AD-A151 622 CH MEASUREMENT SYSTEM SOFTHARE SYSTEM MAINTENANCE
MANUALCU) EG AND G WASHINGTON ANALYTICAL SERVICES
CENTER INC ALBURQUERQU.. R NELSON ET AL. 82 APR 82

UNCLASSIFIED EG/G-AG-1435 DNAR-6232F DNABB1-88-C-8296

x
-

TYTreTY

.

ey
4 ’ ." I'
e Tats

_.‘,

"
“

s £
=tk

EEE
IS

rre
r
Fe

o

22 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A

AD-A151 622

OTIC FILE COPY

DNA 6232F

CW MEASUREMENT SYSTEM

Software System Maintenance Manual

EG&G Washington Analytical Services Center, Inc.
2450 Alamo Avenue SE
Albuquerque, New Mexico 87106

2 April 1982

,....._-,
A

Final Report for Period 27 May 1980 —2 April1982

CONTRACT No. DNA 001-80-C-0290

' e,
'ri.‘ PP AL A

LI §

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

AN RE RS N

1,

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B362080462 G52AAXEX40502 H2590D.

H

v 'v'l
FO A S e)

g, -

DTIC

i . FI_ECTE ii‘:
Director @ g5 . %
DEFENSE NUCLEAR AGENCY 3 MAR2 2 1935 =
Washington, DC 20305 W L

(7 B -]
:":]
]

g5 O 06 007

N P T W ey SO
R) . EAE

Destroy this report when it is no longer
needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY,
ATTN: STTI, WASHINGTON, D.C. 20305, IF
YOUR ADDRESS IS INCORRECT, IF YOU WISH TO
BE DELETED FROM THE DISTRIBUTION LIST, OR
IF THE ADDRESSEE IS NO LONGER EMPLOYED BY
YOUR ORGANIZATION.

@ W N L A P =i ot i G i i St Sk Tt Tl St - ok ‘el "4 ods ‘B o S0 A4 Auy

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER

DNA 6232F

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

D.ALT s ke 7 2~

4. TITLE (and Subtitle)

CW MEASUREMENT SYSTEM
Software System Maintenance Manual

S. TYPE OF REPORT & PERIOD COVERED

Final Report for Period
27 May 8Q0—2 Apr 82

6. PERFORMING ORG. REPORT NUMBER

AG-1435

7. AUTHOR(s)
Rick Nelson
Pat Lindsey

8. CONTRACT OR GRANT NUMBER(s)

DNA 001-80-C-0290

9. PERFORMING ORGANIZATION NAME AND ADDRESS

EG3G Washington Analytical Services Center, Inc.
2450 Alamo Avenue, SE

Albuquerque, New Mexico 87106

10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

Task G52AAXEX-40502

1. CONTROLLING OFFICE NAME AND ADDRESS
Director

12. REPORT DATE

2 Aprii 1982

Defense Nuclear Agency 13. NUMBER OF PAGES

Washington, DC 20305 214
14. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Oltice) 15. SECUR!'TY CLASS (of this report)
UNCLASSIFIED
1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE
N/A since UNCLASSIFIED

16. ODISTRIBUTION STATEMENT (of this Report)

Approved for public releace; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if difterent from Report)

18. SUPPLEMENTARY NOTES

This work was sponsored by the Defense Nuclear Agency
under RDT&E RMSS Code B362080462 G52AAXEX40502 H2590D.

19. KEY WORDS (Continue on reverse side i{ necessary and identity by block number)

PLP-11 Flecs FORTRAN Pseudo-Device
Software PCU Message

Firmware Cw GPIB

Structured Programming Data Structure IEEE 488 Bus

EPROM Global Flag Logical Device

VST UL AP SN

20 ABSTRACT rContinue on reverse side {f necessary and identify by block number)

Manual for use by system engineers for maintenance of CWMS Upgrade software
system, Covers design details of PUP-11 software, and INTEL 8080 PCU software,
including system data structures, communication protocol, software module

descriptions, and description of coding practices and languages used to generatd
the software.

DD . :2:"73 1473 EOITION OF ' NOV 63 1S OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE {-'-hm Data Entered)

L T e el .
. - T, e, . . PN B I IR S
PO S S ST L UGS PSP SRS SRS PR W B

........

A e R i M SR AR Ada 250 2 e S "M MR A EAL-A B Bavha A ma B

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

AR e vl e am

Lo e i

e
.

S

e A

3

.

""
.

¢

A 8 - Se A a8

v.e v o 2w

E

v ees

0

g,

-

e

AT I T T . SUN _ VW, VN N W_ & W e

-

CONVERSION FACTORS FOR U.S. CUSTOMARY
TO METRIC (SI) UNITS OF MEASUREMENT
To Convert From To Multiply By
angstrom meters {(m) 1.000 000 X € -10

1tmosphere tnormal)

bar

harn

3ritish thermal unit (thermochemical
.11 thermochem:cal® cm:S
:alorie 'thermochem:ical)§
calorie [thermochemical)/g$
curted

Jegree Celsiusg

jegree -angle)

Je¢ree Fahrenhe:it

electron volth

ergd

erg, second

foot

foot -round-force

galion U.S. liquid)

inch

rerk

soule/kilogram {J/kg) (radiation
dose absorbed)

ki1lotonsd

kip (1000 1bf)

ln::umch'1 tksi)

htap

~1cron

=1l

=m1le '1nternational)

ounce

nsound- force f1bf avoirdupois)
oound-force inch

pound-force inch
pound-force/foot2
aound-forcexxnch: psit
asound-mass [1bm avoirdupois)
aound-"nss-foor: moment of 1nertia)
J0und-Mass foot;

rad radiation Jose absorbed)§
roentzens

share

siue

earr mm o,) O

kilo pascal (hPa)

kilo pascal (kPa)
b -

meter” (m”)

joule (J)

bl h
mega joule/m” MJ./m7)

joule (J)

joule per kilogram (J/kg)*
giga becquerel (GBq)*

degree kelvin (K)
radian (rad)
degree kelvin (K)
jouler ()

joule (J)

watt (W)

meter (m)

Joule (J)

meter; (m3)

meter (m)

joule (J)

grav (Gy)*
terajoules
newton (N}
kilo pascal (kPa}

b k)
newton-second/m” (N-s/m7)

meter (m)

meter (m)

meter (m)

kilogram (kg)
newton (N)
newton-meter (Nem}
newton/meter (N/m)
kilo pascal (kPa)
kilo pascal (kPa)
kilogram (kg)

2 2
kilogram-meter® (kgem™®
kxlogram-meter5 (kg/m’)

gray (Gy)*

coulomb/kilogram C./hg)

second rs)
kilogram (kg}
kilo pascal (kPa)

—

[

-

<

"

e - A "SR

s

013 25 X E &2

.000 N00 X E «2
.000 000 X E -28
.054 350 X E +3
.183 200 X E -2
.18% 000

.184 000 C E +3
.T00 000 X E o1

.602 19 X £ -19
.000 000 X E -7
.000 000 X E -~
.048 000 Y E -1

.355 818

.785 412 X E -3
.540 000 C E -2
.000 000 X E 9
.000 000

. 183

L3448 222 X E 3
.894 757 X E 3
.000 000 X E o2
.000 000 X E -6
.540 000 X E -3
.609 334 X E o3
.8334 952 X E -2
.148 222

.788 026 X E -2

.894 57

L5353 924 X E -1
L2140 CE -2
601 %36 Y E «f
.000 200 C E -2
.379 Te0 Y E -4
SN0 W) X E -8
159 390 X E «l

.333 22 ¢ E -1

s :’c . 273.15
~45 329 X E -2
= (:°F .+ 459.67),1.3

129 848 X E -1
751 68 X E <2

By . oo e
Distritution/

Avaliability Codes

‘Avail and/or
Dist Special

Al

N Section
s

. 1

- 2

G

<

~

3

TABLE OF CONTENTS

CONVERSION FACTORS FOR U.S. CUSTOMARY TO

METRIC (SI) UNITS OF MEASUREMENT....ccccc0c0. 1
SYSTEM OvERvIBw.'............................ 7
DATA COLLECTION MODULES....cccecevecococosocs 11

2-1 INPUT TASK ('INPUT') cecesvescsccncaccns 11
2-2 CORRECTIONS AND BUFFERING TASK

("CORECT') eveverssssecassasescssssncasne 12
2-3 CRT DISPLAY TASK ('CRT') ceesscsvcsocsse 19
2-4 INVERS. TASK ("INVERS') ceeeeeeccscccnes 24
2-5 HARD COPY PLOTTING TASKS ('NHCPLT' AND

("NPSPLR') vcvesesescavscsscacacsncnanes 32
2-6 TAPE OUTPUT TASKS ('STRTTP' AND

"TPWRTR') ceeeseacscsnsnccososcsassososs 33
2-7 DISK SAVE TASK ('ANLSAV') .cieeeeoconacs 34
2-8 SET UP THE DATA LINKS TASK ('ODL')..... 34
2-9 MISSION FILENAME TASK ('MISNAM') 34
2-10 PROM PROGRAMMING TASKS ('DEL AND AMPL') 35
2-11 ANALYTIC PROBE CALIBRATION TASK

("APROBE') cvveececcsesosnsnconsesasasss 36

2-11.1 Background Discussion...c.cee.. 35

2-11.2 OperatioN.eceeseeccssscsccccncsae 37
2-12 INPUT WAVEFORM AND BUTTERWORTH FILTER

TASK ("THRTWV') tieeeeesesnsscsoscccsnss 38
INTERACTIVE ANALYST PACKAGE..::.eeeccocscncsse 40
3-1 INTRODUCTION. cevcecesoconsoscsnscsoscss 40
3-2 COMMAND STRING PROCESSOR.:scscoccseacoss 44
3-3 ADD, MUL, DIV AND SUB.v:vecocsssccncscs 45

3-4 ADD HEADER PROCESS (AHD) ceceveacscoscns 46

3-5 ANL..seeoesetaaccassssssscssccsnsoscccnccs 47

3-6 CTPueeeoossssstscsosnesscscsonssssssossonanaa 47

3-7 CVT e veresecacsasoscsscscosccssscacncsosnase 50

3-8 DEDcceceverccononconnnnnnns e 52

3-9 FTR:eecesececnotsersorsetsenscsscssssssnses 55
2

TABLE OF CONTENTS (CONTINUED)

Section Page
3=10 ITRuuveeccoosssccacoonssscscansssasccesns 55 -
3-11 LHDuuceeeoseosococsocccscancanascncsnses 96 ?”
3-12 LON AND LOFeuveeececoeoevnscanseacannans 56 B

3-13 MIS..iiecoesvsoecscscssocscsacsasscsseonsosnse 57
3=14 TPCuuececcccecscsososcsscsscsssassssssscs 58
4 SYSTEM DATA STRUCTURES AND GLOBAL VARIABLES.. 59
4-1 INTRODUCTION .cceocoecsccss cesssssesesc e 59
4-2 FILE STRUCTURES. .cccoceccccssccccccascscs 59
4-2,1 Operating System ConstructsS..... 59
4-2.1.1 UPD's and UIC'S..cceuee 59
4-2.1.2 FilenamesS...c.ceecceaces 62
4-2.1.3 Logical UnitSeeeeecaces 63
4-2.1.4 Pseudo- and Logical~-

DeViCeS,.eeeeeaccosccssse 64

4-2.2 Disk and Disk .File Organization, 65
4-2.3 Locally Defined Disk File Struc-

LUreS.cecececscccscsccsccncsccsss 66

4-2.3.1 MENU FileS....eeeeeene. 66

4-2.3.2 Data FileS.cceiececaccan 71

4-2.3.3 Calibration Files...... 76

4-2.3.4 Threat Waveform Files.. 78

4-3 MESSAGE STRUCTURES. :cccceccccovnsscccacs 78
4-3.1 Panel Data Block (PDB) Struc-

X
;
—d
«
-
S
B
.’ .‘

tures-o-.on....oo.oooo.c.oa...oo 79

T .

PR . .

,‘,-_-.'-,-1 ..
F AR A) Al

Fadare

4-3,2 Data BloCk StrucCtureS...ecsceceee 80

4-3.3 Error Status Block (ESB) Struc- . f
tures.............ll............ 85 "1
4-4 GLOBAL FLAGS..veeseecenessnsancesnaneas 86 L

4-5 OTHER SOFTWARE SYSTEM STRUCTURES.v.eee.. 38
4-5.1 Output Cassette File Structures. 88

4-5.2 Frequency Table Entries...seseces 90
4-6 l-DISK OPERATION.ooc--oconoonooo-ooo-o- 91
4-7 TERMINAL PORT ASSIGNMENTS.ceecococscans 92

=

%

. TABLE OF CONTENTS (CONTINUED) 755

35 Section Page 1?5

! @ 5 OPERATING SYSTEM SUPPORT PROGRAMS...eeeeeeeee 93 :j;

= S—1 GENERAL.eeeeeonoonesncsoasenceannacesse 93 fi

5=2 RSX=11Mueuueeononoeoonsesnoeaosocasnnnes 93)

, 53 THE EDITOR (EDT) eueevueevnennnonnannnns 94 -
. 5-4 FORTRAN IV PLUS (FAP) evvueveeeeveaeneans 94
[S=5 TASK BUILDER (TKB) ¢vvvevvoenconnannns .. 94
- S-5 PERIPHERAL INTERCHANGE PROGRAM (PIP)... 95
. 5-7 MONITOR CONSOLE ROUTINE (MCR) .eeveeewo. 95
7 5-8 FILE DUMP UTILITY PROGRAM (DMP)........ 95

5-9 THE DISK INTEGRITY CHECKING UTILITY
=7) 95
5-10 DISK SAVE AND COMPRESS UTILITY (DSC)... 95 =
® 6 SOFTWARE DEVELOPMENT.....cccececsncesscsoccoe 96 —d
6-1 SYSTEM PROGRAM DESIGN LANGUAGE (PDL)... 96 -Ji
6-2 PDL CONSTRUCTS .. ceeeececcccssosscncsasns 99

6-2.1 IF-THEN-ELSE Statement (See L}A
- ' FigUIe 6-1)ceuueueeneeenoaZoneenee 99 -
&_ 6-2.2 FOR Statement (See Figure 6-2).. 100
- 6-2.3 REPEAT Statement (See Figure

6=3) coetrnecnacssessensannsenses 101

6-2.4 WHILE Statement (See Figure 6-4) 102

o 6-2.5 CASE Statement (See Figure 6-5). 103
= 6-2.6 PROCEDURE Statement (See Figure

h 6=6) ceecnosecsncncessessanassses 104

6-2.7 PROGRAM Statement (See Figure

6=T7) ceeeeeccosessccsssosessasesss 105

6-3 PDL UTILITY PROGRAMS....ccceccoeceseces. 106 :

6-3.1 IPDL - Ident PDLS....eeeseeseess 109 -

. 6-4 CONVERTING PDLs to FLECS STATEMENTS.... 109
,f 6-4.1 IF-THEN-ELSE.:uveceeecensacansaes 112
: 6-4.2 REPEAT-UNTIL.::ccesooscossossoes 112
6-4.3 WHILE-DO..evevecsosansnssnsossass 113
, 6~4.4 FORuieeussssoacassscossonosseses 113
L @ , 6=4.5 CASE..eeeeeoonsscessnnsssasasens 113
4
°

SRR A i =l i i S Sl "Bl SR “R o A Y

R b ARl L Gt Al and Sl s Sl SdL Ao i e i Aadh headt 2 bl et Sl - i S AT Al AF o~ Ao Jaeds e

TABLE OF CONTENTS (CONTINUED)

Section Page

6-4.6 PROCEDURES..t¢eccsscsccccsssccsass 114

6-4.6.1 Procedure-nameS........ 114

6-4.6.2 Procedure Declaration.. 115

7 CONTINUOUS WAVE MEASUREMENT SYSTEM..veeeevees 117

7-1 INTRODUCTION.teeecoescasoscasassosnasasss 117

7=-2 MAJOR FUNCTIONS..eceseccoscoscansse vese e 117

7-3 PROGRAM ARCHITECTURE....e¢cceceeveceeceess 118

7-4 OPERATING MODES..eeveacsoccscaassasaoes 118

7=-4.1 Manual Mode....eeeevssscecccsaccs 118

7-4.2 Semi-Automatic Operation........ 119

7-4.3 Automatic OperatioN...eeescesees 121

7-5 SINGLE CYCLE/MULTI-CYCLE TESTS.:eeeesss 123

7-5.1 Single Cycle TeSt..sceeeesosases 123

7-5.2 Multi~Cycle TeSt.eesesseesssesss 123

7-6 SYSTEM CONFIGURATIONS..eececeesccseecess 124

7-6.1 Primary Configurations.......... 124

7-6.2 Secondary Configurations........ 125

7-6.3 Tertiary Configuation......ee... 125

8 DESCRIPTION OF MAJOR ROUTINES..ecceeaceacesss 126

8-1 INITIALIZATION . ccocesccooconcssosascsas 126

8-1.1 Reset OperatioNecccececsssssseces 12€

8-2 TEST CONFIGURATION...cececsoccennsessas 127

8-2.1 PINIT OperatioN.eecececscecsnsss 127

8-3 TEST CONTROL. . cvsocccescsccosnsaccscsss 128

8-3.1 CWTEST Operation.scceceeaceeceess 128

8-4 DATA ACQUISITION AND TRANSMISSION...... 129

8-4.1 SYSTEP OperatioN..eececececsaases 129

8-5 GPIB INSTRUMENTS . cessccesacscssccosnsnsse 130

8-5.1 PCU/GPIB Electrical Interface... 130

8-5.2 PCU-GPIB Command Interface...... 130

8-5.3 PCU/ZT-80 Communications........ 131

8-5.4 Typical PCU/ZT-80 Interface..... 132

9 UTILITY ROUTINES.¢ceececcosoasscosessscsssoaes 133
5

4
—

-4
-
5

-@
L

»

RN

H
L |

erdr)

-
.
J
,

goengownew

Section
10

Appendix

- - O m Mmoo OO0 @ P

Figure
1-1
2-1
2=-2
2-3
2-4
2-5
2~-6

TABLE OF CONTENTS (CONTINUED)

Page
BRIEF DESCRIPTION OF CWMS PCU ROUTINES....... 134

Page
PERIPHERAL INTERCHANGE PROGRAM..:eceoevoeecees A-l

EXAMPLE OF RSX-11M SYSTEM GENERATION......... B-l
FLEC'S USERS MANUAL..c.csoceesoasccsssnsossses C-1
DEFINITION OF PUBLIC VARIABLES...¢eceeeeessee D-1
SUBMIT FILE FOR LINK/LOCATE WITH CODE IN ROM. E-1
SUBMIT FILE FOR EMULATION WITH CODE IN ROM... F-1
SUBMIT FILE FOR LINK/LOCATE WITH CODE IN RAM. G-l
SUBMIT FILE FOR EMULATION WITH CODE IN RAM... H-1
VALIDATION OF THE FORWARD AND INVERSE FOURIER

TRANSFORMS USED BY THE CW MEASUREMENT SYSTEM. 1I-1

LIST OF ILLUSTRATIONS

Page
Software System Flow Diagram...;............. 9
Test Network ConfiguratioN...sceescescassocan 15
Probe Calibratipn Configuratior...c.ieeerecsces 18

Example of Out-of-Range Point Interpolation.. 23
The Approximating Function g{(@) seececessoosnsces 28
Derivative O0f (W) ccseeeseseccscssscssssssons 29
Transfer Function Amplitude and Phase of

Analytic Probe with In‘egrator......ccceeee.. 37
Amplitude of Transformed Input Wave.....c.ess 39
Flowchart of the IF~THEN-ELSE Construct...... 99
Flowchart of FOR CONStruCt.cececceoscscsseesss 100
Flowchart of REPEAT Construct....cceeeesseees 101
Flowchart of WHILE CONStruCtecscecccesssseees 102
Flowchart of CASEOF CONStruUCC..c.cecececsessess 103
Flowchart of PROCEDURE ConsStruCt..cecesesesss 104
Flowchart of PROGRAM CONStrucCt....ceesesesees 105
Low-Level PDL Example Before Formatting...... 107
Low-Level PDL Example After Formatting....... 108

! . 0 c. p
‘.Al-: N PR ST

'

PO W

OBt YRR

R Fe

™

-

Poier s auute Shan e e Auie vt J0n s angs 3 e A Y i R Wi Pal dads) Rl el A it i N S ey gk
AN A A S R S S A A A A A i P e

SECTION 1
SYSTEM OVERVIEW

The CW Measurement Data Acquisition System is a real-
time, multi-task, event driven software system using the Digital
Equipment Corp's RSX-11M real-time operating system and software
produced by EG&G WASC Albuquerque Operation Systems Group. The
op2rating system is documented by DEC in manuals supplied with
the system. This document describes the application software
written by EG&G.

The CW Measurement System consists of two basic
sections: the cw generation and measurement subsystem built by
Boeing and modified by EG&G, and the Data Acquisition subsystem
consisting of a DEC PDP-11/34A, two RLO1l disk drives, an
HP-2648A operator's console and other associated hardware, The
data detected by the measurement subsystem receiver are
transmitted to the PDP-11 via an RS-232 data 1link as 36-byte
data records. These data are then processed in real-time; the
instrumentation and sensor effects are corrected, the data are
displayed on the operator's console and, optionally, saved on
cassette or disk for future processing and archival storage,

The software system includes the following:

e Data 1input task, which receives data from the
measurement subsystem and sends it to the correc-
tions task.

e Corrections and buffering task, which spools the raw
data received from the input task. As data are
received and time allows, the data are despooled,
sensor and instrumentation corrections are applied,
and the data are dispatched to the other systen
tasks,

® OJperator Console Monitor task (CRT), which handles
the 1interface Dbetween the operator and the system.
It prompts the osperator for information concerning

the test, and controls the graphic display.

T T I . :
W IS WO TR

N R

. o
H K }
e g P\ A 2 N

Inverse Fourier transform task, walch converts data
from the frequency domain into tne tine domain,
applying the operator-selected Butterworth filter
threat waveform in the process.

Hard-Copy plot task, which plots the corrected data
on the flatbed digital plotter, if requested.

Tape task, wnich writes corrected and transformed
data to tape for storage and/or future processing,
if requestad.

Disk-5ave task, which writes the requested data do-
mains to the disk for storage for future processing.
Setup the remote data links task, which controls the
optical data links and VHF switch.

Name the mission file task, which allows the opera-
tor to request an old mission file or create a new
one.

These tasks coéhunicate with each other by event £lags
and system messages. Each task processes data as it arrives, at
its own speed, asynchronously. Figure 1-1 represents the task
architecture.

The CW Measurement Data Acquisition System includes a
number of programs which wmay be run either offline or concur-
rently with data acquisition if a second terminal is available.
These programs form the Interactive Analyst Package and enable
a data analyst to perform mathematical operations on data, to
plot, 1list, scale and transform data, to edit data files, to
list the contents of file headers, to add headers to data files,
to list the contents of the mission file and ¢to initialize
tapes, copy data from tape to disk and disk to tape.

The system also contains a number of stand-alone

utility programs for use in supporting the various facilities of

the system, These include:
® Analytic probe calibration task. This task gen-
2rat2s a probe <calibration file Efor B-dot tyoe

sensors.

APOEMIOL Jans

m.. ey, N ...-

weibetqg mold woa3sks aiemizjos 1 2anbryg
431107d X1 mmun__uﬁg 3ANQ 3113SSVD
0svS 34N
ZeC- Sy
«101dOHN, AVSINY, HIUMdL, Z62-SH
WVYHYOO0Ud ONIL110Td ASVYL ASVL
AdOD QYVH JAVS NSIA idv1l 3113SSYD
! w » » !
ERIF] ER] ERIE ER P ERIF]
WHO43IAVYM WHOISNVYHL NN3IW NN3INW viva
1V3YHL ISHIANI AYVYANOD3S AV WIHd a3id3yyod
A
SHIANI,
»{ NSV1 WHO4SNVHL [
4314N04 ISHIANI
) y |
J4J, - 1233402, 10NdNt, WILSAS
NSVYL HOLINOW ASVL SNOILOIY |- ASVL -ans
JTI0SNOD - ' -409 viva 1NdNI viva HIAI3DNY
! A A
CEZ-SY
)
v8b9Z dH N b.m:_u_ Ing N hw<._=_u
ol vHA VYO (o]} g17vD
| __— HOSN3S viva Mvy W1SAS

3
..

i 1‘ Y.‘r-v.‘v..'..'ﬁ"'

p—
. .,<'.\. Lt

e Threat waveform task. This task generates threat
waveform files. The values for o and 8 describing
the threat waveform and the high-frequency and low-
frequency cutoff points of a ninth order Butterworth
filter are specified by the operator.

e Delete frequency EPROM task. Burns EPROMs which
contain frequencies to be deleted from the CW
spectrum during measurements.

e Amplitude control EPROM task. Burns EPROMs which
control the power output of the transmitter power
amplifier during a test.

The design of these tasks is described by Program

Design Language (PDLs). PDLs are described fully in Section 5
of this manual. The PDLs for these tasks are contained in
Section 1 of the Listings Manual.

Section 2 of this manual contains a description of all
the tasks 1in the data collection system, along with details of
data structures used by each task, and the files generated or
used by each, Section 3 describes the Interactive Analyst Pack-
age software. Section 4 describes the system data structures
and global variables. Section 5 describes the software develop-
ment tools used and Section 6 describes the RSX-11M environment
and support programs, Sections 7 and 8 relate to the Boeing
Continuous Wave Measurement Subsystem (CWMS). Section 7
describes the function of the Program Control Unit (CPU) and
Section 8 describes the software modules in the PCU firmware.

10

'
.
s
L s e e e e e
. e
PP A S T
o, L PR
et e . L
o o, o xlel a0l .
aa - :

. T LY IO FE
. Lo At
. s PR T
Beodhndond, L Y

J W BN

)y
]

'

L

SECTION 2
DATA COLLECTION MODULES

2.1 INPUT TASX ('INPUT')

The data input task, INPUT, receives data from the
receiver program control unit (or the MFE tape unit) and sends
the data to the corrections task, CORECT, for spooling and dis-
tribution. This task is small and fast in comparison to other
tasks within the system. Since it is required that the task
have "immediate” turnaround of a received data record, it
operates at the highest priority of all tasks 1in the software
subsystem, This allows INPYUT to process the data from the
receiver PCU as soon as it arrives and to immediately start
another read, insuring that no data are lost.

The task issues RSX-11M QIO directives to read the data
from the PCU. INPUT maintains two data buffers. When a record
from the PCU 1is received, control is passed to INPUT by the
RSX-11M system. INPUT then starts the read-and-proceed QIO
directive with the 1inactive buffer, and processes the data in
the active buffer (the buffer which the last read accessed).

» When a data record arrives, the first byte of the
record 1is read to determine the record type. (See paragrah 4-3
for the particulars of the PCU record formats.) Data are then
extracted from the record and placed into messages which are
sent to CORECT via the RSX-11lM Send Message directive, There
are three types of PCU records. One type is the Panel Data
Block (PDB) record containing information about the receiver PCU
front panel switch settings, The second record type is the Data
record containing raw data for spooling and reduction. The
tnird 1is the Ercror 3tatus Block record containing an error code
for an error sensed by the receiver PCU. Each record type is
formatted differently. INPUT extracts the information and
formats a message (or multiple messages when the record contains
more data than can be packed into a single message) to send &3

CORECT. If this 1is completed before the read-and-proceed QIO

11

> ug g

@,

. 1 Vj"‘"'.'. 3
e ...

Y "
Y)
f

WPy

(3

L A A %0 e 44
e

'I

E AT NI .. e et IR AR
Sl Seades Sl o ey B o ' W NG WS WY MR Loa t

issued earlier, the task waits for the read to complete, freeing
the PDP-11 so other tasks can execute.

When the PCU sends an end-of-sweep Data record,
indicating the completion of a cycle, INPUT decrements a counter
which was 1initially set to the number of measurement cycles
contained in the panel data block. When the counter reaches 0J,
the task goes to end-of-task. This allows INPUT to read data
which were previously recorded on cassette in the 'secondary'
configuration, If the tape <cassette was previously written
upon, it may have extraneous data following the measurement.
The shut-off feature insures that this data are not read into

the system.

2-2 CORRECTIONS AND BUFFERING TASK ('CORECT')

CORECT accepts raw data from the input task ('INPUT')
and writes it to disk. The raw data are then read and processed
asynchronously with the other tasks, When the data are read,
CORECT applies corrections to it and spools the corrected data;
then dispatches 'the corrected data to the CRT task for plotting
and to the Inverse Transform task. CORECT controls up to seven
disk files which contain system and probe calibration data, raw
data and corrected data.

Internally, the task is in five parts., Each part |is
invoked by sensing an event flag, set either by another task or
by CORECT itself. The task waits for one of these flags to be
set, then enters the appropriate section of code, The flags

signal one of the following events:

e Correction Data the raw data input task
Available has sent a data item to
CORECT.
e CRT Waiting for Data CRT is waiting for
corrected data.
e Inverse Waliting for the Inverse Transform task
Data is waiting for correctad
data.
12

P | STeT T, P
\ . A ; o N

T [V SN

e,

= WM oW X 4T d e W W N W 4T T W

e Primary Menu Ready CRT is signaling that the
primary menu entries are

correct.
e Raw Data Waiting for there is data in the raw
Correction data file ready for cor-

rectiors (this flag is
controlled by CORECT it-
self).
When corrected data are requested by CRT or INVERS,
CORECT reads the next data point from the corrections file and
dispatches it to the requester using the Send Message facility

of RSX-11M, and signals the requester by setting a global event _
flag. When the INPUT task signals it has raw data to <correct, '1fi
CORECT 1invokes the Receive Message facility of RSX-11M and "
writes the data. The Primary Menu Ready flag causes CORECT to .':;
open the primary menu file, extract the information it needs and
close the file. The Raw Data Waiting for Correction flag is set i
when raw data are received from INPUT, and is reset when the raw n;ﬁ{
data file is empty.' An abort flag is also used to signal error '
conditions from which there is no recovery. Setting the abort
flag causes all tasks 1in the system to go to end-of-task
imnediately.

The files used by CORECT are all kept in UFD (200,1].
(See the RSX-11M System Documentation Manual 1A, the section
entitled 'EXECUTIVE' for a discussion of UFDs and UICs, also
refer to paragraph 4-2.1.1.) Volume SY: contains all system and

sensor calibration files, the menu files, and a composite
correction file built whenever a multicycle test is performed to
save computation time. Volume CD: (the Classified data disk;
normally mounted on DL1:) contains the raw data file and the
corrected data file. All files are direct access, unformatted
files, Except for the menu files, which are discussed in the
next section, and the inverse transform file, all files contain
12 byte records. These records are subdivided into three fiz=lds
which contain the frequency, amplitude (in dB), and phase (in
degrees) respectively in internal single precision floating

13

,,,,,,,,

ClEC R R A R h=n i ohe. Sran ot

point format, For measurements which do not contain phase
information, the phase field is set to 0.
The names of the files used by CORECT are:

® MENU. PRI primary menu file

° CORECT.DAT corrected data file

® RAWDATA,.TMP input spool file

L ACOMP.TMP composite correct file for use

in multicycle tests
° SYSTF.CAL system calibration file for
transfer function measurements
. SYSRF.CAL system calibration file for
response function measurements
° XXXXXX.CAL sensor calibration file where
XXXXXX is the name (up to nine
characters) of the sensor as
entered in the primary menu
The equations for the corrections are derived from the
previous c¢w data reduction work done by EG&G. These equations
assume a measurement system similar to that used here. ‘

The equation used for amplitude correction is:

Corrected Ampl. = Ka(smeas - Rmeas) + REFGAIN - SIGGAIN
+ RPROBE - SPROBE + NADR - SCAL (1)
where
Ka = conversion factor from millivolts to dB for the
network analyzer (here, Kz = .02)
Smeas'Rmeas = transfer function in millivolts of the signals

sensed at the reference and the signal channels,
In effect, this difference is the raw data
received by the corrections task.
REFGAIN = Signed gain added to the reference channel,. id
3IGGAIN = Signed gain added to the signal channel. -g
RPROBE = reference sensor transfer function, -

SPROBE = signal probe transfer function,

NADR = network analyzer display reference in dB (set

on front panel of network analyzer).

14

‘?

SCAL = transfer function of system instrumentation]
exclusive of sensors (probes) and externally .fﬁ<
introduced gains or attenuations (i.e., the ="ii

system cal).
This equation is derived from examination of the system

setup as diagramed in Figure 2-1.

RPROBE —{ REFGAIN ———FEFDELA‘; Rg O Ref DS

SIGNAL NETWORK o
SOURCE ANALYZER
SPROBE SIGGAIN SIGDELAY! Sg O Sig
Figure 2-1. Test Network Configuration o

The output of the network analyzer in dB is:

- =3 3 N + SDELAY + S54 -
Ka(Smeas Rmeas) 5 + SPROBE + SIGGAI SIS 0 2)

R + RPROBE - REFGAIN - REFDELAY -~ R¢

where S is the signal at the signal source 1into the signal
channel, R is the signal at the signal source into the reference
channel,. SIGDELAY and REFDELAY are assumed to have transfer
functions of 0 dB and 0 degree phase distortion. Sg and Rgy are

the effects of instrumentation in each channel.
The transfer function of the signal source is S-R, so

regrouping, and solving for (S-R) one gets:

- R) - SIGGAIN - SPROBE - 0 + REFGAIN +
meas meas (3)

RPROBE + 0 = (Sy= Rgy)

(S-R} = Ka(S

y e

the 0s in the above equation are the effects of SIGDELAY and
REFDELAY. The quantity (Sg - Rgy) is the transfer function of

R
P ‘ " .
P

{ JUORAE

-

s

A W

N T

et
Jﬁ‘A‘J“L

.
R

the effects of instrumentation on the system exclusive of

sensors or external Jain added. This quantity is called SCAL,
the system calibration transfer function, Reducing the above ‘
equation becomes: -

C et

- = - + - GGAIN + RPROBE
(s R) Ka (Smeas Rmeas) REFGAIN SI

(4)

- SPROBE - SCAL
The network analyzer can scale its output so that 1its 380 dB
dynamic range brackets the data. Changes in this value changes

(Smeas ~ Rmeas)
sign. Therefore, adding this value, one gets the original

by a value equal in magnitude but of opposite

equation:

- = - N - SIGGAIN + RPROBE - SPROBE
(S R) Ka(Smeas Rmeas) + REFGAI]

+ NADR - SCAL (5)

A similar derivation applies to the phase. Note that the phase
of any gains in either channel are 0. The equation used for

phase correction is:

Corrected Phase = K¢(Psmeas - DRmeas) + PHRPROBE - PHSPROBE 6)
- PHCAL '
where
K¢ = conversion factor from millivolts to degrees

for the network analyzer (here Xg = .1)
PSmeas-PRmeas = Phase in millivolts of signals sensed at the
reference and signal channels. This value is

the raw phase data received by the corrections

task.
PHRPROBE = reference probe phase
PHSPROBE = signal probe phase
PHCAL = phase of instrumentation exclusive of probes,

amplifiers or attenuators. This is the phase
of the system,
Again, consider Figure 2-1. The phase output of the network
analyzer is: '

K¢(Psmeas - PRmeas) = @S + PHSPROBE + PHSGAIN + PHSDEL +Qg¢ .

-$R - PHRPROBE - PHRGAIN - PHRDEL +$Ro

16

. . .. REEES PUERPEE S A S R o T R .
.- . A . Nt T SN
- «® et - . T . e . . > A s . P
e . . S, N . - . .. A . * . A~ . - LR .
IR - N A LR T P AR

“n “

Lo e - I E N . R . e e . . - -
IR SR R A ... " e e LT . L AN e
PP O T TP P U A R P L, S R A ST Sy T . UPROI NN WU VL R, WOV

e

PHSGAIN
PHRGAIN

phase of the signal gain = 0 as noted above

phase of reference channel gain = 0 as noted

above

PHSDEL, PHRDEL Phase of reference and signal delays. These
are both zero due to the fact that on this
system delays will be introduced by extra
cabling, which, in and of itself, has phase = 0.
QS,¢% = phase of the signal source at the signal and
reference channels, respectively.
Since (¢S— ®R) is what we want, by substituting and regrouping

one can get

Q= (@S - @R) = K¢(PSmeas - PRmeaS) - PHSPROBE -0 - 0 + PHRPROBE

+0 +0 - (@ ~0Q

so = Pze) (8)

The quantity (®S¢- ¢h¢) is the phase of the system exclusive of
probes, gains, delays, etc., it is, in fact, the phase of the

system cal, otherwise known as PHCAL. So reducing, one gets

(@S - @R) - K¢(Psmeas - PRmeas) - PHSPROBE + PHRPROBE - PHCAL (9)

To do a system cal, the reference and signal sensors
are removed from the confiquration, 1i.e., RPROBE, SPROBE,
PHRPROBE, and PHSPROBE are removed from the respective
equations. Therefore, solving these equations for SCAI. and
PHCAL, one gets:

= - - - +
SCAL Ka(Smeas Rmeas) REFGAIN SIGGAIN NADR (10)

and

PHCAL = K¢(Psmeas - PRmeas) (11)

To calibrate a probe, the reference probe is removed from the

system - that is the signal is run thru the system as shown in
Figure 2-2.

17

- .\~" .: ..'.. .

. SNt .- .. - L. . EE T T PR e - - el 0. e T w e
P PN e U W P W W SR WPy SR Y o 0 %y e e 'y . . PSR DL Sy AP TR R N DNy W PN AP PN T, TR W L Y

D

e . ot '

L e e e e e
: P PR P P

P i . et N T [P |
o ine g s a s g Aty " .

lj';;:;;ﬂfg'ih -

am A .

S S A AN RO A I SN AR S AP A R AL SR S A Ve, W O R Paliic u ety SEnh At e et e g et St bt Tl S ACS A |
«

o
e

s " s M

5

Power e

N Splitter X

SIGNAL IN) REFGAIN EFDELAY Rg O Ref il
NETWORK " e

ANALYZER %

ROBE _ .

UNDER SIGGAIN SIGDELAYi— Sg oSsig ;

TEST ;

SPROBE 1

il

.
-

K
2
:
?j

Figure 2-2. Probe Calibration Configuration

Solving for SPROBE and going through the aforementioned

derivations, one gets:

SPROBE = K_ (S - R) + REFGAIN - SGAIN + NADR - SCAL (12)
a “meas meas

and

PHSPROBE = K¢(Psmeas - PRmeas) - PHCAL (13)

When a multicycle test sequence is run, a signal-to-
noise ratio calculation 1is made. This calculation represents
the ratio of the ambient noise at the test point to the signal
plus the ambient noise at the test point. The ambient noise
measurement is the ratio of the signal at the test point to a
constant reference level, provided by the reference synthesizer

in the CWII system. This can be abbreviated to

Wlm
2

N =

a , or SN - K in dB

and the signal~plus-ambient noise at the test point, which 1is
the ratio of the signal at the test point to the signal received

at the reference sensor, can be abbreviated

) , oL L
1 . -
A e

St 1
S, =gz— , 0r S_ -5 in dB g

a SREF t REF
This is the test measurement. What is wanted is the ratio of S, lé
€2 Sy ’;1
S L
. Syr = == s Or S, - Sy in dB g
- NR Sy t N -
i N ‘
o -
' -y
i
o 18 S
@ -

b
b
o
b B
.
v
:
v
.
P
'
.
.
.
R
L
P
e -

when an ambient noise measurement is taken, X is the wvalue for
reference gain added in the primary menu. In order to calculate
SREF' a special measurement known as a reference sensor cali-
bration is made. This is done whenever the test configuration
is changed, or on some similarly frequent schedule. This
measurement is che ratio of the signal detected at the reference
sensor to a constant (K2) reference level, again provided by the

reference synthesizer. This can be abbreviated

S, = ——, or SREF - K2 in dB

Ky is the reference gain added from the primary menu when this
measurement is taken, and 1is saved for the signal-to-noise
calibration.

Now, we have (Sy-K), (S¢g-Sggp) and (S —Kz), or N_,

REF a
Sy and Sb' and we have saved the constant values K and K2.
Sa + Sb - Na = (St - SREF) + (SREF - Kz) (SN - K)
= St - SN - K2 + K
St - SN = Sa + Sb - Na + K2 - K

The reference sensor calibration 1is saved on SY: in
uIicfl200,1]. The filename is RFSNS.CAL. The ambient noise and
test data are extracted from the first and second parts of the
corrected data file (CD:{200,1] CORECT.DAT). The reference
sensor calibration reference gain constant is saved in record 23
of the primary menu file, and the ambient noise reference gain

constant is extracted from record nine of the primary menu file,

2-3 CRT DISPLAY TASK ('CRT')
CRT provides the interface between the operator and the

system, The program is run by the initialization indirect

command file, but is inactive until it receives a daca bdlock
from CORECT.

T
¥ YRS

dke b

. i A.AL,

i

* :) ., . . T

‘ [e
» 'k!‘ S -
L e Loty at

P ‘,'l
@

Initially, a data block is received which contains a
description of the front panel settings of the measurement
system (a panel data block). The information consists of the
test type (TFA, TFC, etc.), the decade switch settings and the
cycle number. The test type indicates to the CRT task whether
phase data were taken. The decade switch settings are used to
determine which decades contain measurement data so the CRT
graph can be drawn accordingly, and how many points will be in
each decade. These are decoded as A =0, B =25, C= 50, D =
100, E = 250, F = 500, and G = 1000,

Next, the operator is prompted for the types of plots
to be displayed. Ambient noise, pick-up noise, amplitude and
phase plots can be overlaid. At this time, CRT requests the
IEEE-488 <control task and suspends itself. The IEEE control
task, ODL, checks for the presence of an IEC-11A bus controller
module, If the IEC-11A status is good, ODL proceeds to validate
the contents of the IEEE-458 device control menu. After the
menu entries are validated, ODL issues bus commands to set the
selected devices, verifies the settings, resumes CRT and sus-
pends itself.

The primary and secondary menu entries are then veri-
fied and changed 1if necessary. The primary menu entries are
displayed first, 1If approved, the program continues with the
secondary menu. Otherwise, the operator is prompted for new
entries to the menu.

The secondary menu entries are displayed. Again, the
old entries are displayed and if not approved the operator is
prompted for new entries,

When the menu processing is completed, the CRT graphics
parameters are set to their default values, This 1is accom-
plished with the escape sequence '<ESC>*mR'. These values are
shown in Table 2-1.

Next, the axes are drawn according to which plots were
ra2quested for the frequency scale, which decades contain data.
The screen unit coordinates for the corners of the graph are
always (49,119), (669,119), (669,335), and (49, 335). The phase

20

| i A A ECM S e R A S i DC P AP G A A S A S DA
- -

. g
A\ ey
ION CT.
b - ——

-
’.
-
f
b

Table 2-1. Default HP-2648A graphics parameters

Parameter

Default Value

Pen Condition up
Line Type 1 (solid)
Drawing Mode set S
Relocatable Origin 0,0]
Text Size 1 :‘E
Text Direction 1 i .é
Text Origin 1 (left, bottom ’
{ justified) : !
; Text Slant 0 (off) :,’j
o Graphics Text off - #
3 Graphics Video on T
- Alphanumeric video on)
g: Graphics Cursor off
’ Alphanumeric Cursor on
@_ Rubber Band Line of £
[Zoom of €
‘ Zoom Gize 1
Autoplot off
Autoplot Menu clear =
Compatibility Mode 'ff
Page Full Straps 0 (out) 1_?
GIN Strap 0 (CR only) _ K

labels appear on the right y axis and are always the same. The ::q
amplitude axis (the left y axis) is labeled according to “*he ’ﬂ
value of the mid-range line. This 1is calculated by the _,?
following equation: S
MID (dB) = -GS + GR + NADR - RV_ + RV_ (14) T
- 21

T

wher=2

= Signal Gain added

)
¥
I

GR = Reference Gain added
NADR = Network Analyzer Display Reference
RVg = Representative Value of Signal Probe Calibration
RV, = Representative Value of Reference Probe
Calilbration

The values GS, GR and NADR are taken from the enu
entries made Dby the operator. The values RVg and RV, are taken
from the probe calibration files specified by the Signal Probe
and Reference Probe menu entries. These files are opened and a
representative amplitude value extracted from each. This 1is
done to insure that the effect of applying corrections from
these files does not force the plot off scale. The computed
mid-line wvalue 1is then saved 1in the primary menu file. The
amplitude scale for the plot is +40 dB from the mid-line value.

When the axes have been drawn and labeled, a legend 1is
written below the graph which describes the test being run.

A global flag is set to indicate that CRT is now ready
to accept data from CORECT. The points to be plotted are
received by CRT one at a time in twelve byte records each
containing a frequency, an amplitude and a phase value.

Frequency values are converted to screen units by the
following equation:

(Log10 (last frequency point) + Log,, 10_6)

Fregquency -
Log10 (maximum frequency value) -

Log10 {minimum frequency wvalue) x (669 - 49) +49 + .5

Log10 (minimum frequency value)

Phase values are converted to screen units, if a phase

plot was requested, using the following equation:

_ (Last phase value) - (-180.) (335 - 119)
POS = 30. (180. = 180.)
90.

