
AD-AI51 581 DESIGN AND ANALYSIS OF A COMPLETE RELATIONAL INTERFA-CU 17
FOR A MULTI-BACKEND DATABASE SYSTEM(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA R E ROLLINS JUN 84

UNCLASSIFIED F/6 912

ommhmhmhhhhhhlm

mmhhmhmmhum

r.a.

Q28 3215

Ig 13.2 2

LI

11111 163 L2I.J~. 11 .6
111 11112 III

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- I963-A

.,.

"S ~ * %S* *. *%*~**...

o

*..

a: *Jt.*... *-r,*... .

*~% ~ * * -.. *.-... . . . '

NAVAL POSTGRADUATE SCHOOL
Monterey, California

LC)

4.2

THESIS
DESIGN AND ANALYSIS OF A COMPLETE RELATIONAL
INTERFACE FOR A MULTI-BACKEND DATABASE SYSTEM

by

Richard Edward Rollins

Lii June 1984

Thesis Advisor-. David K. 11siao

C= Approved for public release; distribution unlimited

85 03 05 031

SECURITY CLASSIFICATION OF THIS PAGE (When Does Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
______ REPORT______________________PAGE_ BEFORE COMPLETING FORM

I. 09PBAT NUMBER GOVT ACCSSION NO. 3. RECIPIENT'S CATAL.OG NUMBER

4. TITL.E (and Subtle) S. TYPE OF REPORT A PERIOD COVERED

Design and Analysis of a Complete Master's Thesis
Relational Interface for a Multi-Backend June 1984
Database System 6. PERFORMING ORG. REPORT NUMBER

7. AUTPOAV7e) I. CONTRACT OR GRANT NUMBER(s)

Richard Edward Rollins

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School June, 1984
Monterey, California 93943 _13. NUMBER OF PAGES

____ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ 120
14. MONITORING AGENCY NAME & ADDRES'I ifeIIrnt from Cones-oiliung Office) 15, SECURITY CLASS. (of this report)

.UNCLASSIFIED _____

I5s.. DECLASSIFICATION, DOWNGRADING
SCH EDULE

Is. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In DictA 20, it different from, Report)

If. SUPPLEMENTARY NOTES

It. KEY WORDS (Con~tinue on reverse aide If neessay mnd identify by block num~ber)0

"Database management systems, multi-backend data system,
attribute-based data language, relational data language,

on the operation of database management systems based on one of

or relational) for the centralized control of operational data.
As an alternative to the development of separate, stand-alone
systems for specific models, recent research has proposed a svstei
designed to support multiple data models and model-based languages
as ij the system is-a-hoterogeneous collection of-XContinued)

D ON 3 1473 EDTONo oF I NOV 65 IS OBSOLET9

SIN 0 102. LF. 014- 6601
1SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter,

SECURITY CLASSIFICATION OF THIS PAGE (n'on Ota 00 "nt_

ABSTRACT (Continued)

database systems. This proposal is based on the existence of a
simple and powerful data model to which the three well-known
models can be mapped. This model, the attribute-based data model
is the data model upon which the Multi-Backend Database System -. -

(MDBS), a software database machine, is based. This thesis con-
centrates on the language interface aspects of implementing MDBS
as a kernel for the support of relational databases. In particu-
lar, this thesis provides the design and analysis of an interface
between the relational query language (SQL) and the attribute-

.1

based data language (ABDL). 2

S N 0 102-. -0 14 6601

2 SECURITY CLASSIFICATION 0f THIS PAOEfWhen Data Entored)0

.- . *.*. .*.J.

.5.-. ** ~ *'* -~* : - .~ . . .

Approved for Public Release; Distribution Unlimited

Design and Analysis of a Complete Relational Interface
for a

Multi-Backend Database System

bv

Richard Edward Rollins
Commander, United States Navy

B.S., Uniled States Naval Academy, 1966 2

Submitted in partial fulfillment of thel"

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE 1

from the.-

NAVAL POST GRADUATE SCHOOL
June, 1984

Author:

Approved by: A,'1' " /'3 Ze'
Thesis Advisor

Co-Advi sor
-i

Chairman, Department of Computer Science

Dean o -I. a , S
Dean of Information and Policy Sciences

"

". ° . . - ° - ° •. . . ° - °
** * ** * %

. • .,o"_ ." - .." ., "" . , ," - ." -" " ." -." -I " .Y -' " ." -"" v -' .' , ' ----, .-
---.. ., , ' ° ' v . - , ' '> " " " " ' -> ' ' ' ' : .- " ' " " '

.. ~.. .*.. ..-.

ABSTRACT '

Organizations of all types are becoming increasingly

dependent on the operation of database management systems

based on one of the three generally known data models -

(i.e., network, hierarchical, or relational) for the

centralized control of operational data. As an alternative

to the development of separate, stand-alone systems for

specific models, recent research has proposed a system

designed to support multiple data models and model-based

languages as if the system is a heterogeneous collection oF ..

database systems. This proposal is based on the existence

of a simple and powerful data model to which the three well-

known models can be mapped. This model, the attribute-based

data model, is the data model upon which the Multi-Backend

Database System (MDBS), a software database machine, is

based. This thesis concentrates on the language interface .•

aspects of implementing MDBS as a kernel for the support of

relational databases. In particular, this thesis provides

the design and analysis of an interface between the -

relational query language (SQL) and the attribute-based data

language (ABDL).

4

., . ,

TABLE OF CONTENTS

I- INTRODUCTION---1 11

A. DESIGN GOALS---------------------------------------14

B. APPROACH TO DESIGN--------------------------------15

C. ORGANIZATION OF THE THESIS----------------------17

II. rHE MULTI -BACKEND DATABASE SYSTEM (MDE'S),
ITS DATA LANGUAGE (ABDL), AND THE
INTERFACE LANGUAGE (SOL) ------------ 1

A. A REVIEW OF THE MULTI-BACK END
DATABASE SYSTEM (MDBS)-------------------------- 19

B. THE ATTRIBUTE-BASED DATA

LANGUAGE (ABDL)--------------------------------- -4

1. The RETRIEVE Request------------------------26

2. The INSERT Request ----------

.. The DELETE Request-----------------------2

4. The UPDATE Request------------------------ -28

C. THE RELATIONAL QUERY LANGUAGE (SQL)
AS THE INTERFACE LANGUAGE------------------------29

1. The SELECT Query------------------------

2. The INSERT Quer---------------------------.31l

3 . The DELETE Query------------------------- :.

4. The UPDATE Query---------------------------- 32

I REVIEW OF BASIC MAPPINGS------------------------------: 4

A. MAPPING THE SQL SELECT QUERY
TO THE ABDL RETRIEVE REQUEST -------- 3

B. MAPPING THE SQL INSERT QUERY
TO THE ABDL INSERT REQUEST----------------------_7

5

C. MAPPING THE SOL DELETE QUERY
TO THE ADDL DELETE REQUEST----------------------8

D. MAPPING THE SOL UPDATE QUERY
TO THE ABDL UPDATE REQUEST -------- 7

IV. SELECTIONS WITH SET MEMBERSHIP OPERATIONS
ON SINGLE RELATIONS----------------------------------- 41

A. IN-MEMBERSHIP OPERATIONS-------------------------42

1. The Set Membership Operator,
IN'-- 42

2. The Set Membership Operator,
r 'NOTIN ----------------------------------- 4-

D. ANY-MEMBERSHIP OPERATIONS-----------------------44

1. The Set Membership Operator,
,any --- 44

S 2. The Set Membership Operator,
"an--44

The Set Membership Operator,
<.'=any'--------------------------------------- 45

4. The Set Membership Operator,
* .any'----------------------------------- 4

5. The Set Membership Operator,
<any'---47

6. The Set Membership Operator,

',-any --- 48

C. ALL-MEMBERSHIP OPERAT IONS-----------------------49

1. The Set Membership Operator,
'=ALL'---49

2. The Set Membership Operator,
"all--------------------------------------- 50

3. The Set Membership Operator,
'<=al 1--------------------------------------- 5(

4. Th Set Membership Operator,
>=ll---------------------------------------5 1

6

5. The Set Membership Operator,
all -------------------------------- 52

6. The Set Membership Operator,
,a]ll - --------------------------------- 53

V. EXPRESSING IN-MEMBERSHIP
OPERATIONS IN ABDL ------------------------- 4

1. The Set Membership Operator,
'IN - ----------------------------------- 54

2 The Set Membership Operator,
'NOTIN" - ------------------------------ 54

E. EXPRESSING ANY-MEMBERSHIP
OPERATIONS IN ABDL 5

1. The Set Membership Operator,

'=ANY - -------------------------------- 55

2. The Set Membership Operator,
=ANY- - --------------------------------- 55

7.. The Set Membership Operator,

.=ANY - "--------------------------------55

4. The Set Membership Operator,

')=ANY* ------------------------------- 56

5. The Set Membership Operator,

'<ANY' - -------------------------------- 57

6. The Set Membership Operator, -

'>ANY - -------------------------------- 57

F. EXPRESSING ALL-MEMBERSHIP
OPERATIONS IN ABDL ------------------------ 58

1. The Set Membership Operator,

'=ALL - -58

2. The Set Membership Operator,

S'=ALL - -------------------------------- 5

3. The Set Membership Operator,

'<-ALL - ------------------------------- 58

4. The Set Membership Operator,

* >-ALL - ------------------------------- 59

7

.o -% " . %"• **•. . o.- *" • .- . . .- o. % 'S .%~ - -. -- . o -. . 5-. ..-~..

5. The Set Membership Operator,
<ALL'--------------------------------------- -9

6,. The Set Membership Operator,
::L--------------------------------------- 6"

V. SELECTIONS WITH SET MEMBERSHIP
OPERATIONS ON MULTIPLE RELATIONS--------------------861

A. NESTED SELECTIONS WITH
TWO RELAT IONS-------------------------------------61

Bf. NESTED SELECTIONS WITH
THREE RELATIONS - - - - - - - - - - - - - - 6

C. NESTED SELECTIONS WITH
hi ~N RELATIONS--------------------------------------- 64

D. TRANSLATING NESTED SELECTIONS TO
A SERIES OF ABDL RETRIEVALS--------------------- 65

VI. IMPLEMENTING NESTED SELECTIONS----------------------- C39

A. ALGORITHMS FOR BUILDING
THE ADDL QUERY -- - - - - - - - - - - - -- 9

1 . The Query -Constructor Subroutine --- 70

7 . The N-Conjunction Subroutine-------------- 72

The I-Conjunction Subroutine------------- 7

B. AN ITERATIVE STRUCTURE FOR CONTROLLING
THE EXECUTION OF N-LEVEL SELECTIONS------------75

C. PROPOSED SOFTWARE STRUCTURE---------------------77

VII. ADDITIONAL SQL-TO-AEIDL TRANSLATIONS----------------- 82

A. SELECTED SINGLE-RELATION OPERATIONS -----------8

1. Updating Multiple-Attributes ------------- 5

2. Retrieving Qualified Groups ------ 9

Retrieving Computed Values-----------------93

4. Providing Format Options-------------------95

5. The Retrieval With Ordering (SORT) ---- 96

6. An Elimination of Duplicates
(PROJECTION)---------------------------------97

B. SELECTED MULTIPLE-RELATION OPERATIONS --- 99

1. The Retrieval Using UNION---------------- 100

2. The Retrieval Specifying
Join Operations---------------------------- 10(2

C. THE MODIFIED SOFTWARE STRUCTURE
OF THE SOL INTERFACE---------------------------- 105

VIII. CONCLUDING REMARKS-------------------------------------110

APPENDIX A: FORMAL SPECIFICATION OF THE
ATTRIBUTE-BASED DATA LANGUAGE, ABDL --- 115

LIST OF REFERENCES--1 118

INI1TI AL D ISTRTIBUT ION LIST-----------------------------------I 1-3

9

ACKNOWLEDGEMENTS

The work reported in this thesis is part of ongoing research

efforts conducted by the Laboratory for Database Systems

Research, Department of Computer Science, Naval Postgraduate

School, Monterey, California, 93943. The laboratory is

under the direction of Dr. D. K. Hsiao. This work is

supported by Contract NO0014-84--WR-24058 from the Office of

Naval Research and by an equipment grant from the External

Research Program of the Digital Equipment Corporation.

I would like to extend my gratitude to the following people:

Dr. David K. Hs ao, for the opportunity, guidance, and most
importantly, for the motivation.

Dr. Paula R. Strawser, for her professionalism, detailed
guidance, and "gentle prodding".

My wife, Shirl, and my children, Jenni and Jamie, for their
support and understanding.

10

%......

I. INTRODUCTION

Database technology is rapidly becoming an extremely

important aspect of data processing. Commercial database

management systems have only been available since the

1960's. Today, many thousands of organizations (e.g.,

corporations, universities, governments) are critically

dependent on the efficient and reliable operation of these

systems. Each of these organizations has invested large

amounts of time, energy, and money to ensure that the

various end users are provided the data they need for doing

their jobs as effectively and efficiently as possible. Any

of the three generally known approaches to the design of

database systems (i.e., network, hierarchical, and

relational) provides for the centralized control of an

organization's operational data. However, questions

concerning the ease of understanding, use, and

implementation have stimulated research to determine the

"best" approach. The earliest database systems were based

on the network or the hierarchical model. These models lend

* . themselves well to the efficient implementation necessary

for the maintenance of large databases. Today, with the

0increased emphasis on the ease of use and understanding,

many of the newer commercialized systems are based on the

relational model. Examples of commercially available

.' 11

.°.
. , , .

, > . . .-. .. •.,.. • .. . -. ,--.- -. . . ' ,..... -"..... . , ..-.. -, - -' ,. "..,, .". .. , .

I

systems based on these models include: IMS (hierarchical),

SOL/DS (relational), and IDMS (network). Each of these

systems utilizes a model-based data language which allows

the user to specify the operations to be performed on the

data.

Once a commitment is made to manage a large database

containing an organization's operational data through the

implementation of one of these systems, it is financially

prohibitive to change to another approach. In addition to

the obvious re-programming requirement, user personnel

(including high-level executive users) must be re-trained in

the syntax and semantics of a different data language.

Demurjian, et. al., have proposed an attractive alternative

to the development of separate, stand-alone systems for

specific models. Their research, reported in [Ref. 1],

proposes that a system can be designed ... to support

multiple data models and model-based languages as if the

system is a heterogeneous collection of database systems."

The above proposal is based on the existence of a simple

and powerful data model to which the network, hierarchical.

and relational models can be mapped. This is the attribute- .

based data model as originally described by Hsiao [Ref. 2]

and extended by Wang [Ref. 31. This is the data model of

the Multi-backend Database System (MDBS), a software

database system designed by Menon and Hsiao [Ref. 4].

The proposal of [Ref. 1] is that the attribute-based system

12

Ii : i

i'.. .i'

(MDBS), with the attribute-based data model and the

-*attribute-based data language (ABDL), can servz as a kernel

for the support of several data models and the data

languages based on those models.

The attribute-based system is ideally suited to its

proposed role as a kernel of database systems. As

demonstrated by Banerjee [Refs. 5, 6, and 7], a relational,

hierarchical, or network database can be converted into an

attribute-based database. The primary database and

aggregate operations, RETRIEVE, INSERT, DELETE, UPDATE, MIN,

MAX, SUM, COUNT, and AVG are supported by the system's high-

level data language, ABDL. Finally, language interfaces can

be developed to translate relational, hierarchical , or

network data language constructs into ABDL constructs. In

this thesis, we are concerned with the language interface

aspects of this research.

