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1. Introduction.

Recently,there has been a lot of interest about the use of Markov random

field (MRF) models and Bayesian estimation techniques for signal processing
tasks, such as image restoration [G1,G2J; surface reconstruction [MI], and image
segmentation [E1,M1]. The use of these techniques is very attractive, since it provides

a unified framework for the formulation of a variety of problems, and it permits ,'
the incorporation of a priori knowledge about the nature of the solutions that one
expects to find in a simple and elegant way.

One serious problem associated with their use, however, is that it involves the
global minimization of a non-convex "energy" function of many variables, and
although stochastic approximation methods, such as "Simulated Annealing" [K1],
have been found effective for finding a solution, their computational efficiency
leaves much to be desired.

This situation provides the motivation for trying to exploit the structure of each
particular problem to find more efficient (possibly deterministic) methods to find the
optimal estimates. In this paper we study the simplest problem of this class: finding
the maximum a posteriori (MAP) estimate of a one dimensional binary Markov
random field, and show that it is indeed possible to find efficient deterministic
algorithms for its solution.

1.1. Formulation of the Problem.

Consider a one dimensional lattice with N nodes, and suppose that at each node
j there is a cell whose state can be modelled as a random variable Fi , which can
take only two values: Fi E {ko, k, }. Suppose also that the conditional probabilities
for the collection F satisfy:

Pr(Fi=fi Fi-fi, i-i)=Pr(F,=f.IFi---fi, iE11, N]; 1i-ij1 1)

that is, F is a first order MRF. In this case, it can be shown [P1,K2] that the joint
probability density of the configuration F is given by the Gibbs distribution:

IN-1
P(F f) exp[-- V(fi, fA+ )] (1)

where Z is a normalizing constant, a is a parameter and the functions V are the
potentials of the system. In particular, we will consider the potentials:

V:. "f 1  = J, if fi 31 A+i

In this case, F corresponds to the one dimensional Ising model of ferromagnetic
phenomena for a finite lattice with free boundaries, and a can be interpreted as the
natural temperature of the system.

- -P...o-J .....



Suppose now that we have some noisy observations of a particular realization
f of the field F. Our problem is to find the "best" estimate for f given these
observations and our prior knowledge about the properties of f.

We will use the following model for the observation process g:

i H(fi, n.)

where ni is a white noise process (so that ni is independent of ni for all i 3 j).
independent of F, and H is a deterministic function invertible with respect to ni,
so that we can write the conditional distribution of g in the form:

1 N
P(g I f)= exp[- N f,(9i)j

where Z. is a constant independent of f, and 0 k., Ok, are deterministic functions.

Two familiar instances of this model are: the binary symmetric channel with
error rate E, in which case

Sln[(,-k)2 +(1 (9i-k)2 )('"lok(gi)= In 4 1- ] -

and the case of additive or multiplicative white noise (not necessarily Gaussian).
(For additive white Gaussian noise,

1
bki)= F;- k)2

Using Bayes rule, we find that the posterior distribution is:

PYf 1g) (). ., e - V(fi, fi+) - Xi ,gi).

which is also a Gibbs measure. Since P(g) and Zg are constants for a given set
of observations, the Bayesian (MAP) estimate for f is found by minimizing the
"energy function":

N-1 .

Uf) f V , fi+) + a C$(g,) (2)

In the particular case of additive white Gaussian noise, the equivalent problem (for
fi E {-1, 1}) is to minimize:

U(f) " ,(f,- f,+1) 2 + 2 F_(f, g-)2  (3)
i i-.-,

2
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or equivalently, minimize

U(f) = E fif,+ - 2  f
2 .

where -y = corresponds to the signal to noise ratio. In physical terms, this
minimization can be interpreted as the problem of finding the ground state [1] of
an Ising ferromagnet subject to a spatially varying external magnetic field (whose
magnitude is proportional to g), a system which is of current interest in physics.

What makes this problem particularly hard is that the value of each fj is
constrained to be in the non-convex set {kO, k,}. If we relax this condition, in the
case of additive Gaussian noise, (3) becomes a convex function (since it is a positive
definite quadratic form), and its (unique) minimum can be found efficiently, for
example, by a gradient descent method. Alternatively, we may construct a linear
dynamic system with the same (exponential) covariance function as the process f,
and use a Kalman filter to find the MMSE estimate. However, it is not clear how
to use these relaxed solutions to find the correct (binary) optimal estimate. Instead,
we will now present two algorithms for minimizing (3) directly, which have the
additional advantage of being able to handle other (non Gaussian) noise models.

. .°

.. . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .. . . . . . . . . . ,- .



2. Dynamic Programming Formulation.

In this section we present an algorithm for finding the global minimum of
(2), which, based on dynamic programming principles, reduces the problem to a
sequence of one dimensional optimizations.

As we will see, this algorithm generates, as a byproduct, a family of solutions
which can be considered as descriptions of the field f at different scales, so that the
coarse descriptions, which are computed very fast, are progressively refined until
the optimal (finest scale) configuration is found.

This approach is based on the following idea:

A configuration f is completely characterized by the value of fl, and the set
L. defined by:

L,= {L : fL3fL+I} ; .

We will call the n elements of L. the "boundaries" of the configuration f. Since
these boundaries correspond to odd bonds between neighboring cells, we can define
an equivalent energy function as:

U(f) = n + -Cr(f)

with t(f) = > 9_ d ,) fj E {ko, k1 } (4)

For a fixed n, U depends only on the value of fl, and on the position of the n

boundaries, that is, on n + I variables. To make this dependence more explicit, let
us define the functions

L
G(L) = >(Ok.(g,)- 0k,(g,)) (5).