+ .5 + 119

(16)

22

L Sl At AR SOV Bt S A D et N L A Cantil S SO et S S SNt T Pl I e i)

. 1
LT o [.
AP S ST W a

.
«

I

M)

.
BN YO

o P A
. .

A S e e A Aalid A - A R i i o Br A M AL DA v L W T T W T T N Y LT Ly e TE TR YUY

Amplitude values are converted to screen units using the

following equation:

Amp = LLast amplitude value) - (minimum dB valueq [335 - 119]
10. 8.

+ .5+ 119. (17)

As each phase point is plotted, it is saved as the last point
and a 1line is drawn from it to the new point after it has been
converted to screen units,

Before an amplitude point is plotted it is checked to
see if the screen value falls outside of the axes lines (top or
bottom). If so, a calculation is made ¢to find the point of
intersection, with the axis, between the point in bounds and the
point out of bounds. The line is drawn between the point in
bounds and the point of intersection. This is also the case in

drawing from a point out of bounds to a point in bounds. Figure

2-3 illustrates this feature.
®

7

7~

(]
Figure 2-3, Example of Out-of-Range Point Interpolation

r! Lines between all points are solid. To differentiate

E: between the lines, a symbol unique to the type of plot will be

E: printed at evenly spaced intervals. The symbols used will be: ???;
& A - Ambient noise line .
| ¢ P - Pickup noise line ~ -
: M - amplitude line ”;
. F - Phase line S
[Should a test be aborted for any reason, a message will T
E’ be displayed on the CRT screen indicating to the operator the _ !&

.
.
.
g
@

.

CRA A Rl et e S " 4 30 A % G R 0t i i G A AR I AU Ak sdh Sl A w A A A i A SN AL S It i et e i e i s g S "Rl S Y

reason for aborting. The reason will be displayed as a code
number which 1s described in Appendix A of the Operating Manual.

2-4 INVERSE TASK ('INVERS')

INVERS generates an inverse Fourier transform of the
frequency domain data acquired by the measurement subsystem.
The method used is a variation of the Guillemin Impulse Train
method and will be discussed 1in greater detail later. The
inverse transform also folds in a Threat waveform and a ninth
order Butterworth filter, The resulting time domain waveform
contains all three above-mentioned components.

INVERS 1is event-driven and executes asynchronously with
the other data acquisition tasks. The task 1is compute bound,
and runs at a low priority (49). The task is activated by
CORECT which sends INVERS a message via a send message
directive,. This message contains either a panel data block
(PDB) or an end-of-data message. The PDB message indicates the
start of an inverse transform, whereas an end-of-data message
indicates that no transform is to be calculated. To generate an
inverse transform, the task must retrieve from the primary menu
file the name of the Threat waveform file selected by the
operator, the maximum time domain value and the B-field to
E-field conversion factor. The points in the time domain to
which the inverse is generated are then selected, the selected
threat waveform file 1is opened and CORECT is signalled that
INVERS is ready for data., Data are transferred from CORECT ¢to
INVERS via RSX-11M Send/Receive directives using global flags to
signal when INVERS is ready and when CORECT has sent data. This
allows asynchronous operation of both tasks.

wnen the inverse transform is completed, the Parseval

enerjies,
=)

ﬂ;(t)lzdt and 2/ iF(w)’zdw

~ (o}

are calculated for the time and frequency curves, respectively,

Since the square of a straight line is a hyperbola, a hyperbolic

PR RS

R G
I R .
Foat e, e . .
SN . .".\-\' S T a
L N T . T L YL V. T "

Rk '

1

g

F PR DA/

i
.

1

-~
Char}
R

.

vy
()
PRAPRATE

v

rather than trapezoidal integqration method is used, The results
ars compared using the standard error formula

X -Y

X+ Y
and Parseval values and the ratio are stored in the ©primary
menu., Then the file, CD:(200,1]INVERS.DAT;1, is created and the
time domain data are written to it as eight-byte records
containing two floating point numbers. Each record consists of
a time wvalue 1in seconds and an amplitude point. Tnere are
always 512 records in INVERS.DAT.

When INVERS finishes, it waits for two global event
flags. One indicates that CORECT 1is finished and the other
indicates that CRT is done. When both of these flags are set,
all front-end processing is complete and the data are ready for
post processing. The following operations are performed at this
time:

® The operator is asked if a hard copy plot is desired
and to enter a comment text.

e ODL is resumed and turns off ail the ODL-5Bs. Then
it terminates, releasing the IEEE~488 bus. When the
bus is released, all the other devices on the bus go
to front panél or standby operation.

® An entry is made in the mission file.

e The operator is prompted to determine which files
are to Dbe saved on tape and disk. The hard copy
plots and tape files are spooled and the files to be
saved for analyst are written to the analyst UFD
{200,1] on the classified data disk.

e If a CRT plot of the inverse transform has been
requested, the auto-plot task is started.

NHCPLT spools plots., The task which spools tape files
is called STRTTP, and the one which saves files for analyst use
is called ANLSAV. These tasks are installed when the data
acquisition system is initialized (by the UYP indirect command
file) and are activated by CORECT when it receives the panel
data block from the measurement system. The tasks receive
messages from INVERS via system message directives, The

25

IR A A AR S o
-~

-
$
)
.

1

[

il d®

- . e e
- Lo
. . et e e e
PA P S R R
3 : i

messages consist of a data type indicator and a filename. The
value of the data type indicator tells the tasks what kind of
data they are dealing with, and the filename becomes the output
filename. The data type indicator has the following values and

meanings:

0 - the ambient noise portion of a multicycle test.

1 - the test data portion of a multicycle test

2 - the pickup noise portion of a multicycle test

3 - inverse transform data

4 - transfer function calibration data, response func-
tion calibration data or probe calibration data

5 - reference sensor calibration data

6 - signal-to-noise ratio data

7 - end of test

8 - test data from a single-cycle test

I1f the data type indicator is 0, 1, 2, 3, 6 or 8, the
message * filename 1is as follows: the first byte is the test
facility code from the secondary menu, the next four bytes are
the test _sequence number from the primary menu, and the last
three bytes are the Julian date. 1If the indicator is 4 or 5,
the message filename is as follows: 1if the test is a reference
sensor calibrator's measurement, the first five characters are
"INREF". If the test is a system response function calibration,
the first five characters are "SYSRF". 1If the test is a system
transfer function calibration, the first five characters are
"SYSTF". If the test is a probe calibration, the first five
characters are the first five characters of the probe calibra-
tion file 1ID. 1In all casaes, the last three characters are the
Julian date.

The method used for computing inverse transforms 1is a
variation of Guillemin's Impulse Train Methodl. Numerically its

results are equivalent to a Fourier integral transform of

- —— - — — —— — ——— — - ——

1Ernst A. Guillemin, Theory of Linear Systems, New York: John
Wiley and Sons, Inc., 1963, pp. 387-393, pp. 509-510.

26

TR TR e TR T T W TR W TR
e R

T ¥ 7 W Y

)

sampled data, but it has the speed advantage of operating on a
relatively small number of terms. The justification frr the
Impulse Train Method for the inverse transform follows.

The equation for the inverse Fourier transform is

= o]
£(t) = o /F(iw) etot g, (18)
—oc
where F{ilw) is complex with real and imaginary parts designated
R (w) and X(w) respectively. Consider initially only the
imaginary part. Let X(w) be the function of angular frequency
with n samples of X(w) at ¢j; X(wj), 3 =1, 2, ... n. X(w) is
approximated by straight line segments between each sample; call

this g(w). Let hj(w) be the jth line segment of g(w):
]

a. + b.w, w.sw<w,
h. (w) = [J 3] J+1
3 {19)
0 elsewhere
j=1,2,, n-1
Then
n-1
hj (w} = glw)
=1 (20)

By wusing the Guillemin algorithm, only a simple
summation 1is needed in order to evaluate the contribution from
the imaginary part of F(iw). It is not necessary to actually
integrate the approximating function. The Guillemin technique
can be used with polynomials of order n, assuming only that
Fk(iw) 0—-for k=0, i, eee N AS W=t ®. In this case linear
interpolation is used, and X(w) and X (w) are assumed to go to
0 as w goes to -« and +», The algorithm is developed in the

following way, integratingy by parts twice.

o [« 4
¢ | o0
, iwt iwt
iwt _ X(w) /e - I X' (w) e
AT ey P
-, -
-
[2]
€0 . .
= + 1 > X" (w) elmt dw
(it)
) o0

27

Then

Now

and g'

Now approximate X(w)

TR TR Ty Wy wy W w v TN TR T e T Y W W s W LY Ve e -
MRl e ane e Jeass dbarn Mg abds B e RESde - Ml St Bk e/ Yiaf 3 d N TR W W e e, LW R A A A,
 alCa Ol o Pl . . e s et e L% e e e e

for the linear transform (see Figure 2-4).

glw)

by g(w), which is a broken line function as

X{w)

W —

Figure 2-4. The Approximating Function g(w)

Let hj(w) be the jth line segment of g(w):

aj + bjw, szw<wj+1

h. (w)
J 0 elsewhere

n -1

glw) = .IE: hj(w)
j=1
n -1

g' (W) = 2 h'3(w)

b., w.sw<w.
h' (w)] J j+1
0 elsewhere

is a step function (see Figure 2-5).

28

(21)

(22)

(23)

. S s P o e
. B », . s e s e
L .. e e . P A

o 2 . 4l ®. .

e
_'. R |
@
PR A & a a a_a K .

(24)

R

P
-

(S

-

Figure 2-5., Derivative of g(,)

Now
n-1

g" (w) }E: h"j(w) (25)

j=1 ' s

and if (o) is the Dirac delta function, then
b.‘j DS R t . '
golumag) At wy

-bhd(uj-(uj+1) at w

h"J(w)]+1 (26) --—~~

0 elsewhere
§ = 1,2,, n-1 =

by virtue of the fact that./."j(m) de = h'j(m). :I;
Therefore '

g"(s) = blﬁ(m-wl) + (b2 - bl) S(J_ﬂz) (27)

+ (b3 - b2) 6(@-&3) + ... + (-bn) S w=~s_) .

29 S

- T . o .-‘ ----- 2 . .
RSN A R N C R G
_____ g . - I LR R GNINCRRN

I A R T v T VI TRV R AN DR LW N AT BRI

.
t.--.t So * x
f X(w) et aw = —L > / X" (0) et au (28)
L B (it)
: —— | 9" e™F a (29) |
(it) =

+ ...+ b elwnt) (30) -
Similarly, -
/ R(w) ei»t o 1 5 ¢, elwlt + (cz - c]_) elu)zt
5 (it)
iw_t i
+ ... +c e’n) (31) —

where cy is the jth second derivative (impulse value) of R(s).

Since the limits of integration are from == to + and

R(w) and cos wt are even functions while sin wt is an odd

i function, the total contribution from the real part is r}
o - 2 [c, cos wit + (c, - ;) COS Wt + ... + c_ cos ©_t (32) ?:
9. p2 L1 1 2 1 2 n n =3
- S
k-_ Likewise, since iX(w) is an odd function, the total contribution Sox
- . . . e
- from the imaginary part is o
[~ 1t
[) _e
tﬁ + -3 [bl sin vt + (by = by) sin “ot 4+ ...+ b sin *nt] (33) .
L t o
: T
h
b S
L @ - @
3
b 30 -
| @ .9
-
i'._ . .
oS . : ROR .
| ARSI _ Vol - R R

Scaling the integrals by f% then yields the inverse transform in

impulse form as

£(t): — [bl sin w,t + (by = b)) sin w,t + ...
Tt

+ b sin u t - ¢y €OS .t - (c, - cy) cos u,t (34)

- ... = ¢, cos wnt]

If £(t) = 0 for t < 0, the function 1is considered
causal. Physical systems of the cw type may be so considered,
and it can be shown? that for a causal system
£(e) =2 /R(w) cos ut dw = = 2 /X(w) sin wt dy t<0 (35)

o) o] -
Since P o
/X(w) et au =2 [X(v) sin wt duw o
(36)
Yo A
2 . . \ A
= - ;5 [bl sin ult + (b2 - bl) sin wzt + ... 4+ bn sin wnt]

then
f£(t) = - % [2 j{X(w) sin wt dw] (37)
6]
_ 2 . . .
= + ﬂtz [bl sin llt + (b2 - bl) sin 12t + ...+ bn sin lnt]
(38)
2Anthanasios Papoulis, The Fourier Integral and its

Applications, (New York: McGraw Hill Book Co., Inc., 1962),
pg. 13.

dperation., As ladicata2d earlier, this task wuses a
——e e —

subroutine which i3 a wvariation of Guillemin's Impulse Train
Method. The subroutine uses only the imaginary portion of the
frequency function; hence it is a sine inverse. It is called to
operate on all time elements (inner loop) for each fregquency
data point (outer loop). Thus, with each entry it augments a
partial sum for each time point allowing it to operate in near
real time, This results in the completed 1inverse being
available as soon as possible after corrections have been
applied to the final data point. The amplitude of time 0 1is
forced to 0 since the cw system does not record dc voltage.

Jpon the first entry, a trigonometric sine function
table is created with increments of one degree., For any 4given
sine argument with times greater than or equal ¢to 100 ns, a
linear interpolation 1is performed between bracketing values of
the table. For time less than 100 ns the FORTRAN library SIN
function 1s used directly because any inaccuracy resulting from
the table look-up operation is amplified by the scaling factor
1/me2, This 1inaccuracy 1is tolerable above 100 ns where the
table look-up feature saves considerable time.

As stated before, to use this method it is assumed that
A(w) and X'(w) go to 0 as w goes to -» and +», In order to make
this true the integral is calculated as if there were a point
(0,0) before the first frequency point and a point (lO*ah,O)

after the last freguency point at wp.

2-5 HARD COPY PLOTTING TASKS ('NHCPLT' AND 'NPSPLR')

NHCPLT and NPSPLR‘interface between the data collection
tasks and the hard-copy plotter. NHCPLT formats the data and
builds the data header. NPSPLR spools the header information
and data points to the plotter.

NHCPLT receives the Panel Data Block from CORECT, then
walts until INVERS has finished processing the data and has sent
the filename to be plottaed. NHCPLT then builds the plot file.

The main and secondary menus are opened and the data file header

is built. See paragraph 4-2.2.2 for the data header

i S

Ll " : u.uL

D B
. PRI
. L e s
PRMEA, PN NRN

caiactazia

L i SMEE™ i s Al diat i S S A A A s S et SRS i At M At S T~ S AR Y v at R Bae i R b e R ANYASY e i
AN B Al AR - . . AR A

descripcion. The data points are then copied from the input
disk file to the plot file. NICPLT then sends the filenamne to
NPSPLR using the system send directive.

When NPSPLR receives the plot filename and data type
from NHCPLT, it 1initializes the ©plotter and waits for the
operator to prepare the plotter. When the plotter is ready for
operation, 1t writes the data header on the top portion of the
plotting paper. Then it plots the desired data domains.
Fregquency-Magnitude, Frequency-Phase and Time-Amplitude plots
may be Jenerated., NPSPLR recycles through its procedures until

no more plot filenames have been queued by NHCPLT.

2-5 TAPZ QUTPUT TAGKS ('STRTTP' AND 'TPWRTR')

STRTTP and TPWRTR write data files to cassette for
archival storage. See paragraph 4-5.1 for a description of the)
! cassette file structure. STRTTP sets up the file to be spooled ,,5-%
.. to tape by formatting the file to make it compatible to the data o
files wused in the Interactive Analyst Package. It recgives the

Panel Data Block from CORECT, then waits until INVERS sends a

data filename and data type. Only the files that the operator
has requested to be placed on tape are processed, STRTTP then
opens the menu files to extract the needed header information.

(Parajgraph 4-2.2.2 contains the data file header description.)

The header information and data are copied to a new data file,

then the filename and data type are sent to TPWRTR via the send
directive, R

TPWRTR initializes the tape unit, dequeues a message : i
from STRTTP, opens the output file, then determines the number q
of records in the file. The tape identification number is com-
pared to the tape number in the data header; if they don't match

the operator 1is informed of the error., The room remaining on

FE Y S S 4

the tape is compared to the number of records required by the)
data file. If there is not enough empty tape, the operator is .
) requested to replace the tape with an initialized tape. The -2
- tape nuiber in the data header is increased by one to match the)
}. new tape number. TPWRTR then copies the data file to the .1

33

.11:*_!1_‘ SREL ML Aan sal kel b el v e sl wal Anll Sall Wl A

cassette, While the data is being transferred, the minimum and
maxkimum values are calculated, then placed into the file hzaader
on the tape. TPWRTR will continue processing the data files ,__q

until no more filenames are in the receive directive queue.

2-7 DISK SAVE TASK ('ANLSAV')

ANLSAV writes the requested data files to disk for use __j:
in the Interactive Analyst Package. It receives the filename
and data type which INVIRS has sent wvia the send directive.
ANLSAV opens the main and secondary menu files to obtain the
information needed to form the data file header (Paragraph ’ii
4-2.2.2 describes the data file format.) It then copies the
data file header and data to UFD [200,2] on device CD:. ANLSAV
continues copying the data files until there are no filenames in

the receive directive queue. e

'.
. A.AAA.A_) .

2-8 SET UP THE DATA LINKS TASK ('ODL")
ODL controls the Optical Data Links (ODL-5B) and VHF
switca., It is requested to run by CRT after the type of plots

P

have been selected. CRT pauses until ODL has completed setting
up the 1instrumentation, ODL opens the ODL menu file and re-
Jquests the operator to update the entries. (See paragraph 5-3.2
of the CW Measurement System QOperating Manual for a descrip- -
tion of the ODL menu entries.) First, ODL will set switch A and -
B on the VHF switch to the desired channel, It then turns on
the requested data 0DL-5B and sets it up. A five second pause
occurs after the ODL-S5B is turned on before it will accept any

further commands. The reference ODL-58 is then turned on and T

“. . . K A
O VAU TUNRAE

set up. If no errors have occurred, ODL restarts CRT and
pauses. When data <collection 1is completed or the test is
aborted, INVERS rastarts ODL which turns off the 2DL-5B units.

2-3 MI3SINON FILZINAME TASK ('MISNAM')
1ISNAM is run by the startup command file whenever the
system 1s booted. It asks the operator to enter a wmission

filename. The extension .MIS is appended to the name entered by -

. G,
A SO JOLr

L
]

- » ‘y
alalile 2y

34

the operator. If the mission filename 1is accepted, the

secondary menu is opened and the name is entered into the ctentn
record. INVERS will try to open the mission file specified in
the menu after all data processing is completed. If the file
doesn't exist, a new file is created. Every time a data set is
successfully processed, the filename along with key fields in
the menus are written to the mission file, The Intecactive
Analyst Package routine, MIS, will 1list the contents of the

mission file to the operator's console.

2-10 PROM PROGRAMMING TASKS ('DEL' AND 'AMPL')

After accepting the data that will be programmed onto
the PROM, and checking with the operator for its validity, the
data is formatted and written to the PROM programmer.

To start programming the PROM, the letter 'X' must be
sent to the programmer first so that the automatic speed
selection function of the PROM programmer can determine the
input baud rate. A pause of approximately 2.5 seconds follows
due to the time the PROM programmer takes to select this baud
rate. Next, the address span to be programmed (i.e., 000-3FF)
is sent to the programmer in ASCII. Each ASCII character sent
to the programmer must be followed by a wait of approxiimately
1/30 second. Following the six-digit address span, the letter

'P' is sent, which sets the programmer to PROGRAM mode.

If the PROM is not blank, the programmer sends back and-

ASCII <NAK>; otherwise, if everything is ready, an ASCII <ACK>
<{STX> sequence is sent. Once this process is complete, the data
may be sent to the programmer starting with address 0 and
continuing to address X'3FF'. The data for each address is sent
as two ASCII characters with a time delay of 1/30 second after
2ach <Character. After all the data are sent, the remainder of
the PROM is padded with zeros. The programmer then programs the
PROM and, if successful, sends back an ASTII <ACK>. If the
programming was not successful for any reason, the programmer
sends a <NAK>». The program will report to the operator whether

the PROM was successfully programmed.

35

The tasks perform input rangjge <checks and checks to

insure that freguency data 13 1in ascending order. Once the PROM
writing sequence begins, the handshaking between the M900 and
the PDP-11 is checked for validity as described above, and also
timed-out. This 1s done by setting a timer while waiting for
the read of the M900 response to complete, wusing the RSX-11M
Mark Time directive and checking various System Local Flags.
(Local Flags are identical to Global Flags except that their
scopa is limited to the task itself.) A response time-out
causes an error condition to be noted within the task and the
read to be halted. 1If either a time-out or handshaking failure
occur, an appropriate error message is logged to the terminal,
and the operator is given the opportunity to abort the task or
to retry. This feature allows the operator to <correct "soft"
errors (e.g., PROM not blank) and retry the writing step without

having to re-enter the data.

2-11 ANALYTIC PROBE CALIBRATION TASK ('APROBE')
2-11.1 Back3jround Discussion

Transfer functions of certain probes are obtained
analytically rather than empirically (e.g., the ™MGL B-dot
probe) . Analytic transfer functions of electronic 1integrators
may be multiplied to yield a composite transfer function.

The probes handled analytically by APROBE are the

derivative type:

V(t) = KF where

V(t) = output voltage as function of time
K = a constant determined by the probe
F = d (Field Unit)

dt

In the frequency domain this transforms to

J(w) = iwkF(w) volt - seconds where
i2 = -1
w = 2r x frequency radians/second

w Pa A M D et & SR B seCRa e Ryet et A Seat 4 W Jb <Bh Saal it v Jih it v § B BB giivoia L iNp b g el A and gt Slati At At i SR Bt i A i A A b A SR S S A
E) 1

The transfer function of the RC integrator is

Vout Wb (39)

Viw) T 1 + iwRC

Note that if no integrator is used, RC = 0, and the 1integrator
transfer function becomes unity.

The transfer function of the composite is therefore

Vout () ik (40)
F(w) - 1 + 1iwRC

having amplitude and phase characteristics similar to Figure

2~5,
90°
Z{fAMPLI'I'UDEz
[20 log 1o (k /RC) T
AMPLITUDE 45° PHASE
(degrees)
Vout (@) I
F {w) I
(dB) X . :)
mplitude Slope~ | O
Ph
2048 /dec ! ase ,NT!?
I w
l 0°)
" w=1/RC R
- LOG1° W — - ' .-‘

A
. .'
."'. ".'i-l ‘ -

Figure 2-5. Transfer Function Amplitude and Phase of ;?;J

2

Analytic Probe with Integrator

el i S)
.

2-11.2 Operation
The program opens the requestad file as TYPE = '2LD',

implicitly assuming the file already exists. If the file

e - T

exists, the operator is given the option to supersede with new -

[

" il = ~— v -
e] T Ty T

R TP P R . L . . - e te e Lt - Y. K K - R P . A - PRI
PPUNP SAPLINY. SR SN) PRSI . Y - PP ST, WP APAY ST UL AT LA Tl W U T VOUIE S Nl U P U P i A U G S WIS U WP Yt Py P Py

Pt A A A AL T R ARCACE A At A G A NS A A S A A S MA S SO b DR AT AP

.........

data or to exit, If he elects not to exit or if the file did
not exist, a new file is opened and the operator is prompted for
the scaling constant (k) and 1integrator time constant (RC).
Having obtained this information, the program calls subroutine
FGEN which generates 450 predefined €frequency values. The
program then generates the resultant transfer function as dB and
degrees for each frequency and writes these values as real
valued triplets to [200,1] PROBE ID.CAL;l on volume SY: where
PROBE 1ID is the probe identifier entered by the operator (e.g.,
B201) .

After all such triplets have been written, a final
triplet whose first wvalue 1is =1 1is written and the file is
closed. This record, as in all data files generated by the
system, indicates end-of-file to tasks which later read the
file,

2-12 INPUT WAVEFORM AND BUTTERWORTH FILTER TASK ('THRTWV')

" If a network's response to a unit impulse is convolved
with an 1input waveform, the result 1is the waveform at the
network output, Since convolution 1in the time domain is
equivalent to multiplication 1in the frequency doman, and the
frequency domain transfer function is the forward transform of
a unit impulse response, one may inverse transform the product
of an input waveform and transfer function in order to get the
predicted output in the time domain.

Of particular interest is the input waveform of the

type:
E, () = A(e™Bt - &7 y/m 0<B<a (41)
where
(=57
A=25x 10% x(&"—) (g) ®*+8 Jyinm (42)
o B
38

ot

'

b
1

...
. L R .
.. o e

- .

t
'

PRy

L T I T _——

The analytic forward transform, E; (£), has the
following amplitude and phase:

E. (f)‘ = A (o - B) v-sec/m where w= 2nf (43)

‘ 1 [(0.2 + u)2) (82 +w2)jrg

oi(f) = —tan_1 (Elﬁ_i_ﬁ%_) rad (44)
a8 W

On a log-log plot, the amplitude appears as Figure 2-7.

-20 dB/decade

I

-40 dB/decade
LOG|E; 1)

|
!
]
1
|
|
|
4

t=5/2n f=a/2m

- LOG f —
Figure 2~7. Amplitude of Transformed Input Wave

Prior to performing an inverse transform, the product
is multiplied by a ninth order Butterworth filter in order to
reduce truncation effects, The Butterworth amplitude is essen-
tially unity except near the lower and upper cutoff frequencies.
Beyond these frequencies the amplitude slopes at -54 dB/octave
(nearly -180 dB/decade). It is convenient to apply the filter
to the transform of the input waveform.

Finally, since the data is stored in dB and degrees,
the product 1is converted to these units and stored on the

classified data disk (CD:).

39

s . - TR T R et ae

S . . - B A
o & EERIRIRN -t - N - > . .

T

'.{'," . N he

LEET, SV B .

PN . s " DS Tt S . . - PO KR . - L
a . . L A . . - - B N ‘e . e) oA - S
s N2 AR I . . A PR Wt e T e, et - T R L T L I,
3. S R e R I K . .. - A PPN - e o R Y T Wt Y
el TSRS S, TS PIOP TP AP LN PR PL U I R I Y ORI I S It - L LRI *

- ~ . -

L - PRI SR Y Y .

LA R 2 A a* B A BrA. M-S Aahe S-S Miad - iadh Bk Al el o
.

i

SECTION 3
INTERACTIVE ANALYST PACKAGE

3-1 INTRODUCTION o
This section describes the tasks that comprise the

Interactive Analyst Package (IAP). The processes provided by

fR—

the IAP are: -
i

Name Process Y

ADD Addition process. Performs an addition of ;w;

two data sets in frequency or time domain. _ q

AHD Add header process. Add header to time and]
frequency domain files for CWII compatibility. ‘

ANL Analytical waveform process. Generates a J

time domain waveform based upon operator L

entries of coefficients of an analytical ’-j
expression., This process issues subsequent
prompts,

CTP éassette tape transfer process. Transfers
data from cassette to the CD: disk for
subsequent manipulation. Also transfers
data from the CD: disk to the cassette.

CVT Convert tape process. To convert tape files
copied onto disk by TPC from the CWI file
format to the CWII file format.

DED Data Edit process. Performs editing on the
data by allowing corrections, insertions,
deletions and appendages to the data. DED
will also accept entries in a tabular
form for data in both frequency and time

domain., Data can also be listed from an
existing file using this process.
DIV Division process. Performs a division of

two data sets in frequency or time domain.

40

gy >

FTR

ITR

LHD

LOF

LON

MIS

MUL

SCL

sSuB

TPC

Y A T I - A RS S ae e et i e b g gl

 CTEOS T

Forward Fourier Transform process. Performs
a forward transform using the Guillemin
algorithm.

Inverse Fourier Tranform process. Performs
an inverse transform using the Guillemin
algorithm,

List header process. Lists all records of
the header for a specified file.

Log~off process. Logs the user off the
system and allows the deletion or preser-
vation of all or selected files created
during the processing sequence. When no
processing has been done LOF allows dele-
tion of previously created data file,

Log-on process, Logs the user onto the
system and allows the operation of the

other IAP processes. '

Mission file listing process. To list the
contents of a requested mission file on

the screen.

Multiplication process. Performs a multi-
plication on two data sets in frequency or
time domain.

Scaling Process., Performs scalar arithmetic
on either time or frequency data files.
Subtraction process., Performs a subtraction
of two data sets in frequency or time domain.
Tape copy process. Copy all of a cassette
tape into a disk file. Primarily used for

the conversion of old format tapes.

When the operator wants to use the analyst package, the

installed.

following command should be entered. The proper tasks will be

41

”.,

"‘" .' -v ’
..
.

Y

N
LI LI RN T)
R,

»
»
-

‘..I". .

S
ad

DA

{
o

S

Lt | A l

S ' . .

> . . . e e

T L A
talo'atal ‘e ® e 'aa Al

“ Steoliare At diaf fhagt S ghagn A b 1 S0 AR adiit e e R i "ol s “ e el A" Al i ae e S R ol M i sl ittt Tt - i i AN - i = i el i i M i U

AANAL <CR>

Wrere <CR> is carriage return. NS

. \~.'-J
The commands used in the IAP are designed to give the -~

analyst a flexible set of operations to manipulate data taken by
the real-time data acquisition software. The commands used to

run all of the processes are structured using a syntax very

similar to that of the standard DEC RSX-11M system utilities and
language ©processors, like PIP (Peripheral Exchange Program) and
FORTRAN IV~-PLUS.

The command syntax uses the concept of a process acting

upon a source of input, yielding an output. The basic command

syntax is as follows:
PRC output.list=input.list }Jl
where PRC is a three-character process name, input,list 1is a
list containing specifier(s) of input source(s), and output.list .
is a 1list containing specifier(s) of the output(s) of the
process. These lists can contain filenames, terminal or device °
specifiers, and process modifiers (called "switches") in various
combinations, depending on what is wvalid for the process. : -
Switches are indicators by which the process can be signalled of :5’

special conditions or of changes in the normal processing that

the operator requires, Switches consist of a slash ("/") -
followed by a switch identifier and an optional 1list. The =y
switch syntax is illustrated below: jgg

/SID:parm.list
where SID is the switch identifier and parm.list is the list of

parameters. Note that the parm.list is preceded by a colon and
may or may not appear, depending upon whether parameters are
required by the switch, If a switch requires more than one
parameter in its parm.,list, each parameter 1is separated by a
colon, An example of a switch with a parm.list of six
parameters is given below:
/S5ID:pl:p2:p3:pd:p5:pH

Switches can be applied to a command's input.list or output.list
(or both), depending again on what is appropriate for a given
process and switch.,

42

gt o I Lo .. . R R A F .
. . " . . Tt . . . N S . '

R AR N . C e N AP R

. . . . o . PO - K . - . . - - N N =

. e NRTIRERPIN . DTSR b L -
TR SO I AR N W DT SIS SR AN

Processes can use the information in the command 1line
to complete the process, or <can optionally prompt for more
information, data, etc.

Processes generally work with disk or tape based data
files. A file is identified by a fully qualified name of up to
eight characters and an extension of up to three <characters.
Within the IAP, a convention provides a means of identifying the
source of the data and the date of creation of the file.

A general rule of thumb should be followed in naming a
data file and 1its extension. The name is an eight character
name with a three character extension which is in the following
form:

FSEQNJDT.EXT
where

F--- is a character A-Z or 0-9 representing a

code to identify the test facility

SEQN is four integer numbers defining a unique

test sequence number

JDT is three integer numbers defining the Julian

date of the measurement. This value is
appended to the facility code and sequence
number by the software.

EXT is the three character extension where:

E - is one of the following six characters:

- indicating ambient noise

- indicating pickup noise
indicating cw measured test data
- indicating time data

- indicating pulse measured test data

A
U
C_
T
P
F

indicating frequency data

Il B S A0a A B S Sai il Yl Sl Ui "R Y M S A i

X - is one of the following 3 characters:
C - indicating calculated data
D - indicating defined data
M - indicating measured data

T - is an "A"

except in the case of converted

CWl data where a sequence number was used

for more than one measurement.

case,
through the alphabet

necessary.

The entire extension is also appended by

bration files saved for analyst

above convention.
sensor name found in the header.

will be used as described above.

When an analyst is naming a file to be created

operation, the first five characters can
These five characters must
file. The Julian
will be appended to the five characters as

the

an identifier.

used to name another

The IAP software will store

device named CD:. This device is usually
is used for data storage only.
the data are stored on CD: so the operator
device nanme,

3-2 COMMAND STRING PROCESSOR

All of the IAP processes use a macro program to

pret their command lines.
saine
allowed. The system routine CSI is called

Bach process command string is described

the
use are an exception to the

They will be named using

The software

in detail

In this

the last character will be incremented

as many times as

software. Cali-

the five-character

The Julian date and extension

by
be used in any way as

any
be unique from those
date and an extension
above,
data on disk to a
and

that

assigned to DL1:,
will

need not specify this

assure

inter-

Each macro program is essentially the

except for the number of switches and input files that are

by the macro progran.

in Section 38

of the CW Measurement System Operating Manual.

44

- - % -
.. . TS B
- . B .

S
YN,

. .

. A t LT e ae - et
L. R A
PRI . PO I S C s R

R P T P T N T R T T P W I P T T T R e

e
L
. Jr. ;
B e
.
. R AL I
Py s

S
RS

)

1

. v
f L nJ.L"'Ll,

)

Yo s A
[

A

A

" "Rl "R i T A v Sadh e A M Al A S A i g DA DA S S AL A A S Shaa SISl NS G AL i e T R T —

3-3 ADD, MUL, DIV AND SUB

The basic arithmetic functions are essentially the same
programs except they perform different operations. They allow
the operator to apply a function of two data sets. The command
line syntax for ADD, MUL, SUB and DIV is:

ADD

DIV

MUL
SuUB

outfile = infilel.ext,infile2.ext

Infilel and infile2 are the data files which are

to be multiplied, added, divided or subtracted.

Infile2 is optional.

Qutfile is the resulting file.

In the case where only one input file is specified, the
input data are simply copied to the output file, 1If a switch is
specified for the output file, the output data are interpolated
to the time interval or number of points per frequency decade
specified by the- switch; otherwise, time data are copied point-
for-point to the output file. Frequency data are interpolated
to the number of points per frequency decade specified in the
file header. »

In the case where two input files are specified, the
output data file reflects the mathematical result of the applied
function: addition, subtraction, multiplication or division.
For time domain data, the output data are interpolated to a
regularly-spaced interval, calculated either by dividing the
minimum time spanned by the two files (the maximum of the
respective minimum times to the minimum of the respective
maximum times) by 500, or input by the operator as part of the
command line, If the wvalue input by the operator results in
more than 1,000 intervals, an error message is generated and the
number of intervals is set to 500.

For frequency domain data, the output data are inter-
polated to a number of frequency points per decade, either input
by the operator or gotten from the header of the first input
file., If either input file header indicates no frequency points
for a decade, no output data 1is calculated for that decade.

T,
Y, .

Zmpty decades may occur between non-empty ones, The total
number of frequencies may not exceed 1,000 in eicther the input
or the output files,

The selected function is applied to the data, and the
result 1s stored in the output file, along with an updated
header (see paragraph 4-2.2.2 for header format). For addition
and multiplication, the order of operation is important only
insofar as default values such as points per frequency decade
are taken from the first file specified in the command line.
For subtraction, the second file specified 1is subtracted from
the first, and for division the first file specified is divided

by the second.

3-4 ADD HEADER PROCESS (AHD)

AHD adds a header to a CWl data file to make it com-

patible with the IAP. The command to run AHD is:

AHD outfile/switch=infile.ext
The switch specifies whether the outfile is to be a time or fre-
quency domain file. ‘

AHD opens both input and output files and 1interpolates
the time or frequency values to the requested interval. It then
calculates the maximum and minimum data vaiues while copying the
data to the new file. The following records are entered into

the outfile data header:

Record Field
1 Data domain
3 Date
4 Time
5 Input filename
7 Function code and date
12 Comments
13 Comments
23-28 Maximum and minimum data point values
37-42 Points per decade
45 Time domain At

45

P P P I

LAl AR iCRd S S AR S A T N SR S S O AL A A O L P g S ML M AR S S MR et e el S

Bl SR AN
. RSN

«

74

)
r
!
v
Vv
’

.
.

The remainder of the header is 1left blank. All the
data points are then copied to the output file.

3-5 ANL

ANL generates an analytical waveform in the time
domain. ANL is run by entering the command string:

ANL outfile

The maximum time value and/or the desired number of points may
be specified. To create the waveform, ANL will ask the opera-
tor to supply values for the following equation:

A[B(eCt + pteCt + EeFt cos ((2ﬂGt)-H) + J]
After the constant coefficients have been entered, the time
value and amplitude are <calculated and written to the output
file. The minimum and maximum time values are calculated. The

appropriate values are written into the header records.

3-56 CTP

The cassette tape task allows analyst manipulation of

data files between the disk and the cassette tapes. Using CTP,
the operator can transfer files from disk to tape, from tape to
disk or 1list the tape directory. The function to be performed
when CTP is invoked is determined by the syntax of the command
line. To transfer a data file from disk, enter the following:
CTP/TP:number[/NEW]=infile.ext

Infile.ext is the fully qualified name of the file to be trans-
ferred. This name must be unique on the tape. If the name is
not unique, the operator is given three choices for eliminating
the problem, One is to change the name of the file going to
tape, another is to insert another tape, or, last of all, the
operator may exit the program.

If the operator chooses to change the name of the file,
a unique name of up to five characters must be entered. A three
character representation of the current Julian date will be
concatenated to the five character name entered. The extensicn
remains the same as the original file specification.

When the operator desires to change the tape, the pro-
gram reads the input from the terminal until the operator enters

JERTR

N

el . ! PP P . B T VL . P oo

L e 1 A S Lt T
PN atat ot ot _ Py) Al t [

3

1
Ay

.i.x .

.

8L

[}

T

MAA TE S SR wa e St e Gt At Bl Andl Al At Sl il R S B A S R Ay A L WO ey

a <CR>. Then che program tries again to write the r
file to tape.

To write a file from disk to tape, each 12 by

header record 1is copied to an 86 byte tape header reco
data is converted from one triplet or one doublet (in
binary format) in a 12 pyte disk record to two ASCII tri
three ASCII doublets in an 86 byte tape record. After
is copied to the tape, the operator is given the option
the file name in the analyst log so that it can be delet
the disk directory at log off.

/TP:number in the above command line specifies
number to which the file is to be copied. This numb
agree with the number actually written on the tape.
numbers are not the same, the operator is given the ch
changing the tape (as described earlier) or exiting the

The optional switch, /NEW, 1in the command
specifies that the tape is to be initialized. When a

initialized, the requested tape number is written in th:

six bytes of the first two tape records. The remainde.

two records are filled with blanks. These two records
the tape directory. If no file is specified in the comm
task will exit after the tape is initialized. Otherw
file is written to the initialized tape.

When a file is to be copied from tape to di
following command line must be entered.

CTP[outfile]l=infile.ext/TP: number

Outfile, when specified, is up to five characters used w
three character Julian date to name the disk fil
extension will remain the same as that on the tape file,
outfile 1is specified, the disk file is named the sam
tape file requested, The filename must be unigue on the
the task will exit. When the file transfer 1is comple
filename is added to the analyst log.

Infile.ext is the fully qualified name 0of the

be copied from the tape. The tape directory is sea.

determine if the file exists on the tape.

disk
. The
rernal
2ts or
> file
place

from

2 tape

must
[f the
e of
>gram.
line,
ape 1is
first
>f the
nprise
1, the
2, the

, the

h the

The
If no
3s the
isk or

R the

1

e Lo

hed to

.
s

I . 1 PSR
S, TR, T

Y N

.y '.k.p PN

9.

-.;._,‘1!“' -

.
‘
| TR

- ey ——T—T T

ﬁ: /TP:number is a switcn indicating the number of tne
= . tape from which to copy the file. If the number on the tape and
JE the number specified are hot the same, the operator is given the
option of changing tapes or exiting the program.

To get a directory listing of the tape currently in the

drive, the following command is used:

{TI:) A
CTP [,LP:,] /DIR
{TI: is an optional device specification requesting
'LP:' the terminal or line printer, if available.

The directory listing shows the tape number, the file-
names in the directory, and the number of tape records occupied
by each file. There is a maximum of eight files permitted in
th= tape directory.

Tapes are organized so the first two records are the
directory of the files contained on that tape. Each directory
record begins with the tape number compris;d of a maximum of six
digits, A maximum of 12 characters (eight characters, a period
(*.'") and a three <character extension) :can be wused for a
filename. File names are followed by an equal sign ('=') and an
integer of up to four digits, 1indicating the number of tape
records used by that file. There are no more than four files
per directory record. The number of records used by each file
are added together in CTP to determine if sufficient room is
available to write the requested file to the tape. These num-
bers are also used to calculate the number of records to skip to
get to the beginning record of a file to copy or to reach the
next available record.

Each file on the tape begins with a record containing
a '%0' and the filename. Then 57 records follow containing the
file header. Only 12 of the available 86 bytes of tape record
are used for each header record.

The data is in ASCII,)3 characters per data value with
six data values per record. The file is ended with a '%/ gND OF
FILE' record.

Disk files are arranged with 57 ASCII records, each 12 .
bytes in 1length, containing the file header. Following the .

49

P T S S

—— ,Hv,,f. mﬂfv.'_-_.‘-
. B

AR A e T S S N N P SN Tl A S A A D A A A N A i N

header are data records of 12 bytes which contain one triplet or
one doublet (depending on the data type) written in real
internal binary format. The files are direct access so the end
of file is determined when a read error occurs.

RSX's command string interpreter is used to check for
proper syntax in the command 1line. The operator must have
logged on using LON in order for CTP to run,

For communication to take place between the tape and
the disk, the tape unit must be attached using a Wait Queue I/C
command. When data are transferred from the tape to the disk,
the proper function value must be sent to the tape unit to start
sending. During the sending process, a five second timer is sct
so that when nothing is received from the tape, the send request
is cancelled.

For data transfer from disk to tape, the function value
to start the tape receiving must be sent to the tape. A status
returned from the tépe must be checked, until only the ready bit
is set, before the program continues. A function value to stop
the tape receiving-must also be sent,

Files used by CTP are found on the disk assigned to
device CD: in UFD[200,2].

3-7 CvT

The convert tape task 1s used to convert the CWI for-
matted tape files created by TPC into individual CWII formatted
disk files.

Prior to invoking CVT, the operator must have logged on
using LON. CVT can be started by entering CVT<KCR>.

When CVT begins, the operator is prompted for the tape
number to convert. The number entered is concatenated onto a
string of zeros to create a six digit name, An extension of
'.0OTP' is added to make a fully qualified filename. The file to
be <converted is expected to be found on the disk assigned to
cevice CD: in UFD[2C0,2].

50

e B M i e Al e e S e St ~aaaey St ieiivs inuistn Jie SRl e Java e M Sendheen Seuh e v it) w— " A S A S A i s B s e ok 4
3
.P‘
-

P ow

b

-4

CVT searches for a '$' in the first byte of each

recorc, Whatever character is in the second byte determines the

™ ™
™~
A

type of file to be created.

When the character is a 'l', a 32 record "“"storybook"
follows. These records are wused to create a 57 record file
containing the header to be used in the new CWII files. The
test sequence number and the creation date are retrieved from

the storybook. After converting the date to a three character

o ‘F i
. .
. PR

Julian date, the operator is prompted for a one character test

rrY

facility code. The test facilty code, the sequence number and

Julian date are concatenated to form the filename which will be

’ ' 'u/

used for each file created for any data type using that sequence
number. The files will be distinguished by their extension.

when the character following the & is a 2, the

following data are ambient noise and the extension is '.AMA'.
A 3 indicates test data and the extension is '.CMA'. '.UMA' |is
the extension used when the second character is a 4 specifying
pickup noise. A 5 is wused when inverse transform data are
present., In this case, the extension is '.TCA'. Last of all,
a 0 indicates the end of the current file.

Each filename is required to be unique. 1If this is not
the case, the last character of the extension 1is incremented
through the alphabet until a unique name is found.

The files consist of 57 12-byte ASCII records
containing the header, followed by 12 byte records of real
internal binary data values in triplets or doublets depending on
the data type of the file. As each file is created, its name is

placed into the analyst log. The entire tape file is converted
in the following manner until no more data exists.

When a record beginning with '%' is found and the data
are determined to be in the frequency domain, two triplets are
assumed to be in each record. The data values are converted
from ASCII to real internal binary and written to the new file
in a 12 byte record with one triplet per record.

A group of data determined to be in the time domain is

] . v ’ .]
1.'“ e bndndank .J,

assumed to be in records of three doublets each. These values

51

K |

are converted like the frequency data and written to the new 1
file with one doublet per 12 byte record. - i
Minimum and maximum values of the data are calculated M?

