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ABStPACT

Generalized Lanchester-type differential equations are
used to study combat processes. This system of non-linear

equations has multiple equilibrium solutions which can be

determined by a numerical technique called the Continuation

Method. Useful properties pertaining to neigbbcrhood

stability are derived by considering the lowest-dimensional

(1*1) problem. A new set of parameters based on the system

asymptotes is defined and used to characterize stability.

System dynamics are investigated using phase trajectories

which are found to depend on the domains of attraction and

stabilities of surrounding equilibria. The effect of varying

initial force levels (X,Y) is studied by calculating an

objective function which is the difference of the losses at

the end of a multistage battle simulation. Based on the

minimax theorem, a set of mixed strategies for (X,Y) can be

found. For highly unstable warfare with large war resources,

instability can he used to influence battle outcome.
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I. IN PODOCTION

Since Wcrld War II, combat modeling, simulation and

analysis have been the subjects of considerable research.

The objectives of this research are to support defense deci-

sion making and doctrinal developments during peace and war

time. During peacetime defense-planners are primarily

concerned with weapon procurement, development, acquisition,

organisation and structuring. During war time it is

telieved that a better understanding of the quantitative

aspects cf attrition can help commanders make better ccmmand

and control decisions.

Ccmbat processes involve complicated interactions

between oppcsing forces. These interactions are often influ-

enced by many external factors such as environment, troop

quality and tactics. There are different types of ccmtat

models such as war games, simulations and analytical models.

A fundamental recuirement for a good model is that it must

be of a fairly high degree of operational realism, since

otherwise they would not be credible to military planners.

Cn the other hand, excessively complicated models can make

the mathematics too difficult tc handle.

In this thesis, a generalised Lanchester [Ref. 1] model

which contains area-fire, aimed-fire, self-attrition and

replenishment coefficients is used. It consists of a system

of 2N bilinear eguations and belongs to the general category

of analytical models. The model is rich enough to treat

modern combined-arms operations involving heterogeneous

forces. It is also possible to extend the model to analyse

operations cn two or more fronts.

Among the many important issues that could be analysed

using this model, the problem of optimum force iistribution

12
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had been studied by Nozencraft and Moose (1983). In their

paper [Ref. 2], an objective function was chosen as the
difference of the aggregate attrition rates. It was shown

that the optimization problem is mathematically equivalEnt

to a matrix game. Hence, the model has a saddle-point solu-

tion with corresponding optimum force distribution vectors

x and y for Blue and Crange forces respectively.

In addition, the neighborhood stability of the model at
the operating point (x* and y*) was also investigated. By

defining two parameters, K1 and K2 which are obtained by

considering small perturbations around the operating points.

a great deal could be learned about stability.

IMotivated by these results, much of the work done during

the initial part of this thesis was directed at studying the

effect of stability on battle outcome. The ultimate question

is, how do we exploit the knowledge of stability of an oper-

ating point to influence battle outcome? Before this ques-

tion can be answered, it appears that there is a need for a

better understanding of the equilibrium points. Chapter III

is devoted to finding and understanding the equilibrium -

solutions and their stability behavior. Like many other

nonlinear system of equations, the Lanchester's model

adopted here has multiple equilibria. Stability analysis

[Ref. 3] of a non-linear system is usually done by methods

which do nct require prior knowledge of the equilibrium

solutions. One example of such a method is the LiaFunov

method [Ref. 4]. If, by some realizable means, the eguilib-

rium soluticns can be found explicitly then there is no need

to rely on these indirect methods which are often difficult

to iimletent.

One of the reasons for resorting to the Liapunov method

is the difficulty in obtaining equilibrium solutions of a

non-linear system. many numerical methods are unsuitable for
reasons such as difficulty in obtaining good initial

13
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guesses, non-convergence, ill-conditioning and so forth.

Fortunately, a powerful numerical technique called the

Continuation Method can be applied for our purpose. This

method not cnly finds all the solutions (i.e. it is exhaus-

tive), it dces not even require initial guesses.

In order to gain a firm grasp on the dynamics of the

system surrounding the equilibria, it is helpful tc tempo-

rarily fccus attenticn on the homogeneous (1*1) system. In

spite of its simplicity, the 1*1 system is not devoid of the

essential characteristics of the N*N system. In fact, the

1*1 model is sufficiently sophisticated for certain analyses

in which the opposing forces can be assumed to be horoge-

neous. As we proceed through Chapter IV, it will beccme

clear that much insight into the stability and system

dynamics cculd be gained by merely considering the 1*1

system. Part of the chapter is devoted to the derivations
and interpretations cf the relations between system asymp-

totes, locations of equilibrium points and stability. The

dynamics of the system are studied using the idea of phase

trajectories. These trajectories represent changes cf force

levels with time and they will be shown to depend not only

on the stabilities of equilibrium points but also on the

domains of attraction.

Chapter V concentrates on battle outcome which is cne of

the main issues facing a commander. It encompasses many

issues such as, (1) Who will win and by what margin? (2)
Rhat is the length of battle? (3) How do initial deployments
affect battle outcome? (4) Which parameters affect battle
outcome most? But ue will cnly address the two follcwing

subjects :

(a) The effect cf stability on battle outcome;

(b) The effect cf varying X and Y, the initial force

levels.

14
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The lasic approach is to define a multistage battle with

a predetermined condition for termination. The resultant

payoff matrix can then be used to obtain the optimum set of

mixed strategies. An example, which employs KOREAN WAR data,

is presented for the purpose of illustrations and

discussions.

The essence of tie findings are:

1. Unstable operating conditions can be exploited to

influence battle outcome, especially when total war

rescurces are large. The effect on battle outcome is

mcre pronounced for highly unstable warfare;

2. Initial force deployment can be optimizel in accor-

dance with a set of mixed strategies.

We conclude this introduction by stating two of the

outstanding issues. The first question is the extent to

which cne can replace the N*N problem by the 1*1 problem.

7he motivation to find an equivalent 1*1 system stems from

(1) our better understanding of the 1*1 system, (2) ease of

presertirg and visualizing two-dimensional pictures, and (3)

savings in computaticnal effort.

The second guestion concerns replenishment rates. In

this thesis, the replenishment terms used in the model have

keen constant. It is therefore reasonable to ask, how to

modify replenishment terms to reflect a higher degree of

operational realism? In other words, are there more suit-

able time-dependent replenishment rates r(t)?

15
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II° IANCHESTERIS EQUATION

A. BICKGROUND

Ccmbat models have been studied as a form of decision

aid for defense planting. A wide variety of defense plan-

ning 1roblems, ranging from force structuring and weajon

selection to rates of deployment in battles have been anal-

ysed using combat models. There are many different types of

models. They can be loosely categorized as either war games,

simulaticns or analytical models. Discussions on the

nature, advantages and shortcomings of each can be found in

[Ref. 5).

Our attention will be focusel on a generalized

lanchester's (Ref. 5] model, which is an analytical codel.

It consists basically of a system of ordinary differential

equations describing the mutual interactions between

opposing combat forces. Although earlier works in

lancbester's model [Pef. 6] employed only a few terms in the

" equations, modern high speed computers enable more general-

ised, realistic and responsive versions to be used.

Consider a battlefield with opposing forces, Blue and

Crange, denoted by f xi I and { y,} respectively. The

subscripts i, j refer to the type of forces such as

infantry, tanks, artillery, etc. A generalised version of

lanchester's model given by

1 .-.Y.b..r
i'xi. -xiui xi~aij~ - i. + 1?.

(eqn 2.1)-] j - "
_V.Y - C ~ j + S

j j vyj yE ×i ij E + s . -

i i

i< 16
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i =-

i = 1, "2

where

U , v Self-attrition coefficients

aij, c.. = area-fire attrition coefficients

b . aimed-fire attrition coefficients

ri , s. = replenishment coefficients

is adcpted in this thesis.

Note that in general I * J, implying that the force
compositions may be different for the two sides. It is also
possible to extend the above formulation to a scenerio

involving more than cne battlefield.

In the next two sections, the highlights of the work
done by Wozencraft and Moose (1983) are given. The work done
in this thesis is a continuation and extention of their

work. The detailed derivations of the results obtained by

t1:4, can be found in [Bef. 2], and hence are not included

here.

B. OPTIMUM FORCE DISIRIBUTION

7he question of optimum force distribution arises in
combined-arms operations. The problem is fundamentally

this: Given aggregated forces X, Y, how should one

distribute them among the different types xi and yj ,

1,2...,I, j = 1,2...,J? Since loss rate is one of the

fundamental concepts in comtat modeling, it is reasonable to

choose this measure as a starting point. The otjective

function was chosen to be

17
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ri) (eqn 2.2)

Fcr this choice of 11, it was shown that there exists
optimum force distritution (row and column) vectors x'* and
y* such that for any cther vectors x and y

xAy M x A y (eqn 2.3)

wher e

ki =x Ay

A =matrix determined by attrition coefficients and
the aggregate force levels X and Y

7he resemblance of this result to the £inimax theorem

[Ref. 7) in matrix games is very striking. Indeed, this
result holds precisely because M can be written in a form
mathematically equivalent tc a matrix game. consequentl~y,

it is not surprising that one can solve for the optimum
vector x* and y* by means of a linear Program. An interac-
tive program to solve a 2*2 program is given in kppendix A.

C. NEIGEBCEHOOD STAEILITY

Equilibrium conditions can be achieved if the replenish-
1£.:jt rates are chosen to make

1 j

j1,2 ....

18



at x = x* and y y*. Following the usual approach in the

analysis of nonlinear system stability, equation 2. 1 can

then be transformed into a system of linear equations.

5X Ax B1

is called the conflict matrix and its elements are deter-

mined by the attriticn coefficients and the optimum vectors
A A

x* and y*. For the system o equations 2.1, A and C are
r

diagonal matrices. It was shown that two parameters kj, k 2

partially characterize the stability of the system. kI and k2

turn out to be the column sums of the left and right side of

the matrix

c - ----- B

D -C
J

Denoting the elements of the sutmatrices A, B, C, D, Dy aij

blj, cjj and dli respectively, k, and k2 can be written as

= "i

1

k2 - -jj l.sj
1

independent of the columns i, j. Furthermore, it was shown

that the following relation holds

6i kl6X = 60 - k 1 6Y

19
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where

6X 1:6x. 6Y zs"y5v

It was found that the equilibrium point (x. y* is

stable if k1 and k2 are negative. If kiand k2 are positive,
Ithen the system is 'unstable'.' Furthermore, values cf k1

and k2 and hence the stability of the operating Foint was

found to be affected 1y the aggregate X and Y.

!ore general.ly, it can be-shown that k 1< A\ (k where
is the maximu.m eigenvalue of -C.1 020

20



III. MflVIDIMENSIONAL (N_N) SYSTEM

A. NATURE CF N*U PROELEN

The interesting results highlighted in the last cha-ter

provided motivation tc extend the body of knowledtje. A study

of the effect on stability of battle outcome seems to have

important potentials for applications. Should a ccmmander

strive to establish a stable operating point, and if so,

under what conditions? Also, what is the optimum initial

level of forces he should deploy and how many should he

maintain in reserve? To answer these questions, more knowl-

edge about the nature of these equilibria and their

stability behavior is required.

7he next section outlines the kind of problems we would
Expect to see and their potential complexity. It is

followed by a section on finding the ejuilibrium soluticns.

1. Existence of rultip12e Euilibria

An N*N system is in equilibrium if the replenishment

rates r i , s. are such that there is no change in the force

levels (xi = yj = 0). The system of equations becomes
0ibij

0- -x u x i ~a i i  )° r-""'

(eqn 3.1)
0 - -v yj ) j xicij -xiij +sj

i i"

i,j = 1,2,...,N

21
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where, for simplicity, i and j are each assumed tc have N

types cf forces.

A 2N-tuple vEctor, (x, yx which satisfies equa-

tion 3.1 is an equilibrium solution. Like many nonlinear

systems ct equations, equations 3.1 have more than one equi-

librium Foint. Geometrically, these equilibrium points are

at the intersecticns of a set of hypersurfaces in the

2N-dimensioral space. To help in visualizing the geometry,

we can look at an example using a 1*1 system as shown in

figure 3.1. In this case the hypersurfaces simply reduce to

hyperbolic curves.

I-y

Figure 3.1 Equilibrium Points at Hyperbolic intersections.

The existence of multiple equilibria makes the anal-

ysis of the N*N problem very interesting but difficult. In

chapter IV, some illustrations cn how the locations of these

equilitria affect phase trajectories will be presented.

A few other interesting questions arise spontane-

ously. For instance, hr many of these equilibria are there

22
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Ii

Figure 3.2 Infinite Number of Equilibria.

in an N*1 problem? Ste answer to this question is not imme-

diately obvious just by looking at equation 3.1; however, it

emerges guite naturally when the Continuation Method is

considered in Section IIIB. It will be seen then that an

N*N system has, in general, Nk eguilibrium points where

(N

Nk Z ) 2  (N)
i=O

Two excepticns, or degenerate cases, have Leen

observed, namely: (1) when some or all of the hypersurfaces

merge there are an infinite number of equilibrium points,

(see Figure 3.2) , (2) when some or all of the hypersurfaces

intersect in such a manner that repeated equilitria are

formed, the number of distinct euilibria is less than Nk.

Figure 3.3 illustrates such a degeneracy.

23
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Figure 3.3 Repeated Equilibria.

2. Stabilitv and Domains of Attraction

!ach equilibrium point in an N*N system may cr ray

not he stable depending on whether or not its eguilitrium

stability is important because it has a strong influence on

" the phase trajectories. Generally, if an operating roinc is

stable (the maximum eigenvalue is negative), then any

perturbation away from that point results in the system

returning to the same point. Conversely, perturbations

about an unstable point results in divergence from that

point.

The notion of domains of attraction is also critical

when determining phase trajectories. Any operating point

within this domain cr region will be "attracted" toward a

stable eguilibrium point. In short, a domain of attraction

is a volume in the 2N-dimensional space surrounding a stat1e

equilibrium point. Figure 3.4 shows a typical domain in

which scme of the trajectories are shown converging to a

stable equilibrium point.

24

. . . .-.
'..."

* .-. 

..



p..

0

Y/

/
I

/ S sboundary

Z- 40Y' / trajectory x
%/

\I

\I

X unstable point

stable point

I

Figure 3.4 Domains of Attraction.

Domains of attraction are separated by boundaries

which are invariant curves in 1*1 problems and invariant

hypersurfaces in N*N problems. A boundary surface may be
considered as an infinite number of invariant curves placed

side by side. A boundary curve is the locus of points that
approach an unstable point from both sides. The boundary

line can be obtained by backward integration (i.e. using
negative time in equation 2.1) starting just on either side
of an unstable point. The rationale behind this method is
that tc approach an unstable equilibrium, a point must

remain exactl Z  on the boundary. If this is not the case,

then the point will te attracted into the domains and move

25
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toward a stable point or infinity. By performing a backward

integration, we are actually retracing the path taken by a

point which previously approached the unstable equilitrium

point. This method requires knowledge of the unstable equi-

libria, but this is made feasible because the Continuation

Methods can be used tc find all eguilibrium solutions.

B. FINDING THE EQUILIBRIUM SOLUTIONS

To obtain a set cf equilibrium solutions, one has to

solve equation 3.1, which can be written using a more

compact notation as

F() = 0 (eqn 3.2)

where

F(.) represents the right-hand side of
equation 3.1

~=

0 = zero vector

It is well known that numerical techniques for solving

nonlinear equations are not always successful. Since equa-

tion 3.2 describes a bilinear system, one should expect to

face siuiliar difficulties when attempting to solve it

numerically.

Most numerical methods for root finding generally

require that a fairly good initial guess (Zo) be known so

that some convergent iteration process

"i Zn+l =  g "n)  --

.2



brings the apprcximated root closer and closer to z the

desired equilibrium solution or root. In practice, the

following difficulties are often encountered

(1) The convergence condition of the algorithm

must be Ensured;

(2) Finding an initial guess that is sufficiently

close to the correct solution is difficult,

especially for higher dimensions;

(3) Even if a good initial guess has been obtained,

the numerical process may still be plagued by

ill-conditioning, saddle points, etc.;

(4) Not all the solutions are guaranteed to te

found.

1. Continuation Method

Fortunately, the above problems are avoided if a

numerical mEthod called the Continuation Method [Ref. 8] is

used. This technigue, which is sometimes called The
Imbedding Method, has been successfully applied in many

fields. It intrcduces an artifical guide which will channel

the iterates toward a specific solution. Such a guiding

principle is actually a knowledge of the existence of a

suitable curve connecting an initial point with the desired

solution.

