" AD-A151 501 DESIGN AND ANALYSIS OF A COMPLETE RELATIONAL INTERFACI
FOR_A MULTI-BACKEND DATABASE SVSTEH(U NAYAL
POSTGRADUATE SCHOOL MONTEREY CA R E ROLLINS JUN 34

UNCLASSIFIED

1.0 a2 pz
|"|§ w12 oo
=ik
| Y
|||| A ="
= |22
li2s flie pe
= = =

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

———

OTIC EILE CORY

NAVAL POSTGRADUATE SGHOOL
Monterey, Galifornia :

AD-A151 501

THESIS

DESIGN AND ANALYSIS OF A COMPLETE RELATIONAL RO
INTERFACE FOR A MULTI-BACKEND DATABASE SYSTEM 153a:;g

by
Richard Edward Rollins
June 1984

Thesis Advisor: David K. Hsiao fj
Approved for public release; distribution unlimited BN
.

85 03 05 o031 f'-?If::??if?'f

SECURITY CLASSIFICATION OF THIS PAGE (Wnhen Dats Entered)
READ INSTRUCTIONS -
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM -
NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER o
4. TITLE {end Subtitie) S. TYPE OF REPORT & PERIOD COVERED - 4. -
[. . .
Design and Analysis of a Complete Master's Thesis
Relational Interface for a Multi-Backend June 1984
Database System €. PERFORMING ORG. REPORT NUMBER
7. AYTMON(s) 8. CONTRACT OR GRANT NUMBER(a)

Richard Edward Rollins

$. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & W Oﬂ UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93943

11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE Y
Naval Postgraduate School June, 1984
Monterey, California 93943 T3, NUMBER OF FAGES
120
[TT MONTTORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15, SECURITY CLASS. (of ihie repar))
UNCLASSIFIED ‘o
TSa DECLASSIFICATION, DOWNGRADING

P ——————————— ——— patny
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

1 17. DISTRIBUTION STATEMENT (of the abatrect entered In Block 20, If different from Report) -
- S
o
18. SUPPLEMENTARY NOTES .
Do
; el
1. KEY WORDS (Continue on reverse eide If necensary and identily by block number) o

Database management systems, multi-backend data system,
attribute-based data language, relational data language,
relational interface, database kernel c(cowul, FPrrgrame. e —

J% ABSTRACT (Continue on reverse side if neceveary and tdentify by block number)

rganizations of all types are becoming increasingly dependent

on the operation of database management systems based on one of

the three generally known data models (i.e., network, hierarchical

or relational) for the centralized control of operational data.

As an alternative to the development of separate, stand-alone

systems for specific models, recent research has proposed a system

de51gned to support multiple data models and model-based 1anquageq
enegus collection of-)Continued)

DD ,%55'5 1473 zoimion or 1 Nov 3 18 omsoLETE
$/N 0102 LF- 014- 6601

] SECURITY CLASSIFICATION OF THIS PAGE (When Data Enters.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

ABSTRACT (Continued)
| database systems. This proposal is based on the existence of a
simple and powerful data model to which the three well-known
models can be mapped. This model, the attribute-based data model
is the data model upon which the Multi-Backend Database System
(MDBS), a software database machine, is based. This thesis con-
centrates on the language interface aspects of implementing MDBS
as a kernel for the support of relational databases. In particu-
lar, this thesis provides the design and analysis of an interface
between the relational query language (SQL) and the attribute-
based data language (ABDL). i jaialer —ciagudicos £\ uviole treloslial:

|
‘s/'ﬂ//.

S N 0102- LF-014-660)

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PP Al T St S g g

ARRER
» : .-‘
Approved for Fublic Release; Distribution Unl:imited :'f;
4 e
,E , Design and Analysis of a Complete Relational Interface o
- for a
- Multi-Backend Database System

by

Richard Edward Rollins
Commander, United States Navy

B.5., Uniled States Naval Academy, 19466 c
E:f.: 1
N ——— s;-—l
Submitted in partial fulfillment of thel = =~ .- 11
requirements for the degree of T A :;u%
i H lﬂ;j
MASTER OF SCIENCE IN COMPUTER SCIENCE o S
-) »-:..4 L S |

from the t

NAVAL POST GRADUATE SCHOOL '
June, 1984

+ NCAININ
bl e e
N <. SN

| ‘7 .- N‘_r._ Tmm——— L R - -
Author: - /§5/1>¢Zf/

y v) p /-f 77 ot
Approved by: /’/(HVC /(. /} > (€ (-
> Thesis Advisor N
3 ‘ Co-Advisor e
Asgee [",7’7/’/ ¢ o
- Chairman, Department of Cotijfer Scxence R
. \(-kthA R
Dean of Information and Folicy Sc1ences T
- 3 o
o

ABSTRACT

Organizations of all types are becaoming 1increasingly
dependent on the operation of database management systems
based on aone of the three generally known data madels
(L.e., network, hierarchical, or relational) for the
centralized control of operational data. As an alternative
to the development of separate, stand—alone systems for
specific maodels, recent research has proposed a system
designed to support multiple data models and model-based
ianguages as if the system is a heterogeneous collection of
database systems. This proposal is based on the existence
of a simple and powerful data model to which the three well-
tnown moda2ls can be mapped. This model, the attribute-based
data madel; is the data model upon which the Multi-Backend
Database System (MDBS), a software database machine, 1is
based. This thesis concentrates on the language interface
aspects of i1mplementing MDES as a kernel for the support of
relaticnal databases. In particular, this thesis provides
the design and analysis of an interface between the
relational query language (SBL) and the attribute-based data

l1anguage (ABDL).