Let Uo and U, denote the energy functions corresponding to the configurations with

1 -= k, and ko, respectively, for a given set of boundaries

L,-{L,...L,}, L 1 <... <L (6)

We have that, for n even,

aLi L, N
Uo(n, L.) n + >[ Ok,(g,) + O kj,(g,) +... + k.(9,) =

L,+1

a N
=n + [C(LI) - G(L 2 ) +...-()+ L ,

4 to~gj)



aIn L,. nt() +, N
U,(n,L£.,) = +[Zi( ,+ *ko(gj) +... + O. ,(

N

n + [-G(LI) +... + G(L.) - G(N) + 'I *(g)) (7)
2i

and for n odd,

N
Uo(n, L,) n n + '[G(LI) - G(L2) +... + GC(L) - G(N) + -0k.(gy)]

N
UI(n, L.) = ni + 2[-G(LI) +... - G(L.) + E'bo(9j)] (8)

j='

(Note that X, Oko(gj) does not depend on f).

Let S(0 , Sn ) be the sets of boundaries that minimize Uo and U1, respectively.
Then, the optimal energy for a given n is:

U: = min[Uo(n, S()), U(n, S('))] (9)

We will define S, to be the corresponding optimal set of boundaries.

The determination of Sn ) is an n-dimensional optimization problem. However,
as we will show below, it is possible to decompose it into a sequence of one
dimensional optimizations using a dynamic programming formulation. With this
approach we also get, as a bonus, the solutions S 1, .. , S , k E {0, 1}, and.-
the corresponding optimal energies. If we set n = N, the solution to the original
problem (3), U*(n, Sn.) can then be found by a one dimensional search. This
strategy, however, can be dramatically improved by the use of the following facts:

(i) We can reduce substantially the search space for the location of the optimal
boundaries Li E Sn-.

(ii) The sequences {U1, U;,.. .} and {U;, U4,...I are unimodal. This, together
with the fact that the dynamic programming algorithm uses Sj-_I to compute
Sy provides us with an efficient stopping criterion for the computation of
the sequence {I,..., S.}.

(iii) The expected value of n" is usually small.
We will now describe the algorithm, and analyze each one of these facts.

2.1. Search Space for the Optimal Boundaries.

Let
PM = M M2 . ..

. ..
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- {j: G(j - 1) < G(j) > G(j + 1), with G(j - 1) # G(j + 1)} (10)

Pm = {Mlm2,....} =

-{j: G(j- 1) G C(j) < G(j + 1), with G(j - 1) - G(j + 1)} (11)

(Conventionally we include j = 1 in PM, if 0 < G(1) > G(2), and include it in P

if 0 > G(1) :_ G(2)). We define the set P as

P = PM U P. = {P1 .. ., P}

(Note that P corresponds to the set of places where the sequence {k (gj) - 'k, (gi)}
changes sign).

In what follows, we will call the elements of PM, Pm. and P, the "maxima",
"minima", and "critical points" of G, respectively.

Let S,,-+ (S..-) denote the subsets of S.- formed by those boundaries Li

whose corresponding term G(L3 ) has positive (negative) coefficient in U',., i.e., if

S. = S = {L, .. L.}, 

then,
11 Sn'+ -- {Ll+l,, L3+k,...}

S._ =n sn-+ (12)

With these definitions, we have:

Theorem 1: S.+ C Pm and Sn._ g PM.

To see why this is true, let f ML denote the maximum likelihood estimate for

f [2] obtained by: ,fdL k12 if Ok 9)> Okojgy)
Sto, otherwise

and let f be the optimal estimate. Suppose that for some j we have, say, Li E

,,+ - Pm. Suppose Li E (Pk, Pk+1), for some P, Pk+I E P. Clearly, either P E P.

or Pk+i E Pm. Suppose, for definiteness that Ph E Pm.

If Pk g S,., the configuration {Li,....L-1, Pk,Ly+I,.. .L.} has lower energy

than Sn. (we decrease (' without altering n), which is a contradiction. If Pk E S,.,
then either

f *((Pk, Lj)) 3 fM((Pk, Lj))

or f ((Li, Pk+I)) 3 fML((Li, Pk+i))

6.. . . . . . . . . .~" .o . . . . . . .
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and so, we get a lower energy configuration by deleting L, and either Pk or Pk+l (we
decrease simultaneously n and (j). A similar argument can be used if Lj E [1, P1)
or Lj E (P,, N].i

This result means that we can use P to constrain the search space for the
boundaries of each subproblem (i.e., for each fixed n), which now becomes:

For n < I PIfixe find S. = {L1, ... Ln} with

Sn+ C Pm and S.- £ Pm (13)

such that U(n, S,) < U(n, Ln) for all L, C P.

Note that theorem I guarantees that the constrained and unconstrained solutions
will coincide only for n = n, so that for n 3 n-, Sn may, in general, be suboptimal.

2.2. Dynamic Programming (DP) Algorithm.

F om equations (7) and (8), it is clear that, for any fixed n, the determination
of the optimal (constrained) configurations ST), SP) is equivalent to the sokition of
the optimization problems:

For Sn(:-
Minimize [G(L1)- G(L2) +...1

with L1,L 3,... E P&, and L2,L 4 ,... E PM.

For S$,'):
Maximize [G(L1 ) - G(L2) +...]

with L, L3,... E PM, and/,2, L4 ,... E Pm.

Let us consider the maximization problems. Assume, for definiteness that the
first critical point of G is a maximum, i.e., M, < m, and define the sequences:

D(k) = sup G(M)
i> k

L, (k) {minL : G(ML)= D(k)}, k- 1...1PM1 (14)

Clearly, ML,(p) is the optimal location of the boundary for n - 1 (i.e.,
$(1) = {M.,,()}), and from DI(1) we can easily compute the corresponding energy.
We now define, for j > 1:

Dj(k) = sup{D 2 '-I(i + 1) - G(mi)}
i>*..

' ~....... ........ °. . ... .... .. . ....



