
RD-A15l 550 THE DESIGN AND ANALYSIS OF A COMPLETE HIERARCHICAL i/l
INTERFACE FOR THE MULTI-BRCKEND DATABASE SYSTEIICU)

NAVAL POSTGRADUATE SCHOOL MONTEREY CA D J MEISHAR

UNCLASSIFIED JUN 84 F/G 9/2 NEIIIIIIIIIIuI
IIIIIIIIIIIIII.lfll~f
IIIIIIIIIIIIIIffllfllf
IIIIIIIIIIIIII
IIIIIIIIIIIIIIh
IIIIIIIIIIIIII~

11.5 12.0 W~I 25

-. ,2
2.2

* 4. 13 2
- - mm M IH-A

Ura..• -

11111" 2--5 11111'=-.4 1il1l 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

I

J

0
In

n

*NAVAL POSTGRADUATE SCHOOL
I Monterey, California

THESIS
THE DESIGN AND ANALYSIS OF A COMPLETE

HIERARCHICAL INTERFACE FOR THE
MULTI-BACKEND DATABASE SYSTEM

by EC

LL.I Doyle Joseph Weishar
-June 1984

Thesis Advisor: David K. Hsiao

Approved for public release; distribution unlimited

85 o0 1 54

SECURITY CLASSIFICATION 'F T-41S PAGE (flen D8a 4ntered)

REPORT DOCUMENTATION PAGE lREAD INSTRUCTIONS
BEFORE COMPLETING FORM

1REPORT NUMBER 2 GOVT ACCESSION NO. 15EDCENT'SCATALOGN4UMUER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Master's ThesisThe Design and Analysis of a Complete June 1984
Hierarchical Interface for the Multi-
Backend Database System 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(,) S. CONTRACT OR GRANT NUMIER(a)

Doyle Joseph Weishar

9. PERFORMING ORGANIZATION NAME AND ADDRESS tO. PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School June 1984
Monterey, California 93943 13. NUMBER OF PAGES

90
I4. MONITORING AGENCY NAME & ADDRESS(if dliferent from Confroilini Office) IS. SECURITY CLASS. (of thl report)

UNCLASSIFIED
15a. DECLASSIFICATION OOWNGRACING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Ac(: ision For

Approved for public release; distribution unlimited NTIS GRA&I
DTIC TAkB toUnLanounoed 5
Justification

17. DISTRIBUTION STATEMENT 'of the abstract entered in Block 20, If different from Report)

By

Distribution/

Availability Cde3l.. ..IA. I arl , or
IS. SUPPLEMENTARY NOTES I

st Special

'9 KEY WORDS (Continue on reverse side It neceesary and Identify by block number)

database management, multi-backend database system (MDBS)

20. ABSTRACT (Continue on reverse aide If necessary and identify by block number)

Typically, the design and implementation of a conventional
database system begins with the choice of a data model, the
specification of a model-based data language, and the design
and implementation of a database system which controls and
executes the transactions written in the data language. For
example, we have the hierarchical model, the DL/I language and
the IMS System. By using an unconventional approach (Cont)

FORM

DO I J AN , 1473 EDITION OF I NOV65 IS OBSOLETE
SN 0102- LF- 014- 8801

N SECURITY CLASSIFICATION OF THIS PAGE (When Des Rnltered)

Z

SECURITY CLASSIFICATION OF THIS PAGE (Whtm DMa fttee0.

ABSTRACT (Continued)

to the design and implementation of a basic database system,
we can design a system to support multiple data models and
several model-based languages as if the system is a heterogeneous
collection of database systems.
In this thesis we present a methodology for supporting hierarch-
ical database management on an attribute-based database system.
Specifically, we construct an interface which translates Data
Language/One (DL/I) calls into attribute-based data language
(ABDL) requests. We describe the data structures, the control
structures, and the functions required to implement this inter-
face.

II

4

SS N 0102- LF- 014- 6601

2
SICURITY CLASSIICATION Of THIS PAGE(IWhn Dot* 8nto..d)

Approved for Public Release, Distribution Unlimited.

The Design and Analysis
of a Complete Hierarchical Interface

for the
Multi-Backend Database System

by

Doyle Joseph Weishar
Captain, United States Army

B.S., United States Military Academy, 1975

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1984

Author:

Approved by: ;4. / '-/ ('

Thesis Advisor

Second Reader

Chairman, Department of Compuer Science

Dean of Information and PolLcZ Sciences

3
-- 'C .".

. . ;**-, *-, ,.,,, ,. .,. , . , , ,- , ,, - ,.,-,,, . . . • , . . . -, .--- .. . , , . ' '

ABSTRACT

Typically, the design and implementation of a conven-

tional database system begins with the choice of a data

model, the specification of a model-based data language, and

the design and implementation of a database system which

controls and executes the transactions written in the data

language. For example, we have the hierarchical model, the

DL/I language and the-+-MS System. By using an unconven-

tional approach to the design and implementation of a basic

database system, we can design a system to support multiple

data models and several model-based languages as if the sys-

tem is a heterogeneous collection of database systems.

In- this thesis .we present a methodology for supporting

hierarchical database management on an attribute-based data-

base system. Specifically, we construct an interface which

translates Data Language/One (DL/I) calls into attribute-

based data language (ABDL) requests. We - t the data

structures, the control structures, and the functions

required to implement this interface. < 'A .

I4

Ir

[LI

TABLE OF CONTENTS

I. INTRODUCTION 9

II. AN OVERVIEW OF THE DATA MODELS 13

A. THE ATTRIBUTE-BASED DATA MODEL 13

1. A Conceptual View 13

2. The Multi-Backend Database System

(MDBS) 15

3. The Attribute-Based Data Language

(ABDL) 19

B. THE HIERARCHICAL DATA MODEL 20

1. A Conceptual View 20

2. The Information Management System

(IMS) 24°

3. Data Language/One (DL/I) 25

III. MAPPING HIERARCHICAL DATA TO

ATTRIBUTE-BASED DATA 27

A. THE NOTION OF CURRENT POSITION 27

B. THE NOTION OF INTERFACE SYMBOLIC

IDENTIFIER 28

C. THE CONVERSION OF THE IMS SEGMENTS 28

IV. DATA STRUCTURES NECESSARY TO EXECUTE DL/I

5.. 3

A. THE STATUS INFORMATION TABLE AND THE

HIERARCHY TABLE 32

B. THE ORGANIZATION TABLE 33

C. THE INTERFACE BUFFER 36

V. MAPPING DL/I CALLS TO ABDL REQUESTS 37

A. THE DL/I GET CALLS 37

1. Mapping the DL/I Get Unique (GU)

to the ABDL RETRIEVE 37

2. Mapping the DL/I Get Next (GN)

to the ABDL RETRIEVE 42

3. Mapping the DL/I Get Next Within

Parent (GNP) to the ABDL RETRIEVE . 46

4. Mapping the DL/I Get Hold Calls

to the ABDL RETRIEVE 50

B. MAPPING THE DL/I ISRT TO THE ABDL

INSERT 51

C. MAPPING THE DL/I DELETE TO THE ABDL

DELETE 55

D. MAPPING THE DL/I REPL (REPLACE)

TO THE ABDL UPDATE 59

VI. IMPLEMENTATION CONCERNS AND ADDITIONAL

INTERFACE CONSIDERATIONS 62

A. THE LOCATION OF THE INTERFACE 6?

B. COMBINING DL/I CALLS 63

C. IMPLEMENTATION OF THE SEGMENT SEARCH

ARGUMENT COMMAND CODES 64

6

1. The Command Code D 64

2. The Command Code F................ 65

3. The Command CodeV 66

VII. RESULTS AND CONCLUSIONS 68

APPENDIX A - THE GET ALGORITHMS 70

APPENDIX 8 - THE ALGORITHM ISRT 31

APPENDIX C - THE ALGORITHM OLET 8~4

APPENDIX D - THE ALGORITHM REPL......................86

LIST OF REFERENCES................. 88

INITIAL DISTRIBUTION LIST 90

LIST OF FIGURES

Figure 1. The MDBS Structure 17

Figure 2. The Process Structure in the

Controller and the Backends. i

Figure 3. A Data Structure Diagram........ 21

Figure 4. A Hierarchical Definition Tree 23

Figure 5. The Logical Data Structure

of an IMS Database 24

Figure 6. The Attribute Template of MDBS

Records 30

Figure 7. The Attribute-Based Representation

of the Academic Database. 31

Figure 8. A List Representation of the OT ... 35

Figure 9. The COURSE#s in Bufl. 4...........40

Figure 10. The DATEs in Buf2 41

Figure 11. The STUDENT records in Buf3 42

Figure 12. Bufl. 44

Figure 13. Buf2 '44

Figure 14. Buf3. - 45

Figure 15. The Status Information Table 45

8

I. INTRODUCTION

Typically, the design and implementation of a

conventional database system begins with the choice of a

data model, the specification of a model-based data

language, and the design and implementation of a database

system which controls and executes the transactions written

in the data language. Thus, we have the relational model,

the SQL language and the SQL/Data System. Similarly, we

have the hierarchical model, the DL/I language and the IMS

system. We may also give an example in the case of the

CODASYL model, language and system. The conventional

approach to the design and implementation of a system is

limited to a single data model, a specific data language and

a homogeneous database system. By using an unconventional

approach to the design and implementation of a basic

database system, we can design a system to support multiple

data models and several model-based languages as if the

system is a heterogeneous collection of database systems.

This unconventional design and implementation approach

reveals two important database concepts. First, there is an

exceedingly simple and powerful data model such that many

other data models may be realized easily by this data model.

This is the attribute-based model. Second, the attribute-

based database operations - being high-level and primary

I [

9°T .- 7

operations, are such that most of the other model-based

language constructs can be mapped into this set of primary

operations on a straightforward fashion. Furthermore, the

system which implements these primary operations is

relatively small in size and executable either in a single

backend or in multiple backends. With these concepts, one

* - can now use the attribute-based system to support many

model-based interfaces. There could be an SQL interface so

that the transactions written in SQL can be carried out.

The execution of the transactions requires the SQL

constructs to be transformed into the primary operations of

* the attribute-based system through the interface.

Similarly, there could be a DL/I interface so that the

transactions written in DL/I can also be executed. In this

way, the multiple interfaces allow the system to support

multiple data models and data languages as if it is a

heterogeneous collection of database systems.

The attribute-based system supports the attribute-based

data model, originally described in [Ref. 11 and extended in

[Ref. 2]. Access to the attribute-based system is provided

• using the attribute-based data language known as ABDL. ABDL

is a high-level data language which supports the primary

database and aggregate operations, INSERT, DELETE, UPDATE,

RETRIEVE, MIN, MAX, SUM, COUNT, and AVG. There are two

distinct features in an attribute-based system. First, the

system is easy to implement because the model and its

10

0.

- ~

i

operations are simple. Second, the directory information is

well defined and easily structured in the model.