TABLE OF CONTENTS

) I. INTRODUCTION e 11
. A. DESIGN GOALS ———————=———=————n ————— 14
B. APPROACH TO DESIGN ———— e 15
c. ORGANIZATION OF THE THESIS ———————m—mmmmem 17

II. THE MULTI-BACEEND DATABASE SYSTEM (MDES),
ITS DATA LANGUAGE (ABDL), AND THE

INTERFACE LANGUAGE (SBL) —————m———m—mm e 19
A. A REVIEW OF THE MULTI-BACKEND
DATABASE SYSTEM (MDBS) ———————————mmmm—— 19
B. THE ATTRIBUTE-EASED DATA
LANGUAGE (ABDL) -——- —— e 24
1. The RETRIEVE Request ~———-————v—v——————— 26
2. The INSERT Request ——~——————————————a— o7
3. The DELETE Request —-—~—-——m—v———————n-— 28
4. The UPDATE Request —~———————-——————————- 28
c. THE RELATIONAL QUERY LANGUAGE (SGL)
AS THE INTERFACE LANGUAGE ~————————————————- 29
1. The SELECT Query -————————m——————e——m o
2. The INSERT Query —~—-—-—————————me——————— 1
3. The DELETE Query -———==—————mev—— 2
4. The UFDATE Query —-——————————————————— 32
I1I. REVIEW OF BASIC MAPFINGS --~—————=—r——m—————m——— >4
A. MAPFING THE SOL SELECT QUERY _
TO THE ABDL RETRIEVE RERUEST -—-———-———m———e— 35 -
B. MAPPING THE SGL INSERT QUERY }
TO THE ABDL INSERT REQUEST -————————-—————— 7 .
e
Il
5 - _4

sttty
150 e

. .,
..........

c. MAFFING THE SQL DELETE GUERY

TO THE ABDL DELETE REQUEST ———————-———————- I8
. D. MAFFING THE SGL UFDATE QUERY
i TO THE ABDL UFDATE REQUEST —~————~—————=m—-— 9
IV. SELECTIONS WITH SET MEMBERSHIF OPERATIONS
ON SINBLE RELATIONS ~————————— o 41
i A. IN-MEMBERSHIP OFERATIONS ——-——————————————— 42

i. The Set Membership Operator,
TINY e 4z

2. The Set Membership Operator,

v ‘NOT_IN® ————————— 47
A
B. ANY-MEMEERSHIF OFERATIONS ——————-———-m———e—r 44
1. The Set Membership Operataor,
T=ANY T —m s e e e 44
® 2. The Set Membership Operator,
. vM=any 'l - 44
- 3. The Set Membership Operator,
:\ ‘d=any’ -—————————— e 45
4 a.

The Set Membership Operator,

:l TF=any’ —————m— e e 45

"

g 5. The Set Membership Operator,

= dany’ ———mmmmmmmm e e e e 47

F b. The Set Membership Operator,

3 CANY | e e e 48
C. ALL-MEMBERSHIP OPERATIONS ————-———~——m—m 49

1. The Set Membership Operator,
TEALL S mm e 49

2. The Set Membership Operator,

‘v=gllt e~ S0
S The Set Membership Operator,
‘{=all’ e S0

4. The Set Membership Operator,
"r=all’ e St

L.
: E.
]
)
-
i

F.

S. The Set Membership Operator,

‘Yall’ ————mm e
b, The Set Membership Operator,

‘A1 e
EXPRESSING IN-MEMBERSHIP
OFERATIONS IN ABDL - ——— e e
1. The Set Membership Operator,

‘ x N VI e e ——— Sy U
2. The Set Membership Operator,

NOT_IN' — e e
EXFPRESSING ANY-MEMBERSHIF
OFERATIONS IN ABDL —-—————mm e
1. The Set Membership Operator,

T=ANY T e e
2. The Set Membership Operator,

. '\'_—_F,N\" e —— e et e o s e e e e e e i e i e
T The Set Membership Operator,

T =ANY S e e
4. The Set Membership Operator,

IDANY T mm e e
S. The Set Membership Operator,

. { ANY e e e e et e = e e s — ————
6. The Set Membership Qperator,

CEANY e e e
EXPRESSING ALL-MEMBERSHIF
OPERATIONS IN ABDL -——~mmmm e
1. The Set Membership Operator,

" =ALL S e —— e ————————— e ——
2. The Set Membership Operator,

. '\'=ALL e e e o e e e e = ——— —
3. The Set Membership Operator,

CCEALL T e
4, The Set Membership Operator,

“y=ALL"

e - e e e e e e T i . e 2 —— o —

U
+a

w
3

N
4]

9]
4]

o
w

wu
n

o
o

o
~

S8

58

V.

VI.

VII.

S. The Set Membership Operator,
PEALL Y s e e e e e

&. The Set Membership Operator,
TEALL Y mem e e e e

SELECTIONS WITH SET MEMBERSHIP
OFERATIONS ON MULTIFLE RELATIONS ———————————————

A. NESTED SELECTIONS WITH
TWO RELATIONS —————m e

E. NESTED SELECTIONS WITH
THREE RELATIONS --—- ————————

C. NESTED SELECTIONS WITH
N RELATIONS —————— e

D. TRANSLATING NESTED SELECTIONS TGO
A SERIES OF ABDL RETRIEVALS ————————————w——

IMPLEMENTING NESTED SELECTIONS ———-~————=s—w————

A. ALGORITHMS FOR BUILDING

THE ABDL QUERY -————m———————m—mmm
1. The Query-Constructor Subroutine -—-—-———-
2. The N-Conjunction Subroutine ——————————
I The 1-Conjunction Subroutine —-—-——————--

B. AN ITERATIVE STRUCTURE FOR CONTROLLING
THE EXECUTION OF N-LEVEL SELECTIONS ———————-

C. FROPOSED SOFTWARE STRUCTURE —————=——==—————

ADDITIONAL SOL-TO-ABDL TRANSLATIONS -~——————————e

A. SELECTED SINGLE-RELATION OPERATIONS —————--—

1. Updating Multiple-Attributes —————- -
2. Retrieving Gualified Groups -—————————-
Z. Retrieving Computed Values -—-———————-—-
4. Froviding Format Options ————————————-