=2+Ik sup{D23 (i) - G(mi)}

and
LI,(k)={min L D2j(k) =D (+ 1) -G(ML)}

Ljk= {min L D2j+ 1(k) =D 23(L)+ C(ML)} (15)

One can check that, for n odd,

Sn = {AIL,.(1), ML,,i(L,())t .. *, A'LI(L2( ... (L.(1)) ...)j (16)

and the optimal energy is:

U1 (n) =n + cl[-Dn(l) + (17)
2

For n even, we define:
DI(k) = sup{-G(mj)}

L'1(k)= {min L D'1(k) =-G(mnL)}

D3 Qck) =sup{D4.1 (i) + G(M 1 )}

L~,(k) ( min L Dj(k) = Dp 1-(L) + C(ML)}

D~j~j sup{D~j(i + 1) - G(mi)}
j>k

L:23~ + 1(k) ={mnin L D'23~jk) =D' 2, - G(mL)} (18)

and get: ~ l M~I,.(9

UI(n) = n + ~[D()-G(N) + 'tk(g)J (20)

For the minimization problems, that is, for the computation of S() assuming again
that M, < ml. we have, for n even:

di(k) = inf {-G(mj)}

11 (k) ={min I d1(Ic) =-G(mij)}

and for j _1

d2j(k) =inf {d21... (i) + G(M1i)}

12 ,(k) = mint d2i(k) =d 2j 1(1) +G(M' 1)}



d2j+l(k) inf{d2j(i + 1)- G(mi)}
i>k

i 1(k)- {min I d2 3+i(k) =d 2j(1 + 1) - G(mt)} (21)

The solutions are:
ST - {MI.(,),.., rt,(,(L(I))}

Uo(n) n n + -[d(l) + E k.(9j)] (22)

For n odd:
d;(k) = inf {G(M,)}

d3 (k) = inf {d---_ (j( + 1) - G(m,)}

d'j+jk ) = inf {dj(i) + G(Mi)} (23)
i>k

with the corresponding definitions for l'(k). The solutions are:

-sn) = {Ml.(i), ,. .

Uo(n) = n + 0'[d'(1) - G(N) + _,k(gi)] (24)

The case for which m, < M, is treated in a similar way.
The recursions (15), (18), (21) and (23), together with equations (9) and (10),

allow us to compute the sequences {S, S2,.. .} and {U,, U,...} using only one
dimensional optimizations. We now turn to the problem of determining the optimal
value n" for the number of boundaries.

2.3. Stopping Criterion.

In this section we prove the following:

Theorem 2. Suppose that every (constrained) optimal configuration in the sequence
{Sj, S2,...} is unique (i.e., for every n, if S',, n,, and S' C P, then U(n, S') >
Un) and that for some n, Un+2 > Un. Then, U',+2k > U, for all k > 1.

This result will provide us with an efficient stopping criterion for the dynamic
programming recursions described in the previous section; since the first local
minima for the subsequences {U, U, ... and {U;, U4,.. .) are the global ones,
we can terminate the computations once we have found them.

To prove the theorem, we will need the following lemmas:

9
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Lemma 1. Let S - {L,...,Lk} and Sk+2 - {L',...L' 12} be the optimal
boundaries (with corresponding configurations fk and fk+2) for n = k and n =

k + 2, respectively. Suppose that k + 2 < IPI. Then, S& 9 Sk+2 (i.e., Sk+ 2 is a
refinement of S), provided Sk is unique.

Proof:
We will assume that for some j, Li E Sk - S 2 , and arrive at a contradiction.

We consider three cases:
Case 1: Suppose that for some i,

[L', L,+,ilS =0

In this case, we claim that we can find some index p such that

iLP, L;,+t]flS, =i

and
f+ 2((L, ,Lp+,) # f((L,L,+,])

Suppose that this is not the case. Then, L:., are the only elements of Sk+2
in some interval (Li, L3 +1) (or in one of the extreme intervals [1, L,), (Lk, N]) and

/k+2(( i, Li'+,]) 34 ftAC114L+l])

Suppose
[LL+ 1] C (L,L+)

By condition (13), we have that Li 34 Li_- (otherwise, L, would be a local maximum
and minimum of G at the same time). But then, since Sk is optimal, we can find
a configuration with k + 2 boundaries whose energy is lower than that of Sk+2,
by moving L, to Li (or L,+, to Lj+,), which contradicts the optimality of S&+2. A
similar argument holds if

[L.,L,+ 1] g [1, LI) or (Lk,N]

This proves our claim.
So, suppose that

[L',, Lp+i n st ---

and
fk,+2((Lp, Lp+,] ) 6 fh(Lt, Lt,+]) D:,..

Form
Sj (I,...,Lp_,Lp+2,...,1'4+20

10 .:



and let f j be the corresponding configuration, chosen in such a way that fj(1) =

fk(1) (and therefore, f'I([L',L'+I]) = ([LP, LP+

Let ACT be the change in 0 (see eq. (4)) associated with setting:

f([Lp,Lp+l]) =f+2([Lp,L'+l]).

We have that
0(Sk+ 2) = C(S') + '&(.

Now, we put:
S+ 2 ={L,'",LLp, Lp+i, ..,L}.

Since Sk is optimal, we have that:

rC(S,+ 2) = N(s') + AC > Ct(sk) + ACt = (s42),

which contradicts the optimality of Sk+2.

Case 2:
([1, L] U[LI+ 2, NJ) n Sk = 0

Suppose that L' E [1, L,). We must have

fk+2(I1, L')) 34 fk([l, L'))

Otherwise, if L1 --/ , condition (13) generates a contradiction; if L, > L2, we
are in case 1, and if L, < L, Sk+2 is not optimal, since we get a lower energy
configuration by moving L' to LI.

So,
fk+2([1, L']) 34 fk(tl, L'11)...

By a similar argument, we get that

fk+2([Lk+ 2 , N]) 3 fk([L'k+ 2 , NJ).