Continuation Method has significant advantages over

other numerical techniques. Most importantly, a good initial

guess is not necessary and all the solutions can be

cbtained.

a. Basic Theory

Given the problem F(i) = 0 to solve, the first

step is to embed it into a homotopy or a parameterized set

of problems, H(2,t). The requirements on H(2,t) are

27
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S(1) H (z ,1) = F1 (z) = 0 is the original problem

(2) H (z,0) = F. (z) = 0 has a trivial or easily

computed solution

For example, a homotopy could he :

H(it) tF(2) + (1-t)F o (2) , tE[0,1] (eqn.3.3)

Using the above parameterization, the simple

problem of F0 (z) = 0 is deformed into the desirel one, F1 (z)

= 0 . This is done by calculating the solution tc the

deformed problem at each stage of the deformation. The exis-

tence of a continuous curve such that H(z(t), t) is a solu-

tion to H(.,.) = 0 for all t [0, 1) is assumed.

t. Implementation

To actually carry out the above continuation

process one usually differentiates H(.,.) to form

H((tt) =0 (eqn 3.4)

Using equation 3.4, z can be written as a function of z and

t as given in equaticn 3.5. The function, h(.,.) is prefer-
ably a linear functicn that can be integrated numerically.

z h(l,t) (eqn 3.5)

Together with the initial condition z (0) zo

equation 3.5 is actually an initial value problem which can

be integrated numerically. The solution at t=1 is then the

solution to the original problem F(z) = 0"

28
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2. A"lorithm to Obtain 2*2 Ejuilibrium Problem

A 2*2 Lanchester problem is first formulated into a

Continuation process. It is followed by a discussion on how

the accuracy of the method can be improved. The last Fart of

this subsection includes a note on the number of equilibrium

points in an N*N problem.

a. Formulation

For the 2*2 problem, F(Z) = 0 is explictly

-Z1 (U1 +all z 3+a 1 Z 4 ) + r1 -b11z3 - b12z 4 = 0

-z2 (u2 +a 2 1z3+a 22z 4 ) + r, -bz 3 -b22 4 = 0

-z3(u3+c Z 1+c2 1z2 ) + 3 -d d2122 =0

-z4 (u4 +c1 2Zl+C22Z,) + r 4 -d12z 1 - d 2 = 0

The bozotopy is formed by writing

1= l(,0) + t(rl-b 11z3 -b 1 2z 4 ) = 0

• t2(z) = It2(zO) + t(r,-b, 1 z-b 2 2z 4 ) = 0q.
P . .. (eqn 3.6)•-

113 (z) = 3(4,0) + t(r3 -d11zl-d,1 2) = 0

H4 (1) = H4 (1,0) + t(r4 -d1 2Zl-d 2 2z2) = 0

where

H1 (2,0) = -zI(u 1+a11z3 +a1 2z 4 ) = 0

H., U, 0) 3 -z2 (u2+a2 1 :3 a 2z 4 ) = 0

H3(.,0) - -z3 (u3+cllzl+c 21 2) = 0

H4 (d.,0) = -z4 (u4 +c1 2 :l c 2 z2 ) = 0

29
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Next, we differentiate equation 3.6 with respect to t and

put it in a matrix form

A= B (eqn 3.7)

where

U +a z 3+al 2 z4  0 a1iz +b 1 t a12Zl +bl2 t

0 u2a 21Z3a 223 4  4.1 Z2b 2 1 t a22z2+b 22

- +d t c21 3 +d21t u3 +Cz+C 21z2  0

c 2:4+d 2t c2":4+d2 t 0 U4 +C 12zc22z2

-[ Z ' z ' : z ] T

r -b 1 z 3 -b1 2z4

r.-b b,
213-22.

r 4 -d 1Z -d

quation 3.7 can now be integrated numerically using one of
the readily available integration routines.

We have assumed that the trivial solution to

Hlz, 0) = 0 has been previously found.

b. Improving Accuracy

Numerical integration of ejuation 3.7 inevitatly

produces scme errors at each iteration. Since the

30
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Continuation method relies on following curves to arrive at

the desired solution, it is esssential that each iterate

remains close to the actual curve. It is necessary to

include a way to correct the apFroximated position by means

of a corrector step. The combination of integration and

correction is often called a "predictor-corrector step"

This process of prediction-correction is shcwn

in Figure 3.5 where each integration error has been exagger-

ated for illustrative purposes. The algorithm tc be

presented later emplcys an IMSL routine called ZSCNT for the

predictor step. Other forms of curve following routine can

also he found in the literature, and are briefly mentioned

in [Bef. 8].

c. Trivial Solution

The trivial system H (1, 0) 0 was chosen to be

HI(2,0) = -zl(ul+allz3 +alz 4 ) = 0"

H 2(1,0) = -z,(u +a2 1 3 +a2 2 z4 ) 0(eqn 3.S2 2 1 (eqn 3.8) "

H (1,0) = -z (u 3 +Cllzl+c2 1 Z,) = 0

H4 (',0) = -z4 (u4 +cl2 zl+c-2.,z2 ) = 0

In non-degenerate cases, there are six scluticns

corresponding to equation 3.8. The result is derived in

Appendix B which also deduces the number of trivial solu-

tions for an N*N problem to be

Nk ; (eqn 3.9)

i=o

The method of obtaining the trivial solutions is given in

Appendix B. Using a combinatorial identity, N can be
k

written as

31
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Figure 3.5 Integration Path using Predictor-Corrector.

(2N)

Nk =(

Each continuation process starts from a trivial
soluticn i0 and follows a specific curve until it reaches

the eguilibrium point. Consequently, the number of equilib-

rium points will also be Nk. As mentioned in section IIIA,

the two exceptions are situations involving infinitely-many

and repeated equilibria. Situations involving degeneracy

are discussed in Appendix B.

d. Algorithe

(1) Sing.uarity Treatment. In Continuation

Method algorithms [Ref. 8], it is sometimes necessary to

give special treatment to cases in which the curves being

32
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followed by the integration rcutine pass through a singu-

larity. Experimentally, it had been observed that in our

problem, the singularity took on the form shown in Figure

3.6. Corrective measures were necessary to ensure that upon

crossing the singularity, the large magnitude was preserved

but the sign was changed; otherwise the curve might terri-

nate at an equilibriua point which was not the intended one.

In the algorithm, the presence of the

singularity is detectEd by monitoring the rate of change of

the individual component zi . Once identified, this fast-

changing and large-magnitude component (zF) is monitored at
each step t where 0 = t 0 <...<... tk < t <...< t = 1.
A0k k+1 end

%hen zF is found not to cross the singularity and end up at

approximately -zF , the algorithm attempts to correct this

irregularity by artificially making z F = -z F before the next

predictor step commences.

(2) Flowchart. The flowchart for the algo-

rithm is given in figure 3.7. only the major steps have been

shown. The program listing is given in Appendix C.

3. Example and esults

Consider as an example a 2*2 problem with the

following attrition coefficients

= [1 0J C = [.20 6 0. 1. 0.

.I15 0. 0 0 0.0

U = [ 0 . 3 0 . 3 ] 0--

33
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Figure 3.6 Curve Passing through Singularity.

7he trivial solutions are first computed and serve

as one of the inputs to the program. The program obtains the

values of i (t) and plots each component ( zi (t) ) versus t.

In Figure 3.8, the plcts for t close to zero show one set

of curves for zi(t) starting from their respective trivial

soluticns. The curves of zi(t) versus t for all the six

sets cf equilibrium solutions are shown in Figure 3.9.

A few interesting features of the continuation

process are worth noting. For example

* Each trivial solution leads to different equilib-

rius solution and the integration path is different

for each component.

All the curves are smooth ;one of the four curves

may pass through a singularity. ( see Figure 3.9 (c)

and (d) ).

Table I sumsarizes the computed equilibrium solu-

tions. They are tabulated in the same order as the plots in

34
3 I_)[

+ "" " - " " "-" " +- - " " . . -". ... ' " ' -" '" ." ' ": + ' '-' " ' " ": "" -J i 'i '"



Yes4Pr'irt E Plot/..

I e itor step sov '
A7-= E ; u- tte Y, = z + Z K

corrector steo comDute

corrected VK+1

Singul~arity treatment :detect

4zast-changing cozo.nent (z)

Icriterion zV > omax * Min

(zz) for 10 TS

I T

-hncc trivial ! solti;0

*~~~~~~~~~~ 2i u e 3 7 Fl w h r orAnr t n o fr_?- ~~~

< ch-- _5

...... ~i (z .*.



Zi

. . ...I.-- -

z1(t)
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Figure 3.8 zi(t) 'Versus t for Values of t Close to Zero.

Fi-gure 3.9. To estimate the accuracies of the results, we

defined error as

ERROR F + F2  F,~2 F2 4

j where

F. F.i(z) ,z is the computed equilibrium

solution to F(l) 0

Decreasing the i nIt e r a t ion step siz e in the

predictor anI1 correctcr routines may reduce the errors by a

small amount; but the increase in computational effort u'ay

not be justifiable. Conversely, it may be desirable tc cut

down computinlg time. Currently, the algorithm performs -,ie

corrector step for each predictor step. If two or more

36
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TABLE :

Computed ]lullitria for X 1.0, Y

Trivial Sclution .mo.utcJ ir.1ri.z. c1.,,c . z T r

( 0 , 0 , ( 1 7 7 S 0. @ 0 .2 : 1 0 -4

0, 0) 1.0%33, 03512

(0, -0. 33, (3 L.4 9 9, - '4 .29 1, .
0, -0.33) -0.1350, -0.2776 )

(0, -0.091, (0.61 5 4, 0 .3346, 0.! i 0 -

-0.5, 0 ) 3 076? 0 .231)
-- • . - r) -0 :1

( - 0 . , O , ( O .LI 6 *" I O - -, .22:" 1

0, - .0) -16.q400, 52.920 )

(-0.083, , (-0.1557 0.0325, 0.561:i0-6

-0.3, 0) -44.5297, 28.6147)

(-0.42, 0.37, (-45.2284, 39. 1[04 0. 2 3:* 1
0 0.25, -0.17) -0.3497, -0.0445)

predictor steps are done for each corrector step, scme

computational effort2 can be saved.

-caving in computational effort will be more significant
when solving higher dimensional systems.
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IV. PHCPERTIES OF THE 1*1 SYSTEM

7be 1*1 problem is the simplest case in our nodel. It is

nevertheless important for us to investigate and understand

its properties. Despite its relative simplicity, it is by no

means uninteresting. There exists many situations which can

te realistically and easily modeled by the 1*1 system. For

example, when the oplosing forces can be considered as homo-

geneous, it is convenient to use the 1*1 model for analysis.

It is also useful for the analyses at the strategic level

when the forces and parameters can be aggregated. In many

instances, it seems to provide insight on how to approach

the N*N problem, which is much more difficult to visualize.

In fact, as the understanding of the 1*1 system increases,

there is a strong urge to try to represent the N*N prcblem

by an equivalent 1*1 problem. The equivalent representation

is not only attractive in terms of its simplicity but also

its econcmy in computational efforts.

The next section will focus on the relation between

system asymptotes and stability of the eguilibria. By forma-

lating the problem guantitatively, we are able to arrive at

some useful properties. In Section IVB, the system dynamics

i.e. the changes in the force levels are analysed by consid-

ering the phase trajectories.

A. STSTEM ASYMPTOTES AND EQUILIBRIUM POINTS

For the 1*1 problem, the system reduces to

x = -x(u +ay) + r - by
(eqn 4.1)

Y -y(v +cx) + s - dx

40
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An equilibrium condition exists if r and s are chosen such

that i and j are both zero. In general, there will be two

equilibrium points ccrresponding to two locations where the

two hyperbolas intersect. The hyperbolas are descrited by

r - byx-u + ay" "

(eqn 4.2)

s - dx
Y -V + CX

From equation 4.2, one can easily deduce the four asymptotes

(two vertical and two horizontal) associated with the hyper-

bolas. Figure 4.1 shows a typical set of four asymptotes.

They always cross in the third quadrant of the x-y plane and

do not depend on the replenishment coefficients. The rela-

tive displacements between the two horizontal (and also

vertical) asymptotes depend only on the ratios of attrition

coefficients and not on the coefficients themselves. It

turns out that these properties of the system asymptotes

* help to simplify the analysis considerably.

1. Stabilitj Criteria

Considering small perturbations about an equilitrium

(Xe 'Ye) and linearizing the eguations, we have

(u +ay ) (b + ax) 6Xexj e e [
6*(d + cye) (V + cx 6Y.

The characteristic polynomial is simply

41
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(u + aye) +(v + CXe) > 0

(eqn 4.4)
(u + ay e )(V +CX) - (b + axe)(d + Cy) > 0

2. Sta1litj and Asvmptotes

Five different ways in which the hyperbolas can

intercept hav e been identified and their stabilities

accounted for. These five cases are shown in Figure 4.2 and

each case will be elaborated upon subsequently.

a. Definitions and Formulation

One of the most intriguing facets of the 1*1

problem is the connection between the asymptotes and the

stability cf the resulting equilibria. We begin the quanti-

tative treatment by first defining the following ratios:

A U A d-

1 a ' 2 C
m b z v

1 a ' 2 c

.he four asymptotes are x =-il , x =-I 2  y =-n I  and y =

_-2 if we let the first equilibrium point be (Xel ' Yel)
and substitute the corresponding r and s into the equation

4.2, we have

li(X-Xel) + (xy-xelYel) + P (y-Yel 0

(eqn 4.5)
"n7(x-xel) + (xy-XelYel) + ' =(Y-Yel) 0

43
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case (a) case (b)

YV

case (c) case (d)

y

ISu unstable

s stable

ns neutrally stable

case (e)

Figure 4.2 Types of Equilibria
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Next, the distances letween the asymptotes are defined as

x 2 1

It is not diff icult to see that ' and F will

decide where the hyperbolas intersect. For instance, when c
> 0 and E> 0, theze may be two equilibria in the first

quadrant 3 (See case (b) of Figure 4.2) . in general, the

second equilibrium point (Xe2' Ye2 can be found by elimi-
A nating y or x from equation 4.5 and comparing coefficients

with (y - yel) (y - Y2 an d (x x el (x - e2 ) The final

expressions are

e e2 E el + -

E (eqn 4.6)

Ye2 C el + 1 T1

For constant xel e'~1 and Ye2' equation

4.6 can be written to represent two straight lines in E-
E plane. The equations of these two lines are

E: C (x 1  + ii 1)

(eqn 4.7)

(x e2 + 9j1

31n our cor ext, the quadrants are defined by the asymp-
totes and not by the x, y axes.
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b. Types of Eguilibria and their Stability

To derive the different types of equilibria and

their associated stabilities, we make a transition from the

X, y plane into the x, Cy plane. Briefly, the basic
approach is to fix ore eguilibrium point (Xel ,el) on the

first quadrant hyperbolas and consider the regions in the

Exx, plane when we have the other point in various places
of the x, y plane. The other essential step is to express

the stability criteria (equation 4.4) in terms of . Y

UI, nl, xel' Yel* A summary of the results which are derived
in A;Fendix D is given below :

(1) When both equilibrium points are on the first

quadrant hyperbolas ( case (b) in Figure 4.2 ), cne

will be stable and the other unstable;

(2) When one equilibrium point is on the first

quadrant and the other on the third, both can be

unstable or one will be stable and the other

unstable ( case (a) in Figure 4.2 )
(3) When both ejuilibrium points are on the third

quadrant hyperbolas, both are unstable ( case (c) in

Figure 4.2 )
(4) When there are infinite number of equilibria as

in case (d) in Figure 4.2, EX = =0 and the two
sets of hyperbolas merge. Equilibria lying on the

first quadrant hyperbola are neutrally stable (one

eigenvalue equals zero) and those on the cther
hyperbola are unstable;

(5) when there are repeated equilibria as in case

|e) in Figure 4.2, they are neutrally stable if the
hyperbolas touch in the first quadrant ; otherwise

they are unstable.
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Most of the above results are embedded within
Figure 4.3 which is reproduced from Appendix D for conven-
ience. Evidently, hcth the coord1inates of the equilibrium
points (Xe, Ye and the location in the Ex cy plane deter-
mine the stabilities. The cX' C plane has been subdivided

*into a few regicns each with distinct stability
characteristics.

C (X 01 , >'e1

Sunstable;

stable

Sas above

Sboth
5 unstable

fjJ1stable;
z ~unstable

as above

I I I f i l
AX +

Figure 4.3 The rXC Plane.

The case of infinitely many equilibria corre-
--ponds to the origin of cX E plane 'p= P20 n.= n2 )' The

*only way for two sets of hyperbolas to merge is for their
respective asymptotes to merge. This case is a degenerate
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instance of repeated equilitria ( case (e) in Figure 4.2 ),

which is shown in Appendix D to correspond to operating

points on the line cy = Cx (Y + + / ( X + i) as illustrated

in Figure 4.3.

As a corollary, we note that there cannot be two

stable equilibrium pcints in the 1*1 problem. This deduction

can be made by referring to Figure 4.3. There is no region

in the Lx, £ y plane which allows for this case. At most,

there can be two neutrallX stable equilibria which are

repeated. Numerous attempts have been made to obtain two

stable equilibria in the 2*2 Ercblem, but in vain. Whether

it is also true for 2*2 or higher dimensional problems that

only cne equilibrium may te stable is still a matter of

conjecture.

In Appendix E, the relations between the regicns

on the ex, y plane and their associated stabilities are

verified. Some representative points on the Lx, LE plane

are chosen and the-ir stabilities checked.

B. SYSTEM DYNAMICS

The dynamics of a 1*1 system are characterised by its

phase trajectories, which are curves on the x-y plane
describing the history of the system as the time, t, ....

changes. These trajectories can be conveniently obtained by

integrating equation 4.1 numerically.

Needless to say, being able to predict the trdjectcries

is important, for it means that we know how our model of a

attle progresses. Cnce the factors influencing the course

of a battle are known, appropriate command decisions can be

introduced to ensure favorable battle outcome. In Chapter V.

we will see how many cf the results obtained in this section

can be used to rationalize and predict battle outcome.
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Some typical trajectories corresponding to the different

types of equilibria are described in the next subsection.

Besides the stability which influences trajectories, it was

briefly mentioned in Chapter III that domains of attraction

also affect the trajectories. In the subsection that

follows, we will show specific examples of the way to deter-

mine the domains by finding their exact boundaries.

