN SY:=LB: ,
'..VMR
ENTER FILENAME: RXS\SX\SX11M.SYS
VNR>SET /POOL
POOL=550:260. :00260.
VMR>SET /POOL=700
VMR>SET /MAIN=SYSPAR :700:105: TASK
VMR>SET /MAIN=GEN: 1005:6573:SYS
VMR>PAR
LDR 000000 000000 MAIN TASK
SYSPAR 070000 010500 MAIN TASK
GEN 100500 657300 MAIN SYS "
VMR.*>@200,200]INSTALL
VMR -- CHECKPOINT SPACE TOO SMALL, USING CHECKPOINT FILE
INS SHF INSTALL SHUFFLER
VMR>-Z

WHEN THE INDIRECT FILE EXITS, BOOT IN YOUR TARGET SYSTEM,
>; SET THE DATE AND TIME, AND SAVE THE SYSTEM WITH A BOOTSTRAP.
>; WHEN YOUR SYSTEM REBOOTS ITSELF, PURGE THE OLD TASK FILES.
>;

>; E.G.

B-8

=. •....
*'-'.-.'.'. . ". -- '''- ' . . . "-- '".-. -- -- ,. ',. .AJ .. J ; .& --- . .- " . "--" "- ". . '. " ... "-

.::-BO RSX11M

RSX1lM V03.1 BL22
:TIM 12:00):00 1-JAN-78
.-SAV /WB

RS3X11M V03.1 E4L22 64K MAPPED
mRED DLO:=SY:

.REID DLO:z:LD:

.MOU DL : MAFRl01
- i (~1 2J3STA R 1UP,

-~ >* PLEASE ENTER TIME AND DATE (HR:MN tDD-MMM-YY) CSI: .
m%.; .>ET /UIC=E1Y54)

:RUN $PIP'

FIP:::.*/

.BOO RSX11M
XI'T 22

XDT:::
RSX11M V3.1 BL22

:-TIM 8:0 8/1/79
ISAV /UB

RSX-11M V3.1 BL22 64K MAPPED
.RED DL0:=SYO:
)RED [LO:=L140:

MUDLO:MAPSYS
>@E1 ,2]STARTUP
>* PLEASE ENTER TIME AND DATE (HR:MN DD-MMM-YY) CSJ:

08:00:37 01-AUG-79

>SET /UIC=E1P543
hr .>INS LBIIP

>POI\IO\IMP\PMIP\PIP
PIP.>*P3.*P
PIP>c$*J.$P

B-9

APPENDIX C

FLEC'S USERS MANUAL

C-I INTRODUCTION

Fortran contains four basic mechanisms for controlling

program flow: CALL/RETURN, IF, 00, and various forms of tne GO

TO.

Flecs is a language extension of Fortran which has

additional control mechanisms. These mechanisms make it easier

to write Fortran by elminating much of the clerical detail

associated with constructing Fortran programs. Flecs is also

easier to read and comprehend than Fortran.

This manual is intended to be a brief but complete

introduction to Flecs. It is not intended to be a primer on

Flecs or structured programming. The reader is assumed to be a

knowledgeable Fortran programmer.

For programmers to whom transportability of their pro-

gram is a concern, it should be noted that the Flecs translator

source code is in the public domain and is made freely avail-

able. The translator was written with transportability in mind

and requires little effort to move from one machine to another.

At the University of Oregon, Flecs is implemented on

both the PDP-10 and the IBM S/360. The manner of implementation

is that of a pre-processor which translates Flecs programs into

* rtran programs. The resulting Fortran program is then

processed in the usual way. The translator also produces a

nicely formatted listing of the Flecs program which graphically

presents the control structures used.

The following diagram illustrates the translating

process.

SOURCE T S TR = FORTRAN
PROGRAM RASLTO S SURCE

*INDENTED To Fotran
LISTING Cmpiler

C-1 PAIGOU E ;AK

.- BLA.N. . .

C-2 RETENTION OF FORTRAN FEATURES

The Flecs translator examines each statement in the

Flecs program to see if it is an extended statement (a statement

valid in Flecs but not in Fortran). If it is recognized as an
extended statement, the translator generates the corresponding

Fortran statements. If, however, the statement is not

recognized as an extended statement, the translator assumes it

must be a Fortran statement and passes it tnrough unaltered.

Thus, the Flecs system does not restrict the use of Fortran

statements, it simply provides a set of additional statements

which may be used. In particular, GO TOs, arithmetic IFs,

CALLs, acithmetic statement functions, and any other Fortran

statements, compiler dependent or otherwise, may be used in a

Flecs program.

C-3 CORRELATION OF FLECS AND FORTRAN SOURCES

One difficulty of preprocessor systems like Flecs is

that error messages which come from the Fortran compiler must be

related to the original Flecs source program. This difficulty

is reduced by allowing the placement of line numbers (not to be

confused with Fortran statement numbers) on Flecs source state-

ments. These line numbers then appear on the listing and in the

Fortran source. When an error message is produced by either the

Flecs translator or the Fortran compiler, it will include the

line number of the offending Flecs source statement, making it

easy to locate on the listing.

If the programmer chooses not to supply line numbers,6I
the translator will assign sequential numbers and place them on

the listing and in the Fortran source. Thus, errors from the

compiler may still be related to the Flecs listing.

Details of line numbering are machine dependent and are4_
given in paragraph C-10. On most card oriented systems, the

line numbers may be placed in columns 76-80 of each card. Other

systems ra, have special provisions for line numbers.

The beginning Flecs programmer should discover and make

U special note of the details of the mechanism by which Fortran

C-2

.

,." " .-..-. .' " ,'/ ' • - "2 - ' , , "." ... ', .. ._' -. ?"' * -- ---', :,7

compiler error messages may be traced back to the Flecs listing

on the system being used.

C-4 STRUCTURED STATEMENTS

A basic notion of Flecs is that of the structured

statement which consists of a control phrase and its scope.

Fortran has two structured statements, the logical IF and the

DO. The following examples illustrate this terminology:

STRUCTURED STATEMENT

CONTROL PHASE SCOPE

KEYWORD SPECIFICATION

IF (X.EQ.Y) U= V+W

KEY"ORD SPECIFICATION

DO 301=1.N CONTROL PHASE S
A(I) = (I)+ cC S
L(I) = I-K(I) SCOPE }

30 CONTINUE

Note that each structured statement consists of a

control phase which control the execution of a set of one or

more statements called its scope. Also note that each control

phrase consists of a keyword plus some additional information

called the specification. A statement which does not consist of

a control phrase and a scope is said to be a simple statement.

Examples of simple statements are assignment statements, sub-

routine CALLs, arithmetic IFs, and GO TOs.

The problem with the Fortran logical IF statement is

that its scope may contain only a single simple statement. This

restriction is eliminated in the case of the DO, but at the cost

)f clerical datail (having to stop thinking about the problen

while a statement number is invented). Note also that the IF

C-3 iI

k -- ..7

specification is enclosed in parenthese while the O specifica- j
tion is not.

In Flecs there is a uniform convention for writing con-

trol phrases and indicating their scopes. To write a structured

statement, the keyword is placed on a line beginning in column

7 followed by its specification enclosed in parentheses. The

remainder of the line is left blank. The statements comprising

the scope are placed on successive lines. The end of the scope

is indicated by a FIN statement. This creates a muiti-line

structured statement.

Examples of multi-line structured statements:

IF (X.EQ.Y)
U = V+W
R = S+T

FIN TA

DO (I = 1,N)
A(I) = B(I)+C
C = C*2.l4-3.l4
FIN

Note: The statement number has been eliminated from the DO

specification since it is ro longer necessary, the end of

the loop being specified by FIN.

Nesting of structured statements is permitted to any

depth.

Example of nested structured statements: 0

IF (X.EQ.Y)
U = V+W
DO (I = 1,N)

A(I) = B(I)+C
C = C*2.14-3.14
FIN -

R = S+T
FIN

When the scope of a control phrase consists of a singl,,

silape staterr ent, it may be placed on the same line as the 1

control phrase and the FIN may be dispensed with. This creates

a one-line structured statement.

Examples of one-line struc.urd 3taements:

IF (X.EQ.Y) U = V+W

DO (I = 1,N) A(I) = B(I)+C

C-4

Since each control phrase must begin on a new line, it

is not possible to have a one-line structured statement whose

scope consists of a structured statement.....

Example of invalid construction:

IF (X.EQ.Y) DO (I = 1,N) A(I) = B(I)+C

To achieve the effect desired above, the IF must be .

written in a multi-line form.

Example of valid construction:

IF (X.EQ.Y)
DO (I + 1,N) A(I) = B(I)+C
FIN

In addition to IF and DO, Flecs provides several useful

structured statements not available in Fortran. After a brief

* excursion into the subject of indentation, we will present these

* additional structures.