In particular, this thesis provides the design and

analysis of a relational interface to the attribute-based

system (MDBS). We extend the work of Macy [Ref. 8], who has

shown that a subset of the relational model-based data

language, SQL (Structured Query Language) can be directly

supported by MDBS and ABDL. Macy has provided mappings from

the SQL SELECT, INSERT, DELETE, and UPDATE constructs to the

corresponding ABDL constructs: RETRIEVE, INSERT, DELETE,

and UPDATE. The translations are limited to queries

involving simple, single-relation operations. Using these

13

basic mappings as a foundation, we show that SQL queries

involving set membership operations can also be mapped

directly to ABDL constructs. We also demonstrate that other S

SQL constructs (of particular importance, the nested SQL ""- -

SELECT) can be mapped to a series of ABDL operations.

Finally, we propose a software structure to facilitate the

implementation of a complete relational interface for the

attribute-based kernel (i.e., MDBS). In the following two

sections, we discuss our design goals and our unconventional .

approach to the design of the SQL interface. In the last

section of this chapter, the organization of the thesis is

presented.

A. DESIGN GOALS

We are motivated to design a SQL interface to MDBS in

order to demonstrate the feasibility of utilizing the

attribute-based system as the kernel of database systems in

general. However, our intention is not to propose changes

to MDBS itself. Instead, we propose that the SQL interface

be implemented on the host computer. All translations are

accomplished in the SQL interface. MDBS continues to

receive and process requests written in the syntax of ABDL.

Related to the goal of avoiding modifications to the

functionality of MDBS is the goal of keeping the syntax of p
ABDL intact. We utilize existing ABDL constructs in our

query translations. A single SQL query may map to one ABDL

request or a series of ABDL requests. The processing of one

14

VS

..........~ .-. ..--. -...

.

request may depend on the results of some other request in

the series. Clearly, the interface must include some method

of controlling the iterative processing of series of

requests. The software structure of our proposed interface

(described in Chapter VI and augmented in Chapter VII)

provides for this iterative control.

As discussed above, we have made it our goal to leave

MDBS and ABDL unchanged. We also desire to make our

interface transparent to the SQL user. For example, in a

corporate environment, a new employee with previous

experience with SQL/DS should be able to log in at a system

terminal, input a SQL request, and receive result data in a

relational format (i.e., a table). The employee requires no

training in MDBS or ABDL procedures prior to utilizing the

system. An obvious advantage is that the new employee - -

becomes a contributing member of the organization almost

immediately, with no retraining. The non-productive period

of new employee indoctrination is greatly reduced.

B. APPROACH TO DESIGN

Our approach to the design and analysis of a SQL

interface to MDBS is unconventional by today's standards.

The normal method is to design a system in a top-down

manner. High-level abstractions are considered first, while

deferring lower-level details. In this thesis, we consider

the lowest levels first. We are building upon the basic

subset of SQL-to-ABDL mappings provided by Macy [Ref. 83.

15

As additional SQL operations are incorporated into

the interface, we make appropriate additions to the set of

SQL-to-ABDL mappings. The functional requirements of an

overall software structure for the interface become apparent

in Chapter V, when we present ABDL translations for the

nested SQL SELECT. The functionality and organization of

structure components is described graphically, in text, and

through the presentation of high-level algorithms. We

reiterate that, in the development of the SQL interface,

MDBS is considered to be a "black box" which processes

database requests presented in the syntax of ABDL. We are

proposing an interface, residing on a host computer, which

enables a user to access a relational database implemented

on an attribute-based system. Recommendations for

modification within the structure of MDBS are made only if a

desirable SQL operation cannot be supported by existing ABDL

operations.

Our approach to the presentation of SQL-to-ABDL mappings

is as follows. We first review the direct mappings (i.e.,

SELECT/RETRIEVE, INSERT/INSERT, DELETE/DELETE, and

UPDATE/UPDATE) developed by Macy [Ref. 8]. Beginning in

Chapter IV, we investigate additional operations to be

supported by the interface. The functionality of each of

these operations is thoroughly explained through the use of

example queries. The equivalent ABDL requests are then

determined.

16

........................

~-* ** *. .

All examples on database operations presented in this

thesis are based on the Suppliers-and-Parts database

depicted in Date [Ref. 9]. This database contains three

relations: "s" (Suppliers) , "SPI (Shipments) , and "P"

(Parts). We use many of Date's examples directly because

they are well-known, thereby facilitating reader

understanding of our SQL to ABDL translations. The database

is depicted in Figure 1.

C. ORGANIZATION OF THE THESIS

In Chapter II, we present an overview of the

organization and functionality of the Multi-backend Database

System (MDBS). Also presented are descriptions of the

attribute-based data language (ABDL) and the relational data

language (SQL). Chapter III reviews the direct SQL-to-

ABDL mappings as developed by Macy [Ref. 8]. SQL set

membership operations involving single relations, and the

equivalent ABDL requests are explained in Chapter IV.

Chapter V explains set membership operations on multiple

relations (i.e., nested SELECT). In Chapter VI, a software

structure is proposed to facilitate the implementation of

nested SELECTs. In Chapter VII, the interface software

structure is modified to include the functionality necessary

to accomplish the translation of other single-relation and

multiple-relation operations. Chapter VIII presents our

conclusions and recommendations for future research.

17

.

S S# SNAME STATUS CITY

Si Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
54 Clark 20 London
5 I Adams 130 1Athens]

SP S# P#* QTY

51 P1 300
51 P2 200
61 P3 400
51 P4 200
Si P5 100
51 P6 100
62 P1 300
S2 P2 400
S3 P2 200
64 P2 200
64 P4 300

P P#* PNAME COLOR WEIGHT CITY

P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris

iP ICo LRe 19 odn

Figure 1. The Suppliers-and-Parts Database.

16

II. THE MULTI-BACKEND DATABASE SYSTEM (MDBS), ITS DATA
LANGUAGE (ABDL) AND THE INTERFACE LANGUAGE (SQL)

As we begin our investigation into the feasibility of

designing and implementing a complete relational interface

for the Multi-backend Database System (MDBS), it is

important to gain a general familiarity with the

organization of MDBS and with the system's attribute-based

data language (ABDL). We have selected the Structured Query

Language (SQL) as the relational data language to be

supported by our interface. Therefore, we must also have an

understanding of the structure and capabilities of this

language.

In Sections A and B, we briefly describe MDBS and ABDL,

respectively. Section C provides a brief description of

SQL. These descriptions, though somewhat superficial,

should enable the reader to comfortably follow subsequent

discussions. A complete description of MDBS and ABDL can be

found in Hsiao ERefs. 4 and 103. The reader is referred to

Astrahan [Ref. 113 and Chamberlin [Ref. 12] for in-depth

discussions of SQL.

A. A REVIEW OF THE MULTI-BACKEND DATABASE SYSTEM (MDBS)

MDBS is a multiple-mii tcomputer backend database

computer. Off-the-shelf hardware and specialized software

are combined to provide database management service to a

19

host computer. Figure 2 depicts the hardware organization

of MDBS. The hardware organization includes one

minicomputer as a controller and multiple minicomputers as

backends. Each backend has one or more dedicated disk

drives. The controller and the backends are connected by a

broadcast bus. The database is distributed across the disk

drives of the backend in such a manner that the backends can

process requests in parallel, providing a significant

performance advantage over traditional single-processor

architectures.

The prototype MDBS, currently operating at the U.S.

Naval Postgraduate School, uses a VAX 11/780 as the

controller and two PDP 11/44s as the backends. Each of

these backends has one or more disk drives for its dedicated

use. The multiple backends and the controller are connected

by DEC's Parallel Communication Links (PCLs). Their

broadcast capabilities are simulated in software.

The major design goal of MDBS is to provide a high-

performance system for large-capacity databases. Throughput

improvement should be proportional to the number of

backends, and the response-time reduction should be

inversely proportional to the number of backends. A second

design goal is that the system should be easily extensible.

The system should be able to accomodate additional backends

with no modification to existing software, and no new

programming. The incorporation of additional backends

2

20 ;ii..

I

......-.. % .o *. -.. . . , . , %.'% ,", , ."% "-"p °q
"

' . . 'o " " ' '-°° " '

.". °o °° ° " " ° ."". ° " ". . " " " 0 " ' " ° "% " • " % • • • • " •• • " .** --* -a-

one or more

dikdrives

one or more

disk drives

To the
host ontrolle

computer

one or more

disk drives

Broadcasti ng
bus

Figure 2. The MDBS Hardware Organization

21

4 4 -421

should not require modification to existing hardware, and

disruption of system activity should be minimal. The
S

software structure of MDBS provides this extensibility. The

software of the backends is identical, utilizing identical

operating software for the additional backends.
S

It is clear that the controller could become a

bottleneck. MDBS reduces this potential by minimizing the

role of the controller and maximizing the amount of work

done by the backends. The software structure of MDBS is

shown in Figure 3. The functions of the controller are

limited to request preparation, insert information

generation, and post processing. The request preparation

functions are performed before a request is placed on the

broadcast bus. These functions handle parsing, syntax

checking, and the transformation of a parsed request into

the form required for processing at the backends. The

insert information generation functions are performed during

i
the processing of an insert request. These functions

provide additional information to the backends, such as the

identity of the particular backend at which the record is to

be inserted. The post processing functions are performed

after replies are returned from the backends. For example,

result data are collected prior to forwarding to the host

computer.

As described above, the controller does relatively

little work. The backends, on the other hand, are

22

%... ...

The M~ulti-Eackend Database System

(MBS

Categories
of Functions

*DIRECTORY RECORD CONCURRENCY
IANAGEMENT PROCESSING CONTROL

Figure 3. The MDEES Software StrLICtUr-e

23

responsible for all the major database management functions.

These are directory management, record processing, and

concurrency control. The directory management functions

determine the secondary storage addresses of the appropriate

records and perform directory table maintenance. The record

processing functions store records into secondary storage,

retrieve records from secondary storage, and select the

records that contain the desired information. The

concurrency control functions ensure consistency for

concurrent execution of user requests.

The key to high-performance is in the parallelism of the

backends. The database is distributed across the disks of

all of the backends. Therefore, when a request is

broadcasted from the controller, each backend can execute

the request on its portion of the database. To yield an

additional performance advantage, a queue of requests is

maintained at each backend. Each backend schedules requests

for execution independent of the activities of the other

backends.

B. THE ATTRIBUTE-BASED DATA LANGUAGE (ABDL)

We preface our discussion of the syntax and

functionality of ABDL with a brief introduction to the data

model supported by MDBS. This model is the attribute-based

data model, originally developed by Hsiao [Ref. 2]. The

following constructs are informally defined. A database

consists of a collection of files. Each file contains a

24

. ..°

.

unique group of records. Each record is composed of two

parts. The first of these parts is a collection of

attribute-value pairs or keywords. An attribute-value pair

is an element of the Cartesian product of the attribute name

and the domain of attribute values. As an example,

<STATUS,30> is an attribute-value pair having 30 as the

value for the STATUS attribute. In each record, there is at

most one attribute-value pair for each distinct attribute

defined in the database. The last part of each record

contains textual information. This is the record body. An

example of a record without a record body is shown below.

We note that all examples in this and subsequent sections

are based on Date's suppliers-and-parts database as

described in [Ref 9] and in Chapter I.

<FILE,S>,<S#,Sl>,<SNAME,Smith>,<STATUS,20,<CITY,London)

The first attribute-value pair in every record indicates the

file name. In the example above, the file name is 'S' (the

Suppliers file).

The database can be accessed through the use of keyword

predicates. Each of these keyword predicates is a three-

tuple of the form (attribute, relational-operator, value),

e-g., (STATUS < 30). When keyword predicates are combined

into a conjunction such as

((FILE S) A (STATUS < 30))

25

.7 :! :-.

or into a disjunction of conjunctions such as

(((FILE = S) A (SNAME = Smith)) V

((FILE = S) A (SNAME = Jones)))

a query (in disjunctive normal form) of the database is

formed .

In the following subsections, we will see how these

keyword predicates and queries are used in the attribute-

based data language for search and retrieval operations. We

describe the syntax and functionality of the four types of

request supported by ABDL: retrieve, insert, delete, and

update. Appendix A provides a formal specification of this

non-procedural language.

1. The RETRIEVE Request

The RETRIEVE request allows the user to query the

database for information. This operation obtains the

requested data without altering the database. The syntax

isi

RETRIEVE (Query) <Target-list> [BY attribute] [WITH Pointer]

The type of the request is indicated by the reserved word

RETRIEVE. As we have seen, the Query part is composed of

predicates in the disjunctive normal form. From our

previous discussion, we note that the Query specifies the

file and those records within the file which satisfy the

request. The attributes for which values are to be

26

V'. V

extracted from this portion of the database are contained in

the Target-list. ABDL supports five aggregate operations:

AVG, COUNT, MAX, MIN, and SUM. Therefore, the attribute

value may be an aggregate of values from multiple records,

or the value from a single record.

The BY and WITH clauses are optional, as indicated

by the square brackets in the syntax. The BY-clause is used

when a grouping by some attribute is desired. The WITH-

clause specifies whether pointers to the retrieved records

must be returned to the user for later use in an update

request. As an example of a RETRIEVE request, if we wish to

obtain supplier names for all of the suppliers with STATUS

greater than 10, grouped by location, we may use the

following query:

RETRIEVE ((FILE S) A (STATUS > 10)) <SNAME> BY CITY

2. The INSERT Request

The INSERT request alters the database by adding a

new record. The syntax is:

INSERT Record

An example of an INSERT request is:

INSERT C <FILE,S>, <S#,SI>, <SNAME,Smith>

This adds a record to the suppliers file for supplier number

S1 and identifies that supplier as Smith.

27

.
. .

3. The DELETE Request

The DELETE request alters the database by removing

an existing record or records. The syntax is:

DELETE Query

where Query specifies which records are to be deleted. An

example of a DELETE request is: S

DELETE ((FILE = S) A (STATUS = 10))

This deletes all records in the suppliers file for suppliers

whose status is equal to 10.

4. The UPDATE Request

The UPDATE request alters the database by modifying P

the value of some.attribute in an existing record. The

syntax is:

UPDATE Query Modifier

where Modifier indicates which of five types of modification

is to be performed. These modifiers are defined as follows. S

A type-O modifier sets the new value of the attribute being

modified to a constant. A type-I modifier sets the new

value of the attribute to be some function of its old value

in the record being modified. A type-II modifier sets the

new value to be some function of another attribute value in

the record being modified. A type-III modifier sets the new

value to be some function of another attribute value in

another record identified by the Query in the modifier. A

28

type IV modifier sets the new value to be some function of

another attribute value in another record identified by the

pointer in the modifier. An example of an UPDATE request

(using a type-I modifier) is:

UPDATE (FILE = S) <STATUS STATUS + 10>

which adds 10 to the status of all suppliers.

C. THE RELATIONAL QUERY LANGUAGE (SQL) AS THE INTERFACE
LANGUAGE

AS indicated in Chapter 1, we have selected the

Structured Query Language (SQL) as the data language to be

supported by our relational interface to the Multi-backend

Database System (MDBS). The language's commercial

avail-ability coupled with its simple yet powerful

functionality make SQL an ideal choice.