The attribute-based system supplies all the primary and

aggregate operations required in a database system. With

the specifications for another data language, we can

construct an interface on top of the attribute-based system.

In practice, we can construct a number of interfaces to

support relational, hierarchical, and network operations

with a minimal effort. Such an approach is clearly an

attractive alternative to the approach where separate,

stand-alone systems must be developed for specific models.

The procedure to construct a relational, hierarchical,

or network interface is done at both the database and data

language levels. At the database level, the series of

papers [Ref. 3], [Ref. 4], and [Ref. 5] demonstrated that a

relational, hierarchical, or network database can be

converted into an attribute-based database. At the data

language level, we focus on the development of language

interfaces to the attribute-based system consistent with the

user's chosen language. At this level, we address two

issues. The first issue is to determine how the operations

of the chosen language can be implemented using the

operations of the attribute-based system. The second issue

is the translation of the language of the interface to the

attribute-based data language and the decisions regarding

the interface mechanism. Although no implementation details

11

.4 : ,i , i ii ii i ,:i ii~

are rendered, algorithms are provided to aid in the eventual

implementation of the primitive mappings.

In this thesis, we investigate the design of a

hierarchical interface for the multi-backend database system

(MDBS). MDBS is an attribute-based database system, which

is auto-configurable to either a single backend or to

multiple backends. We are extending the work of [Ref. 5],

which contains an initial design of a DL/I interface. In

Chapter 2, the attribute-based model and hierarchical model

are discussed. Also included in this chapter is an overview

of the MDBS and the ABDL, and of IMS and DL/I. In Chapter

3, we illustrate a methodology for mapping a hierarchical

database into an attribute-based database. In Chapter 4,

the data structures used by the interface to translate DL/I

calls to ABDL requests are examined. Chapter 5 shows the

mappings of the DL/I calls to the ABDL requests. Although

no implementation details are rendered, algorithms are

provided to aid in the eventual implementation of the

primitive mappings. In Chapter 6, we present interface

implementation considerations, and a brief synopsis of

4 additional considerations to reach the goal of a functional

interface. And finally, in Chapter 7 we conclude the

thesis.

12

4

II. AN OVERVIEW OF THE DATA MODELS

It is not our intent to describe in detail the data

models of interest here, namely, the attribute-based data

model and the hierarchical data model. Therefore, we only

offer a brief overview of the pertinent aspects of these

models.

A. THE ATTRIBUTE-BASED DATA MODEL

In this section we introduce the attribute-based data

model. A conceptual view of the model is offered as well as

a discussion of the data manipulation language that is

associated with it. Finally, a system which is implemented

upon the basis of the attribute-based model and language is

discussed.

1. A Conceptual View

The attribute-based data model was originally

described in [Ref. 1]. It is a basic model which

incorporates a few simple concepts. As its name implies, it

is built around the term attribute. Attributes and their

associated values are represented by attribute-value pairs.

An attribute-value pair is a member of the Cartesian product

of the attribute name and the domain of values of the

attribute. These pairs serve to represent all logical

concepts within the attribute-based model. An attribute-

13

-. - ,°.°.-.-h " Vo b'- ,o - o.

value pair is otherwise known as a keyword. Keywords serve

to form records, which are concatenations of keywords

further concatenated with the record-body. Possibly empty,

which is utilized for textual information, the record body

is a string of characters which is utilized for textual

information. An example of a which is utilized for textual

information, record is as follows:

(<TYPE,COURSE>,<COURSE#,CS3112>,<TITLE,Operating Systems>
[Operating Systems principles and techniques})

The angle brackets, <,>, enclose a keyword where the

attribute and its value are separated by a comma. The curly

brackets, {,}, enclose the record body. The entire record

is enclosed with a pair of parentheses.

To access the database, we employ predicates. A

keyword predicate, or simply predicate, is a triple of the

form (attribute, relational operator, value). Combining

keyword predicates in disjunctive normal form characterizes

a query of the database. When the attribute of a keyword in

a record is identical to the attribute in a predicate and

the relation specified by the relational operator of the

predicate holds between the value of the attribute and the

value in the predicate, the keyword, and therefore the

record, is said to satisfy the predicate. The query of two

predicates

14

6,.

(TYPE TEACHER) & (COURSE# CS4112)

will be satisfied by all records of the teacher file whose

teachers teach the course numbered CS4112.

2. The Multi-Backend Database System (MDBS)

The attribute-based model is implemented in an

experimental database system called the multi-backend

database system (MDBS). MDBS cannot be classified as either

a distributed or nondistributed database system. One

minicomputer functions as the controller, with multiple

minicomputers and their disks configured in a parallel

manner to serve as backends [Ref. 6], [Ref. 7], [Ref. 8],

[Ref. 9], and [Ref. 10]. The database is distributed on the

secondary storage across all of the backends. User access

is accomplished through a host computer communicating with

the controller. The MDBS structure can be classified as a

*" centralized system.

As shown in Figure 1, the controller and the

backends are connected by a broadcast bus. When a

transaction is received from the host computer, the

controller broadcasts the transaction to all the backends at

the same time. Each backend has a number of dedicated disk

drives. Since the data is distributed across the backends,

a transaction can be executed by all backends in parallel.

Each backend maintains a queue of transactions. When one

15

*- - o . •. .. • o * * . ' o . , , - . o ° . . - [- . , ' ,

-rrwV W. --v-v--v-'- v-
"

r - - .-- - , , ... ,', w . . . w v -. .r¢ " -. - . -" ." -"

transaction has been executed, the backend can begin

execution on another transaction from its queue.

MDBS is implemented in several permanent processes.

The process structure within the controller and each backend

is shown in Figure 2. In addition to the processes listed,

the controller and each backend have GET and PUT processes,

which are used in the broadcast and reception of messages,

respectively.

The controller is composed of three processes,

Request Preparation, Insert Information Generation, and Post

Processing. Request Preparation receives, parses and

formats a request (transaction) before sending the formated

request (transaction) to the Directory Management process in

each backend. Insert Information Generation is used to

provide additional information to the backends when an

insert request is received. Since the data is distributed,

the insert only occurs at one of the backends. Thus this

process must determine the backend at which the insert will

occur, along with the cluster and descriptor ids for the

insert. Post Processing is used to collect all the results

from a request (transaction) and forward the information

back to the ho, t computer.

Each backend is also composed of three processes,

Directory Management, Concurrency Control, and Record

Processing. Directory Management performs three functions,

Descriptor Search, Cluster Search, and Address Generation.

16

:j-42r

- - - - -- --

.4

Backend 1 rmr
-dsk dri.ves

Ba..kefl 2 d 3 d ves

7o the
4. -as ~:nt-oller

ccmp%."te.

cne or -',re
I!:is# zrives

broadcaisting
bus

Figure 1. The '1P) S t ruture.

17

17

.1. ,°...:.4... ..--... _

THE CONTROLLER

POST REQUEST

PROCESSING PREPARATION

INSERT
INFORMATION
GENERATION

GET PCL PUT PCL

PUT PCL GET PCL

CONCURRENCY

-CONTROL

RECORD DIRECTORY

PROCESSING MNAGEMENT

A BACKEND

-. Figure 2. The Process Structure in the Controller
and the Backends.

18

0b'

-...........-. ~ p -. .- b - ~ . .

Descriptor Search determines the descriptor ids that are

needed for a request. Cluster Search finds the cluster ids.

Address Generation determines the secondary storage

addresses necessary to process the request. Concurrency

Control determines when the request can be executed. Record

Processing performs the operation specified by the request.

3. The Attribute-Based Data Language (ABDL)

The Attribute-Based Data Language (ABDL) is designed

to perform the primary database operations, INSERT, DELETE,

UPDATE, and RETRIEVE. Through the host a user issues either

a request or a transaction. A request is a primary

operation along with a qualification. A qualification is

used to specify the information of the database that is to

be accessed by the request. It is defined in the next

paragraph. A transaction is a list of two or more requests

that are executed in a sequential order. There are four

types of requests, corresponding to the four primary

database operations.

Records are selected for retrieval by concatenating

a query with a target-list and a BY-clause. A target-list

is a list of elements. An element is either an attribute,

e.g., Grade, or an aggregate operator to be performed on an

attribute, e.g., AVG(Grade). ABDL supports five aggregate

0 operators - AVG,SUM, COUNT,MAX, and MIN. The clause in the

BY-clause is an attribute. The BY-clause is used to sort

19

according to the values of the attribute. Records are

inserted into the database by attribute-value pair. Records

are deleted from the database by means of a query. Finally,

records are updated by juxtaposing a query with a modifier.

The query specifies which records of the database are to be

changed and the modifier specifies how the records being

changed are to be updated.

B. THE HIERARCHICAL DATA MODEL

In this section we introduce the hierarchical data

model. We first offer a conceptual view of the model.

Then, we discuss a database management system which

incorporates the ideas inherent in the hierarchical model.

Anu finally, we discuss a data manipulation language with

which the database management system is implemented.

1. A Conceptual View

Hierarchies are a natural way to model a myriad of

real-world applications. For example, businesses, baseball

teams, political parties, and our elected representatives,

all have units of information which can be organized using a

hierarchical structure. The hierarchical structure is

specified using hierarchical relationships, which represent

a measure of precedence between units of information. Units

of information, or data, are represented in a hierarchical

model by entities. Entities have properties, called

attributes, which uniquely identify each entity in an entity

20

S"
* . **"

set. An entity set is simply a grouping of all similar

entities. The relationships between entities can be

represented by a graph called a data structure diagram (see

Figure 3). In this diagram all entity and attribute

relationships are one to many [Ref. 11]. These one to many

relationships have a certain direction which is depicted by

the directed arcs in the diagram. Each directed arc points

from the one to the many relationship. For example, between

record types COURSE and OFFERING, the arc representing the

relationship PLANNED FOR points from COURSE to OFFERING,

since each course may have many offerings, but each offering

is for only one course.

I

COURSE

COURSES_NEEDED
PLANNED FOR

PREREQ , OFFERING
---------- +----------

TAUGHT BY
ATTENDED BY

TEACHER STUDENT
----------- -----------

Figure 3. A Data Structure Diagram.

For the hierarchical model, the data structure

diagram takes the form of a tree in which the direction of

the arcs points away from the root. This tree has the

restriction that there can be at most one arc between any

21

4'

two record types and is called a hierarchical definition

tree (see Figure 4). The hierarchical definition tree

specifies both what record types are allowed to be included

in the database and the permissible relationships between

record types. In this tree, the level of a record type is

the measure of its distance from the root of the tree. The

root record type is the highest level record type in the

tree which, by convention, is referred to as level one. The

other record types, called dependent record types, are at

lower levels in the tree, i.e., at levels 2,3,4, and so on.