C-5 INDENTATION, LINES AND THE LISTING

In the examples of multi-line structured statements

above, the statements in the scope were indented and an "L"

shaped line was drawn connecting the keyword of the control

phrase to the matching FIN. The resulting graphic effect helps

to reveal the structure of the program. The rules for using

* indentation and FINs are quite simple and uniform. The control

phrase of a multi-line structured statement always causes

indentation of the statements that follow. Nothing else causes

indentation. A level of indentation (i.e., a scope) is always

terminated with a FIN. Nothing else terminates a level of

indentation.

When writing a Flecs program on paper, the programmer

snould adopt the indentation and line drawing conventions shown

below. When preparing a Flecs source program in machine

readable form, however, each statement should begin in column
sek'/en W'hen the Fl acs translato r pr:)daces the listin:g, :i "

reintroduce the correct indentation and produce the corres- ,

ponding lines. If the programmer attempts to introduce his own

C-5 A
6

----.- ----- - --- - -' -

V

indentation with the use of leading blanks, the program dill be

translated correctly, but the resulting listing will be

improperly indented. .

Example of indentation:

1. Program as written on paper by programmer:

IF (X.EQ.Y)
U + V+W "

DO (I = 1,N)
A(I) = B(I)+C
C = C*2.14-3.14
FIN

R = S+T
FIN

A
2. Program as entered into computer:

IF (X.EQ.Y)
U + V+W
DO (I = 1,N)
A(I) = B(I)+C
C = C*2.14-3.14
FIN
R = S+T

FIN

3. Program as listed by Flecs translator:

IF (X.EQ.Y)
U = V+W

DO (I = 1,N)
° (A(I) = B(I)+C
* C = C*2.14-3.14
• ..FIN
R = S+T

... FIN
0S

The correctly indented listing is a tremendous aid in reading

and working with programs. Except for the dots and spaces used

for indentation, the lines are listed exactly as they appear in

the source program. That is, the internal spacing of columns

7-72 is preserved. There is seldom any need to refer to a

*h .aijht listing of the-i unidented source.

Comment lines are treated in the following way on the
listing to prevent interruption of the dotted lines indicating

C-6

i". ! -!> : . :-,:::.. ::. : ..:: i :!: i. : i:I i-: ' ...- -* "--" --- *" '-- . -. '"--. -"

. 7 - . .j

scope. A comment line which contains only blanks in columns 2

through 6 will be listed with columns 7 through 72 indented at

the then-current level of indentation as if the line were an

executable statement. If, however, one or more non-blank
characters appear in columns 2 through 5 of a comment card, it

will be listed without indentation. Blank lines may be inserted

in the source and will be treated as empty comments.

C-6 CONTROL STRUCTURES

The complete set of control structures provided by
Flecs is given below together with their corresponding flow
charts. The symbol Z is used to indicate a logical expression.

The symbol S is used to indicate a scope of one or more

statements. Some statements, as indicated below, do not have a

one-line construction.

A convenient summary of the information in this chapter

may be found in Attachment 1.

C-.6.1 DECISION STRUCTURES

Decision structures are structured statements which
control the execution of their scopes on the basis of a logical

expression or test.

C-6.1.1 IF

Description: The IF statement causes a logical ex-
pression to be evaluated. If the value is true, the scope is
executed once and control passes to the next statement. If the

value is false, control passes directly to the next statement

without execution of the scope.

General Form: Flow Chart:

IF (zhS

Examples:

IF (X.EQ.Y) U =V+W

IF (T.GT.O.AND.S.LT.R)
I =I+

S..FIN -..

C-7

i~1 _ :

C-.r. 1. 2 UN LE S 7

Description: "UNLESS (4)" is functionally equivalent

to "IF(.NOT.(4))", but is more convenient is some contexts.

General Form: Flow Chart:

UNLESS (£

Examples:

UNLESS (X.NE.Y) U = V+W

UNLESS (T.LE.O.OR.S.GE.R
I = l-I 1

Z =Q0.1
... FIN

C-ri.I.3 WHEN.. •ELSE

Description: The WHEN...ELSE statements correspond to

the IF...THEN...ELSE statement of ALGOL, PL/l, PASCAL, etc. In

Flecs, both the WHEN and the ELSE act as structured statements

although only the WHEN has a specification. The ELSE statement

must immediately follow the scope of the WHEN. The specifier of

the WHEN is evaluated and exactly one of the two scopes is

executed. The scope of the WHEN statement is executed if the

expression is true and the scope of the ELSE statement is

executed if the expression is false. In either case, control

then passes to the next statement following the ELSE statement.

General Form: Flow Chart:

WHEN (4) Sl
ELSE

Examples:

WHEN (X.EQ.Y) U = V+W
ELSE U = V-W

WHEN (X.EQ.Y)
U = V+W
T = T+1.5

... FIN

ELSE U = V-W

WHEN (X.EQ.Y) U = V+W
ELSE

U = V-W
T = T+1.5

..FIN

C-8

• * C : .- .' .* * * . - . * ..

. % **** .'.*'* * * . - . - - *

WHEN (X.EQ.Y)U = V+W :':
• .. *

T=T-1.5
... FIN
ELSE .
• U = V-W
• T = T+1.5
... FIN

Note: WHEN and ELSE always come as a pair of statements, never

separately. Either the WHEN or both may assume thet

multi-line form. ELSE is considered to be a control

phrase, hence cannot be placed on the same line as the

WHEN. Thus, "WHEN (,) Sit ELSE .2" is not valid.

C-5.1.4 CONDITIONAL
Description: The CONDITIONAL statement is based on the

LISP conditional. A list of logical expressions is evaluated

one by one until the first expressiont found to be true is
encountered. The scope corresponding to that expression is exe-

cuted, and control then passes to the first statement following

the CONDITIONAL. If all expressions are false, no scope is

executed. (See, however, the note about OTHERWISE below.)

General Form: Flow Chart:

CONDITIONAL

2 2

... FI .

Examples:

CONDITIONAL
(X.LT.-5.0) U = U+W
(X.LE.I.0) U = U+W+Z
(X.LE.10.5) U = U-Z

CONDITIONAL
(A.EQ.B) Z = 1.0
(A.LE.C)

Y = 2.0
Z = 3.4

..FIN
* (A.GT.C.AND.A.LT.B) Z = 6.2

(OTHERWISE) Z = 0.0
... FIN

C-9

S-.

Notes: The CONDITIONAL itself does not possess a one-line form.

(owever, each) is treated as a structured
statement and may be in one-line or multi-line form.

The reserved word OTHERWISE represents a catchall condi-

tion. That is, "(OTHERWI SE)SI" is equivalent to

"(.TRUE.)Sq" in a CONDITIONAL statement.

C-5 .I.5 SELECT

Description: The SELECT statement is similar to the

CONDITIONAL but is more specialized. (It actually is analogous

to the PASCAL CASE OF construct.) It allows an expression to be

tested for equality to each expression in a list of expressions.

When the first matching expression is encountered, a corres-

ponding scope is executed and the SELECT statement terminates. -.

In the description below, 6,6, "'', represent arbitrary but
compatible expressions. Any type of expression (integer, real,

* complex,...) is allowed as long as the underlying Fortran

system allows such expressions to be compared with an .EQ. or

.NE. operator.

Seneral Form: Flow Chart:

SELECT (6)

... FIN

Example:

SELECT (OPCODE(PC))
(JUMP) PC = AD
(ADD)

A =A+B
PC =PC+l

...FIN
(SKIP) PC = PC+2
(STOP) CALL STOPCD

.. .FIN 6

C-10

* 6::::: :: ::::::::::: : ::: : ::: : : :i: ::! ::~ : : : :) :;::; : ::ii : i : : : : : :::: : : :

i'.- - - . - . . . -. . , . -.- , - - - . . . ,

Notes: As in the case of CONDITIONAL, at most one of the S4 will

be executed. The catchall OTHERWISE may also be used in

a SELECT statement. Thus "(OTHERWISE).%" is equivalent

to "()5n" within a "SELECT (5)" statement.

The expression S is reevaluated for each comparison in

the list, thus lengthy, time consuming, or irreproducible --

expressions should be precomputed, assigned to a

variable, and the variable used in the specification

portion of the SELECT statement.

C-6.2 LOOP STRUCTURES

The structured statements described below all have a

scope which is executed a variable number of times depending on

specified conditions.

Of the five loops presented, the most useful are the . -

DO, WHILE, and REPEAT UNTIL loops. To avoid confusion, the

REPEAT WHILE and UNTIL loops should be ignored initially.

C-6.2.1 DO

Description: The Flecs DO loop is functionally

identical to the Fortran DO loop. The only differences are

syntactic. In the Flecs DO loop, the statement number is

omitted from the DO statement, the incrementation parameters are

enclosed in parenthesis, and the scope is indicated by either

the one line or multi-line convention. Since the semantics of

the Fortran DO statement vary from one Fortran compiler to

another, a flowchart cannot be given. The symbol I represents

any legal incrementation specification.

General Form: Equivalent Fortran:

* DO (I)S DO 30 1$
Examples: 30 CONTINUE

DO (I = IN) A(I) = 0.0

DO (J =3,K,3)
. B(J) = B(J-I)*B(J-2)
. C(J) = SIN(B(J))
S. .FIN

C-11

• -............... ,-, ,- .