Now, proceeding as in case 1, wc form:

!S

and let fj be the corresponding configuration, chosen in such a way that f'(t) -
fk(1)

Let A& be the change in U associated with setting:

f([LI,L]) fk+ 2([L,L'2 ) and

11 ..
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f([L+ 1 ,Lk+2]= f+ 2([Lt+ 1, Lk+ 2])

so that
&CSk+=) NQ + A&.

Now, we form:
S+2-- {L', L,...,L,L'k, +2)"

Since Sk is optimal, we have that:

(7(Sk+2) = O(s') + At > &(S) + A =(S'2),

which again contradicts the optimality of Sk+ 2

Case 3:
For all i, [L,L ]inSt= #0,

and ([1,L'] U[L+2, N])fSI #0 (*)
To make (*) hold, we must be able to place k boundaries in k + 3 (ovelapping)
closed intervals, without omitting any interval. Moreover, since condition (13) must
hold, we cannot put L = L, and L,+ 1 = L,+2 for any i,j. But this is impossible;
so, our proof is finished. 1

Lemma 2. LetALk = (J(Sk)- ((Sk+ 2). Then, AOk < AU&_ 2, for all k E [3, IPI-21.

Proof:
Consider the optimal configurations S&, Sk+2, Sk+4, and suppose that AUk+ 2 >

Atlk. Using lemma 1, let

S t=2 = {Lt,.. Lj, ; ?
St=+ --"{Ll,• • , , I.. L=.:

By condition (13) and lemma 1, there are only two valid forms for S&+4. We
consider each case separately:
Case 1: S&+4 is of the form:

Sk+4 = L , LIL ,...,LI, .}

(i.e., the refinements corresponding to Sk+2 and Sk+4 are disjoint).

Then, for
S t=+2 = L , .,Lp, Lp+,,..., L'1% 4 1...}

we have
Os = (s&)- AUN+ 2 < O(s)- A = (J(Sk+2),

12....



which is a contradiction.

Case 2: Sk+4 is of the form:

(i.e., Sk+4 is a subrefinement of the refinement introduced by S&+2).

Let

We have that,
AN= a + c - b

AUk+ 2 =b.

By assumption,
b5> a+c-b

and therefore,
ANk a c- b< 2~ < max(a, c).

Now, let S4 2 be formed from Sk by the refinement:

{ L' L" if a = max(a, c)
L21L2,' if c =max(a, c)

Then,
C(S4 2) =rSk - max(a, c) < NTSk) AN &(k=

which is a contradiction.

Now we prove theorem 2:
Suppose U4 .2 > Uk. Then,

k + 2+ jCT(Sk+ 2) > k + !C'(Sk)

now, by lemma 2 we have:

= ++ (J(Sk+4) =kI + 4+ C'((I(Sk) -AU&+ 2) >

13



> kc + 2+ -(CT(Sk) - ~k+2) > k + 2+ C'((Y(Sk) - ALtt)
2 2> + 2 + > + 2 ),U:k)=

2.4. Expected Value of n"

First, we compute the (prior) probability density function p(n) for the number
n of odd bonds in the original field I.

Let Nb = N - 1 be the total number of bonds. We can rewrite equation (1)
. as: P(w f)= _e(N'-2n) 

(25)z

The total number of configurations compatible with a given n is 2C,16, and so,

2C N exp[ (Nb- 2n)]p(n) = -, - =-
EN=0 C b exp[ (N6 - 2k)]

+N C-/ee~ -/ (26)whichis+ e-b m lella + e/e- 1/.

which is a binomial distribution. Therefore,

Var[n] =Nb( + /) (27)(e1/a + e-1/0 2r

We note that as c t 0, E[n] I Nb/2, and as c, 1 0, Efn] 0 (and var[n] j 0)
exponentially fast. This means that if the natural temperature of the system is not
too high, we can expect that n', the MAP estimate for n, to be relatively small.

2.5. Relation to Multiscale Filtering.

An interesting characteristic of the DP formulation is that the solutions to
each of the subproblems (which in fact correspond to a minimization of 0 (eq.
(4)) are independent of the value of the parameter a. The role of this parameter
is to determine the number of regions (n*) that will be present in the optimal
configuration. In this sense, it can be regarded as a "scale" parameter that controls
the aggregation of the subregions into larger units, and the algorithm can be used to
produce multiscale descriptions (in the style of the "fingerprints" treated in [W1,Y11)

14
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of the input signals (several heuristic solutions to this problem have been proposed;
see for example [B3,P2,P3]).

If we interpret the algorithm in this way, it becomes natural to ask whether
a family of linear operators can do the same job in a much cheaper way. Let us
formulate this question in more precise form (in what follows, we will consider a
"continuous time" problem obtained from the original one as a limit when N Too-
(provided that the observations are different from 0 only in a finite interval), since
it simplifies the notation. It should be clear that the same arguments apply to the
discrete case).

Consider a family of filters {FL} with the following properties:

(i) Each FL(x) is a symmetric and non-negative function of x.
(ii) For each L, FL(x) is a decreasing function of Jx[, and FL(x) 1 0 as Ii T oo

fast enough, so that FL can be approximated by a function with finite
support.

(iii) All the filters are normalized:

LF,()dx =1, forall L.

(iv) The filters become sharper as L 1 0:

Jo FL,(x)dx < FL, (z)dz

implies that L2 > L1

Particular examples of acceptable families are:

(i) The family of rectangular boxes BL:

BL~z --- 2J, if~x I:l L
B 0, otherwise

(ii) The family of Gaussian Kernels:

GL() L exp[- j-21

Suppose we convolve the function g(x) - (g(z) is a continuous time
approximation to the observations) with a set of filters from the family {FL}.
If we start with L large enough, the function

I 1,
hL =(g--) FL

2

[ . ~IS ""
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will be practically constant, and therefore, it will have no zeroes. As we decrease L,
zero crossings of hL will begin to appear. To each of these zero crossings, we will
associate a boundary, and form the configurations S1, S2,... with 1, 2,... boundaries
respectively, that correspond to the first, first two, etc. zero crossings of hL (we are
ignoring, at this point, the question of the precise localization of these boundaries.
With additional contraints on the family {FL}, it is possible, in principle, to localize . -. -"

them by decreasing L in a continuous fashion, and then tracing the position of each
zero crossing to the finest (L = 0) level; see fY1J. For the moment, let us assume - .

that we can identify the zero crossings of g - j that correspond to those of hL, for
all L).