S. The Retrieval With Ordering (SORT) —----—

SO

61

a1

54

65

~|
w

~

D

LI ek as od ses g

&. An Elimination of Duplicates

(PROJECTION) ———=———m—mmm e 97
E. SELECTED MULTIPLE-RELATION OPERATIONS ————— 99
1. The Retrieval Using UNION ~———~————————- 100

2. The Retrieval Specifying
Join Operations --——————-—= -~ 1a2

c. THE MODIFIED SOFTWARE STRUCTURE
OF THE SBL INTERFACE —-—-- ———————————— 103

VIII. CONCLUDING REMARKS —-————=————————— - -——=- 110

AFPENDIX A: FORMAL SPECIFICATION OF THE
ATTRIBUTE-BASED DATA (ANGUAGE, ABDL -———--— 115

LIST OF REFERENCES ————————— e o e 118

INITIAL DISTRIBUTION LIST —~——— e m e 120

ACEKMOWLEDGEMENTS

The work reparted in this thesis is part at aongaing research
efforts conducted by the Laboratory for Database Systems
Research, Department of Computer Science, Naval Postgradusate
School, Monterey, California, 93943. The laboratory :s
under the direction of Dr. D. K. Hsiao. This worlk 1s
supported by Contract NOO014-84-WR-24058 from the Office of
Naval Research and by an equipment grant fram the External

Research Frogram of the Digitali Equipment Corporation.

I would like to extend my gratitude to the following people:

Or. David K. Hs ao, for the opportunity, guidance, and most
importantly, for the motivation.

. Paula R. Strawser, for her professionalism, detailed
guidance, and "gentle prodding”.

My wife, Shirl, and my children, Jenni and Jamie, for their
support and understanding.

10

f

Ty

9

W e tetat ey ..
M R NIV RPN G AP L S Sl W

I. INTRODUCTION

Database technology is rapidly becoming an extremely
important aspect of data processing. Commercial database
management systems have only been available since the
1960 's. Today, many thousands of organizations (e.g.,
corporations, universities, governments) are critically
dependent on the efficient and reliable operation of these
systems. Each aof these organizations has invested large
amounts of time, energy, and money to ensure that the
various end users are provided the data they need for doing
their jobs as effectively and efficiently as possible. ANy
of the three generally known approaches to the design of
database systems (i.e., network, hierarchical, and
relational) provides for the centralized control of an
organization’s operational data. However, questions
concerning the ease of understanding, use, and
implementation have stimulated research to determine the
"best" approach. The earliest database systems were bhased
on the network or the hierarchicezl model. These models lend
themselves well to the efficient implementation necessary
for the maintenance of large databases. Today, with the
increased emphasis on the ease of use and understanding,
many of the newer commercialized systems are based on the

relational model. Examples of commercially available

11

systems based on these models include: IMS (hierarchical),

SQL/DS (relational), and IDMS (network). Each of these
systems utilizes a model-based data language which allows
the user to specify the operations to be performed on the
data.

Once a commitment is made to manage a large database
containing an organization’'s operational data through the
implementation of one of these systems, it is financially
prohibitive to change to another approach. In addition to
the obvious re-programming requirement, user personnel
(including high-level executive users) must be re—-trained in
the syntax and semantics of a different data language.
Demur jian, et. al., have proposed an attractive alternative
to the development of separate, stand-alone systems for
specific models. Their research, reported in [(Ref. 11,
proposes that a system can be designed "...ta support
multiple data models and model-based languages as if the
system is a heterogeneous collection of database systems."”

The above proposal is based on the existence of a simple
and powerful data model ta which the network, hierarchical,
and relational models can be mapped. This is the attribute-
based data model as originally described by Hsiao [Ref. 21
and extended by Wong [Ref. 3I1. This is the data model of
the Multi-backend Database System (MDBS), a software
database system designed by Menon and Hsiao ([(Ref. A41.

The proposal of [(Ref. 1] is that the attribute-based system

»
ST}

(MDBS) , with the attribute—-based data model and the
attribute-based data language (AEDL), can serv2 as a kernel
for the support of several data models and the data
lanquages based on those models.

The attribute-based system 1is ideally suited to its
proposed role as a kernel of database systems. As
demonstrated by Banerjee [Refs. 5, 6, and 7], a relational,
hierarchical, or network database can be converted intao an
attribute-based database. The primary database and
aggregate operations, RETRIEVE, INSERT, DELETE, UPDATE, MIN,
MAX, SUM, COUNT, and AVG are supported by the system’'s high-
level data lanquage, ABDL. Finally, language interfaces can
be developed ¢to translate relational, hierarchical, or
network data language constructs into ABDL constructs. In
this +thesis, we are concerned with the lanquage interface
aspects of this research.

In particular, this thesis provides the design and
analysis of a relational interface to the attribute-based
system (MDBS). We extend the work aof Macy [(Ref. 81, who has
shown that a subset of the relational model-based data
1 anguage, SOL (Structured Query Language) can be directly
supported by MDBS and ABDL. Macy has provided mappings from
the SGQL SELECT, INSERT, DELETE, and UPDATE constructs to the
corresponding ABDL constructs: RETRIEVE, INSERY, DELETE,
and UPDATE. The translatinns are . limited ¢to queries

involving simple, single-relation operations. Using these

13

basic mappings as a foundation, we show that SOL queries
invaolving set membership operations can also be mapped
directly to ABDL constructs. We also demonstrate that other T
SRt constructs (of particular importance, the nested SG@L

SELECT) can be mapped to a series of ABDL operations.

P T
. ke N

Finally, we propose a software structure to facilitate the -
implementation of a complete relational interface for the :;;
attribute-based kernel (i.e., MDES). In the following two 4i$
sections, we discuss our design goals and our unconventional ;_ii
approach to the design of the SQL interface. In the last ”;jz
section aof this chapter, the organization of the thesis is ;;ET
presented. i%ﬂﬂ

A. DESIGN GOALS
We are motivated to design a SGL interface to MDBES in

order to demonstrate the feasibility of utilizing the

attribute-based system as the kernel of database systems in

general. However, our intention is not to propose changes

to MDBS itself. Instead, we propase that the SOQL interface
be implemented on the host computer. All translations are
accomplished in the S@EL interface. MDBS continues to
receive and process requests written in the syntax of ARDL.