Ancestor and dependent record occurrences can be identified

by traversing the appropriate hierarchical path, which is

simply a sequence of records in which the records, starting

at the root record, follow alternately in a ancestor-

dependent relationship. Referring to Figure 3, if one

desired to find which teacher taught a Math course offered

in Monterey, the hierarchical path would be from the COURSE

record occurrence, to the OFFERING record occurrence, and

then to the TEACHER record occurrence.

22

PA +-----------------

COURSE i
+--------- -+

1 PREREQ ; OFFERING!

TEACHER 1 STUDENT ,
------------ + ------------ +

Figure 4. A Hierarchical Definition Tree.

A characteristic of the hierarchical conceptual

model is that there can be a varying number of occurrences

of each record type at each level. However, each record

4 occurrence (except for the root record occurrence) must be

connected to an occurrence of an ancestor record type.

Because of this, each new record to be inserted (except for

a root record occurrence) has to be connected to an

occurrence of a parent type record. Deletions are also

affected by this property. When a record occurrence is

deleted, all of its descendent record occurrences are also

deleted.

Records are retrieved according to a selection and

qualification process. The qualification process expresses

the selection criteria. A typical qualification takes the

form:

<data item name><conditional operator><value>

23

-I .l " if i i -** * -* . *. 1' • .* * p. .i I 1 ll I . I
I

" " i1 I i . - III.* "" . "1 . -]

connected by Boolean operators AND, OR, and NOT. The

conditional operators are relational operators <, <=, >, >=,

and < >. Qualification is performed along the

hierarchical path of the selected record.

2. The Information Management System (IMS)

The Information Management System (IMS) is a product

of International Business Machines (IBM) Corporation [Ref.

12], [Ref. 13], and [Ref. 14]. It uses the hierarchical

data model. The smallest unit of logical data is called a

field (data item). A segment type (record type) is a named

collection of fields. Occurrences of segment types are

called segments (records). An example of an IMS database is

shown in Figure 5.

COURSE
+------------------------------------

!*COURSE# 1 TITLE 1 DESCRIPN
----------------------- ----------

PREREQ OFFERING
+----------------- 4- ------------------- --------------
!*COURSE# TITLE !*DATE 1 LOCATION 1 FORMAT

+---------------------- +--------------------------------

TEACHER STUDENT

'*EMP# NAME I*EMP# I NAME I GRADE
--------------- + -----------------------

Figure 5. The Logical Data Structure
of an IMS Database.

424

-. -, , '.'- ' .-.. -. .- ., y -,, ,, , -. .. '. ', .-, . - . , ,. ,. . -214- .

3. Data Language/One (DL/I)

The data manipulation language that IMS uses to

respond to queries of this database is called Data

Language/One (DL/I). Users issue calls using DL/I to access

the database. The DL/I calls are used to traverse the

database tree. DL/I performs a preorder tree traversal.

This means that the traversal begins at the root record and

then proceeds through the tree going in top-to-bottom,

left-to-right order. Thus, in our previous example the

hierarchical path IMS would take would be from COURSE, to

PREREQ, to OFFERING, to TEACHER, and finally to STUDENT.

DL/I is designed to perform the primary database

operations, GET, INSERT (ISRT), DELETE (DLET) and REPLACE

(REPL). DL/I is invoked through procedure calls from

applications programs written in PL/I, COBOL or Assembler

Language. There are three types of calls, corresponding to

the four primary database operations. Segments are selected

for retrieval by means of one or more qualifications. DL/I

qualifies segments by specifying a segment search argument

(SSA). The form of the SSA is:

<SEGMENT NAME><COMMAND CODE><QUALIFICATION>

The SEGMENT NAME is the name of a segment type in the

hierarchical definition tree i.e., COURSE, OFFERING STUDENT,

etc. The QUALIFICATION is optional in the SSA and takes the

form described above, with a minor exception. The only

25

%I
4

* * . '

Boolean operators allowed are AND and OR. The COMMAND CODE

is also optional and delineates the various options of the

call. Some of the more important options are:

- retrieval or insertion of some or all of
the segments from the root to a specified
segment type in a single DL/I call;

- backing up to the first child under a seg-
ment at any level;

- retrieval of the last occurrence of a seg-
ment that meets all specified conditions
under a parent;

- setting of the parentage to a specific seg-
ment.

* Segments are inserted into the database by segment search

, argument. SSAs are used to locate the position in the

database tree in which the segment is to be inserted.

Segments are deleted and modified in DL/I only after being

retrieved. A DELETE call deletes a segment and all of its

descendent segments from the database. A REPLACE call

updates segments in the database.

26

6 2

III. MAPPING HIERARCHICAL DATA TO ATTRIBUTE-BASED DATA

Using a procedure originally outlined in [Ref. 5], we

can map our sample hierarchical database into its ABDL

counterpart. However, before doing so we must introduce and

explain two notions whose existence are necessary to conduct

the data conversion. These notions are that of the IMS

current position and that of the interface symbolic

identifier.

A. THE NOTION OF CURRENT POSITION

IMS uses a pre-ordered traversal to navigate a database

tree. Quite understandably, this traversal need not begin

at the root each time a call is made to the database. The

traversal could easily begin at a child segment. Indeed,

the segment requested could be a twin of the segment just

previously retrieved. Therefore, it is important to know

the path of the traversal when conducting DL/I data

manipulation operations. This is accomplished by

designating the segment upon which the traversal has stopped

as the current position. The current position of the IMS

database is established after each retrieval or insertion

operation. For a retrieval operation the current position is

the segment just retrieved; for an insertion operation, the

current position is the segment just inserted.

27
I

B. THE NOTION OF INTERFACE SYMBOLIC IDENTIFIER

In IMS it is necessary to indicate order among twin

segments. This is achieved by designating a sequence field

in the segment. As we convert our hierarchical data to

attribute-based data, we also must be able to distinguish

order among twin segments. Thus, in the conversion process

we shall assign a symbolic identifier to each record. The

symbolic identifier of a record R is a group of fields

consisting of:

1) the symbolic identifier of the parent of R;
and

2) the sequence field of R.

C. THE CONVERSION OF THE IMS SEGMENTS

With the inclusion of the above notions, the database

translation may now occur. An ABDL record may be created

from an IMS segment using the following three step process:

Step 1: For each field in the segment, form
a keyword using the field name as the
attribute and the field value as the
value.

Step 2: Form a keyword of the form <TYPE,
SEGTYPE> where TYPE is a literal and
SEGTYPE is the IMS segment type in
consideration.

28

0Z

Step 3: For each sequence field in the symbo-
lic identifier of the segment, form a
keyword using the sequence field name
as the attribute and the field value
as the value.

As an intermediary step it is helpful to utilize the

above procedure to create attribute templates of the IMS

database. Figure 6 illustrates these templates. These

templates point out the attributes to be used in

construction of the ABDL record and demonstrate the

formation of the symbolic identifier, which in each template

has been underlined. The final product of conversion is

shown as Figure 7.

29

4

' . , . ,, o o . ° , , , , • o - . ,t • - , ". • o . ' ' , . "o . • , ., '4 m• . o •, ol 0,, 'l o
° .

°'° ,s , - - ,, , ° - °,

- ---- - - - -- .- - -

TYPE = COURSE
!COUJRSE#
TITLE
DESCRIPN

+----------------------

+----------------------- +----------------------

TYPE = PREREQ TYPE = Offering
!*COURSE# !*COURSE#
!*PREREQ.COURSE# M 'ATE
TITLE :LOCATION

+----------------------- 1 FORMAT
+----------------------

--------------------- +-----------------------

1TYPE = TEACHER 1TYPE = STUDENT
!*COURSE# ! *COURSE#
M*ATE M *ATE

01 4 *TEACHER.EMP# ! *STUDENT.EMP#
1NAME: NAME:

--------------------- GRADE:
+-----------------------

(the symbolic identifier is marked with an asterisk)

Figure 6. The attribute templates of MDBS records

for the segments of Figure 5.

30

V N

(<TYPE,COURSE>,(COIJRSE#,#_OFCOURSE>,<TITLE,COIJRSENAME">
(DESCRIPN ,DESCRIPTION>)

((TYPE,PREREQ>,<COURSE#,k OF COURSE>,(PREREQ.COURSE#,
ItOFPREREfQ>,(TITLE,COURSENAME>)

(<TYPE,OFFERING>,<COURSE#,II_OFCOURSE>,<DATE,W4HEN>,
<LOCATION,L.OCN> ,(FOR MAT,FORM>)

(<TYPE,TEAGHER>,(GOURSE#,#_OFCOIJRSE>,<DATE,WHEN>,
<TEACHER.EMP#,TEAGHER#>,(NAME,TEANAME>)

(<TYPE,STUDENT>,<COURSE#,#_OFCO'JRSE>,(DATE,WHEN>,
<STUDENT.EMP#STUDENT#>,<NAME,STU_NAME>,
<GRADE, STU GRADE>)

Figure 7. The Attribute-Based Representation of the
Academic Database.

31

IV. DATA STRUCTURES NECESSARY TO EXECUTE DL/I CALLS

To effectively translate DL/I calls to ABDL requests the

interface needs data structures to represent three tables

and a series of buffers. These tables are the Status

Information Table (SIT), the Hierarchy Table (HT) (see [Ref.

5]), and the Organization Table (OT). Each buffer in the

series of buffers will be called an Interface Buffer .IB),

or simply buffer. It should be noted that these are

maintained for each user. That is, each user has his own

set of tables and buffers.

A. THE STATUS INFORMATION TABLE AND THE HIERARCHY TABLE

The SIT and the HT are created in order to keep track of

the current position of the database. These tables have as

many entries as there are interface buffers. They are

dynamic tables instantiated upon the first call to the

database. Thereafter, they are updated in accordance with

the various DL/I calls.

Each entry in the SIT consists of four fields:

Seg(ment), Count, Addr(ess), and Qual(ification). The

meaning of the i-th entry in the SIT is as follows:

32

*"- .° ° • o - . - - -
"

. . S-- - - - - -

o - oo-, . oo -,. °. e .. Q • " ' ° ' . "
t

• ° • • " "-"

SIT.Seg(i): the name of the segment type of
the i-th level of the hierarch-
ical path;

SIT.Count(i): the number of segments in the
i-th buffer;

SIT.Addr(i): the address of the segment with-
in the i-th buffer;

SIT.Qual(i): the SSA of the segment.

Each entry in the HT consists of two fields: F(ield) and

V(alue). The meaning of the i-th entry of HT is as follows:

HT.F(i): the sequence field name of the
current position at level i;

HT.V(i): the sequence field value of the
current position at level i.

B. THE ORGANIZATION TABLE

The OT outlines the hierarchical structure of the entire

database. This table lists all segment names contained in

the database and stores the relationships among these

segments. Although the hierarchical relationships of the

database are maintained in the database translation, the

complete descendent information is not available to the

interface. When carrying out the translation of a DL/I

DELETE, the ABDL system will need to know the names of all

of the descendents of the segment identified for deletion.