’ k

r

as the conversions are done. When the conversions for each data

type are completed, the minimum and maximum values are written T

to the header, o]

3-3 DED
The data edit task has two primary functions. DED can
be used to «create a new file from tabular data entered by the

o .
R t . . 4
0 RSy

operator or to edit an existing data file,
When c¢reating a new file, DED 1is invoked by the
following command line: -
DED outfile/CR
Outfile is a five character name specified by the operator. The
data entered by the operator is stored 1in a disk file wusing

outfile, a three character representation of the current date

and a three character extension concatenated together. The
extension is 'TDA' for time domain data and 'FDA' for frequency
domain data. After concatenation, the resulting filename must
be unique.

Data editing 1is started by entering the following
command line,

DED infile.ext
Infile.ext is a fully qualified filename <consisting of up to
eight characters in 'infile' followed by a three character
extension. This name is used to identify the file to be edited.

Files created by DED, whether new or edited, are stored
on the device assigned to CD: in UFD[200,2].

Once started, DED first determines if the operator has
logged on using LON. Next, the command string interpreter,
provided by DEC, is used to parse the input command 1line for
valid syntax.

When creating a new file, DED ensures that the filename

is unique by first opening the file as 'old'. If the open |is

52

T R R N e N R N T T T Ty vy

kuu

] .
vt
Pl WO

fu 3|

successful, the operator is informed the file already exists and

wﬁv-vv,,
AP AT,
AEMENOE N NSRS SR A

. .‘..A..."
L LR T A
DLl

the program exits.

If the open fails, the file is opened as 'new' and the
operator is prompted to enter triplets (frequency, magnitude and
phase) or doublets (time and amplitude) depending on the data
type. The values can be entered in integer, real or E-formats.

Each freqguency or time value must be positive and must be

ﬂ;? greater than the previous frequency or time wvalue entered
(maintain monotonicity). When these conditions are not met, the
_ operator is informed of the discrepancy and prompted to re-enter
l the value. As each data set (doublet or triplet) is entered,
9 the values are compared with the existing minimum or maximum
F values. These existing values are updated if necessary.

wWhen a <CTRL Z> is entered for the frequency or time

Y value, the prompting is stopped. The header for the new file is
. created. If the file is in frequency domain, the operator is
>

1
L

prompted to enter the number of points in each decade. These

values are written to the -header. Once the header is completed,

N Jo

g’l the file is closed and the filename is entered into the analyst
log.
For data editing, a menu of six processes is displayed.

This menu is displayed again after the completion of each

process except number six, EXIT. d
The first process, LIST, reads each record of data, -
converts it to ASCII and prints it on the screen. This option

is intended for use by the analyst to locate where data editing oo

is necessary. 4

~Process two is used to append data to the file. The B
operator must specify the location in the file where appending f;
is to be done. The original data are copied to a temporary file jd
up to the position of appending., Then as many data sets as .'J
desired can be entered, as long as they follow the restrictions T
as described for new data entry. When a group (one or more) of

data sets has been appended, the operator is prompted for more
appending. The original data are again copied to the temporary

file to the next position for appending or the end of the file

53

,
- e el : - . :

. S A AR . Lo
hela o ten a P WA a al e - Sah o r oo an A

LA W S S Y ™y T N U SR

(o B S Mg e Bt B ite St Jher e

. if no more appending is requested, More than one appending
process can be requested only if the selected positions occur
sequentially in the file,

Data insertion can be accomplished be selecting process
three., This process 1is identical to appending except the
hi position selected by the operator comes after the inserted data,
% whereas the position comes before appended data.

Process four is selected when modification to a data

P set is desired. More than one data set can be changed if they
- are requested sequentially through the file. The original data
" are copied to a temporary file except for the data sets

{ requested for modification. The operator is given the option to
change each value in the data set. Entering a carriage return
causes the value to remain unchanged.

p - The deletion process is started when five is selected. !
- Selection of the first deletion position is required by the
& operator. With a single deletion request, any number of

consecutive data sets can be deleted. Other data sets can also

be deleted if requested sequentially. Except for the deleted
data sets, the original data are copied to a temporary file.

a . e .
S PR
e ', . . .
Vo P P B
et S .
2deadnt o, e e ot

Exiting from DED is accomplished wusing process six.
First the program determines if a file was edited since DED was

|-
) -

started. If it was, the operator 1is given the <choice of

deleting the original file, Then, if desired, the temporary

LA)

file can be named the same as the original file. Otherwise, a

five <character name must be entered. A current three character

[] Julian date and the proper three character extension are
' concatenated for a fully qualified name for the new file,

After the new filename has been determined, the

temporary file is copied. As they are copied, the frequency or

® time wvalues are checked to ensure they are monotonically Y

increasing. If the <check fails, a message is written to tell 8

the operator, but it does not stop the file «creation. Minimum

and maximum values are also checked as the data are copied and T

P then written to the header when the <copy is completed. The 'é

original filename, 'DED', and the current date are written to

" ol A Dt St it Rt i Bl A ACN A A Mk Sk e ik S AR b Balih"in AR e ot b aPL P S AL S AR AN S T A e g)

the header records five through seven. Points per decade are
not updated.

When more than one process is requested during an edit
session, the temporary file most recently created becomes the
original file for the next process. After the last temporary
file 1is copied to the new file, all the temporary files are
deleted from [200,2] and the new filename 1is placed 1in the
analyst log.

3-9 FTR
This task performs a forward Fourier transform on time

domain data wusing the Guillemin's Pulse Train Method described
in the section on the task INVERS. After the time data are read

in, the program builds the frequency output array, evenly

'97- spacing the points within each decade and using the numbers of
E. points per decade requested by the operator or the defaults. A
&3 warning 1is issued if the maximum frequency requested is greater
: ‘ than half the sampling rate of the time data (the Nyquist

criteria) but processing continues. T
Calculations of the integral proceed as if a point
{0,0) exists before the first time point and a point (tn * 10,0)
exists after the last point at time tn, Both real and imaginary
values are calculated for each frequency point. After all
points have been processed, the Parsevals are calculated and

compared as described in the INVERS write up.

3-10 ITR
Using a frequency data file as input, this routine

performs an inverse Fourier transform using the same method as
the on-line task INVERS. After the frequency data has been read
in, the time array is built wusing the number of points and

L maximum time requested by the operator or defaults of 500 points
L and a maximum time equal to the number of points minus one times
&, one over the maximum frequency present.

;; The magnitude of time 0 is set to 0 and calculations

proceed as 1if a point (0,0) existed before the first freguency

s —
PR
P

(LN

eae N
E

poinr-(wn * 10,0) existed after the last frequency point at
frequency «wn. The frequencies are <converted to radian
frequencies and the program loops over all of the frequencies
{inner loop) for each time point (outer loop).

When all of the time points have been processed, the
Parseval energies and their ratio are calculated as described
for INVERS and stored in the header of the output file,

ITR assumes that the data has no dc value, therefore it

should not be used with data that has a dc value.

3-11 LHD
The list header task is used to list the <contents of
the header 1in a specified analyst file on the terminal screen.
LHD is started with the following command line:
LHD infile.ext

.Infile.ext is a fully qualified name with up to eight characters

in the filename followed by a three character extension. The
operator is required to " have logged on using LON prior to
invoking LHD. The file specified is expected to be on the disk
assigned to device CD: in UIC [200,2]. LHD uses logical unit 1
assigned to the terminal to write the header. This unit number
can be assigned to the line printer, if available, to get a hard
copy of the file header.

The header titles and contents are printed 1in such a
way that the entire header can be viewed on the screen at one
time,

RSX's command string interpreter is used to parse the
command line to be sure the syntax is correct.

Each of the header records read by LHD in the file are
12 byte ASCII records, The records are read into a 12 byte
buffer and written with the appropriate title to logical unit 1.

3-12 LON AND LOF
LCN and LCF log the operator onto and ofI the systen
allowing full use of the analyst package. LON sets the "log on"

event flag and initiates the 1log task which records all the

56

Che e SR AR A i i = " Pt AR T ST S " Mai Sl A AL B R Al Sl A Y e s A A A b Sl b Aol |

analyst files created until the operator logs off. LOF sends a

message to the logging task to initiate the shutdown of user
activity and to allow the user to save or delete the files
created during this session. Each IAP process checks the 'log
on' event flag. The data filename log file is in UFD [2,2] on
the system disk and is called LOGTSK.(Q.

3-13 MIS
MIS lists the contents of the mission file. It 1is
initiated by entering the command
MIS infile.mis
The contents of the mission file is information selected from

the menus, It will be listed on the terminal in the following

80 column format, first line:

Columns Field
1-4 Test number
6-13 Filename
15-18 Tape ID
20-28 Date
30-37 Time
39-42 Test type
44-55 Test point ID
66-73 Test engineer

Second line:

Columns Field
1-80 Test comments

A blank line will separate each data set. The 1listing
is divided into pages of 15 filenames per page. The operator
must use <CTRL S> and <CTRL Q> to stop and start the output for

closer examination.

-

e
LI
r o

S
e

py—

,
PRI, 1

i

R

N o
-A.L""

3

PO W Y

L
S T S
et e te B 0
A et
asa’ sy X

., ..,
o
.. o
¢ + - y o
PO

Foy e e

o ted

¥
el

ot
.=

Loy
AR
FY N TPy

™

T

D s

-
. T
) ﬂ,)
. '

. P

g L
.

C o= A oiar udafodied s Bl Al At Lt S A A0 R T T T e T T T Y,

3-14 TPC

The tape copy task is used to copy the contents of an
entire cassette tape into a single disk file. The task is
invoked by entering

TPC<KCR>
TPC sends a function value to the tape unit so it begins to send
a record from the cassette unit to the PDP-11/34. Each record
is 86 bytes 1long containing only ASCII characters. When a
record is sent, it is received in an 86 byte array which is then
written to a sequential disk file with records 86 bytes in
length.

As each record send is attempted, the status returned
from the tape unit is checked. When the busy bit is turned off,
the next send is begun. If a CRC error, receive error, or fault
occurs, an error record is written to the disk file. The error
record is '%/ TAPE RECORD ERROR DURING COPY'. When the tape
leader is reached before the tape copy is complete, the error
record '%/ END OF FILE NEEDED' is written. 's/' is used to
begin. the record for compatibility with the tape conversion
routine, Prior to invoking the converson task (CvT), the DEC
editor TECO must be wused to correct the error records in the
file.

When a request to send is issued to the tape unit, a
five second timer is started so if no record is received within
that amount of time the send request is cancelled and the task
completes,

TPC begins by prompting the operator to enter the tape
number vrovided LON has been used to log on. The number entered
is concatenated onto a string of zeros to make a filename of six
digits. An extension of '.07P' is used on the filename. The
file is written to the disk assigned to device CD: in UFD
(200,2]. After the file is closed on the disk, the filename is
entered into the analyst log.

il SnMEL i AR I el

R A R iet i g e et Tt Tk At ‘Bl Wi I S W Ae (o Al St LB 0 A 4 S N e .“.“.'-"'.*
B
SR

‘et a
LA

L" U s
A

SECTION 4 o
SYSTEM DATA STRUCTURES AND GLOBAL VARIABLES

,_,.-v,‘
. P .

-
R
el

4-1 INTRODUCTION e
This section addresses the definition of data)

P
P

Pt
7t Dy

structures and global variables used in the CW Data Acquisition -
Subsystem software. The definition of data structures will i:j#
start with a discussion of some operating system constructs used A
extensively throughout the real-time system. Discussion of disk

and file structures used by the. software will follow.

Communication structures, specifically the message structures
and RSX-11M Global flag definition follow the file structures,
Global flags are used for intercommunication between tasks.

Other structures used for archival cassette storage and
the PCU frequency table entries are discussed along with a
discussion of 1-disk vs 2-disk system operation.

4-2 FILE STRUCTURES

’ The system, during data acquisition, may have as many
as seven files open at a time. This section discusses some of
the relevant system constructs, the file formats and access

methods that are used,

4-2.1 QOperating System Constructs

This information also appears in the RSX-11M Documen-
tation Package. Reference to the relevant sections of the
package is encouraged for a more detailed discussion of these
and related constructs.

4-2.1.1 UFD's and UIC's. The term UFD is a mnemonic for User

File Directory and UIC 1is a mnemonic for User Identification

Code. Both constructs have identical format and are sometimes
interchangeable. The form of a UIC or UFD is

(g,m] | g
where the brackets are required syntax and g and m are octal 4
numbers in the range 1-377. - ’

59 E".:;:'_ 1
9

. A N . L P S T E . . - . . . P R « R I T
o . o e . . . et . - . N L - -, - R ... Tt N Tt Ly,
I I I Sy BRI T J_ U, JPC UG I, Sy SR DR S SR Y S PO U M NI Y S PN N S T ST U \A}J

In order to be able to access portions of a disk in a
random - fashion (as opposed to sequentially scanning the disk
looking for a particular file) a data structure called a
directory 1s 1imposed on the disk. The directory contains
various pieces of information concerning files including a
file's name, 1its starting location, its block allocation, etc.
By scanning the directory, a given file can be found much
quicker than 1f the entire disk were to be scanned. In a multi-
tasking environment, where many users may be accessing files on
a disk simultaneously, it may be desirable to keep a wuser from
accessing or writing wupon another user's file(s). RSX-11M's
file system uses the construct of multiple directories, one for
each user or class of user, containing that user's files exclu-
sively. Each such directory is termed a User File Directory
(UFD) . When a wuser wishes to use the system, he (or she) is
given access to files in a User File Directory by way of a User
Identification Code (UIC). The UIC is assigned in one of two
ways: either by "signing on" under a UIC in systems with an

-option built into them called Multi-user Protection (not
supported on this system) or by use of the MCR SET/UIC command.
A UIC is associated with a terminal if Multi-user Protection is
not used, or with a user if Multi-user Protection is used. A
UIC allows a wuser full access to all files in the associated
UFD. Limited access rights are allowed to files in different
UFDs, depending on the file, the UFD, the UIC, and how the
system is built., The four access privileges allowed by the
system are read, write, extend (allowing the user to modify the
file by making it bigger), and delete., UICs with the value g
(called the ‘'group') between 1-7 are called 'system' UICs and
are privileged., The value m is called the ‘'member' and users
whose UIC match the group and member of a UFD are said to be the
‘owner' of the UFD. Users whose group matches a UFDs group but
whose members differ are said to be in the UFD's group. A UFD
whose group and member do not match a given user's 1JIC and do
not belong to a system group are said to belong to the ‘'world'.
These subgroupings (system, owner, group and world) determine

R
-

rooo
o .
[J RIS

al

oo N
e, A e

"‘! - . ".-.“

the access privileges that a user has given his UIC and the UFD
to which a given file belongs. All files in this system have
the following access privileges.

e System UICs (g is between 1 and 7) have read, write,

extend, and delete privileges to all files.
® Non-system UICs have read, write, extend and delete
access privileges to all files that they own (UIC ¢
and m = UFD g and m).

¢ Non-system UICs also have read, write, extend and
delete access privileges to all files in their group
(UIC g = UFD g, but UIC m <> UFD m).

e Non-system UICs only have read access to files in

the world (UIC g <> UFD gqg).

It is possible to have files in a UFD owned by a
different UIC. This generally happens when a file from a system
UFD is copied to a non-system UFD without transferring file
ownership, or a file is created in a non-system UFD by a user or
task running under a system UIC. Refer to the PIP manual for a
further discussion uf this in the description of the /FO switch.

For the CW system seven UFDs have been generated. They

are:

. {1,1] (system) Contains system libraries,
Fortran libraries and system genera-
tion data.

° [1,2] (system) Contains the system boot startup
file and text of Fortran and system error
messages.,

] [1,54] (system) Contains system image, and task
images of system tasks like PIP, Fortran,
etc.

° {2,2] {system) Contains source and task files

. of software generated for the CWI system
by EG&G, like INPUT, AUTPLT, etc.
. . 7,10 (system) Contains source and task files

of software generated for the CWII system
B by EG&G, like FTR, MIS, etc.

o 61

gli" giePL AR S AR Bt e St hass M ids 20 sy el L A e Fadi it

|

Tasks are

nominally

4-2.1.2

where

R A - LAt e
FILS U S . U i VS T B

Ciat Shalin e d Thekr el Teod Wiy ~B b TN dn YR th s b 40 daJiAs 20 ten - Reuhdh S S ey 4

L (200,1] (non-system) Contains data files generated
by or used by the software system, like
the menu files.

e [200,2] ({non-system) Contains analyst formatted

data and log files generated by the soft-
ware system.
all run under UIC {[2,2]. The operator's terminal 1is
set to [2,2].

Filenames. Filenames are of the form:

DEV:[g,m] FILENAME.EXT; VER

DEV: 1s the mnemonic of +the file structured device
where the file 1is to be accessed, On this system,
DEV: is either DL1: or DLO: or a 'pseudo-device’

discussed in paragraph 4-2.1.4.

[g,m] is the UFD. 1Its default is the UIC the wuser |is

working under.

FILENAME is the name of the file. It is an wup-to-nine
character alphanumeric name and may start with a digit.

There is no default,

.EXT is the file extension. It is generally used as a
file type descriptor. It is an up-to-three alpha-
numeric character name, or it may be blank. It may or
may not have a default, depending upon the context in

which the filename is used.

;VER is the version. It is an octal number 1in the
range 1-377. It is used to differentiate between files
with the same name and extension. 1Its default is the

highest version that currently exists.

62

. PN - N L. - . L DL
P AL LI WP LA WL I A VY S SR WP SN G R Sha S T WD UL PO WA NPT G U Gy LRI YA PR O S N

«
o
'!
r

- 3

,_
9,

_1
1

.
.
|

|

{

N

a

oG\ IR

b ',
k-

S et i Serh s e B M A RS S S SR B T et A e e 5 a0t Savt hagt et B ddte RN I A e AalA At DG SR S g S e et I i At e dc el Al At edh Sal el A Sl “afl s i |

__1i
(e
. In the CW system, certain default extensions are assumea. These]
3 are: L
El .FLX Files of this type contain Flecs source - “d
' code. ;
- .FTN Files of this type contain Fortran source
4 code. These are usually generated as -
’i output of the Flecs processor. !ﬁ
E; .MAC Files of this type contain Macro-11 source :q
o code. ;
& .0BJ Files of this type contain object code.]
z These are the output of the Fortran

and Macro-11 processors,
.TSK Files of this type contain task images
and are the output of the Task Builder.
.CMD Files of this type contain commands to

MCR or other processors.

4-2.1.3 Logical Units. A Logical Unit is the system construct

by which communication to actual devices is done. Tasks write
output or read input using logical wunit numbers rather than
specific device or filenames. The system maintains a table

which cross references the logical unit number to the device,

This allows the programmer to write the program with device
independence, and change devices easily without having to

re-compile the program.

CANE N SN Jun sUR 4

The Logical Unit Numbers (LUN) are initially assigned

vr

at task build time using the ASG task build command. These

;’ assignments can be altered using the system directive ASSIGN LUN }f

or its Fortran equivalents (CALL ASSIGN, OPEN). All LUNs which -
Ei are to be assigned to a file are generally assigned to the 7!;
" device upon which the file is kept, and calls to the wvarious »’~:

file handling routines are made to build the File Descriptor

Block (FDB) {(a data structure maintained in the task space used

R S SN A s dns A0
: ‘

to control a file) and open the file. In the Cw system, this is

the method that is used. J

63

L. RN ot o’ o iy
'
.

4-2.1.4 Pseudo- and Logical-Devices. The operating system

allows the wusers to dynamically re-direct data cransfers from
one peripheral to another. Such a transfer is effected by the
REDIRECT command. Transfers mediated by a REDIRECT behave in
the following fashion. A program is written and task built to
transfer data to a device, TT0:, via a logical unit. Should
TTO: be unavailable (for example, if the device was down), all
transfers to TT0: could be REDIRECTED to a different terminal,
TT3:, or perhaps a completely different kind of device,
LPO: (line printer). The system mediates any special formatting
required via the device drivers, and this transfer between
devices is, therefore, completely transparent to the user.

To give an added degree of device 1independence, the
system also supports the concepts of logical devices and pseudo-
devices, Pseudo-devices have device mnemonics which do not
correspond to a given device; rather, they are dynamically
assigned by the users to various devices as required. The
assignments are made on either a local or global (system-wide)
basis. The pseudo-device mnemonics and their meanings are:

SY: The system volume for the users, that is,

the volume containing the user files,

LB: System library device, that is, the
volume containing the system's file.

CO: Console output device,

CL: Console listing device.

NT: Network communication device (not

supported in the CW system).
TI: The user's terminal.
Pseudo-device TI: is always the user's terminal. A task which
communicates with device TI: communicates with the terminal upon
which the command was entered to start the task. General
practice is to task build tasks using pseudo~devices wherever
possible, and setting up pseudo-devices (via the REDIRECT and/or
ASSICH commands) to direct traffic to the desired devices 3t run

time.

64

.
ba'a’a 4 a g

I
et

e
PRV |

!
I
Ao

ot
Ty

‘
s

)

L
.
'A!LA'_LA"_‘ Y

oy

.‘
e ®

Along with pseudo-devices, the system supports 1logical
devices. Logical devices are the same as pseudo-devices, except
that logical device mnemonics have no default meaning to the
system; their meaning and'scope are wholly determined by the
user. The CW system currently supports one logical device, CD:,
the classified data disk volume.

Further explanation on 1logical devices and pseudo-
devices can be found 1in the RSX-11M Operator's Procedures
Manual, Volume 2A. This manual also describes the REDIRECT and
ASSIGN commands and their use.

4-2.2 Disk and Disk File Organization

The Data Acquisition subsystem has two disk drives,
which are identified to the operating system as DLO: and DL1:,
indicated by the '0' and 'l' on the drives' 'ready' lights,. It
is sometimes necessary, due to security constfaints, to seg-
regate classified or sensitive data from non-classified data.

The Data Acquisiicion subsystem. uses two logical device
names -~ SY:, which is the system disk, and contains all system
files and non~classified data; and CD:, which is the «classified
data disk. SY¥: is normally assigned to DLO: and CD: is normally
assigned to DL1l:. All programs in the Data Acquisition sub-
system refer to SY: and CD: instead of the actual device names.
This allows the redefinition of disks should a drive fail, with-
out having to re-task-build all the tasks. See paragraph 4-6
for single disk operation particulars.

The BAD utility (see paragraph 5-9 of this manual) is
used to declassify disks. This utility was selected because it
writes a test pattern in every sector (block) of the disk to see
if the pattern can be re-read successfully. This obliterates
data previously written on the disk, thereby making it accept-
able for declassifying a disk. It also obliterates all system
data structures on the disk, including directories, identifica-
tion blocks, headers, etc. The INI command rebuilds the system
data structures, and the UFD command rebuilds the user file

65

. _ e,
. - e
o oo RS

L.J. " PIALY LI

o dali 2k
- .

LR an. a4 g ——
et
et s

— Ny
I“ 2

)

directories. Whereas the system disk contains a number of UFDs,
UFDs, [200,1] and

On the classified data disk all threat waveform files

the classified data disk contains only two
{200,2].
generated by the program THRTWV (see Section 2), file INVERS.DAT

generated by INVERS (see paragraph 2-4) and the files
RAWDATA.TMP, CORECT.DAT, and ACOMP.TMP generated by CORECT
(paragraph 2-2) are kept. CORECT.DAT, ACOMP.TMP and INVERS.DAT

and overwritten each time a test 1is performed; whereas the
contents of CORECT.DAT are not classified, they may be sensitive
added

All analyst files are also maintained on this disk.

and so this file appears on the classified data disk for
integrity.
The users of the system are responsible for maintaining the
It should also be noted
that two utilities, AUTPLT (uses the AUTO PLOT capabilities of
the HP-2648A terminal to plot data files) and FYLDMP (dumps data
files)

files founds on the CD: disk.

integrity of the data on this disk.

can access data from this disk if the operator specifies
The system manager and operator
are responsible for security when these utilities are used,
4-2.3 Locally Defined Disk File Structures
Following is a description of the format and structure

of the files generated by the software subsystem itself.

4-2.3.1 MENU Files.,
access files which contain data used to describe various aspects
of the environment of the test.

The 'menu' files are unformatted, direct-

Three files are used to contain
this information, named MENU.PRI, MENU.SEC and MENU.ODL.
in UFD [200,1].

containing the

These
files reside on the system disk (SY:)
MENU.PRI is the file

file contains information necessary for the proper correc-

'primary' menu.
This
tion and reduction of the raw data supplied by the measurement
subsystem,

16 bytes,

It is a random-access file containing 23 records of

The records each contain one piece of information, so

66

R P A
Com o o w e R . AL LA T T A T T

bt s A b S~ o Bt A o AR AMCIIC S Sl L0 S aRa I OB KR B d sl el i e b A

N P

luL!AL ;.‘l-‘ﬁ.* ¢

AR B e MR AR Aot it it e dn St Bye s St v it Db BN B e A d B Aetn:
\:"

P -

-

[

ok

- accessing a given record access a particular parameter. The

ui record asignments for MENU.PRI are:

3

* Record No. Use

: == = i8¢

{ 1 Contains the date of the current

test in ASCII as 'DD-MMM-YY' where
DD and YY are the day and vyear,
respectively; and MMM are the first
three letters of the month.

2 Contains the time of the current
test in ASCII as 'HH:MM:SS' where
HH, MM and SS are the hour (24-

hour clock), minute and second,
respectively.

3 Contains the type of run being
done. Run type if one of five
character strings: 'RFSN', 'RCAL',
'TCAL', 'PCAL', or 'TEST'. Any
other string is treated by the - q
software the same as a 'TEST'.

4 Contains the up-to-five character

filename of the signal probe (the

signal probe 1ID).

5 Contains the up-to-five character
filenames of the reference probe
(the reference probe ID) or the
string 'SYN', indicating the
synthesizer is being used in
reference channel.

6 Contains the test point ID.
This record is only used for
annotation,

7 Contains tape number. This entry
is of the form NNNN where NNNXN is
the tape cassette number.

67

. . ow L T S . T . - et
- - Lt ettt S e e e e S e -
- . - L e y - O T T L

.

. . S

. e Lt ST, . .- e . - - R A N T
L VY A ST S, S W & W SR WA VAP SR IPUAT WA WA, Sl Sod WO W T W S AL WY WAL STl SO A € S I U S R, A

L I T T T a e,

8 Contains the up-to-five character ii&
filename of the threat waveform e
(threat waveform ID). "-‘.’
9 Contains the ASCII representation B

of gain added to the reference
channel in dB.

10 Contains the ASCII representation
of gain added to the signal channel
in dB.

11 Contains the ASCII representation
of the delay added to the signal

channel in ns.

12 Contains the ASCII representation ,
of the delay added to the reference N
channel in ns. :dii
13 Contains the ASCII representation -

of the network analyzer displa{
reference in dB.

14 Contains the ASCII representation of
the delta time for use in building
the inverse Fourier transform.

15 Contains the ASCII representation
of the threat waveform scaling
factor. This string must resemble
the input form of a floating point
number .

g 16 Contains the tape file number of the
transfer function system calibration
run., Format is the same as for record
seven,

17 Contains the tape file number of the
response function system calibration

run. Format is the same as for record

seven.,

S MBS
R S N

R e 20 A .
. I

DSl Malh Bl a SR N e i e Sl Madie i/l i e S N AR el M i ML S S A S A P LS R e S i S R M B b * Bl N A

18 Contains hard-copy plot and tape storage
enable flags in the first and second
bytes, respectively. Bytes set to 'Y'
enable the corresponding function.

19 First full word contains, in internal
integer format, the calculated ampli-
tude plot centerline in dB.

20 Contains the ASCII representation of
the Parseval time values.

21 Contains the ASCII representation of
the pParseval frequency value.

22 Contains the ASCII representation of
the Parseval ratio.

23 Contains the ASCII representation of
the reference sensor calibration

reference gain in dB.

The file MENU.SEC contains the secondary menu, which
has data that does not figure in the data reduction aspect, but
is used for annotation. Each record of this random access file
contains 32 bytes which contain only ASCII text. The records

are assigned thus:

Records Use _
1 Contains test location.
2 Contains test type.
3 Contains test element.
4 Contains log ID. This is intended

as a way to cross-reference a data

run with an externally maintained

test log.
5 Contains the test engineer's name.
6 Contains the sequence number of

up to four digits,
7 Contains a one letter test facility
code.

69

e
.4
-_..;-‘
T4
4

4
-
=

"-.I Ce
L e

G .
D
B ad ol At

AR W D e A A A S DM RAAE AR S AR A AN

Contains remarks entered by the
operator at end of test, The first
32 characters (bytes) of the remarks
are stored in record eight and the
remainder appear in record nine.
Contains the Mission filename of

nine characters + '.,MIS'.

;J The file MENU.ODL contains the ODL menu, which has data
N that sets up the IEEE-488 bus devices. Each of the 12 records

of this random access file contains four bytes which contain

only ASCII text. The record assignments for MENU.ODL are:

Record
® 1

L 10

Use
Contains the ID number of the data
ODL to turn on and set up.
Contains the channel or calibration
setting (A, B or C).
Contains the channel attenuation
setting (0-79) in dB.
Contains either 'IN' if the integrator
should be placed into the data path
or 'OT' if it is to be left out.
Contains a 'y' if Vin = 0 is desired
for the data ODL, else an 'N'.
Contains a 'Y' if the reference ODL
is to be turned on, else a 'N'.
Contains the reference ODL channel
or Calpulse (A, B, or C).
Contains the reference ODL attenuation
(0-79) in dB.
Contains 'IN' if the integrator is to
be included in the reference data
path, else a '0OT'.
Contains a 'y' if Vv;, = 0 is desired

for the reference ODL, else an 'N'.

it 2 2 3
DRSS
[L

11 Contains the channel to be selected ;jg;
on the VHF switch A.)

12 Contains the channel to be selected
on the VHF switch B.

‘L Lot e S e
'

\

L

4-2.3.2 Data Files,. The software subsystem dgenerates five e
types of files for storage of test data. Four of these files

are deleted and re-allocated before each test, and are therefore

available for inspection by stand-alone wutilities FYLDMP and

L g an or g

- AUTPLT between tests only for the previous test. The files are
allocated on device CD: in UFD {200,1]. They are unformatted,

direct access files and contain data 1in internal single-

BORERR B

precision floating point format. Their filenames are
RAWDATA.TMP, CORECT.DAT, INVERS.DAT, and ACOMP.TMP. The fifth
. type of data file is the files that have been saved for use with

the interactive analyst software or written to tape.

RAWDATA.TMP is the raw data spool file., Data from the
receiver PCU is obtained by the task INPUT and sent via the
Send/Receive Message facility of the operating system to the
corrections task, CORECT. CORECT converts the data into the

?t internmal single precision format and stores data in RAWDATA.TMP
e as records of triplets of frequency 1in Hertz, amplitude in
. millivolts, and phase in millivolts; one triplet per record.
CORECT.DAT is the file which contains corrected data.
CORECT de-spools data from RAWDATA.TMP and applies corrections
to it to remove the effect of instrumentation, sensors, etc.
This corrected data are then written into CORECT.DAT as records

o of triplets of frequency in Hertz, amplitude in dB, and phase in
degrees (+180); one triplet per record.

5 INVERS.DAT is the file which contains the results of
the 1inverse Fourier transform. When the inverse task INVERS

needs a piece of corrected data to build the inverse transfornm,

the task signals CORECT, which responds by sending a message

with the next available piece of corrected data. Wwhen all dacta
points are received, INVERS writes the data to INVERS.DAT in the
e form of records of doublets. Each record contains a time point

in seconds, and a magnitude in units determined by the units of
the signal probe used in the test,

ACOMP.TMP is a file used to store composite correc-
tions, To save computation and I/0 time, corrections generated
by CORECT are saved in ACOMP.TMP during the second <cycle of a
multicycle test and are read back during the third cycle. Data

are stored as triplets of frequency in Hertgz, amplitude

correction 1in dB, and a zero (since phase correction does not

apply in the third cycle of a test); one triplet per record.
Both RAWDATA.TMP and CORECT.DAT use a special record to

denote end of test. This record has a frequency value less than

W T

1

zero, This convention was needed to delimit each «cycle of a
multicycle test. These files also use the convention of a
record with the frequency value equal to zero to denote a

deleted frequency or deleted frequency range.

)
-]
-
o«
Jf}
)
g a«

Interactive Analyst and tape data files all have the
same format. These files are placed .1in UFD (200,2] on the
classified disk, CD:. ‘They are unformatted, direct-access files

Y VA

and contain a data header and the data points in "internal
single-precision floating point format.
Data filenames are built by the system to reflect the
type of data within. The data filename formats are: R
AAAAAXXX .EXT al
where AAAAA is the file identifier . ~

XXX is the Julian date the file was created
EXT is the extension that signifies the data state
The file identifier is determined by the test type

field in the secondary menu,

Test Type File Identifier
RFSN INREF -
RCAL SYSRF Tl

TCAL SYSTF
PCAL Five character probe ID from main menu
TEST Facility code file sequence number

from the secondary menu

RN M At i SRR M Bl S it YR A S S AP A M G i A ORI M At e Sl gl it el ol i (F L AC A AC0 &' & RO p l a0 SRR Sty

The three-letter extension will be one of the following

depending upon the data state: -

EXT | Data State

AMA Ambient noise measured data

UMA Pick up noise measured data

CMA CW measured test data

TCA Time (transformed) calculated data
TDA Time (transformed) defined data
PMA Pulse measured test data

FCA Frequency calculated data

FDA Frequency defined data

The data file header contains 57 ASCII records each 12
bytes long. The contents of the data header are:

Record # Contents Format N
1-2 Byte 1 (of Rec#l) indicates Char "~
i CW file -~ '1° U
Byte 2 (of Rec#2) indicates g_g
data type }i
'1' - frequency domain o

'2' - time domain

Bytes 3,4, and 5 (of Rec#l)
Record # of first data point

Presently the remainder of
record 1 and record 2 are

unused
Date of origination 'DD-MMM-YY'
Time 'HH:MM:SS"
5-7 File Origin Char

Record 5 - input file 1
for an ANL file contains

the value of A

73

- - C e e T P U R T s T T e N -
~ Tt .t e N P O T AT IR Y} e I T P : . oL
N T e PP LT e e e P . AN

I R IR R S S S R T o e o Te e N
PR SATS) Y B PR TR e o L L AP LEEA R, PR WK WS T P PG PRV VLTS Y DN v

10
11
12-16

17

18

19

20

21

22
23

24

25

26

27

28

29

Record 6 - input file 2,
if present - for an
ANL file contains the
value of B

LN s * il e

Record 7 - 3 character function

code and present date

Test # (Sequence #)

Test Location

Test Description

Test Engineer

Test Comments

for an ANL file contains
values for D, E, F, G, H

Test Point ID

Filename of signal probe

Signal gain added in dB

Signal delay added in ns

Threat Wave scaling factor

Filename of threat waveform

Minimum of the file (first
triplet or doublet value)

Minimum of the file (second
triplet or doublet value)

Minimum of the file (third
triplet value)

Maximums of the file (first
triplet or doublet value)

Maximums of the file (second
triplet or doublet value)

Maximums of the file (third
triplet value)

Type of test

74

4 char
(signed integer)
char
char
char

char

<=12 char
>0, <=9 char
4 char

(signed integer)
4 char

(signed integer)
char (lPEl12.5
format)
>0, <=9 char
char (1PEl2.5
format)
char (1PEl2.5
format)
char (1PEl2.5
format)
char (1PEl2.5
format)
char (1PEl2.5
format)
char (1PEl12.%
format)
'XCAL' / 'TEST'

"y
!

. . . B E I T
. ' . 1} *. N N X e . - A
e ' ‘o ‘ s o N PR

SR BTN NS . o

B W N T R R T T e e R i I A Brai M P et Rl S S i s St e D e A o

30 Filename of reference probe >0, <= 9 char
31 Reference gain added in dB 4 char

(signed integer)
32 Reference delay added in ns 4 char

(signed integer)

33 Network analyzer display 4 char
reference dB (signed integer)
34 For ANL file contains the char
- value for C
3 35 For ANL file contains the char
. value for J
? 36 Plot format 3 char
37 # points in decade 1 4 char)
{ 38 4 points in decade 2 4 char]
t‘ 39 # points in decade 3 4 char - .4
& 40 # points in decade 4 4 char ;;j
‘ 41 $# points in decade 5 4 char o
3 42 # points in decade 6) 4 char
43 Multi or single channel test 'Multi'/]
'single’ . q
44 Tape file ID (4 digits (tape 4,7 ':j
no.), 7 char) ‘{5
45 Time domain delta T if char (1PE12.5 e
applicable format) "’-’,g
-1.0 entered in converted '_Q;
data due to unevenly _—
spaced data]
46 Transfer function calibration 4,7 s
tape file . -
47 Response function calibration 4,7
tape file Ut
48 Test Element char _
49 Log ID char '
50 Parseval time value char (1PEl2.5)
format) . J
¢ 51 Parseval frequency value char (1PEl12.5 N

format)
52 Parseval Ratio char (1lPEl2.5
format)
53 Phase unwrap delay time char (1PEl2.5
format)
54-57 Reserved for future use Blank
The data are written in 12 byte records,. Each data

record contains either two or three data values depending upon
the domain of the data. Frequency domain data records contain
a triplet of frequency, magnitude and phase data. Time domain
data records have two values per record of time interval and
amplitude. The data values are stored in real internal binary

format.

4-2.3.3 Calibration Files, 1In order to correct for the effect

of instrumentation and sensors, the transfer functions of these
devices must be known. To find these functions, calibrations
are performed on the instrumentation and sensors. The data from
these calibrations are then stored in calibration files. The
data from the cal files are used in the corrections phase of the
data reduction.

To correct for the effects of instrumentation, two cal
files are used. These files are SYSTF.CAL and SYSRF.CAL.
These, and all other cal files, are on volume §SY: in UFD
(200,1]. SYSTF.CAL 1is the <calibration file for transfer
function measurements. This cal file is used for all tests when
the receiver PCU 'PLOT FORMAT' thumbwheel 1is set to 'TFA',
'TFB', or 'TFC', except during the first cycle of a multicycle
test. The transfer function cal assumes the presence of a
reference measurement and a signal measurement being made simul-
taneously.

The file SYSRF.CAL is the <cal file wused to correct
response function measurements, which assume that the reference
channel has the rf source driving it directly, the result is the
response of a test point given the fixed reference 1level. The

.

-
8.,

'
+
PIVER

. . .
. . PR
. . .
. e
e

—

T Y TTEE—
’

response function file is used for tests when the receiver PCU
'PLOT FORMAT' thumbwheel is set to 'RFA', 'RFB', or 'RFC', and
in all tests during cycle one of a multicycle test,

Sensor cal files are used to correct for the effects of
sensors. These files have names of XXX.CAL, where XXX is an up-
to-nine character name which identifies the sensor. The system
assumes that the first character of the sensor identification
denotes the units that the sensor measures, Currenty, the

following sensor types are supported:

First Letter Units

0t Sensor ID Measured
I Amps
Vv Volts
B Teslas

Should any other character appear as the first charac-
ter of a sensor ID, no units are assumed. The file UNOO.CAL is
a special cal file designed to have amplitude and phase of zero.
This 'unity sensor' is wused primarily for testing. When a
sensor ID 1is entered in response to the menu prompts for
reference sensor or signal sensor, the software system appends
the extension .CAL to the entered ID and accesses the file.

 All cal files are unformatted, direct access files
consisting of records each containing one triplet of frequency
in Hertz, amplitude in dB, and phase in degrees (+180 degrees).
All data in cal files are in internal single-precision floating
point representation, and contain an end-of-file record as the
last record. This record contains a triplet consisting of a -1
{in the frequency field; this 1is the end-of-file mark), the
delay in seconds computed when the <calibration file was
generated (in the amplitude field), and a 0 (in the phase
field).

77

s
:

o - . 4 e RS : TNt - . . . v - © e SN, et
M PP i - -~ o PR AT W DI Y O ¥ O S U o AP W T, VY PO (ORI YN

[G

R

YTy
..
/' :

R ———

T W ————r——— i T —————— ittt MAUE I S A Wi S *Rds B b o i it Batv . B B e,

-,

4-2.3.4 Threat waveform Files. Threat waveform filles are used

in generation of the inverse Fourier transform. The data in the
file is multiplied (in the frequency domain, which is equivalent
to convolving in the time domain) with the corrected data to
generate the inverse transform. These files are created by the
THRTWV stand-alone utility and are placed on device CD: in UFD
[200,1]. Threat waveforms have a name of the form XXX.WAV,
where XXX 1is an up-to-nine character filename which is also the
waveform identifier., When the waveform ID 1s entered in re-
sponse to the menu prompt for the waveform, the software system
appends the extension .,WAV to the entered 1ID, and access the
file. Threat waveforms are stored in the frequency domain. The
file 1is an unformatted, direct-access file and consists of
records containing one triplet each. The triplets are organized
as a frequency in Hertz, amplitude in dB, and phase 1in degrees
(£180°). These files contain two end-of-data records. The
first end-of-data record contains a -1 in the frequéncy field,
the value of a in the amplitude field, B in the phase field.
The second record contains a -2 in the frequency field, the
high-frequency filter cutoff ©point in the amplitude field and
low-frequency filter cutoff point in the phase field. All data
in these files are in internal single-precision floating point

format.

4-3 MESSAGE STRUCTURES

The software system, as stated earlier, consists of a
number of tasks whose only global structure is the RSX-11M
Message. A Message is a 13-word block which the sender task
fills with data and dispatches to a receiver task. The receiver
task gets the 13-word block prefixed with a two word block con-
taining the sending task's name. In the following discussion,
only the contents of the 13-word data portion will be discussed.

Messages in the CW system are one of four types, the
e. Zach

t/oe Leing denoted by the second byte of the messag

-
c o
Pl

i

will be discussed separately.

78

e e et ot : s ; . . - - e - -
- Py - - PP SN, WL SIS W S, U A e PR VR SAAS SIS

I

. .
l"l

"
LR

HEAENE S AR
el

4-3.1 Panel Data Block (PDB)'Structures

The Panel Data Block (PDB) contains data on the front
panel switch settings of the receiver PCU (also the transmitter
PCU as the settings must be identical). The PDB data record is
the first record from the PCU and is denoted by an asterisk in
the first byte of the record. The record from the PCU 1is 86
bytes and is organized as follows.

Byte # Contents
1 '#' - the PDB descriptor
2-4 Plot format setting - ASCII characters

which are the same as the characters
on the Plot Format thumbwheel.
5-10 Samples per decade - each byte contains
a character as defined below. Byte 5
contains the samples/decade for the
first decade (1-10 kHz) up through
byte 10, which contains the samples/
decade for the 6th decade (100-1000 MHz).

The samples/decade code is:

A =0 samples/decade
B = 25 samples/decade
C = 50 samples/decade
D = 100 samples/decade
E = 250 samples/decade
F = 500 samples/decade
G = 1000 samples/decade
H = KFD setting
11 Cycle number in ASCII. '0' indicates
a single cycle test, whereas '1' - '3!'

is the cycle of a multicycle test,

12-13 <CR><LF>
14-86 Blank pad.

e e i
. .

Y

ax

- ¥

L et e tadt e BaC g

i ol ll i i g i S i

L B S Jmass dase

PO A i MRt it it e b\ s lie Jhare it JISR BaJant e ol AP ule “u i Sl A SN " A

The software system encodes this information and distributes it

to each of the modules. The PDB message format is:

Byte # Use
- Unused -
2 PDB descriptor (=1).
3-5 Plot format setting. Data are
encoded the same as in the pPCU
record,
Samples/decade. Data are encoded
the same as in the PCU record,
with byte 6 containing the first
decade data and byte 11 containing
decade six data.
12 Cycle number in internal byte
representation. 0 (numeric value
as opposed to the ASCII representa-
tion) is the single cycle number,
whereas 1-3 is the cycle number of
a multicycle test,
13-26 - Unused -
4-3.2 Data Block Structures
Data blocks from the PCU to the PDP-11 arrive in one of
for-

three formats. 1In tests that have phase information (plot

mat of 'TFA' or 'TFC') the blocks arrive in records containing
In tests
'TFB',

data blocks arrive in records con-

up to five triplets of frequency, amplitude and phase.

that do not contain phase information (plot format of

'RFA', 'RFB', 'RFC'), the
taining up to seven pairs of frequency and amplitude. For all
tests, the end of a sweep is denoted by a record containing an

exclamation point (!) as the second character. All data rec-

ords are started with a number sign (#) as the first character,

The formats are summarized below,.

80

o+
.

For Tests with Phase Data

Byte # Use
1 '#' - the data block descriptor.
2-5 A four digit integer in ASCII which

is the mantissa of the frequency,
A decimal point is assumed between
bytes 2 and 3.

6 Power of ten by which the frequency
mantissa is multiplied.
7 A plus (+) sign or minus (-) sign.
8-11 Amplitude output of the amplitude DVM.

This, along with the sign in byte 7,
is the amplitude measured in milli-
volts. 50 mV = 1 dB.

12 A plus (+) or minus (-) sign.

13-16 Phase output of the phase DVM. This,
along with the sign in byte 12, is the
phase measured in millivolts. 10 mv = 1°,.

