AD-A151 549 THE DEVELOPHENT OF R>PROGRRHHING SUPPORTNSVSTEH
D_PROTOTYPING TASKS 2 AND 3(U) SOF THARE OPTIONS INC
CRHBRIDGE MR JAN 835 SO- 61 85 N88814 82-C-0173

UNCLASSIFIED

Pas v b SN bt wn

wlazal

e

a

L e

-
et

T a7

"
.

Lottt At

Your e

o AR NANSAL

s

|

]
g
[

2

III

FrFFEERE

EEEE

rr

r

rs
g lﬁw
o N

[+<]

s s

)
(3

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

A'-b\"-t\l>--L‘.‘-.‘.. LY .‘

AD-A151 549

FINAL REPORT
The Development of a Programming Support System
for Rapid Prototyping
N00014 - 82 -C - 0173
January 1984 - January 1985
SO-01-85

Prepared for
Office of Naval Research
Department of the Navy

800 N. Quincy Street
Arlington, Virginia 22217

By

Software Options, Inc.
22 Hilliard Street
Cambridge, Mass. 02138
Tel. (617) 497-5054

This document has been ap?:wed
for public release and sale; its
distribution is unlimited.

TR
P

..
A
i e 2]

f N
i. .

LA s i M i R e & A e
b}
Lo
.~
L e
.
-

o

-
AR

t

DN

h h"f

2ot

AR e |
o=

-
v
4 'y

'

Summary i
3 of this project, initially conceived to be a five year pro- v

ject to develop a programming support environment and a collec- :ﬂﬁ;
tion of tools that support rapid prototyping. For a broader iisf
overview of the project, in particular, of the support environ- ;52

ment, see the final report for Task 1 [1]. The initial project E;%f
was scaled back, and we report here on narrow aspects of the ;ﬁ:

problems that played a role in the larger system. e

The principal work in Task 2 was the design of a new ﬁiﬁ
method for code-generation, particularly orieﬁted to the
needs and capabilities of the programming support environment. ;ip
This resulted in a rather large, self-contained document,
Code Generation by Coagulation, which is included in its e

original form as part of this report.

Task 3 was to have been an effort to prototype some of
the code-generation ideas developed in Task 2, 1n particular,

an analyzer that builds an intermediate form for bi-directional

scanning of a program, a necessary constituent of the optimizing S
code~generator. Task 3 also called for developing overall iii'
specifications for the Rulog language and interpreter and develop- ;flf
ing a prototype of the interpreter. Due to the limitation of iﬁ{

funds, only a design, not a prototype, of the bi-directional ;ﬁ;

MR o aich She B sk adeh abk Jad and .
TTEETY T

7

el
ot
e
2
%
‘scanner was eventually supported; this work is reported on in ;}ff
: the second document included in this report. The work on Rulog ;ﬂ&(
:)
is reported on in a paper that has been submitted to the 8th s
a International Conference on Software Engineering; a copy of -jﬁ?
that paper is attached. S
Bibliography f
- 1. "The Development of a Programming Support System for L
Rapid Prototyping - Final Report for Task 1", Technical et
Report S0-01-83, Software Options, Inc., 22 Hilliard e
- Street, Cambridge, MA 02138. SRS
_l,u";:"ion For ' S.‘
RS GRagl N
: CTAB]
Lot aueed) _‘_:.-::
Lo Sicatton. ’?‘.—':t{
: S — e
. VT e, T
o - -
Fve et ity Code =
; NN DI ‘.‘;-;i/'opn] :.
(RERS % Special

hogh
+1

Code- Generation by Coagulation

14 December 1983

Software Optioas, Inc. - o
22 Hilliard Street o
Cambridge, MA 02138

This paper describes a new approach to code-generation. The central tenet is that]
there mmst be a more intimate coupling between register allocation and instruction R
selection thaa exists in presentdsy technology. This is achieved by generating code
in very small regions aad gradually coslescing the part of the program that is

»

This work was supported in part by ONR conatract N00014-82-C-0173.

RECILACA AR B drh N Ath gt-ia

1. Introduction

L1 Traditional Assumptions
The problem of designing s code generator for an interpreter-based language has
provided a chance to re-examine the traditional assumptions underlying the preseat
_ technology of code-generation. Probably the most pervasive of these assumptions is
that programs are compiled before they are run. In an interpretive environment, a
compiler sees & program oaly after it is mostly debugged; changes to a program are
usually tested with the interpreter before the program is recompiled. This
comparative infrequency of compilation has two comsequences, one of which is
obvious: a compiler for such an environment can run slower than other compilers,
since it is used lem often. The less obvious implication of having run programs
before they are compiled is that one can design a compiler whose optimization
techniques are fundamentally dependent upon execution statistics gathered when
running the program on “typical” data.

Another assumption underlying present compilers is that subroutines are generally
large and are called infrequently. While this was less absurd twenty years ago,
language implementstions continue to have rigid calling sequences, register
comventions, e¢tc. As programmers are being taught more and more to break down
their programs into smaller, more essily understood pieces, there is a growing
importance of not punishing them with incressed computing costs. A variety of
parameter and result pasing mechanisms, convenient register coaventions between
caller and callee, cheap subroutine calls t0 non-recursive procedures (not to mention
direct substitution when possible) are all required to support good inter-procedural
optimization at the machine code level.

Code space optimization is an area neglected in most compilers, as if space were
free. A corollary to this is that time-space trace-offs are also neglected, particularly
because execution data is lacking. Though some compilers do indeed try to pay

" special attention to "laner loops”, the notion of inner loop becomes tenuous when
considering inter-procedural optimization. With the variety of computing
enviroaments proliferating, concerns with space costs increase. On small personal
computers and in some embedded systems, the space cost may be of paramount

e, e "

PURE

......

2

concern; in time-sharing environments, cost is usually a function of space and time, so
trade-offs are crucial in the overall optimization process; in paged systems, space can
convert indirectly into time because of page faults; in real-time systems, time costs
may dominate.

1.2 Traditional Techniques

In the initial stages of this code-generator design, there were two issues which
stood out as unsuccessfully treated in compiler designs with which I was familiar.
First, there was the fact that while code-generation is an optimization problem, the
objective function (to use a term from mathematical programming) does not eater in
a direct way into the process; rather it forms an implicit background for all that
happens. The reason for this is partly that execution information has been sssumed
to be unavailable to compilers (see above); one of the consequences is that time-space
trade-off questions have been neglected (aguin, see sbove). The second bothersome
issue is best summed up in the standard cliche about code-generators: instruction
selection is trivial once register allocation is done, and register allocation is trivial
once instruction selection is done.

Consider peephole optimization. This is one of the lsst phases of a compiler. Its
job is to rammage about in the code which has aiready been generated, to remove
obvious inefficiencies, and to. detect patterns which can be more efficiently compiled
wsing instructions which were not isued by earlier phases in the compiler. It is
npecessary 1o reslize the important role played by this technique in today’s best
optimizing compilers [8} "It is without doubt the most ad hoc, least formalized, and
perhaps lesst aesthetically pleasing of the phases of the compiler. Yet it is one of the
most effective”. Even if peephole optimization is effective, it is disturbing that ‘it
works so well—peephole optimizations sre often allowed by the fact that certain
guantities are in registers (instruction selection is trivial if ..), but register allocation
was done much earlier, and might have been done differeatly, had there been any
knowledge of the effect it would have on peephole optimization (register allocation is
trivial if ...). And all of this is happening without any clear view of the ultimate
effect on performance.

.................
..................
- S S AL P ¥~ -

.......
......
~t S

- il i ol ~ulid <y W W W Lk L i it Y odk g e 4
L)
e
N o

NS

.........
........

.l“l_’.jlq—‘

A

s

13 A New Approach
With a new set of assumptions in mind, and with reservations about some aspects
of present code-generation technigques aroused, we begin to describe our proposed
design. The place to begin is with the circularity cliche, and the driving idea is never
to break the circularity—instruction selection and register allocation a/ways are dooe
together. This may seem impossible, but the trick is 1o look at a small enough piece
of the program, so that doing both is not only possible, but easy. Instead of
beginning by code generation (both register allocation and instruction selection)
_ which is safe globally, and patching it up with a peephole optimizer, we propose to
.o < generate code which is oprimal Jocally, and gradually paste the pieces together into 2
coherent whole, modifying both register allocations and instructions in the process.

P

The order in which pieces are pasted together is crucial to this approsch. It is
done in order of decreasing execution frequency, the idea being to get things
properly arranged on the expensive paths through the program. For example, inner
loops which are truly busy will be compiled first, registers arranged, etc. But those
pieces inside loops that are seidom used will have no influence on the initial register
smignments. When compiling these pieces, if there is some new register problem,
there are several ways to resolve it. Either the present code can be changed to make
it compatible, or the new piece can be compiled t0 work around existing coaventions.
The relative costs of the two methods can be compared, and a rational choice made.

By now, the meaning of “cosgulstion” in the title of this work should be clesrer.
Imagine the program, inciuding the subroutines, spread out over a table, with the
compiler dropping Jello on the parts as they are compiled. At first little drops appear
in seemingly random places. These get bigger and combine with other drops to form
growing globs. When two globs meet, ripples will go out through each as they adjust
to each other's presence, although the parts of the globs that formed first are lem
affected by the ripples. When compilation is complete, there is one congealed mass.

14 Scope and Limitations
This work is about code-generation, not about the entire process of compilation.

We will asume that before a compiler begins generating code, it will already have
-~ extensively analyzed the program, and produced an intermediate form. While this is

NN 0t

¥iy-s

. =0

AR

-*

'—'; KX

4

not the place to discuss intermediate form (see chapter 5), we will claim here that
conventional languages can all be reduced to quite similar intermediate forms. There
may be great variations in surface syntax and applications among COBOL, LISP,
FORTRAN and ADA, but from the point of view of code-generation there is little
difference. On the other hand, this work makes no attempt to treat highly
unconventional languages. For example, the issues in a PROLOG compiler are simply
not considered here. Neither do we consider query languages for relational databases.

Any discumion of code-generation must comsider target architecture. The
techniques presented here apply to coaventional machines, such as the PDP-10,
IBM-370, MC68000, and VAX. These are characterized by generslly serial operation,
on the order of 10 registers, and instructions that usuaily operate on or via the
registers. Special purpose machines, for example, the SCHEME chip, probably would
pot benefit from this new approach; nor would highly pipelined or vector machines

‘(we certainly do not address the problem of parallelizing serial programs). Although

there is no intent to address the issue specifically, this design may be useful in the
generation of micro-code, where the problem is to have the data in the right place at
the right time.

L5 A Guide for the Reader

This work develops the techniques that are necessary to make the coagulstion idea
into an algorithm-—albeit a large coe—for code-generstion. There i3 much further
work that could be done; indications of topics to explore further are described s they
arise in the course of the discusion. The most premsing issue is that of an
implementation, which has not yet started. It is t00 often necessary to apeal to one’s
sense of what is likely to be found in resl prograns, rather than referring to evidence

gathered by a compiler in everyday use.

For the reader wishing to skim this work, there is unfortunately a rather sequential
dependence of chapters. The best approach is to read from the beginning, until
tired. Chapter 2 outlines the mathematical objects that we will study. A natural
stopping point for the casual reader is at the end of this chapter. Chapter 3 coasiders
in more detail two relations introduced in Chapter 2, cohabitation and conflict.
These relations capture the competing influences in code-generation—the desire to

[

AT N s

5

have values remain in the same place, for speed, and the necessity to have values be
in different places, to preserve the meaning of the program. The reader will have a
much better idea of coagulation at the ead of Chapter 3.

Chapter 4 presents a technical device that is useful in representing the cohabitation
and conflict relations, and in detecting inconsistency between the two. Skipping this
chapter on first reading will camse oaly momentary confusion in Chapter 5, but will
leave the reader unprepared for Chapter 6. Chapter 5 provides an even better
perspective on cosgulation, became of the thoroughgoing way in which it follows the
imperative to be optimal locally, rat!mthanufeglobally «

Real cosgulation—techniques for joining previously "compiled” but unrelited
pieces—is the subject of the rest of this work. Chapter6pmvidaalgmthmcdenils
for enlarging cohabitation and conflict relations, and for determining whether the

. new relations sre still consistent. Chapter 7 lays the groundwork for dealing with

inconsistencies, and shows that inconsistencies have one of two distinct forms, splits
and twiss. Chspters $ and 9 give techniques to deal with the two kinds of

o, 8,4,

WS ke

v,

p

6

2. A Glimpse of the Basic Concepts.

In this chapter we give a brief preview of various ideas used in building the code
generator. With these in view, the more detailed descriptions of both processes and
data structures will be better motivated.

2.1 Regions

We view the program as being represented by a traditional flowgraph. A region is
a subgraph of this flowgraph (possibly consisting of a single node) which has already
been compiled.

arcs not yet compiled
|

N
/] v

arcs not yet compiled \
We speak of the compilation of nodes and arcs separately. Compilation of a node
produces a new region, consisting solely of the node. This compilation yields a
sequence of machine instructions for the part of the program which lies in the node,
a3 well a3 other data amociated with the region. Thus, a node is not necessarily a
maximal flowblock, but rather the largest piece of program which can conveniently
be turned into a region. This might be no larger than a single operation, e.g.
T<=V + U

The compilstion of an arc is the interesting part. This happens only when the
nodes at each end of the arc have been compiled, i.e., each node is in some region—
perhaps much larger than a single node. After an arc has been compiled it means
roughly that the code prioe to this arc is compatible with the code following the arc:

for example, registers are compatibly asigned. If an arc is compiled both of whose

r » wom
v o
> I3

%

e, a" \'5 LN

.,-..,‘ _.,,.
AL S AR

AL
Sl A

7

nodes already lie in the same region, it merely has the effect of adding an arc to a
region. This is called /ntra-region compilation. If the arc connects heretofore distinct
regions, then after it is compiled, there is only one region, conmsisting of the two
smaller ones. plus the added arc. This is referred to as inser-region compilation.

Wemhaeth;talhonnmﬁnevhichisbdngwmpﬂedmwted(at

le-tmcepmny)bym'mmue.
flowgraph of calls oa f graph representation
|
ﬁg (o
subroutine
f
\/
\”

When an arc entering 2 subroutine graph is compiled, it means that the argument
conventions (ss well as register conventions, etc.) are mutually understood by caller
and callee; similarly with an arc leaving a subroutine graph and result conventions.

The execution data required for the compilation process is frequency counts on the
arcs (oot merely on the nodes). Throughout this document, the frequency of an arc
will mean the number of times flow pames through the arc during one execution of
the program. The toplevel description of the compiler may be summarized as
follows:

Algorithm 2.1 Compilation

for A « each arc in order of decreasing frequency
if the entry node to 4 is uncompiled thea compile it
if the exit node to 4 is uncompiled them compile it
Compile the arc 4.

2.2 Cohabitstion and Conflict

Recall that the nodes in a region have compiled code associated with them. A line
of code consists of an. opcode followed by zero or more operands. Whenever a
variable is one of these operands, it is referred to as an occurrence (ie., of the
variable). Thus, a line of code might be ADD V,U. To refer to an occurrence of a
particular varisble, we use the notation V, where n is often 1. Beware that V, and V,
3 are not different variables, but different occurrences of the same variable. Thus, the
above line of code would usually be written ADD VU, so that we could refer to the :
occurrences V, and W,. If we wish to talk about an occurrence without naming its]
variable, we use o, possibly subscripted. The variable of an occurrence is denoted by - 4
v, 30 "0, and o, have the same variable” is written ®(0;) = Wop).

« -
P

) There are two important relations on occurrences. If two occurrences cokabrt, it
‘ _ means that the present code relies upon the fact that the two occurrences are in the <
" same memory location ("memory” here includes register and stack locations). Thus
cohabitation is an equivalence relation, partitioning occurrences into cokabitation

! claxses. Cohabitation is the on/y way in which the same memory location is referred
. to by different instructions. The code corresponding to different (in the source
3 code) occurrences of the same variable may find “the variable” in quite different
o places. Moreover, occurrences of different variables may cohabit, if that is 2 useful

The second relation of interest is that of conflict. If two occurrences coanflict, it
mmmteoderelianpontheﬁctthnthetvo'mcadomtmpy
the same memory location. There is a simple rule relating cohabitation and conflict:

- Two occurrences which are in coaflict may not be a member of the same

- cohabitation class.
This is called the consistency rule; much more will be said about it, or rather, about .
inconsistency. -

2.3 Supply aad Demand Sets
_ Define an entry node of a region to be any node in that region which has an
! uncompiled incoming arc; dually, an exir modeis one which has an uncompiled oy
outgoing arc. A bowundary node of a region is any entry node or exit node of the
region.

9

Following standard terminology, we call a variable /ive at some point in the
flowgraph if there is some execution path leaving that point along which the variable
is used before it is set. Each entry node for a region specifies the set of variables
which are live at entry to the node, and which can be seen to be live solely by
looking at the region. This set of variables is represented by a set of occurrences,
called the demand ser. Similarly, each exit node for 3 region specifies the set of
vuinblawhichmﬁvendtfmmthenodemdwhichmmﬁonedintheregbn.
As before, this set of variables is represented by a set of occurrences, the supply ser.
Either of these sets may be referred to as a boundary set. The calculation of
boundary sets presupposes a pass over the program to do live-dead analysis. Further,
the implications of the phrase "mentioned in the region™ are more subtle than one
might expect. The details of both these issues are discussed in chapter 4.

_ The purpose of the boundary sets is to aid in the compilation of an arc. A
" varisble may have occurrences in both the supply and demand sets, in which case the
occurrences must be made to cohabit. It is also possible for a variable to have an
occurrence in the boundary set of only one of the regions. Only variables that are
both five and mentioned in a region are necessary in the coagulation process, and
only those are included in boundary sets.

2.4 The Cost Metric
The objective function for the optimization process is the cost of running the

program on the same data which generated the arc frequencies that govern order of
compilation. We assume this metric to be a bilinear function of average space § and
total time T:

cost(S, NN =a,"S'T+a T+a;:S+ay
This formula covers most charging policies, and the coefficients have reasonable
interpretations:

a; is the cost per unit space per unit time

& is the cost per unit time of the CPU

a3 is a job surcharge for space
& is 2 job submision charge

In making decisions, we are interested in incremental cost:
Cot(S+ 8 T+D)=co(S N=gy (Sr+Ts+sN)+apt+ays
The term s-7 will generally be much smaller than the other terms, and may be

................

10

ignored. Rearranging the rest, we have:

() T+a)s + (a S+ a)t
Whenever we are changing or adding an instruction, it is simple to determine the
extra space involved (s), and since we know the frequency of the instruction, we
know the extra time involved (/).

The mising important parameters are the oversll space § and overall time T.
Since the program has been run, there should be a known value for §. If it was run
in an interpretive environment, there will be some change in space due to
compilation; since at least one pass has been made over the program before
code-generation begins, the size of the source will be known. A little experience with
the compiler should give a reliable conversion factor from source size to object code
size, 30 S can be estimated. Of course, if the program was rua in its compiled form,
we have actusl experience (probably space doesn't change too much with smail
 changes in the program). It must be remembered that most of S may be space for
data, not for program, so that errors in the estimated size of the program do not
gravely affect the overall estimate.

The estimation of T is trickier, but the same ideas apply. Since we can sssume
that the source has frequency statements attached, 2 little experience should give a
usable estimate for the overall time of the compiled program. Direct experience with
previous compilations of the program being compiled will of course be more relisble.
But here we do not have s cwhion analogous to the one that exists for space
estimstion.

Once there are estimates for § and 7, we can obtain the basic time-space trade-off

factor:

b=(a) S+ a)/(a' T+ a)
Thus, when changing the program in a way which uses s extra units of space and is
executed f times, the extra cost is proportionsl to:

s+ ¢ f where c= b-time to execute the instruction
The expression s + ¢- f will appear often in this paper, a8 the generic cost of sdding
or modifying an iostruction. Realize that s and ¢ are determined by the particular
instruction,

Using this analysis, we can gain some quantitative insight into the time-space

............

11

problem. For simplicity, assume g, = &y = 0 (or are negligible). Then b= 5/7, s0 a
is irrelevant to studying trade-off. Suppose that we have a 10K program, with 40K of
data, so § = 50K and that the program runs in 7 = 100 seconds; thus b = 500 (with
units of words/sec). Suppose we are trying to decide between using 2 instructions
which take 2 us each versus one instruction that takes 5 s (for all instructions, s =
1). Then, the two instruction sequence is preferable under the condition:

(2 inst)- (1 word/inst + (500 words/sec) - (2- 107 sec/inst) -)
< (1 inst)- (1 word/inst + (500 words/sec)- (5107 sec/inst)-)
« > 2000

The question is, how often do "typical” instructions get executed in 100 secs?
Programs are quite uneven in the distribution of their runtime. Assume that 90% of
the runtime accrues uniformly in 10% of the code, and 10% of the runtime accrues
uniformly in the other 90% of the code. Estimate the average instruction time as
2 ps, and compute the frequencies of the busy and non-busy parts of the program in

" 2 100 second execution.

busy frequency = 45000 non-busy frequency = 553
Thus, we should use the two instructions in the busy part of the program, but.only
the one in the non-busy pert. One cannot help but one wonder how many
programmers would exercise the correct judgment intuitively, and whether it would
“e worth their time to do the calculation every time a question came up.

While this example shows that timespace trade-offs can arise in the selection of
instructions, the importance of such analysis will probably lie in deciding upon other
optimization strategies. For example, back-substitution of subroutines can be quite
expengive in terms of space. It can also produce dramatic time savings, particularly
when applied to small data-structure access routines which the programmer may have
defined for the sske of modularity. Using the analysis we have outlined above, it is
possible to decide which back-substitutions really do pay off. Another optimization
technique iavolving time-space trade-offs is that of loop unrolling. Only when the
cost of space is accounted for does one know when 10 stop the unrolling process.

2.5 Register Allocation Represeatation

Amociated with each region is a structure representing required and possible
register allocation. The "required” attribute means that this structure records which of
the cohabitation clases are assumed to be kept in which registers, while the "possible”

12

sttribute means that a definite allocation is not given, only that from the structure it
is essy to asmign registers in such a way that the presently generated code will work
(thereby providing an existence proof that allocation is feasibie). For example, if a
machine has » identical registers, this data structure can simply be a set, of size not
exceeding n, of sets of cohabitation classes. Each of the sets of cohabitation clasees
wouid be amigned to the same register. In this scheme, there is clesrly a requirement
that any two members of the same set of cohabitation clames not be in conflict; any
set (of sets) of size less than or equal to n and obeying this requirement would specify
2 correct register allocation.

. :’g‘(:." P A

N -

.':'.. N l"".. '.-“I i _:"

Py

13

3. More on Cohabitation and Conflict

In this chapter we lay out the general approach to the building and maintaining of
the cohsbitation and conflict relations. Precise details will be given later; the idea
here is to show what kind of thinking motivates the details. We conclude with an
example showing an optimization which arises naturally in this code generator.

3.1 Caiculsation

We now give a rough description of when cohabitation and coaflict are
established. Cohabitation arises in two different ways. The most obvious is the flow
of coatrol from one occurrence of a varisble to the next occurrence of the same
varisble. In the compiled code for a region, if flow of control can pass from one
occurrence of s varisble to another occurrence of the variable without passing over
an intervening use of the variable, then the two occurrences must reference the same

location. As we stated earlier, the only way for this to happen is for the occurrences

t0 cohabit.

A less obviows way for cohabitation to arise is from the sssignment of scalar
varisbles. This is in part a consequence of the dictum that code is generated in the
most efficient way for the smallest possible context. When confronted with a
statement of the form V <~ W, the compiler takes the optimistic approach that
nothing at all has to be done here, because it can be arranged for V and W to occupy
the same location. This may seem insanely optimistic, but it is done not 50 much
because the programmer may have ingerted neediess amignments, but becawse of
internal reasons.

Parameter passing is modeled as assignment; the cohabitation of actual and

formal psramenter means that the argument to the subroutine is left in

exactly the right place. To encourage this, the initial assumption is that it
is possible.

Since trivial amignments are optimized away, earlier phases in the compiler
nsed not worry about creating extra assignments, if that is a convenient
way 10 express a transformation.

The programmer’s amignments may be necesary, but they may be in the
wrong place, from an optimizstion point of view. By msuming control
over them, it is easier for the compiler to produce better code.

In summsry, the minimization of moving things around is one of the central
problems of low-level optimization. The compiler takes complete control of this, not

LN 4

LA
L)

v

I'Al
ooy

’l'l
[

TR 2. "
y "1"-'4.-. 'jll o

o

14

allowing itself to be influenced by the programmer’s assignments. Thus the only way
that move instructions are generated is when all of the optimistic assumptions lead to
trouble, i.e., to inconsistency. Not surprisingly, inconsistencies can always be resolved
with move instructions; the problem is to do so as efficiently as possible, and
especially, to avoid moves when possibie.

To discuss coaflict, we must first discuss generations. A generanionis an
occurrence which is modified by an instruction. (We will call the left hand side of
an assignment statement a first xse) We will denote generations with an asterisk
superscript, as in V]. This convention will also help in reading the generic machine
langusage need in the examples—the asterisked occurrence is the destination of the
instruction.

Conflict arcs are established when ome occurrence is "propagated past” an
" occurrence which is a generation. For example, consider the code sequence:

MOVE V.. W,

ADD XY,
The occurrences X7 and Y, must both coaflict with V], becanse V is being changed,
and by the semantics of the language this is not supposed to affect X and Y (assume
no sharing here). It is sufficient to establish conflict only when propagating past
generstions, as we shall see in section 6.1.

3.2 Represeatation

We have seen that cohabitation is an equivalence reiation. We have also seen that
cobabitstion arises locally, becawse of flow or amignment. For inconsistency
resolntion, it is useful to keep track of the individual “ressons” for the existence of a
cohabitstion class. We do this with & corabiration graph, whose nodes are occurrences
and whose arcs arise from the flow of data from one occurrence to the next, or from
assignments. It is convenient to let this be a directed graph, with arrows in the
direction of the flow of data. A cokalitation class corresponds to a connected
component of the cohabitation graph.

mmhammmnmmbw:am'm
nodes are occurreaces. This graph and the cohabitation graph share node sets, s0 it is
often convenient to draw them on the same set of nodes, and distinguish arc types.

- e Y R Sl ™Y . . - ml M R e . '-ﬁ‘ﬁ-‘qjhﬂ
-«

'\
LIRA Y

The pictures are:

cohsbitatione——————>e conflicte—H———e =

These relations are not static during the course of a compilation, but are continually
adjusted as regions grow and coalesce. The cohabitation relation will be represented S
in part by a graph. Becamse the conflict relation is very dense, its representation and =il
manipulstion ss a graph would be very expensive; instead, it is represented indirectly, o
by means explained in chapter 6. o5

3.3 Costs on Cohabitation Arcs o
When an inconsistency arises, it must be resolved. This is done on the basis of

costs asigned to each cohabitation arc, which we think of as the cost of "breaking”

the cohabitation. The problem of deciding what number to asign as the cost of a

 cobabitation arc is more difficult than simply deciding whether to establish the arc.

This difficulty arises because to assign a number, it is necessary to anticipate how an

arc might be broken. We consider the details of this problem later, and focus here b

on the general principles wsed. |
The breaking of a cohabitation src usually involves adding some instruction(s), or

uwing more expensive variants of aiready generated instructions. If we knew what

these instructions were, we could we the cost metric described earlier to obtain the

sppropriate cost for the arc. The problem is that at the time an arc is being - :.‘:Ejl;::.'

established, it is not worthwhile to determine these imstructions. This is partly S

becamse there is 0o resson to spend a lot of time trying to figure out how to break

arcs whose breaking will never be helpful in resolution, and partly because breaking

an arc takes piace in the coatext of inconsistency resolution, so that the best way to s
do it depends upon a larger context. Rather than try to obtain the cost exactly, what N
is dooe is 10 get a good /ower bound oo the cost of bresking the arc, ie., we et
wnderestimate the cost of resclution, but by as little as possible. When the time

comes t0 resolve an inconsistency, the approach is as follows:

1. A set of arcs 10 be broken is chosen on the basis of the costs on the arcs.

2. Given the set of arcs in step 1, the precise modifications are determined
and the precise cost of breaking this set is caiculated. If this turns out to
be much more than expected, the modifications are remembered, but

16

step 1 and this step are repeated, looking for a better set to break.
3. Eventually, the step 1-2 loop stops, and we pick the set with minimum

actual cost. .
If, in step 2, we discover that an arc is more expensive to break than was originally
anticipated, the cost of the arc may be revised, so that future calculations in step 1
will have a more accurate view of things. This rise in costs is one of the ways in
which the steps 1-2 loop terminates - eventually, the actual cost is close to the
estimated, and the estimated cost is known to be about as good as possible. So we use
the modifications which have been calculated.

3.4 An Example

At this point, we offer an example which shows how cobabitation, conflict, and
inconsistency resolution interact when compiling a program. The resder will have to
accept some statements on faith, such as costs on arcs, choice of arcs to break, and
how the compiler chooses to implement the breaks.

The example we choose is a conditional exchange, ie, a statement such as:
IF .o. THEN Z <= X3 X <= Y; Y <= Z ENDIF ...
By the time the code generator sees this, we may asume we are dealing with the
flowgraph fragment and conflict relstion (numbers near the arcs denote their
frequency):

Xo—1——=Y

conflict relation
from R
The abwence of Z from
the demand set means that
Z is dead after the exchange

already in regions
(Le., compiled)

40
demand X,. Y3

The most frequent arcs are compiled first, 50 say that the two arcs touching the

W R T T N T Ty Ty

- 17

exchange box are compiled next. The first of these will cause the box itself to be
compiled, resulting in cohabitation arcs and boundary sets below. CHB (cohabit) is a -
pseudo-op that provides 2 place for the occurrences. It requires no space in the i
eventual machine code, and no time to execute. The actual cohabitation information

is in the graph on the right. (The number on a cohabitation arc denotes the cost of
breaking it) -
X, T
demand Xl. Yl lw 'Y] _::
: CHB Z,.X, R o
: CHB X, Y, 4o 0 -
CHB Y3,Z, Z; I‘o I =
2 .
supply X3, Y2 Y, ;
Compiling the frequent arcs will result in nothing more than establishing cohabitation - ;
¢ . arcs among matching elements of supply and demand sets. This results in the -
' following overall relations: o
Xo t—H—— Yo
{40 40} -
xl e ch -
{40 “0} N
ol Zl] L J 2
; ; £4o w}x :
. '-.
Y2 iw 3 s
.2{40
Y3 L R
Note that no inconsistency has arisen yet. This happens when the remaining arc
(with frequency 2) is compiled. The graph after compilation, but before resolution,
is as follows: :
q
It is clear that the chespest way to resolve this is to break the XX ; and Y3 arcs. %

B S T T T JLUTUL T UL SR L R
........

..........
..................

55 % A RO

A ok R
At

18

This is done by move instructions placed on the infrequent arc. To avoid ordering
problems, and to exploit machine instructions which move several quantities at once,
it is convenient to postulate a "simultaneous move” instruction which we place on the
arc. This results in the new flowgraph fragment and new relations (X,, X5, Y,, and
Y5 are new occarrences for the new instruction):

4! 2]
z iy S by
XOI_H—IYO
MOVE <Xg,Yg>, <Xy Ye> CHB Z3.X, X:I IYl
CHB X,, Y, Z,e X,
CHB Y;,2; Zzi ixs
2 e I,
% v
1,4

Remember that what actually gets "moved” is cohabitation classes, of which we
presently have two, ¢; and ¢, as labeled above. Writing the simultaneous move in
these terms, we have MOVE <c,,¢;>, <6y, ¢,>. This begs to be compiled as an
exchange instruction, if one is aviilable. And note that the programmer wrote the
exchange on the other arc!

''''''''''

A R At it S et Bt Beb B g

4. Extra QOccurrences

4.1 Motivation

There is a tradeoff regarding the construction of the cohabitation and conflict
relation. On the one hand, it would be ideal if the mere selection of a set of arcs
would indicate exactly where to place the moves to break the set. But there is so
much chaice in where 1o place moves that any data structure which would achieve
this goal would be huge. On the other hand, if the relations don't give a reasonably
goodiduntowhuethemovugo.itmumthatistherehﬁomuebdng
constructed, one doesn’t really have a very good idea of what the costs of breaking an
arc are. This leads to either missed optimization opportunities (if over-estimation
occurs), or extra expemse in resolving inconsistences (if under-estimation occurs).
Further, if the cohabitation and conflict information doesn’t give a good idea about
where to place moves, the calculation of precisely where to place them may be
extremely expensive.

The compromise we uwe is an indirect one. Rather than asocisting with a
mhnﬁnﬁmucmekhdddauindicaﬁnghowtopheethemweaddafcw
extra occurrences of variables to the flfowgraph. These occurrences will appear in the
cohabitation and conflict relations just like "legitimate™ occurrences. The placement
of these occurrences in the flowgraph is relsted to the likely places for
incoansistency-resolving moves, so that they aid in determining where to place these
moves. We noted earlier that cohabitation arcs are directed. The reason for this is
to further aid in the determination of where to place moves.

4.2 Merge and Split Occurrences
Some extra occurrences of a variable may be added at points where, relative to the
variable, flow splits or merges.

Definition. Given a varisble V, a V-merge node is one which can be reached from
differeat occurrences of V along paths whose intersection consists solely of the node
N. A Y-split node N is defined dually, ie., is one from which distinct occurrences of
V may be reached along paths which intersect oanly at N. O

-S.I‘ A
N
T O St T S Y TP e M T e et T e T T e T e e e e e e e e e e e e
T A R T T - S St BRI SO o e VEOASENES
PR A I SN TR VLU s’ . ’

o
o
ik

20

The calculation of V-merge and V-split nodes can be solved by using Tarjan’s
techniques for path-problems on directed graphs [6].