In the preceding section, we described the attribute-

based data model prior to introducing ABDL. However, in

this section, we assume a certain familiarity with the

relational data model as we prepare to describe the four

basic constructs of SQL: SELECT, INSERT, DELETE, and

UPDATE. If the reader desires a review of relational

theory, there are several very good texts available. In

particular, we recommend Date [Ref. 9] and Ullman [Ref. 13].

A discussion of the mapping between the relational data

model and the attribute-based data model can be found in

Banerjee [Ref. 61.

29

.".-'\..2.... .

j

1. The SELECT Query

Data retrieval, which is represented syntactically

as a SELECT-FROM-WHERE block, is the most basic operation of

SQL. Mapping indicates that a known quantity (STATUS = 30)

is to be transformed into a desired quantity (SNAME) by

means of a relation (S). The attributes to be returned are

listed in the SELECT clause (the built-in functions COUNT,

SUM, AVG, MAX, and MIN may be applied to these attributes).

The FROM clause indicates which relation or relations are to

be searched. The WHERE clause specifies the retrieval

conditions. As an example, if we desire to obtain the names

of suppliers whose status is 30, we may use the following

query:

SELECT SNAME

FROM S

WHERE STATUS = 30

The SELECT construct allows the user great

flexibility in data retrieval operations. The user can list

several relations in the FROM clause in order to obtain

values selected from more than one relation (JOIN

operations). The WHERE clause can contain any number of

predicates including the six standard relational operators

(=, =, >, >=, <, and =), and the Boolean operators (AND,

OR, and NOT). Parenthesis may be used to indicate a desired

order of evaluation. The set comparison operators IN, ANY,

. -

and ALL may also be used in the WHERE clause. (We I
investigate the use of these operators in Chapter IV.)

There are many other possible variations to the

SELECT operation including the extremely useful nested

SELECT. In the nested SELECT, the result of one SELECT

request is used in the WHERE clause of another SELECT

request. (The nested SELECT is thoroughly described in

chapter V.)

2. The INSERT Query

The INSERT request allows the user to insert a new

tuple (row) or set of tuples into an existing relation

(table). Insertion of a single tuple can be accomplished

through the use of a query such as

INSERT INTO S:

0S6*,Rollins','40',Newport > .

In this example, all of the attributes are present and in

the correct order. If some attribute values are unknown,

those attributes for which values are being inserted must be

listed following the relation name. A SQL INSERT statement

may also evaluate a SELECT request and insert the resulting

set of tuples into an existing (or temporary) relation. An

example of such an INSERT operation is as follows.

31

. "...................-....% .

INSERT INTO TEMP:

SELECT P#

FROM SP I

WHERE S# = 'S2

This enters into TEMP part numbers for all parts supplied by
I

supplier 62.

3. The DELETE Query

The DELETE specifies tuples to be removed from the

database. The tuples are indicated by means of a WHERE

clause that is syntactically identical to the WHERE clause

of a SELECT construct. As an example, to delete supplier I
number five from the supplier relation, we may use the

following query.

DELETE S

WHERE S# = '65'

We may also delete all shipments with the query
P

DELETE SP

The SP relation is still known, but it is now empty.

4. The UPDATE Query

The UPDATE request is syntactically similar to the

DELETE request, except that a SET clause is used to specify
I

the updates to be made to the selected tuples. New

attribute values contained in the SET clause may be stated '

as constants, as expressions based on the original value of

32

I

D
• .

°°. °° ... ', •. • -• ,

the attribute, or as nested queries. An example of an

UPDATE request is

UPDATE S

SET STATUS -2 *STATUS

WHERE CITY = London'

This doubles the status of all suppliers in London.

33

II. REVIEW OF BASIC MAPPINGS

As we have described in Chapter II, the +our primary

database operations of the Structured Query Language (SQL)

are SELECT, INSERT, DELETE, and UPDATE. Macy [Ref. 8] has

shown that for a subset of simple, single-relation SQL

queries of all four types, there exist direct mappings into

requests of the Attribute-based Data Language (ABDL). These

mappings are fundamental to all further SQL-to-ABDL

translations introduced in this thesis. Therefore, in the

remainder of this chapter, we provide a review of these

basic mappings as defined by Macy. We explain the mappings

both graphically and in text. Each graphical presentation

will display the general forms of the SQL and ABDL

constructs, and the mappings between them (such as Figure 4,

which depicts the SELECT to RETRIEVE mapping). Sample

translations, utilizing our suppliers-and-parts database,

will be presented in the text. The subset of SQL, for which

translations are described, contains those operations that

Macy has determined can be directly supported by MDBS and

ABDL. In the next chapter, we will show that SELECT

requests involving set comparison operators can also be

directly supported. In subsequent chapters, we describe

translations for SQL constructs such as the nested SELECT

which involve multiple ABDL constructs.

34

,. - ...

Prior to describing the specific SQL to ABDL mappings

(e.g., SELECT to RETRIEVE), we discuss two general types of

mapping identified by Macy: Syntactic-substitution mapping

and Conversion mapping. Syntactic-substitution mappings are

accomplished by simple substitution of syntactical terms.

Mappings requiring only substitution are denoted by a

directional arrow labeled with a square containing the

letter S (e.g., the mapping between the reserved words

SELECT and RETRIEVE in Figure 4). Conversion mappings are

accomplished by combining a clause from an SQL query with

information about the ABDL data structure to create the

equivalent clause of the ABDL construct. Mappings requiring

conversion are denoted by a directional arrow labeled with a

triangle containing the letter C (e.g., the mapping between

the SOL FROM and WHERE clauses to the ABDL Query in Figure

4). We will describe conversion mappings in more detail as

we present each for the SQL to ABDL translations. For an

extensive discussion of the basic mappings described in this

chapter, the reader is referred to Macy [Ref. 8].

A. MAPPING THE SQL SELECT QUERY TO THE

ABDL RETRIEVE REQUEST

The mapping from the SQL SELECT to the ABDL RETRIEVE is

depicted in Figure 4. The mapping proceeds as follows.

The reserved word SELECT is mapped by syntactic substitution

to the reserved word RETRIEVE. The sel exprlist maps

directly to the targetlist. A conversion mapping is

35

required to translate the FROM and WHERE clauses to the ABDL

query clause. This is accomplished by creating an equality

keyword-predicate for the relationname, e.g., FILE =

relation _name. This new predicate is combined with the

SELECT •

sel _expr_l i st

FROM Relationname_WHERE

boolean]

[GROUP BY field-name]

RETRrIEVfE

query/

target_l i st

[BY attribute]

Figure 4. Mapping the SQL SELECT to the ABDL RETRIEVE

other predicates listed in the boolean expression to form an

equivalent ABDL query clause. This conversion is called a

query-conversion mapping. The GROUP BY construct maps

directly to the BY construct. As an example of a SELECT to

RETRIEVE translation, the following SQL SELECT will, for

each part supplied, get the part number and the total

quantity supplied of that part.

0

36""-

.. ~. ...----

SELECT P#,SUM (OTY)

FROM SP

GROUP BY P#

An equivalent ABDL request is

RETRIEVE (FILE = SP) <P#,SUM(QTY)> BY P#

B. MAPPING THE SQL INSERT QUERY TO THE ABDL INSERT REQUEST

The mapping from the SQL INSERT to the ABDL INSERT is

depicted in Figure 5. The mapping proceeds as follows. The

reserved word INSERT is the same for both requests. A

conversion mapping, referred to as a record-conversion

mapping, in this case, is required to translate "INTO

relation name insert spec" into the ABDL "record". As we . -

have seen in Chapter II, the ABDL record is a series of

attribute-value pairs, the first pair of which identifies

the file name. This mapping, then, can be accomplished by

INSERT

INTO relationname

E
insert_spec

INSERT

record

Figure 5. Mapping the SQL INSERT to the ABDL INSERT

constructing attribute-value pairs for the relation/file and

relation/filename and for the values of the attributes

37

Ilk"

listed in the insertspec. As an example of an SQL INSERT

to ABDL INSERT translation, the following SQL INSERT query

will add part P7 (name 'Washer', color 'Grey', weight '2',

city 'Athens') to relation/file P.

INSERT INTO P:

,'P7','Washer','Grey','2', 'Athens°>

An equivalent ABDL request is

INSERT (<FILE,P>,<P#,P7>,<PNAME,Washer>,

<COLOR,Grey>,<WEIGHT,2>,<CITY,Athens>)

C. MAPPING THE SQL DELETE QUERY TO THE ABDL DELETE REQUEST

The mapping from the SOL DELETE to the ABDL DELETE is

depicted in Figure 6 The mapping proceeds as follows. The

reserved word DELETE is the same for both requests.

The query-conversion mapping, as described in Section A,

DELETE P

relation _name

[WHERE boolean]

DELETE

query

Figure 6. Mapping the SOL DELETE to the ABDL DELETE

is used to translate "relationname" and "WHERE boolean"

into the ABDL query clause. As an example of an SOL DELETE

-I . " -

:i.:-:.>< .;-:.>.::>1.:-:-.-.>':.-.>"/,'.".">,'>.> .".',:;'-,, ';" '; '-:-..',".' ' '.' '.:38.:'""

.-. -.- *-

to ABDL DELETE translation, the following SQL DELETE query

will delete supplier S1 from the suppliers relation.

DELETE S

WHERE S# ='S'

An equivalent ABDL request is

DELETE ((FILE = S) A (S# = Si))

D. MAPPING THE SQL UPDATE QUERY TO THE ABDL UPDATE REQUEST

The mapping from the SQL UPDATE to the ABDL UPDATE is

depicted in Figure 7. The mapping proceeds as follows.

UPDATE

relation name

J set cl ause l ist

(WHERE boolean]

UPDATE

query

modfer

Figure 7. Mapping the SQL UPDATE to the ABDL UPDATE

The reserved word UPDATE is the same in both requests. As

in Sections A and C, the query-conversion mapping is used to

translate "relationname" and "WHERE boolean" into the ABDL

query clause. This conversion is common to the

SELECT/RETRIEVE, DELETE, and UPDATE translations. The

39

i~i-'-,-.-,.--..-.-...-'.-'-'.-.. .-....-.... ---.......-....... --.-. ,.,.-.. ,,,..-. ...
...v-....

component "set clauselist" directly correlates to the ABDL

"modifier", i.e., both constructs specify how the records

being modified are to be updated. To accomplish this a

translation, the modifier conversion maoing is used.

The conversion required is a restructuring of SQL

setclauselist constructs into acceptable ABDL format. The

modifier-conversion is similar to the query-conversion. We

now present an example of the conversions that are required

in the translation of an SQL UPDATE to an ABDL UPDATE. If •

we desire to double the status of all supplierS in london,

we may use the following SQL query:

UPDATE S

SET STATUS - 2 * STATUS

WHERE CITY = 'London'

An equivalent ABDL request is

UPDATE ((FILE = S) A (CITY = London)) (STATUS 2 * STATUS)

40

U0

... '-

IV. SELECTIONS WITH SET MEMBERSHIP OPERATIONS ON
SINGLE RELATIONS

As we have seen, the condition following the WHERE

clause in SQL SELECT operations may include the normal

comparison operators, i.e., =, etc. Macy [Ref. has

shown that MDBS supports simple, single-relation retrieval

operations using these comparison operators. SQL allows the

use of several additional comparison operators. Three of

these, IN, ANY, and ALL, deal with the set membership, and

are of particular interest to us as we investigate possible

extensions to the subset of SQL operations whose interfaces

were proposed by Macy.

In this chapter we show how qualifications using IN,

ANY, and ALL can be supported by MDBS. We first consider

the simple case where set members are enumerated in the

query. Some of the examples we provide herein may not

appear very useful. However, they will serve to illustrate

the mechanics of SELECT operations using these comparison

operators. Their usefulness will become apparent in Chapter

V, when we use them in retrievals involving multiple levels

of nesting.

In sections A, B, and C, we formally define the

comparison operators IN, ANY, and ALL, respectively. As

noted by Chamberlin, et. al. [Ref. 14], English language

definitions of these operators are, at best, ambiguous. We

41

-..',.. . .

shall, nevertheless, attempt to explain them in text prior

to providing a clarifying definition in predicate logic. An

example of a SELECT query will then be given for each case.

The result relation of each of these examples will be

provided in order to further clarify the uses of these

operators. As in previous chapters, our examples specify

retrievals of data contained in Date's database (defined in

Chapter I). We will continue to utilize this database

throughout this thesis. Again, note that some of our

examples are taken directly from Date ERef. 9]. In Sections

D, E, and F we express IN, ANY, and ALL in the ABDL

requests.

A. IN-MEMBERSHIP OPERATIONS

The comparison operator, IN, can be thought of as the

set membership operator, E Correspondingly, NOT IN is

equivalent to

1. The Set Membership Operator, 'IN'

The operator, IN, is evaluated as follows. The

condition, A IN B, evaluates to be true if and only if the

value of attribute A is equal to at least one value in the

enumerated set B. The formal definition in predicate logic

follows:

VX (x C A y==. 3Y (y B x - y))

42

EXAMPLE 1: If we wish to obtain supplier numbers for

suppliers Smith and Jones, we may use the

following query:

SELECT S#,SNAME

FROM S

WHERE SNAME IN (Smith,Jones)

The result relation is: S# SNAME

S1 Smith
S2 Jones

2. The Set Membership Operator, 'NOT IN'

The operator, NOT IN, is evaluated as follows. The

condition, A NOTIN B, evaluates to be true if and only if

the value of attribute A is not equal to any value in the

enumerated set B. The formal definition in predicate logic

follows:

Vx (x E A (==V y x -= y))

EXAMPLE 2: If we wish to obtain supplier numbers for

suppliers who supply some parts, but do not

supply parts P3 or P4, we may use the following

query:

SELECT S#

FROM SP

WHERE P# NOT IN (P3,P4)

43

.

The result relation is:

NS

B. ANY-MEMBERSHIP OPERATIONS

The comparison operator, ANY, is used in conjunction

with the six standard relational operators,=, -, :=, :

'., and >. It specifies variations on the theme of set

membership as explained in the following subsections.

1. The Set Membership Operator, '=ANY'

The operator, =ANY, is interchangeable with the

operator, IN. The condition, A =ANY B, evaluates to be true

if and only if the value of attribute A is equal to at least

one value in the enumerated set B. Example 1 and the

predicate logic definition given for the operator IN apply

equally to =ANY. In subsequent examples involving set P

membership, we shall use IN rather than =ANY.