17-86 Byﬁes 2-16 aré repeated up to four times.
A <CR>XLF> sequence follows the last data
entry in the record. The PCU will fill
all records, except in the case of the
last record sent before the end-of-data
record. Any extra bytes in the record
are blank-padded, and padding occurs
after the <CR>XLF> sequence,

For Tests Without Phase Data

Byte # Use
1 '#' - the data block descriptor.
2-5 A four %igit integer which is the

mantissa of the frequency. A decimal
point is assumed between bytes
2 and 3.

)

Power of 10 by which the mantissa
in bytes 2-5 is multiplied.
7 A plus (+) or minus (-) sign.
8-11 Amplitude output of the amplitude DVM.
This, along with the sign in byte 7,
is the amplitude measured, in milli-
volts. 50 mv = 1 dB.
12-86 Bytes 2-11 are repeated up to six more
times., A <CR>XLF> sequence follows the
last data entry in the record. The PCU
will fill all records, except the record
just before the end-of-data record. Any
extra bytes in a record are blank-padded,
and padding occurs after the <CR><KLF>

seguence.

End-0f-Data Record

Byte # use
1 '#' - the data block descriptor.
2 '1'" - the end-of-data mark.
3-4 <CR><LF> sequence.
5-86 blank-pads

Data messages also have varied formats. When the data
input task INPUT receives a data message, the ASCII characters
representing the values are converted into integral integers.
The wvalues generated are the mantissa of the frequency, the
power of ten, the amplitude in mv, and the phase (if phase data
is included) in millivolts, The assumed decimal point is
ignored by the INPUT task but is re-inserted into the number by
CORECT during the spooling operation. This scheme generates
four words of data if phase is included, and three words |if
phase 1is suppressed, for each measurement point. Since, in a
l13-word message, one word is reserved for the descriptor, there
are 12 words available for data. For tests where phrase is

82

T
L e

Y RTTTY,
. * ! ’ .
Ve

1

™y .
e

IEhre

A

e aan a4

A SR A

i Wt %y

R SR Wi i Ml et Ae Al S s A e i S S M R SR A A A O APEL I S N e A M A *

included, three data entries will fit in a message, and four
data entries will fit in a message if no phase is included. The
tasks key on the plot format of the PDB to determine whether
phase information is present. Since a full data record from the
PCU always requires more than one message to send the data from
INPUT to CORECT, the first byte of the message is used to tell
CORECT how many data entries are in the message. The format of
messages from INPUT to CORECT follows: (all data is in internal

integer format unless otherwise noted).

For Tests with Phase Data

Byte # Use
1 Number of data entries in this message

in internal byte format,
2 The data descriptor (=2) in internal
byte format.
3-4 Frequency mantissa. The corrections
task divides this by 1000 before
applying the power of 10 multiplier.

5-6 Power of 10 multiplier.

7-8 Amplitude measurement in millivolts,
9-10 Phase measurement in millivolts.,
11-18 Same as bytes 3-10.
19-26 Same as bytes 3-10.

For Tests Without Phase Data

Byte # Use
1 Number of data entries in this message

in internal byte format,
2 The data descriptor (=2) in internal
byte format.

3-4 Freguency mantissa, The corrzactions
task divides this by 1000 before
applying the power of 10 multiplier.

5-6 Power of 10 multiplier.

83

Y

AR

7-3 Amplitude measurement in millivolts.,

9-14 Same as bytes 3-8.
15-20 Same as bytes 3-8, D
21-26 Same as bytes 3-8. ' :

Once the data are corrected by CORECT, the data are
then distributed to the tasks CRT (for plotting on the terminal) -
and INVERS (for use in building an inverse Fourier transform). T
The message format still wuses the data descriptor, but the S
format 1is different. All data are in internal single-precision
floating point format, and only one point is distributed at a
time. Therefore, the data count subfield of the descriptor word
in the message is unused in this form of a data message, The
format follows: (all entries are in internal single-precision

floating point format unless otherwise noted).

Byte # use

~ Unused - T

) The data descriptor (=2) in internal j >
byte format. i;?

3-6 The frequency point in Hz. ﬁ};

7-10 The correct amplitude in dB. liﬂ

11-14 The correct phase in degrees (set g

to zero for tests without phase Eﬁ

data) . lii

15-18 The composite delay, in seconds. ;{f

This entry is only sent to the

task INVERS, and is used to correct

the phase for the inverse transform, '3:

It is unused otherwise, '
19-26 - Unused - o

When the input task (INPUT) senses an end-of-data
record from the PCU, it Jgeneratas a message with a special
descriptor and no data. This message is propagated throughout

the system, Its format is:

84 e

R el bl R S NS MR S T W R At iR a0 S SR A S Sl S ST AL A0 A SN A MM SR SN A e AN R)

Byte Use
1 Set to 1 (internal byte format) when

an end-of-data block is sent to the
inverse task (INVERS) task from the
corrections task (CORECT) if:

1) The test is not one which generates

the inverse transform, and -@
2) The test is a multicycle test.

2 The end-of-data descriptor (=4) in N
internal byte format.
3-26 - Unused -
4-3.3 Error Status Block (ESB) Structures

The receiver PCU generates a record known as an Error
Status Block (ESB) whenever it encounters an error condition for
which .there 1is no recovery. 1Included in the ESB is a code for
the error condition. The PDP-11 software also generates error
codes in a similar fashion when it encounters an error condition
from which it cannot recover, These codes can be found in
Appendix A of the Operating Manual. The format of the ESB from
the PCU is:

Byte 4 Use
1 '&' - the Error Status Block descriptor
2-3 Two ASCII digits which are the error code,.
4-5 <CR><LF> sequence.
6-86 Blank pads.

When the ESB is sensed and decoded, it 1is sent 1in a
message to CORECT, which propagates it to the terminal monitor
task (CRT), which displays the code in an error message on the
CRT display. The format of an ESB message is:

the i Use
1 - Unused -
2 The ESB descriptor (=3) in internal

byte format,

85

R R PN SRR -
N _-_.n'--_‘.‘v_". e U e e '._‘.‘_ L AP P PR P
- . v - - - . . - - - - - W . - - < -t .
ST A e T N T e

VR AL P TR P Y YL y

T T ——7 ML S anas aPUR s Sren Sy o

Two ASCII digits which are the error

code.
5-26 - Unused -
4-4 GLOBAL FLAGS

Each task in the RSX-11M environment has access to 64
single-bit 'flags'. These flags are numbered 1-64. Flags 1-32
are associated with the task itself; these are <called ‘'local
flags'. Local flags can be used to coordinate intratask events,
timing, and other such uses. Each task has its own set of local
flags. Local flags 25-32 are reserved for system use. Global
flags (also called 'common flags') are numbered 33-54 and are
fully accessible by any task currently executing. (Global flags
57-64 are reserved for the system's use.) Refer to the RSX-11M
Executive Manual for a more in-depth discussion of event £flags
and some examples of their use. «

In the cw system, 11 global flags are defined for use.
In addition, two global flags are used for intratask coordina-
tion. This is necessary because the 32 global.flégs are split
into two groups of 16 each (flags 33-48, and flags 48-64). The
- local flags are also split into two groups. The flag manipula-
' tion directives only allow operations of multiple flags in a
particular group. So a directive to 'WAIT FOR LOGICAL OR' of a
number of flags can only wait for flags in the global group; the
directive is unable to support a wait for flags in both a global
group and a local group at the same time., To remedy this, two
" global flags were reserved for use as 'local' global flags.

The global flags defined for use in this system are

listed below:

X Number Name Use -
, ;1
23 ABCRT Signals all tasks in the system 7

to go to end-of-task immediately. ;
Set on encountering an error 'g

condition from which there is no R

, s’
PP PPy

......
'''''''''''''

— F—

.-I. e ','-'3.

N - RO
. NI

34

35

36

37

38

39

40

41

CRT READY

INVERS READY

CRT DATA
AVAILABLE

INVERS DATA
AVAILABLE

CORECT DATA

AVAILABLE

PRIMARY MENU
AVAILABLE

CORECT CLEAR

CRT CLEAR

recovery.,
Set by CRT to indicate that the
task CRT is ready to accept a

corrected data point for plottihg.
Set by INVERS to indicate that the
INVERS task 1is ready to accept a
corrected data point for calcula-
tion of the inverse Fourier trans-
form.

Set by CORECT to indicate to CRT
that a data message has been sent
to CRT containing a data point for
plotting.

Set by CORECT to indicate to INVERS
that a data message has been sent
to INVERS containing a data point
for inclusion in the inverse Fourier
transform calculations,

Set by INPUT to indicate to CORECT
that a data message has been sent
to CORECT containing raw data from
the PCU for spooling.

Set by CRT to indicate to CORECT
and INVERS that the primary menu
has been approved by the operator
and that the file MENU.PRI con-
taining the primary menu data is
available for data extraction,.

Set by CORECT to indicate to INVERS,
STRTTP, and NHCPLT that CORECT has
completed its processing, and that
CORECT.DAT, the file containing the
corrected data, is available for
data extraction.

Set by CRT to indicate that the CRT

task has completed processing. This

flag, along with CORECT CLEAR (#40)

is used by INVERS to tell when to

start the tasks NHCPLT and STRTTP.
43 QLOOK Set by CRT if the inverse transform

plot is to be displayed on the
terminal.
45 INVCMP Set by INVERS to signify to CRT
that INVERS is running.
47 PCU READ Set by the system when the QIO
COMPLETE directive which INPUT issues to
read data from the PCU completes.
This is a 'local' global flag and
is only used by INPUT.
48 RAW DATA Set by CORECT when raw data are spooled
WAITING for corrections and remains set until
the raw data spool file is depleted.
This is a 'local' global flag and
is only used by CORECT.

4-5 OTHER SOFTWARE SYSTEM STRUCTURES
4-5.1 Qutput Cassette File Structures

The MFE-5450 cassette drive and associated tape
cassette are used for storage of test data. A record on the
cassette consists of 86 data bytes (and two bytes of CRC
validity code which are not available to the user). This length
is hard-wired into the drive. The first two records on the tape

are directory records. The directory structure can control up

to eight data files per side of a cassette. There is room for

2000 records on a cassette (inciuding the directory records). 3f*j
The two directory records are followed by data records which are ﬁ{f?
separated logically into files, Each file has two parts: a '

"header" in which text data describing the test is kept, and a
data section.

The directory records contain ASCII data (as do ail
tape records). The first six characters of each directory
record contain the tape number. This tape number only applies

88

N R -_'.'_-','.“ A R S P PR At T e .
- - . . N . (NG A N Y e

(SR St
P PRI R e S A P L.) AR . - RIS R I SRR B
B VR PR PRSI TE P L PR VL W T VL TR VR VR W W W WAL TP P R T R, Pl S WO W R W o L MRS S

ikl Ol et SR SatiAe it Sn jeoih DB 2<db el Rl v B N sl A 9 .o p 3 1 RO IS il it St 2t ialie ‘s el M Mhate il 4 Haii i Ayt e i

Ry
-

"
Y

to one side of a cassecte. Following the tape number are four

N
- directory entries. Each directory entry contains 17 bytes of
information, The 17 bytes are used thus:
L
i
» Byte # Use
1-12 The up-to-eight character filename

followed by a period and the file

extension (filename.ext).

13 An equal sign (=).
14-17 The number of records the file occupies.
This number is always four digits long.

The first record's directory entries are filled before
the second record's directory entries are accessed. ST
& The Control records delimit the data files. Each -~'~~~‘~
Control record starts with a percent sign (%) as the first pyte
1 of the record, followed by a 0 or a 1. This descriptor indi-

- cates the nature of the Control record. The records used are of

the following form: ST
]

Record Meaning ;f;ﬂ

$0 filename.eXt=xxxXx *filename' is the up-to-eight character S

filename followed by the extension.
'xxxx' is the number of records in
the file. This record starts the
file and identifies the file.,
Following this record is the §7

record header, e

%1 END OF FILE This record is always the last Y

record of a file. It is the '3

end-of-file marker. .

ﬁj The 57 record header contains data from the PDB, the ‘>E

: primary mnenu, and the secondary menu, The header immedistely i

;. follows the %1 control record. See paragraph 4-2.3.2 for a M;;j

,_‘ description of the header record contents. .. 9

¥ - ..'
3
-

The data records follow the header records, Data
records consist of six ASCII entries., Each entry is a Fortran
E-format floating point number. Data is written to tape using
a Fortran FORMAT of 6(X,lPEl13.6), yielding 84 bytes of data.
Bytes 85 and 86 contain a <CR>XLF> sequence., Data records for
ambient noise, test data, and pickup noise contain two triplets
each, Each triplet contains a frequency in Hertz, amplitude 1in
dB, and phase in degrees between ~180 and +180 . Should an odd
number of triplets result from a test, the last record is blank
padded to byte 84. Data records for the inverse transform
contain wup to three pairs. Each pair contains time point in
seconds, and a magnitude in the units of the signal probe. The
last record contains only two doublets (as there are always 512
data points in the inverse transform) and 1is blank padded to
byte 84.

4-5.2 Frequency Table Entries

- The PCUs contain firmware tables which contain the
mantissas of the frequencies to be generated for a test., These
mantissas are then scaled to the proper decade and these data
are fed wvia the GPIB to the frequency synthesizers., It is
necessary to match these table entries whenever a program
interacts with the PCU, as with the Amplitude PROM program AMPL
and Delete Frequency PROM program DEL. To do this, a table of

mantissas can be generated by the formula

This formula, when coded in PDP-11 Fortran, becomes

FTAB(Ii = DINIT ((1.DO * (DFLOAT (I-1l) ** 1.D-3) * 1000)
where FTAB(I) is the ith frequency table entry (i ranges from 1
to 1000), DFLOAT 1is the integer to double precision floating
point conversion, and DNINT 1is the double precision nearest

integer conversion, The result is an integer (in floating point

- T A
than 15C0O

[ER-F

[

representation) in the range 10006 to 9§77. ‘when

points per decade are selected for a given decade, the PCU

20

P

P
R
IEN

i
. 0 s
. SR
. PRI
. ‘ P -
. . PRI L) A.!AL‘ —d

®
o
e
L
K|

=

|

@
=

R

’
'
Lt
St
[P

[

¢

il

~

- &
B
oo

| At i g S St et A et 20 e s ey Sl R Ao R A %e S 0 -BAe M e ‘A et dint v i il Nad it Wl il Gl LA AN i o T Y NE S e apa |

selects frequencies from the table in evenly spaced intervals,
starting with the first table entry.

In scaling table entries for a given decade, low 'i
fréquencies will have their least significant digits truncated. 'jjf
This occurs because the synthesizers' resolution is only 100 Hz.
A frequency of 2626 Hz, for example, when passed to the
synthesizer, 1s truncated to 2600 Hz because the synthesizer
cannot resolve a frequency closer than 100 Hz. Due to this
truncation, duplicate frequencies may be generated in the low -
frequency decades. The software system only accepts data from
the first of any duplicate frequencies.

. 4-6 1-DISK OPERATION

{ The system is designed to operate with only one of the

ﬁ. two disk drives functioning, The disk drive which is func- -
b

tioning must have the system disk installed in it and must be

L g

unit DLO: (refer to paragraph 2-3.1.2 of the Operating Manual,

N

DS~ SO
. I

the UNIT SELECT subsection, to determine how to set a drive unit

number). When the system is booted, the operator enters the o

command -
@1DISK<LCR>

to establish single-disk operation. This causes volume CD: to

be assigned to DLO: (along with SY:).

N

IMPORTANT

CLASSIFIED DATA MUST NOT BE ACQUIRED, NOR CAN
CLASSIFIED THREAT WAVEFORM FILES BE BUILT,
WHILE IN A SINGLE-DISK CONFIGURATION.

PSP

When returning from a single-disk configuration to a
two-disk configuration, the data files from the system disk must

be erased and the CD: volume reassigned to unit DLl1:., The

operator effects these operations by entering
d2DISKLCR>

E
e
J..A_'A- [S SO

) 91

tad Ml ol M i S s)

.Y
.

amn 4 v
8 SN
T
AR »

—
-

EURaa — R

——

MW S AChEEey

——
B

ey

"

, -

R ST T . .
PR VPR Sl T AT TR P W S WP,

n

h~

L

-

Li

‘: ~

:‘ 4-7 TERMINAL PCRT ASSIGNMENTS

i[The back panel of the PDP-11 cabinet contains five male
4 EIA RS-282 connectors, each of which is labelled with the type

of peripheral to be connected to it. Each port in the back of
the cabinet has a device mnemonic of TTnn:, where nn is the unit
number (leading 0s can be suppressed). The colon (:) is
required syntax indicating a device name. The device mnemonics

are assigned to the peripheral ports in the following manner:

Mnemonic Peripheral Port

TTO: GRAPHICS TERM P
HP-2648A

TT1: RCVR PCU

TT2: TAPE UNIT
MFE-5450

TT3: PROM PROGRAMMER
PRO-LOG M900

TT4: PLOTTER
TEK-46562

92

T TR N e —————s U Ar ot M Tt A AR - i ot e Zhais Sl Jhes el Mt

AD-A151 622 CW MEASUREMENT SYSTEM SOFTWARE SYSTEM MAINTENANCE
MANUALCU) EG RND G HRSHINGTON ANALYTICAL SERVICES
CENTER INC_RLBUQU R NELSON ET AL. 82 APR 82

UNCLASSIFIED EG/G-AG-1435 DNR- 6232F DNRBB1-86-C-8290

Y_.’T]_*.:l.r.‘r(‘
. . P

BN ies

V@
L4 .
4,

LA R

e s

— ﬂ:’é 2.2
= bR

s =° 0%
IL2s s pis

TFFEEER

r
Fr

rre

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

VR T 2 R R A e R R S S S A S " oA i Bl 2 A e Sl B Y P~ AR N R 2 r,'r,“j
.t

{

¢

j

..

SECTION 5 e

OPERATING SYSTEM SUPPORT PROGRAMS ﬁ}ﬂ

--4

5-1 GENERAL _g
The software supplied by Digital Equipment Corporation 'ﬁ

for use with the PDP 11-34 computer includes the Operating Sys- S
tem (RSX-11M); an editor (EDT) for manipulation of text files; -4

a Fortran compiler (F4P); a "task builder" (TKB), which is DEC's
name for their linking loader; the Peripheral Interchange Pro-

gram (PIP), which is the programmer's primary file maintenance

utility; the Monitor Console Routine (MCR), which controls

1 operator/operating system communication; and the Dump utility

(DMP) , which provides a way to display data files in various

. . AR
PRI T
2 ke e a . o e

1 formats.

4

| @

[5-2 RSX-11M

E RSX-11M is a real-time multi-programming operating sys-
;f tem designed for fast response to external interrupts and with

numerous functions to facilitate intertask communication and
control, Refer to Digital Equipment Corporation Manuals RSX-11M
Beginner's Guide, Introduction to RSX~11M, and RSX-11lM Executive
Reference Manual. This system uses version 3.2 of RSX-11M.

Intertask communication is accomplished by means of
global event flags, shared data files, and send/receive direc-
tives. The global event flags used by the software system are
listed in Section 4 of this manual.

Refer to the RSX-11M Executive Reference Manual, Chap-
ter 2, for a discussion of event flags.

Shared data files are files which are accessible to
more than one program, The files the software system uses are
described in Section 4 of this manual. Refer to RSX-11M 1I/0
Operations Reference Manual, Chapter 2.

Send-Receive directives pass a 13-word data buffer
between tasks, Refer to the RSX-11M Executive Reference Manual

and Section 4 of this manual.

93

. e e e e . T .. e e e e . [N
. Cte - e . S A
R MLt e

e . -
A T .t N e .

P RO R T e, . . "

o

L
- L T PR . .
e Y - S . D e - P
. PR PR S S SR N . 0 AT AT S YR SO STOL LA

hoad Ll aial afiE asN A g i - adul il A R T, w RN S S Y A R e e i e R A e e i

r'- LML AR A gl i AR N

p

&

.

-8

=

-

- Indirect command files are a feature of the RSX-11M

g operating system. An Indirect Command File is a file that con-

F

;c tains the commands the operator would enter from his terminal. e

. '

Pf Indirect Command Files are created with the editor 1

! (EDT), and have file names of the form NAME.CMD, where NAME can)
be any valid filename. They are executed by typing @NAME<KCR> on ;?j
the operator's terminal; the system will access the file and *ﬁq

execute the commands therein. Refer to RSX-11M QOperator's Pro-

Cedures Manual and Appendix A of this manual.

5-3 THE EDITOR (EDT) %
EDT 1is the Digital Equipment Corporation trans-
operating system editor, It allows creation and modification of

Flecs, Fortran, or Macro-1ll source files. Commands are provided

1

SRS YOI

to find, modify, insert and delete text from pre-existing files,
to create new files, save text and transfer text from one file

to another. Refer to the DEC Editor Reference Manual,

.

. 5-4 FORTRAN IV PLUS (F4P) o
The Fortran compiler supplied with the software system T?j

is Digital Equipment Corporation's PDP-11 Fortran IV PLUS, which :1
conforms to Ame:sican National Standard FORTRAN X3.9-1966, with ;
certain enhancements., Refer to the PDP-11 Fortran IV PLUS ;~Jq

Language Reference Manual and the IAS/RSX-11 Fortran IV PLUS

—p—

User's Guide. The Fortran compiler accepts the output of the
Flecs pre-processor discussed 1in Section 6. For details of

Flecs operation consult the Flecs User Manual, Appendix C.

5-5 TASK BUILDER (TKB)

The Task Builder links compiled programs with subrou-
tines from the Fortran and other libraries and assembles the
whole into a zero-origin task image ready for relocation and
eXxecution by RSX-11M. Refer to the RSX-11M Task Builder Refer-

2nlZx Manual,

,...w..y RN AMALALEL o g (I &SI
. e ' . e . .

(Cina 20 S St M e "R e M i N “ I i S P A e Mt Pt S i St P i U A e el o B S M b e T T T r————

This program is used to print out the contents of any

-4

5-5 PERIPHERAL INTERCHANGE PROGRAM (PIP) EX

The Digital Equipment Corporation's Peripheral Inter- i;

change Program (PIP) is the programmer's primary means of file =
manipulation. With PIP, files can be created, deleted and vﬁ

renamed, transferred from one device, logical unit, file, disk K

drive, user account, etc., to another; disk space wutilization .

can be <checked; and a number of other functions connected with ii

files and input/output devices performed 1including unlocking ;2ﬁ

'locked' files. Refer to RSX-11M Utilities Procedures Manual, ,iﬁ

and Appendix A of this manual. ;f{

K

5-7 MONITOR CONSOLE ROUTINE (MCR) 2 1

The Monitor Console Routine monitors the operator's "F

o console and communicates information between the operator and '!J
| @ the operating system. Refer to the RSX-11M Operator's Pro- 'g
: cedures Manual. ?'?
i

-]

5-8 FILE DUMP UTILITY PROGRAM (DMP) igi

file or disk area. The output may be displayed in various
formats such as octal or decimal digits or in character format.,
Refer to the RSX-11M Utilities Procedures Manual.

5-9 THE DISK INTEGRITY CHECKING UTILITY (BAD)
The BAD Utility is used to erase a pack of all data (as
in the case of freeing a classified pack). This 1is done by

writing over each and every sector on the disk and checking for
any errors that might occur when the sector is re-read. Refer

to the RSX-11M Utilities Procedures Manual.,.

) 5-10 DISK SAVE AND COMPRESS UTILITY (DSC)

2% . .

_— The DSC Utility is wused ¢to <copy from one FILES-11
' medium to another., The utility is distributed in two forms: as

a utility whicn can be run under MCR in a fasnion similar to tne

B A A

other wutilities, or as a stand-alone system. Refer to the

.

RSX-11M System Procedures Manual (Vol. 2B) for instructions.

T
'R

A o . §

95

s

- Ll S Wl - R S SIS B b G e o o SVl A gk d= gk SuiEREEERAS RIMEC afvCaSUEIC S e oS i el ol A e s A iR R S S S SRS P

SECTION 4
SOFTWARE DEVELOPMENT

6-1 SYSTEM PROGRAM DESIGN LANGUAGE (PDL)

The system design 1is written 1in a Program Design
Language (PDL) which is an English description using structured
programming concepts/constructs of the logical program flow and
conditions of program execution,

Program design languages are wused to facilitate the
design, development and implementation of structured software,
The advantages of structured design include <clarity, brevity,
modularity, self-documentation and ease of maintenance,

There are two levels of program design language (PDLs):
a high level (HPDL) and a low level (LPDL).

A system is first outlined at a high level. The basic

structure of the program 1is described, including inputs and

outputs, the basic logical functions, and the media involved.
Next, using the HPDL listing as a template, a low level

Lo

. L T
. i e
A | R AR
PPRE A Pa’a e .

outline is produced which includes and identifies data types and
structures, variables, procedures and error handling. If any ‘
logical difficulties are encountered at this stage, the pro- q
grammer returns to the HPDL stage, corrects the difficulty, then .i
re-enters the LDPL effort. This level of PDL appears 1in the i i
§ listing manual. f;g
. There are five basic logical constructs associated with Eib
g structured programming. These will be briefly described here tgﬁ
o and more fully illustrated, with flowchart examples, later. ;;i
3 They are: ?ﬂ;
:: The If-Then-Else construct, in which one of two '3
&f logical paths 1is <chosen depending upon a decision _:f
f; made upon entering the block of code;) :
5 The Repeat-Until construct, in which a block of code e
' is repeated until a logical condition at the end of o
the block is satisfied;
. -9
t; .
- 96 :
@ .
..)

Uy

v 4TS ¥

ENDPROC.

calling
scope or
calling

procedue

i.e.,

i APy

The EﬂllS’QB construct, in which a block of code is
repeated while a logical condition at the beginning

of the block is satisfied;

The For construct, in which a block of code |is
executed wuntil a specific numeric condition is
satisfied, and

The Case construct, in which a single block of code

is chosen from a number of such blocks, based on an
input variable,.

Procedures are delimited by the keywords PROCEDURE and
A procedure may require additional parameters from the
routine or it may not, Parameters may be global in
may be explicitly passed between the procedure and the
routine, The following are examples of procedures and
invocations.

PROCEDURE NOWAIT;

* statements
*

ENDPROC;

Procedure NOWAIT is invoked by the statement NOWAIT,

FOR INDEX :=1 TO 2;
NOWAIT;
ENDFOR;
Either there are no parameters for NOWAIT or the

parameters are global.

PROCEDURE WAIT (HR,MIN,SEC);
* statements
*
ENDPROC;
Procedure NOWAIT is invoked by the statement WAIT 1in

the code with explicit parameters, i.e.,

WHILE JOB.NOT.DONE DO;
WAIT (C,5,3C)
ENDWHILE;

97

A RAEYLARE A Sl - Al A AL A eI Lt - s D~ A" S N etk el - S ~ ity . . bl I

e Y

':w
X
-4
-

o
+
[}

,,,.q....huﬂ
B {
B T
B I I

P YR

B - . DRORORE

PY T IR
. i

Padd L e aat 1am oyt aa q ws
v et B - . .

.

p—

b "B Sifle” St e Tl t S Ml S i gtia S M o0 Sl AR i S Sl St Sl Sl e S Sl M S A DA R C e St e S e

The literals 0, 5, and 30 are passed to procedure WAIT.
Variables may also be used.

Programs are delimited by the keywords PROGRAM and END
as they are generally in actual code. The PROGRAM and END
keywords cause a level of indentation in the PDL listings.

Included at the end of this chapter are examples of a
high level and a 1low 1level PDL which use all of the basic
logical constructs and illustrate the development of a program
using PDLs.

This is a list of the symbols used in PDLs and their
meanings:

1. Relational Symbols

=zequals
2greater than
<less than
>=greater than or equal to
<= less than or equal to
<>not equal to
2. Assignment Symbol

=becomes; the variable to the left of
this symbol is assigned the value of
the expression to the right of it
3. Mathematical Operators

+plus
—minus
*times
/divided by

xxraised to the power of

98

.
B
‘_‘;_-;1_

'
oo
R ,
SRR RRE

e
]
L
Y
s

e,

(el 2 Sl e g 2.
. A
ERE R

PDL CONSTRUCTS
IF-THEN-ELSE Statement (See Figure 6-1)
IF logical.expression THEN;

statements
ELSE;

statements
ENDIF:

LOGICAL False
EXPRESSION
THEN ELSE
Statement Statement

(J
s

Figure 6-1. Flowchart of the IF-THEN-ELSE Construct

The logical.expression is evaluated upon entering the block. If
the expression is true then the statements immediately following
the IF-THEN clause are executed; if the expression is false and
there is an ELSE clause the statements immediately following the
ELSE are executed; otherwise, control is passed to the ENDIF
statement. The ELSE clause is optional,

99

P

SN
- d
q

bt 20 Sl SO § TR WY Y T T T T AR T A TNWYET UWAT T T AT T e T LT T gL LY, YO LY VLY R R e

t, 0, m
o
(SR I.

)

6-2.2 FOR Statement (see Figure 6-2) oS
FOR loop variable := initial value TO [or DOWNTOQO] final

»
alaa s

[}
o e

value [BY step];
statements
ENDFOR; .

LOOP VARIABLE: = __._‘i

INITIAL. VA LUE; -
> (<) i %

STATEMENTS __4
.

! -
INCREMENT 2]
(DECREMENT) T
LOOP. VARIABLE - 3

t J , ' - g

COMPARE
LOOP. VAR TO

Figure 6-2. Flowchart of FOR Construct .

The FOR construct repeatedly executes the contained statements

until the value of the loop counter exceeds a limit value, The

loop counter 1is set to the initial value when the block is

entered and incremented or decremented (according to whether TO

wele

g
or DOWNTO 1is used) until it becomes > (< for DOWNTO) the final tf;?
o value. The keyword TO specifies that the loop variable is o
;f incremented (by one or by the optional stepsize) each time the o
- loop is executed; the keyword DOWNTO specifies that the loop ;F:;
k? variable 1is decremented. Care must be exercised assigning qu
h C . . e
» initial and ending values, increment and decrement values and :
<
:' using TO and DOWNTO; it 1s possible that tne loop may never)
- execute or fail to terminate. 3
-
b _.‘
¢
L
g 100
| ;
L' s - . : .

= T T T T e T T T TR TR T A T e LT e e e A N e T L AL S M S i SN, 1S~ S P S ek A e R i+

o)

-2.3 REPEAT Statement (see Figure 5-3)
REPEAT;
statements
UNTIL logical.expression

STATEMENTS

ol 1

LOGICAL
EXPRESSION

Figure 6-3. Flowchart of REPEAT construct
The REPEAT construct repeatedly executes the contained state-

ments until the logical.expression becomes TRUE. The statements

are always executed at least once,

101

Sk AT S A e A) B A i e Ao AR A AL AL At Sat Ml A AR A AR R BRSNS I I i et ot A A Rt IO R Y el G b Ae Shieaty

5-2.4 WHILE Statement (see Figure 6-4)
WHILE logical.expression DO; ' f__'.‘q
statements *'q
ENDWHILE; | A

LOGICAL False
EXPRESSION ’ .
!
STATEMENT
L J]
\/ ,,%
. ' 2o d
Figure 6-4. Flowchart of WHILE Construct @
R
The WHILE construct repeatedly executes the contained statements R
as long as the 1logical.expression remains TRUE. If the

logical.expression is FALSE initially; the statements are not

executed at all.

:
e

102

e -
- . e

.- i - SR R .>-.
B P L ™ o

T e T e T - T el Te T e T s AT T ke Ty TR T rTTTRT OTAYNTWNTEYRTENT VTR TN TR T W T T YT

f=2.5 CASE Statement (see Figure 6-5)
CASE selection.variable OF;

CASE value (,value);
statements

ENDCASE;

CASE value (,value);
statements

ENDCASE;

*
*
*
ENDCASE;
OTHERWISE;
statements
ENDOTHER;

Select Variable

Value 1

Value Value

STATEMENTS STATEMENTS STATEMENTS

Figure 6-5. Flowchart of CASEOF Construct

The selection.variable 1is matched against the values specified
in each CASE section and if a match 1is found, the associated

statements and no others are executed., If no match is found,

O

tnen the CTHERWISE statements if present are executsd, I n
match 1s found and no OTHERWISE is present, then all statements
are skipped.

103

. Y .‘-'-
Tanee .t R e TN . . .
; . " -, . R L « “ - - - .
.»4_. N e et ; - S e ST » .

D et - .« S L. . et
o Py P SR TTES VT WY L AT VL VLT SO I N vy

Ty T T

48

:A'JJ ‘A e a s s 4}

MR ARt et el A S e Rt Bt S O Ty e LS P e vl e it A i AP i SR B A P M A Y e e e

—q
5-2.5 PROCEDURE Statement (see Figure 5-5) e
PROCEDURE procname; R
or - -4
PROCEDURE procname (varl,var2,....varn);
*
*
ENDPROC;

BEGIN
END
T .

-

Figure 6-6. Flowchart of PROCEDURE Construct

The procedure 1is entered and the included statements are <
executed. When the ENDPRQOC statement 1s encountered, control o

returns to the calling program.

.«
| :
€ -
- e
. .

‘ .
3
5
:,
|
; e
3] -
b
x
2 .
- ,
3 104 o
‘ - 8
y

6-2.7 PROGRAM Statement (see Figure 6-7)
PROGRAM progname; ;f;;
* ---4
* S

*

END.

BEGIN

END

ik 2t S A gue |

Figure 6-7. Flowchart of PROGRAM Construct

-l

8 The program is entered and the included statements are executed.

o . - :
: When the END. statement 1is encountered, execution terminates,

r-v—-"\f,-:-s A e "Bt YR S e S A A~ TR S R AR b A A R mT T e T e e T e T

s .

LERAR

T
t

O e

6-3 PDL UTILITY PROGRAMS
The Program Design Language (PDL) wused by EG& to

.
’

design, develop and document computer programs is based on
block-structured programming languages such as ALGOL and PASCAL.
Two utility programs are wused to facilitate formatting and
listing PDL programs,

The term "block-structured" means that a program |is
written as a sequence cf logical "blocks", each having only one
entrance and one exit. The program is built of these blocks;
the interconnection of the various blocks is the "structure"” of
the program.

Program structure may be illustrated at the listing
level by making the 1logical blocks of which the progjram is
constructed visually distinct from each other. This is done by
indenting the beginning of each source statement inside the
logical block a certain number of spaces relative to the
beginning of the lines preceding the block; thus nested logical
blocks present a "stair-step" appearance in the left margin of
the listing. Indentation is controlled by the language keywords
and associated "END" statements; the listing is indented one
level for each keyword and de-indented one level for each "END"
statement,

The two utility programs mentioned relieve the pro-
grammer of the necessity of keeping track of identation levels,
provide a formatted and numbered 1listing with 1logic nesting

levels flagged. The first program does the indentation and

produces a new version of the source file, This means that

FEPLI L
., Sl e !
- R T

D R . et

. v .y Lt
.

columnar placement of source lines in the original code is ir-
k% relevant., The second program numbers the source lines, flags -ﬁ
;x the indentation levels and produces the listing on a specified _;ﬂ
- physical 1/0 device. R
.. Following this introduction is documentation for the i;%
utility programs and an example shown formatted and unformatted ny
(see Fijures 5-3 and 5-9). :?f
106 .
..
S e GRS S e T T T

.k" A O

- 1 - . 1 l. l.

PROGRAM EXAMPLEL.LPD;

THIS PROGRAM READS A STRING OF UP TO FORTY ASCII CHARACTERS
INTO A BYTE ARRAY, CALCULATES THE EQUIVALENT HEXADECIMAL REP-
RESENTATION OF THE STRING AND PRINTS IT IN ASCII. AN INPUT SE-
QUENCE OF TWO ESCAPES TERMINAYTES THE PROGRAM. 'CHARACTERS' IS
AN ARRAY OF THE HEXADECIMAL NUMERALS O-F. 'CHARACTER' IS THE
INDEX INTO THE ARRAY, 'NIBBLE' IS THE TOP OR BOTTOM HALF OF

* A BYTE.

*

REPEAT;

READ FORTH CHARACTERS FROM USER_FILE INTO INPUT ARRAY;

ESCAPES := ZERO;

INDEX := ONE;

WHILE INDEX <= NUMBER OF CHARACTERS READ AND ESCAPES < TWO DO:

IF INPUT ARRAY(INDEX) = ESCAPE THEN;

ESCAPES 7= ESCAPES + ONE;

* ¥ X * X *

ELSE:

ESCAPES := ZERO;

ENDIF:

ENDWHILE:

CONVERT-STRING; .

WRITE OUTPUT_ARRAY TO OUTPUT_FILE;
LVTIL ESCAPES = TWO;

PROCEDURE CONVERT-STRING;

ARRAY POINTER := ONE;

NIBBLE := TOP;

FOR INDEX := ONE TO NUMBER_OF_ CHARACTERS_ READ;

FOR I := ONE TO TWO; "

CASE NIBBLE OF; '

CASE TOP; ,

CHARACTER := (INPUT_ARRAY(INDEX) AND OCTAL360)/16;
OUTPUT_ARRAY(ARRAY_ POINTED) := CHARACTERS(CHARACTER)
NIBBLE := BOTTOM; -

ENDCASE;

CASE BOTTOM;

CHARACTER := INPUT ARRAY(INDEX) AND OCTAL17;

CUTPUT ARRAY(ARRAY POINTED) := CHARACTERS(CHARACTER);
NIBBLE := TOP;

ENDCASE;

ENDCASEOF;

OUTPUT _ ARRAY _POINTED := OUTPUT_ARRAY POINTER + ONE:
ENDFOR]; o -

ENDFOR;

ENDPROC:

END EXAMPLE1.LPD;

Figure 6-8. Low-Level PDL Example Before Formatting

107

Gt RO a TN ey, . T Ty TR T T T YT HTE IR TRER S TET TNT A TANT LT AT L TATL TR LWL L Fe LN W \\\"‘-'\'\“_‘.‘f
NG J .

.................

o

0001 01- PROGRAM EXAMPLEL.LPD;]
0002 * THIS PROGRAM READS A STRING OF UP TO FORTY ASCII CHAR- ‘]:
0003 * ACTERS INTO A BYTE ARRAY, CALCULATES THE EQUIVALENT HEXA- =
0004 * DECIMAL REPRESENTATION OF THE STRING AND PRINTS IT IN
0005 * ASCII. AN INPUT SEQUENCE OF TWO ESCAPES TERMINATES THE
0006 * DPROGRAM. 'CHARACTERS' IS AN ARRAY OF THE HEXADECIMAL)
0007 * NUMERALS O-F. 'CHARACTER' IS THE INDEX INTO THE ARRAY. 5
0008 * '"NIBBLE' IS THE TOP OR BOTTOM HALF OF A BYTE. —
0009 * ﬁ
0010 02- REPEAT: T
0011 READ FORTY CHARACTERS FROM USER FILE INTO INPUT_ARRAY: L
0012 ESCAPES := ZERO: S
0013 INDEX := ONE; S
0014 03- WHILE INDEX <= NUMBER OF CHARACTERS READ AND ESCAPES<TWO DO; =~ 3
0015 04- IF INPUT ARRAY(INDEX) = ESCAPE THEN:) 1
0016 ESCAPES := ESCAPES + ONE; S
0017 04 ELSE; o
0018 ESCAPES := ZERO: F
0019 -04 ENDIF:]
0020 -03 ENDWHILE; o
0021 CONVERT-STRING; ,11
0022 WRITE OUTPUT ARRAY TO OUTPUT FILE; A
0023 -02 UNTIL ESCAPES = TWO; -
0024 *]
0025 02~ PROCEDURE CONVERT-STRING: N
0026 ARRAY POINTER := ONE; o)
0027 NIBBLE := TOP; .-
0028 03- FOR INDEX := ONE TO NUMBER_OF CHARACTERS READ; B
0029 04- FOR I := ONE TO TWO; L
0030 05- CASE NIBBLE OF; o
0031 06- CASE TOP;
0032 CHARACTER := (INPUT_ ARRAY(INDEX) AND OCTAL360)/16:; .
0033 OUTPUT_ARRAY(ARRAY_POINTER) := CHARACTERS(CHARACTER): _@
0034 NIBBLE := BOTTOM:]

q 0035 -06 ENDCASE; L
0036 06- CASE BOTTOM;: Y

k 0037 CHARACTER := INPUT ARRAY(INDEX) AND OCTAL17: L

! 0038 OUTPUT_ARRAY(ARRAY_POINTER) := CHARACTERS(CHARACTER): . .7

"o 0039 NIBBLE := TOP; ¢

F 0040 -06 ENDCASE; 5

. 0041 -05 ENDCASEOF ; o

. 0042 OUTPUT ARRAY POINTER := OUTPUT ARRAY POINTER + ONE:

[0043 -04 ENDFOR; - - B

' 0044 -03 ENDFOR:

o 0045 -02 ENDPROC:

o 0046 -01 END EXAMPLEL.LDPD: B

f. Figure 6-9. Low-Level PDL (LPD) Example After Formatting

°

b

}.

-

o

}

S

:.i

6=-3.1 IPDL - Indent PDLs

This program makes a new version of the same file with
all the indenting done automatically (2 columns per indenta-
tion). To run the program, type:

IPDL (filename)

If a filename 1is specified, the execution of the
program begins, If no filename is specified, the program will
print a prompt as follows:

IPDL>

The program will now wait for a filename to be entered.
In either case, a default extension of 'PDL' is assumed.

When the program finishes executing, a message

ENDING LEVEL = nn
is printed. nn is the number of levels unclosed 1in the file
that was input.

No files will be deleted by this program, and a file
named the same as the filename entered but with the next highest
version number will be created.

5-4 CONVERTING PDLs TO FLECS STATEMENTS

The conversion from PDLs to Flecs is a straightforward
process with the restrictions documented below.

In the sections which follow, "condition"™ denotes an
expression which yields a boolean result (i.e., TRUE/FALSE);
"statement" denotes a single statement or a series of statements
terminated by the Flecs "FIN" statement; brackets "[]" are used
to denote optional parameters. Each of the PDL control
structures is covered in the sections which follow.

The following restrictions apply:

Flecs must invent many statement numbers in <creating
the Fortran program. It does so by beginning with a large
number (in our implementation 32767) and generating successively
smaller numbers as it needs them. Do not wuse a number which
will be generated by the translator, A good rule of thumb is to

avoid using five digit statement numbers.

109

SR LI
. - - e
. -

R A LR . e Y
R PR U BN \ - ot

WP LI B R o UL T

.
- 4
.
.
e,

]
o

wlii -

(P -

PR e e e e
. PR .
. . ST
P M4 e g

e
o ls 0 g

MR AL ALY

[ind
T

A e Sn e SB s ae
ST Ay

et Jume v gt
- . e e

ST TR W 6 e T AT T T e TR ST Ty TR TR YT Y R s

The Flecs translator must gJenerate integer variable
names, It does so by using names of the form “Innnn" when nnnn
is a five digit number related to a generated statement number.
Do not wuse variables of the form Innnnn and avoid causing them

to be declared other than INTEGER. For example, the declaration
"IMPLICIT REAL (A-Z)" leads to trouble. Try "IMPLICIT REAL
(A-H, J-Z)" instead.

The translator does not recognize continuation lines in
the source files., Thus Fortran statements may be continued
since the statement and its continuations will be passed through

the translator without alteration. However, an extended Flecs

statement which requires translation may not be continued. The

reasons one might wish to continue a Flecs statement are 1) it
is a structured statement or procedure declaration with a one
statement scope too long to fit on a line, or 2) it contains an
excessively long specification portion, or 3) both of the above.
Problem 1) can be avoided by going to the multi-line form,
Frequently problem 2) can be avoided when the specification is
an expréssion by assigning the expression to a variable -in a
preceding statement and then using the variable as the specifi-
cation.

In scanning a parenthesized specification, the trans-
lator scans from left to right to find the parenthesis which
matches the initial left parenthesis of the specification. The
translator, however, 1is ignorant of Fortran syntax including
Hollerith parenthese as syntactic parentheses, Thus, avoid
placing Hollerith constants containing unbalanced parentheses

within specifications. If necessary, assign such constants to

a variable, using a DATA or assignment statement, and place the
variable in the specification.

Incorrect Example: Corrected Example:

If (J.EQ.' (" Lp = ' ("

If (J.EQ.LP)

The Flecs translator will not supply tne statement nec-
essary to cause appropriate termination of main and subprograms.
Thus, it is necessary to include the appropriate RETURN, STOP,

110

..
[e 0o
k@

Aadond

AA

or CALL EXIT statement prior to the first internal procedure
declaration., Failure to do so will result in «control entering

the scope of the first procedure after leaving the body of the
program. Do not place such statements between the procedure
declarations and the END statement.

Blanks are meaningful separators in Flecs statements;

don't put them in unnecessary places like the middle of identi-

fiers or key words and do use them to separate distinct words
like REPEAT and UNTIL.
Let Flecs indent the listing. Start all statements in

Column 7' (tab may be used) and the listing will always reveal
the true structure of the program (as understood by the trans-
lator).