Not every V-merge and V-split node has an extra occurrence of V. The precise
rules are:

M If Nis a V-merge node and V is live at entry to N, there is an occurrence of
Y before the first change to a variable.

S If Nis aV-split node and V is live at exit from N, there is an occurrence of V
after the last change 1o a variable.
I necessary, extra occurrences are placed under the pseudo-op USE. The rationale
for extra occurrences will become clesrer as the techniques of cohabitation/conflict
caiculation, cost estimation, and move placement are discussed. We now give some
hints a8 to why these seem to be the proper concepts. Consider the following
program segment:

Suppose that the upper two uses of V are inconvenient to keep in the same place.
The place to fix this is on one of the arcs coming into N, which forces V to be in

.......................................
‘‘‘‘‘‘‘‘‘‘‘‘‘

P

‘.“‘v‘-
I‘ l. l’-‘,

21

one place as the middle region is entered. The same remarks apply dually to the
lower two uses of V and N,

As another example, consider the fragment:

ooonoo.

!

o.ovzouo ..-v;...

Note that Y is live at the bottom of N, so N is a V-split node, and an extra occurrence
of V is placed at the bottom of N; call this occurrence V,. In the compilation of the
arc entering N, there would be a cohabitation arc from V, to V,, which we denote
V+V,. Similarly, compilation of the arc exiting N on the right would produce the
cohabitation V,+V;. Suppose it became necessary to break the cohabitation chain
VoVeVs. If each of the arcs exiting N has a non-zero frequency and flow is
conserved, the arc leaving N has a lower frequency than the arc eatering N. Thus
the cost of V VY, is less than the cost of V;+V,, and the place to break the chain is
V+V3. This gives 2 good idea where to place the move—along the arc from N to the
occurrence V;. Without the extra occurrence one would have only e cohabitation
Vi+V¥;. If it must be broken, it is harder to figure out where to put the moves. It is
aleo more difficult to come up with a general way of estimating the cost of breaking
a cohabitation.

4.3 Intermediate Subgraphs

This section describes in more detail how the insertion of extra merge and split
occurrences limits the part of the program involved when breaking a cohabitation, In
order to discuss this, we assume that the program graph has s single entry and single
exit node. We then use the standard graph terminology.

Definition. A aode (or arc) N, dominares 2 node (or arc) N, when N, is on every
path from the eatry to N,. Dually, Ny back-dominates N, when N, is on every path
from the N, to the exit. O

-

e

I
RN
ST
PP RPON SRy

L Bt pis i - gl gt mess pig

. A R P P R R S A S R I L
dr et e NN e AR A e N e e S

AP

We wish to extend dominator terminology to occurrences. We do so by defining a
relation on paths and occurrences, so that any graph-theoretic notion defined in
terms of paths will extend to occurrences. We first need the notion of one
occurrence lying above or below another occurrence in the same node (they may also
be unordered). This is usually clear in any given context, and is not formalized
further here. But using it, we have:

Definition. When we say that an occurrence o is on a2 path from an occurrence p to
an occurrence ¢ we mean both the following:

If o is in the same node as p, it is below p; otherwise o is in some node on
the path from the node of p to the node of ¢.

If o is in the same node as ¢, it is above ¢; otherwise o is in some node on
the path from the node of p to the node of ¢.

g
Note that if » and ¢ are in the same node, this says that o is below p and above g¢.
With this, we introduce an idea that is used throughout this paper:

Definition. Let p, ¢ be any two occurrences (or nodes or arcs) of a program. The
intermediate subgraph of p and ¢, written G(p, ¢). consists of occurrences and arcs
dominated by p and back-dominated by g, and of all nodes touched by the srcs.

(=]

We usually deal with intermediate subgraphs of p and ¢ where p and ¢ are different,
but nearby, occurrences of the same variable. The live region of a variable partitions
nsturally into certain of these subgraphs, because of the insertion of extra
occurrences. Before stating the main result, we have some preliminaries.

Definition. Let V be a variable of the program. A V-free path is one which has no
occurrences of V in any of its nodes, except perhaps for the beginning snd/or ead
occurrence, if the path begins and/or ends on an occurrence.

m)

Definition. An occurrence Y; V-dominates an occurrence (or node or arc) ¢ if V,
donﬁnamlqmdifeveryv-freepafhfrommoccumofvtoqbeginsatvl.

a

In the next result and throughout this paper, we assume that any variables which are
live at the eatry to the flowgraph have an occurrence there (at least conceptually),

SIS

Y Y T T NV T WL N YW v oW w o)

B o~
2]

" adh~ o= i el S N L s w IR At iy W W W W, T Sg s e

23
and that V-merge nodes are calculated accordingly.

Lemma 4.1 Suppose there is a V-free path from an occurrence V,; to an arc A4 (resp.
a first wse 0), and that V-is live on 4 (resp. at 0). Then Y, V-dominates 4 (resp. 9).
Preef. We consider the arc case, first showing that V; dominates 4. Suppose there
is some path from the entry to 4 which avoids V;. This path must intersect the
V-free path from V, to 4 at some node above 4. Pick the nearest such node to V.
This will be a V-merge node, because there are disjoint paths from distinct
occurrences of V to this node. But a Y-merge node must contain an occurrence of V,
and by the V-freeness of the path, the node must be that containing V;. But this
contradicts the choice of the path to avoid V;. The oaly possibility is that V,
dominates 4. '

To show that V; V-dominates 4, we must show that every V-free path from an

~ occurrence of V to A starts st V,. Suppose instead there is a V-free path to 4 from

V,. This path intersects with the path from V; to 4 in the hypothesis of this Lemma
at a node above 4, causing a contradiction as in the above paragraph. This proves
the lemma in the arc case.

We next consider the lemma for a first wse 0. The. proof here is essentially the
same s for an arc, the difference being that when the paths intersect, it will be at a
V-merge node, so an occurrence of V will appear above any first use in the node, in
particular, above 0. Thus, we do not have a V-free path from V) all the way to 0. O

Definition. An occurrence V, V-back-dominates an occurrence (or node or arc) ¢ if
V, back-dominates ¢ and if every V-free path from ¢ to an occurrence of V ends at
v,.oO

Lemma 4.2 Soppose there is a V-free path from an arc 4 (resp. a first use 0) t0 2
non-first occurrence V,. Then V, V-back dominates A (resp. 0).

Preef. Exactly dual to the proof of Lemma 1.

ju |

The main result of this section is this:

Theerem 4.1 Suppose the variable V is live on the arc 4 (resp. at first wee 0). Then
A (resp. 0) lies in 3 unique minimal intermediate subgraph of the form G(Y,V,).
Preef. Look at any path from the entry to the exit through 4 or 0. Let V, be

.....

24

the last occurrence of V on this path before 4 or 0, and let V, be the first occurrence
of V on this path after 4 or o (there must be one, else V is not live on A or at 0). By
Lemma 1, V; dominates £ or o, and by Lemma 2, V, back-dominates 4 or o; thus 4
or o is in G(V,.V,). This proves the existence of V,,Y,.

=

Topraveuniqnenes.aontoaholiainG(V,V). By Lemma 1, any path
from V, to 4 or o must go through V,. Thus G(V,V) contains G(V).V), and is :::.fi::-
strictly bigger if /» 1. By minimality, then, /= 1. Dually, we conclude j=2. O SN

We note that this Theorem does not hold if the phrase "arc A" is replaced by
"nodéraﬂndbwuumwcmo,mhathmjutﬁrnm For Rk
example, 2 V-mexge node containing V, s the first use of V will be in G(V,V,) for S
several different /. On the other hand, V; itself does not belong to G(Y,V,) for any i £
since it is not dominated by V; the same may be said for use occurrences above V, ot
(but in Vs node). While. the partitioning of arcs and first uses is important in what ‘
follows, the lack of this for nodes and for general occurrences is not a problem. s

A further consequence of the way that intermediste subgraphs divide up the
flowgraph is the following. : *

Corollary 4.1 Let S be any connected subgraph of the flowgraph which has o R
occurrence of V, but in which V is live at some place. Then V is live in all of S and
all of the arcs of § belong 10 the same minimal imtermediate graph G(Y .Y,). s
Preef. We use induction on the number of srcs. If this number is zero, the result is N
vacuous. If there is at least one arc, pick coe, snd by Theorem 4.1, choose V; and @*
V. Suppose there is some arc for which the result does not hold. Either V is dead v
along the arc or the minimal intermediate subgraph is different, ie., is of the form
G(V,V).vbrehlcrjnz. By the connectedness of S, we may choose this "bad™ :
arc so that it shares 2 node with some "good” arc whose subgraph is G(V,.V;). There TN
are four possibilities.

T T e et et T e T O e e e T T T T T e e T T S e P o et
AT e R L e T T U N T N St LN AT T S A A R,

B NNPA
AT NN

In the first case above, V is live on the bad arc because it has no occurrence at ¢.
Since V,; V-dominates the good arc, it must also V-dominate ¢; but if it V-dominates ¢
it must V-dominate all the output arcs of ¢, in particular, the bad arc. Thus, /=1 in
this case. Now, suppose that the bad arc is not V-back-dominsted by V,. Since the
X good arc is, ¢ is a Y-split node, and must have an occurrence of V. But ¢ is a node of
4 S, and cannot have an occurrence of V. The ounly possibility is that the first case
- cannot arise. Dual considerations eliminate the second case as well.

In the third case, since ¢ has no occurrence of V, V must be live on the bad arc.
Asmume that i » 1. Then V-free paths from distinct occurrences converge oa ¢,
mkinzgav-mugeﬁode.themmtndicﬁonuabove. Dually, if j»n2,¢gis a
V-split node, again 2 contradiction. This eliminates case three, and the dual argument
eliminates case four. Thus there can be no bad arcs.

a

The importance of this corollary is that it controls the maintenance of supply and
demand sets. We said earlier that an occurrence of a variable was in one of these sets
if the variable was live at the appropriste point, and if it appears in the region.
Suppose we are compiling an arc between regions R; and R,, where R; mentions V
but R, does not; assume that V is live along the src being compiled. Then we expect
to find ¥ in the boundary set of R; but not in the boundary set of R,. The
importance of the Corollary is that merely be seeing an occurrence of V in the
boundary set of R; and nos seeing an occurrence of V in the boundary set of R,, we
know thst V is live throughout R;. We may thus put the occurrence oa all of the
entry and exit nodes of R,, since these nodes will be entry and exit nodes of the
newly combined region, except perhaps for the node touched by the arc being
compiled. We give a picture of this "sideways” propagation:

M e e =
-‘_\'.‘-'-'-'5'

<<<<<

.supplg Vl V1 now added to demand sets

\/\/>

Y, now added to supply sets

The crucisl role of extra occurrences in allowing this type of propagation is

demonstrated by the following counter-example. The point is that without extra
occurrences, the situation would look exactly like the above one, if attention is
restricted to what is already in a region. However, in the example below, V is nor live
. throughout the region, in particular, it is not live at the bottom of the lower right
" node. Thus we could not correctly add V to the supply set of that node.

. C\/\/)

V €= 400

In the scheme we have proposed, R, would have split and merge occurrences of V
added, 50 that there wouild be some demand occurrence of V at the node pointed to
by the arc being compiled, before compilation of the arc begins.

44 Deadly Occurrences

It may happen that a variable in a program is live at the bottom of a split node,
but dies out of one or more of the arcs of the node. In this situation, it is necessary
to know in which direction the variable lives and which it dies. One possible way to
solve this problem is to provide some data structure on arcs which yields this kind of
informstion. However, rather than complicating things with a new type of data
structure, we we extra occurrences. The idea is to let the variable live on all the arcs

LA RN

) 27
out of the split node, and to kill the variable where necessary by placing an extra
occurrence under the pseudo-op KILL. The picture is:

.tivllll

USE V, split occurrence
3 TR
; < KILL v‘ 6 aes V;. LX) _.'_::-::

vs <.‘ eve V6.<- L] | "‘*.

rl

T
4

2

¥

v
3 Ay By
a0 J.

2 e
.

. The KILL V, indicates to a forward scan that V is not needed—something that would
.‘ ‘not otherwise be known until the cut set of assignments is detected. This is one
3 more way in which extra occurrences are used to 2id later scanning. As we will see,
‘ 00 harm comes in assuming that V is live on the arc where it is really dead. R

5. Compiling a Node

We coasider the compilation of the smallest regions, ie., nodes. Such a
compilstion produces a kerne/ region. The kernel regions are the repository of ail
machine code for the program. First we consider the input to this part of the
code-generator,. We have already assumed that the code-generator works from a
graph representation of the program; in this chapter we will need to make some
additional sssumptions about the contents of the nodes, which together with the
graph itself, constitute the /ntermediate form for the program. Each node will have a
machine-independent, but nevertheless "primitive” operation. The earlier phases of
the compiler may introduce temporsry names, so that a statement from the source
likeW <- XaY + Z will appear in the intermediate form as:

T<-=X=%xY or TM<-XxY
Hee T+ 2 T2 <= T1 + 2
W <= T2

" The intermediate form will contain occurrences, 5o that if we had been following our
ususl notation, all the variables above would be flagged with subscripts. The
code-generator will commonly sppropriate the occurrences of the intermediate form
for use in the machine code that it produces.

This chapter may be viewed as a further specification of what it means to
“compile the node”, as stated in the compilation algorithm (page 7). Although
computation cost msy ultimately force a special means for turning maximal
flowblocks into regions, we consider here regions arising from single statements of
the intermediate form. For each kernel region, we want:

Boundsry sets (remember that the node is buth an entry and an exit node
for the region). .
mmmmmmmﬁmmmmam

The "machine code” for the region (quoted, because it may not be exactly
machine code and because it may contain pseudo ops).

Each of the sections of this chapter will consider certain types of kernel regions,
and will provide invariant amertions about regions. The basis for the inductive proof
of these amertions is that they hold for kernel regions.

demand Vy, Wy
KILL V4,4,
supply &
This is the most trivial posible region.
l.-.::;i -‘:‘, - -::‘::;:-:;_.: .:-":-'_; _____ ‘“ ARG ': ,.: :_.__‘_,. w? e - '.'\L\ :J- (L P L -----

5.1 Extra Occurrences

In this section we will treat the extra occurrences whose placement was described
in the previous chapter. - All of the extra use-occurrences at the top of a merge node
(or bottom of a split node) are collected and placed under a single pseudo-op. In this
case, the intermediste form simply becomes the "machine code” when the node is
compiled. In the picture below, the rounded box represents the newly constructed
region. It has one node, the rectangular box. Since this node must have entering and
exiting arcs, necemarily not yet compiled, it will be an entry and exit node to the
region, with the supply and demand sets as shown.

de"and VI.ul. L)
USE VI.ul...--

supply Vi Hp,eee

We now state explicitly the invariants describing precisely when an occurrence is in a
boundary set.

BND If a varisble is live at the bottom of an exit node, and if an occurrence of
the variable appesrs anywhere in the region, then some occurrence of the
varisble will be in the supply set of the exit node; and conversely.

If s variable is live at the top of an entry node, and if an occurrence of
the variable appears anywhere in the region, then some occurrence of the
variable will be in the demaand set of the entry node; and conversely.

The correctness of these invariants for the above kernel region follows becanse

USE V, sppears cnly where V is live.

Killing occurrences are similar to we occurrences, but according to BND, they
contribute oaly to demand sets:

------ . < . - C - - - ~ - - - - - - - Bl Rl wall "l "y Aak g o3l il S

~ .-
-

R R DOOD:

i it
P

5.2 Assignments

Recalling that we take an optimistic view of assignments (no code need be
generated), we set up a peeudo-op to hold the occurrences and construct a
cohabitation arc to indicate our assumption. Recalling the pseudo-op CHB, we have:

intermediate form demand U, Wye
Vi<-Hi» CHB V), 4, svef
s iy Vi W
uppiy 1\1 1 vl‘ b
) k Ll
There is an assumption that this Lol
Wy appears if
inotahnmofV,orﬁ—J’ itlx:not ll:::eonl;u}j
amignment would be elimins 2 Tast mee

The cost to break this arc is indicated as s + ¢ f, where s and ¢ are the space-time
factors for a move instruction, and f is the frequency of the assignment. The means
of breaking this cohabitation arc is to change the CHB to some move opcode, thereby
adding space to the code and time to the execution.

It should be noted that s and ¢ are chosen optimistically. For example, on a
register machine, they would be chosen on the basis of a register to register move
instruction. If it becomes necessary to break the cohabitation, it might then be
discovered (in the context of a by now larger region) that one or both of V; and W,
are not registers. Thus the actual cost would turn out to be much larger than
expected. As pointed out in section 3.3, this particular break in the cohabitstion
relation might not be used after all; if it is used, the cost of breaking it would be
upped in light of the new knowledge.

The above kernel region has a single node, with associated supply and demand sets,
just like the kernel regions of the previous section. It also has a cohabitation graph.
Technically, so did the regions of the previous section, but those cohabitation graphs
had no arcs, 5o we didn't discuss them. This non-trivial cohabitation graph provides
an opportunity to introduce the invariant to be obeyed by the cohabitation graph of
a region. As with the BND invariant, this invariant is formmisted with respect to
what can be seen in the region. We remson as follows. Suppose we begin an
execution at some entry point to the region, and follow it to an exit node. The only

.............

k)|

thing which can influence the execution is the values of the variables in the demand
set of the entry node, plus any inputs obtained along the execution path. The only
lasting effect of this execution path is outputs, and the values of the variables in the
supply set of the exit node. The semantics of the source language will specify what
execution path will be taken, given the values for variables in the demand set and
inputs along the path, and will specify the outputs and the values of the variables at
any point. In perticular, at the exit node, the semantics will specify the values of the
varisbles in the supply set. With this region-restricted view of correctness, we arrive
at the following invariant for cohabitation.
CHB The machine code for a region is correct for execution within the region,
provided thst all the occurrences in one cohabitation class are assigned to
the same location.

We examine this invariant for the above region. The only demanded varisble is W,

.and the semantics of the language prescribe that V and W have the same value after

V <~ U is executed. If V and U occupy the same location, they must have the same
value upon exit. The invariant hoids.

5.3 Computations ‘

It is here that the most interesting cases arise. We shail consider as our
fundamental example the source construct V + W. To make things interesting, assume
that a machine add instruction hss only two operands and always destroys one of
them. In the case where V and W are last uses, we have the following compilation of
T <= V 4+ W (recall that * denotes a generation, so the instruction below adds the
second operand to the first):

demand V¥, W, Vir
ADD Ty, My . lo
supply T, ™

Since V, is a last use, we can make the optimistic asumption that V, and T; can
occupy the same location—thus leading to the cohabitation V, + T3. It is evident
that the CHB invariant hoids. Since V, and W, are last uses, and T; a first use, we
also see that the BND invariant holds.

-

S N Sl =i S i ey ~

2

The rationale for the O cost of the cohabitation is that conceivably, an
inconsistency could be resolved by interchanging the two operands of the +, so that
W, cohabits with T7.

Next, let us suppose that neither V, nor W, is a.last use. Then any simple ADD will
destroy a needed variable. It might seem that a sequence such as the following is
pecemary:

demand Vl. “1

MOVE T;.V,
ADD T, W,

supply V. Wy, T

But, on some machines, such as the PDP-10, there are instructions which leave 3
result in two places or which can do a move while doing some other operation. Thus
it might be possible to have two copies of a variable at this point, and to clobber only
one. Since the strategy here is always to be optimistic, in this case we could generate
a8 code only a simple ADD, demand two copies of a varisble, and set up a conflict
relation to indicate what the problem is.

demand V,,Va, Wy

ADD T, W
USE V,

supply Vg, My, T]

The peendo-op USE is employed to provide a place for a new occurrence of V. The
costs on the cobabitation arc should be 0, becamse of the possibility that even if two
copies of V cannot easily be made available, two copies of W can be. On a machine
which does not freely generate copies, such a technique is of course not worthwhile.
On a three operand machine such as the VAX, we could use all three operands:
ADD_3 V. W;. T, On many machines, the MOVE-ADD sequence will be the best
possible code.

Finally, in the case that exactly one of the variables is a last use, we generate the
following region (without loss of generality, assume V, is a last use, W, is not):

g » o
- demand V,U, Vie M :-—
ADD T, Wy . l S
supply Ty.Wy 1o -.,.j::
The cost of breaking this cohabitation arc depends upon what might be possible if —
this optimism doesn’t work out—availability of multiple copies, three-operand
instructions, or only a MOVE-ADD sequence. T
In the last three kernel regions pictured above, we have inserted a non-trivial
conflict relation into the region, without saying precisely what correctness is. The o
invariant here is quite similar to CHB; it simply formalizes the notion that coaflict :
prohibits excessive cohabitation. {

CON The machine code for a region is correct for execution within the region,
' provided that conflicting occurrences are not assigned to the same
location,

Implicit in the invariant is that different cobabitation clases cax be assigned to the
same memory location (especially the same register), so long as they do not conflict. S
The correctness of CON for all the kernel regions of this section follows from a o
simple rule that has been observed in establishing kernel conflict:
Whenever an occurrence is both in the supply set and the demand set of a
keroel region, it is in conflict with all the generations of that region.

We have chosen a commutative operation such as ADD to show how the basic
scheme allows examination of the various ways of compiling the operation. We
consider briefly the construct T <- V - W, where the machine has no reverse -
subtract instruction. The first attempt at compiling this is SUB V3, W,, regardless of
whether V, is a last use. The difference between this and the ADD case is in the ;
accompanying data structure, particularly the cost on the arcs. It always hurts to f_;;f::'
bresk V; » T}, because it cannot be done with a simple change to an instruction.

(Ignore the possibility that it might be reasonable to calculate the negative of the
desired quantity, and correct things later, a8 in U - V GT @) Here are the four S
cases, under the assumption that the machine can freely generate coples:

.................

V. W both last use

SUB Tj.H,

Vi aaT]

Y not last use, N last use

SUB T}.H,
USE V,

demand Vl- Vz,ul

supply V. T;

V17"Tl
V2

M

delland Vl,ul : demand Vl.Hl
R SUB T, Wy .
supply T, supply Wy, T,
[]
ul%

- R W TR T

V last use, W not last use

V, W not last use

demand Vl. Vz.”l
SUB T,.W,
USE Vv,

supply Vz.Hy, Ty

Vye Uy

35

6. Compiling an arc
We finally come to the interesting part of compilation—compiling an arc. The
following picture represents the generic situation.
3 N, is an exit node of the region R;
M
supply p1.92.---

arc A with frequency f

\ demand 4;,¢5....

X ("’”z

R: N, is an entry node of the region R

'In general R; may have other exit nodes, and N; may have other arcs leaving it,

some compiled, some not; dually for R, and N,. The occurrences supplied by N,
(resp. demanded by N,) are denoted p;, py ... (resp. 9), ¢, -.). This does not mean
that p is the varisble of p, Rather, the notation Wp) is used. Note that R; may be
equal to R,.

Our goal in this chapter is to devise the proper adjustments to the data structures
(boundary sets, cohabitation and conflict relations, and machine code) so that after
inclusion of the arc 4 all of the invariants of the previous chapter remain true.
Naturally, we inductively assume the invariants for R, and R,.

This chapter is an elaboration of what it means to "compile the arc” (compilation
algorithm, page 7). The process of compiling an arc is driven by the members of the
boundary sets, denoted sbove by p;, 2, ... and ¢;, ¢, .. . The members of each of
the two boundary sets divide into those that share a variable with an occurrence of
the other boundary sets—these are called marched occurrences—and those that do
not. In broad terms we have:

. A el
RER N 0CE
-

P

) -
PR ST AP

Algorithm 6.1 Arc-compilation

fer p.g « matched occurrences along arc A
Match p.g _
for p « unmatched occurrences of N;

Propagate p throughout R,
fer ¢ « unmatched occurrences of N,

Propagate ¢ throughout R,
The next two sections consider what it means to "propagate” an occurrence
throughout a region, and what it means to match occurrences. Subsequent sections
consider some derivative problems.

6.1 Propagation of an Occurrence

We coasider the case in which the variable of some occurrence in the supply set is
not the variable of any occurrence in the demand set, or dually, ie., interchange the
words "supply” and "demand". For simplicity, we talk about only the missing demand
varisble case, and do not continually make dual remarks for the missing supply
varisble case.

Using BND inductively, we conclude that R, has no occurrence of V, and
consequently, that R, = R,. Thus the new region will be R 4 R\ U{4}UR,. Then
we invoke Corollary 4.1 and deduce that V is live throughout R,. The combined
region R is now in danger of violating BND, since it now has an occurreace of V
(namely V), but 0o occurrences of V in the boundary sets of what used to be R,.
These observations prove that the following step maintains the correctaness of BND
for the variable V.

Algerithm 6.2 Propagation of an occurrence, step 1

Add Y, to each boundary set of R,.

This rule is the basis for the term "propagation.” Aside from initial elements of
boundary sets from the construction of kernel regions, this is the only way that these
sets grow.

We next consider what we must do to maintain the CHB invariant, relative to the
variable V. The answer is, nothing at all. To see why, consider an execution path in
R. Since R; = R,, such a path will lie entirely within R; or R, individually, or will
crom the arc A4 exactly once. Since one of the original regions has no occurrence of
V, there are no new requirements relating cohabitation of occurrences of V. Thus, no

u.,“- oo
K

(S e e Bad et Sl YAl

k14

change to the cohabitation graph, at least on V's behalf, is necessary.

The situation is quite different when we consider the CON invariant. To see why,
let us suppose that V appears in R; but not in R,. Let us assume that there is
another varisble W, which might or might not appear in R;, but in any case does not
have a generation there. An execution starting in R;, entering R, (via 4), and
pessing through the generation of W can change the value of V. But since V is live at
exit nodes of R;, the execution path might not have the correct effect on the value
of V. In order to maintain CON, we must add some conflict relations. Let V; be the
occurrence of V.

Algorithm 6.3 Propagation of an occurrence, step 2

Establish conflict between Y; and every generation of region R,.

To show that CON holds for the region R in light of the above action, we follow the
above reasoning which we used to motivate the action, except we can aow observe
“that no change to a location in R, can affect V, so that the value of V as an
execution path croses arc 4 (inductively correct from R),) is the same value that it
has at an exit node of R,. The correctness of CON is the last step in showing the
correctness of all the invariants, relative to V, when V,; is an unmatched occurreace.
Note the similarity of this algorithm and the rule for kernel conflict, page 33.

Because of the way that conflict is created for unmatched occurrences, the set of
such occurrences is called a brush ser, the image being that these occurrences "brush”
over the region, creating conflict. It is a simple matter to go through R, establishing
conflict between its generations and V;. It is also simple to see that doing this
nsively is going to be very expensive as regions get large. It would have to be done
for every unmatched occurrence of the supply set, so the number of steps would be
proportional t0 the product of the size of the brush set and the number of
generations of the region. Fortunately, something much more efficient than a literal
interpretation can be achieved; the algorithms and dats structures are discussed in
sections 6.6 and 6.7.

Pon i R

R

3 R

6.2 Matching Occurrences R
In this section, we consider 2 pair of matched occurrences, i.e., p and ¢ with Wp) = ‘ .
w¢). It is possible that p = ¢, because of a loop or because of sideways propagation,

as pictured below (p =V, 4 is the arc being compiled).

Q)

Nyo<—

!)
LN

, N7 "

"a There is 00 action to be performed in this case, but we must of course prove that the

. " invariants hold after inclusion of A4 in the region. Observe that we must have R =
R,, since the same occurrence cannot be in separate regions. The BND invariant
follows directly from that. Consider an execution path in R 4 R,U{4}. We use BN
induction to prove correctness up to the first appearance of 4, then obeerve that the r

value of V is delivered at N. in the location of the cobabitation class of p, and is L

required at the same place st eatry to N;. Thus, relative to V, comectness extends T

acros A, and we may repest this argument till we get to the end of the execution N
Nk
If p and ¢ are distinct, we write 7 =V, and ¢ =V,. In this case, R, and R, may or E;t;_

may not be the same, but in either case, there is no need to change the boundary sets Q:
inherited from R, and R,. The BND invariant holds by direct induction. However, L
CHB does not necessarily hold, because we must make sure that V; and V, are
| amigned the same memory location, or we cannot make a correctness argument for
: an ezecution path croming arc 4 The purpose of the following algorithm is to
3 formaily state what must be done to the cohabitation graph to maintsin CHB. =
B Algerithm 6.4 Match occurrences (for one variable) o
. Establish a cohabitation arc between V, and V. L
) i there is an inconsistency thea call the inconsistency resolver. S
! If we can perform this part of the algorithm without getting an inconsistency, then oo
CHB follows for the usual reason—we can prove correctness acroms the arc 4. To T
¢

AR

.t e - R
LA, WL AL IPE. WS AP S SLAL AL TAY)

39

prove CON, note that occurrences which conflict before the union will necessarily
conflict after the union. Thus the statement of CON for the new region is logically
weaker than the conjunction of CON for the original regions, and it holds.

If the above step results in inconsistency, then to maintain CHB and CON we must
modify code, as well as the cohabitation and conflict relations. This is the subject of
chapter 7.

It may have gone unnoticed that the remarks of this section apply to the case in
which the variable V, is an extra occurrence under a KILL pseudo-op. It may weil be
the case that V, is the only occurrence of V in R;. The fact that V, matched V,
means that V, did not brush over R,, 50 no conflict was established between v, and
any generation of R, Further, the fact that V, is not a generation means that ao
conflict was established between it and any brush occurrence from the supply set of
N;. Thus, the occurrence Y, is an innocuous bookkeeping device, as we claimed
earlier.

6.3 Establishing a Cohabitation Arc

The algorithm for matching occurrences in the previous section begs the question
of how to establish the cohabitation arc between V; and V,. There are two problems:
which direction does the arc go, and what is the cost of breaking it?

We first consider the question of direction. From the way regions are coastructed,
it is clear that there is a V-free undirected path from 4 to Y, and from 4 to V,. If
boundary sets contain merely occurrences, there is no way to know whether A is in
G(V;Vy) or G(V,V,). However, boundary sets are disjoint unions of subsets of
boundary sets of kernel regions, and it makes sense to say that an occurreace in a
particular boundary ser was ociginally in a supply set or originally in a demsnd set.
(Becawse an occurrence can appear in both boundary sets of a kernel region, it may
have different origins with respect to different boundary sets) This informatioa is
simple to keep track of, and tells which direction the cohabitation arc must go. The
following picture makes this clear, and also shows that cohabditation arcs can point in
the direction opposite to arc 4.

R Y
‘‘‘‘‘‘

T A A W

el s o b it gt

- c.n
¢ »

P

()
=

4

we

Ry

During the compilation of R;, the occurrence V, starts in the demand set of the
bottom node, and eventually appears in the supply set of N); dually, V, will appear in
the demand set of N,. If we make the rule that the cohabitation arc goes from
" "kernel supply set” to0 "kernel demand set”, the arc direction will be from Y, to V,,
consistent with the direction of flow. Put differently, we observe that A4 is in
G(Y,.Y 1), oot G(V,,Y,). Formalizing this, we have:
Algerithm 6.5 Establish a cohabitation arc
if V; was originally in a supply set
if V;+V, does not already exist
m‘nmvl-OVz
else (V, was originally in a demand set)
i Vo4V, does not already exist
make sn arc VoV,
This guarantees the following characterization of established cohabitation arcs:

Theorem 6.1 Suppose there is a directed V-free path from V| to V,. There is an
undirected V-free path from V, to V, lying in some region and in G(V,.Y,) if and
oaly if there is s cohabitation arc from V; to V,.

Preef (Referring to the above picture may help, except that the labels V, and V, are
reversed.) The backward implication is vacuous before compilation begins, because
there are no regions, and no cohabitation arcs. Since creation of a kernel region does
not add any new undirected V-free paths, we must merely insure that it does not
create any cohsbitations between different occurrences of the same varisble. This
wouid happen only for an ssignment of the form VeV; we assume these have been
eliminsted. We next consider the compilation of an arc A from N, to N, which

41

results in the establishment of a cohabitation arc from V, to V,. In this case the
algorithm for establishing cohabitation arcs says V, was originally in a supply set, and
V, was originally in 3 demand set. Now, step 1 of the algorithm for the propagation
of an occurrence is the only way that occurrences are propagated, so the only way
that V, could be in the supply set of N, or the demand set of N, is if there is an
undirected V-free path in the respective region; dually for Y, and the node st the
other end of 4. The paths together with the arc 4 constitute a connected subgraph
with no occurrence of V, and V is clesrly live along 4. By Corollary 4.1, 4 and each
path must lie in G(V,,V,), providing the required undirected V-free path. It will lie in
the region created by compiling arc 4, and so meets all the requirements. Hence, if a
cohabitation arc exists, the path exists.