- - f . - . " " ." - "' - " .4 " . . . '

C-6.2.2 WHILE

Description: The WHILE loop causes its scope to be

repeatedly executed while a specified condition is true. The

condition is checked prior to the first execution of the scope,

thus if the condition is initially false the scope will not be

executed at all.

General Form: Flow Chart:

WHILE (4) 5

Examples:

WHILE (X.LT.A(I)) I = I+1

WHILE (P.NE.O)
VAL(P) = VAL(P) +1
P = LINK(P)

..FIN
6I

C-6.2.3 REPEAT WHILE

Description: -By Using the REPEAT verb, the test can be

logically moved to the end of the loop. The REPEAT WHILE loop

causes its scope to be repeatedly executed while a specified

condition remains true. The condition is not checked until

after the first execution of the scope. Thus the scope will

always be executed at least once and the condition indicates e0
under what condition the scope is to be repeated. Note: .

"REPEAT WHILE (4)" is functionally equivalent to "REPEAT

UNTIL(.NOT.())".

General Form: Flow Chart:

REPEAT WHILE (4)

Examples:

REPEAT WHILE(N.EQ.M(I)) I= I+

REPEAT WHILE (LINK(Q).NE.0)
• R = LINK(Q)

LINK(Q) P
*PQ
Q=R

* ... FIN

C.12

C-6.2.4 UNrIL

Description: The UNTIL loop causes its scope to be

repeatedly executed until a specific condition becomes true.

The condition is checked prior to the first execution of the

scope, thus if the condition is initially true, the scope will

not be executed at all. Note that "UNTIL ()" is functionally

equivalent to "WHILE (.NOT.(4)"..

General Form: Flow Chart: _1

UNTIL (4) S

Examples:

UNTIL (X.EQ.A(I)) I = I+l

UNTIL (P.EQ.0)
VAL(P) = VAL(P) +1
P = LINK(P)

... FIN

C-6.2.5 REPEAT UNTIL

Description: By using the REPEAT verb, the test can be

logically moved to the end of the loop. The REPEAT UNTIL loop

causes its scope to be repeatedly executed until a specified

condition becomes true. The condition is not checked until

after the first execution of the scope. Thus, the scope will

always be executed at least once and the condition indicates

under what conditions the repetition of the scope is to be

terminated.

General Form: Flow Chart:

REPEAT UNTIL (4) ,

Examples:

REPEAT UNTIL (N.EQ.M(I)) I = I+1

REPEAT UNTIL (LINK(Q).EQ.0)
. R = LINK(Q)

LINK(Q) = P
P = Q
Q = R

... FIN

C-13" i.!::7:.i

C-7 INTERNAL PROCEDURES .'

In Fles a sequence of statements may be declared an

internal procedure and a given name. The procedure may then be

invoked from any point in the program by simply giving its name.

Procedure names may be any string of letters, digits,

and hyphens (i.e., minus signs) beginning with a letter and con- --

taining at least one hyphen. Internal blanks are not allowed. -

The only restriction on the length of a name is that it nay riot

be continued onto a second line.

Examples of valid internal procedure names:

INITIALIZE-ARRAYS

GIVE-WARNING

SORT-INTO-DESCENDING-ORDER

INITIATE-PHASE-3

A procedure declaration consists of the keyword "TO"

followed by the procedure name and its scope. The set of state-

ments comprising the procedure is called its scope. If the

scope consists of a single simple statement it may be placed on

the same line as the "TO" and procedure name, otherwise the

statements of the scope are placed on the following lines and

terminated with a FIN statement. These rules are analogous with
the rules for forming the scope of a structured statement.

General Form of procedure declaration:

TO procedure-name

Examples of procedure declarations:

TO RESET-POINTER P = 0

TO DO-NOTHING CONTINUE

TO SUMMARIZE-FILE
INITIALIZE-SUMMARY
OPEN-FILE
REPEAT UNTIL (EOF)

ATTEMPT-TO-READ-RECORD
S..WHEN (EOF) CLOSE-FILE

ELSE UPDATE-SUMMARY
... FIN
OUTPUT-SUMMARY

.. .FIN

C-14

A.-

An internal procedure reference is a procedure nane

appearing where an executable statement would be expected. In

fact an internal procedure reference is an executable simple

statement and thus may be used in the scope of a structured

statement as in the last example above. When control reaches a

procedure reference during execution of a Flecs program, a

return address is saved and control is transferred to the first

statement in the scope of the procedure. When control reaches

the end of the scope, control is transferred back to the

statement logically following the procedure reference.

A typical Flecs program or subprogram consists of a

sequence of Fortran declarations: (e.g., INTEGER, DIMENS[ON,

COMMON, etc.) followed by a sequence of executable statements

called the body of the program followed by the Flecs internal

0 procedure declarations, if any, and finally the END statement.

Here is a Flecs program which illustrates th placement

of the procedure declarations.

00010 C INTERACTIVE PROGRAM FOR PDP-10 TO COMPUTE X**2.
00020 C ZERO IS USED AS A SENTINEL VALUE TO TERMINATE EXECUTION.
00030
00040 REAL X,XSQ
00050 REPEAT UNTIL (X.EQ.0)
00060 GET-A-VALUE-OF-X
00070 IF (X.NE.0)
00080 COMPUTE-RESULT

--'-* 00090 TYPE-RESULT
00100 ... FIN
00110 ...FIN
00120 CALL EXIT

00130 TO-GET-A-VALUE-OF-X
00140 TYPE 10
00150 10 FORMAT (' X = '
00160 ACCEPT 20,X
00170 20 FORMAT (F)
00180 ... FIN

00190 TO COMPUTE-RESULT XSQ = X*X

00200 TO TYPE-RESULT
00210 TYPE 30,XSQ
00220 30 • FORMAT(' X-SQUARED - ',F7.2)
00230 ... FIN
00240 END

C-15

Notes concerning internal procedures:

1. All internal procedure declarations must be placed

at the end of the program just prior to the END

statement. The appearance of the first "TO"

statement terminates the body of the program. The

translator expects to see nothing but procedure

declarations from that point on.

2. The order of the declarations is not imnpoctmn:.

Alphabetical by name is an excellent order for

programs with a large number of procedures.

3. Procedure declarations may not be nested. In other

words, the scope of a procedure may not contain a

procedure declaration. It may, of course, contain

executable procedure references.

4. Any procedure may contain references to any other

procedures (excluding itself).

5. Dynamic recursion of procedure referencing is not

permitted.

6. All program variables within a main or subprogram

are global and are accessible to the statements in

all procedures declared within that same main or

sub program.

7. There is no formal mechanism for defining or

passing parameters to an internal procedure. When

parameter passing is needed, the Fortran function

or subroutine subprogram mechanism may be used or

0 the progammer may invent his own parameter passing 0
methods using the global nature of variables over

internal procedures.

9. The Flecs translator separates procedure declara-

* tions on the listing by dashed lines as shown in 0

the preceding example.

C-31,LR.,CTLiONS AND NOTES

If Flecs were implemented by a compiler this section -4

would be much shorter. Currently, however, Flecs is implemented

C-16

• - - ----"-*:" ". - ... ' . - - : ... " : : : : - ' " , *. . _ . - . . . -

by a stardy but naive translator. Thus, the Flecs programmer

must observe the following restrictions:

1. Flecs must invent many statement numbers in

creating the Fortran program. It does so by

beginning with a large number (in this implemen-

tation 32767) and generating successively smaller

numbers as it needs them. Do not use a number

which will be generated by the translator. A good

rule of thumb is to avoid usin 5 d it statement

numbers.

2. The Flecs translator must generate integer variable

names. It does so by using names of the form

"Innnnn" when nnnnn is a five digit number related

to a generated statement number. Do not use

* variables of the form Innnnn and avoid causing them

to be declared other tehan INTEGER. For example,

the declaration "IMPLICIT REAL (A-Z)" leads to

trouble. Try "IMPLICIT REAL (A-H, J-Z)" instead.

3. The translator does not recognize continuation

lines in the source file. Thus Fortran statements

may be continued since the statement and its con-

tinuations will be passed through the translator

without alteration. However, an extended Flecs

statement which requires translation may not be

continued. The reasons one might wish to continue

a Flecs statement 1) It is a structured statement

* or procedure declaration with a one statement scope

too long to fit on a line, or 2) it contains an

excessively long specification portion, or 3) both

of the above. Problem 1) can be avoided by going

to th multi-line form. Frequently problem 2) can

be avoided when the specification is an expression

(logical or otherwise) by assigning the expression

co a variable in a preceding statement and then

using the variable as the specification.

C- 17

-/> 'Y <" <> [-. " i'> '<<[4 '[i .'["i ['.
'

i [j '. - *I ' . . *: . - .?<" •

4. 3lanks are- meaningful seoaratrs T, Elecs

statements; don't put them in dumb places like the

middle of identifiers or key words and do use them

to separate distinct words like REPEAT and UNTIL.

5. Let Flecs indent the listing. Start all statements

in Col. 7 (or use the TAB key) and the listing will

always reveal the true structure of the program.

(As understood by the translator, of course.)