Related to the goal of avoiding modifications to the

functionality of MDBS is the goal of keeping the syntax of

ABDL intact. We utilize existing ABDL constructs in our

query translations. A single éQL query may map to one ARDL

request or a series of ABDL requests. The processing of one

14

BT T T S S A
A T S e S S e L

- « .
o ot WLt et
ot et et e

request may depend on the results of some other request in
the series. Clearly, the interface must include some method
of controlling the iterative processing of series of

requests,. The software structure of our proposed interface

{described in Chapter VI and augmented in Chapter VII)
provides for this iterative control.

As discussed above, we have made it our goal to leave

MDBS and ABDL unchanged. We also desire to make our
interface transparent to the SGL user. For example, in a
corporate environment, a new employee with previous

experience with SBL/DS should be able to log in at a system

terminal, input a SOL request, and receive result data in a S
’ relational format (i.e., a table). The employee requires no =
training in MDBS or ABDL procedures prior to utilizing the T
oo
system. An obvious advantage is that the new employee -

;T becomes a contributing member of the organization almost

immediately, with no retraining. The non-productive period

of new employee indoctrination is greatly reduced. .

B. AFPROACH TO DESIGN
Our approach to the design and analysis of a S@L
interface to MDBS is unconventional by todav’'s standards.
;_ The normal methaod is to design a system in a top-down
manner. High-level abstractions are considered first, while
deferring lower-level details. In this thesis, we consider
e the lowest levels first. We are building upon the basic

subset of SOL-to-ABDL mappings provided by Macy [Ref. 81.

15 S

As additional SQL. operations are incorporated into
the interface, we make appropriate additions to the set of
SEL-to-ABRDL mappings. The functional requirements of an
overall software structure for the interface become apparent
in Chapter V, when we present ABDL translations for the
nested SGL SELECT. The functionality and organization of
structure components is described graphically, in text, and
through the presentation of high-level algorithms. We
reiterate that, in the development of the S@L interface,
MDBRS is considered to be a "black box" which processes
database requests presented in the syntax of ABDL. We are
proposing an interface, residing on a host computer, which
enables a user to access a relational database implemented
on an attribute-based system. Recommendations for
modification within the structure of MDBS are made only if a
desirable SGL operation cannot be supported by existing ABDL
operations.

Qur approach to the presentation of SGL-to-ABDL mappings
is as follaws. We first review the direct mappings (i.e.,
SELECT/RETRIEVE, INSERT/ INSERT, DELETE/DELETE, and
UPDATE/UFPDATE) developed by Macy [Ref. B81. Beginning in
Chapter IV, we investigate additional operations to be
supported by the interface. The functionality of each of
these operations is thoroughly explained through the use of
example queries. The equivalent ABDL requests are then

determined.

16

All examples on database operations presented 1in this

thesis are based on the Suppliers—and-Parts database

depicted 1in Date [Ref. 91]. This database contains three ; y
relations: "g" (Suppliers), "spt (Shipments), and "P* 'i
(Parts). We use many of Date’'s examples directly because f;ii
they are well—-known, thereby facilitating reader)

understanding of our SEL to ABDL translations. The database ——

is depicted in Figure 1.

C. ORGANIZATION OF THE THESIS

In Chapter II, we present an overview of the
organization and functionality of the Multi-backend Database - -i
System (MDBS). Also presented are descriptions of the

attribute-based data language (ABDL) and the relational data ;F%:
language (S@QL). Chapter III reviews the direct S@L-to- E;;*
ABDL mappings as developed by Macy [Ref. 81. SGL set
membership operations involving single relations, and the
equivalent ABDL requests are explained in Chapter 1IV.
Chapter V explains set hembership operations on multiple

relations (i.e., nested SELECT). In Chapter VI, a software

structure is proposed to facilitate the implementation of
nested SELECTs. In Chapter VII, the interface software

structure is modified to include the functionality necessary

to accomplish the translation of other single-relation and
multiple-relation operations. Chapter VIII presents our RN

conclusions and recommendations for future research.

17

(A AT .

e F e e
Lttt e e T L L T e e T T
PRSP T IS T S P i, N TR AL T ST T WK

T YT YT wwew -

S# SNAME STATUS CITY
St Smith 20 London
82 Jones 10 Paris
83 Bl ake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens|

P P# PNAME COLOR WEIGHT CITY
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
F4 Screw Red 14 London
PS Cam Blue 12 Paris
[-) cog Red 19 London

Figure 1.

The Suppliers—and-Parts Database.

*

)

II. THE MULTI-BACKEND DATABASE SYSTEM (MDBS), ITS DATA

LANGUAGE (ABDL) AND THE INTERFACE LANGUAGE (SBL)

As we begin our investigation into the feasibility of
designing and implementing a complete relational interface
for the Multi-backend Database System (MDES), it is
important to gain a general familiarity with the
organization of MDBS and with the system’'s attribute-based
data language (ABDL). We have selected the Structured Query
Language (SEL) as the relational data language to be
supported by our interface. Therefore, we must also have an
understanding of the structure and capabilities of this
1l anguage.

In Sections A and B, we briefly describe MDBS and AEDL,
respectively. Section C provides a brief description of
SOL. These descriptions, though somewhat superficial,
should enable the reader to comfortably follow subsequent
discussions. A complete description of MDBS and ABDL can be
found in Hsiao [Refs. 4 and 10]. The reader is referred to
Astrahan [Ref. 11} and Chamberlin (Ref. 123 for 1n—-depth

discussions of SQL.