2. The Set Membership Operator, =ANY'

The operator, '=ANY, is evaluated as follows. The .

condition, A '=ANY B, evaluates to be true if and only if

the value of attribute A is not equal to at least one value

in the enumerated set B. The formal definition in predicate I

logic follows:

IV,: (xE A <=> 3y (ye B I x y))

EXAMPLE. 3: If we wish to obtain supplier numbers for

suppliers who supply some parts, but do not

44

2.

supply both parts P1 and P2, we may use the

following query:

SELECT S#

FROM SP

WHERE P# '=ANY (P1,P2)

The result relation is:

3. The Set Membership Operator, '<=ANY'

The operator, <=ANY, is evaluated as follows. The

condition, A <=ANY B, evaluates to be true if and only if

the value of attribute A is less than or equal to at least

one value in the enumerated set B. This implies that the

value of attribute A is less than or equal to the maximum

value in the set B. <=ANY, then, is not particularly useful

in the case of enumerated sets. The operators >=, >, and <

are similarily of limited value when sets are enumerated in

the query. As previously stated, the usefulness of these

operators will become apparent when we discuss queries in

which the results of one SELECT operation determine the set

members in the WHERE clause of another SELECT operation

(nested SELECT). The formal predicate logic definition of A

<=ANY B follows:

V- (x E A <==> 3y (y e B X <= y)) >

(x E A <==> x <- max (B)

45

As can be seen from the predicate logic definition, when

using the operator, <=ANY, it is logically unnecessary to

list more than one value (the maximum value) in the

enumerated set B. A similar comment is applicable when

using >=ANY, <ANY, or >ANY. However, in anticipation of our

nested SELECT discussion in Chapter V, example queries S

utilizing these operators will each contain an enumerated

set having more than one member. The additional values

listed in the set are superfluous. However, they will help

demonstrate the differing results obtained through the use

of the ANY and ALL operators.

S
EXAMPLE 4: If we wish to obtain supplier names for

suppliers whose status is not larger than 30,

we may use the following query:

SELECT SNAME

FROM S

WHERE STATUS <=ANY (10,20,30) I

The result relation is: SNAM

Smith
Jones
B1 k

4. The Set Membership Operator, >=ANY' P

The operator ".ANY is evaluated as follows. The

condition A >=ANY B evaluates to true if and only if the

4

.• , -. , - • .• •,o .• - . .- " .,
•

° " . %.•"
°

°.
°

.

value of attribute A is greater than or equal to at least

one value in the enumerated set B. This implies that the

value of attribute A is greater than or equal to the minimum

value in the set 8. The formal definition in predicate

logic follows:

Vx (x E A < y (y B I " y) -

VX (x E A x m== : in (B]-)

EXAMPLE 5: If we wish to get supplier names for suppliers

whose status is not less than 10, we may use

the following query:

SELECT SNAME

FROM S

WHERE STATUS >=ANY (10,20,30)

The result relation is: SNAME

Smith
Jones
Bl ak
C ark
Adamsl-

5. The Set Membership Operator, '<ANY'

The operator, (ANY, is evaluated as follows. The

condition, A <ANY B. evaluates to be true if and only if the

value of attribute A is less at least one value in the

enumerated set B. This implies that the value of attribute

A is less than the maximum value in set B. The formal

predicate logic definition follows:

47

*.w ',' -" • " "A
° °

° •" "-" "• • " " q •.. " " t '- "- " " " " % "" ,"

V (x e A - y (y 6 B < y))

Vx (: A <==> x < max (B})

I
EXAMPLE 6: If we wish to obtain supplier names for

suppliers whose status is less than 30, we may

use the following query:

SELECT SNAME

FROM S

WHERE STATUS <ANY (10,20,30)

The result relation is: NAME

SmithI
Jones
larkj

6. The Set Membership Operator. '>ANY'

The operator, >ANY, is evaluated as follows. The

condition, A >ANY B, evaluates to be true if and only if the

value of attribute A is greater than at least one value in

the enumerated set B. The formal predicate logic definition p

follows:

Vx (x G A <==> 3y (y 6 B x > y)) =>

Vx (x e A <==> x > min (B))

EXAMPLE 7: If we wish to obtain supplier names for

suppliers whose status is greater than 10, we

may use the following query:

48

.....................

SELECT SNAME

FROM S

WHERE STATUS 'ANY (10,20,30)

The result relation is: S.-ME

Smith
Blake
Clark

C. ALL-MEMBERSHIP OPERATIONS

Like the comparison operator, ANY, the operator, ALL, is

used in conjunction with the six standard relational

operators. It also specifies variations on the set

membership theme.

1. The Set Membership operator, '=ALL'

The operator, =ALL, is evaluated as follows. The

condition, A =ALL B, evaluates to be true if and only if the

value of attribute A is equal to every (each) value in the

enumerated set B. The formal predicate logic definition

follows:

V× (x A <= 3y (yE B x y)) A

Vy (y E B 3x (x E A x y))

From this definition, it is apparent that the set B, whether

manually enumerated or determined by the results of an inner

SELECT, would contain only. one value (or duplicates of that

value). Therefore, since we can always use a condition of

49

• .. *

the form WHERE STATUS 30, we shall not use the operator

=ALL in further discussion or examples.

2. The Set Membership Operator, "=ALL'

The operator, '=ALL, is interchangeable with the

operator, NOT_IN. The condition, A -=ALL B, evaluates to be

true if and only if the value of attribute A is not equal to

every value in the enumerated set B. In other words, there

is no value in the set B to which the value of attribute A

is equal. The predicate logic definition of NOTIN is

repeated for clarity:

V x" (X E A < V==>Vy (y x B j x -= y))

The query given in example 2 (with '=ALL substituted for NOT

IN) is applicable. In subsequent examples involving set

membership, we shall use NOT IN rather than "=ALL.

3. The Set Membership operator. ':=ALL'

The operator, <=ALL, is evaluated as follows. The

condition, A -=ALL B, evaluates to be true if and only if

the value of attribute A is less than or equal to every

value in the enumerated set B. This implies that the value

of attribute A is <= the minimum value in set B. The

predicate logic definition follows:

V (x A (==>Vy (yE B x y))

Vx (x I A ==> x <= min CB))

Again, as in the case of the operator ANY, our degenerate

S

50-

.- . .

examples utilizing the operators :'=ALL, >=ALL, ,:ALL, and

>ALL will be presented with enumerated sets containing more

than one member (even though, logically, only one member is

necessary).

EXAMPLE 8: If we wish to obtain supplier names for

suppliers whose status is not greater than 10,

we may use the following query:

SELECT SNAME

FROM S

WHERE STATUS K"=ALL (10,20,30)

The result relation is:

Note that the difference between the comparison operators

ANY and ALL is readily apparent when we compare this example

with example 4. In example 4, the operator, <=ANY, allows us

to obtain supplier names for suppliers whose status is not

larger than 30. The result relation in that example

includes the names of all five suppliers.

4. The Set Membership Operator, ->=ALL'

The operator, >=ALL, is evaluated as follows. The

condition, A >=ALL B, evaluates to be true if and only if

the value of attribute A is greater than or equal to every

value in the enumerated set B. This implies that the value

of attribute A is greater than or equal to the maximum value

51S!i
*. ** ------- * ..c.*

'-'. '-' ''-' ':' '- '- ""-" " '--" ''-" ° -: .-" " - " '? ' " " '-°''.. ...-. .-.-.. '.-..-.. . . .,... ... ;-
°

in set B. The predicate logic definition follows:

Vx '==:Vy (yE B I - y)

Vx (x E A <==> x max (B1)

EXAMPLE 9: If we wish to obtain supplier names for

suppliers whose status is at least 3, we may

use the following query:

SELECT SNAME

FROM S

WHERE STATUS >'ALL (10,20,30)

The result relation is: SNAME

5. The Set Membership operator. '<ALL' S

The operator, .'.ALL, is evaluated as follows. The

condition, A <ALL B, evaluates to be true if and only if the

value of attribute A is less than every value in the

enumerated set B. The predicate logic definition follows:

VY,(x E A ,==>Vy (y C B Ix *(y))

Vx (x A x=' x min (B))

EXAMPLE 10: if we wish to obtain supplier names for

suppliers whose status is less than 10, we

may use the following query:

52

0 "

SELECT SNAiME

FROM S

WHERE STATUS :'ALL (10,20,30)

The result relation is:

Note that this is the empty relation. There are no

suappliers whose status is less than 10.

6. The Set Membership Operator.,>~L

The operator, :,ALL, is evaluated aF follows. The

condition, A -.:,LL B, evaluates to be trut' if and only if the

Value of attribute A is great-er than every value in the

enumerated set B. Thp predicate logic definition follows:

Vx (x E *i *.==* Vv (y B x Y))-

V x (~ a max~ ."BI

EXAMPLE 11: If we wish to obtain supplier names -for

suppliers whose status is greater than 30, we

may use the following query:

SELECT SNAME

FROM S

WHERE STATUS '::-LL (10.20,36)

The result relation is:

Ais in ex~ample 10;, this is the empty relation. There are no

suppliers whose status is greater than 730.

53

.

D. EXPRESSING IN-MEMBERSHIP OPERATIONS IN ABDL

In this and the following two sections, we present ABDL

translations for the examples given in sections A, B, and C. I

Each SQL example will be repeated, followed by the ABDL

translation.

1. The Set Membership Operator, 'IN'

The SQL query presented as example I is

SELECT S#,SNAME

FROM S

WHERE SNAME IN (Smith,Jones)

Our proposed SOL interface would provide the following ABDL I

translation:

RETRIEVE (((FILE = S /A (SNAME = Smith)) \

((FILE = S) A (SNAME = Jones))) <S#,SNAME

One conjunction is created for each value in the enumerated

set, containing an equality predicate. The ABDL request P

will have as many conjunctions as there are valLues in the

set. 7
2. The Set Membership operator, 'NOT IN'

The SQL query presented as example 2 is

SELECT S#

FROM SP

WHERE P# NOT IN (P3,P4)

54

p.............................. ~:.;--..'..-... ...

The ABDL translation is

RETRIEVE ((FILE = SP) / (P# = P3) A (P# = P4) <S#

One predicate of the form (attribute "= value) is created

for each value in the enumerated set. The ABDL request will

contain a single conjunction, which is the logical AND of

these predicates.

E. EXPRESSING ANY-MEMBERSHIP OPERATIONS IN ABDL

1. The Set Membership Operator, '=ANY'

As previously defined, =ANY is equivalent to IN and

will not be included in our set of allowable SQL constructs.

2. The Set Membership Operator, =ANY'

The SOL query presented as example 3 is

SELECT S#

FROM SP

WHERE P# '=ANY (P1 ,P2)

The ABDL translation is

RETRIEVE (((FILE = SP) A (P# = P1)) V

((FILE = SP) A (P3 '= P2))) <S#>

One conjunction is created for each value in the enumerated

set, containing a predicate of the form (attribute =

value).

3 The Set Membership Operator, "<ANY"

The SQL query presented as example 4 is

................................ o

SELECT SNAME

FROM S

WHERE STATUS <=ANY (10,20,30)

The ABDL translation is

RETRIEVE ((FILE =S) A (STATUS <= 30)) <SNAME>

One predicate of the form (attribute max value) is

created. The ABDL request will contain a single

conjunction. Note that the SQL interface recognizes that

the condition in the WHERE clause evaluates to true if and

only if a supplier's status is less than or equal to at

least one of the status values in the enumerated set

(implying that that supplier's status is less than or equal

to the maximum value in the set). Therefore, only the

maximum value, 30, is utilized in the ABDL translation.

4. The Set Membership Operator, '>=ANY'

The SQL query presented as example 5 is

SELECT SNAME

FROM S

WHERE STATUS >=ANY (10,20,30) 0

The ABDL translation is

RETRIEVE ((FILE = S) A (STATUS >= 10)) <SNAME' S

One predicate of the form (attribute >= min value) is

created. The ABDL request will contain a single

56

0.

5**..* .. .* ' .~' a ~ a i-~ 2

conjunction. As in the '<C=ANY' case, only one valuie of the

enumerated set in the WHERE clause is utilized in the ABDL

jtranslation. In this case, the minimum value, to, is

u~til1ized.

5. The Set Membership Operator. '<ANY'

The SOL query presented as example 6 is

SELECT SNAME

FROM S

WHERE STATUS <ANY (10,20,30)

The AE4DL translation is

RETRIEVE ((FILE S) A (STATUS < 30)) <.SNAME'K

One predicate of the form (attribute max-_value) is

created. The ABDL request wiill contain a single

con juncti on.

6. The Set Membership Operator. '>ANY'

The SOL query presented as example 7 is

SELECT SNAME

FROM S

WHERE STATUS >ANY (10,20,30)

The ABDL translation is

RETRIEVE ((FILE =S) A (STATUS > 10)) ..SNAME>

57

i
I

~. r ,-

4-. .. %......

44* ***444* -

One predicate of the form (attribute min-value) is

created. The ABDL request will contain a single

conjunction.

F. EXPRESSING ALL-MEMBERSHIP OPERATIONS IN ABDL*.-

1. The Set Membership Operator =ALL'

As previously defined, use of the operator, =ALL, is

equivalent to using the standard equality operator, =.We

will, therefore, not include it in our set of allowable SOL

constructs.

2. The Set Membership Operator, "=ALL'

As previously defined, '=ALL is equivalent to

i

NOTIN and will not be included in our set of allowable SOL

constructs.

3. The Set Membership Operator, '-<=ALL'

The SL query presented as example 8 is

SELECT SNAME

FROM S

WHERE STATUS <=ALL (10,20.30)

The ABDL translation is

RETRIEVE ((FILE S) A (STATUS <'= 10)) .SNAME'

One predicate of the form (attribuAte m -value) is

created. The ABDL request will contain a single

conjunction. As in the <=ANY case, the translator in our

SOL interface utilizes only one value from the enumerated

I 7

set. Note that in this case, the minimum value, IC', is

chosen, whereas, in the '<=ANY' case the maximum value, 30,

is chosen.

4. The Set Membership Operator, -,-ALL'

The SOL query presented as example 9 is

SELECT SNAME

FROM S

WHERE STATUS >=ALL (10,20,30)

The ABDL translation is

RETRIEVE ((FILE = S) A (STATUS >= 30)) <SNAME" -

One predicate of the form (attribute >= max value) is

created. The ABDL request will contain a single

conjunction. As in the ")=ANY' case, only one value of the

enumerated set is utilized. In this case, the maximum

value, 30, is utilized in the equivalent RETRIEVE construct.

We recall that the minimum value, 10, was utilized in the

..>=ANY' case.

5. The Set Membership Operator, '<ALL'

The SQL query presented as example 10 is

SELECT SNAME

FROM S

WHERE STATUS <ALL (10,20,30)

The ABDL translation is

59

S

RETRIEVE ((FILE S) ((STATUS < 10)) <SNAME:

One predicate of the form (attribute ' min_value) is

created. The ABDL request will contain a single

conjunction.

6. The Set Membership Operator, '>ALL'

The SOL query presented as example 11 is

SELECT SNAME

FROM S

WHERE STATUS 'ALL (10,20,30)

The ABDL translation is

RETRIEVE ((FILE = S) A (STATUS > 30)) -'SNAME'.

One predicate of the form (attribute max _value) is

created. The ABDL request will contain a single

conjunction.

60

S- ..

V. SELECTIONS WITH SET MEMBERSHIP OPERATIONS ON

MULTIPLE RELATIONS

In the preceding chapter, we have described SQL SELECT

queries which utilize the comparison operators, IN, ANY, and

ALL in the WHERE clause. These are simple, single-relation

queries in which the associated sets are enumerated. We now

discuss the nested SQL SELECT queries (or nested mappinq) in

which the result of one mapping is used in the WHERE clause

of another mapping. In other words, the membership of the

set following IN, ANY, or ALL in one SELECT operation is
Im

determined by the result set of another SELECT. We will

describe the operation of two-level, three-level and n-level

nested SELECTs in Sections A, B, and C, respectively. In

Section D, we show how the nested SQL SELECT is translated

into a series of ABDL RETRIEVEs.