5. As far as the translator is concerned, FOR4A"

statements are executable Fortran statements since

it doesn't recognize them as extended Flecs state-

ments. Thus, only place FORMAT statements where an

executable Fortran statements would be acceptable.

Don't put them between the end of a WHEN statement

and the beginning of an ELSE statement. Don't put

them between procedure declarations.

Incorrect Examples: Corrected Examples:

WHEN (FLAG) WRITE(3,30) .WHEN (FLAG)
30 FORMAT(7H TITLE:) 30 WRITE(3,30) "-

ELSE LINE = LINE+I FORMAT(7H TITLE:)
... FIN
ELSE LINE = LINE+I

TO WRITE-HEADER TO WRITE-HEADER
PAGE = PAGE +1 PAGE = PAGE+l -

WRITE(3,40) H,PAGE WRITE(3,40) H,PAGE
•.. FIN 40 FORMAT(7OAl,I3)

40 FORMAT (70Al,I3) ... FIN

7. The translator recognizes extended Flecs statements

by the process of scanning the first identifier on

the line. If the identifier is one of the Flecs

keywords, IF, WHEN, UNLESS, FIN, etc., the line is

assumed to be a Flecs statement and is treated as

such. Thus, the Flecs keywords are reserved and

may not be used as variable names. in case of

necessity, a variable name, say WHEN, may be

slipped past the translator by embedding a ulan..

within it. Thus "WH EN" will look like "WH"

followed by "EN" to the translator which is blank

C-18

, ° ° . . - . . ' . , - / " ° * .

•" ~~~~~~~~. ° ,°•. .. •.-.°.... - .- . - .. ,•°

• o ° °-~~~~~~~~~~~~~~~~~~. . .. ° -°- . . .o-.... .• •°-'.. ° ." ...-

I

sensitive, but like "'WHEN" to the compiler wh hi h

ignores blanks.

8. In scanning a parenthesized specification, the

translator scans from left to right to find the

parenthesis which matches the initial left

parenthesis of the specification. The translator,

however, is ignorant of Fortran syntax including

the concept of Hollerith constants and will treat

Hollerith parenthesis is syntactic par.enthesi 3.

Thus, avoid placing Hollerith constants containing

unbalanced parenthesis within specifications. If

necessary, assign such constants to a variable,

using a DATA or assignment statement, and place the

variable in the specification. 2
Incorrect Example: Corrected Example:

IF(J.EQ.(') LP= '('

IF(J.EQ.LP)

9. The Flecs translator will not supply statements

necessary to cause appropriate termination of main

and sub-programs. Thus, it is necessary to include
the a 0pr riate RETURN, STOP, or CALL EXIT

statement prior to the first internal procedure

declaration. Failure to do so will result in

control entering the scope of the first procedure

after leaving the body of the program. Do not

place such statements between the procedure dec-

larations and the END statement.

C-9 ERRORS

This section provides a frameword for understanding the

error handling mechanisms of version 22 of the Flecs Translator.
4 •0

The system described below is at an early point in evolution,

but has proven to be quite workable.

The Flecs transl atr ex-in es a F3.cs pr r a:nj: l

by line basis. As each line is encountered it is first

subjected to a limited syntax analysis followed by a context 0

C-19

"-.- -- - . -* - - - * - •- -. -* - . * -. "

analysis. Errors :nay be C 2 edei drn I i her f 1 3

analyses. It is also possible for errors to go undetected by

the translator.

C-9.1 Syntax Errors

When a syntax error is detected by the translator, it

ignores the statement. On the Flecs listing the line number of

Tr. statement is ovarprintEd_ with 's to 1! -

-a statement has been ignored. The nature of the syntax ecror is

given in a message on the following line.

The fact that a statement has been ignored may, of

* course, cause some context errors in later statements. For

example, the control phrase "WHEN (X(I) .LT.(3+4)" has a missing

right parenthesis. This statement will be ignored, causing as

a minimum the following ELSE to be out of context. The pro-

grammer should of course be aware of such effects. More is said

about them in the next section.

C-9.2 Context Errors

If a statement successfully passes the syntax analysis,

"- it is checked to see if it is in the appropriate context within

* the program. For example, an ELSE must appear following a W3EN

and nowhere else. If an ELSE does not appear at the appropriate

point of if it appears at some other point, a context error hnas

occurred. k frequent source of context errors in the initial

stages of development of a program comes from miscounting the

number of FINs needed at some point in the program.

With the exception of ex-cess FINs which do not nat:h

any preceding control phrase and are ignored (as indicated by

overprinting the line number), all context errors are treati

0 with a uniform strategy. When an out-of-context source state-
merit is encountered, the translator generates a "STAPE'E>T(S

\JEEDED" message. t then invents and processes a sequence .f

statements which, if :hey had been included at tnat point in the

0 program, would have placed the original source statement in a

correct context. A message is given for each such statement

C-20

•---

invented. The original source statement is then processed in

the newly created context.

By inventing statements the translator is not trying to

patch up the program so that it will run correctly, it is simply

trying to adjust the local context so that the original source

statement and the statements which follow will be acceptable on

a context basis. As in the case of context errors generated by ..-A

ignoring a syntactically incorrect statement, such an adjustment

of context frequently causes further context errors later on.

This is called propagation of context errors.

One nice feature of the context adjustment strategy is

that context errors cannot propagate past a recognizable

procedure declaration. This is because the "TO" declaration is

in context only at indentation level 0. Thus to place it in

context, the translator must invent enough statements to termi-

nate all open control structures which preceed the "TO". The

programmer who modularizes his program into a collection of

relatively short internal procedures, limits the potential for

propagation of context errors.

C-9.3 Undetected Errors

The Flecs translator is ignorant of most details of

Fortran syntax. Thus most Fortran syntax errors will be

detected by the Fortran compiler not the Flecs translator. In

addition there are two major classes of Flecs errors which will

be caught by the compiler not the translator.

The first class of undetected errors involve misspelled
Flecs keywords. A misspelled keyword will not be recognized by

the translator. The line on which is occurs will be assumed to

be a Fortran statement and will be passed unaltered to the

compiler which will no doubt object to it. For example a common

error is to spell UNTIL with two Ls. Such statements are passed

to the compiler, which then produces an error message. The fact

taiat an intended control phrase was not recognized frequently

causes a later context error since a level of indentation will

not be triggered.

C-21
6_

rh a-, sco0n d claQs s o f nd tek!e errors I ,Vol ve sI

unbalanced parentheses. When scanning a parenthesized

specification, the translator is looking for a matching right

parenthesis. If the matching parenthesis is encountered before

the end of the line the remainder of the line is scanned. If

the remainder is blank or consists of a cecognizable internal

procedure reference, all if well. If neither of the above two

a~ses hold, the remainder of the line is assumed withoit

checking) to be a simple Fortran statement which is passed to

the compiler. Of course, this assumption may be wrong, thus the

statement

"WHEN (X.LT.A(I)+Z)) X = 0"

is broken into Akeyword "WHEN"

0 specification "(X.LT.A(I)+Z) " -

Fortran statement ") X = 0"

Needless to say the compiler will object to ") X = 0"

as a statement.

Programmers on batch oriented systems have less diffi-

culty with undetected errors due to the practice of running the

program through both the translator and the compiler each time

a run is submitted. The compiler errors usually point out any

errors undetected by the translator.

Programmers on timesharing systems tend to have a bit

more difficulty since an undetected error in one line may

trigger a context error in a much later line. Noticing the con-

text error, the programmer does not proceed with compilation and

hence is not warned by the compiler of the genuine cause of the

error. One indication of the true source of the error may be an

indentation failure at the corresponding point in the listing.

C-9.4 Other Errors

The translator detects a variety of other errors such !.

as multiply defined, or undefined procedure references. The

error message are self-explanatory. (Really and truly!)

0 C-22 _

--.t% . . ", " " - .. . " "" i . ' _ . __j -_ _ "-- _

C-10 PROCEDURES FOR USE ON THE PDP-ll/34

C-10.1 Source Preparation

Prepare a Flecs source file with a name of your

choosing and an extension of ".FLX".

C-10.2 Translator Commands

Flecs is installed under the task name "...FLE".

Flecs may be invoked by the following command string:

(Items in brackets ([) are optional. <CR> denotes carriage

return.)

FLE [OUTPUT] [,LIST] = INPUT <CR>

where: [OUTPUT] is the output filename. This file will be

given an extension of .FTN, and may be input directly to the

Fortran compiler:

* [,LIST] is the listing device or listing filename. If a

device is specified it must be a list device such as LP: or TI:.

If a filename is specified it will be given an extension .FLL";

INPUT is the input filename. This should contain the

FLECS source statements and must have an extens.on of ".FLX".

If OUTPUT or LIST is omitted, no file will be created.

If both OUTPUT and LIST are omitted, a list of file with name

RSXFLEX.FLL and the next highest version will be created.

Example: a source file named 'EXAMPLE.FLX' has been

created. In order to translate the Flecs program into a Fortran

program, type the command stream

FLE EXAMPLE,EXAMPLE = EXAMPLE<CR>

A Fortran source file with the name EXAMPLE.FTN and a Flecs

listing file with the name EXAMPLE.FLL will be created.