Conversely, suppose we compile an arc which completes the first undirected V-free
path of compiled arcs from V; to a distinct occurrence V,, where the path lies in
'G(Y,.V,). Then there must be an occurrence of V; in one of the sets attached to the
eatry or exit node, and am occurrence of V, in the other; ¥V, will necemarily be in its
Kkernel region’s supply set, and V, in its kernel region’s demand set. Further, by
inductive use of the theorem itself, thete is no cohsbitation arc from Y, to V,. But
this is precisely the condition under which such an arc is established, by the above
algocithm. Thus, if the path exists, the arc exists. O

The other problem that this section considers is obtaining a good lower bound on
the cost of breaking the cohabitation. Bresking is done by some kind of move
instruction. The first thing to determine is how often a move must be done, which is
related to the part of the program in which the move can be placed, namely, the
intermediate graph G(V4,Y,). Coausider the nodes of G(V,,Y,) which do nor have an
occurrence of V. All arcs incident upon these nodes are in G(V,,V,), 2s is clear from
Corollary 4.1. The general picture of G(V,,V,) is thus:

.,
o

)
.y
.
2 et st
A

Cpa LD AT
.".“‘: Yy ety %, "]'
U '3 i '

-,.,
v"

LS ik s ol S Sk AL aaar el s -
-

- E
To determine how often & move must occur we sum the frequencies of all the arcs . ~
leaving the V; node which are in G(V,V,), or equivalently, the sum of the o
frequencies of arcs in G(V,V,) which point to the V, node. This gives the
transmission frequency from V; to V,, denoted f{V,.V,). IS

I the node of V, has a single outgoing arc, or the node of V, has a single S
incoming arc, £(V,.V,) is essy to calculste, namely, it is the frequency of that single o
arc. Even in the general case it is not exceedingly expensive to calculate f(V,.V));
nevertheless, it may be the case that it is advantageous to use f, the frequency of the
arc being compiled, to serve as 2 lower bound for f(V;.V,). This is justified by the
following result. o
Lemma 6.1 When estabtishing a cobabitation arc between V, and V,, the frequency f e
of the arc being compiled is less than or equal 10 f(V,.V,). T
Preef. By the compilation order of arcs, we know that f is 8 minimal valse along P
some undirected V-free path between V; and V,. Clearly, this minimal vaiue cannot s
exceed f(V,V,), since some arc touching the V, (or V,) node will be oa the path,
and sny arc touching this node cannot have a frequency greater than f(V,V,). O

Using £ to approzimate f(V,V,) is in accord with our underestimation philosophy. R
Only experience will tell if this results in a decrease in compile time, but we asume it -
will

.

.

.......

-
re——
S N
’.\-
MICKE

.

- . B T U S N TE e e e et e T -
--------------------------------- .
...

________ IR L S P N I N R S S e e T N T T T T e s e DRSS AL R
W VORI PO LN L v

Once we have a frequency, we try to estimate the cost. Suppose we bresk the
cohabitation with a single move instruction. We would choose s and ¢ for this
instruction optimisticaily but realistically—if V, and V, are already known to be not
in registers, for example; s and c¢ reflect this knowledge. Given s and ¢, the cost is
s+c f.

What this analysis does not take into account it that it may not be necemary to
insert a2 brand new move instruction. Instead, it might be possible to achieve the
move by some trick; for example, on the MC68000 there is a single instruction which
will push any subset of registers onto the stack. In this case, the s parameter becames
0 (because no extra code is required), and the ¢ parameter becomes the incremental
time cost of pushing one more word. Thus, the cost of breaking the arc becomes ¢- f.
If copies can be freely generated, it may be possible to break the cohabitation with s
and ¢ both 0.

This trickiness in moving quantities presents a dilemma. One has the feeling that
very often, the tricky instruction which breaks the arc with the estimated (minimal)
cost is not going to be an option. If the code-generator over-estimates the cost, it
may miss a chance at an optimization. If it under-estimate the cost, it may spend a
lot of time in the inconsistency resolver looking futilely for trickiness that does not
exist. Once a code-generator is in operation, it will be possible to gain some
experience in how to make this compromise. There is even the possidility of being
able to dynamically adjust its "optimism"” in assigning a cost. The maximum posible
gain is the cost of a naive fix minus the cost of a subtle fix, e.g., s + ¢ f for a move
instruction minus, say, O for freely generated copies, or a different s + ¢ f for some
more expensive instruction variant. The cost of looking for a subtle fix will be
roughly proportional to the size of G(V,,Y;). With experience, we can learn how
often optimism pays off, and how to estimate the actusl cost of searching. The
code-generator can adjust its under-estimation 30 that the expected payoff exceeds the

expected cost.

6.4 Inconsistency Detection

We maintain the consistency of cohabitation and conflict relations when compiling
arcs. There are two aspects to this: first, detecting whether an inconsistency would
arise if the arc were compiled without any modification of existing code, and second,
if such an inconsistency would arise, modifying the code so that conmsistency is
maintsined. This section discusses the detection problem; the resolution problem is
descrided in the next chapter.

Thus far, the only representation that has been discussed for the cohabitation
relation is its (labeled and directed) graph. If this is the only representation of
cohabitation, detection is very expeusive, because to determine cohabitation, we must
enumerate members of a cohabitation class (via the graph itself). We provide an
oracle for rapidly determining whether two occurrences are in the same cohabitation
class, given that cohabitation clases are continually combined by new cohabitation
arcs. We use the standard FIND/UNION technique for this purpose (see [7]). Note
that it is occasionally necessary to tear up a cobabitation class into two pieces, during
inconsistency resolution. The updating of this structure when doing so is
straightforward, but proportional to the size of the clas. Since we assume that
breaking up large cohabitation classes is rare, and since the cost of doing so is at least
proportional to the size of the class, we assume the expense is worth it.

To understand the data structures used in incomsistency detection, we examine
more closely the circumstances under which the relations change. The simplest case
occurs in intrs-region compilation. Since there are no brush occurrences in this case,
no new conflict is generated. Assuming inductively that the region has no
inconsistencies before the arc is compiled, the only way that one could arise is
because of the addition of the new cohabitation relations required when matching
occurrences. If Algorithm 6.2 says to establish an arc between occurrences which
already cohabit (a question for which we now know how to compute an answer),
there is no possible problem. But if the two occurrences do not cohabit, they may
eonﬂmmmtnmtwmwhwhethumymmdthempecﬁn
cohsbitation classes of the ends of the arc are in conflict. This suggests the concept
of the conflict of cohabitation clases or class conflicr, where the rule is that
cohsbitation clames conflict if any of the occurrences in the respective classes are in
conflict. We shall not immediately discuss the implementation of this relation, but,

assuming an oracle for it, we will look more closely at the interplay between the
various cohabitation relations we want to establish. What we do not want to do is to
establish a cohabitation which will have to be broken a few steps later. To see how
this can happen, consider the following example:

solid lines are pre-existing cohabitations

Assume that the only coaflict among the six points is that indicated, and that no
other occurrences cohabit with these. If we try to establish the middle arc first, these
is no conflict preventing it. If we next attempt either of the other cohabitations, an
inconsistency will arise. If this second arc is more expensive to break than the middle
oae, then we would break the middle one—the one we just established. But if it is
cheaper to break, or even the same, we would "break” this cohabitation before it
teally was ever established. The same would happen with the third arc. Now, assume
all arcs are equally expensive. If there is no way for the resolution machinery to
re-establish a cohabitation arc (and remove the code used to bresk it), then in the
case where all cohabitations are equally expensive to break, we wind up with two
broken arcs, and one established. But if we had waited and considered all three arcs
at once, it would be clear that the best approach is to break (ie., not establish) the
middle arc, and to establish the others. Even if the resolution machinery is capable
of reconsidering its placement of moves, it is more work than doing things right the
first time,

In order to gather up all the cohabitations which are to be considered together, we
look ot the cohabitation classes of the occurrences in the boundary sets. Just as we
defined the idea of class conflict by raising the conflict relation to cohabitation
clames, we define class marching by raising the matched reistion to cohabitation
classes: that is, two cohabitation clases are marched if each contains an occurrence
such that the pair of occurrences is matched along the arc being compiled. Then we
form the graph of this relation, calling it the claxs graph, since its nodes are
cohabitation clames. The picture below is the class graph for the relations of the
previous picture, with cohabitation classes encircling their individual occurrences, and
the lines indicating class matching:

oo
L s

B AL N SR

AT,
LR S] f
SRR |

N N N L3 Y

:
.
v '-. M
! o]
L IR R
- - " -
. -
~
I\.
)

The connected componeats of the class graph, called class componenis, will be in

distinct cohabitation clames after compilation of the arc. (A cohabitation class with 5o
1 no occurrence in a boundary set will be a class component unto itself.) The purpose
- of this construction is: :,;:.-::::7

Definition. In a class compounent, a martch inconsistency arises if two (cohabitation)
classes are in class conflict in the original region.
a
Using this definition, we revise the algorithm for matching:
~ Algerithm 6.6 Match occurrences (intra-region case, all variables)

for each class component
i there is match inconsistency in the component
Call the incoasistency resolver on the component
else _
melishthecohabinﬁmqaforthecomponent

Theerem 6.2 Cohsbitation arcs added by the sbove step do not cauwse an

inconsistency, and conversely, the inconsistency resolver is given a problem only

when the addition of the cohabitation arcs would cause an inconsistency. O

Preef. To start the induction, we use the fact that the relations of the region are

adjoining all of the arcs of a clas component. Then all of the old cohabitation S
9 clames wind up in the same new cohabitation class, because of the connectedness of T

the class graph by arcs just added, and becamse of pre-existing cohabitation of the
elements of old cohabitation clases. Suppose that two of the old cohabitation classes
involved in this merge had pre-existing clam coaflict; then an incoasistency would R
arise. Thus the algorithm gives problems to this inconsistency resolver only when an
inconsistency would actually arise. Coaversely, if an inconsistency cycle arose, it has
’ to invoive coaflict of old cohabitation classes in the class component, since these are
(the only ones that are merged, and since no conflict arcs are added.

it

o
Thus, we have reduced the problem of inconsistency detection to the problem of

47

knowing which classes are in conflict before compilation of the arc (which we have
yet to discuss) and to an oracle for cohabitation, namely FIND. In the case that we
establish an arc in the cohabitation graph between previously disjoint cohabitation
ciases, we also do 2 UNION of the cohabitation clases, so that FIND knows about
the new cohabitation relation; we must ensure that the class conflict oracle knows
about the cohabitation class merge—this is discussed in section 6.6.

We next comsider inter-region compilation. As usual, we assume that the
constituent regions have consistent relations; since the sets of occurrences of the two
regions are disjoint, any inconsistency must involve at least two of the new relations
created when compiling the arc in question, and at least one of them must be a
cohsbitation arc. This is because an inconsistency is a cycle of relations, of which
precisely one is conflict, the rest being cohabitations. This cycle must involve at least
one occurrence in esch of the constituent regions, so must cross from one region to
the other at least twice. Moreover, realize that when compiling an inter-region arc,
the boundary sets in question are partitioned into brush sets and matched sets. The
following picture is useful in visualizing the relations: .

bomdfyset
" brush set matched set | tion
e , e . "“,_f'_i__;':}f"’“’“l
[) [] (4 o ® ® [] [] ®
3 o ® [] [] [] @ [] ®
\—V——J - ~v— / \—Y——J f R
generstion set . matched set brush set [10T 2

boundary set
As in intra-region compilation, we do not try to add one relation at 2 time. Rather,
we look at cohabitation clases of the occurrences in the boundary sets—remember,
the regions are previomsly disjoint. As before, we form the class graph on the
cohabitation clames, where the arcs are induced by the desired (but not yet
established) cohabitations due to the arc being compiled; this time the graph is
bi-partite. In esch of the connected components (again called class components) of
the class graph, we can determine whether any incoasistency will arise involving only
new cohabitations by the same definition of match incoasistency. The question of

v .
Aty ‘:"-

=3

!1,':‘4{ ."'

) . IR .
s A T

' . S ‘

Lo . FRIRCAACR B
PRI LT .
e L A

e . Y [RURE T

. . t! P

R ST
Y bt beand

43

class conflict has to be asked only of cohabitation classes in the same constituent
region, and therein lies the elegance of match inconsistency in inter-region
compilation—usually a class component has at most one class in each region, so that
there is no necessity to ask any questions of the class conflict oracle.

There is only one remaining way in which an inconsistency can arise: its cycle
must involve new coanflict.

Definftion. In a class component, brusk-generation inconsistency arises if the
component has in one region a class that contains a brush occurrence, and in the
other region a class that contains a generation.

(s

This leads to the rest of the revised algorithm for matching.

Algorithm 6.7 Match occurrences (inter-region case, all variables)

fer each class component
Hf there is match or brush-generation inconsistency
Call the inconsistency resolver on the component
.hmtheeohabiudonmfathemponent
Theorem 6.3 During inter-region compilation, the algorithm gives class components
to the inconsistency resolver precisely when inconsistency would arise by establishing
the desired relations.
Proof. We have siready seen that if an inconsistency arises, it involves either two
new cohabitations or a new cohabitation and a new conflict. In the first case,
Theorem 6.2 states the desired result, with the proof differing only in how the
induction is started. Here, the initial relations for the (combined) region are the
unions of the relations on the constituent regions. Since the relations are consistent

'mthdrrapecﬁveregimandsingethedmimmdhjointthisiniﬁﬂrehﬁmis

consistent, snd the induction started.

In the second case, it is clear that an inconsistency cycle having new coaflict from
a brmsh occurrence o to some generation of the other region must go through at least
one cohsbitation sdded while compiling this arc, and must contsin an occurrence in
each of the comstituent regions. The cohabitation classes to which o and the
generstion belong are thus matched, and 50 are in the same class component. This is

precisely the condition that there be a brush-generation inconsistency. Coaversely, if

A e S aiul AR Al - e e

............
...............
N R

A Y g k]
MDSCAMEIS S 1D
e

49
there is brush-generation inconsistency, it is clear that an inconsistency Cycle exists,
80 no non-inconsistencies are sent to the resolver.
o .
Note that the detection of brush-generation inconsistency avoids any use of the class
conflict oracle, using only questions about cohabitation and whether cohabitation
classes have generations. Since cohabitation classes are always formed by the union
of cohabitation classes, it is easy to keep track of whether they have generations.

In summary, this section has reduced the problem of inconsistency detection to
that of two as yet undescribed oracles:
Given two cohabitation classes, are they in conflict?
Given a node, enumerate the elements of its supply or demand set.
The emphasis has been on minimizing use of the class conflict oracle, which we were

_able to do particularly well for inter-region compilation.

6.5 History Trees and Cohsbitation Classes

This section describes data structures that are central to the implementation of
both the class conflict oracle and the enumeration of boundary sets. The Aistory
tree is a record of region merges. The leaves of this tree are kernel regions. Each
internal node corresponds to the compilation of an inter-region arc; such nodes have
two descendants, corresponding to the constituent regions. We use the direction of
the arc being compiled (4) to distinguish the left descendant (which A leaves) from
the right descendant (which A enters). Each node has a pointer to its immediate
ancestor; the top node of a history tree will of course have a nil pointer to its
immediate ancestor. Because of the scattered nature of compilation, there will be a
forest of history trees. '

Suppose we have two kernel regions. They are in the same region precisely when
they are in the same history tree. Moreover, if they are in the same history tree,
their lesst common ancestor corresponds to the arc-compilation which first put them
in the same region. As we shall see, the least common ancestor algorithm plays a
role in the class conflict oracle. It becomes natural to think of a node of a history
tree s corresponding to a time in the compilation process—nodes higher in the tree
happen after nodes lower in the tree. It will turn out to be important for each

R

““““““““

50

cohabitation class to have a pointer to a node in the history tree, corresponding to
the time at which it was formed (section 6.6).

tamy : ¥ -
. []

The representation that we use for cohabitation classes is similar to that of the
history tree. Cohabitation classes either come directly from kernel regions or are the
unions of other cohabitation classes. In the implementation of the class conflict
oracle, it is necessary to know whether the union arose from an inter-region or
intra-region compilation; a bit can record this information. It is necessary to know
when the union occurred, that is, each cohabitation class has a pointer to a node in
the history tree; this is called its formation rime. It is also necessary to be able to
retrieve the cohabitation classes whose union formed a cohabitation class; thus a
cohabitation class, like a node in the history tree, has pointers to two descendants. In
: intra-region unions, the order of the descendants is irrelevant. But in the inter-region
C case, a5 in the history tree, we use the direction of the arc being compiled to
' determine a left and right son. Thus, for these unions, we know that the left
sub-cohabitation class lies in the left sub-region of the corresponding formation time
in the history tree. In inter-region compilation, if a class component has several
cohabitation classes in the same constituent region, these are gathered up first by
intra-region unions; the final step in forming the cohabitation is one inter-region
union. The rationale for this becomes clear when the class conflict oracle is
discussed.

The previous paragraph presents all the fields of the cohabitation class data
structure that are necessary for the class conflict oracle. We also want to be able to
ask whether two occurrences cohabit. For this, we use upward pointing arcs, and the
standard FIND/UNION machinery.

As we saw in the previous sections, brush sets play an important role in compiling
an arc. It is convenient to record the two brush sets involved in an inter-region arc
compilstion—one from the supply set, one from the demand set—in two fields in
each node of the history tree. Although brush sets can be of arbitrary size, all that is
recorded. is a pointer (in section 6.7 we will discuss efficient representation of the
brush sets themselves). Thus, the size of the history tree grows linearly with the size
of the program.

In the next two sections we will propose other fields for history tree nodes and

s1

cohabitation classes. The extra space for these fields buys time. The fields described
in this section are a minimal set.

6.6 The Class Conflict Oracle

There are only two operations of interest on the class conflict relation; we want to
know whether two (cohabitation) clases are in conflict, and we want to coalesce
classes in it, where the classes are not in conflict. There are several representations
which one might use to achieve this. We discuss several which have been tentatively
discarded. The most obvious is a bit matrix representation, which bas the advantage
that one can determine quickly whether conflict exists. The disadvantage here is that
space grows irrevocably as the square of the number of cohabitation classes and that
coalescing two clases requires a number of operations proportional to the total
number of classes in the class conflict relation. Another ides is to wse a direct
implementstion of the graph of the relation. This has the disadvantage that
determining conflict (adjscency of two nodes) has a cost proportional to the
minimum of the degrees of the nodes, and that the space cost will be proportional to
the number of arcs, which in practice will probably grow as the square of the numwber
of cohabitation ciases, and with a non-negligible constant of proportionslity. This
method does have the advantage that coalescing of nodes can be done in coustant
time, given the proper representation and the willingness to live with a few redundant
arcs. Increasing the time slightly can save the space of the redundant arcs, if this is
deemed necemary.

The solution we propose for the clas coaflict oracle is bmed oa intimate
knowledge of the way that conflict of occurrences, and thus of cohabitation clases,
arises. As we said in the previous section, the history tree is the key data structure.
What does the history tree have to do with conflict and cohabitation? Because of the
compilation process, conflict arises either in kernel regions or in the merging of
disjoint regions—never in the compilation of an intra-region arc. The way that the
history tree is used to determine class conflict has the following outline:

Find the least common ancestor (Ics) in the history tree of the formation
times of the cohabitation clames in question. If these classes conflict, it is
either because at least one of them was formed at the ica, and the
constituent parts were previously in conflict, or because a conflict arc was
formed at the lcs, and one of the classes had 2 brush occurrence in one of

...........
.....

MG/ sl et nll e dra Ja r i sl s e g e e

52

the regions while the other class had a generation occurrence in the other
region.

We now give some specifics on the implementation of the class conflict oracle.
Let the classes be ¢;,c; and their respective formation times be f7,,f1;, and their least
common ancestor be . After 7 is calculated, the first case breakdown is on whether
either of f1, or fi, is equal to . Consider first when neither is, where we argue as
follows. No coaflict could exist between ¢; and ¢, before s, since those classes then
lie in disjoint regions. On the other hand, no conflict will be added between ¢, and
¢, after 1, since conflict is not added once occurrences are in the same region, and
since neither cohabitation class expands after 7 (use definition of formation point and
history tree). Thus, ¢; and ¢, will be in conflict if one contains a generation, and if
the other has an occurrence in a brush set at 7. We have already seen that we need
to keep track of whether a2 cohabitation class has a generation. The problem is in
determining if a cohabitation class had a brush occurrence at a given compilation.
To aid in this determination, we propose that each cohabitation class be given a field
which points to the node in the history tree corresponding to the last compilation in
which some occurrence of the class was in 2 brush set, called the Jasz brusk time. The
extra space required for this is only linear. For cohabitation classes formed in
intra-region compilation this field is some reserved value, say NIL, meaning that no
clement of the class has yet been in a brush set. The same value is used in
inter-region compilation .if a cohabitation class is formed none of whose elements is
in a brush set. Otherwise such classes receive a value equal to the formation time.
Note that the determination of the last brush time, as well as the updating of this
field of the proper set of classes, can be done at no increase in asymptotic cost, since
each of these classes has to be examined in the process of incoasistency detection
described earlier. If either ¢; or ¢, has a last brush time of exactly 7, we know that it
has a brush occurrence at /, so that if the other of ¢; or ¢; has a generation, ¢; and ¢,
are definitely in conflict.

Note that a brush time of a cohabitation class, if non-NIL, must be at or after the
formation time—on the history tree, it is at or above the formation time. As a
by-product of the least common ancestor algorithm, it is easy to tell if this last brush
time is before s, i.e., below. If 30, no occurrence of it was brushed at # using this, we
can often quickly determine that ¢; and ¢, are definitely not in conflict. Thus, the

e A e N4 2R i

o only situation in which we cannot decide is when c; has a brush time after 1 aad ¢,
. has a generation, or vice versa, or both. This is one of the reasons that brush sets are e
recorded in the history tree.

We use these recorded brush sets as follows. As a by-product of the least common
ancestor algorithm, we can determine which of ¢; and ¢, are in the left and right
subregions and so can tell which of the two brush sets we want to search for some
occurrence being in ¢;. If we find one, ¢; and ¢, are in conflict; if not, the only
possibility is that ¢; had a generation, and ¢, had an occurrence which was brushed.
This possibility might have already been eliminsted; if not, we use the same ==
technique to see if ¢, had a brush occurrence in this compilation. This finally
decides the question of conflict when fi; = 1 # ft,.

We consider next the question of conflict when exactly one of the formation times v
is the compilation time, say fi) = 7= fi,. If ¢; was formed by an intra-region union, B
then we use its decomposition into smaller classes ¢); and ¢;,, and the fact that ¢,
coaflicts with ¢, iff ¢, conflicts with ¢, or ¢;, conflicts with ¢,. (Note that in these
subproblems, the lesst common ancestors can be no higher than ¢, a fact useful in
computing them.) Thus, we turn our atteation to the case when ¢; was formed
during inter-region compilation, and our first task is to determine if conflict between -
the clames was crested at this time. To do this, we agsin use the known R
decomposition of ¢; into ¢); and ¢),, choosing the numbering so that ¢y, lies in the -9
same subregion s ¢, and ¢, in the other subregion. To determine if a conflict asises
at the compilation 1, we apply the "ft; » # f1," technique 10 ¢;, and ¢,. This applies
because the least common ancestor of ¢); and ¢, is surely 7, and the formation time
of neither is equal 1o 1, If there is a conflict here, then ¢, and ¢, are in conflict. If - 4
not, the question is decided by whether there is conflict between ¢, and ¢,. (Note
that in this sub-problem, the least common ancestor is no higher than the immediate
descendant of ¢ in which ¢; (and ¢;,) lies.) This disposes of the case fi, = 15 fh,.

ER Rk ok
LI T)
[DR 1

Last, we examine the cse f1; = ¢ = f1,. (The equality of f);, and f1, should
probably be checked before actually doing the Ica aigorithm, since this case may arise o
fairly often) If 7 is a kernel region, we determine the clas conflict of ¢, and ¢, by
enumerating their elements and looking at kemel conflict. The small numben
involved make this quite ressonable. Henceforward, we sssume that ¢ is not a kernel o)

...........
T T T R e T L L U TR
................................

54

region. If either of ¢; or c; arose from an intra-region union, we treat it as ¢, was
53 treated in the same circumstance of the previous case. Thus we consider only the
case in which ¢, and ¢, were both formed in an inter-region union at time 7. This

time we we the decomposition ¢, into ¢; and ¢p, where ¢;; and ¢;; both lie in the
same subregion, aud ¢;, and ¢,, lie in the other. To determine if a conflict was
- created st /, we treat the pairs ¢;;, ¢,; and ¢j;, ¢,) by the analysis described in the
"fl, » 1= fi;" case. I neither results in known conflict, we examine the pairs ¢y,
and ¢;;.c,, recursively (knowing in each case that the least common ancestor is lower
than /), to see if conflict existed previously. This decides the question of conflict
when fi, = fi,, the last case 10 be considered.

The algorithm for class conflict just described could, in theory, be quite expensive.
The guess and hope is that in actual programs, it will be pragmatic, because it seems
that one would arrive fairly quickly at the case where f7; = ¢ » fI,, which involves no
recursion, and for which the heuristic using the last brush time will usually yield a
speedy answer one way or the other. If one is willing to pay with space to buy time,
a posible improvement is t0 turn the last brush time field of a cohabitation class into
a "brush time list,” 50 that the determination of whether any occurrence of a class is
brushed st a given time can be answered more quickly. -

;' An interesting feature of this design is that we do not require an oracle for

Q conflict. Instead, we are relying on solutions to the following as yet undiscussed
problems:
Record a brush set.
Enumerate the elements of a recorded brush set.

These are discussed in the next section.

6.7 Representation of Boundary and Brush Sets

o Sections 6.4 and 6.6 have reduced the problem of inconsistency detection to the
' problem of enumerating elements of boundary and brush sets, and of being able to
record brush sets. The solutions to these problems involve a common data structure,
due to the fact that boundary sets grow by the adjunction of brush sets, and brush
sets are formed by boundary sets, minus matched occurrences. A naive
representation of these objects would result in a crippling space requirement.

- 55 SR
There are two ways in which a naive implementation results in non-linear expense. ‘:?:'
One is in the construction of a brush set, and the other is in the propagation of this .
= brush set to all of the boundary nodes of the region. Let us work on the latter
3 problem first, sssuming that we have a brush set in hand. The goal is to form the e
: (known to be disjoint) union of this brush set with all of the boundary sets, for every s
) boundary node of the region, in constant ime. What we must have then, is 2 common .,::
% place to put the brush set, reachabie from ail of the boundary sets of a region. To e
- achieve this, we note that:
A boundary set may be represented as a list (meaning the union) of brush
sets, in the order in which the brush sets are added to the boundary set.
Different boundary sets may have a very long common tail, thereby saving
Behold, we have already described just such a data structure: the history tree, with o
its brush sets! To see how this data structure is used for this purpose, suppose we are -
" given 2 node for which we desire an enumeration of the elements of its supply set.]
We first enumerste all of the elements which were in the supply set of the kernel b
region which the node was compiled into—these can be dooe economically simply by b
2 exsmining the code for the kernel region. Next, move up to the immediate ancestor Iy
3 in the history tree. Since the history tree also points downward, we can determine N
2 whether the node is the left or right son, and thus, we know which of the two brush o3
sets was adjoined to the boundary set of the node during its first involvement in Pt
P> inter-region compilation. The elements of the appropriate brush set can be N
9 cnumeraied. We then advance from the present history node to its ancestor, again }
- enmerste the appropriste brush set, and 50 on up the tree. This technique ensures i
linear overall requirements for the space used by boundary sets, and for the time
required for their enumeration, up to linear space and enumeration time requirements ‘
for brmsh sets (and modulo null brush sets, which are probably very rare). It is
. delightful that the history tree plays a crucial role in two seemingly unrelsted oracles: .
i class conflict determination, and boundary set enumeration. _
We next tarn to the problem of brush sets. Unlike boundary sets, these are not
constructed ss unions of other sets; rather they consist of a boundary set with some
! specified set of occurrences removed becsuse of matching. 1 have not been abdle to
devise a technique to have both linear space and linear enumeration time bounds.
;. However, there are techniques 10 achieve cither st the expense of the other, and ways R
(]

N RS SR R
)‘:),‘ h hkdh“

A B it v Jhug Jat Bad ded Sab fhd ¢ v Y

56

to combine the techniques and dynamically decide upon the best technique. We first
examine s linear space technique. The idea here is to utilize the fact that a brush set
can be formed by two other objects: the "base” boundary set from which
occurrences are stripped, and the boundary set that provides the matched
occurrences. If we can recover these objects, then the elements of the brush set can
be enumerated.

The history tree, as with boundary sets, is the key to an efficient representation.
b, Recall that brush sets are "recorded” in each node of this tree; all that is needed to
achieve this is a pointer to the arc whose compilation is being remembered. From
the arc, we can get to the nodes in question, from which we may enumerate the
boundary sets by tracing up the history tree, recursively enumerating other brush sets,
until we reach the history node whose brush set is desired.

- It is clear that this scheme requires linear space. The rub is that the enumeration
of a brush set may require time not necessarily proportional to the number of its
clements. With the present representation, we have to enumerate the elements of the
base boundary set, and then suppress in the eosumeration of the brush set any
occurrences matched in the opposing occurrence set. The first problem is that
determining whether an occurrence is matched requires in this scheme an
enumeration of the opposing occurrence set, which may be expensive. The secoad is
that if too many elements are excluded, we spend 2 lot of time enumerating not very
many elements of the brush set. To solve the first problem, we note that the
matched occurrences were detected in the process of generating cohabitation arcs.
Since this set must be computed anywsy, and about the time brush sets are formed,
we have several options. The first is that at any history node, we may keep a list of
the cohabitation arcs that were formed because of the compilation of its arc. Then,
t0 exciude matched occurrences, we merely search the list of these arcs, which is
presumably much smaller than the opposing boundary set. Note that although this
scheme uses extra space, it is not an ssymptotic increase, because it requires only one
more pointer per history node, and one more pointer per cohabitation arc.

A related method to detect matched occurrences is to utilize the fact that a match
between occurrences involves a single variable. This set of variables may be stored in
some data structure which allows rapid determinstion of the question: "is this

- 57 SR
. N
) varisbie in the set of matched occurrences™. Such a data structure would be a hash RN
b table, or a sorted list which could be searched by binary division. The size of these _
N sets is propartional to the number of cohabitation arcs established so again there is no Sl

ssymptotic increase in space requirements. This or the previous technique is useful if
the set of eliminated occurrences is small but the base boundary set is large.

X v'.'."'.":'.
e,

The techniques described above eliminate the necemity of having to enumerate
two boundary sets in order to form one brush set. The problem remains that of the Ry
perhaps many elements enumerated from the base propagation set, all but a few are
matched. This situstion can be noted while doing the compilation of the arc, and if
momyelemgnndthebueboundaryaetmmtched.gdirectremnﬁonof
the brush set, say as a list of occurrences, may be recorded in the history node.

ot
-
('.v"_
. -,
‘.

In each of the above cases, we are expanding space requirements in the hopes of
" considerable improvement in enumeration time of brush sets. Precise definitions of
"large” and "small” will have t0 wait until we see the performance characteristics of

the compiler on real programs.

This and the previous three sections have all been concerned with the problem of
inconsistency detection, with the main difficulties arising from the coaflict relation.
We have taken the approach of being very careful to conserve space, and the history
tree has been the key to this, since it is med in three separate but related ways.
Although prediction of the behavior of a large program is difficult, it would appear
that the representation of conflict and algorithms over it are the most worrisome
aress of the efficiency of this compiler. But having the flexibility that detailed
conflict information allows is one of the keys to this optimization strategy.

~ 58 s
= 7. Inconsistency Resolution =
4
: 71 Overview
We mw in the previons chapter how to detect an inconsistency. Here we shall i
stady the problem of modifying the code so that it is once again consistent. The
means of doing this is usually the insertion of one or more instructions in the code. 5
< Such a move may replace what was previously a CHB (cobabit) pseudo-op: we may A
- change CHB V,, H; to MOVE V},{,. This corresponds to breaking a cohabitation arc
- due to an amignment. We may also break a cohabitation arc that corresponds to
o matching two occurrences V;+V,. In this case, the move has the form MOVE V3.V,.
- In this work we shail discuss only those resolution techniques that rely on moving
! data, whether by actual imsertion of move instructions or by modifying other
. instructions so that they do moves implicitly. Other techniques of inconsistency
resolntion are sviilable. For example, one might rearrange arguments of an
instruction: changing ADD V},H; to ADD W{,V, may be a meful way to resolve an R
inconsistency. Other modifications in this class include reordering code to reduce g
conflict, and duplication of code (especially small subroutines) to reduce
cohabitation.
by Whenever the code is modified, in particular by insertion of a move instruction,
- the idea is 1o make all the data stractures appear as if the code had been in that form =
o all along. Thus, a move instruction becomes a kernel region (or part of one), and 1:'
\ typically its source is a last use, while its destination is a generation and a first use. <
We then look at all of the invariants concerning the compiler’s data strucure, and -
make sure they remsin true, modifying the data structure if necessary. This would C
include perhaps adding new split and merge occurrences, forming new cohabitations -
- with any new occurrences added, listing these from the proper point in the history if
g this is being done, updating cohabitation clames to have the proper set of members
* snd 10 have the proper "has generation” flag—remember, 3 move may add a
generstion. Note that coaflict is represented through the history tree, s0 that the
- updating of conflict information is almost automatic (beware "last brush time™). In
,‘ fact, this esse of updating is one of the many advantages in the history tree
- implementation of conflict. Any other representation seems quite swkward to revise
..'

s VALLLRG R

s Oy e i Yy N

59
during resolution.

Afnﬂhetiameinthgphmentofmoveinmmﬁomisthnitmyocaﬁonmy
be desirable to place a move outside the region in which the inconsistency has
occurred. What we do in this case is to create a new kemnel region or place the move
instruction in an existing region different from the one which has caused the
inconsistency. This causes no difficuity-—eventually, everything is pieced together.

In summary, breaking a cohabitation arc means modifying the program, typically
by adding move instructions, and then insuring that all of the invariants regarding
extra occurrences, cohabitation, and conflict are correct. Thus, compilation of any
arc is oblivious to whether there was previous inconsistency resolution.

7.2 Difficulties

The above sketch gives us faith that if we can only decide where to place move
instructions, we will be able to do so without greatly disrupting the compilation
strategy proposed in earlier chapters. The real problem is going to be in choosing
where to place the move instructions, and how well we do this governs the quality of
the code we generate.