A. NESTED SELECTIONS WITH TWO RELATIONS

As previously stated, in a nested SQL SELECT, the

results of one SELECT operation are used in the WHERE clause

of another SELECT operation. We view the former SELECT as

the inner (level of) SELECT, and the latter as the outer

(level of) SELECT. Figure 8 depicts an example of a two-

level nested SELECT operation. This particular example is

chosen for its similarity to one of our examples in Chapter

IV (i.e., Example 6) which utilizes the operator, <ANY, in

61•I]

conjunction with a manually enumerated set. In the

degenerate case presented in that example, the operator,

<]ANY, appeared to be of marginal usefulness. The usefulness

of this and similar operators (e.g., <=ANY, >=ALL) in the

nested SELECT, will now become apparent.

Both our current example in Figure 8, and Example 6 of

Chapter IV result in a set of supplier numbers for suppliers

with status value less than the current maximum status value

in the S table. In our degenerate example, we must know

(i.e., enumerate) that that value is 30. In our present

example, we allow an inner SELECT to obtain the status value

for each supplier number in the S table. By employing an

inner level of SELECT, we are free from enumerating the

val ues.

SELECT S#
Outer

FROM S
SELECT{ WHERE STATUS <ANY

(SELECT STATUS
Inner IFROM S)
SELECT .

Figure 6. A Two-Level Nested SELECT

Processing of the two-level nested SELECT in Figure 8

proceeds as follows. First, the inner SELECT retrieves all

status values in the S table. The result of this SELECT is

the set (with duplicates) of status values (20,10,30,20,30j".

62 I

* ... % . * * . *.-

The outer SELECT then selects supplier numbers FROM table S

WHERE the status value is less than at least one of the

values in the above result set. The result relation is

B. NESTED SELECTIONS WITH THREE RELATIONS

We now describe a three-level nested SELECT. We present

an example which demonstrates the usefulness of the

set/comparison operator IN, and of multi-level SELECTs in

general. In the course of providing the requested data,

this three-level SELECT chooses data from each of the three

tables which comprise our sample database. The request is

to get supplier names for suppliers who supply at least one

red part. The query is presented in Figure 9.

SELECT SNAME
Outermost

FROM S
SELECT

WHERE S# IN

(SELECT S#

Inner
FROM SP

SELECT

WHERE P# IN

(SELECT F0#
Innermost{ FROM P

SELECT
WHERE COLOR = 'RED'))