C-23

<J > i.* *. . .

ATTACHMENT 1

Flecs Summary Shept

IF C S U:IES" (Z) 5 WIIEU (C ,
ELSE S,

TRURU

FALSE *TRUE .S S

CONDITIONAL SELECT (.C(ZL) S. .(,"t S, ..
•(4z) 5St (E;Z) 5z

(Ln) b nCARRY-OUT-ACTION
.. FIN ..FM

TRU TOCTRUET-CIO

FALSEFAS

TRUE TRUE NOTE: PL-ACE A PETL'R.1 STOP, oa

2 2O THE FIRST TO STATEMENIT.
FALSE ALLS EtTSAEMN HA

NOTE: OTHEPWISE CAN BE USED AS

A CATC114LL CONDITIONI OR

EXPRESSION it, CONDTTIO.IAL

FALSE
FA S

AND SELECT STATEMN~TS.

FASELEGEND: 4- = LOGICAL EXPRESSION4
S=STATEMENT(S)
- EXPRESSION

- CO SPECIFICATION

PEPEAT UtITIL L C REPEAT '.:iiLE ()S W~TIL (f- S WHILE(,

F TRUEs-LS. FALS.

L I

7AL WI SFrTL.STAHr

C-24

o6 6 ,RTT 'r.r. E,

-,- - ... ~--- -
I °

°

APPENDIX D

DEFINITION OF PUBLIC VARIABLES

D-1

S..

...*

ASAVE BYTE RESAERVUD FOR S3AVINC THE A REGISICER
ASCBUI: FIVE CHARACr11I1 ASC II UFF ER FItIP 1'VCNr.VT PrD1i lIF'
IJDSAVE B3YTE RFSbERVUD F~OR SAVIN'! THE 14 RFL.CISiLER
CSAVE DYTE RF.S:RVf:D FORe 3IAV IN(, 1111 (: E 1E
CURN I F: 5 13Y1E ARk<AY C ON'IIANENG AIC T I NFPRESF3[NFAT I [il
(EVODON: FLAU, OFFH '.(I A (YC.1: TE-rT ~ r DoNE-
CYCNI3f?: NIUI'1I4rR OF Ti nr- ("IRI:NIT CY(cuj. OF A MUI r ICYCLE TrI: T
(.ycNMR: I'Ol- OF GPLRo',T ONlFL -0- ~~. .i 7 :y: ~
LVM I DV'I D4AI A
DVM2 LVI'12 DA4f A
DCD DL(:AD)E INC!4LME:NILN
DECCINT: DECADE DOWN COU)NTER FOR LOOP ((GENFRO)

D)EkCSW D:DLSWIT(.4~ It)F-R (6 BIF)

DSAVE BYE RESERV: 17i'.y S.OAVIONG'II)IFG9,

LXPAN: DVM2 N FI. C' MiJ l UI) O1~AD-O ~~rD

FAB1Y*Ff-: PORI EA (:OMI'AND PUFFEI
ESA r' rE RECISTE SAV~iEJ DVI:II O

1:5H POrfr F5 BIUf-IR DVMI MIDLEL
FAIJYTE: POUT F6 COMMAND 1IUFI-ML

F~AH P0,10 F A BUrFFE:iR DVI12 MG
FIFBUF: 41000 BYIF. BUFFER- FOR THFU RF MACGNITUIDE DAA
FIFCN1: '-IFIBUF BYTE COLJN'i
FIFIN F:37UF INPUT POIN*fL-1
ri-r-ou'i Fl r7BkuF ou)rpu)r "Oli'-TE
F ORMAT: -(IRMAI' SWITCH STATILI
FROBULF: 12000 BYTE BiUFFER FOR THE RF PHASE DATA

qFRQPTIR: FI(QI3UF POINTLH
FSAVE BYTE RESFRVFn TO SAVE "IHE F NEISTER
CRDON FLA(=l TO0 GUNERAlE GRID. USI-D IJY CYCCHK MODULE
GRIDON: GRID GENERATION & DISPLAY (0O-NO ,IYEsi)
HILDFLO: CONTINUE. CY(:LLE'- 0. 1.) (:YCIJ- -i
HSAVE BYTE RESERVED TO SAVE THIF H RHO]STLP
iNTERO; iNT~mquPr o suvB~icrz. NOUTINF. VIN(101P

* INTERI:
INTERP,
INTER3:
INTER4' 4
I NTER 5:
IN1ER6: 6
INTER7: 76

D- 2

INTCTR: BINARY COUNTFR I-OR SYSTEM STEP PUJLSE-S
INTLN1: BINARY VALUE EQUAL TO IHE NUMBER OF SYSIL-I'

STEP PULSES rOR DELAY I3FTWrJEN CYCLE I ANT. 2
INTLN2: SAME FOR CYCLEP/3
~JIBL START ADDRESS FOR THE I N I RUP I .Ik r-If~' I Fl1
LAST .LAST FORMAT PLOT TED WI I H (,F I LD i (jp.
LOGPTR: LO(, TABLE PO]NILVN
LSAVE DYTE RESERVED rTo SAVE lHL L RECISTIFR
MFE FL-AO I INDICATI -S NFL-. CASSETIL E 1 ON'_I iNF
MIDSTP: MXID PROGR~AM srl[IFLAG (rIPSrUI'1

LTCYC SINGLE- cyci,, T:si3To, MUITI (L rE3T I
MODE MODE SWITCH STA*IkS
MRAMPT: MULTIPLE DELETL RAM 1IALF r'(INrUNH
MROMPT: MULTIPLE DELFTE ROM rAjBiL,. roINT P,,,
MSTACK: TOP OF THE 1 021 BYTE 3Trp(ci
NAC T NUPINEFR OF ACI IVL DECAI,-2
NLOAD NUMBER OF ASC.I I CHARA~srI1PS 10 i (JAD N 11\ F
NPTS NO. OF PnINrs/nEc IN C PRI-NT DIwLer.:
NXSEMI: FLAC-OFFH IF NEXI STEP OF A S1LNI--AUFO0MA7i T:-'T 15 TO Sfl. DO1NE
NXTCYC: FLAG~zOFFH IF MORE CYCL.S r0 DO IN MU)LlICVYCL.
PASSNO: PASS THRU CWPLOT ROUTINE C)-X 1)AIA I:rYDAIA
PDPll FLA0=I INDICAT173 PDPllIS O~ N LINE
PENFLG: PE-7N COMMAND FLAG
PHFLAG: PH-ASE TEST FLAO (PH-A53E TIF r RfQO'I -- I)
PINON PLOT/INITIATE SIWITCH l1fLRhkl'Pl UNADBL (1-ENAll I
PLOTON. PLorlER ON FLAG (ON.-I)
PSAVE PROGRAM COUNIER SAVE REC1s-.s
PSTP PROGRAM STOP FLAG (PCO - J 1111OP 0)
RAP N: MULT ILE DElIITfT RAM I Alit I- -I-AD
RCVRON. RECEIVER STAru FLAG (UF,- 0 .O(N I
REFON :REFERENCE SYNTI*Flr-SIZE~i ON FLAG (N1
RFAMPL. 5 BYTE ARRAY CONTAINING ASCIINI-R$3lATO

01- CURRENT f-fl AMPI.l UDE AND SiGNDi~ ROM lN.
RFPHAS: 5 BY'TE ARRAY CONTAINING ASCII REPRESENSTATION

OF CURRr:N1 RF PHASE AND 51-';N FROM~h DVM.
ROMPTR: MULTIPLE DELrTE ROM TABII HEAD
RSTART: FLAC=OFFH 'IF SYSTEM STEP PULSES NEE~D -10

BL RE-JNITIATED BY SYNCHRONIZF-H CLOCK
SCAL ROM SCALE lABLE r'OINT[FR I-OR L(G5Cl CO!PY
SD1PTR: SDiFRQ BUFFER POINTER
SD2PTR: SD2FRO BUFFER POINTER

*SERON INDICATES SERIAL 10 ON
SIGN POLARITY SIGN IN DVCNVT
SIZBIN: BINARY VALUE OF THE SYSTrEM sTEUP TINE i'I[.RVAL.
SKIPCT: SKIP DOWN COUNTER FOR LOGIAJ3 FREG SKIPS
SKIPSZ: NO. OF LOGTAB FNEQ'S 10 13: SKIPPED)
SMPLS SAMPLES (OVFRlAY-2 IN SCAL B3U7 _J :,)

SRAMPT. SINCLE DELETE RAM TABLE P'INrt:.?
*SROMPT: SINCLE DELFTE :10N TABLE PO INTI:';

SSAVE .STACIV POINTER SAEREG'JS*11.R
STATE .TlE51 STATE
STEPCT: FREQUENCY ST! P DO,.WN COUNTEL-R (p[rs.0))
SYpAS'l_ I - 1Sf, PASS. r. -R PA ,Sl5
TAPF'JIN: CASE1 *f ON 01\1 AG (ON I.
TE!, . MA If TEMPOHAF4Y PUFFERS

* TEn TLEt'F ORARY MO, i'i01L14 CEL.L
Tli'gR4: SETr -AG TO 0.71-1 rO ACT TVATF]N1ER--MLSSAcE

D- 3

71.