A. A REVIEW OF THE MULTI-BACKEND DATABASE SYSTEM (MDBS)
MDES is a multiple-mi/ 1computer backend database
computer. Off—-the-shelf hardware and specialized software

are combined to provide database management service to a

19

1TV & ¥ ERT

host computer. Figure 2 depicts the hardware organization
of MDES. The hardware organization includes one
minicomputer as a controller and multiple minicomputers as
backends. Each backend has one or more dedicated disk
drives. The controller and the backends are connected by a
broadcast bus. The database is distributed across the disk
drives of the backend in such a manner that the backends can
process requests in parallel, providing a significant
performance advantage over traditional single-processor
architectures.

The prototype MDBS, currently operating at the U.S.
Naval Postgraduate School, uses a VAX 11/780 as the
controller and two PDPFP 11/44s as the backends. Each of
these backends has one or more disk drives for its dedicated
use. The multiple backends and the contraller are connected
by DEC’'s Parallel Communication Links (PCLs). Their
broadcast capabilities are simulated in software.

The major design goal of MDBS is to provide a high-

performance system for large—capacity databases. Throughput

improvement should be proportional to the number o+f
backends, and the response—time reduction should be
inversely proportional to the number of backends. A second

design goal is that the system should be easily extensible.
The system should be able to accomodate additional backends
with no modification to existing software, and no new

praogramming. The incorporation of additional backends

>
one or more
Backend 1§ ven
idisk drives
>
one or more
Backend 2 e
disk drives
To the
host
computer .
|
| <>
one or more
Backend n
disk drives

Broadcasting
bus

Figure 2. The MDBS Hardware Organization

[T SR

should not require modification to existing hardware, and
disruption of system activity should be minimal. The
software structure of MDBS provides this extensibility. The
software aof the backends is identical, wutilizing identical
operating software for the additional backends.

It is clear that the controller could become a
bottleneck. MDBS reduces this potential by minimizing the
role of the controller and maximizing the amount of work
done by the backends. The software structure of MDBS is
shown in Figure 3. The functions of the controller are
limited to request preparation, insert information

generation, and post processing. The request preparation

functions are performed before a request is placed on the
broadcast bus. These functions handle parsing, syntax
checking, and the transformation of a parsed request into
the form required for processing at the backends. The

insert information generation functions are performed during

the processing of an insert request, These functions
provide additional information to the backends, such as the

identity of the particular backend at which the record is to

be inserted. The post processing functions are performed
after replies are returned from the backends. For example,

result data are collected prior to forwarding to the host
computer,

As described above, the controller does relatively

little work. The backends, on the other hand, are

rel T

PV I
PR S I I
s
Sl
e
v

t

‘ v.‘:

B

IR

The Multi-Backend Database System
{MDRES)

CONTROLLER BACKENDS

REQUEST INSERT
FREFARAT ION INFORMATION
GENERATION

Categories
of Functions

DIRECTORY RECORD
ANAGEMENT, FPROCESSING,

CONCURRENCY
CONTROL

Figure 3. The MDBS Software Structure

23

e yove

1
' T,
he o2 oalaa

responsible for all the major database management functions.
These are directory management, record processing, and

concurrency control. The directory management functions

determine the secondary storage addresses of the appropriate

records and perform directary table maintenance. The record

processing functions store records into secondary storage,

retrieve records from secondary storage, and select the
records that contain the desired information. The

concurrency control functions ensure consistency for

concurrent execution of user requests.

The key to high-performance is in the parallelism ot the
backends. The database is distributed across the disks of
all of the backends. Therefore, when a request is
broadcasted from the controller, each backend can execute
the request an its portion of the database. To vyield an
additional performance advantage, a gqueue of requests is
maintained at each backend. Each backend schedules requests
for xecution independent of the activities of the other

backends.

B. THE ATTRIBUTE-BASED DATA LANGUAGE (ABDL)

We preface our discussion of the syntax and
functionality of AEBDL with a brief introduction to the data
model supported by MDES. This model is the attribute—-based
data model, originally developed by Hsiao ([Ref. 2]. The

following constructs are informally defined. A database

consists of a collection of files. Each file contains a

24

PR STV 4

unique group of records. Each record is composed of two

parts. The first of these parts is a collection of
attribute-value pairs or keywords. An attribute-value pair

is an element of the Cartesian product of the attribute name
and the domain aof attribute values. As an example,
<STATUS,30> 1is an attribute-value pair having 30 as the
value for the STATUS attribute. In each record, there is at
most one attribute-~value pair for each distinct attribute
defined in the database. The last part of each record

contains textual information. This is the record body. An

example af a recard without a record body is shown below.
We note that all examples in this and subsequent sections
are based on Date’'s suppliers—-and-parts database as

described in [Ref 91 and in Chapter 1.

(<FILE,S>,<S#,51>,<SNAME,Smith>,<STATUS,20:>,<CITY,London>)

The first attribute—-value pair in every record indicates the
file name. In the example above, the file name is ‘S’ (the
Suppliers file).

The database can be accessed through the use of keyword
predicates. Each of these keyword predicates is a three-
tuple of the form (attribute, relational _operator, value),
e.qg., (STATUS < 20). When keyword predicates are combined

into a conjunction such as

((FILE = S) A (STATUS < 30))

25

- or into a disjunction of conjunctions such as

S) A (SNAME

Smith)) \/) o

r"
k: (((FILE

[((FILE

S) A (SNAME

Jones)))

a query (in disjunctive normal form) of the database 1is

formed. -4
In the following subsections, we will see how these }\ij

keyword predicates and queries are used in the attribute- Lj”;

P

based data language for search and retrieval operations. We R
describe the syntax and functionality of the four types of 3{
request supported by ABDL: retrieve, insert, delete, and 5;%
update. Appendix A provides a formal specification of this fufa
non—procedural language. iﬁg;
1. The RETRIEVE Request ;2fﬁ
: A
The RETRIEVE request allows the user to query the SR
database for information. This operation obtains the) 2:;5
requested data without altering the database. The syntax ;-ff
acniaimd

is: - 4

RETRIEVE (Buery) <Target-list> [BY attributel [WITH Pointer]

The type of the request is indicated by the reserved word -

RETRIEVE. As we have seen, the fluery part is composed of

predicates in the disjunctive normal form. From our
previous discussion, we note that the Query specifies the e

file and those records within the file which satisfy the

request. The attributes for which values are to be bﬁf

26

PO, S N Y

TR ORI ot
-

Waltatat v,

e gtn Ty e e e

ettt AT ra Lt .-
R A R DGR RS -.'_'.:.\'..-.‘_-.",\'

» e -
PR MRS
PRI, TP I A SN, 220

R B
. a
- -
- e =
DRSUIAY

.