Figure 9. A Three-Level Nested SELECT

63

~~~.......... ..... ............. ................. •............ ............-. . ..... .. ........ .. - .• • 2



Processing of the query in Figure 9 proceeds as

f oll ows.

Step 1: The innermost SELECT retrieves part numbers

(P#) from the parts relation (P) where the color .

of the parts is red. The result of this SELECT

is the set of part numbers {Pl,P4,P6}.

Step 2: The next SELECT retrieves supplier numbers (S#)

from the shipments relation (SP) where P#s are

in the result set of step 1. The result of this

SELECT is the set of supplier numbers {S,$2.S4}.

Step 3: The outermost SELECT retrieves supplier names

(SNAME) from the suppliers relation (S) where

S#s are in the result set of step 2. The result

relation passed to the user is NAME

Smith
Jones
Clark

C. NESTED SELECTIONS WITH N RELATIONS

Although it seems unlikely that many users would utilize

a nested SELECT of more than 2 or 3 levels, the subqueries

can be nested to any depth. The form of an n-level nested 3

SELECT is shown in Figure 10.

The SETOPR in Figure 10 refers to the various forms of

our comparison operators IN, ANY, and ALL. In the next P

section, we describe the translation of nested SELECTs to a

series of ABDL RETRIEVEs. Therefore, it is important that

I
64 i22~" 

1

. . .,. .- , .



SELECT sel_expr list

level 1 or
FROM relation name_1 outermost

SELECT"

WHERE attribute namel SETOPR 
S

(SELECT attributenamel
level 2 or

FROM relationname 2 inner

WHERE attributename2 SETOPR 
S

(SELECT attributename(n-1)
- level n or

FROM relation name_n innermost
SELECT

WHERE condition)...)

Figure 10. An N-Level Nested SELECT

we note the following information as succinctly stated in

[Ref. 1). -

"The nth level is the innermost SELECT. The 1st
level is the outermost SELECT. The selexprlist of each
inner SELECT, i.e., a SELECT lower than level 1, contains
a single attribute name, which is the same as the
attribute name used in the qualification of the next-
higher level SELECT. The relation names at any two levels
may be the same."

D. TRANSLATING NESTED SELECTIONS TO A SERIES OF ABDL
RETRIEVALS

As shown by Macy [Ref. 8], there exists a

straightforward mapping between the SQL SELECT operation and

the ABDL RETRIEVE operation. We can, therefore, simulate

the nested SELECT with a series of RETRIEVEs, each

succeeding operation using the results of the previous one.

Thus, referring to our three-level example of Section B, the

65 , ,'



ABDL equivalent of the innermost SELECT is

RETRIEVE ((FILE P) A (COLOR = 'RED')) .P#-.

The resulting set of part numbers {P1,P4,P6} is then used in

the next ABDL operation as follows:

RETRIEVE ((FILE = SP) A (P# =P1)) V

((FILE = SP) A (P# = P4)) V

((FILE = SP) A (P# = P6))) KS#.:-

I

The last retrieve (corresponding to the outermost SELECT in

our example) then uses the resulting set of supplier numbers

S1,$2,S4]- as follows:

RETRIEVE (((FILE = S) A (S# S1)) V

((FILE = S) A (S# S2)) V

((FILE = S) A (S# = S4))) 'SNAME> 0

It is intended that the operation of our SQL interface be

transparent to the SQL user. Therefore, the resulting

values of the attribute SNAME (Smith,Jones,Clark) are

returned to the user in the form of the result relation

previously described for our three-level nested SELECT

example of section B.

We have now demonstrated the operation of data

retrievals involving the nested SELECT construct. These

nested operations may include use of the various forms of

IN, ANY, and ALL. The sequence of actions necessary to

66

.. . . . . .. . . . . . . . . . . . . . .

. . . . . . .. . . . . . . . . .- ..



translate the nested SOL SELECT to a series of ABDL

RETRIEVEs has been described. In the next chapter, we

A present our proposals for the implementation of these

transl at ions.

67



VI. IMPLEMENTING NESTED SELECTIONS

The logical process by which a nested SQL SELECT is .

translated to a series of ABDL RETRIEVES has been described.

It is clear that each SELECT level, from the innermost to p

the outermost, must be translated to an ABDL RETRIEVE.

Then, each RETRIEVE is processed in turn. with each

succeeding operation utilizing the results of the previous

RETRIEVE in the QUERY part. In Section A of this chapter, we

present the algorithms for building the ABDL QUERY. In

Section B, a simple iterative structure for controlling the

execution of n-level nested SELECTs is provided. Finailv.

in Section C, the overall software structure of our SQL

interface will be proposed. Note that, as we continue our

bottom-up investigation and include additional SQL

operations in our set of allowable constructs, the

functionality of this structure may be augmented. However.

it is expected that the software structure will remain

intact.

A. ALGORITHMS FOR BUILDING THE ABDL QUERY

We recall that the Query part of ABDL RETRIEVEs (DELETE

and UPDATE, as well) is written in a disjunctive normal
I

form. A QUERY may be a single conjunction or it may be a

disjunction of conjunctions. The number of conjunctions

generated in the translation of nested SELECTs utilizing the

68

p .-

. . . . . . . . . . . . . . . . .. . . . . . . . .. ... . . . . . . . .



various forms of IN, ANY, and ALL has been noted in Sections

D, E, and F of Chapter IV. Figure 11 summarizes this

information. The figure also specifies the relational

operators involved, as well as the source of the values to

be used in each conjunction.

Set Opr # Conjunctions Rel Opr Value Source

IN n result set

NOT IN 1 result set

-=ANY n result set

<=ANY 1 <= max (result set)

,-ANY 1 >= min(result set)

<ANY 1 max (result set)

>ANY 1 min(result set)

<=ALL 1 min(result set)

>=ALL 1 max (result set)

<ALL 1 < min(result set)

>ALL I max (result set)

Figure 11. Summary of Nested SELECT
Set Comparison Operators

From Figure 11, it is clear that our translator must

perform a multiway selection depending upon which set

comparison operator is utilized at each SELECT level. We

describe an appropriate algorithm in Subsection 1. It can

also be seen that, in the case of the operators IN and

69



-=ANY, a number of conjunctions are generated, one for each

value in the result set of the previous operation. In

Subsection 2, we present an n-conjunction algorithm to

handle these two cases. Note that in all remaining cases, a

single conjunction is generated. The 1-conjunction

algorithm is presented in Subsection 3.

1. The Query-Constructor Subroutine

As noted above, the top-level translator portion of

our SQL interface must determine from the set comparison

operator the proper algorithm for constructing the QUERY

part of the resultant ABDL request. This can be handled bv

a multi-way selection or CASE construct, as shown in the

Query-Constructor Algorithm in Figure 12. The parameters

passed to QueryConstructor are QueryTemplate (a

conjunction, described in Subsection 2, constructed to

facilitate the incorporation of succeeding result sets), the

ResultSet of the previous request, and the appropriate

Set Opr from Figure 11.

In each alternative of the CASE statement of Figure

12, the correct relational operator is chosen, and either

the n-conjunction or the 1-conjunction subroutine is called.

The parameters provided for each subroutine call are the

relational operator and the result set of the previous

operation, or the maximum/minimum value of the result set.

As previously discussed, when ANY and ALL are used with

these relational operators, only one value of the result set

70

. .. . . . * .. . .

7.** " 
-.i -



SUbroutine Query_Constructor (OueryTempiate,ResultSet,
Set _Opr)

CASE Set Opr OF

IN: RelOpr - -

call N conjunction(QDtery Template,Result Set,

Rel _Opr);

NOT IN: Rel Opr <--
call One-corijunction(DOueryTemplateResult _Set,

RelOpr);

call N-conjunction(QueryTemplate,Result Set,
Rel _Opr);

,,ANY: Rel _Opr <-- .

call One-conjutnction(OueryTemplate, j
max (ResultSet) Rel-Opr):

-=ANY: RelOpr <--
call One conjunction (QueryTemplate,

min(Result Set) ,RelOpr);

<ANY: Rel Opr <--:

call One-conjunction(OueryTemplate,
max(Result-Set),Rel-Opr):

' ANY: Rel-Opr <-- >
call One-,conjunction(QueryTemplate,

min(Result-Set) ,RelOpr);

-,=ALL: Rel -Opr <-- '=
call One conjunction (QueryTemplate,

min(ResultSet) .Rel Opr);

,-ALL: Rel Opr

call One _conjunction(OueryTemplate,
max (Result Set) ,RelOpr),

ALL: Rel _Opr <-- '<'

call One-conjunction(DueryTemplate.
min(ResultSet) ,RelOpr).

* ).,,LL: Rel Opr <- -

call One-conjunction(DueryTemplate,
max (Result Set) ,Rel Opr);

END CASE

* END OueryConstructor

* Figure 12. The Query-Constructor Subroutine



- ..- |

is utilized in the translation. Dependina upon which form

of the set comparison operator is used, the selected value I
will be either the maximum or the minimum value in the

result set. Therefore, a call to a standard Max or Min

function, as appropriate, must be made prior to sending the

resultant single value to the 1-conjunction subroutine. It

should be noted that the 1-conjunction subroutine is called

in the case of the operator NOT IN. However, there is no

need to utilize a Max/Min function. We also note that a

call to Max/Min is never needed prior to a call to the n-

conjunction subroutine.

2. The N-Conjunction Subroutine

In the case of the set operators IN and '=ANY. the

above Query-Constructor subroutine will call the n-

conjunction subroutine. In the process of translatinP

nested SELECTs which utilize these operators, one

conjunction of the form

((FILE Relname) / (Attrname Relopr Value))

will be generated for each value in the result set. These

conjunctions are ORed to form a disjunction of conjunctions,

as explained in Chapter IV, Sections D and E. An

algorithmic representation of the n-conjunction generation

subroutine is provided in Figure 13.

The template, defined in Figure 13, is provided by

the top-level translator as it translates each SELECT level

7

72 " '

*- ..



to an ABDL RETRIEVE. Value ofTemplate is the only variable

which requires substitution. For the innermost (nth level)

SELECT of a nested SELECT request, the equivalent RETRIEVE

can be constructed completely. However, at translation

time, the values to be used in the query portion of the

Subroutine Nconjunction(QueryTemplate,Relopr)

/* QueryTemplate:
/* is ((FILE = Relname) A (Attrname Relopr Value)) */

/* Query:

/* is QueryTemplate V Query_Template V . . *

/* V Query_Template */
/* */

/* For every value in the Resultset */
/* generate one conjunction using Template */
/* then OR-concatenate into Query.

Relopr of Template <-- Relopr

if Result set is NOT EMPTY
then

Value of Template <'-- Ist value from Result set
Query QueryTemplate /* Relname & Attrname */

/* filled in ."
while more values in Result set do

Value_of _Template '-- next value from Result set
Query <'-- Query " V' 1 Template

end while
else

Query /-- /* Query is nil */

END N-conjunction

Figure 13. The N-conjunction Subroutine

remaining n-i SELECTS are unknown. Therefore, the template

is provided to the N-conjunction generator which fills in

the missing values and constructs the QUERY part of each

RETRIEVE.

73



7- ! 7

3. The 1-Conjunction Subroutine

In the case of the operator NOT IN and all of the

ANY/ALL operators containing =, >< , , or >, the CASE

statement causes a call to the 1-conjunction subroutine. As

described in Chapter IV, one predicate of the form

(Attribute Rel_opr Value) is generated for each value in the

result set. These predicates are then ANDed to form a

single conjunction. An algorithmic representation of the 1-

conjunction subroutine is provided in Figure 14.

Subroutine Oneconjunction(QueryTemplate,Result set,
Relopr)

/* QueryTemplate: */
/* is ((FILE Relname) A (Attrname Relopr Value)) *.
/* Predicate: */
/* is (Attrname Relopr Value)
/* Query: */
/* is QueryTemplate A Predicate A . ..

/* A Predicate */

Strip right paren from Query Template
Rel opr of Template <-- Rel opr

if Resultset is NOT EMPTY
then
Value of Template <-- 1st value from Resultset
Query <-- QueryTemplate
while more values in Result _set do

Value of Predicate <-- next value from Result set
Query <-- Query : 'A " 11 Predicate

end while
el se

Query <-- /* Query is nil */
QueryTemplate <-- Query Template :-

Figure 14. The 1-conjunction Subroutine

7 4



Note, in Figure 14, that the template provided to the 1-

conjunction subroutine is identical to that used in the N-

conjunction subroutine. An additional data structure,

Predicate is defined as (Attrname Rel opr Value). The use

of this additional 'template' allows us to extend the single

conjunction,

((FILE = Relname) A (Attrname Relopr Value))

to the multiple-predicate single conjunction,

((FILE = Relname) A (Attrname Relopr Value) A . . .

A (Attrname Rel opr Value))

The number of predicates generated is determined by the

number of values in the Resultset.

B. AN ITERATIVE STRUCTURE FOR CONTROLLING THE EXECUTION

OF N-LEVEL SELECTIONS

In the previous section, we have presented algorithms

for building the QUERY part of each ABDL RETRIEVE generated

in the translation of a nested SQL SELECT. We now consider

the process of controlling the execution of this process. An

algorithmic representation of a simple structure for the

control of this iterative process is provided in Figure 15.

This NlevelSelect subroutine is called by the Top-level

process of the interface (described in Section C). The

parameters passed include a series of ABDL RETRIEVE requests

(in the form of a request stack) , and the number, n, of such

75

. "-. -.



requests. We recall, from Chapter V, that the innermost

SELECT level is viewed as the nth-level. RequestStack has

the ABDL translation of the nth-level SELECT on top. The 0

Ist-level SELECT is on the bottom. The stack is formed in

this order because the nth-level request is the only request

containing a fully formed querypart (as described in •

Chapter V). Each of the other n-1 requests requires the

Resultset of the immediately preceding request before it

can be sent to MDBS for processing. 0

Subroutine NlevelSelect(RequestStack,n)

/* RequestStack has the ABDL translation of the *.
/* nth-level SELECT on top. The 1st-level SELECT */

/* is on the bottom. Each request in the Stack is
/* composed of the reserved word RETRIEVE, Target List, */
/* Set_Opr, and Query-Part. The Query Part of the *.
/* nth-level SELECT is fully formed. The Query Part
/* of the n-I -- > 1st-level SELECTs is a query template */ 0
/* having the form */

((FILE = Relname) A (Attrname Rel opr Value)) */
/* with a blank in the 'Value' position. *

CurrentRequest <-- Pop(RequestStack)

Send(CurrentRequest)
Recieve(ResultSet)

for i <-- I to n-1 do
Current-Request <-- Pop(RequestStack)
Call Query Constructor(Query Part,Result Set,Set_Opr)
Send(CurrentRequest)
Receive(Result_Set)

end for
Display(ResultSet)

end N level Select

Figure 15. An Iterative Process for Controlling
the execution of N-level SELECTS

76



The operation of the NlevelSelect subroutine is as

follows. The nth-level request is popped off the top of

RequestStack and becomes the Current-Request This

Current Request is forwarded to MDBS through the Send

function. Upon completion of processing, the Resultset is

obtained through the Receive function. The remaining n-1

requests are popped off the stack and processed in order.

The nth and succeeding result sets are incorporated into

each request through a call to Query-Constructor (described

in Section A). The Send and Receive functions are used on

each iteration to route request/result traffic between

N_levelSelect and MDBS. When the last request has

completed processing, the final result set is provided to

the user through a call to the Display subroutine. Display"

presents the results of the original nested SOL SELECT as a

result relation (this is the format expected by a SOL user).

C. PROPOSED SOFTWARE STRUCTURE

In this section, we present a software structure for the

implementation of nested selections in our proposed SOL

interface. In fact, all of the translations heretofore

introduced in this thesis and in Macy [Ref. el, are

supported by this structure. Therefore, allowing for

possible modifications required to support additional

multiple and single-relation SQL operations, the software

structure depicted in Figure 16 represents the overall

software structure of the SQL interface.

77

...................
.'< '.> .>- ...... . ... . .... .2 ...]..?.. ..2 ?. ,..... / .- . . . .. ....... .

'
..'.... . ..'..'..-.'..'. , ,. .- .<.' .'. .....'. , ' .'< '.. y . . ..' ,



As depicted in Figure 16, the SQL interface is comprised

of a single top-level process with multiple subroutines and

functions. The top-level process is called SOLI (SQL

Interface). We have described the Nlevel Select subroutine

SOL
SQL I

Get-SQL SOLT Send Receiv Display N-level
Query Sel-ect

uery yConstructor ..

1conjunction N_Conjunto

F u

Figure 16. The Proposed Software Structure

group. We discuss the remaining subroutines as we explain

the functionality of SQLI. An algorithm for SQLI is

presented in Figure 17.

78

..........................................................



The operation of SOLI is an follows. Once a session is

initiated from the user terminal, the actions depicted in

ALGORITHM SOLI are repeated until session termination. The

SQL query to be translated into the equivalent ABDL

construct is obtained through a call to the subroutine

Get_SQLQuery. This subroutine polls the user terminal for

ALGORITHM SOLI

Repeat
CALL Get_SOLQuery(Query)
CALL SLT(Query,RequestStack,N,Errors)
if N = 0 then /* Syntax Errors */

CALL Display(Query)
CALL Display (Errors)

else if N = 1 then /* Single Request */
Send (Pop (RequestStack))

Receive(ResultSet)
CALL Display(ResultSet)

else /* N-level Request */

CALL N_level _Select(RequestStack,N)
end if

End of _session?
until end of session
end ALGORITHM SOLI

Figure 17. The Top-level Process of the Interface, SQLI

input. Note that when a query is obtained, the polling

stops until the result relation is received by the user (or

syntax errors are displayed for the user). This restriction

is placed in order to preclude the complexity of processing

more than one request at a time. (We assume that several

user terminals have access to a copy of SOLI, and that each

user makes a request and waits for a result before making

another request).

79

. .
. . . . . .. "-.. . . . . . . . . . . . . . . . .



The query obtained by the call to GetSQL_Query is

passed as a parameter in a call to the SQL Translator

(SQLT) subroutine. SOLT parses the query, recognizes the S

query-type, checks for syntax errors, and translates the SQL

query to the appropriate ABDL request. If there are no

syntax errors, SQLT places the translated requests in a 0

stack and returns this RequestStack, along with the number,

N, of requests in the stack. In the case of simple, single-

relation operations, RequestStack contains one request. In S

the case of a nested selection, SOLT first parses and

translates the outermost SELECT placing the resultant

RETRIEVE request on the stack. As previously discussed, the S

request contains a query-template. (Recall that only the

nth-level, or innermost, request is fully formed). If there

are syntax errors, SOLT returns a value of zero for N. The

errors are also returned.

If the number of requests in RequestStack is zero (N =

0), then SQLT has detected syntax errors. In this case, "

SOLI makes two calls to the Display subroutine in order to

provide the user a display of the query and of the errors

detected. If the number of requests in Request_Stack is one

(N 1), then the single request is popped off the stack and

forwarded, via the Send function, to MDBS for processing.

The Resultset is obtained through the Receive function. 9

The result relation is provided to the user through a call .

to the Display subroutine. If the number of requests in

80

....• v ' . .-.. -...-..... ".... *- ... .. .. .. '-.. .



RequestStack is greater than one, then NlevelSelect is

called. The subsequent processing is explained in Section

As previously discussed, we propose that the SQL

interface be implemented such that SQLI and its subroutines

are resident on a host computer. This precludes the need to

place an additional workload on the MDBS Controller. In

effect, MDBS is "unaware" that the user is making database

requests in SQL, and the user need only know what

information is desired and how to form the request in the

syntax of SQL. The logical structure of the system is

depicted in Figure 18.

USER

in

SQLI host

computer

in the
MDBS backends and

their controller

Figure 18. The Logical Structure of the System

81

, •. • .°°1. .. . . . ...-.... . . . .. . . . ... •.,•0.,, °. ° .-- I% .-.