1. ralectories

Two methods cf establishing the trajectories from a

given initial condition will be described. The brute-force

method which has been mentioned uses numerical integration.

The cther method which often provides better insight, is

more graphical. The graphical method is based on a few very

simple rules to predict the gross behavior of a trajectory.

Some cf these rules are listed below :

(1) A stable point "attracts"; unstable point

"repels";

(2) Points on either side of a boundary move into -

their respective domains;

(3) For large (x, y), trajectories are governed by

the Lanchester "linear law";

(4) Points near the hyperbolas can be easily

analyzed by rcting the signs of x and y.

As an example of using the graphical method to

determine trajectories, consider a region around an unstable

equilibrium point on the first quadrant hyperbola. The whcle

picture of the phase trajectories (sometimes called phase-

plane portrait [Ref. 9] ) can be put together in a logical

fashiom by using those simple rules. Since this equilibrium

point is unstable, trajectories will be expected to diverge

from it. As an unstable equilibrium point, it will have a

boundary line passing through it. Initial conditions start
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from each side give rise to different trajectories. Next, we

determine the signs cf x , y on both sides of each hyperbcla

as indicated in Figure 4.4 where only one intersecticn is

shown.

x <a
hyperbola

\i<0

0x

U..
" X > 0yo

Figure 4.4 Analytical method of predicting trajectories.

i.

Note how predictable these trajectories are. If,

for some reasons, the exact trajectories are required, we

can resort to the brute-force method. The methods are obvi-

ously complementary in nature. The advantages of the brute-

force method are accuracy and simplicity. In Figure 4.5, a

typical computer plot consisting of ten trajectories is

shown. The program which produces the plot is included in

Appendix F.

Beferring to Figure 4.5, the trajectcries cross the

hyperbolas and move asymptotically along a common curve
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Y

trajectory

hyperbola

x

Figure 4.5 Computer Plot of Trajectories.

lying between the hyperbolas. This same property is exhib-
- ited by other cases. Even the special case with no hyper-

holic intersection has been found to behave similarly as can

seen in Figure 4.6.

Our ability to determine the trajectories and

present them vividly is partly due to fact that two-

dimensional pictures can be easily drawn and visualized. For

dimensions higher than the third, it is impossible to visu-

alize trajectories; however, the notion of trajectcries can

be conceptually extended to n-dimensional space. Thus, it

seems likely that in the higher dimensional systems, trajec-

tories cross hyperscifaces and move along a common asymp-

totic curve analogous to that in the 1*1 system. Further

studies are required before this behavior can be confirmed.
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SY

hyperbola
./

- lraectory

0 Figure 4.6 Trajectories when Hyperbolas do not Intersect.

2. Boundaries of Domains of Attraction

In Chapter III, the idea of the domains of attrac-

tion was briefly discussed. In an n-dimensional space, such

a domain is a region or volume in which all initial pcints

come under similiar influence. When domains exist, there

will be boundary surfaces which can be thought cf as

collections of invariant curves passing through unstable

equilibria.

For a 1*1 problem, domains and boundaries are nct at

all abstract. In the last subsection, they have been shown

to affect trajectories. Recall that in Chapter III, we

mentioned a simple and yet effective way of finding the

boundary curves and establishing the domains in the x-y

plane. Examples on tle use of backward integration to obtain

boundary curves are now presented.
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a. Boundary Curve through an Unstable Point

Starting from an unstable point, we apFly small

perturtations in both directions perpendicular to an eigen-

d| vector asscciated with the most positive eigenvalue and

integrate backward in time (in the computer program, this is

easily done by employing negative time steps for integra-

tion). The result is a smooth, invariant curve which is

exactly the boundary or the so-called separatrix likE the

one shown in Figure 4.7.

A

Boundary

Figure 4.7 Boundary Curve through an Unstable Point.

To verify that the curve is indeed the boundary,

two initial points are chosen just off the curve (e.g A, B

in Figure 4.7). If we forward integrate from thcse two

points, they move into different domains as indicated in the

same diagram. Appendix G contains a Fortran program that

*does the backward integration and plots the boundary curve.
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3. Poundarv Curve between Two Hyprboas

Boundary curves do not necessarily pass through

unstable points. Backward integration methods can also be

used if a boundary exists but there is no unstable equilib-

rium point to serve as the starting point of integraticn.

This is best illustrated by considering the case of bcth

equilibria cn the first quadrant hyperbolas. In this case,

there is no equilibrium point in the third quadrant; never-

theless a boundary does exist between the third-quadrant

hyperbolas. The existence of the boundary is visible by

simply ccnsidering th.e signs of x and y on both sides of the

hyperbolas. In figure 4.8, the signs of x and i and also the

directions of some typical trajectories are depicted.

-X

0> 0

Figure 4.8 Existence of Boundary Between Two Hyperbolas.

To obtain the exact boundary, choose a point close

to a hyperbola and cn lower part of the hyperbolas (e.g.

point P or Q in Figure 4. 8) and integrate backward. The

result is a boundary curve as shown in Figure 4.9.
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-X

hyperbolas "'

Figure 4.9 Exact Bcundary Curve Between Two Hyperbolas.

4. Summary of the 1*1 Problem

We have seen the close relation between system

asymptotes and stabilities. Through the use of newly defined

variables c and Ey, the stability of different types of
X

equilibria has been derived. Five cases have been identi-

fied, and they correspond to the types of intersecticns on

the x-y plane. For example, if both the equilibria are found1

on the third quadrant hyperbolas, then we know that tley

will be unstable.

Two methods cf establishing the trajectories have

been described in this chapter. These two methods couplement

each other and the chcice depends on our requirements. The

dynamics of the system are characterized by the trajecto-

ries, which as we have seen are very predictable. These

trajectories are influenced by the stabilities of equilibria

and domains of attraction which are separated by boundary

curves. A simple way of plotting the boundary curves has

. also been presented along with specific examples.
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The results derived in this chapter will be applied

.in tbe next chapter. The knowledge of the system dynamics

and how they are affected by stability and other parameters

wiill enable us to analyze changes in force levels as the

battle progresses.
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V. STRATEGY FOR INITIAL FORCE COMMIIME1T

In the last two chapters, emphasis has been placed on

establishing the mathematical framework of the system

dynamics and stability. In this chapter, we examine some

model operational problems that are related to stability and

dynamic considerations.

One of the major command decisions that has to be made

during a build-up period of a war pertains to initial force

commitment. A good strategy calls for a balance between

initial deployment and reserves. In practice, a multitude of

factors have to be considered before deciding on a partic-

ular commitn.ent. The approach in this chapter provides us

with a set of mixed strategies but does not consider intan-

giable factors like world politics, national economy,

survival factor and so on.

Stability has been shown to effect trajectories which in

turn effect battle outcome. Recall from Chapter IV that

there are some trajectories which represent speedy and

* complete annihilation of one force; hence it seems reascn-

able that the side that is tipped to win the battle will

want to operate on an unstable trajectory. But to what

* extent can one exploit the stability behavior of the system

* to influence battle outcome? Obviously there will be prac-

*. tical limitations; an important one of these is total avail-

able resources.

A. PROBLEM STATEMENI AND APPROACH

The problem statement is as follows

Given total defense resources Qx Q y for x and y

respectively, what is the optimum set of strategies for

initial force ccamitment, X and Y?
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We begin by treating this as a 1*1 problem at the stra-
tegic level. The dyzamics of the problem are thus governed
by equation 4.1. Both sides are assumed to operate initially

at equilibrium with constant replenishment rates given by

r = X(u + aY) + bY ( 5(eqn 5.1).,.

s = Y(v + cX) + dX

Since both sides have limited defense resources Q x Qy"
the replenishment rates versus time may be as shown in
Figure 5.1, where Qx = rT and Qy = ST

replenishment

r

TX Ty

Figure 5.1 Replenishment Versus Time.

The next step is to select some suitable form of payoff
function which is to te optimized for a certain choice of X
and Y. The payoff function (from X to Y) has been chosen to

he
A(X,Y) = L - L

y X

where LX, LY Total losses for x, y at battle termination
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As each side runs out of resources at different times,

the simulation is conducted in stages. The total losses are

determined by simulating the dynamics of the system until

one of the force levels drops to ten percent of its total

resources, 0.

If X and Y are assumed to be chosen from a finite set of

values, then for each pair (X,Y), one A(X,Y) can be

obtained. A payoff matrix can be formed and the problem can

he treated as a two-person game. Based on the miriirax

theorem, there exists a set of optimal mixed-strategies an,]

one convenient way of finding them is through the use of

linear Programming.

It is perhaps worth-noting that the approach is

computation- oriented. It has been made feasible by the

availability of high-speed computers and efficient software

for numerical computations.

E. MUILTISTAGE BATTLE

Using the above approach, the entire battle can be

divided into three stages, namely

1) Both r and s are nonzero

(2) One of the r or s equals zero

(3) Both r and s are zero

1. Stae 1

This stage will be the period from outbreak of war

to the time (T1) when one side runs out of resources. It is

also Fossible that x < 0. 1Q or y < 0. 1Q before T is

reached, in which case the battle is over. In general, this

period T1 can be written mathematically as

T, = Min IT , Ty I .
T °
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During this stage, the dynamics of the system is

given by the familiar 1*1 system

x -x(u + ay) - by + r

y -y(v +cx) -dx s enS2

Ihep this 1*1 system is integrated, just as in~
Chapter IV, the resulting trajectories behave siniiliarly.

However, there is a major difference. Now, we no longer

have unlimited defense resources, and this stage will not

last forever. it implies that, unless Qx or Qis extremely,
large4 , trajectories which reflect quick annihilaticn o:

one of tie forces are rare. in general, T and Tare given
by

Q -Y
T y

y S

If one of tie force levels drops to Less than ten

percent of Qx or QY, the battle is arbitrarily considere.'
over and the losses are calculated as in Figure 5.2. 7h(

finish time (EIKTIM) is simply t, the time wh-3n x < O.1QX or

y < 0.1Q Y

2. Sta q 2

Since either x or ycan run out of reserves first,

the dynamics of stage 2 are governed by either equation 5.3
cr 5.4 respectively.

Q, or Q mpay be very large if x or y is backed *by a

super~ower wng is f11. committed to provide military aid.
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X ~~ x ry11

L = 0. ~ 9Q aL' = by~

LY~ = -x~s + ay) in~ -X by +

Y ) -yov L* cx -. 9 d(qn54

Figlusrte battl Les earlite thspri.l

T2 u = ay) -~t byt

thUhneblass ise shifte sens toaroies ths orioad wel
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have different equilibrium points. The trajectory will now

be influenced by the new eguilibrium point. This is illus-

trated in Figure 5.3.

Calculations of the losses are more complex than in

stage 1 since there are now two cases to deal with i.e. r =

0 or s = 0. The procedure is shown in Figure 5.4.

3. Stae 3

If the battle enters stage 3 without either x <

0.lQx or y < 0.1Qy then the dynamics will be dominated by

attritiors since r = s = 0. Equation 5.5 is now used for

integration.

= -x(u + ay) - by
(eqn 5.5)

y = -Y(v + cx) - dx

Again, the trajectory will have to change because

now both hyperbolas pass through the origin. This is illus-

trated in Figure 5.5 where we show how the intersection at

stage 2 has changed. Losses and FINTIM are calculated in

accordance with the procedure in Figure 5.6.

C. HI:E STRATEGIES

The range 0 to QS for both X and Y can be subdivided

into m force levels. There are m*m pairs of X and Y and

corresponding number of payoffs, A(X,Y). We thus have an m*m

payoff matrix having elements A(X,Y). Figure 5.7 gives a

pictorial representation of this two-person game.

51n the actual Frcgram one may wish to restrict the
range of X and Y to interval (0.2Q - 0.75Q) to reflect prac-
tical Iisitations in initial orce deployment.
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Yess Yes

y<~ l x ? Y <0 1

A(X,Y) = L - L xA(X,Y) L y-L

FINTIM = t + T I INTIM1 t + T

pFigure 5.4 Losses at Stage 2.

In the last section, the procedure for compa ting A (X, Y)

has been described. A simple program can be written to

I compute each element of the payoff matrix. One such program

* is given in Appendix H.
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I

ri.
Is N-

No 1<.Qx  or -

L = Q -?

L y

A(X,Y) = L - L

FINTIM Max {T , Tyi
+ t

STOP

Figure 5.6 losses at Stage 3.

There are a few ways of presenting and interpreting the

payoff matrix. A norzal practice is to present it in tabular

form and consider only pure strategy. Alternatively, a plot

of A(X,Y) as a function of X and Y could be obtained. Wlen

using pure strategies, it has been observed that the game

does not always have a saddle point [Ref. 10] and it would

be better to use mixed strategies.

In mixed strategies, x and y may play all their strat-

egies in accordance with a certain set of probabilities.

Although in our situation, x and y can only play once, the

same concept of mixed strategies is still useful. If we let

p and g be the probabilities by which x and y select their

ith and jth pure strategies respectively, then

66



Y1 Y 2 Y3" Y

X1

x- A(X,Y)

xM

I-

Figure 5.7 Payoff Matrix.

.P i = q qj = 1 pi > 0, qj > 0

1. J

In addition the (i,j)th entry of the payoff matrix be

denoted by aij , the probabilities can be represented by the

.matrix below

Y

ai -M

• X

q qm am 1 a m 2 o

The optimal mixed strategy is based on the mir.imax

criterion. Mathematically, x and y select p, and qj which
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will yield U and V aa given equation 5.6 and equation 5.7

respqctively.

u=max min aiP aiPi,..., aimp (eqn 5.6)Pi ip
ili=l i ii'J'

V= min ma m m jl j
v = max[ aljqj ' 1 a2 jqj,", amjq (eqn 5.7)

j I j =1 1

Apendix I describes how the problem of solving for the

optimal values of pi and gj can be put into linear program-

ming form. The program given in Appendix H also computes

this optimum set of solution in addition to obtaining the

payoff matrix.

7he concept of mixed strategies is quite intuitive if a

game is to be played repeatedly. But since we are using it

to provide us with an optimum set of probabilities of

selecting the pure strategies, some interpretation is

required. Although the optimum mixed strategies have been
* obtained, a pure strategy still has to be selected and used.

*However, it is important that the selection process should

be random6 according to the optimized probabilities

obtained.

One simple but valid statistical procedure [Ref. 11) to

select a pure strategy from a set of mixed strategies is to

first plot the probability distribution function. A random

number generator is then used to generate a number between

zero and one. The corresponding value of the strategy coul-

then be selected. This procedure is shown in Figure 5.8.

-~~ -------

6The selection process must be random otherwise the
opponent can select a strategy to improve his outcome.
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P(X 4 x)

ror om
number

Itrtegy.
selected

Figure 5.8 Obtaining Pure Strategy from Mixed Strategies.

D. EXABPIE USING KOBEAN WAR DATA

One cf the main objectives of using actual historical

data in a model is for validation. It is important that the

results obtained using the model should at least be consis-

tent Tith actual events. The Korean War has been chosen

because there was a clear-cut victor during the initial

phase of the war. We consider the period when only North

Korea and Republic of Korea (South Korea) were involved.

Before the entire simulation can be carried out, the

actual force strategies, fighting ability, weapon state,

etc, have to be transformed into familiar quantities and

parameters such as Qx, Qy, X, Y, a, b, c, d,..., and sc cn.

This transformation, together with some background data on

the Korean Nar are given in Appendix J.

1. Results and riscussions

First we examine the resultant trajectories during

the three stages of the battle which are shown in Figure

5.9. The simulation uses the X and Y which correspond to
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the actual initial deployment by both North and South Forea

respectively. Clearly we see that the victor is x, as it

was in history. The result of the simulation also shows the

three stages explained in the last section. Note that the -

trajectories for the first and second stages are curtailed

because both sides run out of war reserves. The implication

is that in practice, the kind of trajectories leading to

large and rapid changes in force levels are rather rare.

However, the effect of instability on battle outcome

is borne out by experimenting with the directions of pertur-

bations. Consider the case in which x (North Korea) fixes

the initial force and y (South Korea) varying the initial

force levels around the equilitrium point. In Figure 5.9,

these perturbed points are denoted by points A to D spanning

across the boundary separating the domains of attraction.

From our understanding of the stability and system dynamics

each perturbation will give rise to different trajectory and

payoff at the end of the simulation. Clearly, y will want to

operate at the perturbed points A or B rather C or D since

the former will result in the trajectory for stage one to be

in a decreasing x direction. Table II shows the variation in

the payoff as the perturbation point changes. When the

perturbed points are at A or B, the payoffs to x are less

then those for points C or D. Thus we have seen how an

unstable system can be used to inflict heavier losses on the

opponent. The more unstable a system gets, the more signif-

icant will be the effects of initial perturbation which are

manifested by initial victory and element of surprise. Since

some systems with large aimed-fire coefficients tend to be

highly unstable, we can expect this effect to be most

pronounced in battles involving high-technology and highly-

lethal weapons.
*

The payoff matrix and optimal probabilities p1  and

qj are shown in Table III. The results suggest that the
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TABLE 11I

Effect of Different Perturbations on the Payoff

Location in Co-ordinates of Payoff to X
Figure 5.9 Perturbed Point

A (6.7, 3.05) 2.39

B (6.7, 3.025) 2.41

C (6.7, 2.975) 2.45
D (6.7, 2.95) 2.47

Y4

stage 3

Figure 5.9 Trajectory for Korean War.
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North Koreans should use large initial deploym,,ent. In the

actual war, North KOLed actually deployed almost all of its

regular force am!1 within a f ew days capturel Seoul, the

capital cf South Korea. The payoff matrix also showo that

no matter which strategy is chosen by South Korpa, it is

bound to suffer much more losscs than lorth Korea. Ayain,

this is in agreement with history since it is an acccieted

fact that without US intervention, there would be n~o South.

ieorea today.