M adl S D - S A At SN RN R i gt |

extracted from this portion of the database are contained in

the Target-list. ABRDL supports five aggregate operations:

AVG, COUNT, MAX, MIN, and SUM. Therefore, the attribute
;f value may be an aggregate of values from multiple records,
‘ or the value from a single record.

The BY and WITH clauses are optional, as indicated
by the square brackets in the syntax. The BY-clause is used
when a grouping by some attribute is desired. The WITH-

» clause specifies whether pointers to the retrieved records
must be returned to the user for later use in an update
request. As an example of a RETRIEVE request, if we wish to
obtain supplier names for all of the suppliers with STATUS
greater than 10, grouped by location, we may use the

follawing query:

RETRIEVE ((FILE = S) A (STATUS > 10)) <SNAME:> BY CITY

2. The INSERT Request ??{
The INSERT request alters the database by adding a

new record. The syntax is:
INSERT Record
An example of an INSERT request is:
INSERT (<FILE,S)», «<S#,51>, <SNAME,Smith>)

This adds a recaord to the suppliers file for supplier number

S1 and identifies that supplier as Smith.

3. The DELETE Request

T T
L 2!

The DELETE request alters the database by removing

an existing record or records. The syntax is: ’

DELETE Query

AL SR a Rl
]
t
}

where Query specifies which records are to be deleted. An

example of a DELETE request is:

DELETE ((FILE = S) A (STATUS = 10})

This deletes all records in the suppliers file for suppliers y
whose status is equal to 10.
4. The UPDATE Reguest
The UPDATE request alters the database by modifying
the value of some attribute in an existing record. The

syntax 1s:

UPDATE GQuery Modifier

where Modifier indicates which of five types of modification
is to be performed. These modifiers are defined as follows.
A type-O modifier sets the new value of the attribute being

modified to a constant. A tvype—-l modifier sets the new

value of the attribute to be some function of its old value)
in the record being modified. A type-11 modifier sets the Ry
new value to be some function of another attribute value 1in

the record being modified. A type-II] modifier sets the new ?

value to be some function of another attribute value 1in

another record identified by the Query in the modifier. A

type 1V

modifier sets the new value to be same function of

another
pointer

(using a

attribute value in another record identified by the
in the modifier. An example of an UPDATE request

type-I modifier) is:

UPDATE (FILE = S) <STATUS = STATUS + 10> S

which adds 10 to the status of all suppliers.

RELATIONAL GQUERY LANGUAGE (SQL) AS THE INTERFACE =

€. THE
LANGUAGE
AS indicated in Chapter 1, we bhave selected the

Structured QGuery Language (S@L) as the data language to be

supported by our relational interface to the Multi-backend

Database

availability coupled with its simple yet power{ul

System (MDBS) . The language’s commercial

functionality make SGL an ideal choice. -

In

the preceding section, we described the attribute- Fﬁ

based data model prior to introducing ABDL. However, 1in R

this section, we assume a certain familiarity with the -

relational data model as we prepare to describe the four

basic constructs of S0OL: SELECT, INSERT, DELETE, and

UPDATE.

thearvy,

particular, we recommend Date [Ref. 9] and Ullman [Ref. 131].

I¥f the reader desires a review of relational

there are several very good texts available. In

A discussion of the mapping between the relational data -

model and the attribute—-based data model can be found in S

Baner jee

(Ref. 61.

29

1. The SELECT Query

Data retrieval, which is represented syntactically
as a SELECT-FROM-WHERE block, is the most basic operation of
seL. Mapping indicates that a known quantity (STATUS = 30)
is to be transformed into a desired gquantity (SNAME) by
means of a relation (S). The attributes to be returned are
listed in the SELECT clause (the built-in functions COUNT,
suM, AVG, MAX, and MIN may be applied to these attributes).
The FROM clause indicates which relation or relations are to
be searched. The WHERE clause specifies the retrieval
conditions. As an example, if we desire to obtain the names
of suppliers whose status is 30, we may use the following

query:

SELECT SNAME
FROM S

WHERE STATUS = 30

The SELECT construct allows the user great
flexibility in data retrieval operations. The user can list
several relations in the FROM clause in order to obtain
values selected from more than ane relation (JOIN
operations). The WHERE clause can contain any number of
predicates including the six standard relaticnal operators
(=, ~=, 27y >=4 4, and <=), and the Boolean operators (AND,
OR, and NOT). Parenthesis may be used to indicate a desired

order of evaluation. The set comparison operators IN, ANY,

-y

Ll

and ALL may also be used in the WHERE clause. (We
investigate the use of these operators in Chapter [V.)

There are many other passible variations to the
SELECT operation including the extremely useful nested
SELECT. In the nested SELECT, the result of one SELECT
request 1is used in the WHERE clause of another SELECT
request. (The nested SELECT is thoroughly described in
chapter V.)

2. The INSERT Query

The INSERT request allows the user to insert a new
tuple (row) or set of tuples into an existing relation
(table). Insertion of a single tuple can be accomplished

through the use of a query such as

INSERT INTO S:

<'S6", 'Rollins’, 40", 'Newport >

In this example, all of the attributes are present and in
the correct order. I1¥f some attribute values are unknown,
those attributes for which values are being inserted must be
listed following the relation name. A SEL INSERT statement
may also evaluate a SELECT request and insert the resulting
set of tuples into an existing (or temporary) relation. An

example of such an INSERT operation is as follows.