I 5 ~ TF 2r -f f - DFL.AY PE4:WEF ri

* :j' AC cr r -C! 'V- 'JH2;N TI-11 r)e.\Trp. K N S
n i r r (I3 :*N r f'- 3 I.Ri ON 1\1 I C ON"h I)

X X (;OJRDTrIAfl. I (ATI ON
IAl x(xj t-; r(jrrr rOSi IION A(.cuNML,'T ;4

~~V NA r?(K I C!R. A Y I N X~ I ir 4 F
is G~::~~:F~f~SE! -C Jkr C;0 1) ?:LCiRMAI I tCQM (*,)

/ Nj r m' .1/ [N; U~~P f rL AC (S-f* D Y INMWRU I I 11111)

D-4

0-

APPENDIX E

SUBMIT FILE FOR LINK/LOCATE WITH CODE IN ROM

E1

m7<

F 1: RELZjE1J,~ &
17PAIUO 0113. F,

F INI W0. 013J,~
F j Zrio 1 W30 U &,

1 .1 HO f1l('I 0P 1 ,
F I ZN'\IC(. LULJ &
:: CKDLVM!.. 0003, &

17 j PINIT. (Ji3,h
Ft: SVIPULF. OB.), &

*'icOP4;rIc;. oi
F: [GEN.R-P C'IJ, ~
111L. DECUAT. 01j.) &
I- I DEL PT. OB,3k R.

.FI: SDFRG. OHO, &
F JI DEL ID. OWWJ &
FI :cWTES7 . 014'., 'k
[7 j:cwrLOT. 013J, &,
F.1: CK111IDS. 03,1,

:FI: L.0D)PLT. Orh) 8(
:FI: SYSTEP. 0133, Se
F Il Dt,'NFOL. 013, &
f- 1 DVCNV*I. 0133, &
FA. XPUISN. OJj, &

.FJ.SDDEC.OBJ, &
FJI: DY tI iNT. OBJ &
F j START 013J, &
r~i -zrfT. OBJ, &

:F1 PARJOS, 013W.) &
F 1. ERM'SC. 0133, &
:F j:Z1I10. 13j, &
Fl: PLUTO. 0133, &'

:F1 *LA3AXS. 013,,
:Fi:YL1.013BJ. &
FI: N'OMEN. 00J,9 X,
Fl. S3TAND. 0133. S(
F]:STNANT.OD,3J, &

1: REFULV. O13J)- &
:F 1: R0 ATE. 13J, &
F]j I NC 1 OJilj. &

F. sr]'H[:N. 01NJ. &
:F]: xiNvrs. oIL', %

0F-i MLADU~ 013B, F,
F Il: SArlPL[: UjiJ, &

J Z fEiO. LtI3j, &~
Fi: ENGIRt 011J, &~
17l DA r J.i 0B.)j,
Fl1: DECADE. 0D~D, &

:F.I-LOGSCL.013J, &

E-2

F I P L CTS. 0134, &
INXIDEC. CJ1)A, &R

F J YLNS, 013J, &

I L-):;.-,-T:

F- I BNAS(; tL1Ao,

F- I MAYH. ohi'),
F 1: F-DLJMP. 011~J, ~
.FJ:FWHAP.0134,
Fl: MOVE. 0134,

F J. FLLJAD. (lB4, ,
Fl: REESTOR. 013J, &
F1: DELAY. DJ3,
: F: FRET 0134, &

FJ SRET. OI34J
- F I RAi'80. OliJ, &.

FJCWA IT 0334, &
Fl.ZTI9SI'. 013 &
F 1: PA r. mw34, &

.F1: SOP.i134,
PUB3LICS(: Fl: Z1 80. RONM),
PUIJLICS(: Fl;SDAWI)3. 019), &~
Fl: TIMER. 013W &
Fl: SDIMIrf. 0134, &
*Fl: SDA"MPL. 0134, &
F pJ DBMDI3W. 013J1, &
.F I SX'MlR13 OJ, &
Fl: MODSE'T. 0334k &~
F 1: CYCT, I M. 013, &

:17 ' CNVINT, 0334, &
SF I: PNLY3LK. 013, &
FJ Fi STA13LK 0134J, &t
F i: MESHDLA. 033, &
FJ : RFFRO. 0)34. &
Fl1: DEL I3LF. 0134, &
F 1l: DVMAGC. 013J, &
Fl.: CYCCHK. 013, &
*Fi: HLDTrsTr. oii\4 &
SJ.: CYC INV. (313, &
Fl1: B INAG(.. 013J), &V.F1 ASCL3 IN. 011Ji. F

* FigBCDASC. 01.1J,&
Ff: BCDI3NY. ORJ4 &

F 1. RANi Ilbe-. OBJ, &
*FO- PLME3O. L13I P

I I CWS (NP.

LOCATE &
.FI:CWMS.LNK~ &
Tfl &

E- 3

?"A OI T ,-'I~ -AUii t& I) rII C3 C D- 0 0

-KP P(NT r~ 'I~M '1'~JfI C CDS C'~() ~ A~'~E-4~ ?

- - - - --~ -~ -. - -~~~~--- - -- ~--~

-i

[-E

I

APPENDIX F

ISUBMIT FILE FOR EMULATION WITH CODE IN ROM

4 I

I

I

r _6 I

6

F-i

9

I CC" 0O
13 A!< F. EX -

"F ' OD II U

I C)OFII U

X F MENi'I 0 0i

Xr. MEi'I I

y [MNi 2 (IX F MEN U!t
X "EM 3 U

I: : MIEN' 4
'lEi'l , I k

I: i'r.-iI 7 .?
, XI"2 MEir t,)'i t U
tl ~XL' I!IEM ,)L'" tP L

L.(J/Lf F 1 i Pi. IJN

LOAD F: . bDArlI Il. f 1i V
.1.0', F -CWMS. BIN

-F-

• .. > L.~~r-

RD-i5i 622 CU MEASUREMENT SYSTEMEMANUAL(U) EG AND 6 &IASIINGTON ANALYTICAL SERVICES
CENTER INC ALBUQUERQU. R NELSON ET AL. 92 APR 82

UNCLSSIFIED EG/G-A35 DNA-6232F NA98i-88-C-9298NL

V..

1.

1JJ.25 11111 1. 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -963 A

-.0

-S.

°.

APPENDIX G

SUBMIT FILE FOR LINK/LOCATE WITH CODE IN RAM

G- 1

LI INI &
F I R E. 2,E"r. 0 B J, &
F I PAR~ TO, 013J, &.
1l: Tii'ICEO0.Q013J,

1:11 NI 1. UB3J.
F I ZT1OO 013J,
F I WHOL)AT U 13J,
Fl: ZNCJC. QBJ, ~
Fl. CKDVMI. 013W 1
:FI: PINI1. QBJ, &
Fl: SWPOLE. (JBJ, &
1'7 F CQNF IG. tOll5 , &-
F]. GEN-fQ. 011J,
r- 1: DECDAT. 01J~,

FtV STEP. 03J,
F:FISDFR*0135), &

*~ 1:. DEL I D. 0J I
ri. cwTFsTr. UB, J. &
Fl1: CWPLuOT 013W '

Fl: CKMIDS. OIL), &
FI: LUDPLT. tBll, &
Fl: SYSTEP. 013W &
FI: DVMiP0u. Lilb. .

F:!: DVCNV'T. oBIu I&
:Fl:XPUSN. OBJ,
Fl: SDDEC. 0113J,5

Fl: SrAR7. 01J &
:FI: ZTINT. CBJ, &
:FI:PARIOS. 01J, &
:Fl: ERMSG.OBJ, &
:Fl:ZTOO13J, &
:F1: PLL1TO. -3J, 8(
Fl:LAI3AXS. OBJ. &

:FI:YLIIL.013J, &
Fl: NMEN. OBd. &

:FI:STAND.OBJ, &
F :1: STNANT.ODBJ, &c
FJ: RFFL. 013J, &
Fl: ROTATE. OBJ, &

:FI: INCI', UB3W &
.F J:MVCTR.0DBJ,&
Fl: STRTEN. OlBd,

* :Fl:XUNITS.03 OBJ
*Fl: XLALICL. OBJ, &'
FI:SAMPLE. OBJ,
:F:z'rE10. 013j, &
F 1l: GEN'7,rTi fl1j, &