So far in the example, we have always cutisi(iered the

situation in. which the eguilibrium pioint (Y,) de ter miies

the replerishment rates as given in eaua ti or 5. 1. lt is

interesting to inves tijate the eff ect )n the payof i wi4c-n the

initial operating point is at some other locatioa ctitr tlliax

(X, Y). let the new initial Foint be at (X(1 ,Yl) aiid consider

a case where X1 is kept equal to X arnd only Y is varied.

(X,Y) has been cLosen to be (6.7,3.0) . In Fijuirc 5. 10, th ree

trajectories correspcrding to Y1at 2.5, 4.0, 5. 0 are showni

togetber with the hyj~erbolic intersection during stage ore.

Basically, the trajectcries correspond to the three statges.

of simulaticn as before and x is still the victor. Hlowever,

Loth th1,e payof f (Ly- Lx) and f ini sh time3 a r sl ijhtly

diffetent from oper ating at (X,Y). Table IV Alows tlvit. Y
inflicts mcre losses on x when operating at Y above tic

boundary curve rather than at (X,Y) , but in doing so y is

defeated faster. Thus depending on his mission, a ccatidet:

can choose to lengthen the battle or inflict moLv cazualtieu

on his opponent by chcositig a suitable operating Z-oint which

may be other that, an Equilibrium p:oint.
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5.0-

4.0 )(.740

3.0 Hyperbolas c ,=6725

hi 2.0

1.00.Q

x

Figure 5.10 initial operating Points at Non-egmilibrium Points.

TABLE IV

Effect of Operating at Non-equilibrium Points

'K (Ly-Lx) Finish Time Remarks
(FINTIM)

2.5 2.475 0.323 Below boundary

3.0 2.435 0.313 At equilibrium

4.0 2.353 0.293 Above boundary

5.0 2.305 0.283 Above boundary
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VI. CONCIUSIONS AND RECOMMENDATIONS

A. CONClUSIONS

7his thesis has covered a number of subjects which are

based on the generalized Lanchester Model. The first part of

the results has to do with finding the equilibrium points in

the W*N system. The Continuation Methods have been fourd to

be suitable for this purpose. The advantages of the

Continuation Methods over numerical techniques are numerous

and important to our understanding of the non-linear set of

equations. The method finds all the equilibrium soluticns

accurately and does not need good initial guesses. An

example to compute tke equilibrium solutions of a 2*2 system
is presented along with a way to treat singularity problem.

The derivations and interpretations of the relaticns

between stability and system parameters form the next major

portion of the thesis. By considering the simpler 1*1

problem, a few interesting conclusions have been reachEd,

namely

(1) Both the system asymptotes and equilibrium points

are intrinsic to a system in equilibrium. The locaticns

cf the equilibrium points on the x-y and cx, cy planes

ccmpletely characterize their stabilities; E and £x y
are the differences in the system asymptotes;

(2) The dynamics of a system are characterized by the

phase trajectories which represent the ways a battle

Frogresses. Besides stability, the domains of attrac-

tion also influence the trajectories. The .oundary

curves which separate these domains can be ascertained

by graphical or backward integration.
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The last portion of the thesis integrates the concept of

equilibrium stability and system dynamics. It relates these

theoretical concept to operational problems. Two operational

issues are addressed namely, (1) the effect of varying X and

Y, the initial force deployment on battle outcome, (2) the

exploitation of stability to influence battle outcome. A

methodolcgy which combines multistage battle simulation with

two-person game has been employed and the conclusions are

(1) Initial force deployment, X and Y can be optimized

by finding a set of mixed strategies. A suitable pure

strategy can then be selected from the mixed strat-

egies;

(2) Instability can and should be used to shape the

course of battle and its outcome. This is particularly

true in highly unstable warfare wiiich is normally asso-

ciated with large aimed-fire attritions. Unless defense

resources are eitremely large, it is not possible to

ccmpletely reverse the outcome of a lopsided-battle

where cne side is much stronger than the other. --

As far as military commanders are concerned, the above

*conclusions suggest two things. Firstly, depending cn the
relative strengths, it is not necessarily true that

deploying the largest possiLle force will bring victory,

reduce loss or even buy time. There is an optimum way of

deploying available forces. Secondly, if a war involves

large aimed-fire attritions due to weapons like aircraft,

missiles, tanks, artillery, naval bombardment, etc., then

initial victory which could perhaps be achieved through a

preemptive strike certainly affects battle outcome.
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B. RECOMB IDATIONS

1. ransformation of N*N Problem into the 1*1 Problem

It has been mentioned that the simplicity of the 1*1

problem can be attributed to the simpler mathematics

involved and our ability to draw and visualize two-

dimensional pictures. Despite its simplicity, it does share

many of the properties with the N*N problem. Considering

these factors, it seems logical that an attempt should be

made to find the 1*1 equivalent to the N*N system. Another

reascn is that there is much to be gained in terms of

savings in computational effort by going to the 1*1

eguivalent.

Of course, the "equivalent" system will not be

expected to be identical to the N*N problem in every asrect.

One can only hope that it is equivalent in some sense, for

example

(a) Preservation of stability characteristics and

dynamics;
(b) Preservation of mixed strategies.

One way of transforming the N*N system into the

equivalent 1*1 system is to equate losses in both systems.

The equivalent system parameters are obtained by using rela-

tions such as

aX eqY = Eaijxiy j

i j

where

x illY = coordinates of the equilibrium point in

the N*N problem
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I7

Xeq = Exi
i

eq EYJj

The results of the preliminary studies suggest that

this method of transformation can preserve some stability

characteristics. The possibility of using the equivalent

system to obtain the mixed strategies shouild not be

dismissed until further studies have been conducted.

2. lime Variable Replenishment Coefficients

The replenishment rates used in the t hesis have

always been assumed to be constant. In actual wars, constant

replenishment rates may not he used by either side; at

times, it may not even be possible to do so. It would there-

fore be interesting to study the cases which involve time-

varying replenishment rates i(t). The choice of r(t), for

example periodic, non-periodic, ramp, etc. will depend on

how well it represents practical replenishment rates.

Whether a mathematical tool can be found to cope with the

added complexity also has to be considered.
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C APPENCIX A
C. SOLVING FOR CPTIMLM VECTORS AND
C.
C
C
C. THI! FRC--RAM COtvPU7ES TH-E LPTIIOLM FCRCE

II C ISTRIEUTIC&JtX* 6IVEN X,YrAND THE ATTRITION~
G CCEFF ICIENIS. PARAMETERS K1,K2 AND CUNFLICT
C MA7ID ARE ALSO QETAINEL).
C THIS IS A14 INTERALTIvE PRU&IiAM.EAEFQFE EXE~uTIUN
C ,CHECK( TIE VALUES OF ATTRITION~ CtJEEFICIENT
C MATRICES AABBCC tO AND (UIU2tl vV21
C IN THE FILE LPU FCRTRAN.ThEf,4 EN~SURE YCU HAVE
C ANCTHEF FILE CALLEC CCLIB EXEC.TO EXECUTE THE
C PROGRAI ENTER "COLILI LPD'l ANU FOLL~w IHSTRULTIONS.
C ON INPUT OF X AND ~V WILL CREATE THE A MATRIX
C AND RUN ThE LINEAR PROCRAM LX4LP.

C Ailt41e2*2#N+J41+2)
C E(141.I2J
C C(N)
C, FSOL (NJ
C DSOL IMl+M2)
C AWfIA*( M1,t-4dd+2* (N+M ) I
C IWtZ*(N*Mll +3)

REAL A(49tB,(2) ,C(3 JSFSUL(3),CSOJL(2)ti(34)v
&IERXvY, M iP, 98 ( 23)tD(2#31

* £LiXv~Ylf2 V3; Kl K21CC(293J,AA(2t3) 1LON5v5)

C VARIAELE CEFINITICNS

C AA 8 CCD0U,U2,VlV2=ATTRTI0N' COEFFICIENTS
C. PSM ,SCL 4 RIMARY AND DUAL SOLUTION
C M1=-NUMEER CF ECUALITY CONSTRAINTS
C M2=NUMEER LF INEQUALITY CONSTRAINTS
C R ",IW=FARAIETERS USED BY IMSL RUuTIN~r- 2X4LF
C IEP=ERRDR CODE FROMl ZX4LP
C N=NUMEER OF UNKNOWNS
C A=I4ATRI.x DEFINED IN ECLAT ION A.3 OF PAPER
C "LANCHESTER EQUATIGjNS AND 6,AIE THEORY"
C BY F.H.I4OiSE ANZJ.M.iOZENCRAFT
C CzvECTER COINTAINING LOEEFICIENIS CF

UF 013JECTIVE FUN'TION IN P
B=VEL OR CNTAINMt% 71-(E RI GHTkANO SIDES

C, OF THE CONSTRAINTS.
C IA=Ml.I'2+2;IS THE ROi% DIMENSiON OF A MATRIX
C QzCOLUMN DIM4ENSIUN Of A

M42=0
N= 3
IA=M I.M2.2
C=N+Mi+2
F=MI .M2

C
U1 = fl0
U2 = .30
vl .10

V3= 2.0

AA(l r2) = .3
AA~l,.3) z 0.0
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AAt2 ill = .60
AA(2t21 = -O

c AA(2,g3) x 0.0
Ee (1 911 = 0.15
EBL11 2J = .10
E 8( I:3 ) =r 0.0
Eu (2 1) 0-15
68(2921 .3
EB(2 ,21 =C.0

((11) l 1.2
CC1 2) = 1.0
CC U1t3l = 15.
CC (2 t1) z 1.1I
CC42 t2) = 0.6
CC 92 #) = 15.0

C,
Oil1) .00
0( 1, 21 .00
0i It3j 0.00
Q0t2,1)J .00
D( 2,2 J .00
D(2,3) =0.0

C,

C, R EPET 17ION LOOP STARTS HERE

C,
7000 CCNTINUE
C
C ENTER ) AND Y
C,

296 FOFMT(l2SNTE X ANDYV ONE AT A 71MEI)
READ(5v*J )',Y

C
51= 8E(1,1)+BB(2v 1)
82= BE(1,2).BB(2,2)
B3= BE(1,3)+BB(2 13)
01I= U DI1 J *U ( 1 2) +0(1,3)
D2= 0 (2 ,1.Dt 2v2) .0(2, 3)

All 11)z CC(1, 1) - AA41,1J + i01-U1J/Y - (81-VIi

Ai1,2)= CC(1,2) - AA G ,2) + ( L1-U 1J/Y - (B,2-V2)
& /X.15.

A(l13)z CC~l,3) - AAt1,3) + (L21-U1J/Y - (83-V3)

A(2l) CC(2r1) - AA(2,1J + (C2-4j2)/Y - (81-VII
& /A+ 5.

A42i2lz CC(2,2J - AAt2t2) + (02-U21/Y - (82-V2)

A (2 t3 J CC(2t3l - AA (2 3J + (02-U2J/Y - (8.3-V3)

WRITE (14 ,9S9) ((It JA( IdJ)HJ-1,2)6!I=,2J
999 F CRMAI U'. t3X tAtL13 tJ=' F1.3J
C,

B (11= 1.0
B (2)=1.0

1000 CCNTINUE
C.

C (11= 1.0
C (21=1.0
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WRIT E ( I14, 120)
130 FORMAT dlX viJ ,EFFICIENTS OF CONSTRA INTS (A)'1)

00 30C 1=,
WRIIE(14,21?0) lAi I rKJK=l rNj

C ThI' NUMEER =N+M142
200 FORM4AT( IX,7F15..6)
300 CONTINUE

C

C

p H I= S

Y 1=PSCL( 1)*Y/PI

X2=DSCi (2.i*X/ PHI
M=)X*Y/ (PH -15)
K1=1 tEl-Vl)*Y1 + (82-V2)*Y2 +(B3-V31J*Y3 M )4 /A
K2=( (El-LlJ*X1 +. (U2-U2JtA2 M N /y

C

C COMPUTE CONFLICT MATRIX

CCN(1Il= Li + AA(1,1)#Yl + AA(192)*Y2 + AA(1,3)

C0M(1,2)= 0.0
CON(l,31;= AA( 1,1)*Xl + 88(1,11

CON( 1 #!)= AA( 1,3)*X1 * 88(1,31
CON(2tI)= C.0
CON(292)= U2 + AA(2,1)*Y1 + AA(2,2J*Y2 +AA(2,3J

CON(29,1= AA( 2#1)*X2 4 BE,( 291 J
CON12#4)= AA(2,2)*X2 * bb12#2)
CON12i:!) AA(i2v3)*X2 * 88(2131

CON3 # i=CC(1,1l)* 1 * D( 1,1
CO~t) V1 +l CC(1,J*xl LC12tli*X2
CON(3,41= C.0
CON(3*! I C.0
CCN(41p]) (L( 1,2)*Y2 * D(1,2)
LONU.,:J= CCt2,2)*YZ 4 Di2,2i
CON(4t'ii) C.0
CaNC4,41= V2 + CC(1,2)*XI * CC(2,2J*X2
LON(4oA- C.0
CON(5*1)= CC( 1,3J*V3 * f13)
CON(5121= LC(2,3)*Y3 * D(2,31
CON(5,'-)= 0.0
CON(5,41= C.0
COI'd5 tl- 3 +. CC(1,31*X1 + CC(293)*X2
00 211!C L4=195

CO 2110 L5= 1,5

2110 CON11 NUE' -. *~)L,~
2100 COI'hTINUE
C

C FRINI RES4JLTS

C

WPITE(4t181



150 FOPMAT 0X 1
1RLGHT, HAND SIDES OF CCONSTRAIN4TS (d)'

T(HIS NUMBE =MI+MZ
160 FCJAMA7(lXv2Fl0.4J

WRITE C14 ,110)

170 FORMAI(1Xt$COEFFIC.'ENTS 6F O6JECTlVE FLNCTION(C)')
C THIS NLM~BEkR =N
180 FOPMAT IIXl3F10.4)

hWRITE41,4r1S0) N
vURITEC14t1~l) Ml
WRITE(14t1S2) M~2 KCN(J190 FOR.MA14IXtENUPh~dER CF UN~NWN (N 1 1201

191 FCFMAT(1X,INUMBER CF INEQUALITY CONSTRAINTS(MIJ=8
t 15)

192 FORMAT (1XtINUMBER OF EQUALITY CLNSIRAINTSIt'21=
& 917)

WRITE(14v210) 5
210 FORMAI(lX,'VALUE CF 68JECTIVE FUNCTION(S)

& F15.61)
WE4ITE(1492201 (PSCLLI)tl11,NJ

C THIS NUMBER = N
220 FCRMAT41XtIVALUE CF PRIMAL SCJLUTION (PSOL)

& 1,3F15.f)
WRITEL11A230) (OSCL(I)91=1,R)

C THIS NUMBER = Mll*N2
230 FCPMAT(1Xt'VALUE CF DUAL SOLU7ION (LJSOL)=

& ,2Flg.t)
W91TE(14,240) IER

*240 FCPMAT(lX,'IER =lt5
WRITE414,570) X
WRITE(1495801 Y
WRITE (14 #530) Xl
imPITE (14,40J X2
W FIT E (14,500) Y1
WRI TE 1445 10) Y2
W RITE ( 4 t520) Y3
W R T E (14 9550) M
WRITE(14,660) K2

570 F CRMAT1 X pX = * Fl5.6j
580 FORM A 7(1X t'Y = ' F15.6)
500 F CFM ATi 1X t Y 1 = * F15 .0
510 FCLAMA 7(IX 9 Y2 = :F56
520 F CPM A T 41Xp Y3 = 4 F15.6)
530 FCPMAI(IXP$X1 = ' ,F15.61
540 F ORMA7 (1X t X2 = ' F15.bJ
550 FCPMAT41XOM = I ,Fl5.bJ
660 F LAMAT(I X t'Kl = ,F15.6)
670 FCRI4AT(IXPIK2 = 'F15.61

C FRINT PARAMETERS

C
WRITE(14,051 Ul
WRITE(34#710) U2
WRITE(14,715) V'j
WPITE(1'i,120) V2
MiRITE(14,725J V3
WRITE (14019)
WRITE 414,750) U1AAIIJJ1,JI12
wRITE4C14,7)
WPITE (14,150)1 (BE(ItJ),J=1,3hl=1,2)
WRITE (14,7E3)
WFITE 114,75)J ((CCCI ,JJJ=1,3)tl=1,2J
WFITE (14s,7SO)
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W FITE 114 r75)) 1 (Dl 1.4) .J1,3) .13,2)
705 FORMA14x~) I .t =I .b
710 FORMAT 1 I' 9F 156
715 FORMAT 1X t'l J ,15.6)
720 FORMA I X t 2 t Fl5.6J
725 FORMAT (lX, IV3 9,F15.6J
750 FORMAT I1X 3F1 5.5J
760 FORMA1(lXtIVALUE OF A ?FATRIX (AA)*J
770 FORMAT 1Xv A LUE OF B MATRIX (bB) I
780 FORMAT1IX#'VALUE OF C MAT 1;IX I CCI J
790 FORMAT (IXt VALUE OF 0 MATRIX (O)')

C

C PRINT CC~ifLIC7 MATRIX

C,
WRFITE ( 14 o673)
W7 P IT E (l14,674) ( (CCN( L4,L5 JL5=l1 ) ,L15

673 F 0PMAT i IX 'A LUE OF ThE LCFLICT MATRIX (CONIIJ
674 F ORMA TI IX p5FI.4.4o
C

C, PRINT MEANING OF IER

WFITE 4 4CO0
WRITE( (1 'e,4C0

* oiRITE(14t420)
WRITE (14 ,420J
WRITE( 14,440)
*PITE (14 ,450)
W91TE 114,4.0)

390 FORMA1(IXt' I ) ..
400 FORMAT dlXtflER3130 INCICATES M2>N')
410 FORMAi(lX*IIER=131 INLICATES EXCESSIVE ITERATICNS

& 42
420 FCRMA1(lXf81ER=13Z INCICATES REOUNCANCIES IN

& CONSTFAIN -1)
430 F ORMA 7 X I ER= 13 4 INLICATES GbJECTIVE FUNCTION

& UNeULNEDI
440 FORMA I (lX9 IER=135 INDICATES CCNSTRAINTS

G I NFEAS JELE@)
450 F ORMA I ( ix AER=136 INCICATES PRIMARY 01R DUAL

& SOLUTIOS;
460 FCPMA1(9X,'DO NOT SATISFY THE CONSTRAINTS@)
C

C, BEITERATlIEN RLUTINE

C,
WRITE (4 47C)
WRITE (4,480)

470 FCRMAT(1X :TO CCNTINUE ENTER 18)
480 FOM11 ,TO STOJF ENTER -11

READ(' 4) L7
I F(AB~lL7* 1.0) .LT.1.OE-5J GOTO 9000
WRIT E ( 1 4S02
WRITE (14,451)
WRITE (1'i,462)

490 FORMA1IIXte I2
491
492 FORMATtilXt 1)

GOTD 700C
9000 CGNT INUE

ST OP

83



APPENDIX B

RUMBEB OF EQUILIBRIUM SOIUTIONS OF THE N*N PROBLEM

WE first consider the 2*2 and 3*3 problem and extend the

results to the N*N problem.