The OT provides this information.

Actual implementation of the OT can take several forms.

However, we are suggesting that it be a list structure. A

linear linked list will facilitate representation of a

general tree and allow traversal of the OT, to extract the

33

6!

requisite descendent information. Each node in the list has

five fields: Child, Seg, SymID, SEQFLD, and Sibling. The

meaning of the i-th entry in the OT is as follows:

OT.Seg(i): the name of the segment type;
OT.Sym_ID(i): the symbolic identifier of

the segment;
OT.SEQFLD(i): the sequence field of the

segment;
OT.Child(i): the pointer to the left-most

child at level i+1;
OT.Sibling(i) the pointer to the segment's

sibling at level i.

Figure 8 illustrates the OT for our sample database.

37

43

- - -

:COURSE#
!i lI

!COURSE# !ORE

:COURSE#

I ni

-- - -- -- -- - - - -

- ----------- - ----- I--------------

COURSE# !COURSE#
:DAEQ :DATE

I-------------- I--------------

FiueS itRpesnaino h T

:cou~s# D35

C. THE INTERFACE BUFFER

The IB is simply a storage area utilized by the

interface to store information needed to execute the

translated DL/I calls. Although the exact role each buffer

will play will be explained in the mapping of the DL/I

calls, we can now say that a buffer is created for each

operation which requires a retrieval. Upon a successful

retrieval, all segment occurrences satisfying the query will

be maintained in the buffer. This information will then be

used for subsequent query execution.

36

V. MAPPING DL/I CALLS TO ABDL REQUESTS

We have demonstrated how hierarchical databases can be

mapped into attribute-based databases. In this chapter we

examine how calls in a hierarchical language, DL/I, can be

mapped into the requests of the attribute-based data

language, ABDL.

A. THE DL/I GET CALLS

The DL/I calls have been described earlier in our

overview of DL/I. Each of these calls involves the

retrieval of segment occurrences and, as such, are grouped

together to be mapped to the ABDL RETRIEVE request.

However, because each call is quite different in

functionality, each must have an individual mapping to the

ABDL RETRIEVE.

1. Mapping the DL/I Get Unique (GU)

to the ABDL RETRIEVE

The general form of the DL/I GU is:

GU Segment Search Argument(s)

The general form of the ABDL RETRIEVE is:

4-

RETRIEVE Query Target-list [BY Attribute]

37

4"-

I

In order to successfully map the GIl to the RETRIEVE, it is

necessary to create an interface buffer (19) as described

earlier, which is used to store information retrieved from

the database. The IB will be the mechanism through which

movement up and down the hierarchical path is accomplished.

Thus, at any one time it is likel-y that there will be

multiple instances of the IB. The implementation,

management, and placement of the lBs is discussed in Chapter

5.

To perform the mapping, the interface will first

substitute the ABDL reserved word RETRIEVE for the DL/I

reserved word -GU. Next, the interface takes the segment

search argument (SSA) at level 1 and translates it into the

ADBL query. This is a natural translation, since each

segment occurrence is mapped into the ABDL database as a

collection of keywords. Placing a relational operator

between the attribute and value of these keywords results in

a predicate, and a query is merely a collection of

predicates. The final step in the mapping is the

translation of the symbolic identifier into the target-list.

Again, this is a natural translation since both the symbolic

identifier and the target-list are collections of

attributes. Having arrived at the end of the mapping, we

can now explain the sequence of actions that will occur.

Basically, a DL/I GU call will result in a series of

ABDL RETRIEVE operations; one RETRIEVE for each SSA in the

38

4 U

GU call. An example utilizing our sample database will help

to illustrate the mechanics of the mapping where the

requirement is as follows:

Get the first STUDENT occurrence who made an A in

CS4900 at 'onterey.

The DL/I call is:

GU COURSE (TITLE = 'CS4900')
OFFERING (LOCATION = 'MONTEREY')
STUDENT (GRADE = 'A')

The interface would respond to this call by performing the

following actions:

Step 1: The first RETRIEVE would be formed as such:

RETRIEVE ((TYPE = COURSE) & (TITLE = CS4900))

(COURSE#)

The operation would result in having all COURSE# segments

satisfying the query ((TYPE = COURSE) & (TITLE = CS4900))

placed into a buffer and sorted according to the values of

their sequence field (see [Ref. 151), which in this case is

COURSE# (see Figure 9). The interface would then take the

first segment in the buffer and form the call in step 2.

39

J .

* -j------~--..-.~*'.-.. - -.------.- ---------- --- --- ---

<COURSE#1>
<COURSE#2>

<COURSE#n>

--

Figure 9. The COURSE#s in Bufl.

RETRIEVE ((TYPE = OFFERING) & (COURSE#= COURSEI) &
(LOCATION = MONTEREY)
(DATE)

As one can see, the RETRIEVE request is formed using the

second SSA and the sequence field name and value. The

sequence field names of the two segment occurrences serve as

links along the hierarchical path. This action will bring

all record occurrences satisfying the above query into a

subsequent buffer (we shall call this buffer Buf2 and the

aforementioned buffer Bufl). Again these records will be

sorted according to the values of their sequence field,

i.e., the attribute DATE (see Figure 10).

04

...i.[..

<DATE 1>
<DATE2>

<DATEm>

4.--------------------------------------

Figure 10. The DATEs in Buf2.

We must mention here that if there are no records returned

to Buf2 by the call, control is transferred back to step 1

where the next record in Bufl will be retrieved using the

operation called GETNEXTBUFREC(BUF#). This operation will

move the pointer to the next record in the buffer. Upon

completion of this operation, the action will proceed again

to step 2.

Assuming that we have a record in Buf2, the

interface shall again take the first record and form the

call in step 3.

Step 3:

RETRIEVE (C TYPE = STUDENT) & (COURSE# = COURSE1) &
(DATE = DATEI) & (GRADE A))
C COURSE#,DATE,STUDENT.EMP#,NAME,GRADE)

The RETRIEVE request is formed as in previous steps.

Likewise, the call will result in bringing all STUDENT

41

segment occurrences satisfying the query in a subsequent

buffer, Buf3 (see Figure 11).

--
<COURSE1,DATE1,STUDENT#1,STUNAME,A>

<COURSEn,DATEn,STUDENT#n,STU_NA E,A>

--

Figure 11. The STUDENT records in Buf3.

Provided that segments were returned, these will be sorted

by by their sequence field, i.e., by STUDENT.EMP#, and the

first of these will be returned to the user. If no segments

were retrieved, control will be returned to step 2 where the

interface will choose the next record in Buf2.

The action will continue until the RETRIEVE query is

satisfied or there are no more record occurrences in Bufl,

at which time the user will be informed that the GU call was

unsuccessful. The algorithm for the GU call is presented in

Appendix A.

2. Mapping the DL/I Get Next (GN) to the ABDL RETRIEVE

The general form of the DL/I GN is:

GN Segment Search Argument

We map the Get Next to the ABDL RETRIEVE in a very similar

42

S

.o.

fashion as we have mapped the GU. Upon encountering a GN,

the interface will check the SIT for the current position of

the database. This checking is performed because a DL/I GN

retrieves the first occurrence of the specified segment

following the current position. Thus, the interface must

base upon this reference point to retrieve. Normally, a GN

is preceded by a GU. Therefore, the segment we wish to

retrieve is likely to be already available in the buffer

which holds the current position. If this is the case, then

the interface needs merely to return the next segment in

that buffer; no additional retrieval is necessary. Of

course, if this is not the case, the interface will perform

the necessary retrieval(s) and bring the required segment

into a buffer. Upon completion of the request, the SIT and

the HT must be updated, as each instance of a G1 re-

establishes the current position in the database. The

algorithm for the translation is presented The following

example illustrates the mapping:

Retrieve the next segment who received an A in

English.

The DL/I call is:

GN COURSE (TITLE = 'ENGLISH')
OFFERING
STUDENT (GRADE = 'A')

Before proceeding, let us assume that the interface has just

responded to the following DL/I call:

43

GU COURSE (TITLE 'ENGLISH')
OFFERING
STUDENT (GRADE 'A')

Figures 12 through 15 represent the buffers that have been

instantiated by the interface and the contents of the SIT.

With this in mind, let us now proceed with the mapping.

(COURSE#l>

0 +-------------------------------

Figure 12. Bufi.

<DATE 1>
<DATE2>
<DATE3>

4.---------------------------

* Figure 13. Buf2.

04

<COURSE#1,DATE1,STUDENT#1,STU_NAME,A>

Figure 14. Buf3.

level Seg Count Addr Qual
+--

1 COURSE 1 xxx TITLE = ENGLISH
2 OFFERING 3 yyy
3 STUDENT 1 zzz GRADE = A

+---

Figure 15. The Status Information Table.

The interface would respond to this call by

performing the following actions:

Step 1: The interface will first compare the

hierarchical path stated in the call with the database

currency information held within the SIT. Referring to

Figure 15 we can see that indeed the segment search

arguments match the Seg(ment) and Qual(ification) fields at

all three levels. Having established this, we can now

proceed to step 2.

Step 2: On the basis of the GU call we know that

the first record in Buf3 is the current position of the

45

.

-." "- ' . - . '[' .<- .; -, . '-. .. '.. ' ..- .----- -.-i-' . . " -.-. -- ' - - - -" " -- i".

database. Utilizing this information, the interface will

check to see if there is a "next" segment in Buf3. If so,

the interface will return the segment to the user in

fulfillment of the request. However, in our example, there

is no "next" segment. Therefore, the interface retracts one

level and checks the contents of the corresponding buffer.

The interface will determine if there is a subsequent

segment in Buf2. If not, the interface will retract another

level, and will continue to retract, until the request

either fails or is completed. In our case, there is a

subsequent record in Buf2, <DATE2>. With <DATE2> the

interface will form an ABDL RETRIEVE. This retrieval is

done in step 3.

Step 3:

RETRIEVE ((TYPE = STUDENT) & (COURSE# = COURSE#1) &
(DATE = DATE2) & (GRADE = A))
(COURSE#,DATE,STUDENT.EMP#,NAME,GRADE)

Our request is satisfied as Figure 14. The first segment in

this buffer is returned to the user. If there had been no

segment returned, the interface would check Buf2 again for

another subsequent segment. If successful, another

retrieval would be formed. If not, the interface would

retract another level as described in step 2.