The question that we ask is the following:
If S1 , S2,... are the optimal boundary configurations produced by the DP

algorithm,is it true that
Sk=k

for all k?

As we now show, this is not the case.
Consider the signal g(z) defined by:

for x E [li, 1i + 2a] U[12,12 + 2b] U[12 + 4b, 12 + 6b] U
U[12 + 8b,12 + lOb] U[12 + 12b, 12 + 14b] U[12 + 16b,12 + 18b] .

and g(x) - 0, otherwise. Here, 11, 12, a and b are some positive numbers chosen in
such a way that, if Lo is the starting L, we take 12 - lj - a > > Lo, so that, by
property (ii), there is no interaction between [1i, 1 + a] and [12,12 + 18b] (see figure
1).

Suppose that the zero crossings corresponding to [L, 11 + a] appear first (as a
single double zero) at L = LI, and those corresponding to [12,12 + 18b] at L -L 2 .
Then,

o FL, (z)dz = )( FL. (z)dz (28)

f b 5b 9b
FL,(z)dz+ FL,(x)dz+ FL,(x)d=

f= FL.()dz+1b FL,(x)dx + f" F,,()dz (29)

Now, for a > b, we have:

1,12, = 12 b 10b

&({13,14}) = 8b + 2a > &({l,12)

and therefore, S2  {1, 12}.

16
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-2 b

Figure 1. (See text).

We claim that we can find some a, b with a > b such that

LF.I(xdz < FL (x)dx

If this is true, we find, using (28) and conditions (iii) and (iv), that it implies that
L 2 > Li, and therefore, §2 = {13,14}.

We now prove our claim:
Let a =b + ~,where we choose c so that

~b+e/2(b
lb FL ()dz= FL, (x)dx (30)

(property (ii) guarantees that we can find such e). From (29),

fb f b Ob

b FL2(zdxd0 2 3FL,(x)dx 2 FL,(x)dz

and from (30),

f F,,(x)dx FL, (x)dx FL,(x)dz - A FL,(x)dx

fb &+c/2 1 b b+e/2 9 b

= ]FL,(z)dz±J FL,(z)dz+ 217  FL,(x)dZ J FL,(z)dx+-2J FL,(x)dx >

17



JOb
> F,(r)d o FL,()dz

This result does not mean, of course, that families of linear filters cannot be
used for producing useful muliscale descriptions of signals; it only means that these
descriptions cannot, in general, be considered as MAP estimates of MRF models.

It is possible, however, to design non-linear methods that are guaranteed to
find optimal estimates, and that are computationally much more efficient (although
less flexible) than the DP algorithm. We will present one such method in section 3.

2.6. Extensions.
kA

In this section we present two related problems which can, in principle, be
solved using the DP approach, although, as we will see, in a less efficient way.

2.6.1. Continuous Valued Markov Random Fields.

Let us consider the problem of estimating a piecewise constant signal corrupted
by additive white Gaussian noise. We model the signal {fj} as a MRF with potential

1, if fi = fi+1 (31)
v ~fi, fi+i) 1-1, otherwise

and global states distributed according to (1).

The observations are given by:

gi = fi + .ni

where n is a white Gaussian process. The Bayesian (MAP) estimate for f is again
found by minimizing eq.(4): "

U(f) =n +-U
2

N
DA -g 901"'

i+ :

where n is the number of places wherei 3 fi+,, and c, ---. Note that in this
case, fi is not restricted to {0, 1), but can take any real value.

Proceeding as we did in section 2, we consider the sequence of subproblems
obtained by putting n 0, 1, 2,....

For any fixed n, & will depend only on the n integer variables that correspond
to the location of the boundaries between regions of constantf, since given these

18
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boundaries L = {Li,...L,}, the optimal estimate for f on any interval (Li, Li+]
(we put Le - 1 and L,, = N) is:

I .I
f((L", Li+I])

Li+1  -L+

If we define Gk,, (for k < 1) as:

Gk= (1-2(1- k)) k gi (32)

ke We get that:
N n+1

?= + E GLI,LJ (33)
i= 1 ,j= 1

(note that E g? is a constant for a given set of observations). Using dynamic
programming principles, we can now write the recursions:

Fo(k) = Gk,N

Fi+j(k) = inf {Gk,i + Fi(i)}i>t ...

Li+i(k) - {L :Gk,L + Fi(L) = Fji+(k)} (34)

The optimal solution, for each given n is:

Sn = {Ln(i), Ln- (L,()),...Ll(I,2( ... (L.(1))...)...o

and the corresponding energy,
N

U(n,S,,) n + [? g + Fn(1)] (35)

The solution to our problem will be Sn., where:

U(n', S..) = inf{U(n, S.)} (36)

Unfortunately, in this case we cannot guarantee the unimodality of any subsequence
of {L(S,)} (although we believe that the sequence will be unimodal in many cases)
and so, (36) has to be computed, in principle, by an exhaustive one dimensional
search. Another unpleasantness is that, unlike the binary case, the search space for
the variables L, cannot be reduced in any obvious way.