1. 2*2 Problem

In general, each trivial solution leads to a unigue

equilibrium solution in a continuation process and there

will be egual number of equilibrium and trivial solutions.

Secticn 4 discusses what happens when there is degeneracy.

The trivial solutions are obtained by solving

zl (ul +al z3 + a l2 Z4) 0

z2(u2 +a21z 3+a2 z4  (eqn B1)

z3 (u +C lZl+C21Z2 9 0

z4 (u4 +c lZ1+C2 2Z2 ) 0

At first glance, there would seem to be 24 trivial

solutions ccrresponding to the number of ways of making the

lefthand sides of equation B. i zero. Each lefthand sides can

be made zero by either making zi or the terms in parenthesis

equal to zero. But closer examination reveals only six

allowed cases, in non-degenerate cases, corresponding to (1 . -

2
+ 2 + 1) = 6 solutions. Table V shows how these cases

arise.
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TABLE V

Trivial Solution for 2*2 Probem

Case z. which are made zero Remarks

Z) Z2 Z zZ 2t 31 4";

2 Zr3"Zl' Z3 1 [

3 Zl' z4 22 4 cases

4 z
6 -- all terms in parenthesis

equal to 0

7 z = 0 degenerate case;
see section 4.

2. 3* Problem

Here, the trivial sclutions are obtained from

l(Ul+all +a12z +al6 = "
z(1 a1 1 4 22 5 a13:6) =0

z2u 2 +a 214+a2 2zs~a23 6 ) = 0

z3 (u3 a 31 z4 +a 3 2 z5 +a 33:6) = 0

z4 (u4+Cll- l21Z2+c31 z3 ) = 0

Z5 (U5+C 12 Zl+C 2 2Z 2+C3Z) = 0

6(u+c13z1+c 23:2+c 3 3 z3
) =0

Again, there are some cases which are not allowed

because cf inconsistencies in non-degenerate cases. able VI

shows the different cases.

In this case, the total number of allowed cases is

+(3 2 +(3 20

I 1 + ) +~ + 1 ] = 20

....-. - "
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TABLE VI

Trivial Solution for 3:3 Problem

Case z. which are made zero Remarks

1 z 1  z x

2 z z4
3 Z1 , Z5

4 z2  z k4 1' z6 (3)2 9 cases
5 z 2 , z4
6 z 2  z5

8 z 33z4
9 z 3 , :5

10 z Z3) z6
11 zl1 z 2  z4 , z 5

12 zl, z2  , z4, z6

13 z 1 , z 2  , z 5 , Z6
14 z 2 , z 3 z, z5 /3)2

= 9 cases15 z I, z3  ; z2, :6
16 z 5

z 2  z 3  Z4, z 6

18 z z2' 3 z4 6z-2 , Z6  .
20 ,zall items in parenthesis. equals to O.

i21 2Zzz3 ; 4 degenerate case;

see Scction 4.22 z1  degenerate case;
see section 4.
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3. Extension to N*N Prcblem

Now we know the type of allowed cases, it is easy to
recognise the pattern of results. The pattern looks like a
Pascal triargie with each element squared.

N*N Number of
N*N Equilibria (N K)

1*1 12 + 12 = 2

2*2 1 2 + 22 + 12 = 6

4*4 1 2+ 4 2 + 6 2 + 4 2 + 12 =70

5*5 12+ 52+102 02 21222

For V*N in general,

N 
2

N can also be written as
k

N k (2N)

The proof of the identity,

(N) 2 (N)

can be found in [Ref. 12).
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4. Daeneracies

For the 2*2 Froblem, a degeneracy can acise when z

(or any other zi) is made equal to zero. The other three

lefthand sides in equation B. 1 are made equal to zero making
the terms in the parentheses egual to zero.

In general, such a case does not correspond to a new

trivial solution because there is an inconsistency when z2

-U3/c21 and z 2 = -u 4 /c 2 2. However, it seems that by making

U3/C 2 1 = U4 /c 2 2 , the inconsistency no longer exists and

there will be an infirite number of trivial solution as long

as z3, 24 are chosen to satisfy u 2 + a21z 3 + a22z 4 = 0. It
turns out that the number of equilibrium solutions still

remains at a maximum of six (disregarding the case with

infinite number of eguilibria). Similarly for the 3*3 case,
even if there is degeneracy, the number of equilibria will

not exceed 20.

That the above is true can be shown by considering

the 1*1 problem. In this case, the two non-degenerate cases

correspond to (a) x = y =0 (b) v + cx = 0 and u + ay = 0. A

degeneracy caa occur if v = 0 or u = 0 in which case there

seems to be an infinite number of trivial solutions lyirg on
the y or x axis respectively and hence an infinite number of

equilibria. But when the actual hyperbolas are plotted,

there are only two intersections and hence two equilibrium

points. Furthermore, when the Continuation method is used to
find the equilibria, there are only two equilibria irrespec-

tive of whether the trivial solutions are chosen to be

degenerate or not.
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S -N

C
C

C APPENDIX C
c PROGRA' LISTING FUR SOLVING 2*2 SYSTEM
C
C.
C

*C THIS PROGFAM SOLVES A 2*2 SYSTEM FOR THEIR
C EJUILIBRltJN PCINTS UJSING CONTINuATION METHODS .sE
c C SCTILN 1118 FUR THELRY AND liv-PLEtAENTATlLNS.

REAL * 8 AXCELgTYOKAREAfFN4ORNt~jKtU ,BtCDEPtAPt
&ATtDXtOMA~ktXFlEMPTLEF,T , F19F2 PF3# 4 E RR

REAL * 41.%AiXEXCtXD#TA
INTEGER IJ i,N,MM4,COUNTIA,IVGT,IERNSIG, I EREP

C, CONiKKrhf.%ECGNSIGN
FAS QC OUNTAkUN i fF LAG 9REFLALCHFLAGACTR tCP1 tJJ

C.XAtIOC5) ,XilC5JtXC(1OO5)
&iXD( 1005liTA41OO51 ,DX(4iJ

COMMON /PEPLEN/ R(41
COMMON /FARAM/ A L212),(2,2J,C(2,2JO(2,2JU(41
COMMON /TREPAR/ XT(4 1A(4) PT 4J tS75FAST, C014 PLUNTtN

&,O0MAX tQCOUNT,PJNPXFT EMP ,SUMt SIGNLEMR
DATA DEL / I.O0D- 16/,9

& MMI/ ,M /1 / tNS IG/ 5/ rI T M A X #200/,LOGLT/ 0/1 A/4/t
EERFLAG/OJ tREFLAG/O/

C

C VARIABLE CEFINAT1ONS

* C
* C. AP=SEE EQUATION 3-7 FCR THE IPEANING. -

C BP=AS ABEVE
C, X:THE RCCT OF THE 2*2 SYSTEM TO BE EVALUATED EY THE
C CONTINUATION PROCESS.
C. 1'PARAMETER DEFINING1 THE hUMCTOPY;HAS VALUE BETWEEN~
C. C ANC 1.C
C CEL=SFdA LL TIME INTERVAL USED TO APPROXIMATE TI-E
C PAR IIAL TIME DERIVATIVE.

*C AStBStCS#DS=THE ORIGINAL Ai8,CQ PARAI'ETEFS IN THE
C LAtCHESTER ECUATIUN
C U#R=CCRRESFCND TO THE SELF ATTRITION & REFLENISH-
C 14ENT CCEEF. IN THE LANCHESTER EQUATION.
C TS=PARTITION 1INTERVAL FRLM T=0 TL T=I IN THE
C CONTINUATION PROCESS.
c COUNT=COUt4TER FOR THE # CF TIME STEPS ADVANLEE IN

*C THE CONTINUATIGN PROCESS.
~ON--THE CCNDITION FOR REAiHING T~l
CN=A SU2FOUT1NE iJSEC BY IHE IMSL ROUTINE ZSCNT.

C hK.NISGtITIAX,IER,ENCRN=PAkAl4ETERS IN THE ROU71NE
C 2 SCN T
C IEIA=PARAMETERS IN ThE RIUTINE LEQTlF.
C. CTR=COUNTER FOR~ PLOTTING THE CURVES
c ARECONU-REFE 1ITION CCUNTER.
C

C
C INPUT ATTRITION CCFFICIENTSCOUNTERS ANO FLAGS.
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At 1, 2)=.300
A12p 11=0 .600
A(2, 2)10.900
E (1 11t = .1500

H42, 1)=0.1500
E(2, t)=0.30

C14=1.1000

D(1, 2)=0.000
0(2, 1)=0.0000
D(21 2 J=0. OOCSU41 =0.300
U21 =0. 300

U43) =0. 100
U141 =C. 200
N=4=*

It 2) =C.00
1(31=C.000
7(41 =0.000
COUN 1=1
~CCOU N =0

I ER= 0
IREP=l
IAREC 01=0

C, CALCULATE R VECTOR USINGI ONE POSITIVE EQUILIBRIUM
C, SOLU71ON OR MCDlFY R VECTOR AS APPROPRIATE.

4 1) =0.615268DO
X ( 2) =0. 3 b6D0
X (3) =3. 0 1690C
)X(41 =O.9231C0
R(11=X(1J*(U(1j*A(1,l1*X131+A(1,2)*X14)JB41,11

R(2) sXt21* (U (2htA(2, 1)*X(3)+A(2, 21*X (41.1 52, 1
&*X (3 1*B ( 2t21*X(4 I
R (3)=X( 3J It(U J +C( 11 J*X ( D+Ct2 tI)*X( 2))j.[(l11)

£*X (1 )+042 #1) *X12 )g
R(4')=XL(4)*IU41e (1, 2)*X(1J+Ci2, 21*X(21)40( 1,21

C4X(1 1,0(2v2.*X1 2)
hWRITEll ,9998) Llgx(Ij1,1 IR(11, 1=144)

9998 FORMAT(100,"Xt.XC a1 o, J=%F 12.' 4XF'P1I3,1='t
&F12. 4)

C

C
C 6HILE IREF (TH- COCE FOR REPEATIiNT J IS 1 ,THE CUNT-C INUATICN FRCCESS W~ILL BE RIPEATED.EACH REPE TITIO14
C WILL INCAEASE TS IN MULTIPLES OF 0.005.
C

C,
7 IF(.NOT. (IREP.EQ.1)) C0 TO 8

hRECEN=hF1 ECON.1

C SET TRI VIAL SOLUTION
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XC li=-C.Iocoooo/1.20000
X (25 =-C.00C)DO/l. 10000
X (0) =-C.3003/ 1.00000
X (4i=Z-C COCO/ 0.30 000
T 12) =C CCO

T(4) =C.CDO
CHFLAG=C
Q COUNT *0
RON=l
ERPFL A CC
REFLAC-O
C 0 UN T = 1

T S=)F LCAT NRE CON) *0. 0050U0
C~tI=I DIMT 41. 0L0-Til) )ITS J+2

C 6HILE T<~1 OR CORRECTCR STEP DOES NOT RETURN 61TH
C*** ****R FLAG *********** ****

5 IF(.NOT.((IER.NE. 129).ANL.(IEP.NE.130).AND.
& (IER.NE.131) AND. (CUUNT.LE.LON)JJ GO TO06

C
C TREAT 1HE SINGULAR CASE IF REFLAG OR EFiFLAC
C 1S SET.

CALL 7REAT(REFLAGERFLAGCHFLAG)
C

C PREDICTOR STEP:
C SET UP THE SET OF DIFFERENTIAL EQUATION AND
C CALL LEQ11F TO SOLVE THE SYSTEM AXB6

00 101 I=1,Mt
EPII)=(Rdil-5( 1,1J*X13)-54 1 2)*)( 4)) *DE[
EP (2J= R(2)-E(2,1J*X(3)-t2,iJ*X(4l)DEL
BF 43 Jz(R 43)-Di 1 1)*X( 1 J-0( 2 91*X (2)J *jEL
EF((j)=( R(4)-D( 11 2)*X(lJ-D( 21 2)*X( 2)J*DEL
AP(1,15=U(1 )+A( ,15J*x(35+A(l,2J*X(4J
AF(l 1=0.0CC

AP(1v4J=A(1,2)*X(l3+B(I92)*T(I)
AP (2 #l) =0.0OCC
AP (2 t2 I=U 12 )+A (2 t I) *X (3 +A( 12,t2) *X(4 J
AP 12 0 J =A (Z , 1) *X (2J +6( 2 1) 4 T 12)J
AP 12:4)=At 2 t2) *~X 2) +812 21*(2)
AP (3 t2) =C (21 I) *X 13 J *D024 1 *7 (3)
AP 3:t3 J=U(3 +C t1 ,1 J*A (1 .LU2 v1)*X(2 J
AP t3,94) =0.0 C0
AP (4 .11 =C (1 92) *X (4 J .D( 1 t24 *T (4J
AP (4#2 ) =C (2 W *X(4) *D( 2 v 2J *T(4)
AFt 3J =0.0 0
AP(444)=u1),(1,2)*A(1 J+C(2 2J*)1(2)
CALL LE CT1F (AP rMNIAdP 8ID4;ftkVKAREA 91E)
EU 102 KI, N

X1K) =BPI IU*XiK)
102 CONTINUE

101 CON71NUE
C

C, CORRECTOR~ STEP:
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CALL ZSCNT lFCNJSICN ITAXT X F %RNM fKiIER)

c COMPUTE DIFFERENCE BETWEEN PREVIOUS AND CURRENT A

DO 104 K=l N
C)((K)=JABS( XT(KJ-Xf K))

104 CONTINUE -

C
C CALL SUBRiOUTIN~E TO DETECT FAST CHAN6JING COMPON~ENT.
C

C CALL OE7ECT(OX*REFLAGERFLAG)

C COMPUTE ERROR IF T IS NEAR 1.0

IF(.NCT.(DABS(T(1J-1.OOOJ.LE.0.000500JJ GO TO
&~ 1031

Fl=-XLI )*(UfI )+A(111X()4(,)*()& 4R(1)-j3(1,1)*X(3)-B(1,2)*X(4)
F2=-X2*L.J(2 JA(2,1 I*X(31.A(2,2j*X(4JI

& 4R(2)-B(2,1 )*X(3)- (2,2 )*X( 4

& 4R(3)-Di1,1)*X( 1J-V(2,1j.*X(2)
F4=-X(4)*(U(4JCi1,2)*X(1J+Ct2,2)*X(J

& 4Rl4)-Di1,2 )*X(lJ-V(2r2)*X(2i
ERR=CSQRT(F 1**2+F2**2+F3**2*F4**2J
iARITE( ,997 )T(1) ,ERR

1031 CONIINUE
C

C OUTPUT VALUE CF X VECTOR ihHEN T IS NEAR 1.0

C.
IF( NOT.1 T(1J.GE.(0.9900J)JGO TC 865

b'RITE( 11999) (KtX(K) ,K=1 .N)
865 CCNIINUE

C CHANCE DOUBLE TU SINGLE PRECISION FOR PLLTTING

C
TA (CTR)=SNGL(T (1))
XA (CMRV=SN6L (X( iJ I
X8 (CTRI.=SNGL(X (2)J
XC(CTRI=SNGL(X(3)J
XD(CTRI :SNGL(X(4) i
COUNI=CCUN 1+1
CT P :CT R 4
GO 10 5