:DAEAI . &
FiDECADE Dd

SFl: LOGSCL- OI3J, &

G- 2

:FI:PLOTS.OBJ, & -

.Fl:NXIEc.c.OBJ,
*FJ; YLNS. 0JJ &
.FI:RSTR.ODJ, &

A JC K OB J, &
f J UNPACK 7n1

R:j SUB3 1 014.1
F t DcD I..C'
Fl B NAS(UP1'.
F) MA IH. 01 tJ,
Fl .FDUMP 014,,
*I FW,41AP 01', , S,

.Fl;MOvr-. U13J, &

.Fl:DE.AYI. OfWJ. &
.Fi:FLOAD.OBJ, & .--

: F1: RESTUR. 013j,

FJ FRET. OBJ, R

* P3 SRET. 0233,
F I: RAMO. OBJ)., --

:1J CWAIT. OBJ, &

.FI: PAT. 0133k &
Fl I:srop. 0133, &

F'UILICS(: Fl Z-130. RUM),&
PUI3L.ICS(: Fl: SDAMNJ. HUM), &

P I: T IMEIR. 014 s, &
* P1 SD! NIT. 083. &
.Fl:SDAPrL OBJ, &
F 1: DBMDBW. 014J, &
F 1: SDXPITI. QflD,
r- I MODSE- F. O1j,
171l: cyci IN. OJd,
FI: C NV INT. CAW, &f
F F: PNLBLK. 0133, &
Fl. STABLA. 0133J, &
*Fl: MSR3L. 0133, &
.FJ: RFFRQ.0133, &!
r-1: DELDBLK. 013, &
P 1: DVMASC.OQBJ, &
P1: CYCCHK. 013,1, &
Fl: HLDTS7. 0133., &
F7i CYC INV. 013, &.
F : U 'I42C 0. U,

"5C-,C13IN 03,, &
*Fl: 3CL)A6C. 03'.J, &

*Fl: BCBN(O3J, &

Ft. RAO'' 1c. 030.
FO:PLM3O .. " I

TO &
F F1 C WPS. LNK

LOCATE &
* .F1:CWM.LN4 &

TO &

* G- 3

!.1,', I

G- 4

. °

-. - - -~ .7--..

.t::.X ~ *-:,- ...- A

APPENDIX H

SUBMIT FILE FOR EMULATION WITH CODE IN RAM

H-1

p.

'I:'

* ... I.

w

I

I

I

K- 2

I

...

APPENDIX I

VALIDATION OF THE FORWARD AND INVERSE

FOURIER TRANSFORMS USED BY THE CW MEASUREMENT SYSTEM

The purpose of this collection of plots is to demonstrate

the correctness of the forward and inverse Fourier transforms

used in this software package. Figure I-1 shows a time plot of

the equation

f (t) = 1.0E5 (e - 2 E 6 t - 4 E 6 t

and the frequency curve generated when this function is

* processed by the off line forward Fourier transform module.

Integrated directly by hand f(t) has a Fourier transform

F(w) with a magnitude equal to:

5E10 (1/(4E24 + 5E12* 2 +Ir4 4/2 .

and a phase equal to:

arctan ((-3E6**7r */(2E12 -7

F(w) is plotted in Figure 1-2. Figure 1-3 shows the hand

integrated and the machine calculated transforms plotted on the

same graph. They match so completely the two lines appear as

one, demonstrating that the off line forward transform produces

the correct results.

Figure 1-4 shows the original curve f(t) and the results of

processing f(t) through the forward and then the inverse off

line transforms plotted on the same graph. Again the lines

overlay almost exactly, verifying the inverse off line --

I-i

transform. Figure 1-5 shows the same test performed on a damped

sine wave.

Figure 1-6 is a typical temps wave form. Figure I--7 is the

SaLe Uata after .rocessing by the off line forward and inverse

transforms. Figure 1-8 is an overlay plot of the original and

transformed threatwave.

Figure 1-9 shows frequency data collected from an on line

test using a 15 mega hertz filter and the resulting time plot

when a pure Butterworth threat was applied to the data and then

the on line inverse Fourier transform performed. For Figure

1-10 the stored frequency data from this test was multiplied by

* the Butterworth filter and then processed by the off line

inverse transform. Figure I-l shows the results of the on line

and off line inverse transforms plotted on the same graph.

Again the two curves are identical, demonstrating that the on

line and off line inverse transforms produce the same results.

The plots in this package show that the off line forward

Fourier transform is accurate, that transforming a function

."forward and then back reproduces the original function, and that

the on line and off line functions produce the same results.

This verifies the correctness of all three routines.

1-20

.

6.2 526.AN-2MINIMUM FREOUNiCT I . 0266E. SISMAL eNSUE Zs
TEST SEG&JENCE 0 1 234 MIMI"U MAN11lE -g .561 72E.0I 315 UAJ) A00008CD) -1
TEST LOCATION MINIMUM PH4ASE -1. 7401 SE.02 SIB 09EAY AEDCNS) -1
TEST POINT MAXIMUM FREJVOCY S. 621702.02 REF PRE ID
TEST 7'YP(TEST MAXIMUM MAGsITLW -2. 1 I 6 I.0 REP GAIN ~AoDCCDO - I
TEST ODESCRIPTXON TEST WAVE MAXIMUM PHASE -2.2431 7C-O1 REF DELAY AODEDCNS) -1

*-TEST 046114cm OPEATOR PARSEVAL TIM VALUE 4.1S402E*62 D4UT WAVeFORM ID
TEST ILDOuT PARUEVAI. RE VAILUE 4. ft I 011(. INPUT WAVEFORM SCALE S.0266024t

MWT ANAL DINP MW -1 PARSNVAL. RATIO I .802ee -49 ,ELTL'SZdS
LOS in TINE DOMAIN D&A-T TAPE FZ.E ID r

PLOT POMAT T. J. CAL PZLE 10 ft.r. CAL Mt. ID
PHASE UI~iA DELAY
DPUT r=. *I DCVI 7$.TCA DOWU F=. ft FUNCT313 5/ODATE rT*2g-~Ai-.

TUST CORIUCTS TPANSFOM Olr OOflW 0"WEN~TZA
Pr.CS PLatTED OCIPI 70. "tA Olt 170. TCA

law I__SO___I

-70

56

0 -S.

= 02

q-6.020

$.$.161 .S 2.6..S .81S 6.1 ..6 4.

TFM#ZCO3aW

F i u r 1 -1 1 -32

I * 56.211 IJN-62 141NZMUM FREGUENCY I 8aaggell SIGNAL PROWE zTEST 31EOL it 9 MINIMUM MAGNITUDE -4.5172E.1il 316 GAIN ADODCDII)
'EST LOCA N HZNM1UM PHASE -I. 74435.2 3IB DELAY ADDEDCN$)TEST P43IN MAXI14UM FREQUENCY G.1217K*96 REF PROSE =D
TEST TYPE MAXIMUM MAGNITUJDE -3.204t2E.0t REF GAIN ADOED(DO)TEST DISC TION MAXIMUM PHASE -2.elai0-81 REF DELAY AOQEDCNS)
TEST &W0 .11 PA83EVAL TIME VALUE I .S79M*4M INPUT IdAVEFORN ZTEST LEM PARSEVAL FREQ VALUE I. 40201.61 INU WAVEFOWN SALE
N

r
T ANAL P REF PARSEVAL RATIO $. aa -l MULTI/31L[E

Los ID TIME D4AIN DELTA-T TAP9 F= D.PLOT P T.F. CAL ILE ID R. F. CAL PILE IDPtA31 Ud, ' DELAY C C EINPU T FIL .1 I F IE 02 FUN C N COO VDAT-

TEST C H HAND CALCULATED TRANSFORM
FILES PLO C MANDC . rCA

to

-42

-52

-72

S-02

42

FREQUItNCY-4Z
lee Ise I t il

:: : -S-

Figure 1-2

1-4
:0

10. 22. 5026-dUN-42 MINIMM FREQUENCY I .866666C03 SIGNA. PROBE ZO
TEST SEQUENCE 1 234 MINIMUM MAGNITUDE -f.50172E.,I 518 GAIN ADOEDCOD) -1
TEST LOCATION MINIMUM PHAllt -1.74613C.42 3XG DELAY ADODEDN3) -1
TEST POINT MAXIMUM FREQUENCY 902tM*06~ REF PROBE ID
TEST TYPE TEST MAXIMUM MAGNILvvE -3. 18191E+01 REF GA.IN ADDED083 -1
TEST DESCRIPTION TEST WAVE MAXIMUM PHASE -2.9431 7E-81 REF DELAY ADDED(NS) -1
TEST ENGINEER OPERATOR PARSEVAL TIM VALUE 4.1I54=2E+42 DOWU WAVEFORM ID
TEST ELEMENT PARSEVAL FREO VALUE 4.1661 tC*= MOUT WAVEFORM SCALE *.00sm-4t
NET ANAL OISP REF -1 PARSEVAL RATIO -i. aseM-es ,4Ua.ThsIN1nE
LOG ID TIME DOMAIN 00..TA-T TAPE FILE XD

* -PLOT FORMAT T.F. CAL F=ID R.fr. CAL FIE ID
* PHASE UNWdRAP DELAY

INPUT FILE Of DEXP uS. TCA INPUJT FILE #2 FUNCTION OGO/DATE FTR2*-JUM-412

TEST COMET TRANSFOR OF DOUGLD EXPONENTIAL
FILES PLOTTED DEXP 179. FCA I4ANDC8GG. FCA

I6 adto leg 1k

-34

-so

-76

z

018
-118

8.}4t 8. 14

-1-

Figure 1-3

1-5

l I I I I "

ease

xx+ I

la

<1

0

(D

U!
O)

II

,Na.