2.6.2. One Dimensional Signal Matching.

19
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Another problem for which this formulation may be useful is the following:

Let f be a one dimensional MRF with potential given by (31), that can take
values on the set

Q ={-m, -m+ 1,.,101..m)

for some positive integer m. Suppose we observe two binary sequences gR, g9L which
are formed from f according with the following stochastic model:

gR(i) - Ap(i)

1gR(i + fA), with prob. 1 - e, if Of(i) -

gL(i) = B (i), with prob. e, if Of(i) = 0 (37)
hB (i), with prob. 1, if Of (i) = 1

Here, A, and B, are independent Bernoulli processes (also independent from f)
with density p (so, Ap(i), Bp(i) E {0, 1}); c E (0, 1) is the error rate, and of is an
"occlusion indicator" whose value depends deterministically on f in the following
way: w1, if f -k >_ fi + k, for some integer k E [0, m]

-of W 0, otherwise

A well known instance of this problem is the matching of a row of a random dot
stereogram with density p [J1], when the components of the stereo pair are corrupted
by noise. In this case, the use of a MRF model for the disparity f corresponds
to a quantification of the assumption of the existence of "dense solutions" ([J1];
see also [M31), and the use of the occlusion indicator corresponds to the "ordering
constraint" [B2].

To formulate the estimation problem, we will consider the sequence gL as
"observations", while gR will play the role of a set of parameters. Thus, we have
(assuming, for simplicity that p -):

P(gL(i) = k If, gR) = Pgjf(k) "

1-e, iff (i) = 0 and g(i +,) = k
if Of(i) = 0 and gR(i + fi) 3 k
if Of(i) = 1

Putting:
%P,(i) = - ln(1 - e)C(gL(i) - gR(i + r)) -

- 1n 41 - 6(QL(i) - gR(i + r))

where we1, if z = 010, otherwise
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we get that the MAP estimate for f is obtained by minimizing

U(f) = n - I in P 1 f(gLi)) =-
2

=[I+ 20f(i) + (1 - Of (i)) Tf, (i)]. (39)

The use of the DP algorithm for minimizing (39) is complicated by the fact that,
given the boundaries L., the optimal estimate for f in the interval (Li, Li+,] depends
on the estimate on (L- 1 , 4.], since this last choice determines the extent of the
occluded region.

However, if we assume that the size of the regions of constant disparity is
relatively large compared with the size of the occluded areas (as it normally happens
in most practical cases), we can estimate f given Ln using the formula:

f((L, L+i]) = (Li, Li+)-

- {k: E 6(gL~i) - gR(i + k)) > E 6(gL(i) - gR(i + 1)), for all I E Q} (40)
i=L+l i=l+1

Defining:

G&L = I 'k,L)(i) (41)

we can write the dynamic programming recursions:

Fo(k) = GkV,N

Lo~k) == N

Fj+I(k)= inf {Gki+ F(k + A)+ AIn2}i>k

Lj+ I= {L:Gk,L + Fi(L + A) + A In 2 = F+(k)}

with A = min(O, f(k, i) - 2(i, L,(i)) (42)

The optimal location of the boundaries, for any given n is:

S,, = {L. (1),L,.- I(LnC1)),..., L,(L2 (.L,(1))...}..2

The optimal configuration is computed using (40), and the corresponding energy,
using (38) and (39).
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3. An Alternative Algorithm.

In this section we present an algorithm that finds the MAP estimate for a
binary MRF in time O(N), and using storage which is also O(N), and is, therefore,
practically as efficient as it can be.

We consider again a first order MRF F on a one dimensional lattice of length
N, but we now assume that Fi E {-1, 1} (there is no loss of generality in this
assumption, since any binary process can be brought into this form by a memoryless
linear transformation).

Using the model for the observations described in section 1, and reasoning as
we did in section 2, we find that the MAP estimation problem is equivalent to the
minimization of

U(f)-- n + F, '',(gi), fi E {-I, 1} (43)
i

where n is, as before, the total number of odd bonds in the configuration f, and

We now present a method for performing this minimization, and a proof of its
optimal performance.

Description of the Algorithm.

The idea in which this method is based is the following:
We start scanning the sequence {g,}, say, from the left, with some initial

estimate k for fl, and set l0 o 1. Whenever we process a new observation gi, we
ask if we can lower the energy by putting a boundary in the best possible location
I within the interval 11o,j]. If this is the case, we put the boundary at 1, that is:

setf , = k, for i E [to, 1]

set k -k,

and set lo = I + 1.

Otherwise, we just set fi = fi-1, and continue to process the next observation.
When we reach gN, we take fN as the initial estimate and run the same process

backwards (in fact, we can make this backward run as soon as we get the second
boundary) to get the final solution.

Formally, the algorithm is as follows:

22
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0

Definition of Variables.

i: Current position.

1o: Pointer to the beginning of the current region.

1: Current optimal location of the boundary in the interval [1o, i].

k: Current estimate for f([to, 11).

Up: Energy increment associated with the assignment f([1o, i]) k.

Urn.: Energy increment associated with the assignment f([1O, i]) -k.

Ub: Energy increment associated with the assignment f([1o, 1]) = k; f((I, i]) = -k.

si: Best local (maximum likelihood) estimate for fi.

siml: Best local (maximum likelihood) estimate for fi-I.

Up,: Energy increment associated with the assignment f([/o, 1]) = k.

U,n: Energy increment associated with the assignment f([o, 1]) -k.

Ut,(p: Temporary storage register.

M: A very large positive number.

Ko: Switch indicating the method for estimating fi.

23



Algorithm AI(Ko):

1: Initialization. ..

Set to I = 1; Up =U= UmI O; Ub 1; Ui -M.

Setk-1, if Ko=O and * +i(gi)<'-(gi)
-1, if Ko- 0 and P +1(gl) ' (gi)
Ko, if Ko3 0.

Set siml = k

2: Main Loop: For i from 1 to N do:

Begin

Set 8i - 1, if 40 +1(gi) < sI -i(g,)
-1, otherwise.