6 CONTINUE
C

c COMMENCE FLOTTIfJG ROUTINE

CCALL JE1618
C CALL COMPRS

CALL FtCGE[14.0910.5J
C ALL tN08RDR
CALL ELIJWUP(.4)
CALL AFEA2(12.O, 8.0)
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CALL XNAME('TI!4E IN SECSSf,lOOJ
CALL YrNAME(*Vi$'1O
CALL )(NONU4
CALL 'INONUMk

C
C INPUT HEADING IF REQUIREC

C CALL HEAULN(IINPUT HEADING E******4*$
C PlCOtl.t4)
C CALL HiEADIN(***********ANO HERE****4*********s'
C tlOOtl.t4)

CALL HEAOIN(******#***AND HEREV:**:5e* 1301 1#;
CALL HEADLNI('*********ANO HR****44*

C ,I011;14)
CALL G AFIO.OSCALE*,1.OO,-5ba.0,'CALE',35.OJ
C P 1C IF-1
CALL CUKVE (TA rXA CP1 -1)
CALL COiV E (TA ,X8, CP11t-1)
CALL CURVE (TA XC, CP1 t -1)
C ALL CUR E (TA X, CPI 11
CALL ENOPL(O)
W RITE (t 99 10J

9910 FOPMtAT :f,3X , IENTER 1 TO CONTINUE 3X tOTHER INO.
& TO STOP J

GO T~ IE
8 CGNTI14UE

CALL CQNEFL
ST OP

*955 FijRMAT('O%'3X,'T=*,024..121
99 FRMI('O3,'T=,0U24. 0 ,3Xi 'ERRCR=',D24.6)

999 FORMATI '0,3 XX( t13,'J=' ,.4.14/)
END

C
C SUBPROGRAM ECN REQUIJAED EY THE ROUTINE Z.SCNT
c

SUBROUTINE FCN(XFtNIJ
INTEGER NIJ,NN
REAL * 8 1 ERUtA,B vC,OT
CIMENSION X(41 F14) T(4J
COMMON /FEFLEN/ R(41
COMMON /PARAM/ A(2,21,B(2t2)tCL2,2JC(2, 2J U(41
Fil) =-Xil)*(U(1)+A(1,1i*X(3) 4A(1,ZJ*)(41) ).R(21J

£-B(1 J )~(3 -E 1, 2j*X (4t J) T( 1)
F(2)z-X C2J*(U(Z).A(2 ,1J*X(3J 4A( 2 ,2*X(41 )(R( 2)

8 t(2 ,1J4X 3 J-E(2 2 )*X 14 J*T(t2)

&-Oil1,1)*X tl)-012t1)* X 2).J*Tt3J
F(4)=-X(d4)*(U4+C(1,2)*X(1JtC(2,2J*Xt2)J4#(R(,41

END
C

C
SUERO lINE TO TREAT SINGULAR CASE.kHEK EITI-ER
THE 11 EVERSE" FLAGiREI-LAG LA~ ThE ERRUR LCcERFLAG IS 5ET THE PRRTiTiOJ INTERVAL,TS ILLE

C INCREASED.IN AUDITION iF REFLAG IS SET THE FAST
C CHANGING COM4PCNENT vdk I (H HAS BEEN ECOJN[ NOT TO
C FLIP CORRECTLY WILL HAVE ITS SIGN CHANL-ED.

C
SUEROU11NE TREATIREFLACiERFLAGoCHELAGJ
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REAL 4E .X1,XTtTS,~jAXETEMPvSUts
INTEGEF Kvl1,CLlUNT ,CUN FAST QCLUNT RONtS1GNtlER

COMMCN /TIEPAR/ XT(4)tX(4),T 4),ISt FSTr C NaT,
&OM~AXQCOUNT 1rPNXFTEMPtSUM 5G , I R *OON

DU 105 K1,tN
I F(f.NOT.( I(REFLAG.JE. 1).AND.( ERFLAG N~E.1J)

F..OR.(CHFLGC.EQ.L)JJ GC TG 10
X1lK)= (KJ*1

C
C IF NEED TC SET X(FASTJ=-XTIFAST) 4 E.RFLAG 1S SET
C
10 IF(.NOT.((REFLAG.EC.1) .AND.(ERFLAG.EQ.1)J

& GO IC 11
X(FAST)=-XT( FAST)
N1liEAST) =XfFASTh
IF(.NaT.(CHFLAG.EQ.0)) GO TO 1011

TIK) =T(K().TS
112) =T(l)
113) =T (2
1(4) =113)

Cl-FL AG=1
C T(K)=1(K)+TS

CtJN= IDINTII 1.000-TI 1.) /TS)*3
COUN T=1

1011 CCNTINUE
P EFLAC-0
ERFLAG=0

GO TO 2C

C IF O NLY EIRFLAG IS SET
C
11 IF(.NOT.(ERFLAC-.EQ.1)) GO TO 12

Il(.N0r.(CihFLAG.EQ.O)) GO TO 1012
TIK) =T (K )TS
1(2) =T(11
T13M =T12 )
1(4) =T(3 J
T 5--2 . 000*1TS
Cl-FL AG=.

C IM (K=T (K I+T S
C N= lOIN 1(1.000-111) )/TSJ+3
C OJ NT= 1

1012 CCNTINUE
P E FLA C 0
E RF LAL-=

C
C IF ONLY REFLAG IS SET
C

Ga 10 20
a IF(.N0T.(REFLAG.EQ~.1JJ GO TO 20

X (FA ST 1=-XT(tFAST J
IF(,NOT.(CHFLAG.EQ.O)J Ga TO 1313

TiKj(=T( K)+TS
1(2) =1 1)
1(3) =1(2)
7(41=T( 3)
TS=2 .CO*TS
CHFL A G=1

C T K) = T K)I.T S
CON= IDIN7TU11.000-Till )ITSJa+3
COUNT1l

1013 CONTIN~UE
REFLAG=O
ERFLAG=O

20 CLA7~1NUE
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109 CONTINUE
RETURN
END

C

C
C SUBROUTINE TO DETECT FAST CHANGING Ct)MFONEtAT OF
C X.UPON PETLRNIN(UTC MAIN PROGRAM,TH-E FLAGS ERFLAG
C ANG REFLAGiILL BE SET IF ANY 5tiCH COMPONENIIS
C DE7ECIE1
C

C
SUEROLTINE DETECT (CXREFLAGERFLAC-
REAL * 8 OlMAX,XFTEMP SUM,XiXtXOxUJTSiT
INTEGEP KtCCUUNT,FASTRONvS G ,REFLA G# ER, ERFLAG

& tN ,CUUNTfCON
COMMON4 / REPAR/ XT(4)j1X44JT(4JTSFA.ZTCON,COUNT

& , NOfA~,CUNT,RON,XF1EMP,SUMSIGNtIER
C
C IF OX(KJ > OMAX FOR 10 TSTHATCUMPUNENT IS CHAN61NG
C FAST.

c 0DO 105 K=19N
lf(.NOT.(DX(K).GE.OMAX)J GO TO 1014

IFi.NOT.iQLLJUNT.GE.1O)J GO TO 1015
FA ST=K
XFTIEMP =XFA ST)
RON=2
QC OUNT=O

01015 CONTINUE
CCCUN T=QCOUNT+1

1014 CONTINUE
105 CONTINUE
C
C IF X(FASIJ=-.XT(FAST) AhEN FLIPPINGSET REFLAG
C

IF(.NC7.(RCN.NE.11J GC TO 101lb
SUI4=XT (FASI J +X t FAST )
I f-( NOT (CABS x(FAST) ).LE .(0.2C0*DABS

£ (X7(FASTJJJ).OR.IIER.GT.0)JJ GO TO 1017
IF(.NJT.((DAGSIX(FAST)jJ.LE.(C.3CcDAES

& ~ (T(FAST)JJJ.ANC.(IER.GT.OMl GO TO -:0
S IGN=IDI NH XT (FAST) / Xtf-ASTJ J
IF(.NOT.(.SIGN.LT.OflGO TO 1021

REFL AG=1
1021 CCNT INUE

IER=O
ERF LAG=1

C TO 40
- .30 IF(.NODT.(CABS(X(FASTi).LE.(0.3D0*DABS

&(XT (FAS T) 1 1JUGj TJ 31
S IGN= I UlNT(iXV (FAST) / X(FA 5 T
IF( .NOT. (SI GN.LT.OJ JGO TO 10 22

R EFLA G=1
1022 C(4T INUE

CO 10 40
31 lf(.NQT.(IER.GT.OJJ GO TO 40

I ER =0
ERFLAG=l

40 C ONT INU E
1017 CCNONJINUE
101 COb INUE

-. C
c IF NO CUMFONENT IS CHiANGING FASTtBUT THERE IS ERROR
C FROM ZSCNI
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1020 - F;.NTJO.(cgJN.EQ.1J.AND.(1ER.GT.0JJJ GO TO 1020

E ND
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APIENDIX D
DERIVATIONS OF THE RELATIONS BETWEEN e AND STABILITY

j. _3bii -'

In this case, £ = C = 0 and equation 4.5 reducesx y

to

ni(X'Xel) + (xy-xeIyel) + l(Y-yel) = 0

It follows that both sets of hyperbolas merge into ore and

all the points on the commcn hyperbola are equilibrium

points. The lefthand side of the second condition in equa-
tion 4.4 can be manipulated as follows

(u+aye) (v+cx (b+ax )(d+cye ) .

= ac [(nl+ye) ( 1 2+xe) - ("1l +xe) (n 2+ .e)]

= ac [X (ny-) + (il r2)l.]e-T e i j1 2 T2j

=0

Shis result implies that the constant term of the character-

istics polynomial D(s), is zero ; hence one of t he eigenva-

lues, s. eguals to zero. Factoring out the characteristic

" polynomial, we get the other eigenvalue as

- [cu~ay e + (v+cxe)]

= " [a(n+ye) + C(P2+xe) (.n .1
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For points on the first quadrant hyperbola, Xe > -1I and Ye

> -n ; therefore s < 0 and neutral stability exists.

Conversely, s 2 > 0 on the third quadrant hyperbola which is

therefore unstable. The results are summarised as follows

(1) 'When E = = 0, infinitely-many equilibria

exist as points on the two hyperbolas on which x = y =

C;

(2) The first quadrant hyperbola is neutrally stable;

(3) The third quadrant hyperbola is unstable.

2. Intersections in First and Third uadrant

The proofs for the following results are given in

this section :

(1) when both equilibrium points are on the first

quadrant hyperbolas, one is stable and the other
unstable

(2) when one equilibrium point is on the first quad-

rant hyperbola and the other on the third, both can be

2nstajjg or one will be stable and the other unstable.

The straight lines given by equation 4.7 are plotted

on the cx, Ey plane as shown in Figure D.1. It also shows

the corresponding regions on the Fx, Ey plane as Xe2 and Ye2

vary.

let (Xel, Yel) be the first equilibrium point on the

first quadrant hyperbola. The first stability criterion in

equation 4.4 is autozatically satisfied since

(u+ay e) + (v+CX e)

= a(hl+Ye) + c(l 2 +xe)

> 0 for xe > and Ye2 >
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Fiur D.1 Efec ofVrigx ad nCPae

=~ ac/+IJ(l

e()l n2 + Ye p2 w ) 2) + ll ;-/)
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Yor (x el yel), egquationi D.2 represents the boundary
line of stability and this line has a slope between n/xe

+ and (y l+ n J *ll It is shown in Figure D.2.

slp -x

e/
/e

x n

e~ 2 (Xe2Ii

< (n(nl+ye)
Y >sop x (eq D.3)

S pV xl
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E Equations D.2 and D.3 are only different in the

directions cf inequality. This means that on one side of the

l ane End (TlI e Xe) ,  one equilibrium point is
stable and the other is unstable. On the other side of the
line, the opposite ccnditions exists.

Note that (Ie21 Ye2) may or may not satisfy the

first condition of ecuation 4.4. This condition is

a(nl+Ye 2 ) + C(ul+Lx+Xe 2) > 0 (eqn D.4)

From Figure D.1, equation D.4 and earlier results the
follcing deductions can be made

(1) In the first quadrant of the Ex, X y pline, cx> 0,

Xe2 > -PI' Ye2 > -I; hence equation D.4 is satisfied.

The region labelled / in Figure D.3 is stable for

(Xe2' Ye2) but unstable for (Xel' Yel)

(2) In the third quadrant of the cx, plane but

tetween the two lines where xe2 > 0 and ye2 > 1i '

equation D.4 is again satisfied. The region labelled
is also stable for (X2, e2 but unstable foralso 2tbl eo2

el" Yel
(3) In the second quadrant of the Lx'Ey plane, xe2 <
- Ye2 < -n and E x< 0, equation D.L4 is not satis-

fied ; so both (Xel , Yel) and (xe2, Ye2) are unstable.

The region is labelled in Figure D.3;
(4) In the fourth quadrant of the cX, C plane, equa-

y-
tion D.3 is not satisfied ; so (Xe2E y 2 ) is unstable

tut (Xel, Yel) is stable. This region is labelled

in Figure D.3;
(5) In the region labelled , equation D. 3 is

not satisfied ; so (xe2 ,  Ye2 ) is unstable but (Xel ,

Sel) is stable.
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(xcy)

1. unstable;
(xe2, Ye2)
stable

Sas above

both

unstable

iIIIstable;
(x -))e'. 'e2'
unstable

as above

X+

Figure D. 3 Regions in £Plane.x y

By carefully noting the signs of (xe2f Ye2) and the

various xegions in Figure D.3, all the previous deductions
can be combined ;we conclude that:

(1) When both equilibrium points are on the first

quadrant hyperbola, one is stable and thE ctber

unstable;

(2) Tihen one equilibrium point is on the f irst quad-

rant hyperbola and the other on the third, both can be

unstable or one will be stable and the other unstable.
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3. 21 =.gilibria in the Third Quadrant

The simplest way to show that both eguilitrium

points in the third quadrant are unstable is to refer to

Figure D.4. Clearly, we must have x < - v/c and y < - u/a

for totb eguilibrius points. In that case, the first

stability criterion in equation 4.4& is not satisfied since

I(u+ay e (V+CX e < 0

Therefore, both eguilibria are unstable.

-V

Figure D-4 Two equilibria in the Third Quadrant.

4. Repeated Eaquilibria

This case corresponds to operating exactly on the

=E (ye + n )/(x el+ on the c, X plane. The proof is

obtained by substituting xe =Xe = e into equation
4.6 and solving for Y
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Ye2 = Yel = L (Xel+Il) (l
Ex (eqn D. 5)

Xe2 =Xel = el+ - 11

Rewriting eguaticn D.5, we have

xYel =eyXel I Ey - fllx

yel x el lC x -lEy

subtracting one from the other,

el2 x x
2- xye1 E y x el + 21 1 E:y - 2niiE:

(Yel+ T1)
=Y x ( e q n D . 6 ). . ..

y x (Xel+"l)

Thus we have shown that the case of repeated equi-

libria corresponds to points on the straight line indicated

in Figure D.3.

Equation D.6 can be also obtained by setting the
second stability criterion equal to zero ( see equation D.2

). hat is equilavent to saying one of the eigenvalues, s1
is equal to zero. 7he sign of s is determinei by ccnsid-
ering the first stability criterion. Following the same
argument as in neutrally stable case, we can prove that
repeated equilibria on the first quadrant hyperbclas are

neutrally stable. On the other hand, repeated equilibria on
the third quadrant hyperbolas are unstable.
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PENDIX B31RZIEATICN BETWEEN STABILITY AND E: , PLANE: VERIFICATIONS

Scme representative points on the C ' plane are
X yChosen and the corresponding stablities of the equilibria

calculated. The points chosen are marked F, G, H, M, N, P,
Q, T and W in Figure E.1.

/ .
IFI

H /
/ N .'

/ "

P / .

/OO

__ ... ,...

/ e

; . .. '" . T .

- " /
wI

Figure E. 1 Experimental Verifications.
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Procedure

Having chosen the points on the Ex Ey ~ plane, we

have to work backward to obtain a, b, c, d, u and v.
Suitable (Xeiu Yel) are then chosen, followed by a calcula-
tion cf x, S, xeI and y 2* (x e2 ye can be cbtained1
directly from equation2 4.6. from all these p~arameters, the
eigenvalues can be calculated aud results compared with

theory.

2. eut

7he results are tabulated in Table VII. They agree

with tle theoretical results given in Figure E..
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CC APPEND1X F
C PROGFAM TO PLOT TRAJECTORIES IN~ 1*1 SYSTEMS
C
C
C
C

C PROGRAM IlPL FORTRAN
C THIS FROGFAM FLOTS THE TRAJECTORIES OF A 1*1 SYSTEM.
C IT CALLS AN IMiSL ROUTINEWDEHK FOR INTEGRATION.
C EEFOFE E ECUTION6DETERMI E THE SCALE OF THE
C PLOT AND NUMBER OFCURVES REQUIRED.
C THE VALUE , " STEP" 1S DETERMINE-D BY THE RANGE OVER
C hHICH NE w.aI TO SET THE INITIAL FUINTS.Cf-ECK APB#
C C 0 AND U(21 FIX EITHER X(ll OR X(2) AND VARY THE
C OfiHLPTKE ONE FIXED H4AS TO 8E RESET AFTER EACH
C CURVE HAS aEEN DRAWN.IT IS5 RESET IN THE LAST
C ASSIGNMEN1 STATEMENTIN TH--E DO LOOP.TO EXECUTE,
C ENTER "IIFLI".IHE EXEC FILEf"IIPL EXEC"
C M4UST EE IN THE DISK.XT MUSt BE EXECUTED ON A
C TERMINAL ATTACHED TO THE TEKTRUNIX 618.