As far as the translator is concerned, FORMAT state-
ments are executable Fortran statements, since it doesn't recog-

nize them as extended Flecs statements. Thus, only place FORMAT

statements where an executable Fortran statement would be

acceptable., Don't put them between the end of a WHEN statement
and the beginnning of an ELSE statement. Don't put them between

procedure declarations.

Incorrect Examples: Corrected Examples:
WHEN (FLAG) WRITE (3,30) WHEN (FLAG)
30 FORMAT (7H TITLE:) . WRITE (3,30)
ELSE LINE + LINE+l 30 . FORMAT (7H TITLE:O
...FIN

ELSE LINE = LINE+l

TO WRITE-HEADER TO WRITE-HEADER
. PAGE = PAGE+l . PAGE = PAGE+1
. WRITE(3,40) H,PAGE . WRITE(3,40) H,PAGE
.. .FIN 40 . FORMAT (70Al,I3)

40 FORMAT(70Al,I3) | ...FIN

The translator, ©veing simple-minded, r=2coynlzes ex-
tended Flecs statements by the process of scanning the first

identifier on the line. If the identifier is one of the Flecs

111

Tl 0 N DR R Y .

Keywords, IF, WHEN, UNLESS, FIN, etc.,:rthe line is assumed to De
a Flecs statement and 1is treated as such. Thus, The Flecs

keywords are reserved and may not be used as variable names. In

case of necessity, a variable name, say WHEN, may be slipped
past the translator by embedding a blank within it. Thus, "WH
EN" will look like "WH" followed by "EN" to the translator which
is blank sensitive, but 1like "“WHEN" to the <compiler which
ignores blanks.

The following is a brief description of —the Flecs
language. For further information, refer to the Flecs manual,

Appendix C of this manual.

Despite the many differences between the appearance of
the Flecs code and ANSI Standard Fortran 66, it must be D]
remembered that Flecs is a 'translator' and that the Flecs code ' 1
is translated 1into pure FORTRAN code which can be seen by in- é

specting the .FTN file that Flecs generates for a given program.

6-4.1 IF-THEN-ELSE . o]

The If-Then-Else is provided in two forms for true and é
false <conditional execution, with a separate form for If-Then- g
Else. To execute when "condition" is true: 1? 5

IF (condition) statement o

To execute when "condition" is false:
IF (.NOT.condition) statement
or UNLESS (condition) statement
Neither of the previous structures supports an ELSE clause. To
use an ELSE clause a different structure is required:

WHEN (condition) statement
ELSE statement

Chan e agn a4
. A R

The WHEN-ELSE keywords are required as a pair.

[. 6-4.2 REPEAT-UNTIL

: Flecs provides two structures for the REPEAT-UNTIL con-
g struct, for true and false condition.l exit,

;. To execute statement(s) until “condition" is false:

| REPEAT WHILE (condition) statement

b - 112

LYY

TO execute statement(s) until “condition"” is true:
REPEAT UNTIL (condition) statement

6-4.3 WHILE-DO
For the WHILE-DO construct, Flecs provides a true and
false conditional exit.,
To execute statement(s) while "condition" is true:
WHILE (condition) statement
To execute statements while "condition" is false:
UNTIL (condition) statement

6-4.4 FOR
This construct is similar to a Fortran DO statement and
is coded as:
DO (Index = start, end, increment) statement
where index, start, end, and increment must be integers. If not
specified, increment = +1.
For a FOR statement with a DOWNTO clause, a negative

increment must be specified,

6=-4.5 CASE
The case statement in Flecs 1is a SELECT statement.
This statement works the same as a CASE and allows the user to
specify an optional OTHERWISE clause also.
FORMAT:
SELECT (expression)
(Case-]1) statement

(Case-2) statement

(Case-n) statement
(Otherwise) statement
FIN
Each of the <cases 1is compared for equality with
"expression", Because of the way that Flecs builds the

113

A DAL SRR I AN A A S SINILE AL sl AN i S S AL A g Pl Ralar At uiirdianaiiicadin i e Sl i e e e A e
f
’.
-

- structures, it is wise to make "expression" a simple expression
by pre-evaluation.

The otherwise clause is optional.

6-4.6 PROCEDURES
Procedures consist of two types: external procedures .
which may pass parameters, and local procedures which reference jr.

local and/or global data structures. The coding for these types xﬁf
of procedures is different. T
For external procedures, the CALL statement of Fortran :

is used.
CALL ZAP
or
CALL TRY (Al, A2, A3, ... An)

Where Al, etc., represent passed parameters.

For local procedures with no arguments passed:
Procedure invocation: :
Procedure-name o]
Procedure definition: i

TO procedure-name

statements

Vi 6-4.6.1 Procedure-names. Procedure-names may be any string of

letters, digits, and hyphens (i.e., minus signs) beginning with

a letter and containing at least one hyphen. Internal blanks

are not allowed. The only restriction on the length of a name

is that it may not be continued.

b
Fl
?. Examples of valid internal procedure names:
: INITIALIZE-ARRAYS
i GIVE-WARNING
f. SORT-INTO-DESCENDING=-ORDER
E INITIATE-PHASE-3
3
3 114
(]

F:Tff*
?“:

T AT TN A TN TR LTRSS CHEhE e Bl A e AN A i A E A S A S S Rl K Ak A Akl Sl A b A Sl N

AR

5-4.6.2 Procedure Declaration. A procedure declaration

consists of the keyword "TO" followed by the procedure name and
its scope. (The set of statements comprising the procedure |is

called 1its scope.) If the scope consists of a single simple
statement, it may be spaced on the same line as the "TO" and ;-
procedure name, otherwise the statements of the scope are placed
on the following lines and terminated with a FIN statement,
For example:
To INITIALIZE-ARRAYS statement
To GIVE-WARNING X
statement »—1&

] [
O TORAE

FIN
The Flecs translator will not supply the statements 1
necessary to cause appropriate termination of main and sub- f
programs. Thus, it 1is necesary to 1include the appropriate e~
RETURN, STOP, or CALL EXIT statement prior to the first internal g

procedure declaration. Failure to do so will result in control

entering the scope of the first procedure after leaving the body
- of the prog'ram. Do not place such statements between the ‘ J
procedure declarations and the END statement.)
All internal procedure declarations must be placed at jf?ﬁ
the end of the program just prior to the END statement. The ﬁ,f;
appearance of the first "TO" statement terminates the body of R
the program., The translator expects to see nothing but pro- 77%?
cedure declarations from that point on, E
The order of the declarations is not important. Alpha- i
betical by name is an excellent order for programs with a large : 3
number of procedures. r~§1
Procedure declarations may not be nested, In other &ﬂ%}
P words, the scope of a procedure may not contain a procedure - q
declaration. It may, of course, contain executable procedure j
references, _715
Any procedure may contain references to any other N
procedures (excluding itself.
Dynamic recursion of procedure referencing 1is not
permitted.

v

Ty e

rq—(ﬁ;‘v—v
.« v

All program variables within a main or subprogram are

global and are accessible to the statements in all procedures
declared within that same main or sub-program.

There is no formal mechanism for defining or passing
parameters to an internal procedure. When parameter passing 1is
needed, the Fortran function or subroutine subprogram mechanism
may be wused or the programmer may invent his own parameter
passing methods wusing the global nature of variables over
internal procedures.

The Flecs translator separates procedure declarations

on the listing by dashed lines,

I
‘
e

P

'
S
N J A

K

,
5 YO

"‘ﬁ" »

¢
NI EEY VRSP

SECTICON 7
CONTINUOUS WAVE MEASUREMENT SYSTEM

7-1 INTRODUCTION

This section describes the operation of the Progran
Control Unit (PCU) program which is executed by both the Trans-
mitter (XMTR) PCU and the Receiver (RCVR) PCU. It will first

) L_._L_._h_'. ‘..L;J_ . ‘1 .'. L .

[t

describe the general operation of the program, then describe tn
major sub-routines. The details of these major sub-routines are
ﬂi described by the comments imbedded within the program code.

! Refer to the PCU listings manual for the code used by the PCUs.

The PCU program is designed to control the instrumen-

.

tation required to irradiate a target with a spectrum of radio-

operator.,

: frequency (RF) signals, acquiring digitized signals which
;. represent the RF phase and amnlitude at the target, and ‘4
: transmitting these signals to a PDP-11 for analysis and]
:} plotting. The program may also 'plot the digitized data ‘
[directly, while transmitting the digitized data to a cassette
: recorder, Additional descrviption of this hardware may be .]|
obtained from the CWMS Operating Manual, AG-1425. R
3?
7-2 MAJOR FUNCTICNS
The PCU program performs the task described above by lﬂj
performing several major functions., These functions are: T
e 1Initialization of the hardware and software.]
e Configuration of the CW test in response to]
the front panel switch values set by the “j
- N

e Synchronization of the XMTR PCU and RCVR PCU.
Control of the RF generator and the data

acquisition instrumentation.
e Format data for transmission to PDP-11 or
recorder.

. e Perform computations and controls for piostting

-

.-“.A ‘”

S

R

L ‘1

P data. .
L]

117

e, T F T WW W W T T T T, T T ey EEARNLTLE OTRTY CROETE YT ST e Ty

The implementation of eacn of these functions is <cis-
cussed in detail in Section 8.0, However, a few more general

comments are in order before that discussion begins.

7-3 PROGRAM ARCHITECTURE

The PCU program is designed to be event driven. That
s, the program remains in an idle state, CWOS, until an event
tinterrupt) occurs., At Power Up, or upon activation of the
Reset switch, the PCU is forced to execute the RESET program.
The PCU enters the CWOS state from RESET and remains there in-
definitely while awaiting an event.

Wwhen the correct event occurs, activation of the Plot/
Init switch, the PCU will leave the CWO0OS state, perform a set of
tasks and wait in a different state for another particular event

to occur. This process 1is continued wuntil the CW test is

completed, at which time the CW0OS state is re-entered.
To insure that the proper sequence of events occurs,
the PCU sets software flags and enables/disables hardware at

certain points in the program. L

7-4 OPERATING MODES o
At this point, a description of the various operating N
modes of tne CWMS may facilitate the understanding of the CWMS
program.
There are three modes of operation for the CWwMS. Two
of these set wup and verify the operation of the instruments.
The remaining mode 1is wused to <control the instruments and

acquire data.

i' . K "..'_.. e .

instruments.

7-4.1 Manual Mode :
The Manual Mode of operation permits the use of cthe e
front panel controls on each of the CWMS instruments. In this B
mode, the PCU has no control of the instruments and is unable to d
dl4dice data. Coordination of the XMTR anéd RCVR PCU freguency i
° is done by the operators. This mode may be used to set up the ®
- a

AT,

. e
.

R A
.

.o

-

Rk 9 e - A e
-

I e Aalia "l N N i Sl Sl A b A A A A A A i G ML MMV A At Ar e SE A AP oA DA s b Jeve Bas

Manual operation of the instruments associated witn the
PCU may be achieved by setting the Plot Format switch to '000'.

The PCU will be in the 1idle state, CW0S, while the
Format switch 1is set., To begin manual operation, activate the
Plot/Init switch. This drives the PCU through the PINIT state,
where it is determined that manual operation has been selected,
and into the CONFIG state. While in this state, the PCU sets
the DVM's 1into the free running mode, inhibits the pulses from
the synchronizer, and places all of the GPIB instruments 1into
local mode. The PCU then waits in this state for an interrupt
from the Start switch. When the Start switch is activated, the
RF coax relay is closed and the PCU waits for the Stop switch to
be depressed. Activation of the Stop switch causes the PCU to
open the RF relay and return to the CONFIG state. Here it waits
for another interrupt from the Start switch,

Several important characteristics of the manual opera-

tion should now be summarized.

¢ All instruments are controlled by their front panel
switches,

® There is no synchronization between transmitte. and
receiver.

® The PCU does not read the DVMs.

e The RF frequency is not advanced by the PCU.

e The RF transmitter is on from the time 1its Start
switch is activated wuntil its Stop switch |is
activated.

e To terminate manual operation, it 1is necessary to

depress the reset switch,

7-4.2 Semi-Automatic Operation

The semi-automatic mode allows the operator to control
the rate at which the frequency spectrum 1is scanned. One
frequency is sampled each time the operators depress the Start
switen, in this wmode ctue PCU controls Cie lastranents
associated with tne CWMS, and determines the frequencies to be
sampled.

119

T The PCU and its related instruments may be operated in
L a semi-automatic mode by setting the Format switch to any value
.!3 other than '000' and setting the Step Mode switch to MANUAL.

: The PCU is in the idle state, CWOS, while the switches
are being set. Depressing the Plot/Init switch will drive the
PCU to the PINIT state where it determines the table of frequen-
cies to be scanned, transmits the switch values to the PDP-11 or
plots the grid, enables the Start switch, and enters the CWTEST
state. The PCU will loop between the CWTEST and CWPLOT states
waiting for data to be acquired and plotted, and testing for the
end of a test cycle., No data is acquired until the Start switch
is depressed.

Depression of the Start switch enables the synchronizer
to generate a stcep pqlse. This pulse drives the PCU 1into cthe
SYSTEP state which initiates the data acquisition sequence and
sets the RF frequency and amplitude for the rf frequency synthe-
sizer., The data acquisition sequence is controlled by the TIMER
which interrupts the PCU from the CWTEST or CWPLOT states.

The TIMER forces the following sequence to occur.

e Upon receipt of the first step pulse of a test
cycle, delay-250 ms before controlling the RF relay.
If the test is in cycle 1 of a multi-cycle test, the
relay 1is opened, otherwise, it is closed. The RF
relay then remains in this state throughout the test
cycle.

® After a 550 ms delay from receipt of the step uplse,
the DVMs are commanded to convert the analog RF

phase and amplitude signals into digital data. At

this point the synchronizer pulse is inhibited.

_a

e After a 660 ms delay from receipt of the step pulse,

i
i
A o_a

the phase and amplitude data are transferred from
the DVMs to the PDP-11, or to the MFE recorder and
the plotter buffer.

%

<oy

Each time the Start switch is activazed, the seyguencs

L
L
5 v Y

. '
¢ e

of events described above will occur until the last frequency is ;i
sampled, If the plotter is connected to the PCU, the phase data -
120 B

. .

R S Pal SR Pl A A S R R P M et s A Paihn A S et A LAl aa el el A gl e Al W el S Al e Nul Ak S g

}?ff will be plotted after the last frequency of the spectrum has

Yo been sampled. If the test consists of multiple cycles, the PCU
will then return to the PINIT state to begin the next cycle;

v otherwise, the idle state is entered.

A Some important characteristics of the Semi-Automatic

mode of operation are itemized below.

e The transmitter and receiver are not synchronized.

!
"
L d
3
1
3
.'.4.
3
-4
__.‘l
r

To obtain wvalid data it 1is necessary for each
operator to alternately depress the Start switch,
with the transmitter operator always going first.

® Only one frequency is sampled with each depression

of the Start switch,

i e All of the instruments are under the control of the s
- -

PCU.
.]
€ e The front panel switches of the transmitter and the "-

L receiver must have the same settings.

i,

7-4.3 ° Automatic Operation o
m The automatic mode of operation allows a complete t_:est, é

consisting of a singie cycle or multiple cycles, to be conducted }
L with a minimum of operator intervention. 1In this mode the PCU .
t controls the instruments associated with the CWMS, determines R
?ill the frequencies to be sampled, and automatically scans the 51
e desired spectrum, 55
?g- The PCU and its related instruments may be operated in T3
j§f4 the automatic mode by setting the Format switch to any value ;
:;" other than '000', setting the Step Mode switch to AUTO. 2
o The PCU is in the idle state, CW0OS, while the switches g!
;:if are being set, Depressing the Plot/Init switch will drive the ig
Ei i PCU to the PINIT state where is determines the mode of opera- "
] tion, 1initializes the GPIB instruments, creates the table of ;J
’._ frequencies to be scanned, transmits the switch wvalues to the !1

PDP-11 or plots the grid, enables the Start switch, and enters
tie CWTEST stute, The PCU will 1loop GCetween the CWTEST and

CWPLOT states waiting for data to be acquired and plotted, and

121

AR N N

testing for the end of a test cycle. No data is acquired until
the Start switch is depressed. ’

Depression of the Start switch enables the synchronizer
to generate a series of step pulses after the DataChron <clocks
reach the 'start time' previously set into the clocks at the
receiver and transmitter. Each pulse drives the PCU 1into the
SYSTEP state which initiates the data acquisition sequence and
sets the RF frequency and amplitude for the rf frequency syn-
thesizers. The data acquisition sequence is controlled by the
TIMER which interrupts the PCU from the CWTEST or CWPLOT states.

The TIMER forces the following sequence to occur.

e Upon receipt of the first step pulse of a test
cycle, delay 250 ms before controlling the RF relay.
If the test is in cycle one of a multi-cycle test,
the relay is opened; otherwise, it is closed. The
RF relay then remains in this state throughout the
test cycle.

e After a 550 ms delay from receipt of the step pulse,
the DvMs are commanded to convert the analog RF
phase and amplitude signals into digital data.

e After a 660 ms delay from receipt of the step pulse,
the phase and amplitude data are transferred from
the DVMs to the PDP-11, or to the MFE recorder and
the plotter buffer.

Each step pulse forces execution of the sequence of
events described above until the last frequency of the spectrum
is sampled. If the plotter is connected to the PCU, the phase
data will be plotted after the last frequency of the spectrum
has been sampled., If the test consists of multiple cycles, the
PCU then will return to the PINIT state to begin the next cycle;
ctherwise, the idle state is entered.

Some important characteristics of the Automatic mode of
operation are itemized below,

e If remote start is selected via front panel

switches, the transmitter and receiver are synchro-
nized by the DataChron Clocks. Before the Start

switch 1is depressed, each operator must be the sanme

'start time' into each DataChron. Depressing the
Start switch then enables the synchronizer to
generate the step. pulses when the ‘'start time'
arrives, The step pulses are not inhibited until
the test is completed.

e The front panel switches of the transmitter and
reciever must have the same settings.

¢ All of the instruments are under the control of the
PCU.

7-5 SINGLE CYCLE/MULTI-CYCLE TESTS

The CWMS PCU is capable of conducting a single cycle
test or a multi-cycle test. This selection is made with the
Single/Multi switch on the PCU front panel. In a single cycle

test, the Hold switch has no function.

7-5.1 Single Cycle Test)

When the single cycle test is selected, the frequency
spectrum is scanned one time only. The RF transmitter is active
and the RF probe 1is in place at the unit under test. As the
spectrum is scanned the data from the RF probe is acquired and
transmitted to the PDP-11 or the MFE recorder. Upon completion
of the spectrum, the PCU enters the idle state,

7-5.2 Multi-Cycle Test

When a multi-cycle test is selected, the frequency
spectrum is scanned three times. Each of the three scans is
termed a cycle. The first cycle determines the ambient noise
during the test., During this cycle, the RF probe is in place at
the unit wunder test, but the RF transmitter is not energized,
Cycle two measures the RF phase and amplitude at the unit under
test with the transimtter energized for each selected frequency
2 the spectrun. Tae tnird cycie ameasures the plck-up nols2 5%

the RF probe when it is not connected to the unit under test.

N

1
Y TRORT

. R -)

.
[]

]
o

t

" Sadly a .
o A e .
.) :
) o' 0t

The transmitter is energized for each frequency selected in the
spectrum,

Data is transmitted to the PDP-11 or the MFE recorder
during each of the cycles.

During a multi-cycle test, the Hold switch becomes
functional. The Hold switch allows the operator to extend the
time interval between cycles. Normally, the interval between
the end of cycle one and the start of cycle two will be a few
seconds, and the interval between cycle two and cycle three will
be a few minutes, However, if the operators each depress the
Hold switch before the start of the next cycle, the cycle will
not be initiated. To facilitate coordination of this action by
the operators, the Hold switch may be depressed at any time
during cycles one or two. The switch will not be effective
until the end of the cycle. 1If the operators exercise the Hold
option, it becomes necessary to enter a new 'start time' on the
Datachron Clock for the start of the next cycle if remote start

is selected on the front panel.

7-6 SYSTEM CONFIGURATIONS

The CWMS is capable of operating with three different
hardware configurations with the same software program. This
offers a degree of back-up operation in the event that certain
sub-systems fail to operate. The data acquisition capability of
each configuration 1is equal; however, the data reduction and

presentation capabilities are reduced in the back-up modes.

7-6.1 Primary Configuration »

The primary hardware configuration for the CWMS consist
of the PCU, Plotter, and the PDP-11 with its peripherals. The
data acquired by the PCU in this configuration is transmitted to
the pPDP-11 for analysis., Plotting of reduced data is under con-
trol of the pPDP-l1l1l.

124

N J N

H"I]J Ty

P Y
.'.E

27T TH VWY

e R N N e T R N e N T e n ey

7=-5.2 Secondary Configuration

If the PDP-11 becomes inoperative, it may be replaced
by an MFE cassette tape recorder. The cable between the PCU and
the PDP-11 is replaced by a cable between the same PCU connector
and the MFE recorder. The PCU will now transmit the acquired
data to the recorder. At a later time, when the PDP-11 becomes
operational, the recorder may be connected to the PDP-11 on the
same connector to which the PCU was tied and the data may be
transmitted to the PDP~11l.

In this configuration, the Plotter may be disconnected
from the PDP-11 and connected to the PCU via the plccter address
switches to obtain graphs while the data is being acquired.
Plotting may also be controlled by the PDP-11 by setting the
plotter switches. The data plotted is then the reduced data
from the PDP-11.

7-6.3 Tertiary Configuration

If both the PDP-11 and the MFE recorder are inopera-
tive, data may still be acquired'ada sent to the plotter, It is
necessary to replace the cable from the PCU to the PDP-11 with
a jumper connector. This will allow the PCU to send data to the
plotter. The plotter must be configured to 'talk' to the PCU by
setting the address switches on the back of the plotter as
described in the CWMS QOperating Manual, paragraph 3-1.4, Table
20.

PO s Bt e i S g |

. . +

R T
n 100
PR LI .

--4q

. o e
VIO JEUEEN ORI

k2

o A
.'. *r
.

S

b

PR AR R R A T I e i e Rt R S R i R T e e

SECTION 3
DESCRIPTION OF MAJOR ROUTINES

The major functions, outlined in paragraph 7-2, per-
formed by the PCY programs are implemented by four Jgroups of
subroutines which will be discussed in the following paragraphs. 3
In addition, a description of the subroutines associated with q
the ZT-80 GPIB controller will be presented, as they play an @f
important role in the operation of the PCU, The subroutines are 'fﬁ
grouped as follows: 1) initialization, 2) test configuration, R ;
3) test control, 4) data acquisition and transmission, and 5)) ﬂ
ZT-80 controls.

3-1 INITIALIZATION]
Initialization of the PCU hardware and software is per- _jé
formed by the RESET routine whenever power is turned on or the]
Reset switch 1is depressed. The RESET routine invokes 20 sub-
routines to initialize the CWMS. When initialization has been :Qf
completed, the RESET routine passes control to the monitor, :“
CWOS, where the PCU awaits an interrupt from the Plot/Init 'ij
switch, fﬁ
8-1.1 Reset Operation *.‘
The Reset switch generates a level 0 interrupt which ut:
d causes the PCU to terminate its current task and execute the _f;
[RESET routine, The RESET routine performs the following jf}
$. sequence in initializing the PCU hardware and software. -1
F e Set the parallel input and output ports. T:T
< e Set the serial link to the PDP-11.
@l e Set tnhe flags of the measurement block procedure. E
V. ® Set the flags of the operating mode procedure. A
E e Set the flags of the XMTR amplitude control procedure. -
tf ® Calculate the delay length after cycle one and
1 cyzle two of a multicycle test,
, ¢ Open the RF coax relay.
i.' Inhibit the system step pulses.)
|
.
o 126
| ® .
o e T T T N R S S,

A A i A A B Pl Ml S S N

.
g N
L3N Jhw SO SR

Inhioit the DYMs, RIS

l"
€

!

!
A
-,

Set the DVMs to accept an external trigger pulse
Blank the CRT of the Network Analyzer.

Set the interval timer hardware and software,

Set the interrupt manager hardware and software

and enable the PCU interrupts.

e Wait 100 ms for the ZT-80 to load its program from
ROM.

e Set the ZT-80 flags and put the GPI3 instruments
into remote operation.

e Determine if the DVMs are on.

Transfer the delete ROM ID to RAM.
e Set the frequency, amplitude, and mode of each
SD 1702 rf synthesizer,
Command the Plotter pen to the 'home' position. - .4
Enter the idle state, CWOS.) :
]
8-2 TEST CONFIGURATION]
In preparing for a CW test, the operators set the front
panel controls of the PCUs to provide the functions prescribed ff'%
for the test. The PCU is instructed to examine the switches, Jﬂi
after they are all set, by depressing the Plot/Init switch of 'i:
each PCU and set the program flags in accordance with the switch -;'Q
values. M.f
-
8-2.1 PINIT Operation
The Plot/Init switch generates a level two interrupt

which takes the PCU from the CWOS state to the PINIT state. 1If
the PINIT routine has already been invoked by a currently

running test, the interrupt is ignored and PCU control returns

to the interrupted test. Otherwise, PINIT proceeds with con-

figuring the test being requested as follows:

e Determine if a single or multicycle test is to be

done and whether the PDP-11 or the MFE recorder will

receive the transmitted data.

e Set the DVMs to accept an external trigger pulse.

Lol ug
o

e

e Transfer the front panel switch values to the PDP-11

or the MFE recorder,

e If operation is to be manual, then invoke the START
routine and loop there waiting for the Start switch
and the Stop switch. A Reset is the only exit from
this mode of operation,

e If operation is not manual, then generate the table
of frequencies to be sampled if this is a single
cycle test or it is is cycle one of a nmulticycle
test.

e If the Plotter is on the PCU and a grid is required,
then draw the grid and label the axes.

e Command the Plotter pen to the origin corresponding
to the plot format selected.

e Enable the Start switch.

o Enter the CWTEST state and await the system step

pulse,.

8-3 TEST CONTROL ;

The test is controlled by the CWTEST routine. Con-
trolling the test consists of aborting the test if requested,
plotting the magnitude data as it becomes available, plotting
the phase data at the end of a test cycle, and preparing for the
next cycle of a multicycle test if necessary.

8-3.1 CWTEST Operation
The CWTEST routine controls the cw test by performing
the following sequence of operations:
e 1If the Stop switch has been activated, abort the
test in progress and return to the idle state,
Otherwise, continue below.
e If there is no data in the FIFO buffer or it con-
tains Plotter control characters, then loop back to

bejinning.

128

P

1
3)

I
v_u.jL.A‘A'A‘- -

e

o

R
‘y

. .ot s
PP TSP TP TP

wrrr.
L i

b

e If the FIFO contains RF data, then transfsr the data
to the Plotter buffer, draw it, and loop back to
beginning.

e If the FIFO contains an end of cycle flag, then draw
the phase data if it is required.

e Command the Plotter pen to the origin.,

Mute the RF transmitter,

e If a multicycle test is in progress, then regenerate
the table of frequencies to be sampled, wait for the
cycle delay to expire, and test the Hold switch. If

the Hold switch is on, disable the step pulses and

wait for the Start switch interrupt.

e Py P -r R ——
AN oy e A
. . . . e et

e If another cycle is to be performed, enter the PINIT

a
ib state; otherwise, enter the idle state.

A
_a
Yo

3-4 DATA ACQUISITION AND TRANSMISSION
The data acquisition and data transmission to the
PDP-11 or MFE recorder is handled by the SYSTEP routine. This

routine is interrupt driven to acquire RF data, transmit the
data, and set the RF synthesizers for the next frequency to be
sampled. Normally the PCU will be in the CWTEST or CWPLOT state

. '
. R —
P PO

when the interrupt for SYSTEP occurs.

—

K|

8-4.1 SYSTEP Operation RS

A system step pulse from the syhchronizer PC card will jfﬂi

generate a level 0 interrupt. In response, the PCU executes the fﬁg

following sequence: n

e If the test cycle is done, generate the appropriate ~fg?

delay before beginning the next cycle, Otherwise, ?;ﬁ

continue this sequence, -';a

e If this is the first pass through SYSTEP for this 5

s test cycle, then enable the data acquisition time, ;125
} initialize the plotter flags, set the synthesizar :;;
E for the first frequency and its correspondiny ampli- Afnl
f. tude, and return to the interrupted routine. (Refer ‘1;3
|

S AP A
ot

129

;
£, "o 5T
N

[P S S N, I BN P Ny MR WL A PR, W T T

AATR AN 090 oal Al Rer aat e g S LA B S DL AP o oA SN Al St SPul gl ~ i Hh R B P AR M A T i

Cl e, 9

-

£t2> 7-4-2 for a description of the data acquisi=zion
timer seguence.)

e If this is not the first pass through SYSTEP for
this test <cycle, then enable the data acquisition
timer, read the DVMs for the RF data from the
previous frequency, transmit the data to the pPDP-11
and the Plotter, set the synthesizer for the next
frequency and amplitude, and return to the inter-
rupted routine,

e If this is the last frequency sampled, then send the
last data points to the PDP-11, 1If this is a single
cycle test, disable the system step pulses. Return

to the interrupted program.

8-5 GPIB INSTRUMENTS

The General Purpose Interface Bus (GPIB) is used by the
PCU to communicate with the Plotter and the Frequency Synthe-
sizers. There is a significant amount of software devoted to

these devices so it is appropriate to discuss it here.

8=-5.1 PCU/GPIB Electrical Interface

The PCU controls the GPIB instruments through a 3PIB
controller, the Z7T-80. The ZT-80 is a PC card with the same
form factor and electronic interface as the SBC 80/20 micro-
computer wused in the PCU. The ZT-80 also has the electronic
interface for the GPIB. The GPIB timing and signal level
characteristics are detailed 1in the IEEE standard %475, which
the ZT-80 satisfies.

8-5.2 PTU/GPIB Command Interface

IEEE standard #475 specifies a fundamental se:t of
commands which allow the instruments on the GPIB to control one
another and to pass data Detween one another., This command st
-5 pass Jdata Detwse2n 2n2 another is very bhasiz and gquicxkly

becomes tedious to use. The ZT-80 allows the PC to use a more

130

PR it S S e,

el]

/U

Yy

at

caQL

N TR

Lt .
@,
, AT
et Al

@

oy
et

s

o
@

- ElCC A S R i AR S A Ve e e b e A i e b it S senit A dthe

2legant <command set. The PCU commands are translate=d by the

Z7-80 into the basic set to operate the bus.

8-5.3 PCU/ZT-80 Communications
The PCU communicates with the ZT-80 by very abbreviated
commands which direct the ZT-80 to execute programs loaded from S
its wuser's PROM. Before proceeding, some definitions are —_
needed, -
e¢ An INSTRUMENT PROGRAM 1is a string of ASCII <charac-

ters which an instrument on the GPIB interprects as

'
AL s

a set of commands. For example, the Frequency

.J4!-"Wfffp;”

Synthesizer sets its output to the freguency 100 ™MHz
when it receives the string GN10000000.

e A CIANNEL COMMAND is an instruction which the ZT-80
translates into a set of basic GPIB commands. .

e A CHANNEL PROGRAM is a sequence of channel commands.
The channel program 1is created by the user - and
placed into the ZT-80 user's PROM.

e A DEVICE LIST is a 1list of the GPIB instruments

which are to receive a particular instrument program

or data block transfer.

e The PROGRAM ADDRESS TABLE is a list of the starting
address of each channel program that the ZT-80 will
execute,

The procedure followed in utilizing the 2ZT-80 1is now
described. First, an instrument program was designed for each
function required of each instrument. These instrument programs
reside in the 2ZT-80 PROM and are loaded into the 2ZT-80's
volatile memory at power up or reset. The instrument programs
are defined in the ZTBUF routine.

Second, a channel program was designed for eacihh instru-
ment program, The channel program specified the device list and
data or command buffer to the ZT-80 for each instrument program.
The c-hannel programs alsn reside in the 2IT7-30 PR2M and ara
loaded 1into the ZT-80 RAM at power up or reset. The channel
programs are defined in the ZTCHAN routine,. The device 1lists

131

————

associated with the Cchannel projran are defined in the DEVLST

routine.

Last, the program address table is defined. This table
is transferred to the ZT-80 from the PCJU PROM at power up oOr
reset. The PAT routine contains this definition. Each channel
program has a priority for execution by the ZT-80 which 1is set

by the position of the program in the program address table.

3-5.4 Typical PCU/ZT-80 Interaction
A typical sequence of events between the PCU and tne

ZT-80 1in controlling a GPIB instrument is outlined below.

v
=)
%

e The PCU examines the ZT-39 busy/not busy flag

oy
a

waits for it to be ‘not busy'. This is done by t
CWAIT routine.
e The PCU transfers the ID number of <the <channel
program to be executed by the ZT-80 and commands the
" ZT-80 to begin execution.
e The ZT-80 may set an interrupt to the PCU upon com-

pletion of the channel program and it will set the

‘not busy' flag.

. ‘ . ., A ,
s ' L St .
’ »!LAJ;AA.“'M-A- [P

A
. N

@i, a®

.

Y

PO L

Lan an an g
DA D
(PR

-

- e e ATy R TR TN T TR Yo

There
program which

utilized by

described in Section 8. These routines are isolated from the

program flow
the program 1i

set of utili

Tektronix plotter., Refer to the PCU software listings manual.

R N S T A e T,
A

_ﬁ

SECTION 9 S

UTILITY ROUTINES AR

are numerous routines contained in the CWMS PCU
perform dedicated tasks. These routines are

many of the routines included in the four groups

and their function may be understood by examining
sting of each utility routine, Included 1in this

ty routines 1is a subset wused to control the

4
4
_—
o

~ :—.:
--i

L |

133

ASCBIN

BCDBIN

BCDBNY

BINASC

DNASC

CKDVM1

CKMIDS

CNVINT

CONFIG

CWAIT

CWPLOT

CWTEST

CYCCHK

CYCINV

CYCTIM

This section contains a brief description of each
public routine in the PCU program. The routines are 1listed 1in
alphabetical order.

- L -, - - - Pl el iy " Aafia e dhate e dhait e it et it ialh Badh Sad Bl k= el A A ad b B I k- e 9a B0e Mia -l G “Iiie “ 44

SECTION 10
BRIEF DESCRIPTION OF CWMS PCU ROUTINES

converts five or less ASCII digits into a corres-
ponding 14 bit binary valu=,

converts a five dijit BCD number to a 24 bic dinary
value.

converts five or less packed BCD digits into a cor-
responding 16 bit binary value.

converts a 16 bit binary value into a corresponding

five digit ASCII character string. -
converts a 16 bit binary value to a five character ;__é
ASCII representation.

determines if DVMs are connected to PCU and power ad j
up.

checks the STOP input line to determine if a mid-test é

stop has been reguested.
calculates the number of step pulses required to C

generate the delays after cycle one and cycle two. f&j

inputs Format switch and sets program flags accordingiy.
waits for the ZT-80 to become available for a command.
transfers MAGNITUDE and PHASE data from FIFO buffer

to Plotter.

supervisor for controlling, plotting, and terminating
CW test.

examines the status of the single/multicycle switch
and determines whether the PDP~-11l or MFE recorder are
connected to the PCU,

at the end of a test cycle it checks for a multicycle
test and delays the next cycle if the Hold switch is
on,

provides delay between test cycles of a multicycle
test.

134 7]

Tal

T Te T Te T T T Te T e TR e e T

DATAL

DBMDBW

DECADE

DECDAT

DELAY
DELAY1

DELBLK

DELID

DELPT

DELROM

DEVLST

DIV16
DVCNVT

DVMASC

DVMPOL

DVIINT

IRMSG

data tables for use by the Plotter in generating
labels and grids.

converts RF amplitude values from DBM to DBW for the
RF synthesizers,

transfers the log grid marks from a table in ROM to
a buffer in RAM for the number of active decades on
a test.

sets the frequency buffer header block as a function
of the decade switch buffer value.

provides a one millisecond delay via a program loop.
provides multiples of one millisecond delay via a
program loop.

inserts into the measurement data block a flag for
each single delete frequency or each group of mul-
tiple delete frequencies.

prints the deleted frequency ROM identification on
the Plotter.

sets the frequency delete pointers for the next
decade.

data tables containing delete frequencies for test
site,

data table containing addresses of GPIB devices for
each ZT-80 CHANNEL PROGRAM.

refer to MATH routine below.

converts the packed BCD DVM data into signed binary
data.

converts the packed BCD data of the DVM buffer into
ASCII characters for transmission to the PDP-11.
outputs converted DVM data to FIFQO buffer or fre-
quency buffer for magnitude or phase data respec-
tively.

services that interrupt from both DVMs by setting
interrupt flags and inputting each DVM measurement.
causes CA test to stop and passes 2rror messaje to
Plotter.

.-
fu—

9

4

- 4

~ 4

d

- -
R
9
.;J

UL e e o b

e

PPy
. .

. R
LT

“1,,.1,-,
e .S

e
P .

FbuMe

FLOAD

FRET

GENGRD

HLDTST

INCK

INTIO

LABAXS

LODPLT

LOGSCL

LOGTAB

LSL

MATH
MODSET

MOVE

MPY15

moves two bytes of data from the FIFD buffar to

CPUs BC register.

moves two bytes of data into the FIFO buffer from
CPUs BC register.

sets carry bit to zero, indicating an unsuccessful
task execution.

maintains the input and output pointers of the

FIFO.

creates a CW test frequency program, for the Frequency
Synthesizer, in a RAM buffer.

creates an INSTRUMENT PROGRAM for the Plotter to draw
grids as a function of the Format switch satting.
examines the status of the Hold switch and sets

a flag.

corrects the scale pointer for the TFB and RFC

VIR

r
. P
Aendhndenidunds

3Jrids.

.

initializes the interrupt hardware and software upon
power up or reset.

creates an INSTRUMENT "PROGRAM for the Plotter to
label the axis,

4

l
;

converts binary data from FIFO buffer to five ASCII
digits and loads them into buffer for Plotter.

data table containing log grid marks for Plotter as
a function of the number of decades to be plotted.
data table containing 1000 logarithmically spaced
values between 1 and 10.

this module is included in XLABEL and helps to label
the X axis.

provides a 16 by 16 multiply and divide operation.
examines the status of the single/multicycle switch

and the hold switch, and sets flags accordingly.

moves a block of data from one memory buffer to
another,

refer to MATH routine above,

Y Q

—

MSRBKO

MSRBLK

MSRDON

MTCYCO

MVCTR

NOMEN
NXDEC

PACK

PARIO

PARIOS
PAT

PAUSE
PINIT

PLOTO

PLOTS

PNLBLK

PROMP

RAMBO

initializes flays and buffars which are required by the

MSR*BLK procedure. This procedure is located in the
MSR*BLK module.

transmits blocks of measurement data to the PDP-1l1l via
the serial link.

completes transmission of the measurement block at the
end of a test cycle,

initializes flags associated with multicycle CW tests.
This procedure is located in the CYC$CiHX module.

moves characters from ROM to the plot buffer as part
of creating an INSTRUMENT PROGRAM for the Plotter.
prints all annotation on the Plotter.

increments the log scale table pointer when generating
a plot grid.

loads the Plotter buffer with the X and Y coordinates
along with Plotter control characters.

initializes the parallel inpuf and output ports of

the PCU upon power up or reset.

contains all of the output'port control programs.

data table containing the starting addresses of

all CHANNEL PROGRAMS executed by the 2T-80.

this routine is not used.

services interrupt from Plot/Init switch by

inputting front panel switch values, labelling

plots and initializing program flags in preparation
for a cw test.

moves the Plotter pen to the origin which cor-
responds to the plot format selected by the operator.
loads the Plotter buffer with control characters and
X, Y coordinates for plotting tic marks on the grid.
transmits to the PDP-11 the PCU front panel switcnhn
values,

commands the Plotter pen to the hore position and

turns on the prompt light.

contains random access storage for all public variables

used in the CWMS program,

137

vy wwWYyrr"-w

M M S AL PP § g
o e L e

RAMLILS

REFLV

RESET

RESTOR

RFFRQ

ROTATE

RSTR

SAMPLE

SERIOO

SETIM1

SDAMPL

SDDEC

SDAMPO
SDFRQ

SDINIT

SDXMTR

SRET

LA M i S M I AR e Rl I PR MR S AR S M Mt dani /o e R S S A A Sl Sal g A S Sad @

contains the buffars to store the frequency, amplitude,
and phase data while performing a CW test.

prints the reference synthesizer level label on the
Plotter,

initializes all of the hardware/software upon power
up or reset,

restores the CPU registers at the end of an interrupt
service,.

maintains the current frequency value in the measure-
ment data block for transmission to the PDP-11.

sends a command to the Plotter to rotate labels

90 degrees.

adjusts the log scale pointer back to the previous
value.

prints the number of samples per decade on the
Plotter.

initializes the serial communications link from the
PCU to the PDP-11l. This procedure is located in the
SERL10 module.

activates timer for controlling RF data acquisition .
by the DVMs. e
sets the amplitude of the transmitter frequency o
synthesizer as a function of frequency.

calculates the position of the frequency buffer

pointer as a function of the exponent of the frequency.
initializes flags for the SD*AMPL procedure,

sets the output of each Frequency Synthesizer to the
next frequency to be sampled.

initializes the Frequency Synthesizers to cw mode

with correct frequency and amplitude.

controls the Frequency Synthesizer amplitude thru ‘
the ZT-80. o
irdicates successful completion of a task to the .

calling routine.

By T T AT T e FRRL AL LT T e T T MR T TR TARETANAT LAY LN NI N T L W s W T TR RN O TN T ATy AT T T T e o

Ny
SRLINT ... handles the transmission of ASCII character strings f:
o
to the PDP-11 via the serial link as an interrupt e
w2

driven service.

Rj
-

STABLK ... transmits status code data blocks to the PDP-11
which normally indicate error conditions in the
test.

STAND ... prints all of the standard annotation for a test
on the Plotter.

i
S
o
-

q
2]

START ... services interrupt from Start switch by closing
and opening the RF relay when in MANUAL operation.

STEP ... Ccopies the test frequencies for a decade, exluding
the delete frequencies,

STOP ... disables the PCU interrupt manager and halts execution
of the program. Only a Reset will resume operation.

STNANT ... routine contains the ASCII strings which constitute
the standard annotation printed on a test plot.

STRTEN ... forms the INSTRUMENT PROGRAM which commands the
Plotter to move the pen to a specific location.

SUB1 ... converts packed BCD into two ASCII Characters.,

SWPOLE ... inputs the front panel switch settings.

SYSTEP ... controls data acqﬁisition and data transmission to
the PDP-11.

TIMER ... services interrupt from interval timers for con-
trolling the RF relay and the DVM triggering.

TIMERO ... initializes the interval timer hardware and software.

UNPACK ... transmits Plotter coordinates as ASCII values to the
Plotter buffer.

WHODAT ... polls the CWMS devices to determine which are con-
nected and powered up. .

KINITS ... initializes the Plotter buffer for the origin which
corresponds to the plot format selected.

ALABEL ... Jgenerates the X axis decade labels as a function of

the number of active decades selected by the operator,

APDOSN ... processas frequency buffar contr»2l flags, updact:s

. frequency pointer, and computes the X axis coordinate,

LA

vy R
f e
P St

139

;
P 1 L -

AT . I
O .

YLBL

YLNS
YPOSN

ZTBUF

ZNOC

ATCHAN

ZTINT

ZT10

ZTIDO

ZTMSK
ZT80

oW S T W T e e e W e D T e e T A oA A

Jenerata the Y axls labels of the Plotter as a function
of the plot format switch setting.

generates the tic marks for the Plotter Y axis.

moves the phase data from the real time buffer (FRQBUF)
to the post test phase buffer (FIFBUF).

data table containing GPIB INSTRUMENT PROGRAMS to

be loaded into instruments by ZT-80.

dummy routine which unconditionally sets device flags
to indicate the device is active.

data table containing CHANNEL PROGRAMS to be executed
by the 2ZT-80.

services interrupt from the ZT-30 by setting a program
flag.

activates a CHANNEL PROGRAM when the ZT-80 becomes
available,

initializes the ZT-80 hardware and software upon power
up or reset,

initializes the ZT-80 interrupt masks.

appends the Plotter buffer termination characters to
the INSTRUMENT PROGRAM.

140

) - 4 . R]

. Co AT N P

' K N p LR
O DA el -

\ - .
A

. ’ .
ot

T s T T

APPENDIX 1
PERTPHERAL INTERCHANGE PROGRAM T

The Digital Equipment Corporation (DEC) supplied
Peripheral Interchange Program (PIP) is the system maintainer's
primary file access and control utility. With it he may:

rename; delete, and purge old versions of files;
transfer data between files and I1/0 devices;
list file directories;

unlock files; and

spool files,

Usage of the PIP program is covered in the DEC RSX-11
Utilities Procedures Manual; Chapter 2. A useful subset of PIP

will be covered below.