One of the most difficult facets of the resolution problem is that mere knowledge
of the inconsistent cohabitation and conflict relations does not necessarily tell us how
0 rewolve. C-usider the following (wrong) approach. View all the desired
cohsbitation arcs as in place, 10 that we have a cohsbitstion class with internal
conflict. Then, remove some subset of arcs, breaking the large clas into two or more
pieces, each of which is internaily free of conflict. Modify the code by placing move
instructions between the occurrences of either end of a removed cobabitation arc.

The reasson that this approach does not work is that move instructions introduce
new generstions into the program, those new generations introduce new coafict, and
part of this new conflict can in fact be internal to the smalier pieces of the original
cohabitation class, pieces which were hoped to be free of internal conflict. As an
example of what happens, we consider what happens in a conditional assignment of W
V.

A e R T

USE V,.W, | (extra occurrences) v,

Suppose that V, and W, are in class conflict, i.e,, there are occurrences o) and o,
which are in conflict, and paths from these occurrences to V, and W,.

W2
S
W3

N,
If we look oanly at the above relations, it would seem that we can resolve the

inconsistency by breaking the cohabitation V,+V;. However, looking at the program,
this is ridiculous on the face of it. Further, if we actually install the move, we have
the relations

V4. vz

v;%s/*_"

V3

The coaflict between V3 and W, is because VS is the destination of the move, and i
thus a generation. The coaflict might also have been between Vg and W,. In either
case, the inconsistency remains, via the path:

Vs+V3eVoelly ol (or «Uy)
On the other hand, choosing other arcs to break results in & perfectly acceptable fix

.

b

-y ™ vz
LA N
A

R
:l‘lrllJ'l

é "- ", ‘fl '.l ‘¢ "'

61

to the inconsistency. For example, breaking W,+V, obviowsly will work, since it
corresponds to a literal implementation of the assignment.

niadwthatinotdertoruolveincomistenda.wemndevdopa'technique
which is able to anticipate the effect of the extra generations that are added as 2
consequence of inserting moves.

73 Refinement of Partitions

The first step in resolving an inconsistency is to obtain an object which relates the
various occurrences in a class componeant to their relative appesrance in the
flowgraph (assume desired cohabitation arcs are in place, throughout this chapter).
For example, in the example in the previous section, it is important that V; and W,
are in the same node, as are V3 and UW; etc. Another way to see why this is

_important is to consider what it means to have an occurrence of one variable, say X ;,

in a minimal intermediste subgraph of another variable, say G(Y,.Y;). If we decide
to break Y;+Y,, it may make considerable difference whether the move is placed
"above” or "below” X;. It is this observation which leads to the idea of the common
refinement of the intermediate subgraphs of a class component. To introduce the
construction of this section, we first consider some relations of equivalence relations.

Definition. Let ~; and ~; be equivalence relations over a set S. We say that ~ is a
refinement of ~, when

a~ b=> a~ b torall abeS
An equivalence relation ~ is a common refinementof ~, i = 12... when it is a
refinement of each, and a coarsest common refinement ~ has the additional property
that any common refinement of each ~; is aiso a refinement of ~.
g _
It is a simple matter to show that a coarsest common refinement exists and is unique.
In fact, it is given by:

a~b w a~ b foralli

We now relate refinement of arbitrary equivalence relations to the problem at
hand. We first need a notation for the part of a cohabitstion graph concerned with

a particular variable.

o IR

[

62

Definition. Let H be any cohabitation graph constructed during compilation (we
specifically allow H to have internal conflict due to presence of desired
cohabitations). Let V be the variable of some occurrence of H. The restriction of H
10V, Hy is the set of all occurrences (nodes) of H whose variable is V, together with
all srcs of H connecting two such occurrences. (Note that A, may be disconnected.)
[m]

Because of the way that extra occurrences are added, any A, subtends a certain
subgraph of the flow graph, and induces a certsin partitioning of this subgraph,
namely that given by Theorem 4.1. We now characterize the relevant properties of
the relationship between Hy and the flowgraph by abstracting the V-free terminology.
Let H be a graph (think A), and let » be a map from the nodes of H to the
flowgraph (think of the function that takes an occurrence to the node in which it
appears). Then much of the terminology that has to do with a variable V can be
_ restated in terms of the "image of H under »", which we abbreviate »(H). The
following definitions are the major ones of interest When H is in fact the
cohabitation graph 4y, these definitions correspond closely with earlier ones, where
"V" is changed to "H". The major difference is that it is A which controls the

liveness, and not the ordinary flow rules—we are interested only in the part of the

program "seen” by a particular cohabitation graph.

Definition An H-free path (in the flowgraph) is one which has no element of »(H),
except possibly for the first and last nodes. If pog in K, the H-free subgraph (of the
arc or pair of nodes), denoted G(p.g), is the set of all H-free paths from »(p) to »(g).
(The notation "G(p.q)" suppremes any mention of H and », but this is clear from
context, since p and ¢ must be nodes of H and » is fized.)

We say that H is /ive at an arc or a node if that arc or node is in some H-free
subgraph. Finally, H is a merge-split partivion (ot ms-partition) when:
All of its H-free subgraphs have arcs.

H-free subgraphs of distinct arcs of H intersect only when the arcs touch a
common node », and then intersect only at N.

I H is live at a non H-node N, it is live at all arcs touching N.
(The "partition” is of the arcs of the live region of H, not of the entire flowgraph.)
m]
The following result is the anslogue to Lemmas 4.1 and 4.2

. (g '-b
‘e e

R A
LT e .

............

63

Lemma 7.1 Let H be an ms-partition, and let p +» ¢ in 4. Then P dominates and Q
back-dominates all arcs and internal nodes of G(p,9).
Proof. Also analogous to Lemmas 4.1 and 4.2. O

The purpose of all this machinery is not merely to duplicate what we have done
for variables. Given a cohabitation graph 4 involving several variables, we want a
single graph H, which somehow works for all the variables in A "at once”. To do
this, we need the follwoing notion.

Definition. Let H, H, be ms-partitions of the flowgraph. We say that H, is a
refinement of H, when:

The live region of H, includes the live region of H,.

If p+g in H,, and H, is live at some arc of Gy(p.g), then all of G;(p.q) lies

in the same H,-free subgraph.
-0
The relation "is 3 refinement of” is a quasi-ordering (lacking only anti-symmetry),
analogous to the identicaily named relation of partitions. We can define "common
refinement” and coarsest common refinement (hereafter abbreviated cc7) in the same
way. Standard isttice theory resuits yield the uniqueness of coarsest common
refinements (up to equivalence in the quasi-ordering), and reduce the »-ary existence
question to one of binary existence. Before giving the details, we provide a rough
picture of a ccr of H; and H,. The live region of H is the union of the live regions
of A, and H,. The nodes of H are the union of the nodes of H; and H,, together
with "Hmerge"” and "Hsplit" nodes which have to be added. The arcs of H are
obtained in 2 natural way from those of H; and H,. We begin the formal
construction of a ccr with the following algorithm.
Algorithm 7.1 Completed node set of H, Hs.

Initially, the completed node set contsins »,(H,) U »,(H,).

I Ny and N, are in the node set and if there are two forward or two
backward paths intersecting only st the node N, where the paths are
Hj-free and H,-free and lie in the union of the live regions of H, and H,,
then adjoin N to the completed node set.

This corresponds exactly to the construction for extra occurrences at V-merge and
Y-split occurrences (see section 4.2). We now characterize the me-partitions we are
interested in.

v_v;‘:_-‘_'.

L3RS

‘ Definition. Let H; and H, be ms-partitions. A graph 4 and a map v is a common
- ms-partition of Hy and H, whea:
»(H) is the completed node set of H; and H,.

If », and », are nodes of X, there is an arc ny+», precisely when there is
\ an H-free path from »(n;) to »(n,) where H; or H, is live at every arc on
the path.

o

Theorem 7.1 Let H; and H, be ms-partitions. A common ms-partition of H; and 4,
is an me-partition and is a ccr of H) and H,. Coaversely, any ccr of H) and H, is a
common ms-partition.

Proof. That H is an ms-partition is essentially shown in Theorem 4.3, because the
construction of a common node set for H is exactly what was done when adding
extra occurrences of the variable V. Note that Lemma 7.1 plays the role of Lemmas
4.1 and 42.

¢ It is also not difficult to show that H is a refinement of H). Let H, be live on the

. arc A, %0 that A is in G(p.¢) where prg in H) Let V; be the last node in the image

sppearing in this path before 4, and let N, be the first such node after 4. Since this

2 path lies entirely in G(p.g), H, is live at every arc of it, so that by definition of

. common ms-partition, nex; in H, so that H is live at 4. Thus, the live region of H
includes the live region of H, the first requirement of refinement. The second
requirement is the content of Corollary 4.3, so that ¥ is indeed a common refinement
of H,

Whatmmimhtoshawthatfliqascoamupoﬁble. Let Hy be a common
refinement of the H, Since its live region must contain the union of the live region
of H, which is exactly the live region of H, proving the first property required of
sharing that K is a refinement of H. Let psgin Hy We claim that G(p.¢) has no
internal nodes in the common node set. Thus, if H is live anywhere in it, all of
G(p.g) lies in the same H-free subgraph, esentially by Corollary 4.3. We use an
inductive proof, following the inductive coastruction of the common node set. To

s start the induction observe that G(p.¢) is Hifree, since H is a refinement of & and C q
| H,. Assuming the truth of the claim inductively, consider paths from nodes N, and o
N in the node set to a node N internal to G(p.g). Since N, and N, are outside YR

65

G{(p.¢), the paths must go through p (if they are forward) or through ¢ (if they are
backward); this by Lemms 1 and the fact that 5 is an ms-partition. The paths
thus intersect at a point other than N, so that N cannot be added to the common
node set at this point. This completes the proof of the claim, and thus of the
Theoren.

0

A few remarks are in arder concerning the relationship of this result and the extra
occurrences discuseed in Chapter 4 The initial motivation given for extra
occurrences was 10 aid in finding the proper place to put moves, and the V-merge and
V-split nodes might have seemed to be an ad hoc construction. We can now see that
they arise in a completely natural way. The notion of a V-free subgraph is an almost
inevitable way to formalize the "data flow” of a variable from one use to a next use.

_The definition of ms-partition formalizes the idea of partitioning the live region of a
“variable using V-free subgraphs, and the definition of refinement of me-partitions

generalizes the usual notion of refinement to the situation in which the domains of
the relstion may overlap, but are not necesssrily equal. If we take each V-free
subgraph individuaily, and consider all other occurrences of V to be isolated, we have
an me-partition whose live region is just that one V-free subgraph. If we want to
divide up the entire live region of V, the coarsest common: refinement of ail such
me-partitions is the only mathematically reasonsble thing to do. This forces on us
the Y-merge node and V-split node cousttaction of Chapter 4.

Inthﬁchapter.oﬁrmoﬁvaﬁommofeoumdiffmt. Here we waat to relate
the partitions of the live regions of several variables to common parts of the
flowgraph. We can now define H, to achieve the effect we waated.

Definition Given a cohabitation graph H, the refinemens H, of H is defined to be the
coarsest common refinement of Hy, whese V ranges over all the variables with
occurrences in H.

a

Note that the H,free subgraphs are regions in which we have free choice regarding
the piscement of moves involving variables of occurrences of cohsbitation graph H.
The problem of deciding where to place moves factors into two problems—a certain
optimization problem on H, which will yield a choice of which variables to move on

............
.......................

.......................

Ty

66

which arcs, and then a2 code modification problem—given *'iat a variable is to be
moved on an arc of H, how do we best place code to do it in the Hfree subgraph
subtended by the arc.

74 Maximal Cohabitation Classes

Conflict often arises as a giobal phenomenon—3a varisble must retain its value
from an occurrence V; to another occurrence V,, but there is an intervening
generstion W, of another variable. Thus far our representation of conflict has
retained this non-local feel. The refinement H, of 2 cohabitation class makes it
possible to represent conflict so that 2// conflict looks like kernel conflict. This is a
first step in seeing how to resolve an inconsistency of H.

Suppose that to each node of Ha we attach an occurrence of all the variables of 4
which are live at that point, where we mse the occurrences slready oa the line of
' code, if there are any, and make new ones for other varisbies. Extending the rule for
kernel conflict (page 33) to these new occurrences, any coaflict within A will appear
as kemel conflict, by the construction of H, This kernel conflict is the seed of what
we call Jocal conflict, where the term is chosen becamse it can be seen by looking oaly
at the node in question. -

In discussing the techniques of this chapter, it is convenieat to imagine that
whenever a+n, in H, each non-last occurrence of », has a cohabitation arc to some
non-first occurrence of »,, where this cohabitation arc always connects occurrences
of the same varisble. The usual situation is that a varisble will have only one
occurrence among non-first or non-last uses, 30 that the arc is redundant. The first
spplication of these (perbaps imaginary) cohabitation arcs is in the following result,
which tells how local conflict arises.

Lemma 7.2 Let o, in H, and suppose we have occurrences V, W, at #, i = 1 and
2, where V, and U, connect (respectively) to V, and W,. If it is somehow known that
V, and U; cannot be in the same cohabitation class, we can also concinde that V, and
W2 cannot be in the same cohabitation clsss, if the oaly change to the program is the
insertion of move instructions.

Preef. Suppose V, and W, are in the same cohabitation clas, but that V, and W, are
not. Thea G(m;,%,), which had no occurrences of V or W at the time of the

D) . i
Py ot IR
G -

DOF = DO

67

coastruction of the cohabitation class, must have been modified with one or more
instructions which moved one or both of V and W into a common place. This
changes the values of one of the variables, violating program semantics. In terms of
cohabitation and conflict, the destination of the instruction(s) must have been a
generstion of oae of the variables, and 50 is in conflict with the other variable. But
if ¥}, cohabit, this is again an inconsistency. -
n .-..-:Jr
Unlike many of the results and techniques of this paper, this Lemma is decidedly
non-dusl Formally, this might be viewed as being a consequence of the fact that in 7

a move instruction, the source, ie., last use, is not a generation, but the destination, o
ie. first use, is a generation. At a more philosophical level, the non-duality arises o
because entropy always increases; in programs, this happens when a memory location S
is clobbered. :

Using the seeds of local conflict and Lemma 7.2, we can "grow” local conflict. At
each node of H, the algorithm below partitions its occurrences into what we call
maximal cokabitation classes, or mxcc’s. These are maximal in the sense that no
matter how move instructions are inserted to remove inconsistencies, the final
cobabitation clames, restricted to any node, will be contained in a maximal
cohabitstion clas at thst node. Initially, each generation is in a mxcc whose ounly
other occurrences are in kernel cohabitation with it. All other occurrences sre
placed in a single mxcec. 'I'huformyu'cnpazofﬂ.wean‘obtainam
mxcc-et at #, from the one at xy as follows:

Algerithm 7.2 Grow a mxcc-set

GRO Initialize the derived mxcc-set to be the mxcc-set of #;.
GR1 If an occurrence dies out along #,+x,, remove it from its mxcc.

GR2 Replace each occurrence in the derived mxccset by the one of a, to
which it is connected by the cobabitation arc along n;-+,.

GR3 The oaly occurrences of », not presently in the derived mxcc-set are first
uwes at n;. I one of these occurrences "kernel cohabits”™ with some
noo-first use, put it in the same derived mxcc as the one with which it
cohabits (this always applies if the first use is not a generation, in which
case it is o) in CHB 0,,0,). The remaining occurrences, all generations,
are put in mxcc’s according to their kernel cohabitation relation.

GR4 Replace the mzcc-set at 5, by the coamest common refinement (of simple
partitions) of the current mxcc-set at a,, and the derived mzxcc set.

Tala) o
;
L j
-

A .
PR PRLE A
e, .

‘)l. -

K4 . Yooy
SRR IR CARRN
e s
R PRI N I
" 4 r"{rl, v‘.,_,-'v »’_)'l‘
e S A e .._._"

T
. 07l
o ,’.-’.'/

et
2.1)

"
PN
4

'l'v r‘-‘."-‘
N XA

STr———— o v o - “pAn -4 an TR R W W T W

This algorithm applies only to one arc, and by itself is not an algorithm for getting
mzxcc-sets everythere. However, it fits into the general clsss of "weak interpreter”
techniques, the theory of which guarantees a "strong as possible” global set of
mxcosets that is consistent with the seeds and the growth rule. To calculate this
: global set, we just continue applying the above rule till things settle down.
v Algorithmic aspects will not be discussed further here. We do, however, prove that
such a global set of mxcceets tells us what we want to know about conflict.

Theerem 7.2 Suppose we label the nodes of H, with mzcc sets, beginning with the
seed mxcc-sets, and then by repestedly growing new mzcc-sets. Suppose we eliminate
inconsistencies by the insertion of move instructions. Then:

If 0, and o, sre both non-last occurrences at a2 aode of H, and are in
different mxccs before the modification, then they will aot cohabit after
the modification

_ Proef. This is true of seed mxcc-sets becanse at least one of the generations will be

" or will kernel cohabit with a generation, and by ssumption, the other will not be a
last use. Thus, they will be in kernel conflict. Lemma 72 says that the same
property will hold of the derived mxcc-set constructed in GR1-GR3.

" O T NS _'.v RO

r

All that remains is to show that if the result holds for two mxcc-sets at a node of
H,, it hoilds at their coarsest common refinement. Let o, and o, be in different mxcc
sets. By the remark in the previous section about common partitions of sets, we
know that o; and o, are in different mxcc’s in at least one of the two mxcc-sets.
That mxcc-set tells us that o; and 0, cannot cobabit in a program changed only by
the addition of move instructions. This proves the desired property of the coarsest
common refinement.

Incidentally, we can also observe that no information is lost in this step, i.e., the
conflict of both mxccsets is reflected in coarsest common refinement. Suppose 0,
and o, are in the same mxcc’s of the coarsest common refinement. Then they are in
the same mxcc’s in both of the originasl mxcc-sets, 30 00 stronger statement was
kmnubummereplmtdthemtmbythemm o

We now give an example of how this works. Return to the conditional exchange
' example of section 3.4, page 16. We first give H, with the initial mxcc-sets:

L gl S G S e tinagl Sutt aal St s e

5 69
ba8

= ae g}, 1Yg
e

e o (1 X1.Y 4
X4.Y4 and Z3 are occurrences

co{XyY1 23 added because the variables are live
at their respective nodes

‘Y‘/‘f' 222X &

X3.Y3)

Note that at point g, we are asuming that we somehow know that X, cannot cohabit
with Y, Suppose we derive a mxcc-set along a»b. By GR3, the derived mxcc-set will
be {Z;X,}.{Y,} which is the coarsest common refinement of itself with the curreat
mxcc-set st b, and so replaces it, by GR4. Then comsider boc. At the end of GRI,
the derived mxcc-set is {Z;}.{Y,}. while at the end of GR3, it has become {X,,Y,}.&3}.
- which becomes the mxcc-eet at ¢. Next, consider cod. We see that the new mxcc-set
for d is X }{Y22,]. When we proces dve, the mzccset for ¢ becomes {X3}{Y3}.
Finally, consider ave. The derived mxcc-set is {X 3}.{Y3} which is the current mxcc-set.
Thus, a0 change occurs, and we have obtained a global assignment of mxcc-sets.

as ot . Yo
\,*l{zlx 3.7y

ce® {bel} ,(23}

%/ Xy, (Y225

¥ X4, (Y3

As another example, we look at conditional assignment from section 7.2, page 59.
We assume that the seed of local conflict is node a

LA
L

70
PRARCHA AN TH

SVATR: becomes o (Vo 4,)
A UNTR; Civy, Wy

Here the oaly change was to the mxcc-set on node ¢. For node b, V, is a first use,
and V, dies out along a+b.

7.5 Splits and Twists

Suppose we have H, labeled with mxcc’s. We wish to modify this labeling in a
. way which reflects the imertion of move instructions, so that we are finally able to
assign the mxcc’s to cohabitation clames consistent with the generated code. We
begin by finding some condition on the mxccs which makes this trivial. This
condition is most conveniently discussed in terms of the following object, which we
do not propose actually implementing. '

Definition. The mxce-graph has nodes which are mxcc’s, and arcs induced from the
cohabitation relations on the elements of the mxcc’s.

o

In terms of this graph, the consistency condition is that there not be an undirected
path in it between distinct mxcc’s at the same node of H., We will examine
inconsistencies by looking at the image in H. of the mxccpath from the
inconsistency. The inconsistency condition is easier 10 work with whea it is broken
down into two conditions. The first is one which is can be seen along a single arc of
H,

Definition. Let n;+5, in H. Suppose some mxcc of #; has arcs to distinct mxcc’s of
#. We say that this mxcc splits along ny-+n,.

a

An example of splitting is the conditional assignment example. Refer to the previows
figure. The derived mxce of {¥, 5} along bec is {Y 33}, which is not a mxce of node

.........
oo

. e TH

0"- ~.
REAS
-
-

. R
ERERY

........

......

K- OO

T —— PL g Endr
’ . . y ‘e ., * -

1
¢ instead, we find {V3}. us}.

It is clear from the definition of mxcc-graph that each mxcc-arc "belongs™ to a
certain arc of H, Note that when there is a split, the path between distinct mxcc’s at
a node beloags to a cycle of arcs in H, consisting of one arc repesated twice—first
backward, then forward. We know that splitting does not cover all inconsistencies, i
for if we look at the mxcc sets computed for the conditional exchange example (page o
69), we see that there is no splitting. But we know that something must be wrong,
because there is inconsistency. The problem is captured as follows.

Definition. An undirected path in the mxcc-graph between distinct mzxcc’s at the

same node of H, is called a neisr if the cycle of Hearcs to which it belongs is simple

(has no repeated arcs).

We draw the mxcc-graph for the conditional exchange example, which motivates the
term twist (meutally fill in mxcc labels in the same order ss they were listed in the

previous section).
x

\-b

s ¢

| . l ';?'::3

This could be drawn most symmetrically on a Moebius band.

Theerem 7.3 Suppose a mxcc-graph is free of splits and twists. Then there are no
inconsistencies (and the components of the mxcc-graph are the desired cohabitation
Clasees).

Proof. Suppose we have an inconsistency, i.e., an undirected path of mxcc-arcs
between two mzcc’s on the same H,node. We may assume that this path is of
minimal length, We want to find either a split or a twist. Look at the cycle in A, to
which the undirected path belongs. If the Hocycle has no repeated arcs, we have a
twist and are done. Suppose some arc in the Hocycle is repested, and examine the

- - Pa g 30 = 2Rt . e 20 lai - a4 rR AN ~ - ShiachinCaiin At A a2 Sahiia i il -Iin A Sl At ia R e Sh St A
L
b .\-ﬁ_n

" »~
Sy
AN

72

mzxcc-arcs belonging to it. If these arcs share a mxcc, they must both leave that
mzxcc, because distinct arcs can't enter a mxcc after the growing of local conflict
which was done in the previous section. Thus, this mxcc is split, and we are done.
The only other possibility is that there are four distinct mxcc’s touched by these two
- mxcc-arcs. Start at any one of these four mxcc’s, and follow the mxcc path uatil one
: of the four is encountered. This mxcc-path cannot come back to the same mxcc or
: to the mxcc on the other end of the mxcc-arc, or we would have a mxcecycle,
mesning that the original undirected path did not actually contain all four mxcc's.
There are ementially two possibilities, most essily described by their pictures (ellipses O
enclose mxce's at a single node of H.): -

- path starting mxcc L

In the first case, we may extend the mcc-path by one more arc, and wind up at a I
distinct mxzcc at the same node of H, In the second case, we wind up at such a ;
maxcc just by the path. In both cases, we have contradicted minimality of the length o
4 of the mxcc-path. <
a NS

The decomposition of the problem of inconsistency resolution into splits and twists -9

sets the stage for the rest of this work. In the next chapter, we will consider the S
k. problem of split removal. Given H, and the information of the accompanying
mxce-graph, the techniques of that chapter will tell how best to insert moves o that KRN
if H, is re-derived, there will be no splits. It seems likely that split-removal will
resolve most inconsistencies, although we koow that it cannot resolve all of them.
Chapter 9 discumes the problem of untwisting. The techniques there assume an H,

and a mzcc-graph that is free of splits, and tell how best to insert moves resulting in —

consistent cohabitation and coaflict relstions. Synergstic interactions between

split-removal and untwisting are not considered. This question will have to be
. re-opened it empirical evidence refutes the intuition that little would be gained by RIS
‘ such techaiques. ‘

73
8. Split Removal
8.1 The Two Varisbie Case
We begin our discussion of split removal with the special case in which 4 has only

two variables, neither of which is replicated. In this case, each node of H, has at
most two occurrences, and if there are two, there is either one mzcc or two. A split
alwsys has the following form:

o (VU
(neither V nor W dies along this arc)

vV,

There may be several such splits. Form the modificarion subgraph M of He

Algerithm 8.1 Construct a two variable modification subgraph
. Include in M all arcs of H, along which a split occurs.
for » « the top node of each split
Adjoin to M all undirected paths starting at » such that:
(1) both variables are alive along an arc, and
(2) both variables are in the same mxcc at 2 node.

This subgraph has the following important property.

Theerem 8.1 Let n, be a node of M at which there is CHB whose arguments are V
and Wl. Let », be a node of M at which V and W are in different mxcc’s, and cousider
any undirected path betwen n; and a;, Suppose that the code is modified by the
insertion of moves (explicit or otherwiae) in such a way that there are no remaining
splits and no replications. Then there is 2 move inserted in the Hefree subgraph
nbmdedbymmmwdmﬁomnlmthemﬁ. In pictures:

r——mucnotmientedavayfromm
e —Deb——o——Dek——s—De—>e
‘ Lmucotiemedavayt‘mnl

Preef. Let H/ be the me-partition computed after the moves are inserted; grow
mxcceets in H). The proof is based on comparing H, to H, the original
me-partition. All of the nodes along our undirected path ementislly lie in H,, but
the arcs between two nodes may be replaced by a finer subgraph, becawse of extra
occurrences added if a move is inserted internally in G(m,n), where », and x, are
adjacent on the undirected path. Nevertheless, if non; there will be 2 path in A,

‘‘‘‘‘‘‘

from x, to », and dually if npn,

In the undirected path, the first arc must /eawe), not enter, because if »; has a

C}-B.theleﬁopaandiinmﬁnﬂmgmymenwingnl. Thus, if 7, has been

modified (the CHB changed to a move), the Theorem holds. Otherwise, the mxcc-set
of », 28 2 node of H, will have only one mxcc, because the CHB is intact, and
becawe there are no replications. Let #; be the last node along the undirected path
which has only one mxcc in Hy (we may have n;=n;), and let n, be the next node.
Note that a;+n; is impossible, since there would be a directed path from », to »; in
H/, and by the Growth Rule, if there are two mxcc's at #,, there must be two at »,
—~remember, both ¥ and W are live through G(ny,n3), and insertion of moves does not
change this. Thus, we must have »;9n,, and the move instruction must appear in
G(m3.5,), 38 desired. O

The resson that we are interested in this Theorem is that it shapes how we look
for code modifications. Consider the conditional assignment example started in
section 72 and for which we computed mxcceets in section 7.4. The only split is
along the arc bs»c. If we compute the modification subgraph for this case, we see
that it includes only this one arc. Thus, there is ementially no choice in how to
resolve the inconsistency: we change the CHB to a move instruction. '

A further restriction on where the modifications occur is given in the following
result.

Lemma 8.1 Let A be coastructed as above. If moves that are added to the code do
not creste replications, those moves do not appear in Hfree subgraphs subtended by
arce in strongly connected compoaents of M.

Preef. A node containing a CHB has no incoming arcs, and is thus not in a strongly
connected compoanent (scc). Thus, a move in an scc will be the form MOVE V.V or
MOVE W,W. The picture is:

b AP A A S 000 i AR Al S~ i

vt

ot i e
ROV
LR ":\("l,'-
AT

75

Since V is live on the entry and exit arcs of this scc, #; will be a V-merge node and n,
will be a V-split node. Let V; be the merge occurrence of V at N, and V4 be the
split occurrence at »,. We claim that V; and V, are both not last uses, ie., that the
move replicates V. If V, is a last use, the move instruction is superfluous, and would
not have resoived an inconsistency. Suppose V, is a last wse. Then V; must cohabit

with V,, since this is the only choice. Since we also have V; cohabiting with V, and

V, with ¥; (by a;+n;), we see that V; cohabits with V,. This is also absurd, since it
too would not resolve an inconsistency (in fact, it formally causes one, since V and
V, are in intra-line conflict). Thus, V, is a last use, contradiction. O

It must be noted that it is occasionally useful to create replication in just the above
way. However, it is a second-order optimization, and is not treated here.

The previous two results allow. us to approximate an optimal solution to the two
varisble replication-free split removal problem, by converting it to an efficiently
solvable graph problem. Assume that along any arc of Af not in an scc, the cost of
moving V is equal to the cost of moving . Then we can call this the common cost
of the arc of H, For arcs which are in scC’s, we assign a cost of infinity, meaning
that no move is allowed on the arc. Call all of the nodes of A having cohabitations
of YV and W sowrces, and call nodes of M having two mxcc-sets sinkss. What we are
interested in is:

Definition. A splir-removal modificarion (ox srm) is a set S of arcs having the
property that every undirected path from a source to a sink coantains an element of S
oriented away from the source.

ju

L

: s’ T
LA

AT
» .l 'l .l

76 B
We want the srm of minimal cost. This is very close to the maximal-flow-minimum
: cut problem, the difficulty being that here we are quantifying over undirected paths PRty
: and oriented arcs, whereas the standard max-flow-mincut wocks ou directed paths T
and oriented arcs, or undirected paths and unoriented arcs. We can convert our
. problem to the fully directed case by a simple technical device. T
: Lemma 8.2 Let M be a graph whose arcs have costs and whose nodes are labelled as i
y sources, sinks, or neither, where all sources and sinks are not in scc's. Obtain My
[- from M in the following way: for every arc my+a, of M, adjoin an arc ny»m; with
L infinite cost. Then the set of srm's of M is equal o the set of finite-cost cut-sets (in e
3 the usual flow-theoretic sense) of M,
3 Proef. There is an obvious bijection between the set of unndirected paths of A and b
- directed paths of Mp, o that when we consider finite-cost srm's and Cutsets, the U
5 inclusion remains true. The only thing remaining to show is that a finite cost cut-set A
: - maps 1o a finite cost srm. This holds becawse all arcs in My and not in M have R
infinite cost. Thus a finite cost cut set of M, contsins oaly arcs of M; these e
obviomsly constitute an srm of M; by the bijection of undirected paths of M and L
. directed paths of M. O ‘
Now that we know how o efficiently compute an optimal srm, we show that it does S
in fact yield the desired effect on the program. The following is a partial converse i
of Theorem 8.1. —
Theorem 8.2 Given an optimal srm, suppose we insert a MOVE V1.V, at the point in .‘
the flowgraph corresponding to each arc of the srm. Then A, constructed as in the <
proof of Theorem 8.1, is free of splits and replications. AR
Preef. The crucial part of this proof is to show that every direcred path from a \

source to a sink encounters exactly one element of the srm. Suppose we can show
this. Then the srm partitions M, and thus the flowgraph, into places where V and W
cohabit, ie., are on a directed path from a CHB without an intervening element of
the srm, and those places where V and W are in different mxcc-sets, i.e., where there is T
a directed path to a sink, which is someplace in the unmodified flowgraph were we

.' koew that V and W cannot cohabit. The boundary between these two pieces is

' exactly where instructions of the form MOVE V3§V, are in place, and so this whole

arrangement is what is obtained by the growth rule,

b g mam dge ae ags Jhat e s B Boutielt s g s

o 77

B To prove the result, we obtain a contradiction from assuming that some forward
'“ path in M from a source to a sink encounters two arcs of the ssm. We make heavy
Y use of the optimality assumption. First, we introduce the concept: a node 7 is
& source-separated if any undirected path between a source and has some arc of the
srm, oriented away from the source. Call the dual concept sink-separared. Let n; be

) pointed to by an arc 4, in the srm on a directed path from a source to a sink having
two srm arcs, and let 4; not be the last such arc. We claim that »; is not

= sourcoscparated. If 30 we claim that 4; can be dropped from the srm, and the
o remainder will still be an srm. The only undirected paths that this would affect are
those containing A, oriented away from the source. But in such paths, since #; is
source-separated, we know that there is another arc of the srm, properly oriented.
Thus, A4, is unnecessary in the srm, contradicting its optimality. We conclude that m,
. is not sink-separated.

- Let 4, be the next arc in the srm on the forward path after 4, and let », be the
! arc which 4, leaves. We may dually conclude that », is not sink-separated. But then
. we have an srm-free undirected path from a sink to #, (», not sink-separated), and
from , 10 y (because 4, is the next arc in the srm after 4;, and from #, 0 2 source
(m; is not source separated). But this contradicts the assumption that we were given a
:{ff: sm. Thus, we can conclude that on any directed path from a source to a sink, there
is only one arc of an optimal srm. O

The reader should be awsre of the fact that an optimal srm may have several arcs on
an wndirected path from 2 source to a sink.

e } sources
\3 \ZI circled arcs constitute the srm
—Llo>e

o } sinks

..'. __‘- ™
- %1 k numbers are costs]

78 r-..'-
8.2 The Difficulty of Split Removal 5{;;5
In this section we shall formulate the general split removal problem, and show that :]

is is NP-hard. The resuit is of course not tremendously useful in designing the code
generator, other than halting the search for an efficient algorithm. However, the
proof is instructive both in showing the source of the combinatorial difficulty, and in
suggesting approximation heuristics.

The split removal problem involves both the ms-partition H, and the associated
mxcc-graph. Two nodes and a connecting arc of H, have associated mzxcc’s and]
mxce-arcs, depicted thus: q
VWX, Yy eeudyene, (2,000 ;

AN

W, WX}, (¥, eendreees iZ,...} ‘”i

(Occurrence subscripts have been omitted.) When we are. worrying about split
removal, the algorithm for growing mxcc-sets has aiready been applied. Thus we may
see splits, as in the mxcc {V,W, X} above, but we will never see arcs from different
mxcc’s going into the same mxcc.