3. Mapping the DL/I Get Next Within Parent (GNP)

to the ABDL RETRIEVE

The general form of the DL/I GNP is:

46

I

GNP Segment Search Argument(s)

The mapping of the GNP to the ABDL RETRIEVE is identical to

the mapping of the Get Next with one exception. When a GND

call is issued, the interface will return a segment

occurrence that is either a sibling of a segment that has

been previously retrieved which matches the SSA of the

current segment, or is the first segment satisfying an ABDL

RETRIEVE request for SSAn where n is greater than i in the

SIT and HT. This difference can be visualized if we revert

to our example for the DL/I Get Next. In that example we

retrieved the "next" STUDENT segment that received an A in

Eng'ish. We could have achieved the exact same results with

the following DL/I call:

GNP COURSE (TITLE = 'ENGLISH')
OFFERING
STUDENT (GRADE = 'A')

However, for our GNP example, let us assume that the above

call was made immediately after the GN call in the above

example. Therefore, the situation is that the current

segment is the segment in Buf3 (see Figure 14). Responding

to the above call, the interface will proceed to check the

existing buffers to see if the buffer information is useful.

The interface will arrive in Buf3 and attempt to return the

"next" segment occurrence in that buffer. However, Buf3 has

only one occurrence. Therefore, the interface will retract

47

to the next highest level ,Buf2, and check for subsequent

segment occurrences. Since there is another segment

occurrence in Buf2, i.e., <DATE3>, an ABDL RETRIEVE will be

formed as follows:

RETRIEVE ((TYPE = STUDENT) & (COURSE# = COURSE#1) &
(DATE = DATE3) & (GRADE = A))
(COURSE#,DATE,STUDENT.EMP#,NAME,GRADE)

We shall assume that the request is satisfied. Therefore,

the first segment occurrence retrieved into our new Suf3 is

returned to the user. Again, this is identical to the

action for the Get Next call and does not show the subtle

difference between the GN and the GNP calls. If we modify

our example slightly, the difference becomes apparent. Let

us assume that instead of the previously stated GNP call,

the following Get Next Within Parent call occurred

immediately after the aforementioned Get Unique call:

GNP STUDENT (GRADE = 'A')

Notice that we now have the identical situation as described

earlier, i.e., the current position of the database is the

first segment in Buf3. With this in mind, we can now

illustrate the difference between the algorithms (see

Appendix A for the algorithm GNP).

Step 1: The interface first compares the segment

search arguments (SSAs) of the GU call and the GNP call.

The comparison is made by looping through the SIT entries,

48

6 -

-' .< , < - -. ", ,...- -- *. .' .-, *.. ... - * * -_

since the hierarchical path from the GIJ is stored in the

SIT. While in most cases the GU call will provide the

hierarchical path down to the level of retrieval (as it does

here), there is no requirement for the GU to do so. As it

relates to the GNP call, the main objective of the GU call

is to establish the current position and to identify the

"parent" segment. The "parent" segment for the GNP call is

the lowest level SSA of the GU call. Since there may be any

number of levels of the hierarchical path omitted from the

last SSA of the GU call to the first SSA of the GNP call,

the interface will need to discern this fact. If indeed

there are missing SSAs, the interface must consult the OT in

order to retrieve the appropriate segment occurrences into

the buffers. This is accomplished in Step 3 of the

algorithm (see Appendix A). Returning to our example, we

find that the last SSA of the GU matches the first SSA of

the GNP, i.e., STUDENT (GRADE = 'A'). The interface must

now determine if there are any more SSAs in the GNP call.

This is accomplished in step 2.

Step 2: In this step, the interface compares the

SSAs of the GNP with the entries on the SIT. The reason

that this is necessary is the essential difference between

the Get Next and the Get Next Within Parent. Since the

function of the GNP is to retrieve only segment occurrences

within the parent, it is essential to know exactly who the

parent is. As stated earlier, the "parent" is defined in

49

the GU call by the last SSA. The segment type to be

returned is the last SSA of the GNP call. These of course

could be the same. In our example they are. This fact

would be recognized by the interface, and since we have a

buffer already in existence for this level, the interface

would attempt to return the next record in that buffer.

However, for our example there is no "next" record.

Therefore, the interface would return a 'failure' to the

user instead of returning a STUDENT occurrence for a

different OFFERING, which would have been the result of a

Get Next call. Thus, the essential difference between the

GN and the GNP is clear. The Get Next in this case would

start retracting to find the "next" segment, whereas the Get

Next Within Parent just quits.

4. Mapping the DL/I Get Hold Calls to the ABDL RETRIEVE

DL/I has three Get Hold calls: the Get Hold Unique

(GHU), the Get Hold Next (GHN), and the Get Hold Next Within

Parent (GHNP). A Get Hold call is used in DL/I to retrieve

into a work area and hold the record in that work area so

that the record can be deleted or updated. ABDL does not

A have this requirement. Therefore, when the interface

encounters a GHU call, a GHN call, or a GHNP call it will

treat these calls as a GU call, a GN call, and a GNP call,

respectively. With the exception of the "H", the general

form of the Get Hold calls is identical to the forms of the

non-hold counterparts. Therefore, the mappings described in

50

-o........ . . .

the previous three sections are applicable to the Get 9old

calls.

B. MAPPING THE DL/I ISRT TO THE ABDL INSERT

The general form of the DL/I ISRT is:

ISRT [Hierarchical Path SSAs]
Unqualified Segment Type

A brief reminder, the DL/I ISRT traces SSAs along the

hierarchical path in order to insert the unqualified segment

type at a level we shall call n.

The general form of the ABDL INSERT is:

INSERT record

The mapping of the DL/I ISRT to the ABDL INSERT is

facilitated by DL/I's rules. These rules mandate that:

1) With the exception of a root occurrence,
the parent occurrence of the record to
be inserted must already exist in the
database;

2) The ISRT call must specify the complete
hierarchical path to this parent;

3) The call must specify the type of the
segment to be inserted.

With all of the information provided by the DL/I ISRT

call, one might conclude that the ABDL mapping is simply a

concatenation of transformed DL/I segments. However, for

two reasons this is not the case. The first reason deals

51

I

with the OT as introduced earlier. Although ancestor

segment occurrences must already exist in the database,

there is no such requirement for the segment type which is

to be inserted. In order to perform its function, the OT

must have complete knowledge of all parent-child

relationships within the database. Thus, updating the OT is

a required step for all insertions of new segment types; the

second reason has to do with the current position. Recall

that a DL/I ISRT call must establish the current position in

the database in order to utilize DL/I Get Next and Get Next

Within Parent calls. Our naive insertion would not have,

nor could not have, this capability. We shall now proceed

with the mapping.

To begin the mapping, the interface will utilize the

ISRT SSAs specified to form ABDL RETRIEVE requests to

retrieve segment ancestors into IBs in the same manner as

the GU was conducted. However, instead of returning a

"failure" if no segment is retrieved at level n, the

interface will merely update the Organization Table and

perform the insertion. The interface prepares for the

insertion by getting the field names and values of the

segment to be inserted from the DL/I work area. It then

forms an ABDL INSERT statement of the form

INSERT (<Type,Sn>,<fl,vl>... <fi-1,vi-1>,<k1>... <km>

,where Sn is the segment name, f is a field name, v is the

52

-44

corresponding field value, and k1 to km are keywords formed

from the DL/I qualifications for the segment to be inserted.

With this request the mapping is complete (see Algorithm

ISRT in Appendix B). The following example illustrates this

mapping.

Requirement: Add a new STUDENT occurrence for the

course entitled CS4112.

The DL/I call:

(build new segment in the I/O area)
ISRT COURSE (TITLE = 'CS4112')

OFFERING
STUDENT

The interface would respond to this call by performing the

following actions:

Step 1: The interface will respond to this call by

forming an ABDL RETRIEVE request with the first SSA of the

ISRT.

RETRIEVE ((TYPE = COURSE) & (TITLE CS4112))
(COURSE#)

This action will pull all COURSE# segments satisfying the

request into Bufl in the order of their sequence field

values. The interface will then use the first of these to

form the retrieval in step 2.

53

4. " . . ' " ' . .' ,

Step 2:

RETRIEVE ((TYPE OFFERING) & (COURSE# COURSE#1))
(DATE)

This action will pull all DATE segments satisfying the

request into Buf2 in order of their sequence field values.

As in step 2, the interface will use the first of these to

form the retrieval in step 3.

Step 3: Since this is the segment which is to be

inserted the routine differs somewhat from the previous

RETRIEVE requests, which were identical to those followed in

carrying out the mapping for a GU. The request is of the

following form:

RETRIEVE ((TYPE = STUDENT) & (COURSE# = COURSE#1) &
(DATE = DATEI)) (STUDENT.EMP#)

Although the syntax is identical to the previous requests

and the result is the same, i.e., all STUDENT.EMP# segments

satisfying the request are sorted and placed in Buf3, the

intent of the request is different. The purpose of this

request is to check to see if there are any twin segment

occurrences to the segment occurrence that is to be

inserted. If there are occurrences, then the buffer will be

utilized for the insertion. If not, then the interface must
i

update the OT. The INSERT request is formed in step 4.

5

i..54

-.. .

Step 4: Prior to forming the ABDL INSERT request, the

S.i interface will go to the DL/I I/O work area in order to

retrieve the field names and values of the segment type to

be inserted. Assuming that the STUDENT segment to be

inserted has EMP# = 49, NAME Zeke, and GRADE A, the ABDL

INSERT request is as follows:

INSERT (<TYPE,STUDENT>,<COURSE#,COURSE#1>,
<DATE,DATE1>, <STUDENT.EMP#,49>,
<NAME,ZEKE>,<GRADE,A>)

where the <COURSE#,COURSE#1> and <DATE,DATE1> represent

fields and values of levels 1 and 2 respectively. With the

0- successful completion of this request, the mapping comes to

an end.

C. MAPPING THE DL/I DELETE TO THE ABDL DELETE.

* .. The general form of the DL/I DELETE is:

DLET segment occurrence

The DLET call must be preceded by a GHU call, GHN call, or a

GHNP call, which retrieves the segment occurrence and holds

it in a work area so that the DLET can effectuate segment

deletion. The general form of a DLET call will delete the

- specified segment occurrence and all of its children. The

0 interface will use the OT to identify these segments for

deletion.

55

°'.

The general form of the ABDL DELETE request is:

DELETE query

To perform the mapping we must first have the interface

translate the GHU, GHN, or GHNP into a GU, GN, or a GNP.

Once done, these commands will be translated as mentioned

previously and the specified record occurrences will be held

in the buffer. Next, the interface must make use of the OT

in order to find all descendent segment occurrences of the

segment earmarked for deletion. Having accomplished this,

the mapping continues. The DL/I DLET will be translated

into a number of ABDL DELETEs. This number will be

determined based on the ancestry of the segment to be

deleted. The number will be high if the deletion is of a

root occurrence and low if the deletion is of a child. The

reserved word DLET will be translated into ABDL's DELETE.

The query part of the ABDL delete will be constructed from

the symbolic identifier of the segment marked for deletion

conjuncted with each descendent segment name.

As previously mentioned, these descendent segment names

*will determine the number of DELETE operations necessary in

order to fully implement the DL/I DLET task. Beginning with

the segment identified in the rqij, GHN, or GHNP, the OT will

be traversed. Descendent segments will be alternatively

RETRIEVEd and DELETEd by the interface. The action will

stop once all dependent segments are deleted. The algorithm

56

0

...............