Filename Conventions

DEC filenames are specified as
DEV: [UIC]FILENAME,EXT; VERSION

If an ASN command has been executed so that the device on which

the file 1is resident in th% system output device (refer to the
DEC RSX-11M Operator's Procedures Manual; Chapter S5, ASN) the
DEV: may be omitted; otherwise, specify DLO: (DL: is also
acceptable) or DL1:. If the terminal [UIC] (user identification .
code) has been set to the UIC account number of the file T
directory containing the desired filename, the [UIC] may be ff;;
omitted; otherwise, the UIC is specified as [BBB,BBB] where B is ;}Ii
an octal digit. Refer to the DEC RSX-11lM Operator's Procedures o
Manual, Chapter 5, the 'SET' command. FILENAME is an up-to-nine
alphanumeric character string; EXT 1is an up-to-three alpha-

numer ic character string. Refer to the DEC Utilities Procedure

Manual, Section 1.3. The version is an octal number of range

0-377 and will be discussed under File Maintenance.

Example: to copy a file named USER.EXA in account
333,217 on disk drive DL1l: to his terminal, the user might
g specify:
S PIP TI:=DL1:(333,210]USER.EXACCR>

A-1

T

T F
.

P B St Sk Bt 1 Al A R b ARAL R S ATA/AS G e

whizh would access the file and copy it (provided it was an
ASCII file) to his terminal. Note: 1in this and all subsequent
examples <CR> deriotes carriage return.
Example: to set the terminal UIC and system output
device to the UIC and device of the file, the user would type:
ASN DL1:=SY0:<CR>
SET /UIC=(333,210]}<CR>

PIP TI:=USER.EXA<CR>

File Maintenance

File maintenance generally includes maintaining ade-
quate storage space on the disk packs, deleting unused files and
unlocking files which may have become inaccessible due to system
malfunction. Whenever a file 1is <created under RSX-11M, a
version number of one is assigned to it. Whenever a new file
with the same name is created, the previous file is not deleted;
the new file is simply assigned a version number one higher than
the previously highest-numbered version. This can lead to an
accumulation of obsolete files on disk packs; eventually the
packs will become full, at which time some of the files must be
removed, This condition can be detected by using the PIP /FR
switch, and remedied by using the /PU switch.

Example: to find out how much free space is left on a
disk pack, type:

PIP DEV:/FRKCR>
where DEV:=DL1l: or DLO:. PIP will respond with the message
DEV: HAS AAAA, BLOCKS FREE, BBBB. BLOCKS USED OUT OF 10240
where AAAA and BBBB are decimal numbers which total to 10240.

Example: If the operator wishes to delete all old

versions of files on DEV:, he may type:
PIP DEV:[*,*]* . */PULCR>
where DEV: is as above. * is the DEC filename "wildcard"

specifier, which means "any or all". Caution 1s urgJed;

projrammers sometimes object to having their "obsolaete" versions

indiscriminately purged.

BNt il Sl A el Sel S IE S g AP i b I IS A A AR AN AR ACNL I RS L aEEC S 1

LA RANE

. ." .
o\ NS

i
o b PR,

r

. Taan ¥

Example: If the operator wishes to delete all old
versions of a specific file in a specific UIC account on a
specific device, or any combination of these, he may do so by
using appropriate combinations of the ASN, SET, and PIP
commands. For instance:

PIP DL1:{333,210]USER.EXA/PUKCR>
or

ASN DL1:=SY:<CR>

SET /UIC={333,210]<KCR>

PIP USER.EXA/PU<LCR>
will both delete all but the latest version of USER.EXA 1in
account {333,210] on device DL1:.

If a file is no longer used at all, and the operator
wishes to delete it entirely from the disk storage medium, he
may specify the PIP /DE switch,

Example: The operator wishes to delete the file
USER.EXA;21 from UIC account [333,210] on device DLl:; he may
type

PIP DL1:{333,210]USER.EXA:21/DELKCR>,
or

ASN DL1:=5Y0:<CR>

SET /UIC={333,210]<CR>

PIP USER.EXA;21/DE<CR>

In both the above examples the version number (21) is
required; 1if the operator desires to delete all versions he may
specify USER.EXA;*. If it is desired to delete all extensions
of a particular filename, for instance USER, the operator may
specify USER.*;*., 1If it is desired to delete all files of a
particular extension, for instance all .DTA files, *.DTA;* may
be specified, and so forth. If the string *.*;* is entered, all
files in the specified YJIC on the specified disk will be
deleted. If 1is obvious that the delete command must be used

with extreme care.

Example: to unlock a locked file:
PIP DEV:[UIC]FILENAME.EXT;version/UN
where DEV:,[UIC] and ;version are as discussed previously.

- et . :
o e B ‘
el G |

.

P OV SR |

' N L
g

A AP R A M i N R S P S A A T R A A TR AR A T oA e e R A A AL i

A "locked" file is a file whose descriptor block indi-
cates that 1%t has been opened by some projram. I£ the openiny
program terminates abnormally, this condition will persist even
though in fact no program currently has the file open. When the
same or another program subsequently attempts to access the
file, the request to open will be rejected by the file manager

on the grounds that the file is still open; generally an error

condition will be reported by the operating system at this time.

Locked files can be detected by wuse of cthe PIP /LI
command. When the operating system reports that a file is)
inaccessible, it also gives a brief reason and the FILENAME part _é
of the file specified. Use PIP to list the directory entry for
the file; 1if it is shown locked (an 'L' before the date in the
directory entry) use the PIP /UN command to unlock it, If the
FILENAME 1is unknown, simply list the entire directory for the -

UIC in which the program was running, and look for locked files.

-

ai®

File Utilities

Using PIP, files may - be transferred, directories
listed, files renamed and files spooled to a list device.

Example: To transfer files from an 1input file or
device to an output file or device:

PIP DEV:=DEV: or

PIP DEV:=DEV:[UIC]FILENAME.EXT;VERSION or

PIP DEV:[UIC]FILENAME.EXT=DEV:[UIC]FILENAME.EXT;VERSION .;j
or ';
PIP DEV:[UIC] FILENAME.EXT=DEV: 4
where the mnemonics are as in the preceding examples. If a .4'

filename 1is specified, DEV:, [UIC] and VERSION are optional. o
L PIP defaults to the currently assigned terminal UIC and system ‘
L":, output device; on input PIP accesses the highest numberad
L version of the specified file; on output PIP creates a version ®

one higher than the previous (if any) version.

Example: To list a directory:
PIP DEV:{UIC]/LIKCR>
will list all directory entries on DEV: in [UIC}. If DEV: or
[UIC] are omitted, PIP defaults to the current terminal and

system assignments,
Example: To list a file entry in a directory:
PIP DEV:[UIC]JFILENAME.EXT;VERSION/LIKCR>

will list the directory entry for filename.ext if the specified
version is present on DEV:[UIC]. 1If DEV: and [UIC] are omitcted,
PIP defaults to the current system device and terminal UIC. If
;VERSION is omitted, PIP 1lists the directory entry for the
highest wversion number ©present; if * is specified for the
version, PIP lists all versions.

Example: To rename a file:

PIP DEV:[UIC]FILENAME,.EXT;VERSION=DEV:[UIC]FILENAME.EXT; VERSION/RE

where DEV:, [UIC], and ;VERSION default as previously discussed.
Example: To spool a file to the system list device:
PIP DEV:{[UIC]FILENAME.EXT;version/SP
The specified file will be copied ¢to the 1line printer. The
spooling to the printer assumes the presence of the task PRT in
the active task 1list. Refer to the RSX-11M Operator's
Procedures Manual (Vol. 2A), Section 5.5, the INS command to
find out how to install PRT. See the RSX-11M Utilities
Procedures Manual (Vol. 2A) Appendix C for a description of PRT.

Y Y

; .M_;AA_AA_A._‘__AA.AUM PRI -.

»
‘-A,

L
| ’ oot
‘- . 00
[VO, 1

)

o i

i aten o AR I IR AR S M S St Aot Jhet YA e & M e el R e i el e dhd e e J
e R - R A . el Calia®,

b ?.

.
v
1+
o .

‘-
. ek
. [N
o O
. s ! r
. L. .
. . .

L AR S on A aan o NN &
PR i
P '

h 2t
{

APPENDIX B

EXAMPLE OF RSX-11M SYSTEM GENERATION

A

P

9.

>

"
‘. . RY . « . I . - . \, - - . -t B
L St L. . . T . . - T)
P . N O T HP UL AU N S AU ST Gy T SO S S s... W T - L “a L

gheaund vt e VR Rt I B e N CRSEI S ave WLy) Jt St et SRR i e s N AP AR SR SR N N LACEAETAR T
I‘.'
.
L
@WSTYSGEN

f

T W LY,V YW

.

-,.v‘_'..v'

P

e

SYSGEN FART 1 CMERGTON 031

COFYRIGHT (C) 197%s 1976 1977

DUIGTITAL EQUIFMENT CORE., s MafNARLe MASS. 017754

LU TERMINE SYSITER FEATUHRP S St ausE il b tHE EXFCUT IVE

@ W € er W e e %

m

AL EE200, 20¢)

PXPANDED COMMENTS FROVINE & DESCRIFTION O ORliey St Jiv 1tHIS
BYSGLN COMMAMND F L=, 0N THE DOFHER HANDs SHORE COMb!l
FROVIOE YIRTUALLY NU EXYHL ARG T 00 1E),

o e o e (n

0O YOU WANT EXPANLELD COMMEMYUY (/.

DO YOU HAVE THE SINGLE RKOS DNISTRIBUTION KIT? Ly./N]:
) YOU HAVE THE DUAL RKOS DISTRIBUTION KLITY Lvy/HIS
00 Yuu HAVE THE RLO1 LISTRICUTION RLT O iy

TOU AUST MAKE @ COFY OF THE Rbot OruihieUi ol =00 L 70U
HAVE NOT OUME S0 Al kLAY .

HAVE YOU COFIED THE RLOL DISIRIBUTION KIT? LY./N1JY

ARE YOU BUILDING AN RSX-118 SYSTEM? [Y/NIG

ARE TOU BULLDING A ®MAFPPEW sYLILr L /NDTY

ARE YOU RUNNING ON A eidCHIOL WETH AT LEAST 29K WORDS? LY/NILY

ARE YOU RUNNING ON A MACHINE WITH A& LINE FRINVEC? LY, ND3
WILL YOUR SYSTEM INCLUDE DSS-11 SUPFORT? LY/NJ3
WILL YOUR SYSTEM INCLUDE ICS/ICR-11 SUFFORT?Y [Y/N13
Sk WILL YOUR SYSTEM L[NCLOUDE UbC-11 SUFPORTS L Nt
SHSET /UIC=01.1]

SELE D11 200K 0RJe ¥ /UE vk DO F ¥ FoTURT Kk [N 8

PIF - CANNOT FIND DIRECTORY FILE

SYOIL11,201%,0BJ%%

FIF = CANNOT FTHD DIRECTORT FILE

GTOTLLL»20TH IS K

FIF - CANNUT P THD OLRECTORY FTILE

STOILI1-200¥%, JUK + K

FIF —- CANNOT FIND DOIRECTORY 1I'TLL

SYOIL11,201¥. IDG5 K

FPIF L10240X ORI X/DE s K UBCs ko ko LCK Ky &, [DG X

FLE == #0) SD0CH FILE o3

SYOIL11,2Q0#% . 0BJ5 &

FIt —- NO SUCH FILE(S)

SYOIL11,247%.UNCHX

FIF -~ MO SUCH FILE(S)

SYOIL11,240%.ICR? K

P1F -- NG SUCH | Uy

SYOIL11,241%,INGH K

CEIF L1130 MUNCOM T3/ 0y LOTARS ke LEUM s Ko USSTHL S €0 [S1U s ¥
HIF =~ CANNOT FIND ULRECTORY FILE
SYOICL11,s30JULCOM.LST ik

FIF =~ CANNOT FIND DIRECTORY [MILE

NI Z0JICTARV K

BLE -) Te nppb Ty Lk

LTOTL L e ey

Ll BELNET LR N S R o) CRRE TR R RV AR RU 1O S g

SYOSLILe 30050507 ¢

FIF == CANNUT FIEIND DEIRECTORY FILL

SYOIL11930315C0M4 %

SFIF C11s34JU0CUNM.LGTs & DE s LUTAES e JLONS Xy DSGDL 3 K0 [SCOMS X
Bt = NOSUCH FILE (5

M d W o N 6 N MW e e C N KR e

‘.I -“ - . ' -“ ",
L

1
|
3
[}

- - - - Y " - -
h el . AR Y s .
o FETEAPR VP PR (B P .

ol it e e g, S S Sat hat > PV ERNT T LYW 8 - - e B . S S T I T N e e S

P BN

«

X,
-
%
.
k.
28

. SYQIL11»,33JUDCONM.LOT 7k

) FIF -~ NO SUCH FILE(S)

SYO!L11»y341ICTAR X

FIF —-- NO SUCH FILE(S)

SYOIL11,3411IC0OM%

PIF -— NO SUCH FILE(S)

SYQ:C11,341DSSDIi X%

PIF —-- NO SUCH FILE(S)

SYOIL11y341ISCOMs X

FLP T11s 10TRSXMCMACS X/DE»SYSTRI K JCTARG ¥ REARLIN, TMF 3 X
FIt -~ NO SUCH FILE(S)

SYO!L11,10JICTAR X

FIF —- NO SUCH FILE(S)

SYO:L11»10IRGXBLLD. TMF 3 X

*FIF £11,203RSXASM. UMD X/ DE,ROXBLDG X

FIF -— CANNOT FIND DIRECTORY FILEL
SYO:L11,20IRSXASM,. CMIN X

FIFP -— CANNOT FIND DIRECTORY FILE

SYQ[119»20IRSXELDGX

*PIP [11924IRSXASM.CMD X/ DE»RSXBLL ¥ ..
FIF —~ NO SUCH FILE(S) "i
SYO:L119s24IRSXASM.CMD 7 % :
FIF -- NO SUCH FILE(S)
SYO:L11»24IRSXBLDG X B
»SET /UIC=[11,101 d

RN

NOW WE EBEGIN THE SYSGEN QUERY SECTION TO SELECT THE EXECUTIVE T
FEATURES AND FERIFHERAL DEVICES WE WANT IN THE NEW SYSTEM. el

LONG [IALOGUE DESIRED FOR EXECUTIVE/FROCESSOR OFTIONS? L[Y/NI lf~;ﬁ
ASSEMBLY LISTING FILES DESIRED? LY/N]: T
TASK BUILDER MAF DESIRED? LCY/NI?

o

B S M B B M - I e 2w o .

BEGIN EXECUTIVE SERVICE OFTIONS,

Wi

XKDO YOU WANT FILES-11 ACF SUPFORT? LY/N1lY

00 YOU WANT RMS RECORD LOCKING AND' PLACEMENT CONTROL SUFFORT? CY/N1LY
XXD0 YOU WANT CHECKFOINTING? LCY/NICY

DO YOU WANT DYNAMIC CHECKFOINT ALLOCATION? CY/NIRY

DO YOU WANT DYNAMIC MEMORY ALLOCATION SUFFORT? LY/NIIY

DO YOU WANT AUTOMATIC MEMORY COMPACTION? LY/NI1Y

YOU WANT THE MEMORY MANAGEMENT UIRECTIVES? LY/NI1lY

DO YOU WANT THE SEND/RECEIVE RY REFERENCE DIRECTIVES? [Y/N1:Y
YOU WANT THE GET MAFFING CONTEXT DIRECTIVE? CY/NIJ?

DO YOU WANT MULTI-USER FROTECTION SUFFORT? [CY/NI1:

DO YOU WANT ANSI MAGTAFE ACF SUFFORT? LY/NI:

DO YOU WANT SUPFORT FOR ONLINE» USER MODE DIAGNOSTICS? L[Y/NJiY
X000 YOU WANT LOADABLE DEVICE DRIVER SUFPORT? LY/N1lY

DO YOU WANT NETWORK ACF SUPFORT? LY/N1?

DO YOU WANT AST SUFFORT? LY/N1:Y

X%XD0 YOU WANT TASK TERMINATION AND DEVICE NOT READY MESSAGES? L[Y/NJ!Y
DO YOU WANT POWERFAIL RECOVERY? LCY/N1lY

XxD0 YOU WANT GET FARTITION FARAMETERS DIRECTIVE® LY/NI1lY

DO YOU WANT GET SENSE SWITCHES DIRECTIVE? LY/NJ:

Xx00 YOU WANT GET TASK PARAMETERS DIRECTIVE? CY/NIMY

[0 YOU WANT SEND/RECEIVE DIRECTIVES? LY/NIlY

DO YOU WANT ALTER FRIORITY DIRECTIVE? LY/NI1lY

0O YOU WANT CONNECT TO INTERRUFT VECTOR DIRECTIVE? [CY/N1:

DO YOU WANT EXTENL TASK DIRECTIVE? CY/NI1!Y

[0 YOU WANT QUEUE I/0 SFEED OFTIMIZATIONS? LY/NI1:Y

HOW MANY I/0 FACKETS SHOULD BE FPRE-ALLOCATED? CD Ri1.~15.1% 10.
ENTER SIZE OF DATA TRANSFER VECTOR IN WORDS [D Ki4.-33.1: 8.
*XD0 YOU WANT INSTALLr» REQUESTs AND REMOVE ON EXIT SUFFORT? LY/NI:Y
*D0 YOU WANT LOGICAL DEVICE ASSIGNMENT SUFFORT? CY/NI1:!Y

>% XD0 YOU WANT A NULL DEVICE? CY/NI1:Y

>% %DO YOU WANT THE BASELINE TERMINAL DRIVER? L[Y/N1:

o

g
(=}
c

% % % M
g
b1

»

i v
»*

o NS
»*

¥
PRV ARS
% % %

~,

"

B 2 3 S RSt S al
B W I e W W N

LA an au aten B0 08 el
' S e

i

LS 4 4

T e T e YL, e TR e T e R T e LY e e - - - - = 7

ke ARSI i e A A b AL 4 4 A C R R e TR s T e

T

4 -
% DO YOU WANT THE USER OKIENTED TERWIMAL DRIVERT [0 N1:Y e

- 8 RN

: #5 IF YOU HAVE AN LA120 OR LA180S, YOU MUST ANSWER YES TO THE NEXT i
> QUESTION, |
> N
>% DO YOU WANT FORM FEEDS PASSED DIRECTLY TO TERMINALS? [Y/NI13Y

W

R R
L. E R X N _J

DO YOU WANT SUFFORT FOR A 20K EXECUTIVE? CY/NJ! -i
PO YOU WANT EXECUTIVE LEVEL ROUND RORIN SCHEDULING? CY/N]:

DO YOU WANT EXECUTIVE LEVEL [DISK SWAFFINGY [Y/N1:

ARE YOU FLANNING TO INCLUDE A USER WRITTEN DRIVER? Lv/MN1:

DO YOU WANT TO INCLUDE THE EXECUTIVE DERUGGING TOOL? LY/NItY

[0 YOU WANT REGISTER AND STACK DUMF AT SYSTEM CRASH? LY/ /N1lY

ENTER DUMF DEVICE CSK ADDRESS [0 R:11460000-177700 Di177%5541:

00 YOU WANT CRASH DUMF ANALYSIS SUFFORT? L[Y/NI12

[0 YOU WANT THE FANIC DUMF ROUTINE? LY/N]1DY

ENTER THE DUMP DEVICE CSR ADDR [£0O R:140000-177700 DI177%1412

DOES YOUR FROCESSOR HAVE A CONSOLE SWITCH REGISTER? LY/NI1:Y

DO YOU WANT DEVICE ERRORS AND TIMEOQUTS LOGGED? CY/NI1:

DO YOU WANT UNDEFINEI INTERRUFTS LOGGED? CY/NJ:

DO YOU WANT FARITY ERROR TRAFS LOGGED? LY/N]:

XXENTER SIZE OF DYN. STORAGE REGION IN WORDS LD Ri256.-146384.,10 256,
DO YOU WANT ROTATING FATTERN IN DATA LIGHTS? LCY/NI32

e

"

AR

ENDI' EXECUTIVE SERVICE OFTIONS.

BEGIN FROCESSOR OFPTIONS.

8

IS YOUR TARGET FROCESSOR A FDF-11/707 [Y/N]:

ENTER SIZE OF FHYS. MEMORY IN 1024 WORD EBLOCKS [D RI16.-124.3: 124,
DO YOU WANT FLOATING FOINT FROCESSOR SUFFORT? L[Y/NI1!Y

DO YOU HAVE A FPROGRAMMABLE CLOCK? E£Y/NI?

IS YOUR LINE FREQUENCY S0 HERTZ? CY/NI1:

YOU WANT KWil-Y WATCHDOG TIMER SUFFORT? LCY/N1]:

DO 'YOU WANT FARITY MEMORY SUFFORT? LY/NI1Y

DOES THE TARGET PROCESSOR HAVE A CACHE MEMORY? ({Y/N1!

26 W W e e o M N e W W W I W M W

v N, ’J
v I I W W MW
2
=)

END PROCESSOR OFTIONS. -

B Y Y T VA Ve
- W e e W

BEGIN PERIFPHERAL OPTIONS. ;j:;\

. = . oY

3 =X EXFANDED COMMENTS DESIRED FOR FERIFHERAL OFTIONS? L[Y/NJ: —_—
- *PIFP RSXBLD,TMF;%X/DE

FIP -- NO SUCH FILE(S) DR

- SY0:L11,10IRSXELD. THF ;X]

»% DO YOU WANT DISK WRITECHECK SUPFORT? LY/N]! N

X DO YOU HAVE ANY PROCESS I/0 OR LABORATORY FERIFMERALS? CY/N]: wo

2% HOW MANY CM/CR11 CARD READERS DO YOU HAVE? (D RI10.-16.1%

~%X HOW MANY TA11 DUAL CASSETTES DO YOU HAVE? LD R:0.-16.1¢

>% HOW MANY RJ/RWF04-05-06 DISK CONTROLLERS HAVE YOU? LD R:0.-16.]¢

% HOW MANY RF11 DISK CONTROLLERS DD YOU HAVE? [I' R:0.-146.1¢

=% HOW MANY RK1i DISK CONTROLLERS DO YOU HAVE? CD R:0.-16.1¢

=% HOW MANY Ri.11 DISK CONTROLLERS DO YOU HAVE? (D R10.-16.3% 1

% DO YOU WANT THE DRIVER TO EE LOADABLE? LCY/N1: =

=X ENTER VECTOR ADDRESS OF THE NEXT RL1i1 [O R!60-774 D!3301: 160

»X WHAT IS ITS CSR ADDRESS? [0 R:!160000-177700 [11744001:

% HOW MANY DRIVES [OES IT HAVE? [Dh Ri1.-4.1! 2

2% HOW MANY RK61l DISK CONTROLLERS DO YOU HAVE? (D R:0.-16.3¢

2% HOW MANY RF11-C/E DISK CONTROLLERS DO YOU HAVE? [D R:10.-16.73¢

=% HOW MANY RWMO3 DISK CONTROLLERS [0 YOU HAVE? LD R:0.~16.1¢ PN

% HOW MANY RJ/RWS03-04 DISK CONTROLLERS DO YOU HAVE? LD K:0.-16.1: N

~% HOW MANY TC11 DECTAFE CONTROLLERS DO YOU HAVE? LD R!0.-16.3: P

: >X HOMW MANY RX11 DISK CONTROLLERS DO YOU HAVE? T Ri10.-16.1! R

| - =% DO YOU HAVE A VT11 GRAFHICS DISFLAY SUBSYSTEM? [Y/NIJ! S

=% DO YOU HAVE A V5S40 GRAFHICS DISPLAY SUBRSYSTEM? LY/N1: .
»% HOW MANY LP/LS/LV11/LA180 LINE FRINTERS DO YOU HAVE? (D R:0.-16.31: 1 L

q >% DO YOU WANT FAST PRINTER SUFFORT? LY/N]: B)

P N
b e

T,‘W'.*r'i‘?"" W

—y

rat S AN
’

os]
1
'

Rt

.
B
-
' e et
. . .. e L S L
. ‘- - - K L. ". ‘h\. . ..' - <" Y .I‘ g
- . - - - - -t - . - .t oo -
}' L LN T T s W U e s
P N

N R T e T T WU Y TR T e TR - v TR bl -
TR TN T - i LR e R R W R W P e C GBI " & a e an ey >

XX DO YOU WANT THE DRIVER (0 Bt LURDABLE ¢ LT N]LY

=¥ ENTER VECTOR ADDRESS OF THE NEXT LINE FRINTER {0 Ri60-774 D12001:
>% WHAT IS ITS CSR ADDRESS? CO R:160000-177700 Li1775141: K
»% IS IT AN LS11, LA180» OR LF11-VU/W? LY/NI1IY -

>% IS IT A 132, COLUMN FRINTER? LY/N1:Y e
> DO YOU WANT 1S5. SECONDS BETWEEN FRINTER NOT READY MESSAGES? LY./N1: R
»X HOW MANY SECONDS BETWEEN NOT READY MESSAGES (D R:0.-255. D!1S.3! 60. ST
X HOW MANY TMO02/03 MAGTAFPE CONTROLLERS HAVE YOU? (DIt R:1OQ.~146.1¢ T
>% HOW MANY TM/TMA/TME11 MAGTAFE CONTROLLERS HAVE YOU? LD RIO.—-1&6.13: C
»% HOW MANY FC11 FAFER TAFE READER/FUNCHES DO YU HAVE? L R:0.~-186.1° A
=% HOW MANY FR11 FAFER TAFE READERS DO YOU HAVE? LIt R:0.-16.12 L -,;',
" =3 e 2
- =% INCLUDE CONSOLE IN THE ANSWER TO THE NEXT QUESTION. . ﬁg
a el S
P % ENTER NUMBER OF DL11 LINE INTERFACES D FRil1.-146.10 9 3?&1
3 =% DO YOU WANT THE DRIVER TO EE LOADABLE? CY/NI: 7?'?
3 =% ENTER VECTOR ADDRESS OFf THE NEXT LL11 CQ Ri60-774 L1401 t.

»% ENTER VECTOR ADDRESS OF THE NEXT DL11 CO R:80~774]% 300

>¥ WHAT IS ITS CSR ADDRESS? L0 R:160000-1777001: 1746500

»%X ENTER VECTOR ADDRESS OF THE NEXT D1l [0 R:460-7741% 310

»¥ WHAT IS ITS CSR ADDRESS? [0 R:160000-1777001: 178510

% ENTER VECTOR ADDRESS OF THE NEXT DL11 €O R:60-7741: 220

X WHAT IS ITS CSR ADDRESS? [0 R:160000~1777001: 176520

»X ENTER VECTOR ADDRESS OF THE NEXT DL11 L0 R:60-7743: 330

WHAT IS ITS CSR ADDRESS? [0 R:160000-1777001¢! 176530

»% ENTER NUMBER OF DH11 ASYNCHRONOUS LINE MULTIFLEXERS (D R:10.-146.1:
=K ENTER NUMBER OF DJ11 ASYNCHRONOUS LINE MULTIFLEXERS LD R:0.-16.12
»¥ ENTER NUMBER OF DZ11 ASYNCHRONOUS MULTIFLEXERS CD R:0.-16.1:

=¥ DO YOU HAVE ANY INTER-FROCESSOR COMMUNICATION DEVICES? L[Y/NI:

E. % WHAT IS ITS CSR ADDRESS? [0 R:1160000-177700 031773546012

R ogi OB an R an an an r:
"y "
* %

Ty

§
] END PERIFHERAL OPTIONS.
> '
*PIF RSXMC.MAC={11y10IRSXMCO.MAC/AF
>PIF RSXBLD.CMD=RSXBLD.TMF#%
*PIP RSXBLD, TMFFx/DE

A
-

- W e

g END SYSGEN QUERY SECTION
>4
TOTF [119241/RE/NV=RSXASM.CMIIi X s REXEBLD . CMD# X
>%X DID YOU ANSWER THE SYSGEN QUESTIONS TO YUOUR SATISFACTION? LY/N1Y
»>%X DO YOU WANT TO EDIT ANY OF THE QUERY SECTION OUTFUT FILES? LY/NI:
»INS $BIGMAC/PAR=PAR14K
>3
*% ASSEMEBLING THE EXECUTIVE TAKES ANYWHERE FROM 20 MINUTES (ON AN 11/70)
>% TOU 4 HUOURS (ON AN 11/04), TAKE A EREAK.
X
>SET /UIC=[11,24]
>TIM
13:50:27 15-AUG-79
*MAC @RSXASM
»TIM

- 14:20:28 15-AUG-79
T *REM MAC
- >PIP RSX.0BS=X,08J
‘. *>PIP RSX11M.0BJ/RE=RSX.0BS

*SET /UIC=020052003
- *SET /UIC=C1,24]
*PIP /NV=C11»241IRSXBLI.CMDyRSX11M,QRJ
>PIP [L20092001/NV/UF=C115101IRSXMC . MAC
. »SET /UIC=L200+2001
.- % DO YOU WANT 10O GO DIRECTLY TU THE NEXT FHASE OF THIS SYSGEN? [CY/NI:Y
- »SET /UIC=(£200,2001
¢ »¥
>3 SYSBEN PART 2 <VERSION 03.1>

W W T e A W TN TN, e e, T S e T e e W e LT T T TSR AR RTR T A e T T e T AT T TRAREORAEORIE R e -
ST PR T . . ; - B -

-,
“~
—n
‘|

-y

3 COPYRIGHT (C) 197%, 197&s 1977
#3 DIGITAL EQUIFMENT CORF.» MAYNARD, MASS, 017954
4
>3 BUILD THE EXECUTIVE AND ALL REQUIRED TASKS — &
>3 Coe
h T
#5 EXPANDED COMMENTS FROVIDE A DESCRIFTION OF EVERY STEF IN THIS o
>3 SYSGEN2 COMMAND FILE. ON THE OTHER HANDs, SHORT COMMENTS :
+3 PROVIDE VIRTUALLY NO EXPLANATORY TEXT. o
w3 S
#% DO YOU WANT EXPANDED COMMENTS FOR SYSGEN PART 2% LY/N1: a
=% HAVE YOU ALREADY BUILT THE EXEC? CY/N1: "
*SET /UIC=L1954] e
+FIF PIP.TSK/FUsEDT» TKE,BIGTKE, VMK EOO oy
»INS S$LEBR o
*GET /ULC=C1s11 o
=% DO YOU WISH TO ADD THE UDC/LFS/ICS/DSS ROUTINES TO SYSLIE? L[Y/NI: -
»SET /UIC=[1s24] - -
»REM LBR |
»FIF RSXBLD.CMD/FU o]

*PIF RGX11M.0LE X/0E

FIF -- NO SUCH FILE(S)
SYOIL1,24]RSX11IM.OLEX
PIP L2005 2001IRSXMC.MAC/FU

»INS $LBR S
*LER RSX11M/CR380.:640.:128,=RSX11M.0RJ - dl
>PIP RSX11M,ORJ/FU ! DELETE ALL BUT LATEST ORJECT MODULE FILE —
=X DO YOU WISH TO ADD USER WRITTEN DRIVER(S) TO THE EXEC? [/ N1 3
+INS $BIGTKE]
*SET /UIC=C1s24] R
=TKB @RSXBLD -
>% DID THE EXECUTIVE BUILD SUCCESSFULLY? CY/NI:Y _
*REM LER . . o
% DO YOU HAVE THE MAF ALREADY? C[Y/NI1tY po
»% DO YOU WANT TO CONTINUE AND BUILD THE TASKS NOW? [Y/N1:Y -
+INS $EDI RS
*SET /UIC=[1,241 Bk
=% DO YOU WISH TO BUILD THE BIG (5.5K) AND FASTER FILE SYSVEM? CY/NI: o
=X DO YOU WANT TO BUILLD THE 2,.9K MULTI-HEADER FCF? [Y/NI1Y T

*% DO YOU NEED TO EDIT THE TASK EBUILD COMMAND FILE FOR FCEF? LY/NJ:
% DO YOU WANT TO BUILD THE MULTI-USER VERSION OF MCR7? L[Y/NJIIY

>3 YOU MUST EDIT THE BUILD COMMAND FILE FOR MCR(MU) TO

*3 REFLECT THE SIZE OF SYSFAR.

>*EDI MCRMUBLD.CMD

£00019 LINES READ INI]

AE)

CPAGE 11
] XL FAR
B FAR=SYSPAR:0:10000
o %XC/100/105
#’, FAR=SYSPAR$0:10500
L . %L X
{ LEXIT]
[~ % DO YOU HAVE TO EDIT THE TASK BUILD COMMAND FILE FOR TKTN? L[Y/NI:
. 3§
L 3 IF THE ALTER-FRIORITY DIRECTIVE WAS NOT INCLULED IN THE
>3 EXECUTIVE, YOU MUST EDIT THE COMMAND FILE FUR TASK AT,
b >3
Ft % DO YOU HAVE TO EDIT ANY FILES FOR MCR TASKS? EY/NI:
. »% DO YOU WANT TO BUILD THE MULTI-USER FROTECTION TASKS? LY/N1:
1 =% DO YOU WANT TO BUILD THE ERROK LOGGING TASKS™® [Y/N1:
[o¢ =k DO YOU WANT TQO BUTLD TASK ACS? L[Y/NIMY
&b Xk D0 YOU HAVE TO EDIT TASK ACS’S BUILD COMMAND FILE? CY/NI:
- =X DO YOU WANT TO BUILD TASK FMD? CY/NISY
® >% DO YOU HAVE TO EDIT FPMD'S BUILDN COMMAND FILE? CY/NI:

D e R A I e e R A I . R VR " S A RS W e R e . i T Sl St Sadl Sndh gl Audi Al Anil Sl Sadil

S DU YUU WANT 10 BULLL TASK SHE? LisNToY

\t DO YOU HAVE TO EINMT TASK SHF 'S BUILD COMMAND FILE? LCY/NIJY
*>EDY SHFBLD.CMD

£00015 LINES READ IN]

LFAGE 11

XC/\/\./CF.

INO MATCHJ

XL /CF

C1yS41SHF /PFR/MM/CR/AL/-FE»MF L1y 341SHF /-GF=01+2415HUFL
*C./CF,

L1yS541SHF /FR/MM/7AL/~FF o MF L1 v 34TSHF /-SP={1+ 24 ISHUF L.
XEX

CEXIT]

t DO YOU WANT TO ERUILD TASK RMDEMO? L[Y/NI?
DO YOU WANT TO BRUILD TASK FRT (FRINT SFOOLER)?T LY/NI:Y

THE DEFAULT FRINT SFOOLER WILL ONLY DELETE FILES NAMED
LP.LSTs ILF.MAFs X.FMDIy AND X.0MF. IF YOU WANT THE SFPOOLER o
TO DELETE ALL FILES» YOU MUST EDIT THE BUILLO COMMAND FILE. 5

R A P TS
1» “ - -.

N0 YOU HAVE TO EDIT TASK FRT'S BUILD COMMAND FILE? [Y/NI1Z
REH EDI

. “SET /UIC=[15241 Lo
‘ *PIP %.CMD/PU -
A >% DO YOU WANT TO GENERATE THE MAFS FOR THE AROVE TASKS? [Y/N1: ... 9

~ASN NL$=MP?
>TKE @BOOKLI
>TKE @DMOBLD .
>TKE @FCPERLD S
>TKB @INDBLD S
>TKB @INIBLD - -
»TKB @INSELD e
>TKE @MCRMUELD s
*TKB @MOUELD

>TKE @SAVBLD -
+TKB @TKNBLD o
»TKE QUFDEBLD -
>TKB @LOAERLD
>TKB @UNLBLD
>TKE @PMDELD
>TKB @SHFELD R
>TKE @PRTELD L
»*TKR @ACSELD .
»X DO YOU WANT TO BUILD ANY LOADAELE LIRIVERS NOW? CY/N1:Y S
»SET /UIC=[200+2001 S

3

¢ % YOU MAY NEED THE TASK BUILD MAFS FOR THE DRIVER(S) FOR

< »># YOUR PARTITION LAYOUT. —
=4

N % DO YOU WANT THE MAPS? CY/NI1:

; »SET /UIC=[1,241

. >3

< »3 WHEN ALL DRIVERS ARE BUILT» STRIKE CARKRIAGE RETURN WHEN ASKED

e “3 FOR DEVICE MNEMONIC.

P >4 ¢

2 X WHAT IS THE DRIVER 2-CHARACTER DEVICE MNEMONIU [S1: LF -

- =% WHAT IS THE DRIVER FARTITION NAME [$51: GEN

*TKE @C200,200ILFIRVELD

*PIF L2009 2003LFORVBLD,CMDé X/ DE

. X WHAT IS THE DRIVER 2-CHARACTER DEVICE MNEMONIT [S1:
’ »SET /UIC=L1+54)

>PIP LPNEW.TSK/NV/RE=LFDRV.TSK

>PIP LPNEW.STB/NV/RE=LFPIRV.STH

*REM TKE)

=9

w

)
S @ L

(S an S en En SA S 2 n o 2% e g

e

Y L T N T T E TR T T T TTW TR TR TR Y TR TR N T O T T e M e e L T T T e T e T T T e s T T T T AT

IF YOU WISH TO RERUTLD THE UTILITY 1ASES ANDSOR BUILO THE UGElR MOLE
DIAGNOSTICSy YOU MUST DO SO AFTER SYSGEN FARD 2 HAS BEEH COMPFLETED,
AT THAT TIME, MOUNT THE DISK LABELED *UTILITY OBJECTS® AND

RUN THE INDIRECT COMMAND FILE [£200,20015YSGEN3.CHMD

N RS

e

ET sUIC=[1,541
IS YOUR TARGET SYSTEM LARGER THAN 32K WORDS? LY/NI1:Y
00 YOU WISH TO CREATE A ILARGER COFY OF YOUR SYSTEM? CY/N1:Y

\,

W

NOTE? SAVED IMAGES ON THE 11/70 ARE CURRENTLY
SUFFORTED ONLY TO A MAXIMUM OF 124K WORDS
(I.E. N=498.,). ALSOs THE NUMBER OF BLOCKS
IS ASSUMED TO BE OCTAL. TO SFECIFY A
DECIMAL NUMBER» AFFEND A TRAILING DECIMAL FOTINT.

FOR SINGLE RKOS DISTRIBUTION KITSs THE
MAXIMUM SYSTEM IMAGE SIZE IS 64K (258.
BLOCKS) DUE TO A LACK OF CONTIGUOUS SFACE.

s W ws wr e wr ws s s s wr 36 B () B W we e wr

3

>k ENTER THE NUMBER OF RLOCKS FOR YOUR SYSTEM IMAGE FILE [S]1: 130.
#PIP RSX11M.SYS/CO/NV/BL:130.=RSX11M.TSK

*SET /UIC=[1,54]

»% DO YOU WISH TO DELETE THE SYSTEM BACKUF FILE RSX11M.TSK? LY/NI]?

YOUR TARGET SYSTEM IS NOW READY TO SET UP FARTITIONS AND INSTALL
THE REQUIRED TASKS. THE FROCEDURE TO FOLLOW ONCE VIRTUAL MCR
IS RUNNING IS?
1) EXTEND FOOL SFACE TO BASE OF FIRST PARTITION
2) SET UP YOUR FARTITIONS
3) INVOKE THE INDIRECT FILE INSTALL.CMDN IN VMR TO
INSTALL THE FRIVILEGED TASKS YOU JUST EBUILT
4) LOAD ANY LOADABLE DRIVERS THAT YOU WANT RESIDENT
IN THE SYSTEM IMAGE. IF THE TERMINAL AND/OR SYSTEM
DISK ODRIVERS ARE LOADABRLEs THEY MUST BE LOADED USING
UMR .
S) EXIT FROM VIRTUAL MCR AND BOOT IN YOUR TARGET SYSTEM

W N N N NN

4o
W

RN

PR Y VAV VY

F6 W W @r) W W WME W WS W G W WS W

X DO YOU WANT A VMR EXAMFLE DISFLAYED? [Y/N]!
% DO YOU WANT TO EDIT INSTALL.CMD? LY/N]?
PIF LPDRV.TSK/RE/NV=LFNEW. TSK

>*PIP LPDRV.STR/RE/NV=LFNEW.STE

>INS s$BQO’-1

»INS SUMRi-1

+ASN SYI=LB!?

»UMR

ENTER FILENAME:! RXS\SX\SX11M.SYS

VUMR>SET /FOOL

POOL=550:260.:002560.

UMRSET /FOOL=700

UMR>SET /MAIN=SYSFAR!700:105!TASK

VUMR>SET /MAIN=GEN!1005:6573:5YS

UMR:PAR

LDR 000000 000000 MAIN TASK

SYSFAR 070000 0103500 MAIN TASK

GEN 100500 637300 MAIN SYS
UMR:>@L200,200]INSTALL

UMR -- CHECKPOQINT SPACE TOCO SMALL» USING CHECKFOINT FILE
INS SHF ! INSTALL SHUFFLER

UMR:="Z

+# WHEN THE INDIRECT FILE EXITS, BOOT IN YOUR TARGET SYSTEM,

»% SET THE DATE AND TIME» AND SAVE THE SYSTEM WITH A BOOTSTRAF.
># WHEN YOUR SYSTEM REBOOTS ITSELF» PURGE THE OLD TASK FILES.
>4

>3 El.G.

OB
3 l’l_ '
AL

N

r

ey ,
)

N.%ﬁ%

PEPLIF S Y o

-,

”

.. j
d:?ﬁgd.t

)

RSO A

IO LRSI P
‘ . C * e
. » . N
. . E H
. i - .

. N

L@ L :

@

]
!
1

a2 A

Y .
3

NS e

ROO RSX11M

RSX11M VO3.1 EL22
*TIM 12:00:100 1-JAN-78
+SAV /UWR

WP W W WP P WP WP W WS M MR W e W» W MR W W O W

RSX11M V03,1 BL22 64K MAFFED
*RED DLO3=SY?
*RED ILOS=LR:
+MOU DLOMAFRLO1
+@L1»2ISTARTUF
% FLEASE ENTER TIME AND DATE (HRIMN DD-MMM-YY) [S13
*TIM 12301 1-JAN-78
=@ EQF:
»SET /UIC=C1554]
“RUN $FIF
FIF: X, K/FU
FIF:"Z

+@ <EQF:
SBOD RSX11M
XDT: 22

XD
RSX11M V3.1 BL22

=TIM 830 8/1/79
*88V /WR

KSX-11M V3.1 BL22 64K MAFFED
»RED DLO:=SYO:
»RED DLO:=LEO?
*MOU DLOIMAFSYS
»@L1,21STARTUF
»% PLEASE ENTER TIME AND DATE (HRIMN DD-MMM-YY) [S]¢
»TIM
08:00:37 01-AUG-79
»@ <EOF:>
»SET /UIC=L1,54]
»INS LBIFIF
*POINIONIMP\PMIP\FIF
PIP>CXyX1X.X/PU
PIF>~Z

e

ARG

*~ B
. S

APPENDIX C
FLEC'S USERS MANUAL

Cc-1 INTRODUCTION

Fortran contains four basic mechanisms for controlling
program flow: CALL/RETURN, IF, DO, and various forms of tne GO
TO.

Flecs is a language eXtension of Fortran which has
additional «control mechanisms. These mechanisms make it easier
to write Fortran by elminating much of the <clerical detail
associated with constructing Fortran programs. Flecs is also
easier to read and comprehend than Fortran,

This manual is intended to be a brief but complete
introduction to Flecs. It is not intended to be a primer on
Flecs or structured programming. The reader is assumed to be a
knowledgeable Fortran programmer,

For programmers to whom transportability of their pro-
gram 1is a concern, it should be noted that the Flecs translator
source code is in the public domain and is made freely avail-
able, The translator was written with transportability in mind
and requires little effort to move from one machine to another.

At the University of Oregon, Flecs 1is implemented on
both the PDP-10 and the IBM S/360. The manner of implementation
is that of a pre-processor which translates Flecs programs into
“~rtran programs. The resulting Fortran program is then
processed in the usual way. The translator also produces a
nicely formatted listing of the Flecs program which graphically
presents the control structures used.

The following diagram illustrates the translating

process,

FLECS FLECS TRANSLATED
SOURCE TOR FORTRAN
PROGRAM RANSLA SOURCE
To Fortran
Compiler
c-1 PRt

[o

et

'v

. . x. .
R Y

Qi

sy .,.
p et T .

"
' Mlae g

S S ,
o St o
L I O T) :.A' S ..

s

e

)

3 Y v Y = A
. B v ﬂvTr 3
s . . [s

LALAR AL A

—— .
‘51 L

o™

LB S it Shast Rat Sl Bt Bt Mint et et J e e W ind et S g s e i e et it) S dian. e dha A e A A s L

@]
[
[§9]

RETENTION OF FORTRAN FEATURES
The Flecs translator examines each statement in the

Flecs program to see if it is an extended statement (a statement

valid in Flecs but not in Fértran). If it is recognized as an
extended statement, the translator generates the corresponding
Fortran statements, IE, however, the statement 1s not
recognized as an extended statement, the translator assumes it
must be a Fortran statement and passes it through unaltered.