C

C VARIABLE CEFINITIONS

C )=VECTOR OF LENGTH 2 CONTAINING THE UNSTAELE
C EQUILIBRIUM POINT.
C ABo C IDvU:R~aATRITION CCEFFI ENTS.
C CAPXtCAPY CAPIX#CAPlY=ARRAYS USED TO STORE XlS
C FOR FLOT71AG PURPOSES.
C CEL=INTECF.ATICN STEP SIZE.
C INDtCCWtl1OLTEND=PARAMETRS REQUIRED EY It'SL FOUT114E

C OVERK
C IER=ERROR MESSAGE NUMBER FRUM OVERK
C DIR=.CONSTANT FACTCR CETERMINING THE DIREC71ON
C OF PERTURBATIONS FROM THE UNSTABLE POiNT
C FCN1=EXTERNAL FUNCTION RECUIREL) BY OVERK
C NSIEP=NUPB8ER CF CURVES TC PLCT;ALSO 11 OF STAR7ING
C STEP=INTEFwAL BETWmEEN DIFFERENTINITIAL POINTS.
C IhTEGRATION PCINTS.
C KtKMl=COUN1ERS FOR PLOTTING ROUTINE

C
INTEGER NINDNW ,IERKtNPOINTKM1,KKJJI(1,K2,KM2
INTEGER NwINO NW IER tKtNPOINT:KMlKKPJP 4Sl P
REAL * 4 X (2),vCC(24J thr2 ,9l ,TTUL.TENDtDELtR tl *ABt
&CCCU12l PCAPX(1000)t CAP'( 10001 vXA(I1001 ,Xe( 10COJ,9STEP
EXTERNAL FCNI
COMMON R A~ECO U
DATA NW/,N/2/rt/0.0/,TOL/0.O010/,lND/l/,IERIO0/

C
C ENTER ATTI1ION COEFFICIENTS kHERE
C

A=C. 6000
2=0. 3000
=1. 0000

0=5. CC
Ut(iJe 60
U421 =1.00000

C
c ENTER ONE ECUILIBRIUM POINT HERE FOR THE CALCLLATION
C OF R VECTOR
C

X(1) =5.0CC0O
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X(2) =4.occcC
R(l) =Xi III(U(1J+A*X( 2))eBsX( 21

R(2 z~2J~ Ut2 C*X( lij +C*x4 i

2 ENTER R DIRECTLY HERE IF THEY ARE KNOimN;REMOVE
C, THE COMMEN7 ChARACTERS.

C,

SET FLO71I1NG PARAMETERS il

CALL 7EK41E
C. CALL COMFRS
C. ALL VRS1E( (0 0 OJ

EALL PAGEt 14. l15
CALL NOBPER
CALL CRC!!
CALL eLO0WUP ( 05 1
CALL AREA201.7,9.5OJ
ALL XNAE'TCTAL X FORCES. 100)
ULL YA?4E 7 tAL Y FORCES* ,100j

C CALL FRAME

C INSERT HEADINGS WITHIN CLOTES;REMOVE COMMENT
C CHARA&TErs
C CL
C &910091.9~4J
C, CALLHEDN'**************$

,10

C ALL t- A DIN(
C &9100t1.94J

C, CALL GRAFt-3.000.oSCALE%#10.O,6.O0,'SCALEI1C.00)
C,
C INSERT INI71AL CONDITIONS FOR INTEGRATIOh
C
C

STEP =C.5CCC

Xilj-8cCcc
DO 100 J=1,NSTEP

X (21 =-5.OOC+FLOAT AJ) *STEP
K1l
0 ELC .0IC
NFOIN7=--00

5 IF( NOT.( (IEcR.LE.0).ANO.(LND.GE.0).A4C.(K.LE:.
& NFONI J) CUL TO 6

T END F L C AT ( KJI*DE L
CALL GVERK (NtFCNi1, XtTENDuITOL,9INU CCoNiW#IER I

C XA(K)=X(l)
C X8 I $JX(2)

WR l1E( 6,99S) IER
999 FOPIATV e 3X IhIER-4 13J

CAFAU()=Xi 1)
CAF YIKI=X( 2J
GO 10 5

6 CONTINUE
KM1=K-1
CALL. CLRVE(CAPX,CAPYoKM1,3)
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- - - - - - - - - - - - - - - - - - - - - - - - -- - -.---- -- - -

C RESET ITEF'RATION PARAMETERS AFTER EACH CLRVE.
C

T =0.8
I ER=S
I NO-l
A (I) =1.GCOC

100 CONTINUE
CALL ENDFL(0)
CALL CONEPL
ST OP
END

C,

C SUIBROUTINE FCNI REWUIRED BY OVERJ(

SUBRCUTINE FCN1(NT,)(,XPRIJ
INTEGER~ No1,J
REAL * 4 X(NJ iXPRI(NhvTtR(2J ,AtBCtDU(2ZJ
COMMON At~,Bt ctCU
XPFII)-X()*(U(1J+A*X(2J)dR(IJ24*X(2)
XFFI(i)=-XL2i*tU(2)+C*Xtl)i+R(2J-L*X(IJ
RETURN

END
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c APPENDIX C

C PROGRAM TO PLOT BOUNDARY CUR'VE
C
C
C

c C POGRAM EKI FORTRAN
C THIS FROGFAM CETERMINES THE BOUNDARY SEPERATING THE
C COMAINS OF ATIRACTION IN A 1*1 PkLbLEM.BACKWAJ D
C INTECRATION (NEGATIVE TIME) IS USED STASR71NG
C FROM AN UNSTAELE EQUILIBRIUM POINT.
C BEFORE EXECUTION Ck-.ECK AlBC,D,U(2, AND X(21.
c 1O EXECUIE ENIER BKI.TH-E EXEC FILE,"EK1 EXEL'
C MUST EE I! THE DISK.1T MLST BE EXECUTED ON A
C TERMINAL ATTACHED TO THE TEKTRONIX 61B.

C

C VARIABLE DEFINITIONS

C X=VEC70R CF LENGTH 2 CONTAINING THE UNSTABLE
C EQUILIBRIUM POINT.
C A At C,,U:R=AJTRITION CCEEFIENTS.

C CAP(06APYAP1X,CAP1Y-AkRAYS USED TO STURE X,'S
C FGR FLOT7ING PURPOSES.
C LEL=INTECFAIION STEP SIZE.
c INCCC,,1CLTEND=PARAM4ETRS, REQUIRED BY IP"SL ROUTIN~E
C OVERK

a C IER= ERROR MESSAGE NUMBER FROM OVERK
C, DIR=CONS7ANT FALTOR DETERMINING ThE [IREC7ION
C OF PERTUREATICNS FROM THE UNSTABLE PUINT
C FCN1=EXTEFNAL FUNCTION REQUIREL) BY OVERK
C E=CONSTANTS EQUAL 1.O;FGR SETTING DIRECT ION OF
C CF PERTUF64TICN TOCETHER iNITH OIR
C K K1 K2=COUNTERS FOR PLOTTING ROUTINE

C
INTE GER N IN ER iIKRKNPOI NT tKM 1 9K t JJt X1 K 2 KM12
REAL * 4 A ( 21~ 241 ,nt2,91 tT tTOL,9TENC tU EL9 E( J t pAt

&C CDUCAF)(1C00iCAPV(10OO),
&CAPI.X 100C J',CAPIY( 100C) ,IIR
EXTERNAL fCNI
COMMON Rfi)
COMMON IFARAI A BgCtCtU(2)
DATA NW/i,vN/2/ T/0.0/,TOjL/0.0010itINOI//IERd//

C ,E/+1.000 ,1 .0;
A=0. 1

* - C=1.0
0=0. 6
U(1)=0.15
U(2) =0.2

C

C CALCULATE SS VECTLR USING DATA FRCM LP FfiOGRtM

X( 1) z-. 70
X(2J =2.00
Ph) uX(1)*iU(1)*A*x( 2)) *8*x( 2)
r%(2)=X42J4(U(2J+C*X(IJ).D*X(I)
iNRIT E46bt 9998 J (il X( 1) 9I, Rt 1) t =1 v NJ

9998 FORMAT( 0' 3X OX i 3 toim=%F12.4#4X 'iR I' r 31 W PF12.4
C



C INSERT INITIAL CONDITIONS FOR INTEGRAIIUN

C
K 1=1

j.C E0 100 JJ~1,2
C FCR J8 & ,BACKWAROi INTEGRATE ALONG ERANCh Il 12
C RESPE ClIVELY
C

IF(*NO1.dJJ.EQ.lJlG0 O 050
D1P=O.02

X( iJ=X(2a*OIR*E(2J
GO TO 60

50 CONTINUE
DIR=-0.C3
X( l3=6.100IPZ*E(iJ

60 CONTINUE
Kul
T=0.0
DELtO .100
IF(JJ.EC.2) DEL=0.100
NPOI NI=200
I NDa 1

C

C
C WHILE NO EFRROR ANC NUMBER OF INTEGRATION STEPS
C LESS TH-AN !POINT
C

C
5 IF(.NOI.((IER.LE.CJ.ANIJ.(IND.GE.0J.AND.tK.LE.

CNPOINT)IJ L-0 TO) b
TE4Dz- (FLOAT(K J*DELJ

CALL INTEGRATION ROUTINE

CALL VoVERK (NtFCNI1,TXt TENU PTUL vIND ,CCNWWtIEkJ
C
C PRINT ERROR MESSAGE IN ANY
C

WRIE 46 .999) IEP
999 FOFMAT ( 0' #3Xt IIER='t13)
C
C SlOPE X(1J ,X(2) FCR THE TWO BRANCHES UF THE
C BOUNDARY IN TWO ARRAYS
C

IF(.NOT.(JJ.EQ.lflGO TC 501
(APY dK3=X(2 J

K1=K14 1
GO 10 601

501 CONIINLE
CAPI)'(K )=X( 2)

601 CGN11NLE
K*K41
GO 10 5

6 CONTINUE
100 CUNTINUE
C
C SET NUMBEF OF PLCTTED POINTS TO ONE LESS THAN
C THE NUM8EF OF DATA POINTS



AM 41= K( 1- 1
K(MZ=K21 -

C COMM4ENCE PLGTTIN1G TH-E t3GUNDARY

C ALL TEK61e
S ALL COMFRc

ALVRSTE(0 0 0*
C ALL PAGE114*7911.5)
CALL NOBREF
C ALL CROSS
ECALL ELObIUP(.5CALL AREA 204 U.!7,9g.0)
CALL XNAME(O TOTAL X FORCE$' 1001
CALL YNAI4E ( TO7TAL Y FORCES' ,loci

S INSERT HEAOIN&rS WITHIN GLOTES;REMCVE COMMENT CHARACTER

C, CALL EA]4'*********4*****S
C &,100t.v4*
C, CALL IEDN'**************S
C &zl00,1.,41
C !ALL HAI4***********',0

C, &1100 t 1-m 9 41

CALL GEAu NSf" ****.**************4S
CALL CUR Ef46.03,'CAL M i009,0.4000'SCALE'94.0001

CALL~~ CU~4AACAPY, KM1,2
CALL CURV E(CA~lXtCAP lKM292J
CALL ENCFL (0)
CALL DONEFL
STCP
END

C

C. SUBPROGRAM CALL BY IN1Ei~RATICN ROUTINE90VERK -.

SUBROUTIhE FCN1(NT,)(,XPRL)
INTEGEF NvIJ
REAL * 4 X(1N) XFR(NhtTtRtAtBtCtDsU
COMMON Ai(2)
CCIMON /PARA/ AvBlC,.DU(2)
XPiiI (l)=-A41J*(U( I 4AX(2J+R(lJ-E4A(2J
XPRI(slz-X(2J*(U(2),tC*X(lh**R(2)-D*X(lI
RETURN

END
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C APP ENDIX H
C PROGRAM TO OBTA.IN FAYOFF MATRIX AND
C OPT IWM MIXED STRATEGIES
C
C
C

ri THIS FFOGRAA4 COMPUTES THE PAYCFF VATRIX ANC
C UPTIMUI4 MIXED STRATEGIES FOR X ANC Y.7HE ALGORITHM
C I5 BASED ON4 THE THEURY GIVEN IN CHAPTER 5.
C THE PAIUFF FUNCTIONS ARE COMPUTED FCR t60*bC XtY

C BUT ONLY 15*15 SAMPLED MATRIX IS PRINTED.
KC THE OUlPUT ALSO INCLUCES PATRIX FOR LXsLYvAND

C FINTIM.
C BY CkIANG'INC ALAIDA TO LESS THAN 1,ThE
C UEJEC71VYE FUNCTION CAN BE MADE TO EMPhASIZE
C MORE OF FINTIM IN ACCORDANCE WITH:
C A(),YP=ALAMDA*LLY-LX)+(l-ALAMDAJ*FINTlB4
C BEFORE EXECUTIONvChECK ATTRITION COEFFIENTSt
C QXvQV tALAY[At XlSX25, STEP19STEP2, CARDS
C LABELLED CIC2 ANC SCALE IN ThE PLOTTING
C ROUTINE.PEPTURBATIGNS ARE GIVEN BY CARCS
C LABELLED) C3 AND C4.
C TO EXECUTEvYOU NEED TH-E EXEC FILE 'LOSEP EXEC"
C AND A IERMINAL CONNECTED iITH A TEI(616.ENTER
C "LUSOFN 1%HEN READY.

C

c VARIAELE DEFINITICNS

C X(2)=AFRAY LONTAIIIING X AND Y
C XlStX2!=VARIBLES USED TO SET THE FARTIlONS
C OF X AND Y VALUES TU LALCULATE
C Ao(oXY).THERE ARE 60 INTERVALS FOR X N
C Y I1N THE RANGE 0.20 ANLU 0.75Q.
C STEP1,SJEP2=TO L67AIN THE CURAECT STEP INTERVAL
C AS CESCRIBED ABOVE
C XFRINl ,XPRIN2=VARIABLES USED) TO SAFEKEEP INITIAL
C VALUES OF X AN1) V
c TXtTY.RS=AS DEFINED IN CHAPTER 5
C Rx RYZ(l)X-AK),t(CY-VI RESPECTIVELY
C XL6 SStVLOSS=LX#LY IN4 CHAP. 5
C CCvNW vWTOLtT ENLDOEL, INJFARAMETERS RECJIREJ bY
C IMSL ROUjTINEPOVERKe
C IEC=ERtROR CODE FRCM DVERK.
C ZMAT=MATRIX USEAJ FCR PLUTTIiNG SUkFALE A(AtYJ.
C RATLCS=FAYCFF MATRIX
C FINTIM=ElNISH TIME MATRIX
C RATAVE=15*15 PAYOFF MATRIX FuR OUTPUT
C XLCSPF:LX MATRIX FCR GLTPLT
C YLOSPAR:LY MA4TRIX FLR CuEPUjT

0C F7PR=FINTIM MATkIX FCR OU7PUT
C ROvMlN=iRLW MINIMU~m IN PAYCFF MATRIA
C COLMAXt=COLLUMN MAXIMUM IN4 PAYOf-F MATRIX
C AXM-IN~ivAXIt'UM OF 7HE THE RGW VI1NIMU4
C XINMAX=MINIMUM UF THE CULUMN' MAXIMUM
C RHS=ARAY CUNTAINING RHS EF CUNSTFAINTS
C OeCOEFsARR4Y CUiNTAININ, COEr-FILIEINTS OF OBjECTIVE
L FUNCTION IN LP.