* ". .

%,. , - . -- T - T . -o . , . - - . - . _ - ° . - . , o . • - . --Ki

Ii
for the DLET call is presented as Appendix C. Note that a

temporary SIT and HT have been established. These are

necessary because a DLET does not alter the current position

of the database. However, in order to form the ABDL

RETRIEVEs and DELETEs, the interface must read the SIT and

HT. If we do not update the SIT and the HT, there will be

no entries for any levels below the last level in the SIT

and HT. This, of course, will result in having segments

left in the database that should have been deleted. On the

other hand, if we update the SIT and the HT, we could re-

establish the current position, which would be an unwanted

side-effect. Therefore, we must have the temporary

structures. An example call using our sample database will

help to illustrate this mapping.

Delete the OFFERING occurrence for first Wine Tasting

course offering in Monterey. The DL/I call:

GHU COURSE (TITLE = 'WINE TASTING')
OFFERING (LOCATION = 'MONTEREY')

DLET

The interface responds to this call by performing the

following actions:

Step 1: The interface considers the DL/I GHU call to be the

same as the DL/I GU call. Having done so, the first ABDL

57

RETRIEVE is formed:

RETRIEVE ((TYPE COURSE) & (TITLE WINE TASTING))
(COURSE#)

Step 2: As with the GU, a second retrieval is formed using

the first record in Bufl satisfying the request in step 1.

RETRIEVE ((TYPE = OFFERING) & (COURSE# COURSE#1)
& (LOCATION = MONTEREY)) (DATE)

The result of this step is to retrieve all satisfying

records into Buf2 and to designate the first of these for

deletion. Deletion for this segment is carried out in step

3.

Step 3:

DELETE ((TYPE = OFFERING) & (COURSE# COURSE#1) &
(DATE = DATEI)

This request will complete the task of deleting the segment

occurrence but will not suffice for completion of the DL/I

DLET. To do so, the interface must delete all descendent

segment occurrences. In order to accomplish this, the

interface enters the Organization Table with the pointer to

the first child segment of the segment deleted in step 3.

For our example let us say that the descendent segment

occurrences are comprised of one TEACHER segment occurrence

and 10 twin STUDENT occurrences. These segments will be

5
58

4

alternately retrieved and deleted. The next two DELETEs

illustrate the retrieval and deletion for the first two

dependent segments. Note the absence of the accompanying

RETRIEVEs. These requests were not necessary, since we are

at a leaf in the traversal sequence.

DELETE ((TYPE = TEACHER) & (COURSE# COURSE#1)
& (DATE = DATEl))

DELETE ((TYPE = STUDENT) & (COURSE# = COURSE#1)
& (DATE = DATEI))

Upon completion of all of the deletions for the dependent

segments the action will be completed entirely.

D. MAPPING THE DL/I REPL (REPLACE) TO THE ABDL UPDATE

The general form of the DL/I REPL call is as follows:

REPL

Like the DL/I DLET call, the REPL call must be preceded by

one of the Get Hold calls. The Get Hold call serves to

retrieve the appropriate record into a work area so that the

record may be modified. After the record is modified in the

work area, the DL/I REPL call is issued which makes the

modification permanent.

The general form of the ABDL UPDATE request is

UPDATE query modifier

where the query specifies which records of the database are

59

4J u ° '' ' ' '

"° ,- , - . m , • . .j . . - . .. - . ' . ,. ° . a ' °.° ° . - , • , ° % . ° . 0 . , . "

to be updated, and the modifier specifies how the records

are to be changed.

The mapping of the DL/I REPL call to the AF3DL RETRIEVE

proceeds initially with the interface translating the Get

Hold call into the appropriate Get call. This action

retrieves the record to be modified. Recalling our earlier

discussion in the ISRT translation, we can apply the same

logic as to not by-passing the translation of the Get Hold

call in favor of the straightforward "one-step" translation,

i.e., we must establish the current position. Therefore,

once the Get call is translated, the interface will use the

symbolic identifier of the segment to be modified as the

query portion of the ABDL UPDATE. For the final step in the

mapping, the interface will retrieve the update information

from the DL/I work area and use this for the modifier. The

algorithm for the mapping is presented as Appendix D. The

following example illustrates the mapping:

Change the prerequisite of Course# 4 from Math to

Discrete Math.

The DL/I call to accomplish this is as follows:

GHU COURSE (COURSE# = '4')
PREREQ

change title to 'Discrete Math' in I/O work area
REPL

The interface would respond to this call by treating the

Get Hold Unique call as a Get Unique call. Steps 1 and 2

60

4'" ' "" ' '' " " " " '" "'"" " "" "" " "" "# - " " """ " " "

show the formation of the appropriate ABDL RETRIEVE calls.

Step 1:

RETRIEVE ((TYPE COURSE) & (COURSE# =4))
(COURSE#)

Step 2:

RETRIEVE ((TYPE PREREQ) & (COURSE# =4))
(PREREQ.COURSE#)

Recalling the actions involved in the RETRIEVE request, we

know that the first segment in Buf2 is the segment to be

modified. Therefore, the interface will form the query

portion of the ABDL UPDATE as follows:

(TYPE = PREREQ) & (COURSE# 4) &
(PREREQ.COURSE# = COURSE#1)

Upon accomplishing this, the interface will proceed to the

DL/I work area in order to get the update information. With

this information, the modifier portion of the ABDL UPDATE

rtquest is formed, i.e., <TITLE DISCRETE MATH>. The

entire ABDL UPDATE call is formed by concatenating the

"query" portion of above to the modifier as follows:

UPDATE ((TYPE = PREREQ) & (COURSE# = 4) &
(PREREQ.COURSE# = COURSE#1))
<TITLE = DISCRETE MATH>

Upon execution of this request, the call is completed.

61

VI. IMPLEMENTATION CONCERNS AND ADDITIONAL

INTERFACE CONSIDERATIONS

In this chapter we present interface implementation

concerns, and a brief synopsis of additional considerations

to reach the goal of a functional interface. Specifically,

we shall discuss the location of the interface, the

combining of DL/I calls, and the implementation of DL/I

segment search argument (SSA) command codes.

A. THE LOCATION OF THE INTERFACE

We have discussed the interface, thus far, in terms of

functionality, without mention of the exact location of the

interface within the overall database system. As we see it,

there are four location possibilities. These are: 1)

placing the interface in a separate location, i.e., within

its own processor; 2) placing the interface within the host

processor; 3) placing the interface within the MDBS

controller; ana ') placing the interface in one of the MDBS

backends. Udditionally, there is a fifth option. That is,

the interface can be distributed among one or more of the

aforementioned locales. Of these possibilities, we

recommend the adoption of option 2, i.e., placing the

interface within the host. We make this recommendation for

several reasons. First of all, if one situates the

62

..- .,.~~ -. .- ..-.. .. ". -" ". "..- ." .-. . -... ''' '..... "-.. ".. -. " "" .

interface within a separate processor, or distributes it

among parts of the system, one compounds the interprocess

communication problems of the system. Secondly, if one

places the interface within the controller, one jeopardizes

the ability of the controller to perform its function, i.e.,

the controller would be in danger of being overloaded.

Thirdly, if one places the interface within a backend, one

undermines the intent of the MDBS system. The backends were

specifically designed for data management functions only.

And finally, it just makes sense to place the interface in

the host. This is because the interface can make use of the

resident database interface structures located within the

host.

B. COMBINING DL/I CALLS

A preponderance of DL/I calls to the database can occur

in combination. For example, it is standard to see a Get

Unique followed by a Get Next, and a Get Hold Unique

* followed by a DLET. Therefore, the interface must be able

to distinguish among these calls, and place combinations of

calls in the correct sequence. In order to accomplish this,

it is incumbent upon the interface to be able to update the

individual user's SIT and HT throughout the user's session.

4

63

4

C. IMPLEMENTATION OF THE SEGMENT SEARCH ARGUMENT

COMMAND CODES

The SSA command codes were discussed in Chapter 2. As

described earlier, these are special codes which allow

variations to the basic DL/I calls. In order to fully

implement a functional interface, algorithms for these codes

must be developed. In this section we discuss some of the

details necessary for their eventual implementation. We

shall limit our discussion to three command codes, D, F, and

V, which are the most prevalent. For a discussion of the

remaining codes (C,L,P,Q,U,N,-), see [Ref. 13] and [Ref.

14].

1. The Command Code D

The command code D permits retrieval, update, or

insertion of some or all of the segments from the root to a

specified segment type in a single DL/I call. For example,

GU COURSE * D
OFFERING (LOCATION 'MONTEREY')

will retrieve not only the segment satisfying the OFFERING

SSA, but will also retrieve the COURSE parent segment. The

interface must be able to recognize this. This should not

be a difficult modification to the basic GU algorithm. For

example, there could be a conditional which would be

activated upon recognizing the D in the SSA. This

conditional would send the appropriate segment to the user.

6
.. 64

S"

Similar modifications can also be made to the ISRT and REPL

algorithms.

2. The Command Code F

The command code F provides a means of stepping

backwards under the current parent. This is important in

situations where it is desired to retrieve a sibling that

precedes the current segment. For example, suppose we

desired to retrieve the name of the teacher of Jones

attending Course# 1 in Monterey. Without the command code

there is no way for us to do this, since TEACHER and STUDENT

are siblings. We could possibly form two DL/I GU calls, but

each of these would return segments that, when placed

together, would not necessarily satisfy the original call.

With this command code we can form the DL/I calls as

follows:

GU COURSE (COURSE# '1')
GN OFFERING (LOCATION = 'MONTEREY')
GNP STUDENT (NAME 'JONES')
GNP TEACHER * F

The interface must be able to recognize that the current

parent is the OFFERING segment satisfying (LOCATION

'MONTEREY'), and must be able to backtrack in order to

retrieve the correct TEACHER segment. The modification to

the GNP algorithm necessary is, that upon recognizing the

command code F, the interface must consult the SIT and HT in

65

order to locate the buffer holding the current position, and

use the current position as the basis for retrieval.

3. The Command Code V

One uses the command code V in a very similar

fashion as the Get Next Within Parent. The subtle

difference can only be understood, however, by first

expanding our explanation of the notion of current position.

As stated earlier, the current position is defined as the

segment last accessed via a "get" or "insert" operation.

However, this is not the entire story. Each segment along

the hierarchical path to the current segment is considered

as the current of that particular segment type. For

example, if the segment last retrieved is a TEACHER, then

that TEACHER is the current segment, the TEACHER's parent is

the current OFFERING, and the OFFERING's parent is the

current COURSE. Recall that a GNP retrieves segments only

from the current parent (in our example, the OFFERING

segment). By using the command code V, any ancestor can be

designated as the "current parent", i.e., we can choose the

COURSE segment instead of the OFFERING segment. Thus, the

use of command code V directs IMS away from the current

segment type named in the SSA to which it is appended in

much the same fashion as the Get Next Within Parent.