Thus, the Flecs system does not restrict the wuse of Fortran

statements, it simply provides a set of additional statements
which may be used. In particular, GO TOs, arithmetic IFs,
CALLs, arithmetic statement functions, and any other Fortran
statements, compiler dependent or otherwise, may be wused 1in a

Flecs program,

c-3 CORRELATION OF FLECS AND FORTRAN SOURCES

One difficulty of preprocessor systems like Flecs |is
that error messages which come from the Fortran compiler must be
related to the original Flecs source program. This difficulty

is reduced by allowing the placement of line numbers (not to be

confused with Fortran statement numbers) on Flecs source state-
ments. These line numbers then appear on the listing and in the
Fortran source. When an error message is produced by either the
Flecs translator or the Fortran compiler, it will 1include the
line number of the offending Flecs source statement, making it
easy to locate on the listing.

I1f the programmer chooses not to supply 1line numbers,
the translator will assign sequential numbers and place them on
the listing and in the Fortran source. Thus, errors from the
compiler may still be related to the Flecs listing.

Details of line numbering are machine dependent and are
given in paragraph C-10. On most <card oriented systems, the
line numbers may be placed in columns 76-80 of each card. Other
Syst=m3 may have special provisions for line numders.

The beginning Flecs programmer should discover and make
special note of the details of the mechanism by which Fortran

. .
Y .
.) SNt
I (A'L‘A 5 >

‘s 'rl." "‘ "

o

I e LS A Al S i AT Pl % A VAl Al A A e P i S el S fh Mol Siadl Wt Sndh Sadt Shail Al gk ol el
- PRl s ~ e e A A SRR TRTET VT AT

compiler error messages may be traced back to the Flecs listing

on the system being used.

c~-4 STRUCTURED STATEMENTS
A basic notion of Flecs 1is that of the structured

statement which consists of a control phrase and its scope.

Fortran has two structured statements, the logical IF and the

DO. The following examples illustrate this terminology:

STRUCTURED STATEMENT

—

CONTROL PHASE SCOPE

s

KEYWORD SPECIFICATION

IF (X.EQ.Y) U=Vv+Ww
KEY./ORD SPECIFICATION

DO . 30I=1N CONTROL PHASE

A{l) = B(I)+C .

un = I-K@ SCOPE STRUCTURED STATEMENT
30 CONTINUE

Note that each structured statement consists of a
control phase which control the execution of a set of one or
more statements called its scope. Also note that each control
phrase consists of a keyword plus some additional information

called the specification. A statement which does not consist of

a control phrase and a scope is said to be a simple statement.

Examples of simple statements are assignment statements, sub-
routine CALLs, arithmetic IFs, and GO TOs.

The problem with the Fortran logical IF statement 1is
that its scope may contain only a single simple statement. This
restriction is eliminated in the case of the DO, but at the cost
>E clerical detail (having to stop thinking about the problen

while a statement number is invented). Note also that the IF

P - P :‘r‘-\‘.’.;.‘.'

T FTA W RS T W ey

S
|

.
s e L% .

SO AR S M LT b et R A A M EAGIMMCAE St MEESS

L-_\\

-4

i specification 1is enclosed in parenthese while the D0 specifica-

X tion is not.

;‘ In Flecs there is a uniform convention for writing con-

o trol phrases and indicating their scopes. To write a structured
statement, the keyword is placed on a line beginning in column
7 followed by 1its specification enclosed in parentheses. The

remainder of the line is left blank. The statements comprising
the scope are placed on successive lines. The end of the scope
is indicated by a FIN statement, This creates a multi-line

structured statement.

Examples of multi-line structured statements:
IF (X.EQ.Y)

U = V+W
R = S+T
FIN

DO (I = 1,N)
A(I) = B(I)+C
C =C*2.14-3.14 =~
FIN

Note: The statement number has been eliminated from the DO

specification since it is no longer necessary, the end of
the loop being specified by FIN.
Nesting of structured statements 1s permitted to any
depth.

i

a4 J. Aol & s u-.

Example of nested structured statements:

IF (X.EQ.Y)

U = VW

Do (I = 1,N)
A(I) = B(I)+C
C = C*2.14-3.14
FIN

R = S+T

1

- - A. PR

& FIN

wWhen the scope of a control phrase consists of a single
4 simple statem2nt, it may be placed on the same line as the
control phrase and the FIWN may be dispensed with. This creates

a one-line structured statement.

Zxanmples of one-line structur2d statemenis:]
IF (X.EQ.Y) U = V+W e
DO (I = 1,N) A(I) = B(I)+C '

- e . - . . -'_-’ T et et
O et et At Aty ettt Al A et e

B L R I e e e T e T T - A T e e A e e A G O L R A M i R R S Y oS ot |

Since each control phrase must begin on a new line, it e

is not ©possible to have a one-line structured statement whose
scope consists of a structured statement. . |

Example of invalid construction:

IF (X.EQ.Y) DO (I = 1,N) A(I) = B(I)+C

el

To achieve the effect desired above, the IF must be)
written in a multi-line form,

Example of valid construction: 'ﬁﬁi
IF (X.EQ.Y) R
DO (I + 1,N) A(I) = B(I)+C =T
FIN e
In addition to IF and DO, Flecs provides several useful]
structured statements not available in Fortran. After a brief f
eXxcursion into the subject of indentation, we will present these s
additional structures. n
!
A
C-5 INDENTATION, LINES AND THE LISTING -
In the examples of multi-line structured statements ";
above, the statements in the scope were indented and an "L" -,ﬂ
shaped line was drawn connecting the keyword of the <control _;4
phrase to the matching FIN. The resulting graphic effect helps ‘fﬁ
to reveal the structure of the program. The rules for using sl
indentation and FINs are quite simple and uniform. The control ?f%?

’
C

phrase of a multi-line structured statement always causes
indentation of the statements that follow. Nothing else causes
indentation. A level of indentation (i.e., a scope) 1is always
terminated with a FIN. Nothing else terminates a level of F\f
indentation., A._

When writing a Flecs program on paper, the oprogrammer if;f

snould adopt the indentation and line drawing conventions shown

readable form, however, each statement should begin in column
3even, YWhen the Flacs translator proaduces the listing, {2 will

below. When preparing a Flecs source program in machine -~¢.
reintroduce the correct 1indentation and produce the corres- l

ponding lines, If the programmer attempts to introduce his own -

SOOI ICR I CA A

W - W, WS W W S e W oW W, T TR YT VY JSTAT LYY Y T AT TR AR WY N T YT R T R T T T
CRaiCI - - P Sk i SN - - Y. " « T T « .

’ indentation with the use of leading blanks, the program will pe
L‘. translated «correctly, but the resulting listing will be
L improperly indented.
N
- Example of indentation:
b,
w 1. Program as written on paper by programmer:
IF (X.EQ.Y)
U + V+W
DO (I = 1,N)
A(I) = B(I)+C
C = C*2.14-3.14
FIN
R = S+T
FIN
2. Program as entered into computer:
IF (X.EQ.Y)
U + V+W
DO (I = 1,N)
A(I) = B(I)+C
C =C*2.14-3.14
FIN
R = S+T
FIN
3. Program as listed by Flecs translator:
IF (X.EQ.Y)
. U = V+W
- . DO (I = 1,N)
S . (A(T) = B(I)+C
5 ‘ « C =C*2.14-3.14
5FIN
- . R = S+T
- ...FIN
o
[The correctly indented listing is a tremendous aid in reading
b
- and working with programs. Except for the dots and spaces used
" for indentation, the lines are listed exactly as they appear in
b the sSource program., That 1is, the internal spacing of columns
;: 7-72 is preserved., There is seldom any need to refer to a
&< szralijht listing of thes unindented source.
& Comment lines are treated in the following way on the
® c . - . .o :
. listing to prevent interruption of the dotted lines indicating
»
-
L.
- C~6
t.
= S ‘
- - e o R " * K

v e
- e od

. ,..
) S
ot . L !

X ¥ RCIIA!)
Lo L e

s

L e

. e .

S

.. ...
. o
I PR
. : : ' (AN

ORI S

ST P

"" ll'l
ST ‘;" 1

'

>

A A e ik~ Rl Lo S T R A A 2 S St N T Bt Pl S i v B Al Sl A A SR G S AR Sas g MR pAe S A i PRl g P I i i

scope. A comment line which contains only blanks in columns 2

through 6 will be listed with columns 7 through 72 indented at

the then-current level of indentation as if the 1line were an ,,i
1 executable statement. I1f, however, one or more non-blank 1
. characters appear in columns 2 through 6 of a comment card, it
will be listed without indentation., Blank lines may be inserted

Y
i in the source and will be treated as empty coaments. |

F c-5 CONTROL STRUCTURES g
; The complete set of control structures provided by
? Flecs 1is given below together with their corresponding flow 'é

charts. The symbol Z is used to indicate a logical expression, 1
The symbol § is wused to indicate a scope of one or more]

{ statements. Some statements, as indicated below, do not have a

€ one-line construction. - -J
. A convenient summary of the information in this chapter 1
;' may be found in Attachment 1.]
) 1
‘ Cc=56.1 DECISION STRUCTURES 2
% Decision structures are structured statements which ﬂ

control the execution of their scopes on the basis of a logical

expression or test.

C-6.1.1 1IF
j.: Description: The IF statement causes a logical ex-

o pression to be evaluated. If the value is true, the scope is
L‘ executed once and control passes to the next statement. If the
ad

value 1is false, control passes directly to the next statement
without execution of the scope.

General Form: Flow Chart:

N | IF (A)S

[Examples:

o IF (X.EQ.Y) U = V+W -
, IF (T.GT.0.AND.S.LT.R)]
(] . I =1I+1 ...
: . . z = 0 . 1 o t“-i';
- ...FIN R

e Moa hatate e ? e ta%o % o wm T atl e el el

I T IO T TN TN TR T TRY

Y Y W W v

-

Pt {
. .

C-3.1.2 UNLESS

Description:

equivalent By

"UNLESS ()" is
to "IF(.NOT.{(4))", but is more convenient is some contexts. T
Flow Chart:

functionally

General Form:

UNLESS (4) S

Examples: T
UNLESS (X.NE.Y) U = V+W =
UNLESS (T.LE.O.OR.S.GE.R e
. I i I-1 ;:;
rm o
i
C-5.1.3 WHEN...ELSE =

Description: The WHEN...ELSE statements correspond to

the IF...THEN...ELSE statement of ALGOL, PL/l1, PASCAL, etc. 1In

Flecs, both the WHEN and the ELSE act as structured statements

although only the WHEN has a specification., The ELSE statement

The specifier of gfi
scopes is _;!5
of the WHEN stcatement is executed 1f the
ELSE

In either case,

must immediately follow the scope of the WHEN.

the WHEN is evsluated and exactly one of the two
The
expression is true and

the

executed. scope

the scope of the statement is -

executed if expression is false. control

then passes to the next statement following the ELSE statement.

General Form: .Flow Chart: T

WHEN (4) 51
ELSE §,

Examples:

WHEN (X.EQ.Y) U
ELSE U = V-W

WHEN (X.EQ.Y)
. U = V+W

. T = T+1.5
...FIN

ELSE U = V-W

WHEN (X.EQ.Y) U
ELSE
. U
. T
.+..FIN

V+W

y

'

’ i
: 3

.

PO VIO Y iy SN

V+W

V-W
T+1.5

T

[)

S |

e m e . B . R e e - - -
R . - . ‘. . . . _.\‘. . . - h.. R) \...._ A) ._‘_.>‘_ o . - .._.) . ._. A
9

PP Y S | Soaad P IRAT s LI W QLD P AT YA

L, oA ! - - B .- o~ et . . L, .
W DI TN I R G . Th 0 34 i SIS - R ST S D R W S S T SO POP SLENY §

L A T A B L A S L A e A A R B A D S AV I T i AR S e St A G A R e stk Bral SN A4 |

WHEN (X.EQ.Y) e
. U = V+W P
. T =T-1.5 Tl
...FIN Ll
ELSE -—@
. U =vV-W N

. T = T+1.5

...FIN

1
¥
i

i

Note: WHEN and ELSE always come as a pair of statements, never

separately. Either «che WHEN or both may assume the

:
)
A

multi-line form. ELSE is considered to bpe & <control

IS

phrase, hence cannot be placed on the same line as the

WHEN. Thus, "WHEN (&) S|, ELSE S," is not valid. -

C-5.1.24 CONDITIONAL
Description: The CONDITIONAL statement is based on the

LISP conditional. A list of logical expressions 1is evaluated
one by one until the first expression found to be true is
encountered. The scope corresponding to that expression is exe-

cuted, and control then passes to the first statement following

the COND[TIONAL. If all expressions are false, no scope is
executed. (See, however, the note about OTHERWISE below.)
General Form: Flow Chart:
CONDITIONAL
. (45,
. . (4315,
. . (2,18
- ...FIN *
.
3 Examples: -
- CONDITIONAL AR
. (X.LT.-5.0) U = U+W
. (X.LE.1.0) U = U+W+2
. (X.LE.10.5) U = U-% o]
A CONDITIONAL .
' . (A.EQ.B) 2 = 1.0 S
. (A.LE.C)
: . . Y =2.0 ‘
- . . 2 = 3.4 .
- . «..FIN
o . (A.GT.C.AND.A.LT.B) 2 = 6.2
. . (OTHERWISE) Z = 0.0
...FIN
- c-9
4

WA I B S SP IR S NP S PE P Ar SP AN

Noctes: The CONDITIONAL itself does not possess a one-line form.
However, each "LA‘)ﬁa " is treated as a structured

statement and may be in one-line or multi-line form.

The reserved word OTHERWISE represents a catchall condi-
tion, That is, "(OTHERWISE)S," 1is eguivalent to

"(.TRUE.)S_," in a CONDITIONAL statement.

C-5.1.5 SELECT

Description: The SELECT statement is similar to the
CONDITIONAL but is more specialized. (It actually 1is analogous
to the PASCAL CASE OF construct.) It allows an expression to be
tested for equality to each expression in a list of expressions,
when the first matching expression 1is encountered, a corres-
ponding scope is executed and the SELECT statement terminates.
In the description below, 5,5, ...,54 represent arbitrary but
compatible expressions. Any type of expression (integer, real,
complex,...) 1is allowed as 1long as the underlying Fortran
system allows such expressions to be compared with‘an .EQ. or

.NE. operator.

Seneral Form: Flow Chart:
SELECT (&)
. (&) &
. &) s
.+« .FIN
Example:

SELECT (OPCODE (PC))
. (JUMP) PC = AD
. (ADD)
. . A = A+B
. PC = PC+1
...FIN
. (SKIP) PC = PC+2
. (STOP) CALL STOPCD
...FIN

C-10

P S ' . A P
il e
PR ST S) immcane s s LA e -

A)

AR AC i b A i S B i b Ol Sl S M d S S Ju i Al Sl Sl "l T N da i ‘i~ i aiten 3 i Bihe Ihen Suten s mvtes aetie et Slen S Sane 4 T v T Ty
. A - [. 3 . * - CEMICE S

=

t‘

;i Notes: As in the case of CONDITIONAL, at most one of the §; will

- be executed. The catchall OTHERWISE may also be used in

:‘, a SELECT statement. Thus " (OTHERWISE)Se" is equivalent

to "(&)S," within a "SELECT (£)" statement.

[. , : : . :

- The expression & is reevaluatad for each comparison in _
the list, thus lengthy, time consuming, or irreproducible :‘:i
expressions should be precompnuted, assigned to a ;:d
variable, and the variable wused in the specification S
portion of the SELECT statement. ﬁﬁg

4 C-6.2 LOOP STRUCTURES ,!?

t The structured statements described below all have a .L

| scope which is executed a variable number of times depending on g

:i specified conditions. "'é

- Of the five loops presented, the most useful are the .Za

ﬁﬁ Do, WHILE, and REPEAT UNTIL 1loops. To avoid confusion, the qf

" REPEAT WHILE and UNTIL loops should be ignored initially. e

C-6.2.1 DO

Description: The Flecs DO 1loop is functionally
identical to the Fortran DO 1loop. The only differences are
syntactic., In the Flecs DO 1loop, the statement number Iis
omitted from the DO statement, the incrementation parameters are
enclosed 1in parenthesis, and the scope is indicated by either
the one line or multi~line convention. Since the semantics of

the Fortran DO statement vary from one Fortran compiler to

e another, a flowchart cannot be given. The symbol 1 represents

any legal incrementation specification.

. General Form: Equivalent Fortran:

] Do (1) S DO 30 I

» S

3 Examples: 30 CONTINUE

DC (I = 1,N¥) A(I) = 0.0

® DO (J =3,K,3)

et . B(J) = B(J-1)*B(J-2)

. . C(J) = SIN(B(J))

L ...FIN

. c-11

o

cSe e T . L e X T s AR
LA DRI AR PE e . A, R N et I T S O BT s~ uwy

GRS

;J.Y'

T —) ad ot
A B

FV“ M 20 6 00 AR PR awh ool gl g et il di S AT R e St M et LA - - o . -
N,

v PR - o i el aneath iRl ~ Sl T A S A S
- PaC - EEE . .

C-6.2.2 WHILE

Description: The WHILE loop causes 1its scope to be
repeatedly executed while a specified condition is true. The
condition is checked prior to the first execution of the scope,
thus 1f the condition is initially false the scope will not be
executed at all.

General Form: Flow Chart:

WHILE (L) S

Examples:
WHILE (X.LT.A(I)) I = I+1

WHILE (P.NE.O)

. VAL(P) = VAL(P) +1
. P = LINK(P)

...FIN

C-6.2.3 REPEAT WHILE
Description: -By using the REPEAT verb, the test can be
logically moved to the end of the loop. The REPEAT WHILE 1loop

causes 1its scope to be repeatedly executed while a specified

condition remains true. The condition 1is not checked until
after the first execution of the scope. Thus the scope will
always be executed at least once and the condition 1indicates
under what condition the scope 1is to be repeated. Note:
"REPEAT WHILE (Z4)" 1is functionally -equivalent to "REPEAT
UNTIL(.NOT.(4))".

General Form: Flow Chart:

REPEAT WHILE (4) S s

Examples: -
REPEAT WHILE(N.EQ.M(I)) I = I+l @

REPEAT WHILE (LINK(Q) .NE.OQ)
. R = LINK(Q)
LINK(Q) =P
. P =20
. Q=R
...FIN - -

-*. ...

C-56.2.4 UNTIL

Description: The UNTIL loop causes 1its scope to be
repeatedly executed until a specific condition becomes true.
The condition is checked prior to the first execution of the
scope, thus 1if the condition is initially true, the scope will
not be executed at all. Note that "UNTIL (4)" 1is functionally
equivalent to "WHILE (.NOT.(<))".

General Form: Flow Chart:

UNTIL (L) S

Examples:
UNTIL (X.EQ.A(I)) I = I+l

UNTIL (P.EQ.O)

. VAL(P) = VAL(P) +1
. P = LINK(P)

...FIN

. C-6.2.5 REPEAT UNTIL
Description: By using the REPEAT verb, the test can be
logically moved to the end of the loop. The REPEAT UNTIL loop

causes 1its scope to be repeatedly executed until a specified

condition becomes true. The condition 1is not checked until
after the first execution of the scope. Thus, the scope will
always be executed at least once and the condition 1indicates
under what <conditions the repetition of the scope is to be
terminated.

General Form: Flow Chart:

REPEAT UNTIL (<) £

Examples:
REPEAT UNTIL (N.EQ.M(I)) I = I+1

REPEAT UNTIL (LINK(Q) .EQ.0)
. R = LINK(Q)

. LINK(Q) =P
. P =20Q

. Q=R
...FIN

e :i";'—ﬁ-l'.-ﬁ' o

Loy

1)

1

\
.8

' Coa
f PR
Tt et

v} e almlt v

P L
PR
. e

N r‘-.ll

PR L
» Y
. Y
ot

Rt S i g
R
. s T

1" L4

f-v-
MBI
’ 3

S il
bt

vy Rt .'I' W e

@
.

c-7 INTERNAL PROCEDURES
In Flecs a sequence of statements may be declared an
internal procedure and a given name. The procedure may then be

invoked from any point in the program by simply giving its name.

Procedure names may be any string of letters, digits,

and hyphens (i.e., minus signs) beginning with a latter and con-
taining at 1least one hyphen. Internal blanks are not allowed.
The only restriction on the length of a name is that it may not
be continued onto a second line.
Examples of valid internal procedure names:

INITIALIZE-ARRAYS

GIVE-WARNING

SORT~INTO-DESCENDING-ORDER

INITIATE-PHASE-3

A procedure declaration consists of the keyword "TO"

followed by the procedure name and its scope. The set of state-
ments comprising the procedure 1is called its scope. If the
scope consists of a single simple statement it may be placed on
the same liné as the "TO" and procedure name, otherwise the
statements of the scope are placed on the following 1lines and
terminated with a FIN statement. These rules are analogous with
the rules for forming the scope of a structured statement.
General Form of procedure declaration:
.TO procedure-name
Examples of procedure declarations:
TO RESET-POINTER P = 0
TO DO-NOTHING CONTINUE

TO SUMMARIZE-FILE

. INITIALIZE-SUMMARY

. OPEN-FILE

. REPEAT UNTIL (EOF)

. .+ ATTEMPT-TO-READ-RECORD

. .+ WHEN (EOF) CLOSE-FILE
. . ELSE UPDATE-SUMMARY
. «..FIN
. OUTPUT-SUMMARY
.. .FIN
C-14

YA A A I A S A = e S A It A T T O T Y S Y R T A — Bl

An internal procedure reference is a procedure nane
appearing where an executable statement would be expected. 1In
fact an internal procedure reference 1is an executable simple
statement and thus may be wused in the scope of a structured
statement as in the last example above. When control reaches a

procedure reference during execution of a Flecs program, a

return address is saved and control is transferred to the first

statement in the scope of the procedure., When control reaches B
the end of the scope, <control is transferred back to the
statement logically following the procedure reference. j
A typical Flecs program or subprogram consists of a ?
sequence of Fortran declarations: (e.g., INTEGER, DIMENSION,)
COMMON, ctc.) followed by a sequence of executable statements
called the body of the program followed by the Flecs internal t'j
procedure declarations, if any, and finally the END statement. :g
Here is a Flecs program which illustrates th-. placement -
of the procedure declarations. R
00010 C INTERACTIVE PROGRAM FOR PDP-10 TO COMPUTE X**2, '1
00020 C 2ZERO IS USED AS A SENTINEL VALUE TO TERMINATE EXECUTION. .
00030 ED
00040 REAL X,XSQ C
00050 REPEAT UNTIL (X.EQ.O)
00060 . GET-A-VALUE-OF-X
00070 . IF (X.NE.O)]
00080 . . COMPUTE-RESULT ‘
00090 . . TYPE-RESULT =
00100FIN 3
00110 ...FIN o
00120 CALL EXIT R
00130 TO-GET-A-VALUE-OF-X -
00140 . TYPE 10 -
00150 10 . FORMAT (' X ="' ,$%) o
00160 . ACCEPT 20,X K
00170 20 . FORMAT (F) =
00180 ...FIN :
S 00190 TO COMPUTE-RESULT XSQ = X*X -9
S ittt sttt 9
00200 TO TYPE-RESULT)
00210 . TYPE 30,XS0Q - :
A 00220 30 . FORMAT(' X-SQUARED - ',6F7.2)
'.' 00230 ...FIN

END

1.

Notes concerning internal procedures:

All internal procedure declarations must be placed
at the end of the program just prior to the END
statement. The appearance of the first "TO"
Sstatement terminates the body of the program. The
translator expects to see nothing but procedure
declarations from that point on.

The order of the declarations 1s not Iimportant,
Alphabetical by name 1is an excellent order for
programs with a large number of procedures.
Procedure declarations may not be nested., 1In other
words, the scope of a procedure may not contain a
procedure declaration. It may, of course, contain
executable procedure references.

Any procedure may contain references to any other
procedures (excluding itself).

Dynamic recursion of procedure referencing 1is not
permitted.

All program variables within a main or subprogram
are global and are accessible to the statements in
all procedures declared within that same main or
sub program.

There 1is no formal mechanism for defining or
passing parameters to an internal procedure. When
parameter passing is needed, the Fortran function
or subroutine subprogram mechanism may be used or
the progammer may invent his own parameter passing
methods wusing the global nature of variables over
internal procedures.

The Flecs translator separates procedure declara-

tions on the listing by dashed lines as shown in
ED the preceding example.
r.
‘.
: l-3 SESTRICTIONS AND NOTES
‘6 If Flecs were implemented by a compiler this section

would be much shorter. Currently, however, Flecs is implemented

s

..‘-'. P

N
. R N
2la’ala"s’a zal

'.‘. . . .
@
_ i at

A R AR e I Bt R R S e S i NS " S " M A A M S A A S TS S

RSN

Wl

¥]

s

S

R

L by a sturdy but naive translator, Thus, the Fl2cs projrammer

%tj) must observe the following restrictions:

1 1. Flecs must invent many statement numbers in

3 creating the Fortran program, It does so by

;" beginning with a large number (in this implemen-

[;m' tation 327567) and generating successively smaller

X numbers as it needs them, Do not wuse a number

AN which will be generated by the translator. A good

?f} rule of thumb is to avoid using 5 digit statement

{ numbers.

h 2. The Flacs translator must generate integer variable

b
names. It does so by wusing names of the form i
"Innnnn" when nnnnn is a five digit number related
to a generated statement number. Do not use]
variables of the form Innnnn and avoid causing them "o

to be declared other wthan INTEGER. For example,

the declaration "IMPLICIT REAL (A-2Z)" 1leads to
trouble. Try "IMPLICIT REAL (A-H, J-2)" instead. "

3. The translator does notlrecognize continuation l:l
'_!

lines in the source file. Thus Fortran statements
may be continued since the statement and 1its con- j3
tinuations will be ©passed through the translator

without alteration. However, an extended Flecs

statement which requires translation may not be

continued. The reasons one might wish to continue
a Flecs statement 1) It is a structured statement

or procedure declaration with a one statement scope

too long to fit on a line, or 2) it contains an
excessively 1long specification portion, or 3) bhoth
of the above. Problem 1) can be avoided by going
to thé multi-line form. Frequently problem 2) can
be avoided when the specification is an expression
(logical or otherwise) by assigning the expression

to a variavlie in a preceding statement and then

using the variable as the specification.

v

8 - IR~ S

.

-

Yy

[

LM n Abai e an -
. .-.1.’»‘-'

worrw
-'n v

0 AL

T

Incorrect Examples:

30

40

7.

3lanks are meaningfal s2paratnrs in Flecs

statements; don't put them in dumb places like the

middle of identifiers or key words and do use them
to separate distinct words like REPEAT and UNTIL.
Let Flecs indent the listing. Start all statements
in Col. 7 (or use the TAB key) and the listing will
always reveal the true structure of the progranm.
{As understood by the translator, of course.)

As far as the translator 1is concerned, FORAAT
statements are executable Fortran statements since
it doesn't recognize them as extended Flecs state-
ments. Thus, only place FORMAT statements where an

executable Fortran statements would be acceptable.

Don't put them between the end of a WHEN statement
and the beginning of an ELSE statement. Don't put
them between procedure declarations.

Corrected Examples:

WHEN (FLAG) WRITE(3,30) .WHEN (FLAG)

FORMAT(7H TITLE:) 30 . WRITE(3,30)

ELSE LINE = LINE+l . FORMAT(7H TITLE:)
‘ ...FPIN

ELSE LINE = LINE+1

TO WRITE-HEADER TO WRITE-HEADER

. PAGE = PAGE +1 . PAGE = PAGE+1

. WRITE(3,40) H,PAGE . WRITE(3,40) H,PAGE
...FIN 40 . FORMAT(70Al1,I3)
FORMAT (70A1,13) ...FIN

The translator recognizes extended Flecs statements
by the process of scanning the first identifier on
the 1line. If the identifier is one of the Flecs
keywords, IF, WHEN, UNLESS, FIN, etc., the line is
assumed to be a Flecs statement and is treated as
such. Thus, the Flecs keywords are ceserved and
may not be wused as variable names. In case of
necessity, a wvariable name, say WIEN, may be
slipped past the translator by embedding a olanx
within it. Thus "WH EN" will 1look 1like "WH"
followed by "EN" to the translator which is blank

L aner v atnd TR T T AT T R T T H TV Y TS TR AT NN PR YUY IR TR
MRS o e AP et Palimna St MR Bl oA A\ At el A4 .

,;.:A‘ALA -_.’L;.......4

Y

sensitive, but like "WHEN" to the couwpilar whizh
ignores blanks,

8. In scanning a parenthesized specification, the
translator scans from 1left to right to find the
parenthesis which matches the initial left
parenthesis of the specification. The translator,
however, is ignorant of Fortran syntax including
the concept of Hollerith constants and will treat
Hollerith parenthesis as syntactic parenthesis,

Thus, avoid placing Hollerith constants containing

unbalanced parenthesis within specifications. If

necessary, assign such constants to2 a variabla,
using a DATA or assignment statement, and place the
variable in the specification.
Incorrect Example: Corrected Example:
IF(J.EQ.' (") Lp = '(°
IF(J.EQ.LP)

9. The Flecs translator will not supply statements
necessary to cause appropriate termination of main
and sub-programs. Thus, it is necessary to include
the appropriate RETURN, STOP, or CALL EXIT
statement prior to the first internal procedure

declaration., Failure to do so will result in
control entering the scope of the first procedure
after leaving the body of the program. Do not
place such statements between the procedure dec-

larations and the END statement.

c-9 ERRORS

This section provides a frameword for understanding the
error handling mechanisms of version 22 9f the Flecs Translator.
The system described below is at an early point 1in evolution,
but has proven to be quite workabla.

The Flecs translator =2xamines a Fla2cs projran >n 3 Lin2

by line basis. As each 1line 1is encountered it is first

subjected to a limited syntax analysis followed by a context

T———_——

@ W

At

Lo

.®,

R S

"A. T

PRI A’.;_

! . L
. .
e s (@ Lo

‘o)

2

\ /I

.-

‘e

VT

oy

hada aen o

PP P e T T

hal Sl S el il Sel_Mesh S N el t ol Andh Sadoiink i Aah el S A A P N O R D

c2d duriny eltaer »>E 23l

[

analysis. Errors mnay be de

T
(2

C
analyses. It 1is also possible for errors to go undetected by
the translator.

C-9.1 Syntax Errors
wWhen a syntax error is detected by the translator, it
ignores the statement. On the Flecs listing the line numbar of

tha statement is ovarprintad with =<'z to indiza

i r

statement has been ignored. The nature of the syntax ecror is
given in a message on the following line.

The fact that a statement has been ignored may, of
course, cause some <context errors in later statements. For
example, the control phrase "WHEN (X(I).LT.({(3+4)" has a missing
right parenthesis. This statement will be ignored, causing as
a minimum the following ELSE to be out of context. The pro-
grammer should of course be aware of such effects. More is said

about them in the next section.

C-9.2 Context Errors

If a statement successfully passes the syntax analysis,
it is checked to see if it is in the appropriate context within
the program. For example, an ELSE must appear following a WHEN
and nowhere else, If an ELSE does not appear at the appropriate
point of if it appears at some other point, a context error has
occurred. A fregquent source of context errors in the ini:tial
stages of development of a program comes from miscounting the
number of FINs needed at some point in the program,

With the cxception of excess FINs which do not nmat:zh
any preceding control phrase and are ignored (as indicated bv

overorinting the line number). all context errors are tr2a2as2d

with a uniform strategy. When an out-of-context sSource state-
ment is encountered, the translator generates a "STATIMENT(3)
NEEDED" messaqge. It then invents and processes a seguence OI

statements which, If they had been included at that point in the
program, would have placed the original source statement in a

correct <context. A message is given for each such statement

LR S DA U ol S i A S N ST e B "R S A A e Sl A L AN A T AT AR APt ot Mt Mttt AT s S SN AR At e

... -—vr -
IR PRSI

Lk et T 4

e B b 20 S0 e

invented. The original source statement is then processed in
the newly created context.

By inventing statements the translator is not trying to
patch up the program so that it will run correctly, it is simply
trying to adjust the local context so that the original source
statement and the statements which follow will be acceptable on
a context basis. As in the case of context errors generated by
ignoring a syntactically incorrect statement, such an adjustment
of context £frequently <causes further context errors later on.

This is called propagation of context errors.

One nice feature of the context adjustment strategy |is
that context errors cannot propagate past a recognizable
procedure declaration. This is because the "TO" declaration 1is
in context only at indentation level 0. Thus to place it in
context, the translator must invent enough statements to termi-
nate all open control structures which preceed the "TO". The
programmer who modularizes his program into a collection of
relatively short internal procedures, limits the potential for

propagation of context errors.

C-9.3 Undetected Errors

The Flecs translator is ignorant of most details of
Fortran syntax. Thus most Fortran syntax errors will be
detected by the Fortran compiler not the Flecs translator. In
addition there are two major classes of Flecs errors which will
be caught by the compiler not the translator.

The first class of undetected errors involve misspelled
Flecs keywords. A misspelled keyword will not be recognized by
the translator., The line on which is occurs will be assumed to
be a Fortran statement and will be passed wunaltered to the
compiler which will no doubt object to it., For example a common
error is to spell UNTIL with two Ls. Such statements are passed
to the compiler, which then produces an error message. The fact
that an intended <control phrase was not recognized freguencly
causes a later context error since a level of indentation will
not be triggered.

(@)
|

21

1

MR B MR Tt “R iy i i Tt i e S S ML S, i PPN Sl il Car Gal i Sl A SO A A B S A N ™ S ML L L AR S Dateth Sl sedt i it ey)

The

U

sacond <class of undete

{
(1

ted Srrors involves
unbalanced parentheses. When scanning a parenthesized
specification, the translator is looking for a matching right
parenthesis. If the matching parenthesis is encountered before
the end of the line the remainder of the line 1is scanned. If

the remainder 1is blank or consists of a crecognizable internal

orocedure reference, all if well. 1If neither of the abave two
>ases hold, ths remainder of the lin2 1Is assumed f(without
checking) to be a simple Fortran statement whica 1is passed to
the compiler. Of course, this assumption may be wrong, thus the - d
statement

"WHEN (X.LT.A(I)+2Z)) X = 0"

is broken into :

+. keyword "WHEN"
| & specification " (X.LT.A(I)+2)"
- Fortr#&n statement ") X = 0"

Needless to say the compiler will object to ") X = 0"

as a statement. .

:E Programmeré on batch oriented systems have less diffi-
ﬁf culty with undetected errors due to the practice of running the
¢ program through both the translator and the compiler each time
ﬁﬂ a run 1is submitted. The compiler errors usually point out any
EE errors undetected by the translator.
,' Programmers on timesharing systems tend to have a bit
; more difficulty since an undetected error in one line nay
¢ trigger a context error in a much later line. ©Noticing the con-
;9 text error, the programmer does not proceed with compilation and

hence is not warned by the compiler of the genuine cause of the

error. One indication of the true source of the error may be an

indentation failure at the corresponding point in the listing.

C-9.4 Jdther Errors

The translator detects a variety of other errors such

as multiply defined, or undefined procedure references. The

error message are self-explanatory. (Really and truly!)

—TYT Y
.

WP IR, PPN PRI N V. TR D I IORR, S SRS SR G N ST WL I G WS A Sy oniieasaindodisessmsbanich

c-10 PROCEDURES FOR USE ON THE PDP-11/34
C-10.1 Source Preparation

Prepare a Flecs source file with a name of vyour
choosing and an extension of ".FLX".

C-10.2 Translator Commands

Flecs is installed under the task name "...FLE".

Flecs may be invoked by the following command string:
([tems 1in Dbrackets ([}]) are optional. <CR> denotes carriage
return.)

FLE [ouTpUT] [,LIST] = INPUT <CR>
whera: [OUTPUT] is the output filename. This file will b2
given an extension of .FTN, and may be input directly to the
Fortran compiler:
[,LIST] is the listing device or listing filename., If a

device is specified it must be a list device such as LP: or TI:.

If a filename is specified it will be given an extension ".FLL";
INPUT is the input filename. This should contain the

FLECS source statements and must have an extension of ",FLX".

If OUTPUT or LIST is omitted, no file will be created.
If both OUTPUT and LIST are omitted, a list of file with name
RSXFLEX.FLL and the next highest version will be created.

Example: a source file named ‘'EXAMPLE.FLX' has been
created. 1In order to translate the Flecs program into a Fortran
program, type the command stream

FLE EXAMPLE,EXAMPLE = EXAMPLELKCR>

A Fortran source file with the name EXAMPLE.FTN and a Flecs
listing file with the name EXAMPLE.FLL will be created.

” .
.

Aat et aate B A\ ReiChuds Sl ek S AR S Rk RO Y

DA gne 24

2 A At 20
RS

T

TSNS

ATTACHMENT 1

Flecs Summary Sheet

N\
(IF (L) S) (- giEss (L) S
TRUE FALSE
5 L S
FALSE TRUE
. J . M W,
\
r- CONDITIONAL r SELECT (&) w
Ly S . €S
. Ly Sz . (E2) 82
L L S L Ew) Sn
o FIH LI
TRUE
3 S S
FALSE
S S,
TRUE TRUE
FALSE FALSE
\ f _J [)

. W W RV W oW T T I, O T T T TeT T e e e 8T
P DA S A S A R R RN R . . . -

~
(" WHEN (L) S,
ELSE S,
TRUE
. 51
FALSE
AV
!
S, :
P !
L v
CARRY-OUT-ACTION

T0 CAPRY-QUT-ACTION S

() §

HOTE: PLacE A PETURN, STOP, or
CALL EXIT sTATeMENT AHEAD

OF THE FIRST TO STATEMENT.

OTHEPWISE can BE USED AS
A CATCHALL CONDITION OR
exprESStoN 18 CONDITIONAL
AKD SELECT stavemenTs,

NOTE!

LEGEND: £ = LOGICAL EXPRESSION
S = sTavement(s)

€ = gxpRESSION

Z = [0 sPECIFICATION

—

i
REPEAT UMTIL (L)Y S

—
i (L) S \

r WHILE (L) S h

-
<

TRUC

b

L oL - T P
* . U . e, .
. - ‘ - . ~ - N -‘- N - R “ LN
. - - - o s . AL
¥ PR N PR N W P PR W DN DR Y DU PR VU S YR\ 2

FALST I
9 J L v J L l .
C-24

¢
.

.
. v
o’k a x4 P2

@ ..’
.

-

ST e W AT AT T T L YTRTTTTRTAT TR TRV YV N TR TIVE T TR YT

APPENDIX D

DEFINITION OF PUBLIC VARIABLES

o
—d

Y

-
-
Y
<

<

e

- -
R
DN
;o
.-y
EaNE
[N
RN
- g

oy
. 5
' .
Lad

et . .'.‘I %4
SRR

o
o

" d
W

-‘ ."..
ca s
e - -\
RIS
- ‘n

WY e T T AT Y T W s TTeLTr LT T e TeT - ® = - e s r was e - - - I

TN m ¥y W N e - il i) - T, N e)
A :
- - "-
1. LY
.
9 . ::;
. " .
b e
. =
. <
L

ASAVE BYTE RESERVED IFOR SAVING THE A REGISIGER o
ASCBUF: FIVE CHARACTLI ASCIT BUFT R FOR DVINVT ROUT TN]
BSAVE . BYTE RESERWED I'OK SAYVING THE I REGISTER -

CSAVE - BYTE RESERWED I'DH SAVING THE O RESTISTER
CURNT: O BYTE ARKAY CONMTAINIMG ASCTI RUPRESENTATION
CYCDON: FLAG: OFFH O A CYCLE TEST 15 DONFE.

r. CYCNBR: MUMRER OF THE CURREGNT CYCOLE OF A MUL TICYCLE TEGT
o CYCNMR: MODE OF OPLRATION TLAG-0=SINGLLE -, 2, 3=MUL 71T YOk
- DYML . DVMI DATA
e DVMD2 : DVUM2 DATA

DCD : DECADE INCRUEMENTLR
DECCNT: DECADE DOWN COUNTER FOR L.OOP (GENFRG)
DECNUM: CUMGU-NT DECADE NUMBER () THHU &)

DECSW . DizADE SWITOH MURFER (b BYIDS)
DEL.DOM: FLAG=0OFFY IF PREVIOVS FREGQUEMCY WAS DELE FED
DSAVE BYTE RESERVHED I'OR SAVING THE D REGT3TER

DVMION: PYrME ON FLAGQ (0N)
DYM20N: DVM2 OMN FLAGC (0QN=- 1)

DX : X AXIS BTEP S17Z F0OR ¢
E6GBYTE: PonRT E6 COMMAND DBUFFER
EABYTI:: PORT EA COMMAND BUFFLR
CSAVE E REGCISTER SAVEI 1L OCATION

CXFAND: CXPANDED CRID FLACG (NOQ 'XUAND=0, EXPaND=]1)

EXPIRD: INTER CYCLE IMNIVRYAL FLARSORTH WHEN JRNTIIRVAL 1HAS LYPIan
I-4H DO TORT OF4 BUFTER DYML 1[5

I"9H : PORT OFS BUREL-R DVMY MIDRLL

FOBYTE: PORT F& COMMAND BUFFI-NI

HOH : PO FS RUFHER DYMLE MIS

LIRENTY DI-CADIZ

FEH . PO G BUFRER DVM2 | 5
FGH :© PURT F9 BUFFEER DYM2 MIDULLE
FABYTE: PORT FA COMMAND LUITFE:
FAH . PORT FA BUFFER DYMZ MG
FIFBUF: 4000 BY1E BUFFER FOR THE RF MAGNITUDE DATA
FIFCNY: 1-IFLUF BYTE COUNI
FIFIN @ [DIFBUF INPUT POINTENR
FILOUT FIFBUR QUTPUT 1O1MTER
T [ORMAT: FORMAT SWITCH STATUS
= FRGBUF: 12000 BYTE BUFFER FOR THME RF PHASE DATA
® FRAPTR: FKAQBUF POINTEK
o FSAVE : BYTE RESFRVED TO SAVE 1HE F KEGISTER
- GRDON : FLAG=1 TO SENERATE GRID. USED BY CYCCHK MODUIE
- GRIDON: GRID GEMERATION & DISFLAY (O=NO , 1=YES)
- HLDFLG: CONTINUE CYCLE=0, HOID CYCLE=OFLH
- HSAVE : BYTE RESERVED TO SAVE THE H REGISTLR
. INTERO: INTERRUFT O SERVICE ROUTINE VECTOR
e INTERS. 1 :
- INTERZ " Py o
INTERZ: g S
. INTER4: * 4 .
: INTERS: 3 S
- INTERG: ° 6 R
8 INTER7: * 7 ™
-~ RIS
s S
3 D-2 o
3
e
L
e e N S PR IIPIP I SR WIS

A

v

L2 v'v'vr‘v,'—v-,

“le

a0,

PhiB
s ‘2 %5 s e

P
PR A
F Y B

a

‘

INTCTR:
INTLNIL:

INTLNZ:

YJTBL
LAST

LOGPTR:

LEAVE
MFE

MIDSTR:
MLTCYC:

iODE

MRAMPT:
MROMPT:
MSTACHK:

MACT
NLOAD
NPTS

MXSEMI:
NXTCYC:
PASSNO:

PDP11

PENFLG:
PHFLAG:

P INON

PLOTON:

PSAVE
PSTP

RAMPTH:
RCVYRON:

REFON

RFAMPL.:

RFPHAS:

ROMPTR:
RSTART:

SCAL

SDIPTR;
SD2PTR:

SERON
SIGN

SIZBIN:
SKIPCT:
SKIRSZ:

SMPL.S

SRAMPT:
SROMPT:

SSAVE
STATE

STEPCT:

SYPAST

TAPFON:

TEY
TEM?®

TIEq4:

BIMARY COUNTER {-OR SYSTEM STED' PULSGLES

BINARY VALUE EQUAL TO THE NUMBER OF SYSTEM
STEP PULSES I'OR DELAY BETUWLEM CYCLE 1 AND 2
SAME FOR CYCLEZ/3

START ADDRESS FOR THE INMTIRRUMT oM FaAR
LAST FORMAT PLOTTED WITH GRIDS UM

LOG TABLE POINICR

BYTE RESERVED TO SAVE THE L RECISTER

FLAG=1 INDICATHFS MFL CASSETIE UH O LMk

MID PROGRAM STOP FLAC (MPSTOP =)

SINGLE CYCle TEST=0, MULTIOYCLE TESRTSI

MODE SWITCH STAITUS

MULTIPLE DELETL RAM 1ARLE TOINTUR

MULLTIPLE DELFTE ROM TABLL POUINTI R

TOP OF THE 3024 BYTE STACK

NUMBER OF ACTIVE DECADLG

MUMBER OF ASCIT CHARLCTING 10 t.0OAD TN CLIFRQ
NO. OF POINTS/DEC IN CLUHIU-NT DECADD
FLAC=OFFH IF NEX1 STEP OF A SEMI-AUTOMATIC TIZOT IS5 TO RIS DONE
FLAG=OFFH IF MOKE CYCLES 70O DO IN MULTICYCLE
PASS THRU CWPLOT ROUTINE O=X DATA 1:=YDATA
FLAE=1 INDICATES PDPLL IS ON LINC

PCN COMMAND FLAG

PHASE TEST FLAG (PHASE TEST RFQ’D = 1)
PLOT/ZIMNITIATE: SWITCH INTURRUPT FMABLLE (EMAR=1)
PLLOTTER ON FLAG (ON:-1)

PROGRAM COUNTER SAVE RECISTLRS

FROGRAM STOP FL.AG (PED = 3 . PGTOP = O)
MULTTIFPLE DELLTE RAM T1ABLL FE-AD

RECEIVER STATUSL IF'LAG (OF- = O . ON -+)
REFERENCE SYNTHLSIZER OM FLAG (ON=-1)

S5 BYTE ARRAY CONMTAINING ASCIITI RLPRESINTATION
0! CURRENT {-R AMPL.ITUDE AND 31&MN FROM DUM

5 BYTE ARRAY CONMTAINING ASCII RCPRESENTATION
OF CURRLENT RIF PHASE ANMD SIGN FROM DV
MULTIPLE DELITE ROM ToARLL HEAD

FLAC=0OFFI4 IF 3YSTEM STEP PULGES NEED T3

BE RE-TNITIATED BY SYNCHROMIZER CLOCK

ROM SCALE TABLE POINTER FOR LOGGCL CORY
SDIFRQ BUFFER FOINTEK

SD2FRQ BUFFER POINTER

INDICATES SERIAILL 10 (OM

POLARITY SIGN 1M DVCNVT

BINARY VALUE OF THE SYSTEM STEP TIME INMTERVAL
SKIP DOWN COUNTER FOR LOGTAB FREQ SKIPS

NO. OF LOGTAD "REQ’G 10 B SKIPPED

SAMPILES (OVFRI.AYSG IM SCAL BUIFKIRD

SINCLE DELETE RaAM TARLT PPOINTER

SINCLE DELETT ROM TARLE POINTLR

STACK POIMNTER SAVE REGISTLR

TEGT STATE

FREQUENCY ST'P DOUN COUNTER (NRPTSE -5 O)
1-LST PASTS. 7 LATER PALHLLS
TAPE CASETNE OM FLAG (OM: 1) ‘

M TEMPOKARY DUFFERS
EMF ORARY MOMTI (0 CELL
SET ~.AG TO OTi-ii TO ACTTVATE INTER-MERSAGE

e mte T e v

U S TR

SRR
DS EAC
SO0
n)

RAATE
VNl

FEEEE

Ve rmE AT TS TR YT

[AR i o

o 1 s

e i) Pl
Trad T AT i DELAY RETWEDRRM

COMGE Co W 2080wttt
AL T ST NMAME- N
SET 0 CEEH N THE DATAS LTMIK 1S Doy

VT SYNTeS
X COORDIMATL.