*E——e

We think of split removal as effected by the insertion of a set of moves having the
peoperty that after they are inserted and mxccc-sets regrown, there are no splits. The
moves have the effect of breaking the cohabitation arc into the destination
mxcc-class. In the above case, the destination of the move might be the mxcc-eet
§i, X} on the lower node. This removes the split, as we can see locally. It is also
possible to break up a mxcc well in advance of a split, in which case, it can be seen -
to remove the split only by growing mxcc-sets. -

AT Wi

e

In purely graph-theoretic terms, a split removal can be thought of as a set of sets
of cohabitation arcs, each individual set of cohabitation arcs belonging to a common
Hearc and originating in a common mxcc. In the above example, a set of —
cohsbitation arcs would be the singleton V-V arc, or the set consisting of the W =
and XX arcs. Each set of cohabitation arcs corresponds to a single move instruction,
so that a split removal set is defined to have the property that removing the arcs,
partitioning the mxccsets at the destinations, and growing, leads to a split-free
mxcc-graph. The cost of a split removal might depend in a complicated way on the

Y. A 1
. . ’

-4 e e

By y r N Y

costs of the cohabitation arcs involved, but we will prove NP-hardness in the
restricted case where the cost depends only upon the Harc.

Definition To color a graph is to assign integers (colors) 1, .., x to its nodes such
that adjacent nodes do not receive the same colors. A minimal coloring is one which
uses a minimum value of x. We say that x is the chromatic number of the graph.

a

The problem of minimaily coloring a graph is known to be NP-compiete [3] We
shall show how to transform a graph to be colored into a split removal problem, such
that the solution of the split removal problem will give a minimal coloring of the
graph, thereby proving that the split removal problem is NP-hard. Given a graph, we
view each node i as corresponding to variable V), / = 1, ..., n, where 7 is the number
of nodes. We construct H, thus:

e [V(l). ses .V(a)}

l\)/l J{\/ltv(’)x.tv“’}

We have depicted the mxcceet at the top node; this same mxcc-set is also the
mxcc-set at all the nodes in the loop. We have also depicted the mxcc-set on the
lower right aode. This corresponds to an arc between nodes 7/ and j of the graph to
be colored. In fact, for every arc in the graph to be colored, we have nwo exit arcs
from the loop, each ending in an Honode with mxcc-set like the above, and each
node of the pair connected to 2 common node. Thus, if the graph to be colored has
a arcs, the H, constructed above has 2- g exit arcs from the loop 2-a more arcs after
these, 2:a + 1 arcs in the loop, and one more arc 4, on top. The cost on the arcs in
the loop we put at infinity; ail other arcs have a cost of 1-—this simply means that
the frequency is 50 low that the cost of inserting a move is simply the space for it. It
is clesr that the desired 4, can be constructed in polynomial time. Note that

..
..............
..........

''''''''''

I TV T Y W e
-7 -Yatu.

R AR
S
""-"1' s

.......

growing mxcc-sets would change nothing.

Now, suppose we are given an (optimal) solution 1o the split removal problem, and
that the mxcc-sets have been reinitialized in accordance with the inserted move, and
regrown. Let us consider variables V(),V() where (i) is an arc in the graph to be
colored. Suppose that V() sad V() are still in the same mzcc at the eatry node of
the loop. Since no moves have been inserted in the loop, there must be moves on
esach of the two exit arcs for (7). But is this is the case, we can improve the solution
by removing the two moves and placing a single move on arc A4, contradicting the
optimality of the solution. We conclude that if (/) is an arc of the graph to be
colored, V) and V) are in different mxcc’s at the entry node to the loop.

The correspondence with the coloring problem now follows. A solution of the
split removal problem minimizes the number of mzcc’s at the mxce set at entry to the
. loop. We color each node of the graph to be colored by its mxcc; by what we have
said, this is a coloring of the graph. Conversely, any coloring of the graph in x
colors can be turned into a split removal with cost x~1. This proves

Theerem 8.3 The split-removal problem is NP-hard.

8.3 The Eventually-Separate Relation
We have seen that the two-variable case of split-removal is easy, and that the

general case is hard. In later sections of this chapter we shall outline an approximate
solution to the difficuit case. It will reduce split removal to several max-flow-min-cut
problens and several graph coloring problems. Known heuristics may be applied to
the graph-coloring problems (see [4]). These represent some of the intrinsic difficuity
of the split removal problem. When there are only two variables, the graph coloring
problems are easy, and the approximation algorithn reduces to the algorithm
proposed earlier, so it is exact.

In this section, we will introduce a relation that is important in constructing both

the max-flow-min-cut and the coloring problems. We begin by looking at a split. As
our canonical example, we will use

81

NelV, WX, Y. 2},...

LI

oV}, W, X1, (Y},...

The split induces a relation on the occurrences of a mxcc at N, which we may draw

28 a graph:
W

v@-v

X

We call this relation evenrually-separate because there is a forward path from NN that
eventually leads to a node where occurrences so related are in separate mxcc’s.

Suppose that there is an assignment Y«Z at N, which we see as aCHB Y,Z and an
" intra-line cohabitation from Z to Y. It is clear that 7 is eventually-separate from
anything from which Y is eventually-separate, and we explicitly include the pairs
v,2), (U,2) and (X,2) in the eventually-separate relation at N. This is called
completing the relation. To summarize what we have said so far:

Algorithm 8.2 Initialize eventuaily-separate relation.

for A+~ cach arc is H,
for n + each mxce at the beginning of 4
for 04,0, « each pair of occurrences in m
if o; and o, map into different mxcc’s along 4
make 0;,0, eventually-separate
Complete the eventually-separate relation of m

Obeerve that non-splits result in null relations. A two-way split produces bipartite
complete graphs within a mxcc; it is one of the places in which the assumption of
small mxcc’s plays a role in practicality. Even with four occurrences in a mxcc, the
largest oumber of eventually-separate pairs is six.

Coatinuing our above example, let us look at what might occur at a node
preceding N, and its corresponding eventually-separate relation:

NelV W, 2,0 v
\\ W U
Ne {V, U, X, Y, 2}, (U} Y4

(Bvidently X and Y are dead along this arc.) We will modify the eventually-separate

PR I il e M- Sl el o i e it
a

F‘- AT
7 ST
% 82 e
’ relation at N, by pulling back the relation at ¥ and completing it. oo
Before giving the algorithm for propagating the eventually-separate relation, we e

discuss an interesting consequence of completing it: it is possible for an occurrence
to be eventually-separate from itself. This happens whenever there is an intra-line
cohabitation between two occurrences that are eventually-separate. As an example of -
this, look at the cohabitation graph of the first figure of section 7.2, and its o0

correspoading H, in the last figure in section 74. Since there is an intra-line -
cohabitation arc from W, to V,, and since V, and W, are eventually-separate (by o
initialization), W, will be eventually-separate from itself. Thinking of how this would
appesr in the graph of the relation, we say that W, has se/f-/oop on it. During split
removal, any self-loop will at some point be in a source node of a modification
subgraph. We saw this in the conditional assignment example of section 8.1, page 74. .
The algorithm for propagating the eventually-separate relation is phrased so that -
' seif-loops are not propagated. S
Algerithm $.3 Propagate eventually-separate relation along 4 -
fer m « esch mzcc at the beginning of 4
for 0,0, « esch pair of distinct occurrences in m .
if 0, and o, map to eventually-separate occurrences along A e
make 0,,0, eventually separate. Z::;:::;.:
Continuing our above example, we would get a new eventually-separate relation at :}
N S

Just ss we propagated the growth of mxcc-sets forward, we propagate growth of the
eventually-separate relation backward, until the relation stabilizes. Along an arc A of G
H, from N to N', the eventually-separate relstions of several mxcc’s of N' may
contribute to the same mxcc at N. However, since the mxcc-sets have been "grown”
(Algorithm 7.4), a given mxcc of N’ can affect at most one mxcc at N. After
growing the eventually-separate relation, we will have an eventually-separate relation
on each mzcc of esch node of He with the following property: if all first uses T
(corresponding to dead variables on the incoming arc) are removed, the relation maps -
backward along incoming arcs to & sub-relation (think, sub-graph) o a mscc oo a
previous node of H.
e R e e 2R
e T SRR I T I T e T e e 5

| -; ':

83

We said in the introduction to this section that graph colorings would eater into
the split removal process. The graphs that are colored are—almost—the eveatually-
separate relations on mxcc’s. The colors correspond to the cohabitation classes that
will exist once splits are removed. In some situations, colors on occurrences at a node
of H, merely signify the cohabitation classes into which the cohabitation class of an
occurrence is eventually copied; in others, differently colored occurrences at a node
of H, will be in different cohabitation classes.

Technically speaking, it is impossible to color a graph with seif-loops, so it is not
always possible to exactly color the eventually-separate relation. Further, the
“coloring” that we can’t quite do must be propagated from node to node of Ha
reflecting the cohabitation classes that we are trying to form. This propagation runs
into other difficulties. Both sets of difficulties are taken care of as we construct a
modification subgraph, (the subject of the next section) analogous to the one we used

in the two variable case. In the general case, we will make several such constructions,

84 Construction of a Modification Subgraph

The constraction of a modification subgraph is an attempt to get a good
approximation to a problem that is known to be difficuit. The philosophy of the
construction is to derive as much power as we can from the network-flow technique,
which we know provides an optimal solution in the two variable case. The strategy is
to group together occurrences in each mxcc into two subsets—black and white. The
black occurrences as a whole act as a variable, and the white occurrences as a whole
act a3 another variable. There are cohabitation arcs between black and white
occurrences only at source nodes in the derived network-flow problem, just as in the
two varisble case, there are cohabitation arcs between the two variables only at a2
source node. Corresponding to the situation that two variables are in different mxcc's
at a sink, we will coastruct the modification subgraph so that at a sink, a black and a
white occurrence are never in the same mzxcc.

In the absence of an implementation, it is possible to make omnly plausability
arguoreats for this approach. The main argument we make is that there are not too
many occurrences at a node of H, and the modification subgraph never departs too
far from the two variable case. Realize that if there are several occurrences at a aode

N —

RSt iR A S A A S it e g
-

of H, they will have different variables, and there must be some assignment that
caused the cohabitation. It is hard to imagine a real program where more than three
of four variables have il been assigned together. Even with asignments generated
by the compiler, say to model parameter passing, a half dozen occurrences at a single
node of H, seems an extreme number. There are several places in this and the next
section where we invoke the smallness of mxcc-sets, usually to justify not worrying
too hard about choices to be made. As we know from the two variable case and the
proof of NP-hardness, as the number of occurrences at a node of H, grows, so does
the unlikelihood of finding a reasonable approximation.

We begin the construction of a modification subgraph M at a split. As in the two
variable case, a split corresponds to an arc of M entering a sink. Here, there are
srbitrarily many variables, and complications arise that were not seen previously.
The first of these is that because a node of H, may have several mxcc’s that might be
" broken up by the imsertion of move instructions, we must think of M as a subgraph of
the mzcc-graph, not of H,. (In two-variable split removal, the only part of the
mxcc-graph where it made sense to put moves was where there were two active
varisbles, and thus only one mxcc. This made the mxcc-graph correspond exactly to
H,) Strictly speaking, M is not really a subgraph of the mxcc-graph, because there is
only one arc of M entering a sink, where the mxcc-graph has a fan-out:

Withthhabuseofwmimbgynndernood.weeonﬁnuetoémuamodiﬁcaﬁon
subgraph, but of the mxcc-graph, not A,

A split is always asociated with an arc 4 of H, and a mxcc m belonging to the
node st the beginning of 4. The size of a split amociated with 4,m is one less than
the number of mxcc-arcs leaving m and belonging to 4 (so the size is zero if there is
no split). We describe a coastruction for M that reduces the size of the starting split,
perhsps to zero. This same M may also, serendipitously, reduce the size of other
splits. Inserting the move instructions corresponding to a cut of M may divide the

T

85

mxcc-graph into two connected components. Whether or not this happens, the total
size of splits in the new mxcc-graph(s) will be less than the original. After several
iterations of constructing 2 modification subgraph and inserting the move instructions
corresponding 1o it, the total size of splits will be reduced to zero.

In the general case 3 split may take a single mxcc m at a node N of H, to several
mxccs M, at a subsequent node N. We shall choose at least one of the m; to be
black, and one to be white. By the smallness of mxcc-sets, there are probadbly only
two mxcc’s. In the unlikely event that there are more than two, black and white may
be amigned to the others arbitrarily. The occurrences in each of the m; receive the

-color of the m, and the occurrences in m are colored according to the occurrence

they correspond to in one of the m, Initializing M thus produces a situation like

LT

mjlthatnmmwﬂlmpmdtothefmd@wehaveinimuﬁngm
instructions that separate biack from white along this split.

There may be occurrences in m that are last uses, and so will not be given colors
by the above rule. We will eventually assign these occurrences either black or white,
but on the basis of what can be seen between N and - N’, there is no reason to choose
either one. It is convenient to amign last uses arbitrary distinct colors. As the
construction of M proceeds, these colors may be merged together, or may be merged
with black or white. But as we shall see, we never merge black with white.

Since colors correspond to cohabitation clases, the next step of the algorithm is to
merge colors of occurrences that are connected by an intra-line cohabitation arc (for
simplicity, assume that there is at most one CHB per node of H,). This may resuit in
some of the last uses becoming the same color, or black, or white, If this rule says to
merge black with white, we don’t. Rather, by analogy with the two variable case, m
is labeled a source. In this case, M consists only of m, »', and an arc coanecting
them—there is no choice about where to put the move 10 reduce or remove this split.

4 "(
i

COO T
‘f"‘;"f'r"l'

(AR UL N P
ST v

.........

Suppose that black and white do not intra-line cohabit at N. Then there remains
the possibility of inserting a move instruction to separate black and white on a path
leading to N. If this is done, then the black and white occurrences at N will end up
in separate mxcc’s after growing mxcc-sets, and of course this growth will propagate
forward on all paths leaving N. Thus, before including in M anything before N, we
investigate what would happen during the growth of mxcc-sets from N, if black and
white occurrences were in separate mxec’s. This investigation is accomplished by a
forward propagation of the colors of occurrences at N. (Colors other than black and
white are not propagated, because occurrences with these colors are last uses.) As
colors are propagated forward along a mxcc-arc, all of the non-first occurrences in
the destination mxcc receive colors. The asigament of colors can be extended to all
the occurrences in the mxcc by propagation along intra-line cohabitation arcs.

We first consider the case in which the occurrences of the mxce are all black or all

" white. The entering mxcc-arc is not a place where inserting a2 move instruction will

separate black from whit~, so this mxcc-arc is not included in M, and the scan does
oot continve from this point. However, for reasons that become clear Iater, the
colors are left on the occurrences.

Let 4 be an H, arc from N to N;. Suppose that every mxcc-arc leaving m and
belonging to A ends in an all black or all white node. This is called a complere split.
N (o ol m

M (e {o}
The forward step to N taken here causes a situstion that looks exactly like the
original split. Naturaily, we create a new sink m, for M, and coanect m to it.
We next consider the case where the destination mxcc of the mxcc-arc receives
both a black and a white occurrence,
N (o ol m

M (e o}

hial A Sal Sl ah

RS
oy
3

S
0
A

sy

87

We ask whether some pair of black and the white occurrences of m; are eventually-
separate. If not, we will argue that, as an approximation, m should not be included
in M. The part of the program reachable from N does not reach a split for the
mxccml(ehetheoeennmwonldbeevenmny«pame).mningthnblwkmd
white can cohabit as far as m, is concerned. It seems unlikely that an optimal split
removal would separate occurrences that can cohabit. Thus, we terminate the
forward scan, and do ot include m, in M. Further, we argue that black shouid not
be separated from white before N, for the reason that they would also be separated
on paths starting from N, specifically, those leading to N; and beyond. Thus, we
label m a source and terminate the construction of M. In this situation, as in the case
where black and white intra-line cohabit at N, there is no choice about where to
reduce the split.

The remaining case is that each black-white pair of occurrences at N; are in

 different mxcc’s or are eventually-separate. In this case, we continue the forward

scan from m;. If a mxcc-arc leaving m, arrives at a mxcc that is not already colored,
then we have the same cases that we had as we left m, and this is true in general as
we scan forward. The new case is that we may encounter a mxcc that has already
been colored. -

The simplest and most pleasant case that arises in an aiready colored mxcc is that
the cohabitation arcs along the mxcc-arc being scanned connect black with black, and
white with white. In this case, the arc is included in M, and the forward scan
continues along other paths. A related possibility is that the scan arrives back at m,

" and some of the biack or white nodes propagate to last uses there. The colors of

these last uses are merged with black or white, as required by the cohabitation arcs.
As long as this can happen without an attempt to merge black and white, we have
the simple plessant case.

Suppose though, that s biack occurrence is carried by a mxcc-path to a white
occurrence at the same node. If this occurs, we have met a problem alluded to
earlier—the propagation of colors (specifically, black and white) cannot be done
consistently. This is called s /azent nwisz, for a reason we now explain. Suppose we
separate black from white (with a move instruction) on some path leading to the arc
which caused the black-white merge. Then after split removal and growth of mxcc's,

Y
vy
.:“_,.‘
. .f

‘g

- Ve W e ¥ Ta U e TN C i A .y

we would have a twist, and there would have to be extra moves (exchanges) to resolve
the inconsistency. Now, it is conceivable that all this might be part of an optimal
inconsistency resolultion, but so unlikely that the comstruction of M excludes the
possibility. The point is that we can dictate that the occurrences invoived in a latent
twist always cohabit, and still resolve the inconsistency—thus the term “lateat™
Following previous reasoning to ensure that occurrences in a latent twist cohabit, we
Iabel m a source, and delete from Jf all the structure that was added on the scan
forward from m.

To summarize the forward scan from m, the effect is either to consistently assign
colors to occurrences in every mxcc reachable on a forward path from m, stopping at
all biack and all white mxcc’s, and to include all of this part of the mxcc-graph as
part of M, or to label m a source, include none of this part of the mxcc-graph in M,
and to terminate the construction of M (leaving it with only m, m', and the

~ connecting arc).

If the comstruction of M is not complete, the next is to scan backward from any
mzcc m that has already been included in M. We take a backward step from a mxcc
m, ie., consider s mxcc-arc entering m, only when the coloring at m can be
consistently propagated along all forward paths. After the forward scan from the top
of the split (also called m), all of the nodes included in M during the scan, as well as

the top of the split, enjoy this property.

Let ' be a mucc having an exiting arc that enters m. If o' has been colored, the
only possibility is that it is a mxcc that is part of a sink or is an all white or all black
node at which the forward scan stopped. This bizarre case looks like the following
(cohabitation graph on the right, corresponding mzcc-graph oan the left):
R

nI 4

mpe

A

*—> o}

N4 b

)

Becawse mxccsets have been grown, back propagated occurrences arrive at a single

r‘r‘ f_r".v . -
I S N P

"y

N
s -
F-a- .
f' ST
n 89 gty
mzce, so that if back propagation to a sink occurs, it will connect black and white. o
This is another version of a latent twist; we cannot propagate colars consisteatly. As i
we did before, we stop the propagation by labeling some node a source, in this case
». This seems peculiar, because »' is also part of a sink. However, it must be
correct, because it allows us the flexibility of inserting a move instruction between m’
and m, m and m;, and m; and the sink, each of which is a reasonable place to e
remove the split. The modification graph looks like this:
wouroon—s% S5 egink B

Like other latent twists, this probably is unlikely to happen in real programs.

The ordinary case is that the occurrences of »7 have not already been colored. In
this case, we include in Af the mxcc »/' and the mxcc-arc between it and m. The
colors at m propagate backward, so we get colors at all occurrences of m’ except the
" last uses (as at the top of a split) and occurrences that split off to some mxcc other \
than m (a new phenomenon in the general case). These occurrences are given new
distinct colors. As before, we merge colors according to intra-line cohabitations at .
nf, unless this would merge biack and white, in which case we make »’ 2 source, and ;:.,_.

do not coatinue a backward scan from it. Again as before we do not scan backward K
from #f until we scan forward. This forward scan is much the same as from the top 5
of a split. If the scan encounters a latent twist or biack and white occurrences that -]
are not eventually-separate, then everything adjoined to M since the start of the scan TR
from uf is exciuded from Af, and n/ is labeled a source. A forward scan in the ik
general case can encounter a source node (on the first forward scan, there were no i
sources). The resson that a node is labeled a source is that the split should be BN
removed after that point, because otherwise a merge of biack and white is implied. R
Thus, if 2 forward scan from 7 encounters a source, we also conclude that » should - o
be a source, and as usual, we exclude from A everything that was adjoined since the S
start of the forward scan.

In addition to the possibility of encountering sources, there is another .

complication that we previomly did not have to consider: some of the colors may be
neithrr black nor white. We now review forward propagation, incorporating this
extra geunerality. Suppose a mxcc does not receive a black-white pair of eventually-
separate occurrences. If there are oanly black or only white occurrences, we have the

v r v .
L% p'l. t

DR AN N
RSP PN
Ko

.........

same situation as before, and take the same action. Otherwise, there is a dilemma.
On the one hand, we cannot include the mxcc in M and continue the forward scan,
because this part of the mxcc-graph would no longer represent places where an
inserted move instruction would separate black from white. On the other hand if we
‘ merely quit scanning, there is the possibility that a merge of colors, made because of
a construction elsewhere in M, might cause an eventually-separate black-white pair to -
5 appear in the mxce, in which case we should have propagated forward.

The solution is to continue the forward scan merging colors according to
cohabitation arcs, but mor include any of the structure in M. We call this a tenrative
forward scan, and say that we tentstively include part of the mxcc-graph in M. Like
the entire forward scan, it may be necessary to abort a tentative forward scan, for

2 example, if a latent twist is discovered. If the beginning mxcc of a tentative scan has

g both s black and a white occurrence, then aborting the tentative scan causes an abort
of the entire forward scan. Otherwise, 2 more benign approach to the abort may be
taken. When we were cousidering the case with only black and white, the scan
stopped when a mxcc was all biack or all white, Thus, when sborting a tentative O
scan, we merge together all the colors at the beginning mxcc and eliminate the
tentative part of M included in the scan, This may cause the mxcc to become all
white or all biack, or all some other color. The mxcc will still become a source if it
is reached on a backward step, since its mooochromicity would cause a merge of

black and white.

We briefly review what can happen during a tentative forward scan. If a source or
a Intent twist is encountered, the tentative scan is aborted. If a step is taken to a R
mxcc that receives only one color, then even the tentative scan stops; the mzcc and 5
theuctoitmnotwnaﬁvelyin)l-;nommrwhatmgadcolmoccminthe
construction of M, a forward scan would not include these in A, and would not
continue from here. Thus, we will maintain the rule that a mxcc tentatively in M
always hss distinct colors, just as mzce’s in M always have black and white. However,
merges of colors later in a tentative scan, or even later in the construction of M, can
_ cause this to be violated. Merges of colors must therefore be accompanied by a
! check on whether they violate this rule. If 30, the mzcc’s tentatively in A and arcs to o
them are no longer tentatively in M. It is as if the tentative scan had never gone .
beyond this point. An efficient implementation of the check on merges and posible

4 .
....................
..............
- o,

.........

..... M e

P it e = larn it e e S e R - Dol AR SO R ol i AN i i s sl s ol JJAAP Y o AR i A NS

\ undoing of the tentative scan is a programming problem not considered here. If a
Yy mxcc becomes all black or all white, it is possible that a mxcc leading to it now has a
e complete split. This possibility must be checked, and a sink added to M if it occurs.

~ It is possible for a forward step in a tentative scan to arrive at a mxcc that is
‘ already in M. We merge colors along the mxcc-arc as usual; this may detect a latent

twist, aborting the tentative scan. If not, the merges guarantee an eventually-separate
: pair of black-white occurrences at the mxcc from which the forward step was taken,
- and in fact at any node on 2 path from the beginning of the tentative scan. Thus, if
3 the tentative scan terminates without aborting, we check to see if there is now an
eventually-separate black-white pair. If so, everything in the tentative scan that has
such pairs is included in M. The test of M will consist of pieces, each having a root
mzxcc with the property that all the colors of a piece appear in the root mxce. (If

. _none of the tentative scan is included in M, the root mxcc is the beginning mxcc of

Z_x:. the forward scan.) Becawe of the tentative scan, any merge of colors of a root mxcc
will not lead to a latent twist in the tentative part of M forward of the root. If ail
the colors are merged to black or all to white, that tentative part of M will return to

. its unscanned state. If some become white and some black, then some of the

tentative part will be included in M, up to a complete split, or to mxce’s that become
roots of smaller tentative parts of M.

2 ~ Let us suppose that we finish a tentative scan from a mxcc, but that the mxce

remains tentatively in M. Then we leave everything tentatively in A(. This means

% that another forward scan may find a mxcc tentatively in M. If the merges along the

. arc detect a latent twist the forward scan is aborted (if it is a tentstive scan, the

F -tentative part is aborted). Otherwise, the merges are completed. If the forward scan
. was in a non-tentative part, it may continue. If the forward scan was tentative, it
need 0ot go beyond this point. Because the tentative part of M is closed in the
forward direction, 8 backward step will never reach & mxcc tentatively in M. v

@

o

After M is closed under backward and (perhaps tentative) forward steps, we have i
ementially completed its construction. It remsins to decide what to do with ‘the p

. tenative parts of M, but this is more naturally considered in the next section. d
Omitting the complicated details of forward scan, we now summarize this section by e
5 :;:;:-\:

MR il it el e Jurd - R M R G - Rt e AeNC S el LSS At g anaMic pih -pink-atel - aARCAMEDRINC sl N o P el o e+ o S e A Shate e Jliade Bt gy 5. A
o=

3

92

Algorithm 8.4 Construct a modification subgraph M -
Initialize M at a split ' -
Scan forward from the top node of the split
for A + some mxcc-arc not in M entering a non-source mxcc in M
m « the end of A4 not yet in M
Include 4,m in M e
Scan forward from m . a Lo
The occurrences in each mxcc in M or tentatively so are colored. Call a non-sink,
non-source mxcc an nserior mxcc. Each interior mxcc has occurrences with distinct
colors. An interior non-tentative mxcc has at least one black and one white
occurrence. Two occurrences belonging to interice mxcc's and connected by a
cohabitation arc (inter-line or not) have the same color.

A final issue to be discussed is the assignment of costs to the arcs of M. Each arc
A of M corresponds to some set of cohabitation arcs. For arcs in a strongly -
- connected component of M, we use a cost of infinity, for the reasons outlined in
section 8.1. For other arcs, we use the minimum of the costs on the associsted
cohabitstion srcs, following our usual philosophy of optimism in choosing costs.
Since all the cohsbitation arcs correspond to the same arc in the flowgraph, it is
likely that the costs will all be the same. This breaks down only when the variables
in a cohabitation class are asymmetric in some respect. For example, in inter-region
compilation, some of the varisbles may be assumed 10 be in registers, and others not. =
The only reason that two such variables are considered to be cohabiting is the
technique we have been using to resolve an inconsistency. '

Our construction of M systematically exciudes one type of cohabitation arc: an
intra-line cobabitation arc at any source node. During the construction of kernel —
region, such arcs may be given very low costs because we have some trick in mind for '
bresking the arc; thus we really must include this information in M. To do so, we
can add a new source to M and a new arc leading from it the the old source, where
the cost on the new arc is that of the intra-line cohabitation. The old source is then -
relabeled as & non-eource. In this way, i can be made to reflect the information
about inexpensive intra-line cohabitations. (To simplify exposition, this matter was
not mentioned in section 8.1).

As 30 example of the techniques of this section, we consider the construction of a

AD-A151 549 THE DEVELOPMENT OF A PROGRAMMING SUPPORT SYSTEM FOR
RAPID PROTOTYPING TRASKS 2 AND 3(U) SOFTHARE OPTIONS INC
CAMBRIDGE MR JAN 85 S0-81-85 NO8814-82-C-8173

UNCLASSIFIED F/G 9/2

’y

SR 4

Pt e

[¥

[,

gty

g g &

o £ &

=k
hodl D

by

22 s

I
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AR A S T MR B Par i} 'T—‘E!

93

modification sabgraph for the split-removal problem generated by the NP-hardnes
proof of 3.2. Choosing a split in the mxcc-graph corresponds to choosing an arc in
the graph that was to be colored. Recall that the nodes of this graph correspond to
variables in the split-removal problem. The construction for M will assign the same
color to every occurrence of the same variable, and different colors to occurreaces of
different variables. There will be one other sink besides the initial one. There is no
tentative part of M, became each of the ones leaving the loop corresponds to a
(non-exact) split where each mzxcc-arc has only one occurrence. After shrinking arcs
with infinite cost (those in the loop), M will have the form:
ssource

l
N

sinks

8.5 The General Case of Split-Removal

In the previous section, we saw how to construct a modification subgraph, and
obtain an asignment of colors to its occurrences that is preserved along cohabitation
arcs. If the resulting construction has only the colors biack and white, then we have
a situation like that of 8.1, even though we did not begin with two variables. We use
the techniques of that section to imsert move instructions that remove the splits
between biack and white. Imserting these involves modifying the cohabitation
relations, and thus the mxcceets. After regrowing mxcceets, there may still be
remasining splits, unlike the two varisble case. If so, a new modification subgraph is
constructed, and the process is repeated. By the remarks made at the beginning of
the previous section, the number of times this process can be repeated is limited by
the total size of all splits in the original mxcc-graph, and is expected to be small.

The real purpose of this section is to discuss the case in which there are colors
other than biack and white, We first discuss the case where M has no tentative parts.
We will still insert move instructions on a minimum cut of the modification subgraph;
all mxcc’s below this point will be divided into two mxce’s—one mzxcc having no
black occurrences, and one having no white occurrences. Occurrences with other

™

colors will be in one mxcc or another. This must of course be done so that the
cohabitation arcs are consistent with the mxcc-arcs, but there is still some choice for
how to do this. Suppose that after insertion of move instructions, a red occurrence is
in the same node ss s black occurrence at some mxcc. By following cohabitation
arcs forward and backward, we will see that red occurrences must always be in the
same mxcc 28 2 black occurrence. Thus, we may view red as being merged into
biack. Conversely, we may choose to merge any non-white occurrence into biack, or
vice versa, and obtain a valid mxcc-graph after insertion of move instructions.

The choice of merging a color with black or with white will clearly lead to
different mxcc-graphs after insertion of move instruction. One choice is likely to
lead to 3 more optimal overall solution to split-removal than another. How can we
figure out what to do? We can offer only a heuristic and a plausibility argument.
Before doing s0, we observe that the comstruction of the modification subgraph

" produces as many distinct colors as pomsible, within the coostraint that colors follow

cohsbitation arcs. Once 3 minimum cut is chosen, we are worried only about
cohabitations below the cut, and are not constrained by any merges of colors that
occurred becamse of cohabitations sbove the cut. To give the heuristic maximum
flexibility, the effect of these merges is undone, perhaps yielding even more distinct
colors.

We are guided by the idea of coloring the eventusily-separate relation. Assume
that at some mzxcc, each of the occurrences hss a distinct color. Momentarily
forgetting about these colors, vee different colors to (minimally) color the eventually-
separate relstion on the mxcc (ignoring seif-loops). If the chromatic aumber is less
than the number of nodes, then two nodes have the same color. Remembering agsin
the original set of colors, we observe that the black and the white occurrence are
eventually-separate (by construction of M), and so will receive different (new) colors.
The basic heuristic is this:

I two occurrences receive the same new color, then merge the
Mgmm
This will never merge black with white. The plausibility argument for the heuristic
involves the considerstion of what happens after growing mxccsets in the aew
mxcc-graph. If the eventually-separate relation is divided into two pieces in this way,
then the sum of the chromatic numbers of the pieces will be equal to the chromatic

Lk - A Tkt "B ik Bt Tkt g N - ol sl ana -k rad St ae Brug h ek 2o e
[t

" T T TR a i o B e aSiien L il han Bk i bt n-an ool bos i Bhats Mt Sheun Saas She i Shad Rac b i Ment Eegk Jant S SS:UNE: M alvit danc dLE o dEt it ol iR e

95

pumber of the original In other words, the heuristic insures that the number of
cohabitation clases does not increase, as it might for some other division of the
eventually-separate relation.

It may of course happen that several of the occurrences in a mxcc already have
the same color, either becamse of a cohabitation in M, or because they were merged
together by the heuristic. We do not renege on making these colors identical, rather,
we ssk whether any further merging is allowed by the eventually-separate relstion.
Put differently, form an induced relation on the original colors at 2 mxcc, defining
two colors to be eventually-separate if any two occurrences with those respective
colors are eventuslly-separate. We may color the induced relation with new colors,
and still apply the same heuristic.

It is necesary to apply the heuristic at most once on each node. After having
. done so, the induced relation will be a complete graph and will remain so after
subsequent merges of colors. A complete graph has a chromatic number equal to the
aoumber of nodes; applying the heuristic step will not merge any colors. Conversely,
an induced relstion that is not a complete graph hss a chromatic number less than
the aumber of nodes, s0 applying the heuristic will cause a merge of colors.

After the heuristic is applied at each node, we know that the induced relation is a
complete graph everywhere, but there is still the possibility that there are non-white,
non-biack colors. How should these be merged with black and white? It is difficult
to formulate a3 further rule on the basis of what is seen in M, partly becawse a
complete graph is symmetric on the node set. Experience may suggest further
heuristics, but smallness of mxcc-sets indicates that the proposed heuristics result in
only two colors in almost every practical case. A first implementation can choose the
remaining merges arbitrarily.