The command code V is used with a Get Next call. 9y

proposing a more specific example than our earlier one, we

can illustrate the use of the command code V. Suppose that

66

it is desired to get the next Teacher whose name is Smith.

The code for our example would be as follows:

GU TEACHER (NAME = 'SMITH')
GN COURSE*V

OFFERING
TEACHER (NAME = 'SMITH)

Note that the use of the command code V does not require the

presence of a preceding GU call in order to reposition the

user to the start of the database. This will cause no

problem with either the algorithm GU or the algorithm GN

since we require a GN call to specify the entire

hierarchical path. However, the GN algorithm must be

modified in order to recognize the presence of the command

code. The modification to the algorithm focuses upon

recognizing the V, at which point the GU algorithm will call

the Get Next Within Parent algorithm, sending the SSA with

the V appendage as a parameter.

67
67

4!

-, . - .*. ." - . .° .

VII. RESULTS AND CONCLUSIONS

As stated earlier, by using an unconventional approach

to the design and implementation of a basic database system,

we can design the system to support multiple data models as

if the system is a heterogeneous collection of database

systems. Our unconventional approach is geared to

flexibility, efficiency, and extensibility, which makes it

an attractive alternative to conventional approaches. By

developing multiple data language interfaces we offer users

the alternative of our unconventional approach without

incurring any retraining costs. In adopting our system,

users appear to have their same old database system, but one

that works faster.

In this thesis we have presented a methodology for

supporting hierarchical database management on an

attribute-based database system. Specifically, we have

constructed an interface which translates DL/I calls into

ABDL requests, and which maintains appropriate buffer and

table contents. We have described the additional data

structures, control structures, and functions required to

implement this interface. Finally, we have shown that DL/I

calls can be mapped to ABDL requests in a relatively

straightforward manner. Based upon this information, the

hierarchical interface can be implemented.

68

6

Although the hierarchical interface can be implemented

based upon the work we have presented, *e must caution that

this work has addressed only the hierarchical model. Two

other interfaces must also be completed to correspond with

the other two popular data models, i.e., the relational and

network models. [Ref. 16] and [Ref. 17] have designed an

interface for the relational model. However, the network

interface is still yet to be developed. Given the fact that

two of the three interfaces have been designed, it is

possible that implementation can proceed in these areas.

However, the implementor(s) must proceed with caution and

must pay particular attention to commonalities and

overlapping of functions between the two interfaces. It is

one thing to strive ahead, and yet another to strive ahead

blindly.

69

APPENDIX A - THE GET ALGORITHMS

A. THE ALGORITHM GET UNIQUE (GU)

This algorithm executes the following DL/T call:

GU SI QI
S2 Q2

Sn Qn

where each Si is a segment type at level i, each Qi is a

qualification (possibly null) and n >= 1. We assume that

the sequence field name of segment type Si is Fi. The

target list is defined as the sequence field up to level n-

1. At level n, the target list is a list of all fields

requested in the original DL/I call.

Step 1: (Retrieve root segments into
buffer and update SIT, HT)

RETRIEVE ((TYPE = SI) & QI)
(target list)

sort attribute F1, buffer address a,
count c

SIT(1) <-- (S1,c,a,Q1)
let(F1,V1) be the sequence field

of the segment in address a
HT(1) <-- (F1,V1)

Step2: (All segments retrieved?)
i i + 1
if 1>n then

go to step 6

70

0

Step3: (Retrieve segments at i-th level)
RETRIEVE ((TYPE SI) & (F1 = V1)

& ..

& (Fi-1 Vi-1) & QI)
(target list)

sort attribute Fi, buffer address a,
count c

if c <> 0 then
go to step 5

Step 4: (Retract one level and try again)
i<(-- i-i

if i = 0 then
return ('failure', -)

(Si,c,a,Qi) <-- SIT(i)
c <-- c-1
if c = 0 then

go to step 4

Step 5: (update SIT,HT)
SIT(i) <-- (Si,c,a,Qi)
let (Fi,Vi) be the sequence

field of the segment
in address a

HT(i) <-- (Fi,Vi)

Step 6: (Operation Successful)
number of entries in SIT or HT <-- n
current position of database <-- n
parent position <-- n
return ('success', buffer address a)

The Algorithm GU.

0

71

0

***~.. .

B. THE ALGORITHM GET NEXT (GN)

This algorithm executes the following DL/I call:

GN SI Qi
S2 Q2

Sn Qn

where each Si is a segment type in level i, each Qi is a

qualification (possibly null) and n >= 1. In checking to

see if at any time the SSA of the GN call precedes the

corresponding SIT entry in the traversal sequence, we assume

that the code for a segment name A is less than the code for

4 a segment name B if A precedes B in the traversal sequence;

m is the number of entries in the SIT or HT. The target

list is defined as the sequence field up to level n-1. kt

level n, the target list is a list of all fields requested

in the original DL/I call.

Step 1: (Find t such that the condition
((Si SIT.Seg(i)) &
(Qi SIT.Qual(i))) is satisfied
for 1 <= i <= t
but not for i (t+1).)

t <--0

72

4

+. -............................. ,..-..,.,..,.-....... .

Step 2: (Compare the SIT with each SSA)
t <-- t+1
if t > n or t > m then

go to step 3
(Ft,Vt) <-- HT(t)
if (St = SIT.Seg(t)) &

(Qt = SIT.Qual(t)) then
go to step 2

Step 3: (Get rid of any unnecessary buffers)
t <-- t-1
while t <= m do

clear Buf(t)

Step 4: (No buffer information is useful?)
if t 0 then

go to step 10

Step 5: (Perhaps the necessary segment
is in the buffer?)
1 <= t, but is t n <= m?)
if t n then

i <-- i+1
go to step 14

Step 6: (Entire buffer information is useful?
1 <: t and m < n, but is t :m?)

if t = m then
i <-- i+1
go to step 12

Step 7: (S(t+1) precedes SIT.Seg(t+1))
if S(t+l) < SIT.Seg(t+1) then

return ('failure', -)

73

Step 8: (S(t+l) does not
precede SIT.Seg(t+l))
if S(t+l) > SIT.Seg(t+l) then

i <-- t+!
go to step 12

Step 9: (1 <= t < m < n, S(t+I) = SIT.Seg(t+1),
Q(t+i) > SIT.Qual(t+1))
i <-- t+1
RETRIEVE ((TYPE Si) & (F1 = V1)

& ...
& (Fi-1 Vi-1) & Qi)
(target list)

sort attribute Fi, buffer address a,
count c

go to step 13

Step 10: (Retrieve root segments into buffer and
update SIT,HT)
RETRIEVE ((TYPE = SI) & (F1 = VI)

& QI)
(target list)

sort attribute F1, buffer address a,
count c

SIT(i) <-- (Si,c,a,Qi)
HT(1) <-- (F1,VI)

Step 11: (All segments retrieved?)
i <-- 1+1
if i > n then

go to step 16

Step 12: (Retrieve segments at i-th level)
RETRIEVE ((TYPE = Si) & (F1 = VI)

& (Fi-1 = Vi-1) & Qi)
(target list)

sort attribute Fi, buffer address a,
count c

74

Step 13: (Any segments retrieved?)
if c <> 0 then

go to step 15

Step 14: (Retract one level and try again)
i<--i-i
if i = 0 then

return ('failure',-)
(Si,c,a,Qi) <-- SIT(i)
c <-- c-1
if c = 0 then

go to step 14

Step 15: (Update SIT,HT)
SIT(i) <-- (Sica,Qi)
let (Fi,Vi) be the sequence

field of the segment
in address a

HT(i) <-- (Fi,Vi)
go to step 11

Step 16: (Operation successful)
number of entries in SIT or HT <-- n
current position of database <-- n
parent position <-- n
return('success',buffer address a)

The Algorithm GN.

75

I"

:-:1
2- -.''<.-.'?-'i.''. " '-i .-' "<.-'- :'--'- .i. i:'i:'i. ': ..":. . : " .il ?- .-.- .. :- " .'- i-.?-.i-',.'i.:i.-: {i, -['-. ID.i-. -''-i .' .ii 2-.".-

C. THE ALGORITHM GET NEXT WITHIN PARENT (GNP)

This algorithm executes the following DL/I call:

GU SI QI
S2 Q2

Sn Qn

GNP Sb Qb

Se Qe

where the Get Unique call is as previously specified, each

Sb through Se is a segment type in levels b through e, each

Qb through Qe is a qualification (possibly null) in levels b

through e, b >= e, and e >= 1. The target list is defined

as the sequence field up to level n-1. At level n, the

target list is a list of all fields requested in the

original DL/I call.

Step 1: (Compare the SIT and Sb)
t <-- 0
Repeat

t <-- t+1
(Ft,Vt) <-- HT(t)

Until
(Sb = SIT.Seg(t)) &
(Qb = SIT.Qual(t))
OR (t > n)

I4

76

;....* - . V... -- ,

r

Step 2: (Check to see if the first SSA
of the GNP matches the SIT)

if (Sb = SIT.Seg(t)) &
(Qb = SIT.Qual(t))
then go to step 3

else if t > n then
go to step 4

Step 3: if b < e then
(There is more than one SSA
in the GNP)
t <-- b
LOOP: t <-- t+1

if t > e or t > m then
go to Step 4

(Ft,Vt) <-- HT(t)
if (St = SIT.Seg(t)) &

(Qt = SIT.Qual(t)) then
go to LOOP

else (b : e)
c <-- c-1
if c = 0 then

return ('failure',-)
else

go to Step 15

Step 4: (We must retrieve further along the
hierarchical path without establishing
the current position)
TEMPSIT <-- SIT
TEMPHT <-- HT
i <-- t-1

While i <= e do
RETRIEVE ((TYPE Si) & (Fi Vi)

&...
& (Fi-1 Vi-1) & Qi)
(target list)

sort attribute Fi, buffer address a,
count c

if c = 0 then
return ('failure',-)

TEMPSIT(i) <-- (Si,c,a,Qi)
TEMPHT(i) <-- (Fi,Vi)
i <-- i+1

i<-- e
go to step 18

77

Step 5: (Clear any unnecessary buffer)
t <-- t-1
while t <= m do

clear Buf(t)

Step 6: (No buffer information is useful?)
if t 0 then

go to step 12

Step 7: (Perhaps the necessary segment
is in the buffer?)

1 <= t, but is t = e <= m?)
if t = e then

i <-- i+1
go to step 16

Step 8: (Entire buffer information is useful?
1 <= t and m < n, but is t = m?)

if t im then
i <-- i+1
go to step 14

Step 9: (Check to see if the desired segment
precedes the current position in
the traversal sequence)

if S(t+1) < SIT.Seg(t+1) then
return ('failure', -)

Step 10: if S(t+1) > SIT.Seg(t+1) then
i <-- t+1
go to step 14

78

0 i.