9C ALAMOAs1dJMe:R OEThEEN 0 AIIO 1 TO DETERMINE
C RELATIVE EMPHASIS CF LOSS AND FINT114
L IN AfY)
L SMImINSMALLESf VALUE OF RCbh MINIMLM
C PAY-15415 MTRIX USED TO SAFEKEEP RATA E AND
C CEIPUTE THE UPTIMIZED STAREGIES
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C NSINS?:DIMENSION OF PAYUFF MATRIXAQAS0
C NCGU=FLAG TO INDICATE ENU OF INTEG AICN.
C JJtKK=1NC4LICES FUR MATRICES
C COUNT-(OUNIER FCR INTEGRATIO14
C Ki(M1=1UMBER OF POINTS FLOTTE)
C FCNlv2v3,4=SUBRUINES RECUIREO 8V DVERK;Tl-EYI C CONTAIN 1*1 EQUATICNS FCR TIkE VARIOUS
C STAGES FOR TH-E BATTLE

T=TII'E
L~ XAYA#ZA=APRAYS USED FOR STORING AND PLOTTING

C XFRINI,XPRIN2,RATLOS AS CEFINEU AkOVE
C ZCDUNI=COUNTER FOR AAtYA
C C=COUNIER FOR ZA
C TIIEl=T1 IN CHAP.5I T1=T2 IN CHAP.5

NPLOT=NL4BEk OF PLOTS REWLIRED

REAL XIStX2SoXt2l vRSRXvRYTXipTYtCX CYpACUV
& W(2 91,,TLENEL9XAI3650) ,YA(365CJrRA7lO

# RATLCf(6,b6J,XP RIN1,XPKIN2tXTlX72#RaTRAT
& ,ZI4AT(60,60) RO6MIN(60),COLMAX6UA IiN9XIN4AX

REAL FINAL FINTIM(6 0,60),1IME1,RATAVI:(20,20J
& 5tAMINjPAV(17r32J vlEM.Prj,RS~15#J2 ~LjEF(15J ALAM0A

& ,XLOS(kC ,6C),Y&CS(60tk0J FTPR(20,2OJ,
& YLOSPRA2 920),C24iT1,tEP ,SE2YLCSS, XLOSS
REAL YLCXLvZAI3650JALC Sp R(2Ot20)
INTEGER IN0rN~v1EOKfCONT NSTEPqNSl t152,J NOGO

&A #ZCUUNINXtiNygNPUI N TJJtKKJKtJCtK(MI
CCMMOI /PARAH/ A,CtUv~vSvkvBLo

S EXTERNAL FC.I1
EXTERNAL FCN2
EXTERNAL FCN3
EXTERNAL FCN4

C
C SET PARAMET1ERS AND CCUNTERS

A0. 70
cXl.00

V=C. 200
8=0.4000
D-C.600
ALAMDA=1.00
F INALzO. LU
NW=2
14=2

TCL=0 .031
I NC= I

C 0 UN 7 = 1
QxIO .CC
QY=7.CC
X 1S=3.C

NOGO=C
NS1=oC
NS2=6C
NS=NS1-1
Z C UN I =
NPOI N1NS1*NS2

C

C START COMPUTING bC*bO PAYOFF FUNCTIONS



C
DE 100 J-1 NS1

STEP 1=(!LAT (J-NS.1 13/39.33
DO 101 J=1,NS2

Jc=Jc+1

C DUN1= 1
1ND~ 1
SJEP2=(FLCA1(K-KS2) )/54.42t1

C CARD Cl:
XIL li:XIS*(2 .333*STEPIJ

C CARD C2:
.%i2l=,(2S*(1 .Sl7.STEP4'3
% FRI N1= X II)
)PRLN2=X(2)
),A IJ C J=X P RIN 1
IA(JC3=XPRI N2

aC CARD C3:oi

X (231 =X P R I NZ -0 0 05
1 x=R)/R
1V =RY/S

C

C S TAG E I

IEND=0. 0
11$4EI=AMIN1 I1ATY)

5000 1Et4'4 T.U(TEND.LE.TIME13.AND).(NOG0.EC.0)33
6 CG0 TO 6000

TEAD=FLOA7(CCLNT M*EL
CALL DVERK(NECN4,TXTENDTOLIND,C
F£. !: .6(X(I).LE.(FINAL*CXm.OR.(X(21

& *LE. (FINAL*CVI1))J GO TO 1028
1I.NQT.(X(l3. I.FINAL*WJ)))U TO052

X.GSS= (1.-F NA L) *Q
YL OSS=7*S+XPRI N2-X (2)

GO 10 62
52 L.ONTINUE

XLOSS=T*R+XPRI N1-X 13)
VLCSS( 1.-FINAL3*QJY62 CONTINUE

NUJGO= 1
XLOS( JtKI=XLOSS
YLLS(J KJrYLOSS
RATLOSIJ,Ki)=YLrisS-XLOSS
FINTIMIJ ,K)T
IF(.NOT.(RATLOS(J.K).L7.0.oJJGO TO 153

SIGN=1.0
GU 10 163

153 CONTINUE
SI GN=-1.0

163 CCNTINUE
RATLOS (J tI(IALAM0A*RAILOS (JtK)+(l.

6 -ALAIICA)*SIGN*FINTIt(JgK)
1028 C0NT INUE

F JIJT=CO UNT.l

GO TO 5000
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6000 CGNI INU E
C
C CLUAET
C CLUAET

IF(.NOT. ITX.LT.TVJ IGO TO 50
Tl=TY-TX
Ga TC 60I50 CONTINUE
T l=T X-TY

60 CONTINUE

C !IAE 2

C
1ENC=0.O

COUNT=.

5 IE(.NOTl.((TEND.LE.T1J.ANU.(NGU.EQ.0JJ)
& GO TO h

TErND-FLOATCCLNT J*DE L
IF(.NOT.(TX.1T.TYJJGC T0 51

CALL OVERK (fitFCN1,tT,9X 9 ENC TOLL ND
& vCCvNk4,vdEDi

I El .NOT. ((XCI ).LE *(FINAL*QX) i.OR.
& (X42) .LE.(fINAL*QY)))) GU TO IC11

XLOSS=CX-X I 1
YLOSS= T*S)*XPRIN2-.)12)IITx4SJ
RATLOS IJtKJ=YLCSS-XLOS
XLOSC 4 KJ=X(LUSS
VLOSCJtKI=YLOSS
FL NTIt4(JtKJ=TX*T
IF I .NOT.( RATLOS(J,KJ LT.O.OJJGO TO

& 154
SIGNI1.0
GO TO 164

154 CONTINUE
SIGN=-1 .0

164 CONTINUE
RATLOS(J.KJ=ALAMLA*RATLCS( 4 ,KJ*

& (. -A L A MI *S IGN*F I N71IJ tK I
NOGO=1

10.11 CONTINUE
GO TO 61

51 CCNT IN UE
CALL DVERKlN FClvvvTN#OtD

IF(:NCI t lXCI11 LE. (F INAL*C)Xi I .OR.
& tX(2J.LE.dFINAL*QWJ)J GO TO 1013

XL 0SS(T* R I+X PI N I I14 (T Y 4R)
YLOS=C-X (2J
RAT LOS CJ, K )YL OS5-)LOS S
XLOS(JrKJ=XLOSS

Fl NTIMIJ KJTY-4T
IF (.NC7.lRATLUS(Jt&).LT.O.OJJGU

& TO 155
SIGN-1.0
GO 10 165

155 CCNTINUE .

165 CONTINUE

1013 CONTNUE K~LAL*~LSC,
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61 CONT INUE
CULJNT=CiUt'4T.
I ED= 0
GO TO 5

6 CONTINUE
C,

C, STAGE

C,
120.0
COUNT=1

500 lfH.i\T.(NOGa.EQ.0JJGO TG 6CCi1305 CONT INUET END=ELOA 7(COUNT I *GEL
CALL CVEIU(NFCN3,1,ATEN4CTOLIfWL

E ,CC,qNw jIEDJ
1F4 .NO i. (X41) .LE.*(F LNAL*GX)J .CR.

& (X(2).Li-.(FINAL*wViiJ) GO 70 101'4
XLGSS=CX-X (1)

- YLC5SSCY-X 42)
RATLOS(J KI=YLOSS-XLUSS

YLOS(J KJ-'VL0SS
FINTII4ZJ K)=AMAX1(TX,TY)+T
IF(.NOT. RATLOS(J9hJh.LT.OJGOl

& TO 156
SIGN=1.0
GO 70 166

156 CONT INUE
SIGN=-1.0

166 CONTINUE
RATLUS(J,K)=ALAl4DA*RATLCS(JIKJ+

& (lo-ALAMUA*SG4*FNTIP.'(JoKi
NO G Q= 1

1014 CONTINUE
L OU(4T=CU UN7+ 1

IF(.NOT.(LX(1).LE.(FINAL*CX)J.OR.
& (X(2).LE.(FINAL*QY))JJ GO TO 1005

GC TO 500
600 CCNTINUE
C

jC. END Of EATTLCE

C.
XA 12COU14)=XPRI1
YA i 2C0UNT) =XPR 1N42
NO CO :0
ZA WJC I=PAT LOS( JtK I

101 CON1 11UE
100 CONTI NUE

C COMPUIE ROW PlINIMUMAND SMALLEST kCbLhIN

DC 301 'i(=,NSI
RCWMtIN (iKj =RAT LOS((Kuli1

SDO 302 JJ=2,NS2
IE(.(4T.(RA7LOS(KKJJJ.LT.ROhMIN(KKIIJ

& G0 TO 1017
RCWMINiKKJ=RATLOSIKK ,J.J)

1017 CONT INU E
302 CONIINUE
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30)1 C ONT INUE
00 t.NT.R WIN(KK .LT.SMMltNJJGU TO 101S

SMMIN=RGWMI N(KK)
C INSER=KK51019 CONTINUE
305 CONTINUE
C

C SAMPLE 15*15 MATRICES FROM 6O*6O Y~ATh1.x

C
CO 30-1 JJ=lt 15

00 3Cb IK=115
0=4 * K.

PAY( JJiKKJ=RATAVE(JJKKI(
)ALUSPR( JJ#KIK=XLCS(J,K)
*WLOSPA.LJJ ,KKJ)YLCS( J#KJ
F 1PR iJJ , KKJ =Fl N'TIM J,9K I

308 CON71NUE
307 CCNTINUE:
C

C OUTPUT MATRICES

WRIT E( tS80 ( (RATAVEJJKKJKK=1.),lji=1915J
S WRITE (1,9S814)

WR IT E ( 1,9812 ) ( ( LOSPR (JJ ,KK) ,KK=1, 15) ajJ=l,15)
W RITE ( I3,9814)
WA IT E 1, 9812 ( (YFT PRJJKK,KK, 15.) JJ=,15

WRITE ( 1t9814)

9811 FOPMATVI1',15F.3//i
9812 FQPMA( I #15F7.3//)
9813 FORMA1(1',15F7.j//l
9814 FORMA (0'-----~~e

C CALCULA16E OP SCLUTION
C ACO AES(SMI4IN) TO ALL -PAY(JKITO M~AKE GAME VALUE

wlC PESITI .E

SMt41INzABS (SIMIN J+2.
DO 403 JJ= 15

RHS iJJJ=.
08CC E F iJJ I=1 .
00 4c'4 9K=1915

FAY(CJJ, KK)= (PAY(JJtKI+SMMIN)
404 CN OINUE
403 CONT INUE
C
C CALL SUEROUTINE LP TO COMPUTE OPTIMIZED

-. C, STRATEGIES

c CALL LPtPAYRHSOBCOEFSM4IN)

C PLOTTINC ROUTINE

CALL 7EK61f
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NFLO1?=1
VO 102~ L ;INPLOT

CALL FAME8.50oU.01
CALL NCERL)R
CALL E4LCdOP41.0)
CALL AREA20(5.50,7.OOJ
REA~lf5,*)XVU
WR IIE (6 906)XV U
RE AC(5t )YVU
WRIIE(6t9O7JYVU
R E I C( 5 voZVU
WR 11 E(6 9081 ZV u

L CALL FRAME
CALL SCMLX
CALL XAXANGI 45 .01
CALL YAXANG(45 .01
CALL LA AAN G 45 .01
CALL X3NAME('X-CEPLOYMENr$ ,100i
CALL Y3NAME(Y-LEPLOYMENTS%91OC)
CALL Z3NAME( PAVUFF TO X$'1 00Jo

C INSERT -EADING 114 ****** tREMCVE "aCoo
C
C CALL HEAQIN(*************$',1co,1.C94)
C CALL iEAIN4I*************$5%lOO,1.0,4i
C CALL h~.II*******$ 1Cl04
C CALL I-EADIN(****4********$',lOO,1..C,4J
C CALL MSA@*.*****'1312
C 7.01

CALL VOLM3Ci1. v1.,1.J
CALL VUAS(X UYVLZVU)
CALL GRAF3012.50i SCALE',7.000t2.50tSCALE',
5 It -5)1 SCALE* 5.000)
CALL BCX3D
CALL RASPLN(0. J
CALL SUFAAT(kATLOSv1,NS1,1,NS,2v0)
CALL r-NCPL(()I

102 C ONT INUE
CALL QCNEPL

906 FORMA7 P0#v3X, .XVU=@)
907 FORMAI b0*#3XtYVL=l I
908 FORMATPO't3X, Z VL=@ ) I

C WRITE (I PS8E I NSER# INSEC
C988 FORMAIP'O%3Xt'INSER=',14, $INSEC=,I'.i

wPITE ( I tS 61)A , b C t D
987 F OPM A 7 10 zx t'At EC,9C=, t4F13.3 J

WRITE E( I 8()U V, AL ANOA
98b FOPMAT(40,Z -X,'UsV=,2Fl3.3,2XOLAMDA-,13.2J
C307 CONTINUE

STOP
END

C

C SUERCL71NE FCNI

C
SUBROU1lINE FCN1(NtTXXPRIME)
INTE~aEIK N
REAL XC4N%)iPR1NEl N),7
C OPMON /PJ&RAM/ AtCUVS,RtB,D
XPRI M E I J-X ( J*( U*A*X C21 1-64X(2)
X FRI M E 2 J-X (2J *( V-+C*X 1 )iS-(*X 1)
RETURN
END

C

C SUEROUlINE Fr.N2
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C
SUERCUIINE FCN2(NTtXtXPRIME)
INTEGEF N
REAL X(NJiXPRIMtNI)tT
COMMON IP P~AM/ AiCUtVtStR,89O
XPRIME(J=-X(1)*IL.A*X(2UJ+R-E*X(2J
XFFIME (2i=-X(2J*t V*C*A(1l)-L*Xtll
R ETURN4
ENC

C

C SUERGOlINE FCN3

C
SUEROUlliNE FLN3(NlTtXtXPRIMEJ
INTEGEP N
REAL )(N)PAPRIME(NJ#T
COMMON /PAPAM/ AiCrUVSiRBtC
XPRIME(1)=-X( ij* L A X 2J J-B*X(2.)
XPRIME(J-()*VCX(f-O=1
RETURN
EINC

C

C SLEROLlINE FCN4

SUBROUTINE FCN4(NT, XXPRIME)
0 INTEv^Ei N

REAL iN),.PPRMELN),T
COMMON /PAR4M/ A*C,UvVtS#R#8,C
XPFPIME1J=-X(1)*(U*A*X(Zfl.R-B*X(2I
XFI;IME (2J=-X( 2)*( 4C*X(1J I+S-C;*X(l1.
RETURNI
E NE

C

C SUEROU11NE LP

C
S UEROUT INE LP (ALP ,EL P ,LP ,SMM IN)
INTEGEF IALP NiP t'1m2 IIW (63J IELP
REAL ALF(1i,.2)t LP PSGLl15i)i5ULL15JtPW(3E3J,

& S MMI N t AL tELP (15) CLP ( 1)
NLIF= 15

M 2=0
I ALP= 11
CALL Z)4LP(ALP, JALP, ELPCLPNLPM1 tMZ ,SLP, FSOL

& ,CSOL ,FW, I ELP)
VAL( 1.1 SLPi -SMMI N
WRITE (11 72S )VAL

729 FCPMI4A10 0,'VALUE OF GAME=,F14.31
DC 405~ JJ=1,15

PS1L(JJ)=PSOL( JJJ/SLP
DSCLIJJJ=DSOjL(JJ)/SLP
WaRTE(173OLJJ,FSCLtJJ),JJ iCSGL(JJ)

730 FGF1PAT('O*,2X#'FRCB OF.STR. 0 ,13v 'F V=l
& F12..3tPROB.OF SIR. M',13,'UF X=' ,Fl2.2)

405 CCNfINUE
RETURN
E NO
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APPENDIX I

TRANSFORMING MIXED STRATEGY PROBLEM INTO LINEAR PROGRAMMIING

The payoff function has been defined to be

A(X,Y) = v-L

Y selects his optimum mixed strategies which veild

mi max J~Ja q Ea .,mj~ qj

where

a = payoff to x when x adopts ith strategy and y adopts
jth strategy

=j probability that y selects jth strategy

* Subject to

Eq 1,0C >0, j

M~ M

* Then the original problem becomes

minimizev
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Subject to

~aq <

J

amjq j < If0

qj > 0 11 j 1, 1..=

Dividing the constants by v0 (>0), we have

Eal a1 q. <1
04.1

1 0

amj qj < 1

q.

Let Q. - and since

min v0  max .. - ax E 1 +Q

the problem can be written as

max Q0  EQ1 + Q2~ +Qm]
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Subject to

EaljQj 
> 1

Za2jQj > 1

Eamj Qj > I

Qj > 0 , j ... ,m

1 q_
Since Q 0  and Q. -qjJ V 0

Q
===> qJ = Qjv =

j jO Q0

After solving the LP problem, the optimum strategies for y

is given by q. = Q. v Some constants, K = Imin(a.)I could

have been added to aij to ensure v0 > 0. If this is done,

K has to be subtracted from the optimum value obtained by the

LP, that is

v = Q0- K

where v = the value of the game.
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APPENDIX J

BACKGROUND DATA ON KOREAN WAR

PERIOD CONSIDERED 25 June 19O50 to 7 July 1950
(No American ground involvement
as yet)

2. TYPE OF ENGAGEMENT Predominantly land combat

3. GENERAL STATE OF READINESS

NORTH KOREA Well prepared by 1950; arms
build-up and training of
troops since 1945; many
military leaders and combat
personnel were war veterans
fighting in China

REPUBLIC OF KOREA By 1950; a small defense
force began to take shape
through American aid;
training only started around
1948.

4. SOURCE OF DATA a) Appleman, R.E., United States
Army in the Korean War, Department
of the Army, 1961.

b) Montross, Lynn, U.S. Marine Opera-
tions in Korea, U.S. Marine Corps.,
1954.

5. RELATIVE STRENGTH

NORTH KOREA REPUBLIC OF KOREA

a. Total strength = x 135,000 men Qy 95,000 men

B. 'Tanks 150 nil
Artillery pieces 1,600 700

c. Aircraft
(i) fighters - 40 no combat aircraft
(ii) attack bombers - 70 (22 trainer, 4
(iii) reconnaissance - 10 auxiliary; no pilot)
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6. CORRESPONDING PARAOIETERS USED IN M1ODEL

a =0.7 c =1.0

b=O0.4 d =0.6

U = 0.15 v = 0.2

I unit =13,500 men
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