We now turn to the problem of deciding what to do with the tentative parts of M.
We we exactly the same ides of finding a minimal coloring and using it to induce
merges. Given a root mxcc, it would seem reasonable to choose a mxcc leading
immediately t0 a root mzcc as a place to start. As before, this is only a heuristic, and
is not guaranteed to eliminate all the tentative parts of M. Remsining choices can be

made arbitrarily.

T Yy

| et

MRk te S (ol ol it ol il

el e
FPel WP WP W

It is interesting to apply this heuristic to the split-removal problem generated by
NP-hardness proof of section 82. The eventually-separate relation for nodes in the
loop will be the graph that was to be colored. The modification sub-graph will assign
the distinct colors to each node, among them black and white; the heuristic will
merge the colors of occurrences that are colored the same. Regardiess of how we
group the merged colors with biack and white, we get two graphs, the sum of whose
chromatic numbers equals the originsl The split-removals that remain after the first
split-removal will continue to obey an optimal coloring of the split-removal problem.
Thus, the heuristic optimally solves the original split-removal problem, assuming that
we can minimally color a graph.

. v . - «* “ o N . . . B . - - - . .
PNl S U, T U Sy W . LTSS LA Y. IS [T, W SIS W o Lo S e a e gt g ot e

o e o

- e
[E—"
.

['S
A

TR

O AMNCHEAERARES F oo sl et e
»
»

Mg AP gb ar s ak b gt B2 a age i Rt A Br-giinde adnt gl & DL~ Skl - ol - bl

9. Untwisting

9.1 Two Variable Untwisting

We saw in the previows chapter how to remove splits. If there is any remaining
inconsistency, we know by Theorem 7.5 that twists account for it. The simplest
example is the conditional exchange that we discussed earlier. In this section we will
consider the problem of optimally untwisting 3 mzcc-graph with oaly two variables
involved. Let us use HS to denote the subgraph of H, induced by the subset of nodes
that have exactly # mxcc’s (1 = 1 or 2 in this section). There will be arcs from HZ to
H? (these are in neither subgraph), but because there are no splits, there will be no
arcs from H) to H2. By definition, a twist has an amociated simple undirected cycle.
We first concern ourselves with the case in which the cycle is in HZ. As we shall see,
these are the inconsistencies that are resolved by exchanges. Owr approach is to first

"find any set of exchanges that will work; these will be placed on arcs of He 80 we

need merely identify the subset of arcs. This is done by fixing the ordering of the
peair of mxcceets on some node of H, propagating this ordering, and marking arcs
where trouble occurs. A bit more formally, one can we the following

depth-first-ecarch algorithm. :
Algerithm 9.1 Order mxcc-sets M) M, on node N
Mark node N as "seen”
Otdetll,bdotellzonN
MAo-ethlfucluvh;N
" N'etheotherend of N
M « node from traversing mxcc-arc from M, along 4, /=1 and 2
if N’ is seen
if M)’ is after M,' on N’ them mark 4
else
Order mxcc-sets M;', M,' on node N’
This subroutine is used in:
Algerithm 9.2 Mark exchange arcs

mmm-dﬂf.wmmummw
!orNo-elchnodeofH}
if N is not seen
My, M, « the two mxcceets for N
Order mxcc-sets My, M, on N

As we hinted earlier, the point of this is:

i ey - o LT RTINS ST LTSN PN S eV Ve T N R TR TR TR, TR T R e T Y »

98

Theorem 9.1 If exchange instructions are placed on the arcs marked by the above
algorithm, the cycles for any remaining twists go through nodes in H..

Preef We observe first that if the above algorithm marks no arcs, there is no twist in
HZ. In this situation, a mxcc-path never goes from the first mxcc on one node to a
second mxcc on the next; thus it can never return to a different mzcc on the same
node.

Next, we examine the effect of placing an exchange on a marked arc of the
mxcc-graph. An exchange instruction requires four occurrences in order to be
properly represented by the cohabitation relation: two last uses (one for each
variable) and two generations (one for each variable). Each last use is required to
cohabit with the generation of the other name—this is the semantics of exchange. In

the before and after pictures below, the exchange instruction involves occurrences
with subscripts 3 and 4:
(Vi) e o {ly} Vil o o (W)
{VQ% l‘(u,)
Ty 34 ltv;)
Uy} e o{Vyl Wy} l' ‘.Lv,}

If the algorithm is run with the modified mzcc-graph, no arcs of H2 will be marked,
and by the earlier remark, no twist will lie entirely in HZ. O

We consider twists that do not lie entirely in H2. It is impossible for a twist to lie
entirely in H because there are not distinct mxcc’s at any aode, by definition of H..
Any twist thus cromes the boundary from K2 to H with the H.arc in that direction.
Since the algorithm for growing a mxcc-set has been applied, the only way that the
number of mxcc’s can decrease is if one of them dies (ie. all the occurrences in the
mxcc die). Hence, there is only one mxcc-arc along this arc of H,. and either it
leaves from the first mxcc on the H3 node, in which case we call it a type-1 arc, or
from the second mzcc, where it is a type-2 arc. This partitions the boundary arcs

R dn SR s R e Ed Bias ga b e gre gl amd

99

The idea for identifying the remaining twists is to propagate the type from a
Wuymdmgfmﬂm&.(ﬁaewymmﬂ).mkmsm
where this cannot be dove consistently. First, we present the depth-first-search part,
then the initiator.

Algerithm 9.3 Propagate type / along A

N « node pointed to by 4
if N has a type

if the type of N is not / them Mark 4
clse

Make N by type {

for A’ « each arc leaving N

Propagate type / along 4
Algerithm 9.4 Mark move arcs

Initislize nodes of H? to have no type
fer N « each node of Hs
fer A « each boundary arc leaving N
iethe type of 4
Propagate type / along A
The name of the latter algorithm anticipates the following result.
M’Jﬂmmmimtedmthe'mmkedbytheabove
slgorithm, there are no twists through nodes of H..
Preef As with the previous result, we first note that if the algorithm marks no arcs,
Mhmmmmp&ﬁmﬂfhmﬂfmwkmm&emwof

3 mzcc (first or second). Then, we look at the effect of a move instruction on the
3 Ve WA

o

‘,‘ Y1vy

g otV

&

v tv,ﬂ.’ M{UA!

3 In other woeds, the arc in H, is effectively removed, so there is not the possibility of
E marking it.

p !

E'. The algorithms and theorems of this section have shown how to remove twists by
k' the insertion of exchanges and moves. So far, we have paid 00 attention to how to
- do this optimally, In order to purswe this question, we will investigate the family of

AL, Wy L e e e e T LT, . - - . . . B e T UL D)
R S SRR R e R S SIS P T T T
--------- Tt T e, e T LTt . " ® e R)
‘m;.'n\.\.) P Ml .L-_Lz.."u.")‘.p_. TS WAL AU S TR AT VAR, UGPSRy TSI G S S AR A

Ma doa Lo A g-m arie ANl A s acS ad mhd ahel Ated A oS ald" sl B-alar i Sk b S e el Iaiir B SRR 2 S A R Ak i et Al S Al S A St b S ST 0

100

all possible insertions of exchanges and moves that will resolve the inconsistency. We
begin by looking at 2 local change in the insertion of exchanges and moves. Their
are two basic observations. The first is that a node of H, can be completely
sarrounded by exchanges without changing the correctness of the program:

AN L

L] v aee u L N

/ \ EXCH V.U EXCH V.U

The code of node N will find V and U stored in opposite places in the two cases, but
2 long as this is fized it is clear that the left side is correct if and only if the right
side is. Although this picture is drawn with nodes and arcs of H? in mind, it is
actually correct if some of the arcs are boundary arcs, or if N is in H} and the arcs
mbonndnymonﬁlm We make the convention that the exchange swaps the
contents of the two memory locations corresponding to the two mxcc’s and optimize
the exchange t0 a move when it appears on a noo-HZ-arc.

The second basic observation is even simpler to understand: two consecutive
exchanges reduce to nothing. Twmnhngamn—ﬂz-makomcd. No
pictures are necessary to illustrate this.

We can combine the two observations into a single operation. Recall that the
sigorithms marked certsin arcs, upon which either exchanges or moves are inserted,
dependhganmbenhipinllf. Pick a node N. Suppose we incresse the number
of marks on each node by one (following the first observation), and take all marks
off of a doubly marked arc (following the second observation). This amounts to
complementing the marks on the arcs incident to N, and leaves ws with a marking
that will resolve the inconsistency (once exchanges and moves are inserted). Further,
this operation completely disregards direction in H. leading us to the following
nomenciature (snalogows to that for Petri-nets). Q

Definition An wndirecied marked graph is an undirected graph, together with a]

RIS LRt b s P Ha Sl M Jhgtt Jamt e b i ahl el giC bt Sind kb it N Sl Sy C e i Ml Jnade e P i A it W dn A Say hansy L Jmeh and Y W N e "HYF T W W TR r.:,q.
L)

101

function from the arcs to {0,1} (the marking). To fire a node is to complement the
value of the function on arcs touching it. O

Theerem 9.3 Given a split-free ms-partition H. an underlying mxcc-graph, and a
marking of the arcs by the above aigorithms of this section. Any other marking of
the arcs will remove the splits if and only if it can be obtained from the first by
firing some sequence of nodes.

Preef We have seen above that any sequence of firings leads to a marking which will
remove the twists. Conversely, for any marking and undirected cycle in H,, let the
parity of the cycle be the parity of the number of marks along arcs in the cycle. We
claim that for any fized cycle, the parity of markings that remove a twist is the
same-it is one if the cycle gives rise to a twist, and zero otherwise. Thus, the parity
of the sum of two such markings is zero. Since this holds for every cycle, we can
two-color the nodes of H, so that nodes connected by an arc with no mark from
- either marking or marks from each are the same color, while nodes connected by
arcs with precisely one kind of arc are different colors.

Now, start with one of the markings, and fire all the nodes of a given color. The
order is irrelevant: arcs with no marks or both marks stay the same, while arcs with
precisely one kind of mark receive the other kind of mark. Hence, any marking that
removes twists can be reached by firing nodes, starting with any other such marking.
a

Given a frequency on an arc, we can calculate how much it would cost to place an
exchange there (see section 2.4). This defines the cos? of an arc of H, Starting with
this cost, we have the further

Definition Given an undirected marked graph with costs on its edges, the cost of a
marking is the sum of the costs of marked edges. Given a marking, a mimimal :
equivalens marking is one that can be reached from the original marking by firing R
nodes, and has cost no grester than any other such marking. - o
SR

]

1

MRS P IR

M

-

O
The next section will consider the problem of finding a minimal equivalent marking.
‘We summarize this section by

PR ASIRAL SR ARSI DR 00 b 4

L] [IR
PR et
D 0

. VRt
I ol
Lt 4 . 1 et « . . -
‘e ., .- "l ' . L . '-‘ L .r
n. ‘, A " 3 »)

rv—r - e
ARSI AN gL TR

.......................
...........................

T P
Y, F Mt »
e Y.. SLESSSS Y .}_r [

B R % 0 2% o
i R e]

s i 3
»_t
PR R

e
l'l

Algerithm 9.5 Optimally remove twists

Mark exchange arcs of H,

Mark move arcs of H,

Viewing H, as a marked undirected graph find 3 minimal equivalent marking
Insert exchanges and moves according to the minimal marking

9.2 Undirected Marked Graphs

In the previous section, we reduced the problem of optimal untwisting in the two
variable case 1o an optimization problem on undirected marked graphs. In this
section, we show that this problem is NP-hard in general, but that the problems
arising in peactice are likely to be easily solved. We begin with a simple observation
used in both the negative and positive results.

Lemma 9.1 Let G be a undirected marked graph, with a set of nodes R. Let F be

_ any sabset of nodes. Thenﬁringi’nnd'firingﬂ-iludmthemmuking‘

Preef The marking on an arc changes ocaly when one of its ends is in the firing set
and one is not. This property is invariant when F is replaced by R - F.
o

The proof of the NP-hardness result is by reduction from 3-colorability ([3). The
lemma below considers the gadget that will be used for each of the nodes of the
graph to be 3-colored.

Lewma 9.2 Consider the “tetrahedral” undirected marked graph:

£

Assume that the center node does not fire. Then a minimal equivalent marking can
be obtained by firing any pair of other nodes, and oaly by firing a pair.

Preef Since the graph is symmetric on the outer three nodes when we consider the
inner node distinguished (unfired), we just investigate what happens when firing 0, L,
2, or 3 nodes. The picture for O fired nodes is unchanged from the sbove. The
other three pictures are:

P

| | |

one node fired two nodes fired three nodes fired
The middle picture has a cost of two, the others either three or six.

a
Next, we consider the gadget that will be used for each of the arcs in the graph to be
3-colored.

Lemma 9.3 In the undirected marked graph below, assume that a pair of nodes on
the left fire, and a pair of nodes on the right fire. Subject to this condition, a
minimsal equivalent marking is obtained only if the fired pairs do not correspond

horizontally.
S C °
® C 'y
° C e
Preef By symmetry, there are ementially only two cases, when the fired pairs
correspond, and when they do not.
P N
, - o *~ el - *
3 fired o o fired fired .> od
s © ™ ° < .
»Q

Using these two types of gadgets, we obtain

Theorem 9.4 The problem of finding a minimal equivalent marking is NP-hard,
- even with uniform weights on the arcs.
[Preef Given a graph to be 3-colored, form a node gadget for each of its nodes, as in
Lemma 9.2, all sharing a common central node. Label the other three nodes with

v “Te Ta
A e e T

red, blue, and yellow. Where nodes are adjacent in the graph to be 3-colored,
: connect the red-red, blue-blue, and yellow-yellow pairs of the corresponding node
.. gadgets with the arc gadget of Lemma 9.3,

By Lemma 9.1, we may assume that the common central node of the node gadgets

................
...............

T T T Py ————r—r

104

does not fire. We wish to arrange weights so that in any minimal equivalent A
marking a pair of nodes in each node gadget will fire. Thus, we make the cost of e
arcs of node gadgets high compared to the cost arcs of the arc gadgets (red-red, ...).
Specifically, if there are & arcs in the graph to be 3-colored, let the cost of a node
gadget arc be 3a+1, and the cost of the other arcs be 1. Suppose that there are »
nodes in the graph to be 3-colored. By Lemma 9.2, the cost of the marks in node
gadget arcs alone will be 2»-(3a+1), and this will be achieved only when a pair from
each node gadget is fired. Assume that a firing set does not fire a pair from esch
node gadget. By changing the firing on that node gadget alone, we can reduce the
cost by 3a+l, and at worst, increase the cost on arc gadget arcs by 3«, a net
reduction of at least one. In short, the cost of a minimal equivalent marking,
restricted to node gadget arcs, is fixed at 2»-(3a+1), and we worry about the "excess
cost”, which is between & and 3a.

Suppose we find a minimal equivalent marking. This chooses a pair of colors from s
each node gadget. Mix theae colors together, and assign this color to the graph to be o
3-colored, ie., red and blve yield purple, etc. If the-excess cost is exactly a, then by L
Lemma 9.3, the graph to be 3-colored has been successfully 3-colored. On the other - i
hand, if the ariginal graph can be 3-colored, say with arange, green, and purple, the
colors may be put through a prism to obtain fired pairs on the node gadgets, with a
total excess cost of exactly @. Thus, the original graph is 3-colorable if and oaly if
the minimal equivalent marking in the derived graph has cost 2»-(3a+1)+a, This
proves that finding a minimal equivalent marking is NP-hard.

It remains 10 be shown that we can make the construction using uniform weights.
The point is that we can replace each node gadget arc with 3a+1 (marked) arcs, and
obtain precisely the same behavior and still have an undirected marked graph whose
size is polynomial in the size of the graph to be 3-colored.

8]

Obeerve that in the construction used to prove NP-hardness, every single arc is
marked. Recalling the construction of the undirected marked graphs used in
uwntwisting (section 9.1), it seems likely that comparatively few arcs will be marked.
The rest of this section concerns a technique that works well with few marked arcs.
We begin with a result that allows us to decompose the problem to a certain extent.

ST B P I S D A 5. L I T R

.......... . [P - A XL P . R L e,
. ‘. - . . - PR e T e T - te et et " .o . . - . -
PR I P S P A P S N L L. S, WL i S VR N T T A i VA T N TR AL YA AT AT AT

105

Theorem 9.5 Let G be an undirected marked graph. The cost of a minimal
equivalent marking is equal to the sum of the costs of minimal equivalent markings of
the biconnected componeats.

Proef We we induction on the number of articulation points. If there are no
articulstion points, either G is biconnected, in which case the result is a tautology, or
else G consists of 2 single src touching two nodes. If this arc is not marked, it is its
own minimal equivalent marking; if it is marked, fire one of the nodes to get an
equivalent marking with cost zero, and therefore minimal. This proves the resuit
when the number of articulation points is zero.

Asume G has an articulation point n. Then G is the union of some aumber of
subgraphs Gj....G;, whose pairwise intersection consists only of the node 7. Each G;
will have fewer articulation points than G, 50 we may apply -the result inductively to
each of these. Let F, be the firing sets for each of the G, that achieve a minimal
equivalent marking. By the Lemms 9.1, we may assume that ¥, does not contain the
node x. This proves that the sum of the costs of minimsl equivalent markings is
greater than or equal to the cost of a minimsl equivalent marking of G. On the other
hand, let ¥ be a firing set that achieves minimal cost for G. Restricted to G, F leads
10 an equivalent marking for G, 30 the cost of a minimsl equivalent marking for G is
greater than an equal to the sume of the costs of minimal equivalent markings.
Equality is established.

o

Since biconnected componeats can be computed in linear time (see [S]), this is a
weeful reduction. In fact, this can be done at the same time that the arcs are marked
(sce 9.1), because both are depth-first-search algorithms,

As we shall see, the techniques of flows in networks are wseful in looking for a
minimal equivalent marking. The clamic reference is [1} we introduce some
standard terminology.

Definition Let F be a subset of the nodes of G. The boundary of F, denoted aF, is
the set of arcs with one end in Fand the other in R - F. A curis a set of arcs that
is the boundary of some set of nodes.

(®]

In network flow theory, naumbers assigned to arcs are called capacities, because of the

Eabicuih ol " ol Jhar iy b el ey lhats Sak -4 \—IFY-T"‘vx-\.-r-g-;-w--—‘.“w."w'::.t_:.‘:;

il

106 NG

original application of the theory. In the present context, they are costs, and we will
continue to call them that, We shall also extend the meaning of the term:

Definition The coss of a set of arcs (typically a cut), is the sum of the costs of its
clements. Given a marked graph G, the coss of a set of nodes F is the cost of the set
of marked arcs after F is fired.

o

The following resuit is the connection to network flows.

Theerem 9.6 Let G be an undirected marked graph and H the subgraph subtended
by unmarked arcs. Let F be a firing set achieving a minimal marking. For every
marked arc in G, label an end as either a source or 2 sink, according to whether the
endpoint is or is not in F. Let C be a minimum cut of H between sources and sinks,
and let S be the set of arcs incident upon two sources or two sinks. Then
cost(F) = cost(S) + cost(C)

" Proef Let C be a cut set, and let F' be a set of nodes such that aF" = C (without loss
of generality F’ will contain all of the sources and none of the sinks). Fire all the
podes of F’. This will remove all marks on arcs incideat upon a source and a sink,
ndwinputmhonlyonthe_minc Thus

cost(F) < cost(F’) = cost(S) + cost(C)
The inequality is by the minimality of cost(¥).
Conversely, given F, let C' = 3F, o0 that any path in H from a source to a sink
must include an arc of C’'. Firing F adds marks only to arcs of C'. Thus

cost(S) + cost(C) < cost(S) + cost(C*) = cost(F)
The inequality is by minimality of cost(C), and the result follows.

(8]
A minimal equivalent marking can trivially be found in time exponential in the b
sumber of nodes of G. Because of network flow theory, minimum cuts can be found M-J‘

in polynomial time, s0 the above resuit means that we can find a minimal equivalent S
marking in time exponential in the number of marked arcs of G. In practice, this is -l
probably good enocugh, since this oumber is most likely one or two. A number of
heuristics can be devised, based on consecutive applications of max-flow-min-cut. One
of the simplest is the following, which uses a greedy approach to orienting marked

...........

' -
! L—l:ﬁ

- SASAINL Dy A £

- -y o

107

Algorithm 9.6 Approximate minimal equivalent marking

All marked arcs are initially unoriented.
for A « marked arcs in order of decreasing cost
choose an orientation for 4 to minimize min-cut
if cost of min-cut < cost of oriented arcs
use cut to achieve lower cost marking

restart the algorithm

9.3 Permutation Labeled Graphs

We have coansidered the problem of untwisting when there are only two variables.
The techniques actuslly apply to the more general case in which each node of H, has
at most two mxcc’s. This and the next section consider the case in which a node of
H, has any number of mxcc’s. (We always assume thst splits have been removed
from H,) We know that the two viciable case is hard (Theorem 9.4), so the general
_case must rely on heuristics as well. However, the added difficulties of this case do
not present any real discouragement, not because they are essy to handle, but
became of what must be their grest rarity. The conditional exchange is a ressonably
nstural example of how a twist can arise from a real program. I know of no similarly
natural example involving three or more varisbles. The best example I can devise is a
sort program that works on three scalsr variables, written s0 that a value is not moved
until its precise point in the ordering is known. Such a program would present
three-variable twisting: why anyone would write such a program is not clear.

Nevertheles, for completeness, we counsider general untwisting. Recall the
notation Hs, denoting the subgraph of H, induced by nodes having exactly » mxccs.
In this section, we will sssume that H = Hj, ie., every node of H, has exactly »
mzxce’s. This restriction is removed in the next section. The first task is to order
mxccets on nodes of H, and to make this ordering obey cohabitations along arcs of
Heo 88 far 33 pomible. When this became impossible in the two-variable case, we
marked the arc. Here, the mark must carry more information; to specify it exactly is
to give the permutation on » elements which corresponds to the map induced by the
cohabitation arcs along the arc of H, From this point of view, the unmarked arcs of
the two variable case are lsbeled with the identity permutation; the marked arcs are
given the oaly other permutation on two clements, namely, a transposition. To make
this explicit in several variables, consider an algorithm like 9.1, and let uws look at

r‘*r’.r
A

/,{i

R ()
: .. ','.' {'n. :-

PN

-—
- N
~

- DS
........
........
PR .

........

108

what might happen along an arc to an already seen node, ie., one at which the
ardering of mzxcc sets is fixed. For n = 3, there are essentially two cases:

[] .A [J [} [] []

l/ .X. .M.
Representing the permmutations as products of Cycles, and nmmbering the mxcc-sets
from left to right, we have the permutations (2 3) and (1 3 2)—here each product
has oaly one non-trivial cycle. In the product of cycles representation, the identity
permutation can be represented by a null product, in keeping with the unmarked
nature of arcs with this permutation. We will exploit the fact that if the cycles are

disjoint, then the representation is unique, up to ordering in the product and cyclic
permutations in each cycle ([2] Theorem 5.1.1).

In the two variable case, we observed that a node could be completely surrounded
by exchanges, and the code of the node adjusted to preserve the correctness of the
program. In the present context, this obeervation mmst be made in terms of
permutations. Rather than merely "fire” 2 node, we are able to r-fire a node, where
v is a permutation (indices denote variables, not occurrences):

, b
N r-fire
Vl see v. : _-9 v'l 'K Vfl
¢ |eer?
v l

In words, suppose we follow the permutation # with the permutation . On entering
the node, the variable that used to be in position i will now be found in position r(i);
changing the names in the node will cause the program to behave in the same way as
before. To insure correctness after leaving the node, the effect of ¥ must be undone,
ie., we must apply 771, followed by ¢. The effect of going through both arcs is
(@erY)e(rex) = ¢ox, just as before. In the case of multiple input arcs, we must
treat each one as above; similarly for output arcs. The notion of r-firing leads to the
basic definition of this section.

Definition A permuiation-labeled-graph is
- a directed graph G, and permutation group §,,

.....................

........

109

- a labeling for the arcs of G drawn from S, and
- a function that gives the cost of labeling a given arc with a given
permutation
The minimal equivalenst labeling problem is to choose for each node N of G 2
permutation 7, such that the set of firings {r,} minimizes the sum of the costs of
the resuiting labels on arcs of G.
o
In order to make any progress at all on this problem, we must make some restrictions
on the nature of the cost function. These are based on the following group-theoretic
notion.

Definition Given ¢€S,, the signature of ¢ is obtained by expressing ¢ as the product
of disjoint cycles and forming the muitiset of the lengths of the cycles.

n]

" ‘Thus, the signature of (1 3 2) is {3}, while that of (1 4)(2 3) is {2,2]. We shall make a
rezsonable cost assumption that the cost of a permutation on any given arc depends
only on its signature, that smaller signatures (in the sense of contsinment) have lower
cost, and that shorter cycles have lower costt We are then able to exploit

Lemmma 9.4 The signature of an element of S, is invariant under conjugation and
inversion. In particular, signature(s «) = signature(r+¢) for any ¢, 7€ S,

Preef For conjugation, see [2] Theorem 5.4.1; the result for inversion is clear by
inspection. For commutativity, ¢~le(ser)ee = ree.

o ‘

Suppose we are given a graph whose arcs sre labeled by permutations represented as
products of disjoint cycles, thereby giving the graph a certain cost. We ask first
whether the cost can be reduced by picking a transposition ¢ and either r-firing a
node, or leaving it unfired. We show that this problem reduces exactly to the
undirected marked graph problem considered previomly, regardiess of how
complicated permutations on the arcs are.

The undirected mark graph that we construct has exactly the same graph structure
as the one with which we started, except that the arcs are considered undirected.
The problem is choosing the costs. Consider an arc with permutation ¢. If we r-fire

....... .. e e e . .-
S O P P S AL R

e

........................
..............

-~

110

one end of the arc, we get the permutation 7 «¢, while if we r-fire the other end of
the arc, we get @or-l. Since r is a transposition r~! = 7, and by Lemma 94,
cost(ree¢) = cost(¢er). Thus, if we fire one end of the arc, we get the same
difference in cost, no matter which end we fire. Further, if we fire both ends of the
arc, we get the permutation ree 71, whose cost is unchanged from that of ¢, again
by Lemma 94. Thus, in the undirected marked graph, the weight of this arc is
fcost(e) - cost(eer). If cost (¢) > cost (¢e7), we mark the arc, so firing one end
cawses a reduction in cost; otherwise, we leave the arc unmarked, so a single firing
causes an incresse.

It is natural t0o want to limit the number of r's that can be coasidered.
Improvement can occur oaly if cost (#er) < cost(e) for at least one #. This will
hold by the reasonable cost assumption if r is among the disjoint cycles of . More
_ generally, it holds if the elements of v are adjacent in some cycle of ¢. This is
* because shorter cycles have lower cost, and:

A2)(12a..)=QRa..d)
If ¢ does not involve the elements of 7, then clearly cost(e « £) > cost(e), becawse the
former signature is larger. The equivocal cases arise because of the following identity
(sssume gy, ..., by are disjoint from aj, ..., by): '

A 8.)R- b)=(16 - by 28-5)
By considering the move sequences necessary to implement the permutations, we
would expect that

CORt((1 @y . by 2 @3 . b)) < cORt((1 @y — by)2 @3 . by)), usually.
The only place this might fail is if the machine has an exchange instruction, in which
case we might have, for example,

cost((1 3)(2 4)) < cost((1 3 2 4))
In any case, once the structure of the machine is known, it is possible to eliminate a
large number of potential 7's at the outset. We also observe that several 7'y may give
rise t0 the same undirected marked graph problem, for example, all those appearing
ss potential cost reducers at only one arc.

As 3 first level heuristic to minimizing the cost, we would propose minimization
with respect to all transpositions r as described above. Although this technique is
probably powerful enough to handle all the problems that don't arise in practice

-:’\p'.; ..l " Il

"%

AR

iy
o

R T T TR v TN T e T e T e N R e Y T T T TR TR TR R TR TR TR T
o Ly

111

anyway, there are some further observations that are simply too intriguing to be
omitted from this discussion. These are motivated by the following worry. Suppose
that the algorithm for ordering mxcc-sets labels only one arc with a non-trivial
permutation, but just happens to put it in the wrong place. Can't we use some simple
technique, like the network flow analysis of the previous section, to find the right
place?

Our approach is based on the following result. It shows that while we cannot
consider arcs to be undirected in the general case, we have great freedom in reversing
their direction.

Lemma 9.3 Given a permutation-labeled graph, reverse one of its arcs, and replace

the label on the arc by the inverse of the original label. The minimal equivalent
labeling problem has the same solution for each graph. ‘

Preef Look at the reversed arc. In the original graph, let # be the label on the arc

from N, to N,. In the modified graph, ¢~} will be a label on the arc from N, to N,.
Now, r-fire N; in each graph. In the first, the label becomes ¢or~!, while in the
second, the label becomes r+¢~1, Since these labels are inverses, their costs are equal
by Lemma 94. Similar remarks apply to N;.

o

The interpretation of reversing an arc in the flowgraph, or even the mxcc-graph
dersived from it, is difficult to contemplate.

This lemma suggests that for v not necessarily a transposition, we may reduce the
problem of finding a subset of r-firings that minimize the cost not t0 an undirected
marked graph, but to a heuristic that strongly resembies the one wsed for undirected
marked graphs (Algorithm 9.6). We replace each directed labeled arc of the original
graph with a twocycle of directed arcs, each weighted with the extra expense of
r-firing the node at entry to the arc. A negative extra expense is interpreted as a

gain,
aﬁnﬂ transformed graph

l Ccost(?er) — cost(s) O cost(eer~!) - cost(e)

The idea of the heuristic may be summarized as follows. Let Af be the set of all of
the arcs in the transformed graph that have negative weight, and let M, be any subset

- - 4
S
& B

. " w
[

9
-]

Cami et i st et afll oLk olit abit S TouE et ot dtir AN~ R adhi-tak —adl ~ i

112

of M.
Algerithm 9.7 Try for reduced labeling with M,

Label as a source each node N such that

N is an entry node for some arc in My, and

N is not sa exit node for any arc in My
Label sinks by the dual rule.
Remove all arcs in M from the transformed graph
Find a min cut '

Let F be the set of nodes such that aF is the min-cut and such that F contains the
sources. Then r-firing the elements of F will reduce the cost of the labeling by at
least

cost(M) - cost (3F)
Any extra reduction comes because an arc with negative weight was in the cut, but
not in M, The network flow algorithm is able to take into account the different

. costs involved in firing different ends of an arc, given an initial choice of orientation.

In Algorithm 9.6, the different orientstions were tried as part of the heuristic. Here,
each element of M brings its orientation with it. If M has too many elements to try
all the subsets, we can we the following greedy heuristic.

Algerithm 9.8 Approximste minimal r-firings

Sort M in order of decressing |weight|

Moo $
for A « each element of M

newddy « Mo U {4}
if S contains arc opposite to 4
semove that arc from newid,

Try for reduced labeling with newid,
Hf this reduces the cost

Mo - newldy
Coasider the effect of this algorithm when 7 is a transposition. Then the pairs of
opposite arcs will have the same weight. If such arcs are next to each other after M
is sorted, the above algorithm is exactly the same as Algorithm 9.6. As before, other
heuristics might be proposed; we end our discussion here.

9.4 Coset Labeled Graphs

There is one final topic yet to be discumed. We have discassed oanly the case
H, = H, where permutations are the natural labels on the arcs. When traversing &
boundsry arc from Hi to Hi' where » > m, & permutation is no loager the natural

.......
LA AN N

N 113

label Fample.fromﬂztoﬂl.vemightme(hoﬂownodammmed
variables): .
i

Even when traversing to a yet unseen node, it is not quite right to view this as an
2 identity permutation on three elements, because what happens to 2 and 3 is
- unimportant. We could try to model this with some sort of subset selection, but it is
- technically more convenient to handle it group-theoretically, using the idea of cosets.
. We will translate "what happens to 2 and 3 is unimportant” to "the coset consisting
b of the identity followed by (multiplied on the left by) Sj;3)". where Sy, ;) denotes the
. subgroup of S, that has all the permutations of 2 and 3. Let s be the identity
,:‘ element of S, The coset is:
L-' : sm,.u{..qcesm,}
In this case, 28 in all cases when propagating to an unseen node, the coset is actually
a subgroup of S, because the permutation genersting it may be taken to be the
identity.

To sy all this in proper generality, we must review the notion of type that we
introduced for the # = 2 case (see Algorithm 9.3). ' There we labeled nodes of H! as
type 1 or type 2. In general, we must label nodes in HS' with a swbser of integers.
For use in coset construction, it is convenieat from the subset to specify the variables
that dew’ appear; thws the type of a node in H2 will be a subset of »~m elements.
In the two variable case, type 1 we now view s type {2). As a technical
convenience, we can view the type of a node of H; a3 ¢; with this convention, the
cosets on H} will consist of single elements, and this section reduces to the previous
section. We will continue to write a permutation on the arc, and construct the coset

implicitly.

o -]

v >0 >%
4 [4
| |
Scld’isb SchﬁS:o
(implicitly) (implicitly)

A graph labeled and interpreted like the above is a coser /abeled graph. To complete
the definition, we mmst review r-firing a node and how to obtsin a cost from a

et Y e W e e T

RPN Y AAMJJ*JMJJJ.\.-‘,.&_J“P

permutstion.

Suppose we r-fire the node labeled 7, above. First, realize that this changes the
type of the node from 1, to 7(s;) 4 { /| ies; }. This is clesr from the original
diagram for 7-firing on page 108. Once this is done, we may replace ¢ by ¢er~1 and
x by rew, just as before. To see why, compare the products from going through
both arcs.