VII. ADDITIONAL SQL-TO-ABDL TRANSLATIONS

We have described single-relation set membership and

multiple-relation nested SQL SELECT operations. For each

SQL operation, we have developed the appropriate ABDL

translation. In Chapter VI, we have proposed a software

structure to facilitate the implementation of these

translations, in addition to the simple, single-relation

translations which Macy [Ref. 8) has provided. In this

chapter, we investigate other selected single-relation and

multiple-relation SQL operations. Inclusion of these highly

desirable options in the SQL set operations supported by the

interface further demonstrates the power of ABDL to support

relational operations.

As in previous chapters, the approach of this chapter is

to describe each SQL operation and then determine which ABDL

constructs can be used to support the operation. As each

translation is developed, we show graphically,

algorithmically, and through text how the software structure

of the interface (described in Chapter VI) must evolve in

order to accomodate the additional operations. The single-

relation operations are presented in Section A, and the

multiple-relation operations are presented in Section B. In

Section C, we present the modified software structure of the

SQL interface.

82

82.:.:.

II

............. :..........v-................,. .. ,.... ,... ., ... ,... .... ....



A. SELECTED SINGLE-RELATION OPERATIONS

The single-relation operations selected for discussion

in this section include: updating multiple attributes in a

single record; retrieving groups of attributes which satisfy

a group condition; retrieving computed values; providing

format options; retrieving ordered attributes (SORT); and

eliminating duplicates (PROJECTION). These operations are

commonly supported in commercial relational database systems

utilizing the SQL language. A SQL-trained user of the

interface proposed in this thesis would expect to be able to

utilize familiar SQL constructs to perform these operations.

We address the SQL-TO-ABDL translations in the following

subsections.

1. Updating Multiple-Attributes

All data languages provide a data update capability.

Of interest here is the SOL construct for update. This

construct allows the user to change the values of any number

of attributes stored in the record by issuing a single

query. This capability is both convenient and efficient.

The following example depicts the updating of multiple-

attributes (fields) in a single record. If we wish to

change the color of part P2 to yellow, increase its weiqht

by 5, and set its city to Normandy, we may use the following

SQL query:

°.°" ~~~~~~~~. . . . . ...... . .°....... ... ,.. .. . •. . . . .. , o ,.q"""'""'"........"." ....... .. ............ .. ...... .-- .t - - ., .'i



0

UPDATE P

SET COLOR = 'Yellow',

WEIGHT = WEIGHT + 5, 0

CITY 'Normandy'

WHERE P# = 'P2'

In this example, we are updating the attributes COLOR,

WEIGHT, and CITY in a single record with primary key, P2.

The record is contained in the Parts (P) relation. Note
*0

that any reference to an attribute on the right-hand side of

an equals sign refers to the value of that attribute prior

to updating.

In studying the SQL example above, we note that - -

there are three cases to consider depending on the .

attributes listed in the SET and WHERE clauses. We refer to

these as case-O, case-l, and case-2 updates. To facilitate

the following explanation, let S be the set of distinct

attribute names listed in the SET clause, and W be the set
0

of distinct attribute names listed in the WHERE clause. In

case-) updates (e.g., the above example), no attribute is

listed in both the SET and WHERE clauses (i.e., S (-)W = o).

In case-1 updates, one attribute is listed in both clauses

(i.e., cardinality(S rlW) 1). In case-2 updates, multiple - - -

attributes are listed in both clauses

(i.e., cardinality(S, 1W) > 1). A case-1 modification of

our example is as follows:

84

~ .. * * • **. .

* . ~.*.w *_N-



UPDATE P

SET COLOR = 'Yellow',

WEIGHT = WEIGHT + 5,

CITY = 'Normandy'

WHERE (P# = P2') AND (CITY = 'Paris')

Note, CITY is in both S and W, and the cardinality of

(S r-) W) is 1. A case-2 modification of our original

example is as follows:

UPDATE P

SET COLOR = 'Yellow',

WEIGHT = WEIGHT + 5,

CITY = 'Normandy'

WHERE (P# = 'P2') AND (CITY = 'Paris')

AND (COLOR = 'GREEN')

Note, CITY and COLOR are in both S and W, and

cardinality(S l W) > 1. The SOL-to-ABDL translations of the

three cases of multiple-attribute update are described in

the following subsection.

a. The translation to ABDL

ABDL does not provide a single-request construct

which updates more than one attribute in a record. We must

translate the SQL UPDATE into multiple ABDL UPDATEs. Case-O)

SQL UPDATE queries can be translated directly to multiple

ABDL UPDATE requests. The order in which these requests are

processed is immaterial. The case-) example above

85

. .. . . .



translates to the following three independent ABDL UPDATE

requests:

UPDATE ((FILE= P) A (P# P2)) (COLOR Yellow)

UPDATE ((FILE = P) A (P# = P2)) (WEIGHT = WEIGHT + 5)

UPDATE ((FILE = P) A (P# P2)) (CITY = Normandy)
p

Our case-1 example translates to the same three

UPDATE requests, however, the presence of the CITY attribute

in both the WHERE and SET clauses effects the structure of p

the translation. The order of request processing now

becomes important. For example, if CITY is updated first,

the condition ((P# = 'P2') AND (CITY = 'Paris')) is no- "

longer satisfied when a subsequent attempt is made to

process the COLOR and WEIGHT UPDATE requests. ABDL provides

a construct called a Transaction which specifies the order

in which a series of requests must be processed. Therefore,

the case-1 translation becomes

BEGIN Transaction

UPDATE ((FILE = P) A (P# = P2)) (COLOR = Yellow)

UPDATE ((FILE = P) A (P# = P2)) (WEIGHT = WEIGHT + 5)

UPDATE ((FILE = P) A (P# = P2)) (CITY = Normandy)

END Transaction

Requests within a transaction are processed in the same p

order as they are specified. Therefore, we can obtain a

correct result.

- 6
86 '...

-. *:;'



The case-2 example also translates to a series

of three ABDL requests. However, the translation is more

complex. In this case, multiple attributes specified in the

WHERE clause are also listed in the SET clause. When the

first of these attributes is updated, all subsequent

attempts to update the remaining attributes will fail.

Since the WHERE condition is no longer satisfiable, the

record can not be found. The following sequence of ABDL

requests accomplishes the requested update. (Note that the

ABDL UPDATE construct is not used).

RETRIEVE ((FILE = P) A (P# = P2)) <P#,PNAME,COLOR,WEIGHT,
CITY>

DELETE ((FILE P) A (P# = P2) A (PNAME Bolt) A
(COLOR Green) A (WEIGHT = 17) A
(CITY Paris))

INSERT (<FILE = P>,<P# = P2>,<PNAME = Bolt>,
<COLOR Yellow>,<WEIGHT 22>,<CITY Normandy).

b. A proposed Software Structure

In order to implement multiple-attribute

updates, we must augment the functionality of the software

structure (SQLI) which we have developed in Chapter VI. We

specify an additional parameter, Request Type, to be

returned by SOLT. When the value of RequestType is

"CaseO update', the subroutine CaseO update is called. In

this case, the multiple ABDL RETRIEVE requests are simply

removed from Request Stack and forwarded to MDBS for

processing. As previously stated, the order of processing

87

'~~~~~~~~~~~..'..... ........... . ............ - .- . .... • ... ......... ............ -.. . ...............'-.....



does not effect the result. When all updates are complete,

the user is so informed. When the value of RequestType is

"Caselupdate', the subroutine, Casel update is called.

When the value of Request-Type is "Case2_update',the ...-

subroutine, Case2 update is called. The Casel update and

Case2 update subroutines are presented in Figures 19 and 20, 0

respectively.

Subroutine Casel update(RequestStack,ResultSet)

/* Transaction-Request: */
/* is a template with the Reserved word BOT */
/* followed by multiple blank lines (to be used
/* by the series of requests) and the Reserved */
/* word EOT. */

while NOT EMPTY(RequestStack) do
Pop(Request Stack)
Fill in blank lines of Transaction Request with

requests from RequestStack
end while
Send(TransactionRequest)
Receive(Result Set) /* ResultSet returned to *

/* calling routine *

end Casel update

Figure 19. Subroutine Casel_Update

The Casel _Update subroutine builds a transaction

of update requests for MDBS processing. The subroutine is

provided the parameter Request_Stack which contains multiple

UPDATE requests stacked such that the request on the bottom
9

of the stack is the request which must be processed last.

.Be.° .

4*S."**).. ,.,,'.. .* * €? %-.. .. -. .. '- v ... % ." ...... . . .. .... ,... ..... . .. , "."



Subroutine CaselUpdate sends the request transaction to

MDBS, Receives the ResultSet, and returns the ResultSet to

the calling routine.

Subroutine Case2_update(Request Stack,Result_Set)

/* InsertTemplate: */
/* is the INSERT request with values for the */
/* attributes-to-be-updated and blanks for the */
/* attributes whose values are obtained by the *I
/* RETRIEVE request.

Send(Pop(RequestStack)) /* RETRIEVE request */
Receive (Result_Set)
Send(Pop(RequestStack)) /* DELETE the record */
Receive(ResultSet) /* deletion is complete */
While there are records to update do

Insert-Template <-- /* fill in blanks with retrieved */
/* attribute values */

Insert Request <-- /* form the INSERT request from */
/* the record and InsertTemplate */

Send(InsertRequest)

end while
Receive(ResultSet) /* INSERT is complete */

end Case2 update

Figure 20. Subroutine Case2 update

The Case2_Update subroutine controls the

execution of the RETRIEVE-DELETE-INSERT series of requests.

The RETRIEVE obtains a copy of the appropriate record(s).

The DELETE deletes the original record(s) in the database.

The INSERT re-inserts the record(s) with all the modified

attribute values.

2. Retrieving Qualified Groups

Both SQL and ABDL provide an option whereby

retrieved attributes may be grouped. For example, if we

89



wish to obtain the part number and the total quantity for

each part supplied, we may utilize the following SELECT
I

construct:

SELECT P#,SUM(OTY)

FROM SP 3

GROUP BY P#

The result relation is: P#

P1 600
P2 1000

P3 400
P4 500
P5 500
P6 100

Note that "...each expression in the SELECT clause must be

single-valued for each group; that is, it can be either the

GROUPBY field itself, or a function such as SUM that

operates on all values of a given field within a group and

reduces those values to a single value." [Ref. 9)

The above SQL operation is directly supported by the

software structure of Chapter VI. Using the SELECT-to-

RETRIEVE mapping which we have described in Chapter III, the

equivalent ABDL construct is:

RETRIEVE (FILE SP)<P#,SUM(QTY)> BY P#

SQL provides a further option for use with grouped

attributes. Once the rows of a table are grouped by a

selected attribute, groups not satisfying a specified

90
• " -



condition can be eliminated through the use of the HAVING

operator. The following comprehensive example clarifies the

use of the 'GROUP BY with HAVING' option. If we wish to

obtain the part number and the maximum quantity of the part

supplied for all parts such that the total quantity supplied

is greater than 300 (excluding from the total all shipments

for which the quantity is less than or equal to 200), we may

use the following query:

SELECT P#,MAX (QTY)

FROM SP

WHERE QTY > 200

GROUP BY P#

HAVING SUM(QTY) > 300

We can imagine the result relation P#

P1 300 .
P2 400 -
P3 400 -P5 400_"'j. .

being formed as follows. A copy is made of table SP (FROM).

The rows not satisfying "QTY > 200" are eliminated (WHERE).

The remaining rows are then grouped by P# (GROUP BY). The

newly formed groups are checked against the predicate

"SUM(QTY) > 300". Those not satisfying the condition are

eliminated (HAVING). Finally, part numbers and maximum

quantities are extracted from the remaining groups (SELECT).

91

~%



a. The Translation to ABDL

As previously discussed, ABDL provides a

construct for the retrieval of data which is grouped by a

selected attribute. In the comprehensive SQL example above,

the use of the HAVING operator specifies a further

qualification on the groups. In this example, the groups

whose total quantity supplied is less than or equal to 300

are to be eliminated. ABDL does not provide a facility for

checking this group condition. This condition must be

checked in the interface. The SQL query is translated to

the ABDL request

RETRIEVE ((FILE = SP) A (QTY > 200)) <P#,MAX(QTY),SUM(QTY),-
BY P#

which we imagine returns the following table:

P# MAX(QTY) SUMOTY)

PI 300 600
P2 400 400
P3 400 400
P4 300 300
P5 400 400 1

Software in the interface then checks the HAVING condition

"SUM(QTY) > 300". This eliminates the grouping for part P4.

The remaining part numbers and maximum quantities are

returned to the user.

92

......... .......

. . . . . . . . . . .. .% % .*******. *** .. ..- ... ... .• .• . "



b. A Proposed Software Structure

When SOLT returns the value, 'Groupbyhaving

for the parameter, Request-Type, we assume that the HAVING

condition is also made available to the Group-By-Having

subroutine. (We make a similar assumption for other

RequestTypes). The subroutine sends the request, receives

the result set, checks the HAVING condition, and returns

only those tuples satisfying the having condition to the

user. Figure 21 depicts this operation.

Subroutine Group-By-Having(Request StackHAVINGcondition,
Result_Set)

Send(Pop(RequestStack)
Receive(ResultSet)
Eliminate groups not satisfying HAVING condition

end GroupByHaving

Figure 21. Subroutine GroupByHaving

3. Retrieving Computed Values

The concept of retrieving computed values is simple,

yet it typifies the important options that database

management system designers are providing in order to ensure

user-friendliness and user-flexibility. This option supports

the inclusion of arithmetic expressions involving fields as

well as simple field-names. For example, the user should be

able to specify units-of-measure for numerical results. SQL

supports this concept. If we wish to obtain the part number

and the weight of the part in grams (given in table P ir

93



pounds), we may use the following query:

SELECT P#,WEIGHT * 454

FROM P

The result relation is: P#

P1 5448

P2 7718
P3 7718
P4 6356
P5 5448
LP6 I86'2A

a. The Translation to ABDL

In this translation, the ABDL request retrieves

the indicated attributes leaving any computation to be

accomplished in the interface. For the example above, the

ABDL translation is

RETRIEVE (FILE= P) <P#,WEIGHT>

The specified arithmetic operation is performed by interface

software on the retrieved values for WEIGHT (i.e., WEIGHT *

454) prior to returning the final result relation to the

user. The software required is a simple interpreter for

evaluating arithmetic expressions.

b. A Proposed Software Structure

An ExpressionEvaluator subroutine can be used

to accomplish the arithmetic operations specified in the SQL

query. The subroutine simply utilizes the appropriate

function (e.g., Mult,Add,Sub,Div) to perform the operation.

94

k.- "°- .. "



4. Providing Format Options

Often, the information retrieved from a database is

intended for use in published reports. The availability of

formatting options can make generating these reports

simpler. For example, while it is prudent to save disi

space by storing the names of suppliers as values for an

attribute-name such as SNAME, an end-user unfamiliar with

the database is psychologically more comfortable with a

column heading such as SUPPLIERS. In SOL queries, the

desired format is indicated in the SELECT clause. For

example, if we wish to obtain the names of all suppliers, we

0 may use the following query:

SELECT SNAME SUPPLIERS

FROM S

The result relation is: SUPPLIERS

Smith
Jones
BI ake
Clark

Note that the column heading is SUPPLIERS rather than the

field name, SNAME.

a. The Translation to ABDL

This translation is similar to that presented in

Subsection 2 above. Information, returned from MDBS, is

modified by the interface software. The EQL SELECT query is

translated to the ABDL request

95

. . .. .



AD-AI81 501 DESIGN AND ANALYSIS OF A COMPLETE RELATIONAL INTERFACE 2/2
FOR A ULTI-BACKEND DATABASE SYSTE(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA R E ROLLINS JUN 84

UNCLASSIFIED F/G 9/2 HLElilllllllliu
IfllflflflflII..l..



7 -7 7. I-7--7;

I I I I I W IIIIIII

111111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1I963-A



RETRIEVE (FILE = S) <SNAME>

The results of this request are modified by the SQL

interface (SQLI) prior to returning the final result

relation to the user. In this case, the column heading,

SNAME, is changed to the new heading, SUPPLIERS.

b. A Proposed Software Structure

Format options can be provided in the Display

subroutine. Any change in the form of the table heading can

be passed at the time of the call to Display.

5. The Retrieval with Ordering (SORT)

Generally, the result of a SELECT operation is not

guaranteed to be in any particular order. Ordering (SORT) is

normally not accomplished in SQL queries unless specifically

requested by the user. This operation may be costly, and -

the additional expense is often unwarranted. In SQL, the

user may specify ordering through the use of the ORDER BY

operator. As an example, if we wish to obtain supplier- -

numbers for all suppliers providing shipments, such that the

result is ordered by supplier-number, we may use the

following query:

SELECT UNIQUE S#

FROM SP

ORDER BY S#

96
............................................-°-. - .



SS
The result relation is: S--- "

Si
Si

S1i
St
Si

* S2
S2

S4S3

a. The Translation to ABDL

In the translation of the above SQL query, we

assume an ordering capability within MDBS. The development

of this capability is the goal of a current thesis by Muldur

ERef 15). The ABDL request

RETRIEVE (FILE = SP) <S#> ORDER BY S# -

returns all supplier numbers (ordered by increasing supplier

numbers) contained in the SP file (including duplicates).

b. A Proposed Software Structure

We assume that the ordering of selected

attributes is directly supported by MDBS. Therefore, no

augmentation of SQLI is required.

6. An Elimination of Duplicates (PROJECTION)

The results of a SELECT operation may contain

duplicates. The elimination of duplicates (PROJECTION), as

in the case of retrieval with ordering (SORT), is normally

not accomplished in SQL queries unless specifically

97

........................................................... . ,



requested. Again, the cost is high and often unwarranted.

An exception to this rule is that duplicate rows are

automatically eliminated in UNION operations. (UNION .

operations are described in Section B).

In SQL, the elimination of duplicates may be - "

specified through the use of the UNIQUE operator. As an

example, if we wish to obtain supplier-numbers for all

suppliers providing shipments such that no supplier-number

is listed more than once, and the result is ordered by

supplier-number, we may use the following query:

SELECT UNIQUE S#

FROM SP

ORDER BY S#

The result relation is: S#

S62
1631

This example is a modification of the example presented in

Subsection 5. Note that duplicate supplier-numbers are

eliminated.

a. The Translation to ABDL

The ABDL translation for the above SQL query is

identical to the translation for our Subsection 5 example.

Again, the ABDL request

RETRIEVE (FILE = SP) <S#> ORDER BY S#

98

.............................................|..



returns all supplier-numbers (ordered by increasing

supplier-numbers) contained in the SP file (including

duplicates). Since UNIQUE is specified in the SELECT clause

of the SQL query, SQLI must check the ordered rows

eliminating duplicate values for the S# attribute prior to

forwarding the result relation to the user. If our example

is modified such that the ORDER BY clause is omitted, we may

facilitate the elimination of duplicates by "forcing" a SORT

of the selected attributes. That is, the ABDL RETRIEVE

request is written to include an ORDER BY specification.

b. A Proposed Software Structure

When UNIQUE is specified in the SQL query, the

ResultSet from MDBS is passed in a call to a ..

DuplicateEliminator subroutine. This subroutine scans and

compares adjacent members of an ordered Result Set

eliminating duplicate members. We assume that the

ResultSet is always ordered prior to being passed to