A

Step 11: (1 <= t < m < n, S(t+1) SIT.Seg(t+1),
Q(t+1) <> SIT.Qual(t+1))
i <-- t+1
RETRIEVE ((TYPE = Si) & (F1 = VI) &...

& (Fi-1 Vi-1) & Qi)
(target list)

sort attribute Fi, buffer address a,
count c

go to step 15

Step 12: (Retrieve root segments into buffer
and update SIT,HT)
RETRIEVE ((TYPE = Si) & (F1 = VI)

& QI)
(target list)

sort attribute Fl, buffer address a,
count c

SIT(1) <-- (S1,c,a,Q1)
HT(1) <-- (FI,V1)

Step 13: (All segments retrieved?)
i <-- 1+1
if i > e then

go to step 18

Step 14: (Retrieve segments at i-th level)
RETRIEVE ((TYPE Si) & (Fl = V1)

& ...
& (Fi-1 = Vi-1) & Qi)
(target list)

sort attribute Fi, buffer address a,
count c

Step 15: (Any segments retrieved?)
if c <> 0 then

go to step 17

79

S _ , *.S . . .S.

Step 16: (Retract one level up to level b and
try again)
i <-- i-I
if i = b-1 then

return ('failure',-)
(Si,c,a,Qi) <-- SIT(i)
c <-- c-I
if c 0 then

go to step 16

Step 17: (Update SIT,HT)
SIT(i) <-- (Si,c,a,Qi)
let (Fi,Vi) be the sequence field

of the segment in address a
HT(i) <-- (Fi,Vi)
go to step 13

Step 18: (Operation successful)
number of entries in SIT or HT <-- e
current position of database <-- e
parent position <-- e
return('success' ,buffer address a)

The Algorithm GNP.

80

0

,°%

m ., - - . °. . °- " -. °" -' - - 4 . " . - "° " " LI % ° " . - . • " " ° " ,80, '

0 "a ° ' . . ' . . . - - . " . ° - . ° " ° . q o , . " . , . • , I

APPENDIX B - THE ALGORITHM ISRT

This algorithm executes the following DL/I call:

ISRT SI QI
S2 Q2

Sn-1 Qn-1
Sn

where each Si is a segment type in level i, each Qi is a

qualification (possibly null) and n >= 1. We assume that

the sequence field name of segment type Si is Fi. The

target list is defined as the sequence field up to level n-

1. At level n, the target list is a list of all fields

requested in the original DL/I call.

Step 1: (Retrieve root segments into Bufl
and update SIT,HT)

i <-- 1
RETRIEVE ((TYPE S $I) & QI)

(target list)
sort attribute FI, buffer address a,

count c
if (c = 0) & (n > I) then

return ('failure',-)
if (c 0 0) & (n = 1) then

update OT
c<--I
go to step 7

SIT(1) <-- (S1,c,a,Q1)
let (FI,V1) be the sequence field

0 of the segment in address a
4- HT(1) <-- (FI,VI)

81

Step 2: (All ancestor segments retrieved?)
i <-- i+1
if i > (n-1) then

go to step 6

Step 3: (Retrieve segments at i-th level)
RETRIEVE ((TYPE = Si) & (Fl= VI)

& ..

& (Fi-1 = Si-1) & Qi)
(target list)

sort attribute Fi, buffer address a,
count c

if c <> 0 then
go to step 5

Step 4: (Retract one level and try again)
i <-- (i-I)
if i = 0 then

return ('failure',-)
(Si,c,a,Q1) <-- SIT(i)
c <-- (c-I)
if c = 0 then

go to step 4

Step 5: (Update SIT,HT)
SIT(i) <-- (Si,c,a,Qi)
let (Fi,Vi) be the sequence

field of the
segment in address a

HT(i) <-- (Fi,Vi)
go to step 2

Step 6: (Check to see if there are
any twin segments)

RETRIEVE ((TYPE = Sn) & (F1 Vi) &
& (Fi-1 Vi-1)
(target list)

if c = 0 then
update OT
0c<--I1

8

82

Step 7: (Make the insertion)
get field values of Sn from

DL/I I/O work area
INSERT (<TYPE,Sn>,<F1,V1>,...,

" <Fi-1,Vi-1>,
<k1> ... <km>)

SIT(i) <-- (Si,c,a,Qi)
HT(i) <-- (Fi,Vi)

Step 8: (Operation successful)
number of entries in SIT or HT <-- n
current position of database <-- n
parent position <-- n
return ('success', buffer address a)

The Algorithm ISRT.

83

-. - . - - - - . . - . . - -

APPENDIX C - THE ALGORITHM DLET

This algorithm executes the following DL/I call:

GH[U][N][NP] Si QI
S2 Q2

Sn Qn

DLET

where each Si is a segment type at level i, each Qi is a

qualification (possibly null) and n >= 1. We assume that

the sequence field name of segment type Si is Fi. The

target list is defined as the sequence field up to level n-

1. At level n, the target list is a list of all fields

requested in the original DL/I call.

Step 1: Case Call
GHU : Translate GHU into GU
GHN : Translate GHN into GN
GHNP : Translate GHNP into GNP

Execute the GU, GN, or GNP

84

N- -

Step 2: (Enter the OT with current_segment.child)
nodeptr <-- current_segment.child
TEMPSIT <-- SIT
TEMPHT <-- HT
Procedure ?retrav (nodeptr)

q <-- nodeptr
While q 0> nil do

Read node[qJ
If q.childptr < > nil then

RETRIEVE ((TYPE = SEGNAME) &
(F1 V1) & ...
& (Fi-l Vi-1) & Qi)
(target list)

i <-- i+1-
TEMPSIT(i) <-- (Si,c,a,Qi)
TEMPHT(i) <-- (Fi,Vi)

DELETE ((TYPE =Si) &
(F1l V1) &..
& (Fi-1 =Vi-1) & Qi

Pretrav(child)
Pretrav(sibling)

end while
end procedure Pretrav

The Algorithm DLET.

85

4. 7.

APPENDIX D -THE ALGORITHM REPL

This algorithm executes the following DL/I call:

GH[UJ[N1[NP] S1 Q1
S2 Q2

Sn Qn

REPL

* where each Si is a segment type at level i, each Qi is a

qualification (possibly null) and n >= 1. We assume that

the sequence field name of segment type Si is Fi. Aj is an

* attribute of field j, whose value will replace the old value

of field j.

Step 1: Case Call
GHU :Translate GHIJ into GU
GHN :Translate GH4 into GN
GHNP :Translate GHNP into GNP

Execute the GU,GN, or GNP

Step 2: (Form the "query")
((TYPE Si) & (F1 V1) & o..&
(Fi-l Vi-1) & Qi)

Step 3: (Form the "modifier")

go to I/O work area to get
update information

<Aj Vj>

86

Step 4: (Perform the request)
UPDATE ((TYPE zSi) & (F1 V1) & .. &

(Fi-l Vi-l) & Qi) (Aj Vj>

The Algorithm REPL.

87

LIST OF REFERENCES

1. Hsiao, D. K., and Harary, F., "A Formal System for
Information Retrieval from Files," Communications of
the ACM, Vol. 13, No. 2, February 1970, Corrigenda, Vol
13., No. 3, March 1970.

2. Wong, E., and Chiang, T. C., "Canonical Structure in
Attribute Based File Organization," Communications of
the ACM, September 1971.

3. Banerjee, J. and Hsiao, D. K., "A Methodology for
Supporting Existing CODASYL Databases with New Database
Machines," Proceedings of National ACM Conference,
1978.

4. Banerjee, J., Buam, R. I. and Hsiao, D. K., "Concepts
and Capabilities of a Database Computer," ACM
Transactions on Database Systems, Vol. 4, No. 1,
December 1978.

5. Banerjee, J., Hsiao, D. K., and Ng, F., "Database
Transformation, Query Translation and Performance
Analysis of a Database Computer in Supporting
Hierarchical Database Management," IEEE Transactions on
Software Engineering, March 1980.

6. Demurjian, S. A., et al., "The Implementation of a
Multi-Backend Database System (MDBS): Part IV - The
Revised Concurrency Control and Directory Management
Processes and the Revised Definitions of Inter-Process
and Inter-Computer Messages" Technical Report, NPS-52-
84-005, Naval Postgraduate School, Monterey,
California, March 1984.

7. He, X., et al., "The Implementation of a Multi-Backend
Database System (MDBS): Part II - The Design of a
Prototype MDBS," in Advanced Database Machine
Architecture, Hsiao (ed), Prentice Hall, 1983.

8. Hsiao, D. K. and Menon, M. J., "Design and
Analysis of a Multi-Backend Database System for
Performance Improvement, Functionality Expansion and
Capacity Growth (Part I)," Technical Report, OSU-
CISRC-TR-81-7, The Ohio State University, Columbus,
Ohio, July 1981.

9. Hsiao, D. K. and Menon, M. J., "Design and
Analysis of a Multi-Backend Database System for
performance Improvement, Functionality Expansion and
Capacity Growth (Part II)," Technical Report, OSU-

88

"S.

CISRC-TR-81-8, The Ohio State University, Columbus,
Ohio, August 1981.

10. Kerr, D. S., et al., "The Implementation of a Multi-
Backend Database System (MDBS): Part I - Software
Engineering Strategies and Efforts Towards a Prototype
MDBS," Technical Report, OSU-CISRC-TR-82-1, The Ohio
State University, Columbus, Ohio, January 1982.

11. Lochovsky, F. H., and Tsichritzis, D. C., "Hierarchical
Data-Base Management: A Survey," Computing Surveys,
Vol. 8, No. 1, March 1976.

12. IBM., "Information Management System IMS/360,
Application Description Manual (Version 2)," IBM Corp.,
White Plains, New York, 1971.

13. IBM., "Information Management System/Virtual Storage,
General Information Manual," IBM Corp., White Plains,
New York, 1975.

14. Date, C. J., An Introduction to Database Systems,
Addison Wesley, 1982.

15. Muldur, S., The Design and Analysis of Join and
Ordering Operations for a Multi-Backend Database
System, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

16. Macy, G., Design and Analysis of an SQL Interface for a
Multi-Backend Database System, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1984.

17. Rollins, R., Design and Analysis of a Complete
Relational Interface for a Multi-Backend Database
System, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

89

4. ' " . .." . . .' " . . . " " . .' " . -. , . " , - ' .. ' ' ' . .. ' , . .. -. , '

INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Curriculum Officer, Code 37 1
Computer Technology
Naval Postgraduate School
Monterey, California 93943

5. Professor David K. Hsiao, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

6. Steven A. Demurjian, Code 52 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

7. Doyle J. Weishar 3
400 Ponce Drive
Independence, Missouri 64056

90

0 :A

FILMED

4-85

* DTIC
..PA