(S,zocos,l)O(S,lO‘l'OSb) versus (S,ZOCOf'lOS,(,l))O (S,(,l)of o'l'OS,o)
To show ideatity we need show only that §, = 7710 5p(1y)* T which is immediate. In
summary, to 7-fire a node, we use the same rule for coset representative as we had
before, and permute the type by r.

In HS, we were able to relate the cost of a permutation to its canonical
representation as a product of disjoint cycles. This was a realistic reflection of the
" implementation of a permutation, and was convenient group-theoretically. When the
tyyammmllvemmﬁckamhlfmfams,zuos,l.mm
sure this canonical form reflects the implementation. What freedom is there in
picking snother #? The most general situstion comes from looking at two (disjoint)
cycles of ¢, esch having distinct elements 7, € #, and i hel,. Write these cycles
beginning with the element of /,:

haybyhhay b))y dy)
Composing on the left by (; L)€S,, and on the right by (i; j))€S, gives another
permutation s with S, +p+S, equal to the original coset. This operation leaves the
other cycles of « unchanged, and has the following effect on the above cycles:

ho-bic..d)he .y a . by)
A variant of this occurs if we have a common element jin 5Ny, a8 if j; = j, and
dy . ¢y is nulk: ‘

b bha.)c-d)hD=(ha.byiyc..d|a .. b)
The pattern to notice here is that what is on the way from 4 to #, or j t0 j; is
unchanged; what is on the way from /; to /, or J; to j or jto jis interchangeable.
There are several ways to turn this observation into a canonical form. We choose to
record the Ir-to-r; information in the syntax (4 @ .. by iyl and the f-to-s,
informstion using |a; ... by). Call these left and right kalf-cycles. The following
result is the emence of why half-cycles give rise to a unique representation of cosets.

TR
R
Ve e
sa
PR
~
ST
oL
AS e
[
pe
PR
R
-—— _:..J
-4
BRI
O
R
R
e T
.
~

- W W g W e O N LT R Y '. et VW CAP R " Sedt TSl i i Rl Mt L et i gt - " ek oSull Sfun SR Ban e Sr-un ey L A el Andh Ml benih i ralia 1 St A"y RIS et AN S e g W
o

Lemma 9.6 Given 1, 1, ¢ {1, ..., 7}, and ¢, p€S,; suppose s'z"°s'1 = 80PS5,
Let igr. If a()¢ 1, then p()) = #(i); otherwise ()€, also. Similarly, let j¢s,. If
e 1()¢ 1, then p71() = €~1(); otherwise p~)()€ 1, also.

Proeef Suppose /¢ 1) and ¢()¢ 5, Any element of S, 0«5, takes / to #(). Hence,

2

wutemydmtds,zopos,l. Sinceelemennofs,ldonotaffecti.evuy

element of S, «p must take / 10 ¢(). Asume p()e . Then any element of §,, will
take (/) to snother element in s, i.e., not 1o ¢(), contradiction. Thus we must have
()¢ 1, and p() is nnaffected by any element of §,. Hence, p()) = #(). M e(Dex,
reverse the roles of ¢ and p, and argue by contradiction. The second result has the
same proof.

4 We shall define 2 (4),/p)-representative for S, ¢+, by looking at the cycles of .
It is convenient to view one-cycles as among the cycles of ¢, that is, if ¢()) = i, then
. () is a cycle of #. The (#,7;)-representative will consist of cycles and half-cycles. At
each stage in the construction, we shall show that the representation is independent
of the choice of #. As a first step, it is convenient to adjust # so0 that its cycles do
not have repetitions of elements in 1 or 4.

Lomma 9.7 Given #;, , ¢ 23 above. We can find p such that § ee§, =
S,z-pos,‘andnchthtevuycydeofphummethnmedmtoft,andno
more than one element of 4.
Preef Inductively, it is sufficient to consider one cycle at a time, If a cycle hss, say,
dmulnndlhothhr,,montheutby(lz)es&. This leaves the
cosets unchanged, and cuts the cycle:

DUy by2a-b)=(1a - b)2 o~ b)
Composing on the right has a similar effect.
o
Henceforth, we will sssume that representatives for a coset meet the coaditions for p
in this lemma. A further simplifying effect is provided by the following result.

Lemma 9.8 Let /,§ 1~ and suppose #(4) = /. Then
S,o'os'l = Swo’Osq

There is a symmetric result for /; € 5,-1).

Preef The resuit follows from:
Sty 9o Sy = (€S, 0008, |2(R) = b }

Eaarie £ Mo aEn S st omn e B man

oW
y o

...
......................................
................

M man by P S - B S Tt St M i Min Uit M il et an i Al Jhatt i Jhas dint Susioiins Jha it it S Jine Sl S dae e liar SRt A i vt el S A i
-
-
-
-

A 116

e

- This is because ¢ leaves i, fized (by assumption) and S, leaves iy fized (ip¢ 7). The RO
symmetric result has a symmetric proof. -
o '%J
Suppose there is some iy f;—1, with #(i;) = i, We claim that this condition will hold o
for any choice of ¢ meeting the condition of Lemma 9.7. Let p be another such S
choice. By Lemma 9.6, a(i)¢ Iy, but since elements of 7, cannot be repeated in a .

- cycle of p, we must have p(i,) = /. Thus, we are able to define the R

: (t4z) representative for 5, ¢S, 1 be the (1.1y~{i})-representative for 5, ¢’ o

S where ¢ is the restriction of ¢ to {1, ... /5, ... n}. Inductively, this yields 2 canoaical

Mﬁn(ﬁehmfatheinduchonwﬂhpparhm). We may apply a similar
reduction for /; € t)~t, when (i) = i}.

: Let us consider a cycle of ¢ that has no element of /;. If the cycle has an element
i of 1,, let / be that clement; otherwise pick / arbitrarily from the elements of the
' " cycle. The cycle may be written in the form (/ #()) #2()) ..). Let p have the same
coset as ¢. By Lemma 9.6, we will have p/()) = o/() for / < the length of the cycle.
By the same result, » applied to the last element will be in #, if /€ 1, and will equal /
otherwise. Since we can adjust p by Lemma 9.7 so that it does not have distinct
clements of /5, we see that » will take the last element to / in all cases. In other

words, the cycle containing i is independent of the choice of representative. Now, let
& be the permutation of {1, ..., M-{i, #(}), ... } obtained by removing the cycle from
.. Weclaimthats,z_noc‘-s,l'isindependentofdlechoiceofc. To see this, let p
be another representative, and form p’ in the same way. Denote the cycle by ¥.
s‘zotos‘l = S,zopos,l (by sssumption)
= s’z"‘.".s’l = S’Z.".".s’l (by def. of ¢, ﬁ')
> 3‘20"'5,‘0‘7 = s‘z.".s’l oy (7n‘l = ‘)
> s,z.c'.s,‘ = S‘z""sfl (compose on right by y~1)
= s‘z_“.c’.s = ‘z_m.p (Lemma 9.8)
Wedeﬁnethe(:,,t,)-wnﬁveofs,zu-s tobe: R
fr} U the (t1.55~{})-representative of s‘z‘""'s‘l »,: ‘

Since both pieces of this definition do not depend upon the choice of ¢ (the latter

. W e N T AT e e T A A s e ey AT e e PR
WA .y Bl) > > T . -~ R RN R T N, T e ~ Sy "~

117

inductively), the definition itself does not depend upon the choice of o.

More briefly, we consider a cycle ¢ that has no element of f,. The construction is
like the above, except that we use ¢~! 1o determine the rest of the cycle v, and in
the proof we bring ¥ out to the left, not the right, and worry about /-{/} rather than

~{8.

We are reduced to the case in which every cycle of ¢ has exactly one element of
7, and one element of 7,. One possibility is that the elements are distinct: /j€7),
i,€ t, and iysi,. Write the cycle with i, first, and form the left and right half-cycles:

(ha.bhc..d)>(ha.bijandl..d)
If "¢ ... d&" stands for no elements, we form the empty right halfcycle |). If "a ... ¥"
stands for no elements, we naturally have (/, /j The only other possibility is that
the cycle has an element /€ 1;Ns,. We again get two half-cycles:
Gec..d)(|andc..d)
Agzin, the right half-cycle may be empty.

Why is this construction canonical? First, by the reduction stemming from
Lemma 9.3, every element of i~} and f~/, will appesr in some cycle. By
Lemma 9.6, we may start at L, €/,~/; and iterate ¢ until we encounter an element
/€ 1y~1, (other possibilities have been eliminsted). Both i/; and everything on the
way from i, to /; are determined independently of the choice of #; thus, the set of
non-empty left half-Cycles is independent of ¢. But enry element of ;N7 will also
appear in a cycle of #, s0 the number of empty left half-Cycles is also fixred. This
proves that the determination of left haif-cycles is canonical.

Suppose that there is some element not in 7, U f, and not on the way from i; to)
in some cycle. If we iterate ¢ on such an element, we eventusily get to an element
of 1y; if we iterste ¢~1, we get to an element of /) (maybe the same element). Such a
segment of elements, not including endpoints, is independent of choice of #; these
must sppesr in the non-empty right half-cycles jc .. d). But the number of right
balf-cycles equals the number of left half-cycles, so the remaining right half-cycles
must be empty, and their number is independent of ¢. This compietes the proof that
the set of half-cycles is unique, and provides the basis of the proof by induction of
the following:

NN ETE TR ATy T RNTENT T e s e, T

Theerem 9.7 There exists a unique (7;,,,)-representative for every coset of the form
S’2°'°S‘1’ and it may be (easily) computed, given o.
Q

We now relate (r,/5)-representation to the code required to implement it,
beginning with left half-cycles. The arrows in the picture below indicate the move

- instructions that are required:
- 7 a b ig
X [} [}
-] [} \. ®
[i a b i
3
5‘ The code sequence required is (subscripts name variables, not occurrences):
b_. |]
C MOVE V., V,
MVE V.. V, B
Because V, is not wsed initially (this was the definition of #;) implementing a left .
halfcycle is simpler than implementing a cycle—no exchanges are necessary, and v
there is no need to use a temporary. T
-3
RR
The implementation of a right half-cycle is similarly easy: o]
a9 % 4
:.:. [] \. [] :‘:O
a g 4
Recall that the last element of a right half-cycle goes to "some element” of r,. But o
by definition s, are the set of elements that we don’t care about, 30 no move is o
oY
actuslly necessary. Similarly, the first element of a right half-cycle comes from
"some element” of f,, again, 2 variable that we do not care about. The only moves b
that are necessary are: B
L]
MOVE Vg,V '
MOVE V..V, -
In particular, if a right half-cycle has only one element, no moves are necessary. -

........................
...
.........................

.........

R T T R TR VTR, T Ty W T R R A Iy T T T TR T w7 aTe oy

119

From the discussion of the implementation, it is clear that the cost of a coset
depends upon the structure of its (1,,,,)-representative. We extend the notion of
signature:

Definitien Given /), 1;, @ as usual, the signature of S, e¢-S5, is obtained from its s
(¢t1.,)-representative by forming a triple of multisets, ane each for the lengths of T
cycles, left haif-cycles and right haif-cycles. : *(f
(u] SRR
In order to be able to use the techniques that we developed for permutation-labeled
graphs, we want to have an invariance of cost under "conjugation”—firing both ends L
of an arc by r—and inverse. a ?
Theorem 9.8 The signature of a coset is invariant under conjugation and inverse. ’
Proef Let the initial coset on an arc be S, o# <5, . If we r-fire both ends of the arc,
we get the coset

s,(‘»ofo'of"os'(‘l)
Express ¢ as a product of cycles. The effect of reeer~1 is to replace each element i
in the representation by r/ (this is the emence of the proof of Lemma 9.4). The
calculstion of the (1,,1;)-representation for ¢ proceeded by looking only at #, 1, and
the cycles of ¢. If these clements are permuted by , the final result will have
elements permuted by 7.

To prove the result for inverse, first note:

(S,zo¢-.9,l)"l = s,l-l.c-l.s,z-l = s,l.c-l.s,z
The cycles and halfcycles in a (#,/))-representative are simply reversed to obtain
those for a (15,4)-representative of the inverse:

(@ b) = (b..d

(‘z‘-ubil"-’(ilb-.diﬂ -

k-d)ld..o ';‘
A detsiled proof that this works is omitted. e
a

.....

The techniques that we developed for permutation-labeled graphs depended oa
very little:

Ry B -

...............

rv--llYf"’K‘(.‘- ~ W TN g W LW e Wy - AP A A Rt AR arall b MU il AR i) Atnd MM —afelicy . - R) . % - - e ™ Lol gl -

120
- invariance under conjugation and arc-reversal
- comparison of cost(e) versus cost(e o r)

We have demonstrated” how to do both of these. Thus, the techniques of the
previous section apply to coset labeled graphs, rather than just permutation labeled

graphs.

T T e Ty

121

References

1. Ford, LR., and Fulkerson, D.R. Flows in Nerworks. Princeton University Press,
Princeton, NJ, 1962.

2. Hall, Marshall, Jr. The Theory of Groups Macmillan, New York, 1959.

3. Lewis, H. and Papadimitrion, C. The Efficiency of Algorithms. Sci. Am. 238
(January 1978), 96 fI.

4. Matuls, D.W., and Beck L.L. Smallest-Last Ordering and Clustering and Graph
Coloring Algorithms. J. ACM 30 (1983), 417421,

S. Tarjan, Robert E. Depth first search and linear graph algorithms. SIAM
J. Computing 1 (1972), 146-160.

6. Tarjan, Robert E. Solving Path Problems On Directed Graphs. STAN-CS-75-528,
Stanford University, November, 1975.

. T. Tarjan, R.E. Efficiency of a good but not linear set union algorithm. J. ACM 22

(1979), 215-223.

8. Wulf, William, et al. 7%e Design of an Optimizing Compiler. Esevier, New York,
1978.

-. h' -
R
e

- .-. .-
ST

P R
.J_\'_’_‘._‘
aare
ll-.‘n-‘-
F - e
-

‘-.
.‘.
;

.--
e

03
Index
above 22
: algorithm
- Approximste minimal equivalent marking 106
[arc-compilstion 35
" compilstion 7
Completed node set 63
Contruct a modification subgraph 91
establish a cobabitation arc 40
Grow a mxcceet 67
Initislize eventually-separate relation 81
Mark exchange arcs 97
Mark move arcs 99
Match occurrences 38, 46, 48
Optimally remove twists 101
: Order mxccsets 97
] Propagate eventually-separate relation 82
: : - Propagate type 99 R
propagation of an occurrence 36, 37 G
two variable modification subgraph 73 T
ssterisk superscript 14 N
back-dominates 21
below 22 RN
BND 29, 36 Sy
boundary 105 A
boundsry node 8 ARy
boundary set 9, 29
brush set 37, 54 5"5}:

&

(L)

[2R S A o
sl T,
Ll

rhar il PRlPM A A A

compilation
arc 35
inter-region 7, 36, 47
intra-region 7, 4
node 6, 28
complete split 36
CON 33,37
coaflict 8, 13
counsistency 38
coset labeled graph 113
cost 101, 106
cut 105

demand set 9, 25, 29
dominates 21 '

CON 133,37

!r/' ‘ ,’;,’1_{' L

[- 1T ¢ - ¢ F ¢ Vv ¥
o .. ata e e
., " l"’n .
AR PR) N
.] » 5l v
- L l' LA A .’

124

lsst brush time 352, 58

istent twist §7
live 8,62
local conflict 66
M 2

marking 100

match inconsistency 46
matched 38, 45

maximal cohabitation class 67
merge-split partition 62
minimal equivalent marking 101
modification subgraph 73, 84
me-partition 62

mzxcc 67

mxccgraph 70

. occurrence 8,9, 28

I :
A

AR ,' -,
n'./‘;‘. .

¢
o

> .
EC A

permutation-isbeled-graph 108 oo
reasonsble cost amumption 109 T
refinement 61, 63 , : —
region 6,28 : :L:‘i,.':::
root mxec 91 AR
ey
S 2
scc 74
seif-loop 82

sideways propagation 25
signsture 109

r split 70

- split-removal modification 73
. sm 75

{ supply set 9, 25, 29

8

" tentative forward scan 90
[twist 71

;: type-1 arc 98

d

! v 8

i V-back-dominates 23

b Vdominates 22

) Viree path 22

E{ V-merge node 19

3

fL s

P P P T Tt T T R, ST G TR T AT TS TR TRTF W NTN TR RETRTRTR R CRTR T T ASTATM TS

1
An Intermediate Form for Bi-directional Scanning of Programs

1. Introduction

The purpose of this document is to discuss a data structure that aids in the bi-
directional scanning of programs. Our primary motivation for bi-directional
seanning is in the live-dead analysis that aids in the register allocation aspects of
code-generation; it is also useful in some aspects of program verification, and
proofs of program termination.

The data structure that we use may be based on any representation for a
directed graph that allows arcs to be traversed in either direction. We assume that
the reader is acquainted with the basic operations on directed graphs. The source
language that we use here will be based on tree like representations of functions,
not unlike those found in LISP or EL1. The generality required to handle these
languages is more than adequate to handle languages such as FORTRAN or
PASCAL.

2. Getting started

We shall take as our source language a language based on the lambda calculus,
but with declarations added. This gives us a very simple syntax. A term is one of

the following:

constant
variable
form (termg, ..., term) (application)
AX]yeen Xp - term (abstraction)
8xq: term,..., Xpsterm . term (declaration)

The terminal classes constant and variable will be left undefined (x; is a variable).

The only other terminals are Aand 5; these are neither variables nor constants.

............

2

The first step in constructing a flow graph will be a naive translation from the
above syntactic classes to "straight-line code". This is accomplished by a function
denoted by T, and having two arguments. The first is the term to be translated,
and the second is the node at which scanning is to start. This node will have no
contents at entry to T, but will be incorporated in existing graph structure. The
result of T is the node of which scanning is to resume.

For variables and constants, T installs its first argument as the contents of its
second argument, and connects the second argument to a new node, which then
becomes the result of T.

the 2nd argument of T the result of T similarly

Implicit in these constructions is that the first node pushes the value of ¢ or the

present value of x onto a stack, and that control flows on to the next node in the

R P T

scan.

To produce the graph for an application, the graphs for the constitutents are
chained. The following a graph expresses the semantics that applications are
evaluated by evaluating the operator and operands from left to right, followed by
the function call:

T (termg(termy,..., term p)): the result of T

m G(term1) G(termp) }>(CALL nj, ‘

In words, the function and each of its arguments is pushed onto the stack, followed

by a "ecall". The pseudo-op CALL has two operands. The first is n, the number of
arguments to the funetion. The second is a pointer to a new node that becomes the
result of T. There is not an ordinary one from the CALL node to the result of T
because ordinary ares indicate direct flow. However, the new node is the

appropriate point to resume the scan.

4,(5‘.. J.J' L ot L e e AT T e e e e e _'.-_’.-,'.-;u.’.-:a I R -_‘.~>
. --------

F 30 T SO IP RSP BN I i \\q".-' ERF AN PAIESCAE AL AN AL SIS

4 8
Pt
..

"l
’

.
S

T Ty e g TR T T VTN T A Sin S50 il i i~ ‘e T T T T T U T T

3

We shall later need a picture of the stack at entry to an abstraction. For
purposes of specificity, we shall assume that CALL replaces the function that is n
entries below the top of the stack with the return node, i.e., the second operand,
just before entering the abstractions.

As an example of the graph structure set up by T, consider the term f(g(x,y),z).
Its translation is:

D@D © 0

Not unlike reverse polish notation.

The graph of an abstraction involves a slight twist. On the one hand, the graph
of an abstraction must involve the graph of its body (the "term" in X3, ..Xp .
term); on the other, in this language, an abstraction is a value. To denote the value
aspect of abstractions, we will use an index number i, and treat the abstraction
essentially as a constant.

T (X1...Xp. term) = @-—-}O
The abstraction also has a program aspect, for which we want a graph. We let Gi
be the flowgraph for abstraction i. This graph consists mainly of a graph for term,

with a header and trailer corresponding to function entry and exit.
G [i]=(ENTRY X(,X] - Xp @ @

The pseudo-op ENTRY gives the names xg, X}, ;...xn to the top n+l entries on the

stack (xg names the return address preceding the first argument; how that name is
chosen is not discussed here). The pseudo-op EXIT indicates that the ond through
n+2M entries (return address and n arguments) are to be removed from the stack,
leaving the top entry as the result of the call. EXIT's operand is a back pointer to

the entry node of the abstraction, a useful piece of information, as we shall see.

The graph of a declaration involves the graphs of termj, ..termp (which

. R A S r st A A e e ie* e S wow_ eV C a4 L aatir- i S A - i i i il Ll ol i el Sl o SRl R oS Jhate v huh Bag ¥ T""".""’.‘l'_‘".‘
(LS

4

provide the initial values for the x1), as well as the graph for termg

T (Xq: termyXp: termp . termg) =

ﬁ SCOPEMT (term)) |- T(termp) {DECL x1...%erm®'@DE09—O

5 The pseudo-op SCOPE indicates entry to a scope in which mutually recursive

3 functions can be declared, DECL indicated the point at which the names take

effect. The pseudo-op UNDECL has single operand indicating the DECL that is to
be undone. The 2nd through n+1St entries are removed, leaving the result of termg
as the result of the declaration.
3. Weak Interpretation

The purpose of this section is to deseribe how to splice together the various
graph fragments that have been constructed so that flow of control on function
calls is represented by ares in the graph. Because functions are values, the process

of constructing this full graph must involve essentially a "symbolic execution" or

"weak interpretation" of the program. The technique described here has more the
ﬁ flavor of weak interpretation than of symbolic execution, insofar as there is a real
difference.

We shall provide a property set [1] or monotone framework [2] for modeling
the state of an actual execution. Since the state for the language just described is
entirely contained in the stack, we will call the particular property set that is
developed below a stack model, or simply sm.

Every node of the graph will have an associated sm. Each sm may be
relatively large object, and it may appear that the amount of data is massive.
However, even though at one level we view each sm as distinct, at another level we
provide for a great amount of sharing between sm's at adjacent nodes of the
flowgraph. The sm field at each node is of constant size - a pointer - and we
expect the total amount of space consumed by sm's to grow roughly linearly with

the size of the program.

w el .

Dl
(O}
.

o
» .t

'y
f

. LEEEN

o L A

5

At any time in the execution of a program, the stack is a linear sequence of
values (for uniformity, we think of return addresses as values), which we may view
as a sequence of values with the top of the stack at the beginning of the sequence .
In a recursive program, the stack may grow arbitrarily large, and so a stack model
cannot directly reflect all the entries in all possible stacks. Instead, a stack model
is a graph with a distinguished node, called the top node, because it corresponds to
the top of the stack (this graph is not to be confused with the flowgraph). The sm
field of a flowgraph node points to the top node. The sense in which an sm models
an actual stack is that any actual stack will be a path through the graph that
constitutes the sm. But the sm is of bounded size (as we shall see), and will thus
have cycles in a recursive program. It may be the case that there are paths through
an sm that do not correspond to possible stacks during execution. These represent
loss of information by the modeling process, a necessary property of any analysis
program that always terminates. |

Running through the stack is the static chain, which allows finding the stack
locations of names that are visible at that point in the execution. To model the
static chain, certain nodes of an sm will be marked as static-chain nodes. These
nodes will have a list of associated names, a pointer to the sm node corresponding
to the last of these names, and a pointer to the next node in the static chain.
Because the static chain is boundeq in an execution, the model of the static chain
reflects the actual static chain precisely.

In order to splice together graph fragments, sm must keep track of two types
of value, functions and return addresses. To keep track of functions, we attach to
each sm node a set of functions, representing the set of all functions that are

possible for the value corresponding to the sm node. There are two types of

functions. One is a constant function, which we may think of as a built-in. The

..........

. a 4w W T . L Sl it N LR AR Sk Tl A

6
other kind of function is a pair i,s where i is the index of an abstraction and s is the
static chain in which that abstraction is to be evaluated (an abstraction alone is not
a function; it must be supplied with an environment).

To keep track of return addresses, we do not label the sm node corresponding
to the return address; rather, we label the sm ares arriving at such a node, each
one having a distinct label. As we shall see, this provides enough information to
model execution reasonably accurately.

4. Node operations on stack models

In this section we will describe the weak interpretation of flowgraph nodes.

Each flowgraph node has an associated sm deseribing the state prior to execution
of that node; we show how to combine the prior sm and the contents of the node to
yield a set of sm/flowgraph node pairs that describe the possible states after ,-]
execution. The action to be taken with this set will be described in the next ’
section. A

Weak interpretation begins at an abstraction designated as the "main
program”. Assume that this abstraction has n arguments. As we shall see in the

next section, its ENTRY node will point to an sm that is a simple chain of n +1

nodes. The last node in the chain corresponds to the return address. The fact that
this sm node has no ares leaving it will indicate to the weak interpreter that exit
from this abstraction corresponds to program exit. In order to begin weak

interpretation at any abstraction, not just the first, it is necessary to have not only

the sm corresponding to the state upon entry, but also a model of the static chain, RO
which we denote by s. In situations where there are no symbols defined outside the L
program, s may be nil; if there are symbols that must be known during weak
interpretation, these can be represented by s. T§ process an ENTRY node, the

weak interpreter "adjoins" a node to the prior sm. This means that a new node is

PO T et -

Py e
7 . » ?

LD e e s s g
AR

A Sh i SO S0 AR | .‘W——' PLPAPLANIAES

7

obtained, and an arc is established from the new node to the prior sm, i.e., to the
top node of that sm. (As we shall see, this basic operation is used in the weak
interpretation of several node types; it corresponds to a "push™ on to the
interpreter's stack). In the case of an ENTRY node the adjoined node becomes a
static chain node. The list of names is the operand to ENTRY. The sm node
corresponding to the last of these names is the top node of the prior sm
(corresponding to the last argument). The static chain link for this static chain
node is of course s. In this case, as in later ones, the adjoined node becomes the
top node of the new sm. The result of the weak interpretation of the entry node is
a singleton set whose pair is the new sm just described, and the flowgraph node
pointed to by the (necessarily) unique are out of the ENTRY node.

The weak interpretation of a node containing a constant also involves adjoining
a new node to the prior sm. It is necessary to attach the set of functions that this
constant will evaluate to. If the constant is not a function, this set is null. If the
constant is a function, then the set is a singleton consisting of the constant.

A node containing a variable is processed in the same way as a coﬁstant node,
once the function set is obtained. To obtain the function set, we "ook up" the
variable in much the same way that a value interpreter would. Specifically,
beginning at the node pointed to be the sm field, follow sm ares until a static-chain
node is seen. If the desired variable is not among those at this static level, then
follow the link to the next sm node in the static chain, and repeat the above step at
that node. If the static-chain pointer is nil, the variable is undefined and the
program has an error. If the desired variable is in the set of names at a node, then
we can find its offset from the last of the names, and we also know the sm node n
corresponding to the last of the names. Call the offset p; if we traverse p sm ares

from n, we arrive at a node corresponding to the variable being looked up. The

PR Al i g S Mt o sl At b el il At e A nhC MM SR Rtk Suat - atnecadil Rkl alih- 2l ik~ ieh ~ el ui it s “ i -ali=nadt- i e e e 4

8

only sm nodes with multiple out ares correspond to return addresses, and these
always occur as the first element in a list of names. Thus there is never any choice
in traversing the p arcs, and the name specifies a unique sm node.

A node corresponding to an abstraction (pseudo op #) is also treated like a
constant or variable node, once the function set is found. In this case, the function
set is a singleton, consisting of the pair i,s, where s is the first static-node seen
when folowing sm ares from the node pointed to be the sm field.

For constant, variable and abstraction nodes, the result of weak interpretation
is a singleton set, whose pair is the described sm, and the node obtained by
following the unique flowgraph are out of the node.

The processing of the CALL and EXIT pseudo-ops provide the interprocedural
linking that we desire. We consider CALL first. The first operand (the n) and the

sm field attached to the node yield the function set that is possible from the call.
The result of weak interpretation will have one sm/node paif for every element of
the function set.

We first examine built-in functions. Each such function has built-in semanties
that must be properly represented by the graph. Many built-in functions have little
interaction with flow of control. For instance, none of the arguments of + are
functions; its result is not a function and its effect is merely to go on to the next
step. This effeet can be represented by connecting the CALL node to the second
operand of the CALL indicating the flow of control that actuaily occurs. The sm
for such a function is obtained by traversing n in ares from the node _ointed to by
the sm field of the call node (corresponding to popping the arguments and the
function value), and then adjoining at this sm node a node that represents the result
of the built-in (corresponding to the push). The pair for such a function is the sm

just described, and the second operand of the CALL.

P Al e

vy

—hd B %

e e e T R
ot \"1.:-;.3_\;.‘. -

Lo

9

There are some built-in functions that are more interesting: those that affect
flow of control, and assignment. These are discussed in later sections.

To process a pair i,s corresponding to an abstraction, we imitate in the sm the
action that would be taken in execution, where the function call is replaced with
the return address. This cannot be done directly in the sm because of data sharing.
Instead, it is necessary adjoin a new node to the node n+l steps from the top of the
prior sm. This node corresponds to the return address and the new sm arc is
labeled with the return node. Then a copy is made of the top n nodes of the prior
sm, and the last of these nodes is linked to the return address node that was just
adjoined. Recall that beginning the weak interpretation of an abstraction requires
not only sm, but also the static chain. In this case, that is simply the second
component of the pair i,s. The flow of control from the CALL node node to the
ENTRY node is indicted by establishing a flowgraph arc from one to the other. The
contribution that an abstraction makes to the result of weai(interpretation is the
pair consisting of the described sm and the ENTRY node of the abstraction.

The sm associated with node cqntaining an EXIT pseudo-op has a special form.
The top node represents the result of the application. Traversing one sm are ar-
rives at a static-chain node, which tells how many more steps mst be traversed to
arrive at the node corresponding to the return address. The result of the weak
interpretation of the EXIT node will have one pair for each arc leaving the return
address node, where the node component for the pair is the label on the arc (the
return node). Copy the top of the prior sm and make it point to the node at the
other end of the labeled sm arc, representing the removal of the return address and
arguments. The new node is the top node of the sm associated with the return
(flowgraph) node. To indicate flow of control, establish an are from the EXIT node

to the return node.

The pseudo-ops remaining to be discussed arc all associated with declaration:
SCOPE, DECL and UNDECL. The actions of these pseudo-ops must be coordinated,
but there are several ways of achieving the desired effect: allowing the definition
of a mutually recursive set of routines. We shall present one method here,
corresponding rather transparently to a reasonable implementation. To preview:
SCOPE establishes a new static chain link, but with no name; DECL fills in the
names and the stack pointer; and UNDECL removes everything except the top of
the stack. We now discuss each case in more detail. '

To weakly interpret SCOPE, adjoin a new node to the prior sm. This node will
be a static chain node, whose static chain link is obtained by traversing the prior
sm until a static chain link is found (there will be no branching along this sm path).
The list of names for this static chain node, as we stated above, is empty. Since no
names will be found at this static chain link under these conditions, the pointer to
the sm node for the last name is irrelevant, and may as well be nil. Note that this
allows the weak interpretation (and evaluation) of termj, ..., termp in an
environment where the names have not yet been installed.

To weakly interpret DECL, traverse n sm ares from the distinguished node of
the prior sm (there will be no branching along this path), arriving at the static
chain node that was established by SCOPE. The effect of DECL is merely to
install into the name field here the list of names of the DECL, and to set the
previously nil pointer to the present distinguished sm node, i.e. the top of stack.
This cannot be done to the extant sm graph structure, because that would
invalidate the stack models of flowgraph nodes pointing to the shared structure. It
is necessary, at least conceptually, to copy the n+l nodes that represent the top of
the stack, and only then make the changes to the statie chain node. The first node

of the copied chain is the top node for the new sm.

DARE T Sl A A L SR & A S MR T AR O S I A RN A gL B S S G A gei ol s —a—

11

The weak interpretation of UNDECL is what one would expect: the top sm

node is copied, but attached to the node obtained by traversing n+l arcs past it,
’: thereby popping not only the n variables, but also restoring the static chain to what
it was before the declaration.

! In the processing of every node type, observe that the amount of new
(unshared) graph structure is proportional to the size of the program. In fact, for

all but DECLs, only one new sm node is required at each point. For a DECL, the

e

number of nodes is the number of variables plus one, but variables contribute to
program length.
5. D’sjunction

Weak interpretation uses a set Q of "unprocessed nodes". These are nodes that
must be processed before a consistent weak interpretation has been attained. We
have already noted that at the beginning of weak interpretation the ENTRY node
of the main program is given an initial sm. The rest of initialization consists of
ensuring that the sm fields of all other nodes are set to nil (meaning that flow
cannot arrive at this node), and initializing Q to the singleton whose element is the
entry node.

The general outline of weak interpretation consists of removing a node from

Q, and processing it according to the description of the previous section. The
result is a set of pairs (sm, fn) consisting of an sm that is valid prior to the
flowgraph node fn. The key to termination of weak interpretation is whether fn is
placed back in Q, and if so, what is the value of the new sm field of fn. The theory
t of weak interpretation says that the key to obtaining a correct and terminating
weak interpretation is the definition of a suitable disjunction operation on stack

models. Given such a disjunction operation, we apply it to sm and the sm already

R N BT T T Tt T e T e T T et
Y. P PR T VLI U A I TG TP LS A | PR Y VIR MY Y R

12
attached to fn. If the result is the same as the old sm attached to fn, fn is not
placed back in Q. Otherwise, fn is put back in Q, and its new sm is the result of
disjunction.