2.1: See if the optimal boundary location needs to be updated:

If (si 3 k and 8i # sim and Up - Upt -Um + Umt < O) do"

Update boundary location:

Set:

Up1 = U.

Ub = Up+ 1

2.2: Update energy increments:

Set:

u = u + ' +1(g,) -,

U= Ur + * -A(gM
Ub = Ub + M +1(g

24
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2.3: See if a new boundary has to be introduced:

If(Ub + 1 < Up)do"

Introduce a new boundary:

For j from to to I do • Set fj - k

Set:

k =-k
0= 1 + 1

Utcrmp = UP -UP
up =Urn - U.1
U,= M

Ub= U.+ I

2.4: Set siml si

End

3: See if the last boundary has to be introduced:

If(Ub < Up) do:

3.1: For j from 1o to I set fj = k.

3.2: Set lo = I + 1.

3.3: Set k = -k.

4: Fill the last region:

For j from to to N set fj = k.

End.

3.2. Optimality of Algorithm Al.

The optimality of this algorithm follows from the following propositions:

Proposition 1: Let S" = {I,..,} be the optimal boundary configuration, and
suppose that k, for k < n was detected by Al. Then, 1k+I will be the next boundary

25
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detected by Al.

Proof:
Suppose Ik was detected by Al, and let L be the next boundary detected. We will
assume that L 34 1k+1 and arrive at a contradiction. We will consider three cases:
Case 1: Suppose Al detects L at j < 1,_._.

Then, we must have that

Up(j) > Up(L) + Um(j) - Un(L) + 2

and therefore,
U({l,.. .,lk,L,ij, k+1,...}) < U(SO)

which is a contradiction.

Case 2: Suppose Al detects L at j E (1k+1,lk+2].

This means that at j we had that L was the optimal location for the boundary. In
particular,

Up(lk+) + Um(j)- Um(IK+1) > Up(L) + Um(j) - Um(L)

which implies that

Up(L) + Um(k+2 )- U.(L) < Up(lk+l) + Um(Ik+2)- Um(lk+1)

and therefore,
U({1 1 ,. .. ,lk,L, lk+2 ,...} < U(S)

which is a contradiction.

Case 3: Suppose that Al has not detected any new boundary atj 1k+2 + 1.

Then, we must have:
U,(lk+ 2 + 1) < U(lk+2 + 1) + 1

which means that
U({l,. .. k, lk+,...} < U(S ")

which is again a contradiction. .

Proposition 2: If Al runs from left to right starting at a point 1o, and generates
the boundaries {1, 12,.. .}, then, I. E S" (the set of boundaries of the optimal
configuration) for j > 2.

Proof:

Let f, fAI be the optimal configuration, and the one generated by Al, respectively.
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Let

Lo=sup{jES : i < 1i}

L=inf(jES j >I.

If Lo - 1o, we apply proposition 1 and finish the proof; so, let us assume that
Lo 3 lo, and that 11 was detected at i. We have two cases:

Case 1: Lo > 1o. We claim that in this case, l E S', and therefore, by proposition
1, 1i E S* for j > 1. To prove this claim, we consider two subcases:

Case 1-a: f*((to, Lo)) 3 fAI((lo, LO)).

In this case, we have:

2 + Um(i) - Um(li) + Up(1 1) < Up(i)

and therefore,

2 + U,(i) - U,,(11) + UP(I) - UP(Lo) < Up(i) - U,(Lo)

which implies that hi E S*.

Case 1-b: f ((o, Lo)) = fAl((lo, Lo)).

Suppose L S 5'. We have that, at location i,

Up(1) + U.(i) - U,.(/1) + 2 < U(LO) + U.(i) - U,.CLo) + 2

since otherwise, Lo would have been a better location for the boundary. However,
this implies that

Up(11) + U.(L) - U.(1i) < Up(Lo) + U,.(L) - U,.c11)

which means that we can improve S by moving Lo to L, which is a contradiction.

Case 2: L < 1o.
Again, we consider two subcases:

Case 2-a: f*((Lo, lo)) = IA1I(LO, to)).

Let U+, U_ be the energy increments with respect to Lo:

(4(i) = kgi
j=LO

Note that
U +(i) =((i) - U(1) and
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,W= U_(i) - U-Yo)
Since 11 was detected at i, we have:

2 + U.(i) -Um(I,) + Up(i) < Up(i)

and therefore,
2 + u_(i) - U_(I) + u+(h) < U+(i)

which means that li E S'.
Case 2-b: f'((Lo, to)) # fAl((LO, lo)).

Using the same definitions for U+, U_, we have that, by the optimality of Se, for
someji > L,some > L,(17- U_ (L) + U+ (L) + 2 < U+ (j)

and therefore,

U_(j) - UCL) + U+(L) - U+(ll) + 2 < U+(L) - U+(ll)

which means that if Ai detects 11, it must detect L too, unless it detected 12 first,

but in this case we have that, for some p < j,

U_(p)- U-(12) + U+(12)- U+(t) + 2 < U+(p) - U+( 1 )

which implies that 12 E S'. This completes the proof. u

It should be clear that these results can be easily extended to the case where
Al runs backwards (from right to left). With this extension, we get the following
complete optimal procedure:

Algorithm A2:

1: Run Al from left to right. Detect {t1,..., ,,.
2: Run Al backwards (starting from 12. Get either

{12, .. ., } or {1',12,. .. ,ln}

In either case, this is the optimal solution.