DuplicateEliminator. The ordering is either user-specified

or "forced" in the SQLT translation.

B. SELECTED MULTIPLE-RELATION OPERATIONS

In this section, we discuss two additional multiple-

relation operations which are supported by SOL: retrieval

using the UNION operator and retrieval specifying JOIN

operations. These two operations and the nested SELECT

(described in Chapter V) give SQL much of its power and

flexibility. The availability of query constructs which

99

................ '~........-......°..... ....
. . .. . . . . . .. .



allow access to related data in multiple tables greatly

enhances the ease with which a user can obtain the desired

information from the database. We investigate UNION and

JOIN operations in the following subsections.

1. The Retrieval Using UNION

From set theory, we recall that the UNION of sets A

and B (i.e., A UNION B) is the set of all objects x such

that x is a member of A or x is a member of B. The formal

predicate logic definition of A UNION B is:

Vx [(x A) V (x B)]

In SQL, the UNION operator is used in a query p

comprised of multiple-SELECT constructs. As an example, if

we wish to obtain numbers for parts that either weigh more

than 16 pounds or are currently supplied by supplier S2 (or

both), we may use the following query:

SELECT P#

FROM P

WHERE WEIGHT > 16

UNION p

SELECT P#

FROM SP
I

WHERE S# = 'S2'

100
p "



.rr-r - - .

The result relation is: P

1P31

[II

From the sample database of Chapter I, we can see that parts

P2, P3, and P6 weigh more than 16 pounds (x EA). Part P1

weighs less than 16 pounds, however, P1 is currently

supplied by supplier 62 (x EB). Part P2 weighs more than 16

pounds and is supplied by supplier 62 ((x EA) A (x E B)).

Note that duplicate rows are eliminated from the result of a

UNION operation.

a. The Translation to ABDL

In the SQL query above, each SELECT construct

translates into an equivalent ABDL RETRIEVE request. In

this example, the two ABDL requests

RETRIEVE (FILE = P) A (WEIGHT > 16) <P#> ORDER BY P#

RETRIEVE (FILE SP) A (S# S2) <P#> ORDER BY P#

are processed concurrently' The results are combined in

SOLI, where duplicate rows are eliminated. The remaining

rows are forwarded to the user.

b. A Proposed Software Structure

When the value of Request-Type is UNION, the

translation and processing are as follows. An MDBS SORT is

specified in the ABDL translation. A subroutine called

UNION pops all ABDL RETRIEVE requests off of Request Stack

101

• .* o * , ° o * , ~ ° D % . . • °.... . . . . . . ., . . . . . . . . . .o . ., ,



and forwards them to MDBS for concurrent processing. The

ordered result sets are merged (through the use of a

standard merge function) , and then passed to

Duplicate Eliminator. Finally, the uniquely selected

results of the UNION operation are returned to SQLI for .,-

display to the user. Subroutine UNION is presented in

Figure 22.

Subroutine UNION(RequestStack,Result_Set)

while NOT EMPTY(RequestStack) do
Send (Pop (RequestStack)

end while
Receive (Result_Set 1)
Receive (Result_Set2)
Merge (ResultSet I,Result_Set2)
CALL DuplicateEliminator (Result_Set)

end UNION

Figure 22. Subroutine UNION

2. The Retrieval Specifying Join Operations

Join operations are characteristic of data languaqes

intended for use with relational databases. SQL provides

the capability to specify implicit join, equality join, and -

inequality join operations. In an implicit join, attribute-

values in multiple tables are compared, however, the values

returned to the user are taken from only one table.

Implicit joins can be formed through the use of the nested

SOL SELECT constructs which we have described in Chapter V.

In the nested SELECT, multiple tables are accessed and the

102

. . .. . . . . . . . . . . . . .* .** % **.* . '.'. .



I

values of selected attributes are compared. We note that

only values from the outermost SELECT are returned in the

final result set. This operation results in the formation

of an implicit join.

Equality join and inequality Join operations are

specified by referencing multiple tables in a single SELECT

query. As an example of an equality join, if for each part

supplied we wish to obtain part numbers and names of all

cities supplying the part, we may use the following query:

SELECT UNIQUE P#,CITY

FROM SP,S

WHERE SP.S# = S.S#

The result relation is: D# CITY

DI London
D1 Paris
D2 London
2 Paris

P3 London
D4 London
D5 London
P6 London

Note that table-names may be used as qualifiers in the

SELECT and WHERE clauses in order to resolve ambiguities or

to ensure clarity. For example, the SELECT clause may be

equivalently written

SELECT UNIQUE SP.P#,S.CITY

103

,........................ . . . .. . . . . . . . . . . . . . . . . . . . .



Although there are optimization techniques which

facilitate a more efficient implementation, we can visualize

the join operation as follows. First the Cartesian product

of SP and S is formed. Then, rows not satisfying the

condition SP.S# = S.S# are eliminated. Next, columns P# and

CITY are projected from the remaining rows. Finally, since

the operator UNIQUE is used, all duplicate rows are removed

before the result relation is returned to the user. (For an

indepth discussion of the efficiency and optimization

considerations of implementing join operations, the reader

is referred to Demurjian [Ref. 1]).

a. The Translation to ABDL

The attribute-based data language, as

implemented in MDBS, does not provide a join capability.

Muldur [Ref. 15] is currently investigating the practicality

of incorporating join operations within MDBS. If we assume

that the functionality of MDBS is augmented to support the

equality join and inequality join operations, we might use -

the following translation for the equality join (as

discussed in Demurjian [Ref. 1]). The general form of a

simple, two-way equality join expressed in the syntax of SQL

is

SELECT sel expr_list

FROM relation namel, relation name2

WHERE relationnamel.attribute = relationname2.attribute

AND qualification

104

.. e2, Z..



The general form of the ABDL translation is

RETRIEVE (attributelist_1) (queryj)

CONNECT ON (attribute 1, attribute_2)

(attributelist_2) (query_2)

The sel-exprlist of the SQL SELECT is divided into a target

list consisting of attributes from relationnamel and a

target list consisting of attributes from relation _name2.

The qualification of the SQL SELECT is likewise partitioned.

The attributes named in the equality predicate become the

object of the CONNECT ON clause in the ABDL request.

Following this general form, the translation for the

equality join example of the preceding subsection is

RETRIEVE < (S#,P#) (FILE = SP) >

CONNECT ON (SP.S#, S.S#)

< (S#,CITY) (FILE = S) >

b. A Proposed Software Structure

As stated previously, we assume a join

capability for MDBS. Therefore, no augmentation of SULI is

required.

C. THE MODIFIED SOFTWARE STRUCTURE OF THE SQL INTERFACE

In this section, we present the modified software

structure of SQLI. We modify the structure which we have

presented in Chapter VI in order to facilitate the

implementation of the additional operations described in

105

- - - - - . . .-. . -. .



I

this chapter. The modified version of the top-level

process, SOLI, is shown in Figure 23. Note, we have

simplified this algorithm through the use of the

Request-Control subroutine. The functionality of this

subroutine is presented in Figure 24. The purpose of

Request-Control is to provide overall control of request

processing for the interface. A high-level view of the

modified software structure is shown in Figure 25, and the

relationship between Subroutine Request-Control and its

subordinate group of subroutines is depicted in Figure 26.

4

ALGORITHM SQLI (Modified)

Repeat
CALL GetSQL Query(Query)
CALL SQLT(Query,RequestStack,N,Errors,RequestType,

FormatOption,ArithExpr)
if N = 0 then I* Syntax Errors */

CALL Display(Query)
CALL Display(Errors)

else
CALL RequestControl(Request_Stack,N,RequestType,

ArithExpr,ResultSet)
CALL Display(ResultSet,FormatOption)

end if
End-of _session?
until end of session

end ALGORITHM SQLI (Modified)

Figure 23. ALGORITHM SOLI (Modified)

106

. ob. %*"-*.°



Subroutine Request Control (Request Stack ,N,RequestType,
ArithExpr,ResultSet)

CASE Request-Type OF

Case0 Update: CALL CaseOUpdate (Request Stack ,Resui t_Set);

Cae pae ALCaepaeRqetQakRsle)

Case2 Update: CALL Casel_Update(Request Stack,Result_Set);

GroupHaving: CALL GroupHaving (RequestStack,

lob Condition,ResultSet);

UNION. CALL UNION(Request Stack,Result_Set);

Others: if N I then

CALL OneRequest (RequestStack,Result_Set)
/* for simple, directly-supported *
/* single request *

else
CALL NLevel _Select(RequestStack,

N,ResultSet)

end if.

END CASE

Figure 24. Subroutine RequestControl

107



Get ~ ~ ~ ~ ~~Q ISLSL eus ipa

Figure 25. A High-Level View of the Software Structure

108



Request
Control

CaseO Case2 Union One
Update Update Request

Casel Group NLevel
Update Having Select

Conjunction ... N _ jn o

Dupe

lElim

Figure 28. Request-Control and its Subroutines

109

"% 0°



VIII. CONCLUDING REMARKS
I

In this thesis, we have concentrated on the language

interface aspects of using an attribute-based database

system, MDBS, as a kernel for the support of the relational

data model and the relational query language, SQL. A

related thesis by Weishar [Ref. 16] provides the design and

analysis of an interface for the hierarchical model and the

hierarchical data language, DL/I. This work is part of

ongoing research being conducted by the Laboratory for

Database Systems Research under the direction of Dr. David

K. Hsiao. As stated in [Ref. 1), the goal of this phase of

the laboratory's research "...is to provide increased

utility in database computers. A centralized repository of

data is made available to multiple, dissimilar hosts.

Furthermore, the database is also made available to

transactions written in multiple, dissimilar data

languages."

The rapid evolution of database technology has provided

the motivation for this research. Commercial database

management systems have only been available since the

1960"s. Today, organizations of all types are critically

dependent on the operation of these systems. This

dependency comes from the need to centrally control large

110



quantities of operational data. The information must be

accurate and readily accessible by relatively inexperienced

end-users.

There are three generally known approaches to the design

of database systems. These are the network, hierarchical.

relational approaches. An organization normally chooses a

commercial system based on one of these models. The

database must be created and operator and user personnel

must be trained. Because of the re-programming and re-

training effort (and money) required, an organization is

unlikely to change to a system based on one of the other

models.

We have discussed an alternative to the development of

separate stand-alone systems for specific data models. In

this proposal, the three generally known models and their

model-based data languages are supported by the attribute-

based data model and data language. We have shown (in the

relational case) how a software interface can be built for

such support.

Specific contributions of this thesis include extremely

thorough explanations of SQL operations such as: set-

membership, nested retrievals, retrieval of grouped

attributes, join operations, retrieval of computed values,

providing format options, retrieval using UNION, updating

multiple fields, retrieval with ordering, and elimination of

duplicates. We have extended the work of Macy [Ref. 8] by

p °11



_.._ , . .. . -'. -- -o '.- -- ' .-- -. Z '-'-' . " ' - " ->. _ . . .- * ..- *. *. - - - - ._- - - -. - . -

showing that many of the SQL constructs for the above

operations are directly supportable by ABDL and MDBS.

Others can be translated into a series of the primary and B

aggregate operations of the attribute-based system. In all

cases, SQL-to-ABDL translations are provided. We have also

proposed a software structure to facilitate the future

implementation of the SQL interface.

A major design goal has been to design a SQL interface

to MDBS without requiring that changes be made to the MDBS

system. We have shown that the complete interface can be

implemented on a host computer. All translations are

accomplished in the SQL interface. MDBS continues to .

receive and process requests written in the syntax of ABDL.

We have also shown that the interface can be designed to

utilize existing ABDL constructs (either one or a series of

ABDL requests). No changes to the ABDL syntax are required.

We also have not proposed any changes to the syntax of SQL.

We have designed the interface to be transparent to the SQL

user. The intention is that a trained SQL user need know

nothing of the existence of the interface or of MDBS. The -

user can log in at a system terminal, input a SQL query, and

obtain result data in a relational format.

In retrospect, our unconventional bottom-up approach to

design seems entirely appropriate. We have built upon the L

basic subset of SQL-to-ABDL mappings provided by Macy [Ref.

a], making additions to the set as selected SQL operations

112

* • .. *** . ° * S....".""¢ ,'? "','.''.''2'?,2,2, ",... ,' ., Pi ". "'-', *, " ~." . " ' "%•" "... ." .. " "...., ";"**. " "' "; ..€ . ,-.' *""5* ; '



have been incorporated into the interface. As our

investigation begins in Chapter IV, the form of the

interface software structure is not clear. When the nested

SQL SELECT is described in Chapter V, the requirements for

the structure begin to solidify. We become aware that an

iterative structure is needed to control the processing of

series of ABDL requests. As the algorithm, SOLI, is

completed in Chapter VI, it is clear that we have developed

the overall software structure for the SQL interface. The

functionality of the structure is enhanced as additional SQL

operations are selected. However, the general structure

remains intact.

As an alternative to implementing the SQL (network and

hierarchical, as well) interface on a host computer, the

interface can be placed inside of MDBS. We have studied

this possibility, and recommend against such an

implementation. A major design goal of MDBS is to minimize

the role of the controller. This goal can not be attained

if the controller must support the operation of resident

relational, network, and hierarchical interfaces.

We have shown that the attribute-based system supports

relational database applications. We have provided SQL-to-

ABDL translations for selected database operations, and we

have proposed a software structure to facilitate

implementation. The next step is to implement the interface

on a host computer. In order to finally determine the

113I

. 1 . ~ ~ . . . . . . . . . . . . . .



overall practicality of using MDBS as a kernel database

system, we must also implement the hierarchical interface

design of Weishar [Ref. 16). Additionally, an interface to

support the network model must be designed and implemented.

114

* .. . .. .. . .. . . .. . . . .. . *. *.* **. % ** *.* *.** ~ *. *.. *.* .*. ~ .~ % **. *** **N -..



APPENDIX A: FORMAL SPECIFICATION OF THE ATTRIBUTE-BASEDI DATA LANGUAGE, ABDL

The following is the BNF for the attribute-based data

* language developed by Hsiao and Menon [Ref s. 4 and 10)).

Square brackets 3 are used to indicate optional

constructs.

Predicate :-attribute rel op value

attribute char-string

attribute being _modified .- attribute

base-attribute :-attribute

value . string
1 number
1 float

* Conjunct =(Predicate)

(Conjunct /Predicate)

* Query . Conjunct

IQuery/ Conjunct

Stat AVG IMAX: MIN SUM 1COUNT

list ci Stat (attribute)

list =attribute

list _el
list,attribute

1list'list-el.

Target-list =(list)

Attrib valpair = attribute,value>

Half-record *:=Attri bval _pai r
Half-record, Attrib~yalpair

Record =(Half-_record)

115



Pointer =number

Modifier type-0
1 type-I
1type-Il
type-III
type-IV

* type-0 =<attribute-being modified=
value>

type-I <attribute-beingmodified=
expri>

type-Il : <attribute-being modified=
expr2>

A type-III : <attribute-being modified=

expr2 of Query>

type-IV <attribute-being modified=
expr2 of Pointer>

Request :-Insert : Delete Update
Retrieve

Insert INSERT Record

Delete =DELETE Query

Update =UPDATE Query Modifier

Retrieve :-RETRIEVE Query Target-list
[BY attribute)
(WITH Pointer)

uc-letter A B', C Z

* string uc _letter
1string ucjletter

ic-letter a: .ab '. . :z

* char string =uc letter

char string lc_letter

digit 0 :1 12:13 14:5 16:1

number =digit

d digi number

116



float =number.number

add op =+ -

I mult-op

exprI= arith-termi
Iexpri add-op arith_termi

arith-termi arith-factorl
I1arith-termi mulIto--p

ar ith-f actori1

arith-factori attribute-being__modified
number

wexpr2 =arith-term2

Iexpr2 add-op arith-term2

arith-term2 arith -factor2
arith term2 mult-op
arith-f actor2 --

arith factor2 =base attribute
Inumber

117



LIST OF REFERENCES

1. Demuriian, S. A., and others, An Attribute-based System
as a Database Kernel of Database Systems, unpublished.

2. Hsiao, D. K., "A Generalized Record Organization," IEEE

Transactions on computers, Vol. C-20, No. 12, December
1971.

3 Wong, E., and Chiang, T. C., "Canonical Structure in
Attribute Based File Organization," Communications of
the ACM, September 1971.

4. Hsiao, D. K., and Menon, M. J., "Design and Analysis of
a Multi-Backend Database System for Performance
Improvement, Functionality Expansion and Capacity
Growth (Part I)," Technical Report, OSU-CISRC-TR-81-7.
The Ohio State University, columbus, Ohio, July 1981.

5. Banerjee, J. and Hsiao, D. K., "A Methodology for
Supporting Existing CODASYL Databases with New Database
Machines," Proceedings of National ACM Conference,
1978.

6. Banerjee, J., Buam, R. I. and Hsiao, D. K., "Concepts

and Capabilities of a Database Computer," ACM
Transactions on Database Systems, Vol. 4, No. 1, pp. ..-.

347-384, December 1978.

7. Banerjee, J., Hsiao, D. K. , and Ng, F. , "Database
Transformation, Query Translation and Performance
Analysis of a Database Computer in Supporting
Hierarchical Database Management," IEEE Transactions on
Software Engineering, March 1980.

8. Macy, G., Design and Analysis of an SQL Interface for
a Multi-Backend Database stem, Master's Thesis,
Naval Postgraduate School, Monterey, California, March
1984.

9. Date, C. J., An Introduction to Database Systems. 3d
ed., Addison-Wesley, 1981.

li

-.. ..

• -. .- *".. .."..*-" . *-" -.*. . . .N ."v .'. ,. . '..",..,"..."...".."""....-...... .-.. ' - -,.".',"*"'. .'.* - '



1). Hsiao, D. k., and Menon, M. J., "Design and Analysis of
a Multi-Backend Database System for performance
Improvement, Functionality Expansion and Capacity
Growth (Part II)," Technical Report, OSU-CISRC-TR-S1-8,
The Ohio State University, Columbus, Ohio, August 1961.

11. Astrahan, M. M., and others, "System R: a Relational
Approach to Data Management," ACM Transactions on
Database Systems, Vol. 1, No. 2, pp. 97-137.

12. Chamberlin, D. D., and Boyce, R. F., "SEQUEL: A
Structured English Query Language", Proceedings of ACM
SIGFIDET Workshop, Ann Arbor, Michigan, May 1974.

13. Ullman, J. D., Principles of Database Systems, 2d ed.,
Computer Science Press, 1983.

14. Chamberlin, D. D., and others, "SEQUEL 2: A Unified
Approach to Data Definition, Manipulation, and
Control", IBM J. R&D 20, No. 6, November 1976.

15. Muldur, S., The Design and Analysis of Join and
Ordering Operations for a Multi-Backend Database
System, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

16. Weishar, D. J., Design and Analysis of a Complete
Hierarchical Interface for a Multi-Backend Database
System, Master's thesis, Naval Postgraduate School.
Monterey, California, June 1984.

L,

119

"' "S ".'' . . . . . . . . . . .



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, code 0142 2
Naval Postgraduate School
Monterey, California 93943

3. Department Chairman, Code 52 5
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Curricular Officer, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943

5. Dr. D. K. Hsiao, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

6. Dr. P. R. Strawser, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

7. Commanding Officer 1
ATTN: LT Griffin N. Macy
Naval Security Group Activity Northwest
Chesapeake, Virginia 23322

8. Office of the President 2
ATTN: CDR Rich Rollins
Naval War College

Newport, Rhode Island 02841

9. Robert A. Rollins 2
8936 Pardee Road
Saint Louis, Missouri 63123

120

.. . . . . . . . . . . .. .. -... . . . . . . . . . . . . . . . . . . . . . . .



FILMED 4
4-85

DTIC