KNS PLUTTE

¥OOOTEDTNA T
¢S ks GRTLE

ZTRO 0 ING RO

TR IO JRAR W

» N. N N T
ol

50O IFLaG (ON=1)

1 OCATION

rOSITION ACCUMULATOR

RATA (COVITREAYS TR XL T TR
COROSENECIED 1D FUORMST CCOME TG
Fribat (3SET RBY IMITRRUP L 2T INMD)

D-4

ottt - .,
daasiidelanalsdaresas

TN T W T YT T

et
)

N e r e wm

s

LN
.

03

-4

i
'
.

e
AT
L]
- '.-
I\' l‘
Y
l.\
i
-

RPN _ [TOUACA

AR N AR . SO AR A At Bl S 2 N it Tl b ik Bl S d Y A A A A S G S AT it SIS i st it atvs e bl et aive aen s grog ory |

APPENDIX E

SUBMIT FILE FOR LINK/LOCATE WITH CODE IN ROM

T

s e e . - - - - . e e m s -
" . - . RS R
IR ".f) T e - ""-'"’1"“‘ “t e T
... - LA N ey ERTR-ENL P L] - -
. < - N . -
.oy - . B - N . .
PSR Sl 7% VA AL SR T % LY. % T SV SV NPT Sadh, PO e BB tn a . adias.w e e alabh o abs e a2 -

LINK %
“F 1 RESET. OBJ, &
SPARTIO DB.L &
CTIMEIOQ. OB, &
SINTIO. OB, &
ZTIOO0 &Bd, &
CHHODAT. Ol
DINGG. OBY, &
CCKDYML. O, & i
CPINIT. OB & o
C SWPOLE. OB.,

i

—
-t
‘s
LR IPLITA,

- -
» g
Y VORI

-~ — =
[l

L COMITIC. OB, &
L GENTTRG OBV, %

. DECDAT. QliJ.,
:DELPT. OBJ. %
. S‘*.‘P On\}.- 3‘.’ .o
: SDIRQ. OBJ, & L
:DEL ID. ORJ, &
T CWTEEST. DR,

ad

=
'
PP R

TThATm V
- s e b v e e e e e e e Mo e e e

iz % N
CF L CWPLOT. OB, & K
:F1: CKMIDS. DBJ, & Lo
CFL1:LODPLT. OBJ, & L
(F1: SYSTEP, OB, & :

-
—

- DYMPOL. OB,
DVCNVT. OB, & . -
S XPUSN. OBJ, & .
. SDDEC. OBJ, % -

SDULINT. ORJ, & L

w
!

gl
« .
v

<

- s

cSTART 0OB.),
S ZTINT. OBJ, .
S PARTOS. OBJ, % -
. ERMSE. 0B., &
CF1:2110. OBY, % cov
CF1:PLUTO. OBJ, & e
(171 LABAXS. OBJ, & .
R cF1: YLBL. OBJ, % o
- (F1:MOMEN. OBy, & o
- “F1.5TAND. OBJ, S
H! (F1:STNANT. ORJ, %
‘ (P REFILV. OBJ. &
:F1:RO1ATE. OBJ, & o
s CFLLINCK QR & R
TLOMYCTR QWY & o
" STHTEN. ORJ. & N
CXINSTS. OB, 8
C¥LADCE . OB, % T
. F.:fnl\'PL.{l U“\J: 8
CZTED. UBY, %
“GENGRL. ORJ, & T
_DATAI. OB, & T
: DECADI. OB, & A
- LOGSCL. OBJ, &

isdireg

nmnT -

T T
- e b et e e e

-

:
-

-
H
<

3 e T
— s e b= e e e b ..

<&

-
-
-

~

g
v
T T s

@
M

RTINSO T LT TTLOTLT RN O e e e e

v

z CFL:PLOTS. OBY, &

S ONXDEC. OBJY, &

“F 1 ¥YLNS UBJ, &
VCRETINY, &
COPSOGK G &

P UNE SO, L,
TN QL &

[- TUDRURDE N PR 2

 BNAS(Ui, &

CMATH. OB &

CFDUNP. QBJ, %

CFRRAP. OBJ, &

CMOVE. UBJ, &

:DELAYL. QB &

FLOAbL. OBJ, &

CRESTUR. OB.)L &

 DELAY. OBJ, &

CFRET. OBJ, &

CSRET. OBJ, &

. RAMBO. OBJ, %

CCWAIT OBJY, &

S ZTHMSK. OB, &

CPAT. KLY, &

cFL.STaP. UBY, &

PUBLICS(: F1:Z180. ROM)Y, ¢

PUBLICS(:F1:SDAMII. ROM), %

CFLTIMER. OBY, %

CFL:SDINMIT. OBY, &

. ¥O¥ * F T T

T T T

TTHTMMWMTTM T T TN
Ll e e e i e

5y

cFl:SDAMPL. OB, &

R

(171 DBMDBYW. OB, ¢
CF L SDAMTR. OB, &
cF1:MODSET. OB, &
FL:CYCTIM OB, &
SO CNVINT. uBY, &
cF1PNLBLK. OBY, &
cFJ):STABLK. ORJ, %

<

<

CF 1 MSRBLK. OB, &
CF1:RFFRQ. ORJ, %
:F1:DELBLK. ORJ, &
- F1: DVMAGC. DB, &
171 CYCCHK. ORY, &
CELIHLDTST. OBY, %
CEEICYCINY. OB, %

cFL1: BINASC. OB, &
CF1: ASCBIN. OBRJ. %
- :F1:BCDASC. O,
L F1:BCDBNY. (IR, &
| @) “F1:SERLIO. OB, &
p,; FLRAMILG. OB, %
e CFO-PLLMBO. LIN &
SRS T0 &%
TF D CWMS. NI

LOCATE %
(F1:CWMS. LNK %
TO &

Y
g

Cm T N T NG T R T ETETY T VISTRTRTEYT Y TR T e oo o

PG U &
MAR PRITMT O F1 0 CuR0M cap) PURE ICS CODSCOGO0IN DATA(30G00HY STACKS [Zi-10)

-
|

cu
S
T
4

Al

e

F, - po - > v e . Pl Mast 4 o - . 3 '~ - e TR et i diage e g ot - W e T e "7~v_". ?‘
[-
4 ¢
;. "_:_‘.
g
'y
APPENDIX F L :‘_
SUBMIT FILE FOR EMULATION WITH CODE IN ROM :
|
- .
| ¢ (|
] «
-
- .
-
s T
. 4
_ e
jii'fi
L". . q
f oo
[el
- F-1 -~
h‘.v‘ \,‘\
[,9 . .
&'—-.h/- e . ._-"_-..' S : S L P VR, SR U T T e W -, : J.A; AT PRI L. - 1:. N x-

N e

i

il S Saadiinn.d
A

frvrﬂ- rey

‘mf' -
i . i
et ..

TRy

T

B YTy

R g A L Lm0 SEEi.Gh G el SIS 4
. . N
»

A A MR AN S
. - N

1CUH0

Bt e
“For0 GDH
ST 03 OCH
¥o10 orH

XE MEM
A MEM
YIE MEM
XE o MEM
NI OMEDY

STOPMEDN
MitOMEM
EOMER
X MEM
»EOMEM
NEOMEt
Lt

»

¢}
!

Y
6-

U
L
U

T8O
SOAMITIL Ty
S CWMS. OM

AD~A151 622 CHW MEASUREMENT SVSTE
BANUAL (U> EG AND G HRSHINGTON RNRLVTICRL SERVICES

ENTER INC ALBUQUERQU. . R NELS a2

CE
UNCLASSIFIED EG/G-AG-1435 DNA-6232F DNABB1- 88 C 02

END END
Fuueo Fuvro
oric ome

AR R ~
LRI

DY
PRI

o
i

i
: s =
Mizs flis e

IFEEER R

EEFEE
==
i

E

IIIII

MICROCOPY RESOLUTION TEST CHART
: NATIONAL BUREAU Of STANDARDS-1963-A
o~
s

=
-
[a
i
Pd
€3]
[
O
Q
o]
£~
Pt
& =
3]
o] X
— O
g 3
=l ~
A]
(o1 e
< —
[
2
O
[
€3}
—
—
<
=~
—
=
[aa)
b}
[72]

o - - N) -s--
..‘u,, .-..
\Q-. I“‘
)}

. F...

~ LT
e T
.’.- -'_-<
~ SR

-~ A
- o

* -
.. ::..

LINK & -7 S

. P11 RESET. OBY, % "o

- CFLRPARTIO, OBY, %

\ CFLDTIMEQ. QAL & .

.t LD INTIO OBY, % _
¢

<
.

“Fl:ZT100 OBJ, -
o CF1.WHODAT. UBY, & :
S CF1DZNGC. UlsJ, & o
< JF1: CKDYML. OB, &

~ (FL:PINIT. QBJ, %

:F1: SWPOLE. UBJ, & ¢

F1:CONF1G. OB, % ‘
O 173 GENFRQ. OIS .
= :F-1: DECDAT. OB, & .

CFL:DELPT.OBJ, %
CF1:STEP. OBJ. &
g :F1:SDFRQ. OBY, %
® :F1:DEL ID. OBJ, % -
o CF L. CWIEST. UBY, & el
L. :F1: CWPLOT OBJ, X o
- “F1:CKMIDS. OB\, & S
"F1:LODPLT. OBJ, & :
(F1:SYSTEP. OBJ, %
CF L DUMPOIS. OB, %
CFL: DVCNVT. OB, & T
:F1: XPUSN. OBJ, & e
- : :F1:SDDEC. OBJ, & BN
. SIFLDVLINT. OB, & T
= :F1:START. OLJ, % e
- “FL1:ZTINT. OBJ, & -
- :F1:PARIOS. OBJY, % .
) F1:ERMSG. OBJ, & B
oS :F1:2T10.0BY, % Y
S CFL:PLOTO. ~3J, & .
:F1:LABAXS. OBJ, % e
) :F1:YLBL. OBJ, % L
-~ :FL1: NOMEN. OBJ, % s
- :F1:STAND. OBJY, & _—
e _F1:STNANT. DBJ, % T
(F1:REFLVY. OB, & ":\:‘\
. :F1:ROTATE. OBY, & e
- “F1:INCK. OBJ, % e
s (FJ:MVCTR. OBJ, & o

- ' F1:STRTEN. OBJ, &

° CFL:XINITS. OBJ, & —
4 'F1:XLABEL. OBJ, & I
. .F1:SAMPLE. OBY, % CARN
. (F1:77T80. OBJ, % e
- F1: GENAPD OBU. & SO
. F1:DATAL. _.tu, & e
. :F1: DECADE. OBv, °* e
¢ . F1: LOGSCL.. OBJ, & o

o G-2 S

an . ’ - o R T T I Ty YV, vy AEREE S

:F1:PLOTS. OBY, &
N .F1:NXDCC. OBY, %
. .F1:YLNS. OBJ. %
: _F1:RSTR. OBJ, %
- 3 FPACK OBJ, %
' 3 OUNPACK v
SSUDL Gua e
BCDR M. Gl
BNASC Qlas,
THMAIH DI, s
CFDUMP R,
FURAP OVu, & S
CMOveE. UBJ, & s
:DELAYL. OB, &
:FLOAD. OBJ, & R
'RESTUR. OB.), &
:DELAY 0BJ, &
{FRET. OB, &
! SRET. UBJ, =
:F1:RAMBO. DBY, &
q :FJ:CWAIT. OBJ, &
(F): ZTHMSK. UBJ,
(F1:PAT. OBY, &
'F1:STOP. UBJ, & -
PUBLICS(: Fi: 2180. ROM), & D
- PURL.ICS(: F1: SDAMIL. ROM), % . e
. (R 1 TIMER. ORJ, & :
:Fi SDINIT. OBJ,
- (F1: SDAMPL. OB,
- ' F1: DBMDBW. DR,
o F1: SDXMTR. QB.J,
- F1:.mMODSLT. Oy,
~ CF1:CYCTIM. ORJ,
:F1:CNVINT. OBJ,
:F1:PNLBLK. OB,
F1l: STABLK DB\’:
. F1: MSRBLK. OB.J, .
:¥1:RFFR@. OBJ, & Y
:F1: DELBLK. OB,
:F1: DVMASC. QBJ,
! 1: CYCCHK. OB\,
"F1:HLDTST. GBJ,
i CYCINV. OBJ,
CFLIB D Aa2C. OB,
11 wSCBIN. OB.J,
:F1: BCDASC. 0BJ,
. ¥1: BCDBNY. ORJ,
® F1. 3ZT.Th 0B,
4 FLU RAM' L& sy, 0 2o
x :FO:PLMEO '.10 & -
' TO & R

e Be>Uinetinsin | et B £ HRn SNt B0 SR 1 e A FOSY
. e e e e e e e e e e

-

<

iy i L

rrCerr

e

"

Z

!
2

B

[od

CF 1 CWMS. LNK ﬁi,

' LOCATE & e
e (F1:CWMS. LNK & .
- TO & v

{0

APPENDIX H

SUBMIT FILE FOR EMULATION WITH CODE IN RAM

,“,. AR , - .',"

S-

APPENDIX I

VALIDATION OF THE FORWARD AND INVERSE

FOURIER TRANSFORMS USED BY THE CW MEASUREMENT SYSTEM

The purpose of this collection of plots is to demonstrate
the correctness of the forward and inverse Fourier transforms
used in this software package. Figure I-1 shows a time plot of

the equation

-2E6t _ _-4E6t

£ (t) = 1.0E5 (e)

and the frequency curve generated when this function is
processed by the off line forward Fourier transform module.
Integrated directly by hand £(t) has a Fourier transform

F(w) with a magnitude equal to:

SE10 (1/(4E24 + SEl12* T 2w? +ﬂ'4 w 4))/’ .

and a phase equal to:
2 2 2)
arctan ((-3E6*w *w)/(2E12 - T *w)).

F{w) is plotted in Figure 1I-2, Figure 1I-3 shows the hand
integrated and the machine calculated transforms plotted on the
same graph. They match so completely the two lines appear as
one, demonstrating that the off line forward transform produces
the correct results,

Figure I-4 shows the original curve f(t) and the results of
processing f£(t) through the forward and then the inverse off
line transforms plotted on the same graph. Again the lines

overlay almost exactly, verifying the inverse off line

I-1

R

ﬁ% transform. Figure I-5 shows the same test performed on a damped E;
sine wave,
& figure I-6 is a typical temps wave form. Figure I--7 is the -
- ca.e data after srocessing by the off line forward and inverse

transforms. Figure 1I~8 is an overlay plot of the original and .

J transformed threatwave. .

Figure I-9 shows frequency data collected from an on 1line -

[N |
[AR
()

o test wusing a 15 mega hertz filter and the resulting time plot

4

when a pure Butterworth threat was applied to the data and then
the on 1line inverse Fourier transform performed. For Figure
I-10 the stored frequency data from this test was multiplied by
Y the Butterworth filter and then processed by the off line
inverse transform. Figure I-11 shows the results of the on line
and off line inverse transforms plotted on the same graph.
Again the two curves are identical, démonstrating that the on
line and off line inverse transforms produce the same results,
The plots in this package show that the off 1line forward
i) Fourier transform 1is accurate, that transforming a function
forward and then back reproduces the original function, and that
the on line and off line functions produce the same results,

This verifies the correctness of all three routines.

- .- . .
hme - e .. LR
o« . - PR

. PR . . e o . Dt
LA SR AP LA APT. » SEEC WY,

f N 101 22:5820-JUN~02 MINIMUM FREQUENCY) .00008E+EY SIGNAL PROBE ID
- TEST SEQUENCE ¢ 1234 MINIMUM MAGNITUDE -0.56172E+81 SIG SAIN ADDEDCDS) -1
- TEST LOCATION MINIMUM PHASE =1.74813€+@2 SIG DELAY ADDED(NS) -1
P - TEST POINT MAXIMUM FREQUENCY 9.82179E+88 REF PROSE ID
N - TESY TYPE TEST MAXIMUM MAGNITUDE «3,.18801E+81 REF GAIN ADDEDCOS) -t
R TEST OESCRIPTION TEST WAVE MAXIMUM PHASE ~2.34317E-81 REF DELAY ADDED(NS) -t
TEST ENGINEER CPEZRATOR PARSEVAL TIME VALUE 4.1S482€+82 INPUT WAVEFORNM ID
) TEST OL.EMENT PARSEVAL FREQ VALUE 4.10811E+02 INPUT WAVEFORN SCALE 0.00000C-01
NET ANAL DISP REF -1 PARSEVAL RATID -t .S0000C~83 MA.TL/SINGLE
LO8 IO TIMNE DOMAIN DELTA-T TAPE FILE ID
PLOT FORMAT oELAY T.F. CAL FILE D R.F. CAL FILE XD PRIN
INUT FILE OEXPt79.TCA INPUT FILE 02 FUNCTION CODE/DATE FYR2S-~JUN-82 S
TEST COMMENTS TRANSFORM OF DOUBLD EXPONENT. i
FILES MOTTED DEXP!79.7CA DEXP178.TCA :
r_J 180 188 108
‘” h— = > e p - 4 L) S N 0 S A v LI0S0 B LI 4 R v L LEBRLS
"]
-
-s8 o E
- o4
-00 - o st
> L
; -70 L J
37" | 4 :
5 -a8 I . -
ioe | .
- - 1 AV
L 4 <
™ L 4
- <
LIRY | I A I e A bl ondddedh A L Aeedebenkecked L. Lk,
9.0 8.01 8.t 1.9 0.8)
FREQUENCY=12 o
. 108 . 108 108 188
‘ ¥ L] L] LU I S A) L) Al 1 LA B B AN § L) Ll L) LN B e A L] Ll L) T o
o -4
20 - o a,
- 4 8
" RS
o . :
L)
$ *\K
Y o .
3
[L d
- E
-100 N S T T W W W 1 ok bbbk A P T W N W § A Ao
2.5E+84 -
i v MAX" 2, 400883E+04 SR
MIN 4.031408C+00 cre
W ©.100008€-01 | e
1.SEe04 - 8.888880C-81 e
.
$.0C-03 1 ~—
[.
&
5 5.0cee| 4 el
-1 .ltour B et
e h L.
-2 .50e04 e dom 4 S A b - 4 " _‘.‘-
8.0 [8 {] 1.8 t.58 z2.08 2.3 9.80 3.58 3.00 4.40 4.0 R
° . TINE-HICRGIECONDS T
Figure I-1 , .

L) ‘:-..
17:59:381 UN-82 MINIMUN FREQUENCY 1.38898E+@3 SIGNAL PROBE ID
TEST SEQL E ¢ MINIMUM MAGNITUDE -0.58172E+@1 SIG GAIN ADDEDCDE)
. TEST LOCA N MINIMUN PHASE ~1.7443SE+@2 SIG DELAY ADDEDCNS)
R TEST POIN MAXIMUM FREQUENCY 9.82179E+@8 REF PROBE ID !
e TEST TYPE MAXIMUM MAGNITUDE -3.208413E+@t REF GAIN ADDEDCDE)
< TEST DESC TION MAXIMUN PHASE -2.60980E-01 REF DELAY ADDED(NS)
- TEST ENGI R PARSEVAL TIME VALUE 1|.37835C+80 INPUT WAVEFORM ID
‘ TEST ELEM PARSEVAL FREQ VALUE 1.40288E+88 INPUT WAVEFORM SCALE
L& NET ANAL P REF PARSEVAL RATID §.00000E-33 MULTI/SINGLE -
: L0G ID DOMAIN DELTA=T TAPE FILE
PLOT FORM T.F. CAL FILE R.F. CAL FILE ID
PHASE UNW. * DELAY
INPUT FIL 1 INPUT FILE #2 FUNCTION COOE/DATE 10-MAR-81
TE $ MAND CALCULATED TRANSFORM
- FILES PLO & .
. 188 198 199 188 o
.", ~32 T Y T T vv..I ——_— T T T -T ™7 T
T -42 J A
_.-.- ~52 - :‘- .:
-2 4
‘ a L -
? 72 s ;
Y] e
3 - A
g e « '
1} N N
<
£ .g2 i .
4
-192 . M
-|[2 -) R S T " . L demd bl L A - R) — el daad kA _\-"
! 'Ry et 1.8 18.8 -
FREQUENCY-MNZ B
. 189 108 100 198 e
! R) L] L SIS ¥ ¥ T rrrTy L T T LI T Al T rvy
4 L
o8 Sl

PHASE-DEGREES
!
1
,

d
-39 r
S <
.‘" -189 A S O AN N L C S U N U 1 o b i L At A PR T
o Figure I-2 Soo

P R
1

A

(SeliEt adr e

191221 5028-JUN-82 MINIMUM FREQUENCY | .30008E+@3 SIGNAL PROBE ID
TEST SEGUENCE ¢ 1234 MINIMUM MAGNITUOE -8.561 72«8t SIG GAIN ADDEDCD®) -1
TEST LOCATION MINIMUM PHASE =1 .74013€+@2 3SIG DELAY ADDEDCNS) -1
TEST POINT MAXIMUM FREQUENCY 9.02179€+38 REF PROBE ID
TEST TYPE TEST MAXIMUM MAGNITUDE =3.18001E+@1 REF GAIN ADDED(DS) -1
TEST DESCRIPTION TEST WAVE MAXIMUM PHASE «2.94317E-@1 REF DELAY ADDEDCNS) -y
TEST ENGINEER QPERATOR PARSEVAL TIME VALUE 4.154@2E+@2 INPUT WAVEFORM ID
TEST ELEMENT PARSEVAL FREQ VALUE 4.16811E+@82 INPUY UAVEFORK SCALE @.08888E-01
NET ANAL DISP REF -1 PARSEVAL RATIO =i .00000E-3 TI/SINGLE
LOG ID TIME DOMAIN OELTA-T TAPE FILE ID
PLOY FORMAT T.F. CAL FILE ID R.F. CAL FILE ID
PHASE UNWRAP DELAY
INPUT FILE o! DEXP!78.TCA INPUT FILE 02 FUNCTION CODE/DATE FTR28~JUN-82
TEST COMMENTS TRANSFORM OF DOUBLD EXPONENTIM.
FILES PLOTYED DEXPt 79 .FCA HANDC268 . FCA
198 108 188 tee
-3' . o 1 1 21 1 T 1 b g 1 i 4 | GO L 4 T T ¥ T LER IR S T AJ T T 7 T T
p- J
-49 - -
f— -
-52 ﬂ
[]
a 4
a
S ~78 -
S r
3 r .
" ~89 : <
z
2]
<
£ g8 j
-188 E J
-". - R N | i N IS 1 ’ L N) 3 1 1 4
2.901 a.a .1 1.8 19.9
FREQUENCY-MNZ
188 188 188 188 120
Ll Ll L) T v 7717 ny L4 Ll LA R SLER) T T ¥V 7T 7TT7TTY v ¥ 17T T FTFr
{ -y
90 k -
I
-
’ r
z 3 ‘ —
w r g
73
: !
i _gg {, B
-(.. L A i L W) - A Ao h L LAl . 'l A L L4l . L 'l n

Figure I-3

PR AR R R e R

Bl ot At A~ & ar . N

—— g

Suber &

1 L) N ' -. ... m
SANOI3SONOIH-IHTL p-I 8anbra
€8¢ ey'y 68°¢ 2s°€ ee'¢ es‘2 00°'2 s’ 1 19" 1 _i1s'e 18°0
T T T T T T T T T yo+39°2-
r -
i 1vo+39° 1~
i 1eoa+30° 9~
0
T m P
(7]
i €0+30°9
-
- .
~ 19-3000000°@ Md- y2+39° |
10-3600001°9 Md+ |
" 20+3288960°S NIW
¥y9+3S¥Q66F° 2 XVH \ . \ . . N \ I
]
:
B
)
L] J
....... i u
PEADE By SN .

SANOIISOUITH-IHIL G-I @anbra
vy 66’¢ es’e ea’c es’z @92 es'| 19°1 Is'e TN
L |] 1 i ¥ . | 1 NQ**..I

120+30° ¥~

luull\!\)/\\//\ N

SLINN
I-7

L

20+30°y

T
1

19-3000000°2 Md- ze+30°0
18-3000009°2 Md+
20+4300819L ¥~ NIW
20+30v4€88°L | XVH A L A . . , .

€0+32°)

- . oo . . . R T U e e e e e ,. .
. . Y L N soe et e , . . A . . . R BT PR e T r . .,.. . o
%) —Jrh»ﬂ..‘ (oY) - ey - Lo N s L - 3 s L. f) R A, . e o .,....-.1-..-.». . . o

N 4 y 0 T 5 1 ¥ i Mk i it

: : OO] Pt A « . s e . A 4 ¢] Lt e e e Tate de S

el TR s A M L v, ; o . S AP M WM ﬁ...;.... o b AR PR P B
IS . X et B REAAES . oo

Saelr e, PP PP O ot ds fr e b

SOANOIISOUIIN-INIL 9~1I a2ianbryg
' 68’y | B és’'¢c os°'¢C eo°'s 0g°'2 092 st 1ot is'e ie'e

T 7 T T Y T "t ¥ L g 10430 ¥~

; 10+30°¢

=T
S$i1INN

- e+30'8
.. i 8
‘ 19-3108L00°8 Md- JeeezRy
§ | 20-3818280°¢ Md+
“ 10+30¥182¢° 1~ NIW)}
20+30999€1°1 - ,XVH
., m i A '] (1 L A i 'l A “.’8. -
; . vaL' 90 10¥IZA 43110 €314
“ SINIWHOD 1631
28-NNr-91030 31VA/3G02 NOTLINNJ 26 3ITI4 INGNT VOL' 9910¥3ZA 18 374 LNGNT
AV130 JVINNN ISV
, ar 31rd4 Wo ‘4'¥ ar T4 VI "J°L AVIRIOJ 107d
g ar 37I4 3dvl }= 1-V113d0 NIVHOG 3JWIL ar 607
- FIONIS/TL WM OILVY IVAISHVd 434 dSIQ YNV L3N
10-300000°'@ 31¥JOS WNOJ43IAVM LNINT 3NTIVA 0344 TVAISUVd ANIMITI 183l »
AT WHOJIAVM LNGNI INTVA IHIL IVAISHV ¥OLV¥3IJO YIAINIOND 1631 o
« CSNYQ34aV AY13a J3d AAVM 1S3L NOILdINOS3a 1831 R
, ‘ €80>d30aV NIVO 438 20+333S61° 1 JANLITAHY RNARIXVH adAL AS3L R
. QI 3608d 43N 90-3€20668° ¥ JWIL WNWIXVH ANTOd 1831 A
. - CSNYQ3AQY AV13IQ OIS NOXLVI01 1831 R
- €80>0300Y NIVO OIS 10+3p1S2y° 1~ 3IONLIIIHY WNNINIW leo0 ¢ 3ONIN03IS 1831 .

OI 3680Md VNOIS 10-300800 0 IWIL WOWINIW Ze-NN"-1@ L2:61 100 0

.
.........

'
N AT B4 PRI IR B¢ S Y ST ¥
« v
.....
.......

o .
R e T T

...............
...................

RPN I T LR AR

00+3LL06¥1°2 Md-
10-3600009° | Md+
10+3961€2€° 1~ NIM
Ze+3cegriicl XYW \

"SONCIISOYIIR-INIL L-1I °2anbtg
68'd -] 2 -1 B 5 es°e 0e'¢c es'e ee°2 es’ | (1} iIs‘e 18’0
L T V T T T =1 190+30° ¢~
u “
10-30°0
B 18+30° ¢

S$1INN

[1e+30°8

Jjece+3zc |

1-9

C8-NNMr—$2ZYLL ILVA/3A0T NOILINNS
aI 37Id4 vy "d4°d
QI 3114 3dV.
JTONIS/ILTNH
10-300008°0 3TVIS HWYOJIAVM LNdNI
AI WY043AVA LNINI

CSNYQ3adY AVIAd 43

€€d>03agY NIVO 43

ar 3680d¥d J43¥

|- (SNYQ3aav AV13d OIS

- €80203dAaY NIVO OIS

gI 380¥d TYNSIS

BERENE - 1Y

80-300000° |
10-300010° |
€0-382L8I1 ¥
€0-3.02+0°2

co+3e0k 1" |
08-3.6080 ¥

18+3b1ECE" | -
18--300000° 0

VOL SLIVHLZA
LVINHL J3HYNO4SNVNL

<® 3TT4 LNdNI VI4°¥LI0N3IZA

gl 37Id I °"4°L
1-¥1134 NIVHOJ 3JWIL
OXILivVY TYA3SYVYd
3NTIVA O34 TYAISHVd
3NTVA 3WIL TYA3ISHVd

3ANLITIHY HNHIXVH
JHIL WNHIXVH

3JONLITIHY WNKRININW leeo
JHIL WNKRINIW

HOLVYI4O
3AVYM 1531

ce+30° |

d3LLOW €31T4
SINMOI 1831

i1 37IJ4 LNdNI
AVT3Q JVHMNN 3EVHI
LVIRIOd 10Vd

ar 601

438 J4SIQ TYNY 13N

NOILJAINIS3O 4831
3dAL 1831
INIOd 1831
NOILYIOT 1631
4 30N3ND3S 1831
Z8-NNr-1001:62:08

SANCIISOUIIN-IHIL 8-I @anbtg
86 ¥ b’y 6ée’'¢ es°¢ 00°'¢ 0s°e 00°2 s 1o’ 11-M ([M
| T T T Y T T T T 10+30° 9~

Plare et e e dag et Sk ok Bt S St
o
.

- le-3108.08°8 nd- ce+32°)
| 2e-3e18208°# Md+ : o
10+36¢ 1SV 1~ NIW N
20+303939€) ‘| XVH a
] | A [l L A 1 1 (] 20430° |
g V3L SLIVILZM VAL 991033ZN Q32110 €371
”) SINIO0D 1831
. 28-NNr-91d3d 31VA/3009 NOTLONNJ 20 31T4 LNANT VIOL° 9OI0NIZA i6 L4 LNANI
AVI3a JVHMNN 2CVHd
ar 3714 o “4°¥ g AL VI "4°) AVINOJ 107
dI 371T4 3dvi I- 1~V173d NIVWOQ 3HIL dar 601
FIONTS/ILINH OTLiVY IYAISHVd 434 JSIA YNV L3N
19-300000°8 3I1VIS HUOJIAVA LNdNI 3NTIVA 0344 TVAISHVY ANGH3T3 1838
AT WYOJ3AVM LNJNT SNTVA IHIL IVAICUVL YOLVIILO ¥IINTOND 1631
C¢SNYQ3aavy AVT13Aa 434 3AVA 1831 NOILJT¥O830 1831
€80>330AY NIVO 433 Z@+3S996!° | SONLTIHY HOHIXVH 3dAL 1831
QI 36808d 43¥ ©0-362000° ¥ IHIL HOHIXVH ANTOd 1831
- CSNYA3day¥y AViad oIS NOILVI01 1631
- €8d)a30av NIVe €IS 10+3yisey i~ JONLITIHY HORININ 1000 4 30N3ND38 1831
dI 360¥d TYNOIS |0-300000°0 3WIL WONINIW 28-NN"-1@ L2100
RN AT« ST LU . C Lo SRR — A u......... ,;,..._..‘....................... m,....:..u. T 1. .,... \
SRR RN A RN ERRR. DR U SRR SO BN PRI AKA _

MINIMUM FREQUENCY
MINIMUM MAGNITUDE

1 . OB000E 04
~1.570080€+0!

SISNAL PROBE ID

TSTPR

TESY t1ry SIS GAIN ADDEDDB) -48
TEST LOCATION ALAMO HINIMUM PHASE ~1.75000C+02 SI0 DELAY ADOEDCNS) @
JEST POINT E6Q CP TEST MAXIMUM FREGUENCY 8.,77280€E+@7 REF PRCBE ID TEST2
TEST TYPE TEST MAGNITUDE . 43680C+01 REF GAIN ADDEDCDB) ~18
TEST DESCRIPTION SMARTTEST MAXIMUM PHASE 1,76200E<02 REF DELAY ADDEDINS) @
TEST ENGINEER DAYEY CROCKE PARSEVAL TIME VALUE INPUT WAVEFORM ID SUTTERWTH
TESY PATIENCE PARSEVAL FREQ VALUE INPUT UAVEFORM SCALE 1.
NET ANAL OISP REF ~48 ARSEVAL RATIG WATL,. SLE
Loe ID STARDATE (.t T DELTA~T TAPE FILE 1D 19871111160
PLOT FORMAT - TPA T.F. CAL FILE ID ele8 R.F. CaAL FILE ID s188
PHASE UNURAP DELAY
INPUT FILE ot INPUT FILE 2 FUNCTION CODE/DATE ONL18~JUN~82
TEST
FILES PLOTTED Tit11169,CMA T1111169.TCA
188 100 198 100
20 - S St o 2 2 T r T St S S 00 S0 8 T
i «
!
18 r -4
r | 1
] - ! -
e -
- L
. i]
5-te L ‘
S o e
-
o ~24 L 4
3 L -
2 -34 -4
!]
-d4 -
54 F A I B e A Ameredemebnal el b, L Senedrarmidred b, -) N N
2.Mm a.1 1.0 19.8 189.0
FRECUENCY~4Z
P 108 180 198 100
! l’ ey T 1T T 7r1rY1r rorrrey LIS S Bt
’. d
se . . 4
| |
g [|]
e L
2 l
P
Eoe |
- -
[
[4
-1 08 b [W W S I X P B W N W N y NN T N B I S W W W N
€.0E+00 v - —
T v v A M MAX' 3.503042f+09
MIN =2.112024E+08
L] 3.8872) 4682
4.02+00 PV 2.280106E-92 4
L
2.9€+80 o
2
1 C
; 4. 0€+81 , m pa— T T —
S
r \/’\/\/W]
~2.00.00 L .
o -
g, OL+00 A A A n b, 4 i i A
.89 .18 8.20 0.% 8.48 8.5 2.5 8.78 8.80 9.0 1.00
Figure I-9

- PR i i
10: 1017 1O=JUN-02 FREQUENCY | .00000C+84 SIBNAL PROBE ID TSTPR
TEST SEGUENCE ¢ 114t MINIMUM MASNITLOE -2.15700E+82 SIB SAIN ADDEDCDR) ~48
TEST LOCATION ALAMOD -1, 77520€: SI0 DELAY ADDEDCNS) o©
TEST POINT £80 CP TEST NAXIMUM FREQUENCY 9.77208€+87 REF PROSE 1D TEST2
TEST TYPE TEST MAXINUM MAGNITUDE 2.42110E+81 REF GAIN ADDEDCDN) -~10
TEST DESCRIPTIOM SMARTTEST MAXIMUM PHASE .7O820E+82 - REF DELAY ADDEDCNS) 8
TEST ENGINZER DAVEY CROCKE PARSEVAL TIME VALUE DPUT YAVEPFORN ID
TEST ELEMENT PATIENCE PARSEVAL FRED VALUE INPUT UAVEFORM SCALE 1.
NET ANAL DISP REF -40 PARSEVAL RATID MATI/SINGLE SINGLE
Lo® Id STARDATE 1.1 TINE DOMAIN DELTA-T TAPE FILE ID MeaTI111100
PLOT FORMAT TPA T.F. CAL FILE DD ates R.P. CAL FILE 2D 2100
PHASE UDNAMRAP DELAY
DeUT FILE &1 Tit111@09.CMA INPUT PILEZ 02 BUTERIS7.FDA FUNCTION CODE/DATE MUL24-AN-82
TEST COMMENTS TEST DATE »
FILES MLOTTED TIISTI178.PCA THIOTITS.TCA

100 108 100
2¢ v rrrry Ty ~-r P
- r
r
-38 " A
-
-9 3

HAGNITUDE-DB
]
| S pEN m Sun S {

-1852
-1 L
L
-211 T B W I N I N Y I I YRS
.0 o.1 1.8 1.8 190.8
FREGUENCY=)02 .
100 109 199 - 199 108
Y ™ ey T Ty rrrry NN AN Sumn Eam B an LA Y T
L
L L E
- -
o \
i N
s 3)
fe |]
[\]
T A Adodad L0 g . ek b Ad T e I A Ao a s By
o-geee ’ T ' v v T T WX 3.580780+68
L MIN -2.112212C+08 _*
- 3.200412€-82
4.‘0.r. - 2.2044158-02
L 4
2.0E+08 L g
[d
- L -
O PV Y\ W
L
-2.00+00 4
r -
=d, Q00 N A A A A A A ol A
.00 8.10 .28 0.3 8.4 .50 o.00 .79 0.9 6.0 t.00
Figure I-10 THR-NICROCOOS
I-12

'
Seow

s N

»
LS
»
'
v
«
»
’
.
3

] ‘.' p +

-
LI
s,
o~
A%
b

O AN
; .
[} [

....

ORI

v] oy .
\ i AR - el)
AR v, P L

SANOOISOYIIN-IHIL

. W
.......
........

11-1I =anbrg

. "
..........

........
e 0

M TR T TN N

091 06°@ 099 eL’e o0°0 es°'e or'e] ec’o el'e 000
=3 T T - ¥ T =Y ¥ 80+39 v~
= -
- 1ee+«30°2-
ﬁ l\/\l>>> L
—— = 3’ ‘ ‘ 189+30° ¢ m
™ . 0+39° &
. 4
(a0
- - . ~
29-3901002°2 Md- 89+30°y |
| 2e-3ri2LSe’S Mde]
Q0+39¥20211 "2~ NIM
99+32 g€ YW
32y9€e0 X J i 2 A 1 ' i 00430 9
L JRE-TRANE- TR N voL'egittiiill Q3L007d €314
1831 SLNIWN0D 1S3L
Z8-NNr-8 | INO 31¥Q/3Q00 NOLLINNS 28 I1XI4 LNdNI (¢ 3VT4 LNANT
- AVI3a JdYMMNN FCYHd
eoio ar 3X4d WI *4°Y - oole ar 374 V3 "4°L A 738 LVHiNO4 10
egliiiiientle Qr 3714 advl * "~ L-¥YL73Q NIVHOG 3RIL §1°) 3LVQuv.S ar o011
JTIONIS ITONIS/ILNH 20-~300000° | OILVY TVAISHVd oy- 338 46TI0 TYNY L3N
) JIVIS HUOA3AVA INANI 60+399991°9 3NTIVA 034 TVAISHVYd IFON3TILIVD LANEM3T3 183l
HLINN3LLNG aI HYO43AVM LNAINI 60+302966°S INTYA HIL TVAICHYd INIO0NI AIAVE YIAINIONI 163A)
@ (C(SNYQ3AQY AVYI3Q 43 L6311 LAVHS NOILAINIS3I0 1SAL
o)~ CAAYA3AQAY NIVO 43 60+3v9€089°€C AMNLI VY HNINIXVYH 483l adAl 1831
21830 ar 380¥8d 438 00-~300008° | IMIL HNHIXYH 1831 47 €63 LNIOd 1831
@ <(SNYA3AaaY AY13aAQ oIs OoHvYiY NOILYI0T 163)
[| g €90a304av NIVE o0Is 60+3202i1°2- JANLINEHY HNNININW tiet 4 VNINDIS 1S3l
ddisl gdI 390¥d TYNSIS 10-300000°6@ AWTL HAKININW 28-Nr-81 Li'Gl8l
R S B _ (@ o o8 @ e g

DISTRIBUTION LIST

DEPARTMENT Of DEFENSE

Defense Nuclear Agency

TIN: NATA
ATTN: RAEE
ATTN: RAAE

4 cys ATTN: STTI/CA

Defense Tech [nfo Center
12 cys ATTN: DD

Field Command, Jefense Nuclear Agency
AT™N: FCTT, W. Summa
ATTN: FCTXE
ATTN: FCPR

National Communications System
ATTN: NCS-TS

Harry Diamond Laboratories
ATTN: Chief 21500
ATTN: DRDEL-CT
ATTN: 00100 Commander/Tech Oir/0iv Dir
ATTN: DELHD-NW, J. Bombardt, 20000
ATIN: Chief Div 10000
ATTN: Chief Oiv 40000
ATTN: Chief Div 50000
ATTN: DELHO-TA-L
ATTN: Chief Div 20000
ATIN: Chief Div 30000
2 cys ATTN: Chief 21000
2 cys ATTN: Chief 22000
3 cys ATIN: Chief 20240

DEPARTMENT OF THE ARMY

US Army Nuclear & Chemical Agency
ATTN: Library

OEPARTMENT OF THE NAVY

Naval Ocean Systems Center
ATTN: Code 4471

Naval Shore Elect & Engrg Actvy, Pacific
: ide

Naval Surface Weapons Center
ATTN: Code F32
ATTN: Code F30

DEPARTMENT OF THE AIR FORCE

Air Force Weapons Laboratory
ATTN:

DEPARTMENT OFf OEFENSE CONTRACTORS

American Telephone & Telegraph Co
TTN: W. Edwards

80OM Corp
ATTN: W. Sweeney
ATTN: L. Jacobs

Boeing Co
ATTN: R. Scheppe, MS 9F-01

TRW, Inc
ATTN: R. Hendrickson

Dist-1

CEPARTMENT OF DEFENSE COi:TRACTORS (Continued)

Booz-Allen & Hamilton, Inc
ATIN: 0. Ourgin

EG&G Wash Analytical Svcs Ctr, Inc
ATTN: .

A. Bonham
2 cys ATTN: J. Bridges
2 cys ATTN: J. Burns, IV
2 cys ATTN: G. Gaglfano
2 cys ATTN: R. Reinman
2 cys ATTN: R. Nelson
2 cys ATIN: P. Lindsey

Georgia Institute of Technology
ATTN: Res & Sec Coord for H. Denny

GTE Communications Products Corp
ATTN: R. Steinhoff

Horizons Technology, [nc
ATTN: R. Lewis

IRT Corp
ATTN: R. Stewart
ATTN: B. Williams

JAYCOR
ATTN: R. Poll
ATIN: R. Schaefer

Kaman Tempo
ATTN: DASIAC

Kaman Tempo
ATTN: DASIAC

Mission Research Corp
: W. Ware
ATTN: J. Lubell

Pacific-Sierra Research Corp
ATTN: H. Brode, Chairman SAGE

R&D Assoclates
ATTN: P. Haas
ATTN: W. Karzas
ATIN: W. Graham

R8D Associates
ATIN: Library

Rockwell International Corp
ATTN: G. Morgan

Science & Engrg Associates, Inc
TIN: V. Jones

SRI International
ATTN: A. Whitson
ATTN: E. vance

Systems Research & Applications Corp
TTN: S. Greenstein

TRW Electronics & Defense Sector
TTN: J. Brossier

TRM Electronics & Defense Sector
ATIN: Librarian