The only thing that remains to be proved is that the determination of the
optimal location for a boundary is in fact performed by step 2.1 of Al. We have
the following:

Proposition 3: Suppose that Al detected a boundary at (or started from) to. Then,
the optimal location I of the next boundary has to be updated only at places where
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si = -k and siml k. Suppose i is one such place. The optimal location will be:

Ji- 1, if U,(i- 1)- UM(i- 1) < UPI-U,,
1, (the current value) otherwise

Proof:
First, we note that a necessary and sufficient condition for I to be the optimal
location of the boundary at the point i is that, for j E [1o, i - 1]:

up(') + UM(W - UM,) : Upj) + Ut.(i) - UM()

or equivalently,
U,, - Um) Up(j) - U,(j)

Suppose I was the optimal location at i - 1, and we process observation i. We
consider several cases:
Case 1: siml = -k
In this case, we show that I remains the optimal location:
By construction, we have that:

Up(i - 1) = Up(i - 2) + 'P+&(g,-)

Um(i - 1) = U.(i - 2) + T-'(g,- 1 )

Since siml -k we have that,

i-l) 'k(gi.. 1 ) > 0

and therefore,

Up(i - 1) - Um,(i - 1) = Up(i - 2) - U,,(i - 2) + %,+k(g,-) - *,k(gN1) >

> Up(i - 2) - Uv(i - 2) > U,() - Um(L)

so that I remains the optimal location.

Case 2: Siml = k

In this case we have that

Up(i - 1) - Ui,(i - 1) < U,(i - 2) - Um(i - 2)

This means that the minimal value for Up(i) - Um(i) on a block for which .i = k
will be obtained at the extremal point where si = -k and siml = k, and since, by
theorem 1, this is the only point where a boundary might be placed, it is sufficient
to update the optimal location only at these points. So, suppose Siml = k and

=9 -k.
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If
UpI - U,.1 < Uv(i - 1) - U,,(,;- 1),

then,
Up, - Um, < Up() - Um(j) for j E [o, i - 11

because I was the optimal location outside the last block where si -k. By the same
token, it is clear that if

UPI - Urn1 > Up(i - 1) - Um(i - I),

the new optimal location will be i - 1.1

3.3. Experimental Evaluation of Simulated Annealing.

Once we have an efficient method for getting the optimal estimate for the
process f, it is interesting to use it to evaluate the performance of other algorithms,
such as simulated annealing (see [K1] for a description of the method, and [G1,M1]
for examples of its application to MRF estimation problems).

In order to make this comparison, we implemented both algorithms in a
computer, and performed some numerical experiments. The field f was generated
using Metropolis algorithm [M2,G1,G2], and the observations g by adding to f an
independent white Gaussian random process of given power spectral density ,2.
For the annealing schedule, we used the formula (see [Gi]):

k -0 In 2
T= l./j+n) (44)ln(i + 1) .:

where is the natural temperature of the field f; T is the annealing temperature,
and j is the iteration number. By a trial and error procedure we found that the
optimal value for the constant k was 0.5.

Figure 2 shows the results of a typical experiment for a lattice of 50 points
(we used fl - 2 and o = 0.8 for the parameters of the processes). The top row
shows the original field f ( black squares mean fi = 1, and white ones, f, - 0);
the second row, the maximum likelihood estimate obtained by

I. ifg,-j 0
ML(i)-{-o, otherwise

The third row is the optimal estimate obtained by A2, and the last row, the result
obtained by simulated annealing after 50 global iterations. The corresponding values
for the energy (equation (2)) were:

U(f) = 52.083

U(f ML) = 43.38
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Figure 2. (see text).

UfA2) = 29.34

U(ISA) = 29.5

It is interesting to note that, for this problem, the convergence of the simulated
annealing algorithm is extremely fast. We can get a near optimal (and in many
cases optimal) solution in less than 10 iterations, with the appropriate setting of the
constant k in equation (44).

4. Discussion.

We have presented two deterministic algorithms for finding the optimal (MAP)
estimate of a binary, one dimensional MRF from noisy observations.

A2, the algorithm presented in section 3, is without doubt the most efficient,
and its complexity (O(N)) is certainly optimal for this problem. However, it is very
difficult to extend it, so that it can be applied to other related problems (such as
those presented in section 2.6) which, in principle, can be solved with the dynamic
programming approach that we presented in section 2. In these cases, however,
the absence of results of the type of theorems 1 and 2 (which provided us with a
substantial reduction of the search space, and with an efficient stopping criterion in
the binary case) make the application of the DP algorithm computationally more
expensive, although still perfectly feasible. It would be interesting to implement
these algorithms and use them (as we did in section 3.3 for the binary case) as
benchmarks for the evaluation of algorithms whose optimal performance is still

31

..-. . . . . . . . . . . . . . . . .
,:..- .-..-:...- ."..'. .. ..-.... .'..'.." - - -' -'.- . . ...-- ..'.'..-.-..--........ ...-.... "................................'. ..".... . . . ..-.. . .-- '.-"-



II

uncertain, such as the proposed extensions to simulated annealing for handling
continuous-valued variables [G21.

An important open question is whether efficient deterministic algorithms can
be designed for the estimation of two dimensional MRF's. A direct extension of
the techniques we have presented here is not posible; the main difficulty in the two
dimensional case is that the geometry of the boundaries between uniform regions .

.°

(which in the one dimensional case are simply points), causes a combinatorial
-explosion of the number of possible configurations compatible with a given total
boundary length. Our results, however, show that in principle it is possible to exploit
the structure of the energy function of a particular class of estimation problems to
design efficient algorithms for its global minimization.

Acknowledgements: I want to thank Prof. Sanjoy K. Mitter for his encouragement
and enthusiasm, and for many valuable ideas which he contributed to this work.

Notes:

[11 In the language of statistical mechanics, the "state" of a system at a given
temperature is a probability measure (the Gibbs measure) defined on the phase
space of the system (in our case, {-1, i}N). Since at zero temperature the Gibbs
measure becomes a delta function at the global minimum of the corresponding
energy function (assuming it is unique), the global minimizer f completely specifies

the ground state.

[21 Since we are using a white noise model, the maximum likelihood estimate for f is
obtained by the independent maximization of each term of the likelihood function:

lnjZgP(g If) = - $,f(gy), fE {ko,kj.
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