1-6I

* *.j..'.1

* .-- o

Ii)

.4. . *-.4

I- I .

1--6

. . . *. . .

* I. . .I- .

aa

-c I I II

4.

seus

4OSS4

0-1-7

I A 9

ha Z I-ease
* V+

laN

see-

oz czaui
ow. C&.IMS a

"Obi owo aC
bil!m dI~ 8amoa zz# a

Z4 w Z44SJ6 Zz

I-hl
0 11 l WL 01

asIMaW

m z* ae a
-A. A z aI1

*206WNalp

ala

INS

wM SiIm00

ZZ)CX £UU8

ma -wm N

wa WOW w w

WHO aCW- a, I '

w* U.l6~

0. mCzogC. -J 1

*wf 0NdC'. H

24 gool-..aso2

C0

xwl jt 0

o e. I0 H b.w t
MXc I-~ lI.~h.h

-4 4

4440444

wl1-

MM 44 j4M*z h

wz 1-0 (L (4

G 0 IS 0 w

*b IT -

H 0

I1-

TT ass.

P ~ w0 14 A

cz SzOO I.-
awdM ow4

0aw C wo

a-hU.
3w

172

MM 44 Aa4

S1

I-1*o e

nI

Wili

3.26.l1 I-.JUM-02 HINZ"U VREVUEMC' I .a3368E*04 $2111*. PROWE ID ITWR
1WV SE0CE 0 till nxIwMup MAIOCr7 .E -'9 s9m~: I AIN .ADDED(031) -46iTs' LOCATION ALAMO MINIMM PHAnE -1I. 7311E*82 519 DELAY DOoEo(Ha a
TEST POINI CO P IMS iuxImum VREQJC4cy 0. 7728GE447 lite PROWE ID 7EST2
iTM' TYPE TEST MAXI"UM ~A4I1WE 2. 4363E.41 I EP GAIN ADDED011U) -tg
TEST DESCRIPTION SMARTTEST MA3XMUM PHASEC 1. 7636E.*I2 REF DELAY ADDEDCHS) 0
TES OiZ?4EER DAVEY oCA= PARSECEAA TrIM VAE~i xauIr WA O ID 0'rrcavm
TUW MENTI PATIICE PARSIEVAL FRED VALUE INUTf IdAVZFCM SCALE I
MET ANAL. DIVP nRE -46 PARSIVAL RAMI 3UT'I4. IMILE
Lao ID S'AMATE I.: TIME DG9A.Z DELTA-'? TAPE MIE IDalI' 6tI Ilg
PLOT1 FORM? TA 1. r. CAL MIE ID it.S r.. eAL mIe ID also
PMASE UINIdAP DELAY
INuPU .= INPUT MEc #2 PFWCTUN CCOCATE OHLl I -JUP-M

MTS C0199ENS TMS
FILes KLOM 7111 TIUII .CNA 111113.TCA

-4

1 -14 L

~ 24

-44

-64 __________ :. 3.

IS IS " S

soi

eSr*&
111AX 3.M4W0

___________ ___________I _______

3.521 C4

M4. 3.* 411.8

2.E -2 *21413

.PII .837241-1

-2.61.83

2..38.2 S." 6.1111 6.43 31.1131 3.63 .73 6.33 11.411111

Figure 1-9 I W0 e

l616.17 16AUSIHIWM FRECUJSC I 0666.4 SZWNAL P1631 I TamR
mEw IISJSCeS fil 'WM MAUNZMW -2. ISTBuliOS US5 A*24 ADOEDCM1 -)

TeST LOCATION ALAND NIDwU P4ASE - i.775201.4 S16 DI.AY *00006NO) 0
TV"T po.DET eft C TEsT JiAXZM CCUFEW4Y 6. 772661.67 RIF PMM ID TEST2
TEM TWC TES'I HAXI"U MAS4ITW.E 2.4211 K1.61 REPf 6*2 ADOISCOS) -60
TES DESmWT"I uwRTEST MAXIMU PHASEC 1. 79926E. -Of D".Y ADOEDCNS) 6
TES 01112111 DAVCV COOCE PAISEAL 7211 VALUE 2mU? I4Ava'OH zD sTTWenh
TwD 9.UIIT PATZO11Z PANSEVAL FM1 VALLUE 2WWL WAVIFU SCALE I .
METANA MW IN bIP W 4611 PAISEAL RAMI KL1L.Lda szow"
Los ID SAMATC 1.1 72M 064*24 DCL1A-T TAPC P2= ID aOIUST I IlmS
PLO? PWMT IPA TVr. CAL r=20 aID a.N OF. CAL F=L ID mIom
PHA W Lb~.AY
264*? ON= of T1l II 4111.04* 2WU F=. 46 @UUVUS0.ThA PI.IC3= mCE/ATE M24-JL04-

TOWT WUDET8 TMS DATE 0 IUVVUMOMT
FILES PLOTTED TIIUT17U.PCA 7IIWVI7U.YCA

24 1 65 4

-35

*1~ -123'

-.40

* -m111m*111

Ill 2 11122C411

4.4*01

2.g f

Z.1 .1 %.% L. -%* 6S.. A

I- . 0 L
221- q

0% fzj#a

a i C4?% IKk

-A WG -j a

09 61-9

IO a sag.

0-S -0

ME MA
-1-1 414

xx 22ffi,
22 11 149 4 IR

j~h. -

s $ 1-13

AZA*

DISTRIBUTION LIST
DEPARTMENT OF DEFENSE DEPARTMEiNT OF DEFENSE COETRACTORS (Continued)

Defense Nuclear Agency Booz-Allen & Hamilton, Inc
ATTN: NATA ATTN: D. Ourgin
ATTN: RAEE
ATTN: RAAE EG&G Wash Analytical Svcs Ctr, Inc

4 cys ATTN: STTI/CA ATTN: A. Bonham
2 cys ATTN: J. Bridges

Defense Tech Info Center 2 cys ATTN: J. Burns, IV
12 cys ATTN: DO 2 cys ATTN: G. Gagliano

2 cys ATTN: R. Reinman
Field Command, Defense Nuclear Agency 2 cys ATTN: R. Nelson

AT'N: FCTT, W. Summa 2 cys ATTN: P. Lindsey
ATTN: FCTXE
ATTN: FCPR Georgia Institute of Technology

o ATTN: Res & Sec Coord for H. Denny
National Communications System "

ATTN: NCS-TS GTE Communications Products Corp
ATTN: R. Stefnhoff

Harry Diamond Laboratories
ATTN: Chief 21500 Horizons Technology, Inc
ATTN: DRDEL-CT ATTN: R. Lewis
ATTN: 00100 Commander/Tech Oir/Div Dir
ATTN: DELHD-NW, J. Bombardt, 20000 IRT Corp
ATTN: Chief Div 10000 ATTN: R. Stewart
ATTN: Chief Div 40000 ATTN: B. Williams
ATTN: Chief Div 50000
ATTN: DELHO-TA-L JAYCOR
ATFN: Chief Div 20000 ATTN: R. Poll
ATTN: Chief Div 30000 ATTN: R. Schaefer

2 cys ATTN: Chief 21000
2 cys ATTN: Chief 22000 Kaman T empo
3 cys ATTN: Chief 20240 ATTN: DASIAC

DEPARTMENT OF THE ARMY Kaman Tempo
ATTN: DASIAC , -

US Army Nuclear & Chemical Agency

ATTN: Library Mission Research Corp
ATTN: W. Ware

DEPARTMENT OF THE NAVY ATTN: J. Lubell

Naval Ocean Systems Center Pacific-Sierra Research Corp
ATTN: Code 4471 ATTN: H. Brode, Chairman SAGE

Naval Shore Elect & Engrg Actvy, Pacific R&D Associates
ATTN: D. Koide ATTN: P. Haas

ATTN: W. Karzas
Naval Surface Weapons Center ATTN: W. Graham

ATTN: Code F32
ATTN: Code F30 R&D Associates

ATTN: Library
DEPARTMENT OF THE AIR FORCE

Rockwell International Corp
Air Force Weapons Laboratory ATTN: G. Morgan

ATTN: SUL
DEPARTMEN OScience & Engrg Associates, Inc
DEPARTMENT OF DEFENSE CONTRACTORS ATTN: V. Jones

American Telephone S Telegraph Co SRI International
ATTN: W. Edwards ATTN: A. Whitson

ATTN: E. Vance

BOM Corp A .

ATTN: W. Zweeney Systems Research & Applications Corp
ATTN: L. Jacobs ATTN: S. Greenstein

Boeing Co TRW Electronics & Defense Sector
ATTN: R. Scheppe. MS 9F-O1 ATTN: J. Brossier

TRW, Inc TRW Electronics & Defense Sector
ATTN: R. Hendrickson ATTN: Librarian

*l Dst-1

... ...- . ,

...

4 4 , . ,4

FILMED

4-85

* DTIC

FILMED

4-85

* DTIC