We now consider the disjunction of smj and smg. If smy is nil, then the result
is smg; if smq is nil, the result is smj. This corresponds to the observation that if
the sm field of n node is nil, then flow does not arrive there. The logical or of this
condition and any logically weaker condition (flow arrives here with the stack
having thus and such a shape) is the logically weaker condition. Since a nil sm is
never propagated forward, if this case applies, the node is always put back in Q. If
weak i_nterpretation terminates and the sm field of some node is nil, then it is
indeed true that flow never arrives at that node.

If sm; and smg one both non-nil, we have a more interesting question. To see
how to define disjunction, recall that the basic definition of a stack model is that
its paths limit what might be seen as the values of a stack. Suppose we want to
construct smy whose set of paths is as small as possible, but still contains the union
of the paths for smj and smg. Iignoring efficiency considerations for the moment,
let smg be the graph consisting of disjoint copies of smy and smg. We will deseribe
a process called "pinching". This begins at the top nodes of smq and smg. To pinch
two nodes, coalesce them in the graph, and attach as a function set the union of
the function sets. Then examine the out arcs of the two nodes. If any of the out

arcs are labeled, then all must be labeled, because we have just pinched a return

address node. In this case, we pinch nodes at the ends of identically labeled arcs
(which come in pairs). Otherwise, there will be at most a pair of out arecs

(corresponding to the single out ares in smy and smg). If there is a pair, pinch the

two nodes.
While this is not the place for a detailed proof, completion of pinching results
in a stack model having the desired validity property, in other words, the union of

----- . I B JEe B s B A aln i e A

13

the set of paths of sm; and smg is contained in the set of smg, and this is the
smallest set of paths deseribable by a stack model. More interesting is the fact
that even though the semilattice described by this disjunction operation is not well-
founded, weak interpretation still terminates. To prove this, we observe that an
sm-node for the return address of a particular abstraction can appear at most once
in any sm attached to a node. This is certainly true initially. The only place that a
return address sm node is adjoined is at a CALL node. This may temporarily
produce an sm with two return nodes for a particular abstraction, but in the
disjunction that necessarily precedes attachment to a flowgraph, the two nodes
are merged (this is how cycles arise in the sm graph). To the observation that the
numbel; of return address nodes is finite, we add the observation that the out
degree of these nodes is bounded, since each such sm are is labeled by a distinet
flowgraph node, and there are a fixed number of these. The paths between return
nodes cannot grow indefinitely, and thus the sm graph is finite.
6. Assignment

In confronting the issue of assignment, the issues of parameter passing,
aliasing, and a host of related concerns arise. We shall provide a qﬁite simple way
of viewing assignment, in which all of the other issues can be expressed. Simply
put, locations will be treated as bona fide values, and locations will be kept track
of in much the same way as function values. In what we have described thus far,
parameter passing has been by value, and that will continue to be our model. To do
parameter passing by name, simly pass locations along; aliasing is represented by a
location set.

We have already seen that an abstraction is sometimes treated as a value and
sometimes as a procedure. Similarly a name x is sometimes treated as a variable

(as we have done already), and sometimes needs to be treated as a location (for

Sovinar & i e an &anbautdhmin 2ol Sra i T ladh e £l Il S S a2

.
P4

i SV R N

.
S
o g v » 2y

.
-"‘.

14
purposes of assignment). In the syntax for a term, we have discussed the terminal
class "variables"; symbols in this class are treated as variables, i.e., evaluating
them yields their value. Without raising the issue of surface syntax, it is possible
for constant to be a symbol. In this case, the evaluation of the constant is the
location on the stack designated by the symbol at the time of evaluation.

In order to model assignment, we must extend the notion of a stack model, in
that now, we associate not only a function set with each node, but also a location
set. (We can arrange the representation so that the representation of two null sets
is no more expensive than was the representation of the single null set. If the
language is strongly typed, we might also take advantage of the fact that the two
sets cannot be simultaneously non-null.) The representation of a location is a
pointer to an sm node.

It is necessary to describe how to weakly interpret a constant node that is a
symbol. Given a prior sm, the symbol is Mooked up" in the same way as a variable,
but the pointer to the sm node corresponding to the symbol is returned, not the
attached function set. The node adjoined to the prior sm is given a singleton
location set, consisting of the sm node that was found on look up. The attached
function set is of course null. |

In the weak interpretation of a variable node, looking up the variable now
produces both a function set and a location set. These constitute the pair that are
attached to the adjoined node.

We now describe the weak interpretation of the constant function ASSIGN. Its
first argument produces a location, and the second, a value that will be stored in

the location.

(ASSIG N}@(term@-—@(tem@-@\m%

First, since ASSIGN does not affect flow of control, establish a flowgraph arc from

P
PN)
PO
.

[s
..! l-l
3 1
;‘.
A .

falal

15

the CALL node to its successor. To obtain an sm for the location, we obtain a new

——— . -,
.". Lt

sm for each element of th‘e location set of the second entry in the prior sm. These
sm's are disjoined by the technique of the previous section, and the result is the
new sm. In most cases, there will be only one element of the location set, so there
is no necessity to do a disjunction.

The problem thus reduces to describing the effect on sm of assigning to a

single location. Since assignment of location values and function values is rare in

typical programs, the location and function sets of both the location being assigned
to, and the top of the prior sm, are most probably null. In this case, the assignment
has no effect on data of interest to a stack model, and the new sm is obtained by

popping three nodes off the prior sm, and adjoining a node that represents the

SEUEIE AN g LA

result of assignment (depending on ones taste, this might be the first argument, the
second, or a canonical nothing result).

Suppose that the assignment is of a function or location ;lalue. What we want
to do is simply to change the function set location set pair to be the pair on the top
of the prior sm. This cannot be done literally, because the prior sm is pointed to
from the sm fields of other nodes. A correct algorithm would be to apply the prior
sm before changing a field in it. A more sophisticated approach is to copy only as
much as necessary, and to combine the necessary copying with the disjunction that
may be necessary. These are details beneath the level of the current discussion.

Another natural operation on locations is DEREF, which we take to be a

constant function. This function has a single operand which must be a location; its

result is the current value of that location. The weak interpretation of DEREF is
essentially like that of +; the only difference is in how the function and location

sets are computed. From each location in the location set, obtain the function and

location sets attached to that node; the union of all of those is attached to the top

B
. T R Y .o ~
T T N T e T T e A"-.';-.'>'. ‘."_.".. ,.",".". ‘_- s

. e e e T el \- -_.-‘._{
T T A D R L T T N KR y, ST \' Saet e e L.
s c R R A -“: AR I PSRRI V4 .P e A B A n’ Py -_1}14.5. L 1‘4 IR Ny A:.L'._m

-

16

of the new sm (a node adjoined two sm ares from the top of the prior sm).

We thus see that accounting for assignment during weak interpretation raises
no fundamental difficulties. The simple technical device of Kkeeping track of
locations, which after all is ultimately what happens during an actual execution, is
suf ficient to determine what control paths are possible. The method handles
naturally even the assignment of function and location values, capabilities not
allowed in many languages. The price is extra expense, but it is paid only when the
capability is actually used.

7. Flow of Control

The purpose of this section is to show how flow of control other than function
call and return fits into the process of graph construction by weak interpretation.
In all cases, the flow of control will reflect the semantics of some built in funetion.
The main point is to show that flow of control can be handled with very little
mechanism over that already presented, not to give the mos't direct translation of
the standard construects.

We first consider how a simple if-then-else fits into this scheme. As is
customary, we will assume that only one of the alternatives is evaluated depending
upon the condition. In order to model this in our language, we posit a constant
(built-in) function IF of three arguments, all evaluated. Either the second or third
argument is the result, depending upon the first. Thus, tﬁe construct "if term;
then termg else term3" would be represented as (IF (termj, termg, termg)X), and
the graph structure would be:

IF G(termp) #2 #3 CALL3S, CALL 0,
To give a weak interpretation for the IF function is to describe its effect on a
stack model and on the graph structure. Since the result can be either that of the

top of the stack or next to the top of the stack, we obtain the function set for the

...............

~ - . [I I N T] L e o L P T I T R T I T . . .
AP PPN ..‘.{ e T S R N - S Te et
13 -b -‘ e _'o o -. -n“. > . -® = t"ﬁ\z:,:“.;" ‘ ;-'.\ _\ .‘I CRPCR R) '.. .- "‘; iy S “'- o ".‘_-_'...' . ‘..' et '..“‘

......
.................
...........

T Y T Yy TY Y TY ¥V IV, Y Laun amt)

TR TR W W R TR Y R T TR TR TR TR TR TNy S A el A lemiie - e h R B SR Sl Rl A cpd mm it el A i sed nand meaen

17
top entry of the new sm by taking the union of the function sets for the two entries
on the top of the stack. Traverse four sm ares from the top node (three arguments
plus the function), adjoin a new sm node to this point, and attach the new function
set. Then construct an are from the CALL 3 node to a new flowgraph node, and on
to the new CALL 0 node. The pair consisting of the new sm and new flowgraph
node is the result of interpreting the constant function IF.

We take a similar approach to looping. We map the construct "repeat term
end" to REPEAT (\term), where REPEAT is a constant, i.e., built-in, function. The
graph becomes:

REPEAT #i CALL 1,
the semantics of the REPEAT operator is to repeatedly call its argument and throw
away the result. Thus, we connect the CALL node to the following graph
construct. -
COPY CALL 0, POP

Here, COPY means to push the top of the stack onto the stack, and POP means to
simply remove the top of the stack. The effect of these pseudo-ops on a stack
model may be supplied by the reader.

In the REPEAT example, note that the flowgraph node that is the second
argument to CALL 1, is never reached. This naturally raises the question, what
about loops that do terminate? We answer this question by asking a different one:
how can we model escape-like constructs? Our answer is to give the semanties and
weak interpretation for a very general version of escape. We shall make an escape
point a "first class object", just like a function or location. In fact a return point
is exactly the location of a return address. While return points may be passed as
arguments (or assigned), their ultimate destination is the first argument of the

constant function ESCAPE. The second argument of this function is the value to

o L A O S

v ’...'..(Pl IR R
- . < B VT T L I)
e, dnthadidad L Riad 20 p el v

Rt AR el Ol R T S T nt
" .
g

S
RS

Ty e
v
Y

el
PRI
LA A
R

,_
. 'Ilwl-

Pt
RO
RN
A

kJ
L
A

RN

2 N e i

Lagir ot aus sl subl Jum shuly Mg amun b N-MRE i eTT—. Y A 1 kY

18
be returned as the value of the function being escaped. The effect is that
everything in the stack between the top and the static chain link just above the
return point (exclusive), is removed, and the next step is the same as that of the
pseudo-op EXIT.

The mechanism for location sets discussed in the last section is used without
change when weakly interpreting ESCAPE, which is handled as one would expect.
The top node of the prior sm corresponds to the value being returned on behalf of
the abstraction. The second sm node will have a non-null location set and each
location will be that of a return address (if either condition is not true, there is an
error).- Although it is not necessary, it is convenient to have all escapes from an
abstraction collect at the exit node for the abstraction. To aid in this, it is helpful
to have an index of the abstraction in the top node of the sm attached to its entry
node (the return address), and a way to get from abstraction index to exit node.

For each location in the location set attached to the second node of the prior
sm, locate the EXIT node for the corresponding abstraction, and establish a
flowgraph are from the CALL node invoking the ESCAPE to the EXIT node. Copy
the top node of the prior sm, but make it point to the static-chain just above the
escape location (via the abstraction index). The set of pairs, consisting of sm's
obtained in this way and the corresponding EXIT node of the abstraction, is the
result of the weak interpretation of the constant function ESCAPE.

We now return to the issue of looping constructs with exits. For example,
consider the standard "while termj do termg. This can be viewed in our language
as

WHILE (termj, termyg)
But WHILE does not need to be built in because it can be defined as follows:

condition, body. repeat if condition () then exit function else body () endif
endrepeat

!.

19
The repeat and if-then-else constructs have been discussed; the end function maps
directly to an ESCAPE with suitable argument.

In summary, the flow of control constructs found in most languages can be
included in this general scheme with little difficulty. The "if-then-else" constructs
require only a new constant function and new pseudo-ops. The "repeat" construct
requires a constant function and two simple pseudo-ops for manipulating the top of
the stack. The escape mechanism requires an extra abstraction in the stack model
and a table of exit nodes, as well as a constant function (and no new pseudo-ops),
but it provides a powerful capability. Together with ordinary function cell and
procedure parameters, other control constructs are easily deseribed.

Bibliography
1. Wegbreit, Ben. "Property Extraction in Well-founded Property Sets", Center
for Research in Computing Technology, Harvard University, Cambridge,

Massachusetts and Computer Science Division, Bolt, Beranek and Newman, Inc.,
Cambridge, Massachusetts, February, 1973.

2. Kam, J.B. and Ullman, J.D. "Monotone data flow analysis frameworks" Acta
Informatica 7:3, 1977. pp 305-318.

The RULOG Inferencing Engine

Thomas E. Cheatham, Jr.
Harvard University
and

Software Options, Inc.
Cambridge, MA 02138

February 14, 1985

1 Introduction

The development of sophisticated expert systems depends upon obtaining
the knowledge of experts and developing efficient means for representing
that knowledge and drawing inferences from it. Some of the more suc-
cessful expert systems approach the efficiency issue by computationally
tractable models specific to very narrow domains with specializations of
general purpose problem-solving methods applicable to a wide variety of
problem domains. The general purpose component used in many expert
systems is rule-based, with production rules representing knowledge and
the associated mechanisms for drawing inferences.

In other systems it has seemed very natural to use the predicate calcu-
lus to represent knowledge. However, until recently, the inferencing algo-
rithms for pure predicate calculus were too inefficient for this approach to
be a practical alternative to the less formal rule-based approach. Addition-
ally, if predicate calculus knowledge inferencing is done using the resolution
method of theorem proving, it is difficult to explain conclusions or even in-
ferences in terms that make sense to a user. Recently, the emergence of
logic programming in general and PROLOG in particular suggests that

there may practical realizations of inferencing engines for predicate calcu-
lus. The theory of logic programming imposes a syntactic restriction on
formulas in the predicate calculus, limiting the formulas to what are called
definite clauses. The resulting language has proved adequate for a wide
range of applications, and there are well understood techniques for con-
structing an interpreter (that is, an inferencing engine) for definite clauses
that is reasonably efficient. Also, with logic programming the usual repre-
sentation of the proof of some predicate is a “proof tree” that provides a
very natural framework for explaining why a particular proof was successful
as well as exploring why some attempted step in a proof was not successful.

Because logic programs can be given a precise semantics, they are
amenable to theoretical analysis. It is even possible to attach uncertainties
to the rules in logic programs while retaining precise semantics [Shapiro
83].

PROLOG is presently the best known and most widely available lan-
guage for logic programming and PROLOG implementations exist on sys-
tems ranging from mainframes to personal computers. The Japanese fifth
generation project has, of course, made a strong commitment to PROLOG
as the basis for expert systems of the future [Feigenbaum 83}, and a number
of groups are investigating specialized architectures for PROLOG machines.

Yet no matter how capacious or fast the underlying hardware, we cannot
ignore the importance of the efficiency of the software. Our interest is in
extensions to the inferencing technology - to the software technology - to
improve the performance of inferencing engines.

There are several factors that will improve the inferencing capabilities of
interpreters for logic programs. One improvement is to incorporate special-
purpose inferencing components for specific domains. For example, existing
interpreters can infer, from the facts x < y and y < x, that x and y are
mutually inconsistent only when x and y have constant values that can
be compared. To handle the general case would require axiomatizing the
less-than predicate; such an approach is impractical. There are, however,
efficient satisfiability procedures for systems of linear inequalities [Nelson
81]. Another example is sets of equalities and disequalities. Again, to
handle general equalities and disequalities with present-day interpreters,
we must axiomatize these concepts, inducing computationally infeasible

Ladhi i A" oS Y - Padbi i o i ol S Ll gl i et) - P =l i A i~ i

iterpretations; and, again, there do exist efficient decision procedures for
handling equalities and disequalities [Nelson 79].

Another major limitation of the current generation of logic program
interpreters is in their ability to deal with large numbers of ground facts.
The difficulty is not just in being able to store large numbers of facts but,
rather, in managing them, ensuring that they are up to date and consistent.

A third limitation of current logic program interpreters is that they lack
a type system. The same argument can be made for logic programs that
is made for other kinds of programs — that incorporating a type system
becomes essential when the knowledgebase becomes sufficiently large.

We have recently developed an interpreter for a language based on defi-
nite clauses that has the power and generality of current logic programming
interpreters but does not suffer the limitations cited above. Aspects of this
language and its interpreter will be described in the sections following. In
order to distinguish our rule language we call it RULOG (for RULes in
LOGic). The term RULOG is also intended to suggest that our intended
application is knowledge representation and inferencing, and not program-
ming as is the case with PROLOG.

2 The RULOG Type System

It is, of course, possible to simulate a type system within PROLOG; [Mishra
| describes one way of imposing types. However we have chosen to include
a type system imbedded directly within the RULOG language. The type
system we have chosen for RULOG is modeled on in the Ada type system for
scalars extended to permit the definition of functional types. For example
the following are type definitions in RULOG.

e type COLOR is (RED, BLUE, YELLOW, GREEN, MAUVE)
e type STOP-LIGHT is (RED, YELLOW, GREEN)

e type state is (odd, even)

o type small is new INTEGER range 1..100

e subtype little is small range 2..10

3

............

2 i ek L SR i Sl S A i Sl - M M S i e i 4 - g vt A BIMAL e S S At S Ak art ot - AANCaRS aiC Rl gb S-ai i as- oS- uh it ’.rf."v—r(:.-}
RS
AN 4N s
Y ST
-'\q‘
‘. =
) St
N 3
a e . .
.
.o

PN

x \.""‘.‘l‘:.

K
s e
3y
o

e type arith is function (INTEGER, INTEGER) return INTEGER o
o type rel is function (INTEGER, INTEGER) return BOOLEAN

The type COLOR is an enumeration type with five distinct values
named by the literals RED, ... , MAUVE. As with Ada, enumeration
literals may be “overloaded” (as are RED, YELLOW, and GREEN above)
i and the type ambiguity is resolved by conversion, as in

"...COLOR(RED)...
or by context, as in
subtype NOGO is STOP-LIGHT range RED...YELLOW
RULOG goes beyond Ada in permitting the definition of functional

o types; the type arith above is that of a function taking two INTEGER
;;Z:; arguments and returning an INTEGER result. A predicate is a function
s returning the (built-in) type BOOLEAN.

Ve Subtypes are, as in Ada, constraints on an underlying type. Thus,

referring to the above examples, an object with subtype little has trpe
small and is constrained to have a value between 2 and 10.

:lfif'? 3 The RULOG Language

J

N We can think of RULOG as having three kinds of statements: definitions,
;:-'“- assertions, and dialogue.

. Definitions

= " Several sorts of things can be defined in RULOG:
0

type and subtypes

Commencing with the built-in types INTEGER, STRING, and BOOLEAN,
one can define (name) new types as enumerations and as derived from an
existing type, possibly including a constraint on the parent type. Subtypes
are defined as constraints on some existing type. The identifiers used to
name types and subtypes may not be used for any other purpose.

literals

A literal in RULOG is like a variable in a programming language (the term
variable, however, being reserved in RULOG to mean a quantified variable
in some rule). An example of a literal definition is

let S: state initially odd
that defines S to be a literal with type state and initial value odd.

tokens

A token names a scalar, function, or predicate whose value is entirely de-
termined by subsequent assertions. Some example are

o token x is a INTEGER
e token s is a function(INTEGER) returns INTEGER
o token p isa function(INTEGER, INTEGER,) returns BOOLEAN

defining x as an INTEGER, s as a function on INTEGERs to INTEGERs
and p a predicate on pairs of INTEGERs.

’
4
v
r
g
r
4
<
;
4
4
L
o
ﬂ

PRy

o
]

l"“h r‘ 1 .

database predicates

A database predicate defines a mapping between predicate symbols in RU-
- LOG assertions and tuples in a relational database. As an example

define has_age(name:STRING, age: small)
on employees of DB

P Tl TeTe e et
RPN Joloh ot

' introduces the predicate symbols “has_age”. This predicate is to be taken as
i true for each of the two element subtuples of each tuple of the “employees™

relation of the database named “DB” consisting of the value of the attribute
named “name” and that of the attrribute named “age”. The types of the
name and age components are, within RULOG, understood to be STRING
and small, respectively. The transactions betwen RULOG and the database

I access mechanisms will be discussed below.

.

, Assertions

b Once we have defined a sufficient collection of types, tokens, function sym-
bols, and predicate symbols we can make assertions to RULOG. Assertions

take two basic forms: assertions about uninterpreted predicates and as-
sertions about tokens. The assertions about uninterpreted predicates are,
semantically, similar to the rules in PROLOG; an example is

assert forall(e:STRING, a:small) young(e) if
has_age(e,a) and a- < 25

stating that a “young” employee is one whose age does not exceet 25. In
general a rule has a forall(...) prefix that names the quantified variables
and gives their types, followed by a conclusion and a conjunction of pre-
misses. As with PROLOG, the rule asserts that the conclusion can be
established by proving that each of the premisses is true. Each premiss is
a predicate applied to zero or more terms; terms includes literals, tokens
naming scalars, quantified variables, and tokens naming functions that are
applied to terms, recursively. The major differences from ordinary logic
programming rules are that the quanitified variables are typed, that the

6

‘.. ‘.. R \ \.-. .”.._‘.:-.qu "--.'-.._-.,:‘._‘- ..‘. '..\.'. _"._‘.‘._ .ﬂ"’-_'. _..‘._‘. ...k.- -t B '_...‘_.. ..~;_‘.. ".:\."_‘. K ...‘" .~ -___._..‘ .", N - . :. o _‘.".. -q‘n AN
&\':‘.{’\}J\}g\}h \}J-\.'L\:'_\‘Lx{f.\.'C-,'-:-':.‘_-,,'}f,':-{' D el eyl R N A S A T T RN N

interpretation of various of the built-in predicates like =,#, and < is han-
dled somewhat differently, and that certain of the predicates — the database
predicates — require communication with a database system in order to be
established. We will discuss the interpretation of the built-in predicates
and database predicates below.

The assertions about tokens involve the equality, disequality, and in-
equality predicates. An example, assuming that x, y, and z had been de-
fined as INTEGER valued tokens, is:

assert x <y
assert y <z
assert z < x

Subsequent to receiving these assertions RULOG would know that whatever
value x, y, and z have they all have the same values and, for example, it

would recognize that the assertion
assert X £y
was not valid (technically, it is unsatisfiable).

Dialogue

One kind of client for RULOG will be some process that wishes to determine
whether or not some predicate can be proved; an example of a request for
a proof would be

prove exists(E:STRING) young (E)

that would, presumably, scan the employee database to find an employee
who is 25 or younger.

Another kind of client is a knowledge engineer who is interested in
exploring or debugging some set of rules. RULOG provides a dialogue
interface for this client, offering a set of commands that permit the user
to stop the interpreter at various points in attempting a proof; to examine
the values of variables, literals, and so on; to request explanations of why a
particular predicate was determined to be true or why it gailed to be true;
and so on. We refer the interested reader to the RULOG user manual (see
[Cheatham |) for further discussion of the dialogue facilities.

7

LW W TR M .

e Thd ‘St R N,
.

s

. o
s e de fe te e 0 , .

. o . .
e ,‘,',‘._n..."...
IR T FE A AL A YT A

T

.l

- v -
'-l. l,l '.l.
s 3K _a_w_A 8,

4 The RULOG Interpreter

The RULOG interpreter has two major components — the reader and the
prover. The reader accepts definitions, assertions, and dialogue comands,
performs appropriate syntactic and semantic checks and creates an internal
representation for items defined. Thus, the reader is analogous to the syn-
tactic and semantic analysis components of an Ada compiler. The source
of input is usually one or more files but input can be typed in directly as
well. Syntactically invalid statements are rejected and an appropriate com-
ment on the problem encountered is given; a statement can be re-submitted
after editing if the user is typing directly. The semantic analysis resolves
the types of overloaded literals and ensures that the type of each construct
is consistent with that required; semantic errors also result in the rejec-
tion of the statement input accompanied by appropriate comments on the
problems encountered.

The prover is invoked by being given some theorem to be established.
In a fashion analogous to most logic program interpreters, it attempts to
build a proof tree in order to establish that the theorem is true. The proof
tree has as its root the predicate to be established. In general, at any point
in the proof, the prover is working on some node of the proof tree in an
attempt to establish that the predicate at that node is true. The operation
of the prover at a given node is dependent upon the sort of predicate at
the node; for discussion purposes we classify the predicates at a node into
three groups, as follows:

Uninterpreted Predicates

An uninterpreted predicate is a predicate whose truth is established by
appealing to the assertions that have been made about that predicate (that
is, the rules whose conclusion involves the same predicate symbol as that
of the predicate we are trying to establish). The processing of a node
with an uninterpreted predicate is analogous to the processing done by a
PROLOG interpreter. That is, to satisfy such a predicate we must find
some rule whose conclusion has the same predicate symbol and such that
we can unify each term of the predicate at the node with the corresponding

N

- - P P N I T L i SR S L I B R S |
-.I .p‘:(.:, .,{-.{.' < :..' “.: " 4‘-{.‘-',‘.«/: “ P P »

term of the rule conclusion. If successful, the premisses of the rule are
established as the descendants of the current node and we turn to the next
node of the proof tree; if not successful, the prover must backtrack and
attempt to prove the predicates at some previous node in a different way (
that is, a different rule or a different fact from the database).

Database Predicates

The truth of a database predicate is established by appeal to the appropri-
ate relation in the relational database. At the present time we are using
the TROLL database system but think that the modifications required to
use some other database system would be minor. The transactions required
between RULOG and the database system depend both on the predicate
to be established and on the arguments to that predicate. We consider a
couple of examples using the has_age predicate cited earlier. Suppose that
we wanted to establish the truth of

has_age(e,a)

and that, at the time we wished to establish this, e was bound to “Henry”
and a to 35. The transaction required is a query to the database that
will determine and report whether there is a tuple of the employee relation
whose name and age fields are ‘Henry’ and 35, respectively. If, after a
subsequent failure to prove some predicate, we backtrack to this node there
is no other way to prove it and backtracking will have to continue on to
retry nodes previous to this one.
If, for the same example,

has_age(e,a)

both e and a were unbound quantified variables at the time we wished to
establish that the predicate was true, a rather different transaction with the
database would be required. This time we would request the values of the
name and age attributes of the first tuple of the employee relation and bind
the variables e and a to these values to establish the truth of the predicate.
Upon backtracking to the node with this predicate, the transaction required
is to retrieve the values of the name and age attributes for the pext tuple of

9

®
TN .
LIPS LY
N
™ LS
- LR
. . o«
LIRS o~
(RN N
LA™t ¢
h.. -._.--.'-.‘
O \‘.\-
A SKSLS
."::";\':.‘ N
W e /
At -

o0

0

.
a ‘.‘ l'.

-, ,"’;; -, R
.1":‘.. e _J ‘3._"..'.-."_:"-'

247

H

Tt

the employee relation, continuing, during subsequent backtracking to the
node, until the tuples were for the employee relation were exhausted before
backtracking further.

Interpreted Predicates

Analogous to PROLOG, RULOG has a number of interpreted predicates
including cut, fail and the like to control a proof. Like PROLOG, RULOG
also provides the equality (=), disequality(#) and inequality(<) predicates
but has a different interpretation of them that we will discuss below. RU-
LOG also provides for assignment of new values to literals. An example is
the “predicate”

S := even

that assigns the value even to the literal S and returns “true”; this ability
to modify certain variables during a proof makes reasoning about situations
that involve some notion of “state” rather more perspicuous than is often
the case with PROLOG.

RULOG’s treatment of =, #, and < are different from PROLOG’s. In
PROLOG x =y is true if x and y are manifestly equal or one of them is a
variable that can be bound to the other; x # y is the failure to show x =
¥ ; and, x < y is valid only if both s and y are integers (including variables
bound to integers and arithmetic operations on integers) with the obvious
interpretation.

By contrast, the RULOG meaning of these predicates is provably equal,
disequal, or inequal. We can think of the prover, when it encounters one
of thse predicates, as appealing to a specialist who determines whether the
given instance of the predicate is true or not and reports back accordingly.
The specialists provided in RULOG are, as we noted earlier, based on the
satisfiability procedures developed by Nelson (see [Nelson 81]) and incor-
porated in the Stanford Program Verifier. We term these specialists E and
R. E maintains a conjunction of equality and disequality facats that have
been asserted; the equalities are, in general, over terms constructed from
tokens, literals, and uninterpreted functions applied to terms, recursively.
E partitions the terms into equivalence classes and propagates each new

10

equality asserted so that, for example, the assertion x = y will cause x and
y to be placed in the same equivalence class; E also propagates the equality
so that, for example, f(x) and f(y) will be placed in the same equivalence
class. Disequalities are managed by associating with each equivalence class
the list of terms that are disequal to it; an attempt to add such a term to
the equivalence class that it is forbidden to inhabit will result in unsatifia-
bility. To prove that some equality or disequality is true, we demonstrate
that conjoining its converse to E is unsatisfiable. E employes some fairly
elaborate data structures and carefully chosen algorithms that achieve a
time cost that is of the order of n log n to add an n-th conjuction to n-1
already known to E.

The R specialist maintains a conjunction of inequalities that have been
asserted. It converts each inequality to an equality by introducing a so-
called restricted variable; restricted variables are constrained to be non-
negative and R insures that these constraints are met. The addition of a
new inequality may result in the discovery of one or more equalities that are
implied by the new inquality (as, for example, 3<x added to x<y and y<z
would result in x=y and y=g being discovered); all equalities discovered
are reported to E. The addition of a new inequality might also result in
a restricted variable being negative, in which case the set of inequalities
submitted to R is unsatisfiable. To prove that, for example, x>y, R shows
that the addition of the converse, x<y, to the set of inequalities it currently
has results in unsatisfiability.

The R specialist is also used to insure that the range contraints associ-
ated with types and subtypes are not violated. Suppose we have

type small is new INTEGER range 1..100

assert forall(..., Vamall) p(...V...) if ...

Whenever the cited rule for p is involved in a proof, we must insure that
1<V and V<100. This is handled by submitting the two inequalities to R,
and, if any subsequent assertions about V contradicts the constraint, R will
report out the unsatisfiability; this is interpreted as a failure in the proof
and initiates backtracking.

11

Future Directions

We think of the present RULOG as a prototype in which have demonstrated
the feasibility of combining the basic mechansism of PROLOG with a type
system, a set of specialists that are very efficient at determining the satisfia-
bility of predicates over restricted domains, and a connection to a database
system to provide a source of ground facts. In addition, RULOG provides a
reasonable user interface and facilities for explaining why a proof succeeded
or failed.

There are a number of additions to RULOG that we intend to investigate
before we do the final round of engineering to insure that it is a reliable
and robust system appropriate for distribution.

At present, RULOG has no mechanism for dealing with arbitrary col-
lections of objects. We have rejected the idea of incorporating lists in the
way that PROLOG does to provide for dealing with collections. Instead,
we are exploring the possibility of adding sets to the language, complete
with the usual set operations, set construct, set iterators, and the like. The
experience with SETL (see [Schwartz 74 |) and work by Sandhu see [Sandhu
81) suggest that the use of sets and set notations might be a very natural
and user-friendly way to deal with arbitrary collections.

Another addition that is required for many applications is some notion
of certainty (or, equivalently, fuzzy predicates); [Shapiro 83] disucsses how
this might be added to PROLOG and we believe a similar addition to be
possible to RULOG.

At present, the connection between RULOG and the database system
(TROLL) is rather loose - RULOG runs on an Apollo and the database sys-
tem on a VAX. We intend to investigate both connections to other databases
and a tighter coupling of the RULOG and TROLL processes (possibly even

. combining them into a single process on one computer).

The versions of E and R currently operational in RULOG are satisfiabil-
ity procedures, not decision procedures (that is, they do not bind quantified
variables). We believe it straightforward to make E into a decision proce-
dure and are exploring various ways to extend R to be able to do variable
binding as suggested in [Townley 80).

T L m i BLIEE W it S Saat S e uh i S B S it e g S S A B A A B R AR A i A A r LI A N R g et il sans AL P S 4L SR SR
- -

REFERENCES
*ﬁ [Cheatham] Cheatham, T. E., The RULOG User Manual. In preparation.

[Feigenbaum 83] Feigenbaum, E. A., and McCorduck, P. The Fifth
Generation. Addison-Wesley, 1983.

[Mishra] Mishra, P., Polymorphic type inference in PROLOG. Extended
P summary. CS Department. University of Utah, Salt Lake City, Utah.

¢ [Nelson 79] Nelson, G., and Oppen, D., Simplification by Cooperating
- Decision Procedures. ACM Trans. on Programming Languages and
Systems, 1, 2 (October 1979), 245-257.

' [Nelson 81] Nelson, G., Techniques for Program Verification. CSL-81-10,
Xerox Palo Alto Research Center, June, 1981.

[Sandhu 81] Sandhu, R. S., The Case for a SETL Based Query Language,
LCSR TR-24, Rutgers University, 1981.

[Schwartz T4] Schwartz, J. T., On Programming: An interim report on the
SETL Project. Installments I and II. CIMS, New York University, 1974.

[Shapiro 83] Shapiro, E., Logic Programs with Uncertainties - a Tool for
Implementing Rule Based Systems, IJCIA 1, (1983), 529-532.

(Townley 80] Townley, J. A., A Pragmatic Approach to Resolution-based
Theorem Proving. Int. Jr. on Computer and Information Sciences 9, 2,
(1980), 93-116.

2

g e e el .

T T T S AR AR .o

l:‘{..n:.‘ $-- ':,. e .\‘.-'.".‘ :'-‘ - .
IO B NFCIP ShE R IS,