]
2

.
PR

INSERT INTO TEMP:

SELECT F#

FROM SP

WHERE S#

I
n
8]

This enters into TEMP part numbers for all parts supplied by
supplier S2.

3. The DELETE Query

The DELETE specifies tuples to be removed from the
database. The tuples are indicated by means of a WHERE
clause that is syntactically identical to the WHERE clause
aof a SELECT construct. As an example, to delete supplier
number five from the supplier relation, we may use the

following query.

DELETE =]

WHERE Sk = ‘S5°

We may also delete all shipments with the query

DELETE SP

The SP relation is still known, but it is now empty.
4. The UPDATE QRuery
The UPDATE request is syntactically similar to the
DELETE request, except that a SET clause is used to specify
the updates to be made to the selected tuples. New
attribute values contained in the SET clause may be stated

as constants, as expressions based on the original value of

v
AN

. .« . 0
e % NN
PG DR R R P R 3]

" T W o ey = X

the attribute, or as nested gqueries. An example of an

UPDATE request is

. UPDATE S
. SET STATUS = 2 % STATUS :
l WHERE CITY = ‘London’ o

This doubles the status of all suppliers in London.

III. REVIEW OF BASIC MAPPINGS

As we have described in Chapter I1, the tour primary
database operations of the Structured Query Language (S@L)
are SELECT, INSERT, DELETE, and UPDATE. Macy [Ref. 81 has
shown that for a subset of simple, single-relation SGL
queries of all four types, there exist direct mappings into
requests of the Attribute-based Data Language (ABDL). These
mappings are fundamental to all further SGL-to—-ABDL
translations introduced in this thesis. Therefore, in the
remainder of this chapter, we provide a review of these
basic mappings as defined by Macy. We explain the mappings
both graphically and in text. Each graphical presentation
will display the general forms of the SGL and ABDL
constructs, and the mappings between them {(such as Figure 4,
which depicts the SELECT to RETRIEVE mapping). Sample
translations, utilizing our suppliers—and-parts database,
will be presented in the text. The subset of SGL, far which
translations are described, contains those operations that
Macy has determined can be directly supparted by MDES and
ABDL. In the next chapter, we will show that SELECT
requests 1involving set comparison operators can also be
directly supported. In subsequent chapters, we describe

translations for SOL constructs such as the nested SELECT

which involve multiple ABDL constructs.

T Ty

PR

Prior to describing the specific SBL to ABDL mappings
(e.g., SELECT to RETRIEVE), we discuss two general types of
mapping identified by Macy: Syntactic—substitution mapping

and Conversion mapping. Syntactic-substitution mappings are

accomplished by simple substitution of syntactical terms.
Mappings requiring oniy substitution are denoted by a
directional arrow labeled with a square containing the
letter S (e.g., the mapping between the reserved words
; SELECT and RETRIEVE in Figure 4). Conversion mappings are
accomplished by combining a clause from an S@L gquery with
information about the ABDL data structure to create the
equivalent clause of the ABDL construct. Mappings requiring
conversion are denoted by a directional arrow labeled with a

triangle containing the letter C (e.g., the mapping between

i the SQL FROM and WHERE clauses to the ABDL RQuery in Figure
; 4). We will describe conversion mappings in more detail as
E we present each for the SGL to ABDL translations. For an
i extensive discussion of the basic mappings described in this

chapter, the reader is referred to Macy [Ref. 81.
A. MAPPING THE SEL SELECT QUERY TO THE
» ABDL RETRIEVE REQUEST
The mapping from the SGL SELECT to the ABDL RETRIEVE 1is
depicted in Figure 4. The mapping proceeds as follows.
D The reserved word SELECT is mapped by syntactic substitution
to the reserved word RETRIEVE. The sel_expr_list maps

directly to the target_list. A conversion mapping 1is

Mt e " ataTe .
“«® o atet Lt
DR S

P TRREAE YLAE YL P Y

I I Y RN N SR

SO O ICIPROPE P 2 OO PO

required to translate the FROM and WHERE clauses to the AEBDL

gquery clause. This is accomplished by creating an equality

keyword-predicate for the relation_name, e.g., FILE =

relation_name. This new predicate is combined with the
SELECT

sel _expr_list

FROM Relation_name
WHERE booleanl
[GROUF BY field namel
RETRIEVE
query
target_list

[BY attributel

Figure 4. Mapping the SOL SELECT to the ABDL RETRIEVE

other predicates listed in the boolean expression to form an

equivalent ABDL query clause. This conversion is called a
query-conversion mapping. The GROUP BY construct maps

directly to the BY construct. As an example of a SELECT to
RETRIEVE translation, the fallowing SGL SELECT will, for
each part supplied, get the part number and the total

quantity supplied of that part.

SELECT P#,SUMRTY)

FROM SP

GROUFP BY P#%

An equivalent ABDL request is

RETRIEVE (FILE

SP) <P#,SUM{RTY) > BY F#

B. MAPPING THE S@L INSERT QUERY TO THE ABDL INSERT REQUEST
The mapping Ffrom the SBL INSERT to the ABDL INSERT 1is

depicted in Figure 3. The mapping proceeds as follows. The

reserved word INSERT is the same for both requests. A

conversion mapping, referred to as a record-conversion

mapping, in this case, is required tao translate "INTO
relation_name insert_spec” into the ABDL “"record". As we
have seen in Chapter II, the ABDL record is a series of
attribute-value pairs, the first pair of which identifies

the file name. This mapping, then, can be accomplished by

INSERT

INTO relation_name

insert_spec
INSERT
record

Figure 5. Mapping the SGL INSERT to the ABDL INSERT

constructing attribute—-value pairs for the relation/file and

relation/file_name and for the values of the attributes

37

P

L
PR
PRI
PRSI

listed in the insert_spec. As an example of an S@L INSERT

to ABDL INSERT translation, the following SB8L INSERT query
will add part FP7 (name ‘Washer’', color 'Grey’, weight '2°,

city ‘Athens’) to relation/+file P.

INSERT INTO P:

<'P7°', 'Washer ', ‘Grey ', '2°, "Athens >

An equivalent ABDL request is

INSERT (<FILE,P>,<P#,P77,<PNAME,Washer >,

<COLOR,Grey:,<WEIGHT,2>,<CITY,Athens>)

C. MAPFING THE StL DELETE GQUERY TO THE ABDL DELETE REGUEST

The mapping from the S@L DELETE to the ABRDL DELETE is

depicted in Figure 6 The mapping proceeds as follows. The

reserved ward DELETE is the same for both requests.

. The query-conversion mapping, as described in Section A,
DELETE

relation_name

DELETE é

query

CWHERE baoleanl

Figure 6. Mapping the SGL DELETE to the ABDL DELETE

is used to translate "relation_name" and "WHERE boolean"

into the ABDL query clause. As an example of an SEL DELETE

to ABDL DELETE translation, the

will delete supplier S1 from the

DELETE

WHERE

An equivalent ABDL request is

DELETE ((FILE = &)

T D. MAFFING THE SGL UFPDATE QUERY

N Al A St st s

follaowing SGL DELETE query

suppliers relation.

SH#

‘g1 -

N (S# = 51))

TO THE AEBDL UPDATE REGUEST

The mapping from the S@L UFDATE to the ABDL UFDATE 1s

depicted in Figure 7. The mapping proceeds as follows.

39

[LWHERE booleanl

same 1in both requests. As

conversion 1is common to the

o
UPDATE
relation_name
r set_clause_list
UPDATE
T query
modifier
Figure 7. Mapping the S@L UFDATE to the ABDL UFDATE
.ﬁ The reserved word UPDATE is the
: in Sections A and C, the query-conversion mapping is used to
g
translate "relation_name" and "WHERE boolean" into the ABRDL
query clause. This
SELECT/RETRIEVE, DELETE, and

UPDATE translations. The

component "set_clause_list" directly correlates to the ABDL

"modifier", i.e., both constructs specify how the records

being modified are to be updated. To accomplish this
translation, the modifier conversion mapping is used.
The conversion required is a restructuring of S

set_clause_list constructs into acceptable ABDL format. The
modifier-conversion is similar to the query—conversiaon. We
now present an example of the conversions that are required
in the translation of an S@L UPDATE to an ABDL UPDATE. If
we desire to double the status of all supplierS in london,

we may use the following S8@L query:

UPDATE S
SET STATUS = 2 # STATUS
WHERE CITY = ‘London’

An equivalent ABDL request is

UPDATE ((FILE = S) A (CITY = London)) (STATUS = 2 # STATUS)

IV, SELECTIONS WITH SET HEMBERSHIF DPERATIONS ON
SINGLE RELATIONS

As we have seen, the condition following the WHERE
clause in S8L SELECT operations may include the normal
comparison operators, i.e., =, =, etc. Macy [Ref. 81 has
shown that MDBES supports simple, single-relation retrieval
operations using these comparison operators. S0L allows the
use of several additional comparison operators. Three of
these, IN, ANY, and ALL, deal with the set membership, and
are of particular interest to us as we investigate possible
extensions to the subset of SEL operations whose intertaces
were proposed by Macy.

In this chapter we show how qualifications using INMN,
ANY, and ALL can be supported by MDES. We first consider
the simple case where set members are enumerated 1n the
query. Some of the examples we provide herein may not
appear very useful. However, they will serve to i1llustrate
the mechanics of SELECT operations using these compar:son
operators. Their usefulness will become apparent in Chapter
vV, when we use them in retrievals involving multiple levels
of nesting.

In sections A, B, and C, we formally define the
comparison operators IN, ANY, and ALL, respectively. As
noted by Chamberlin, et. al. CRef. 141, English lanquage

definitions of these operators are, at best, ambiguous. We

41

N
5

-
.
Y

o
T e

v
”
oo
LI

N TR ———

shall, nevertheless, attempt to explain them in text prior
to providing a clarifying definition in predicate logic. An
example of a SELECT query will then be given for each cacse.
The result relation of each of these examples will be
provided in order +to further clarify the uses of these
operators. As in previous chapters, our examples specify
retrievals of data contained in Date’'s database (defined 1in
Chapter 1I). We will continue to utilize this database
throughout this thesis. Again, note that some of our
examples are taken directly from Date [Ref. 91. In Sections
D, E, and F we express IN, ANY, and ALL in the ARDL

requests.

A. IN-MEMBERSHIF OFPERATIONS

The comparison aperator, INM, can be thought of as the
set membership operator, €. Correspondingly, NOT IN 1s
equivalent to ¢.

i. The Set Membership Operator, “IN-

The operator, IN, is evaluated as follows. The
condition, A IN B, evaluates to be true if and only if the
value of attribute A is equal to at least cne value in the
enumerated set B. The formal definition in predicate logic

follows:

Vs x€ ac==> Jy «(vyEB | x = yN

EXAMPLE t: I+ we wish to obtain supplier numbers for
suppliers Smith and Jones, we may use the

following query:

SELECT S#,SNAME

FROM S
WHERE SNAME IN (Smith,Jones)
The result relation i1s: S# | SNAME
S1 | Smith
S2 Joneﬂ

2. The Set Membership Operator, ‘NOT_IN’

The operator, NOT_IN, is evaluated as follows. The
condition, A NOT_IN B, evaluates to be true if and only if
the wvalue of attribute A is not equal toc any value in the
enumerated set B. The formal definition in predicate logic

follows:
Vi x €A <==>Vy (yE B | x ~= y»

EXAMPLE

8]
"

If we wish to obtain supplier numbers for
suppliers who supply some parts, but do not
supply parts P3 or P4, we may use the following

query:

SELECT S#

FROM SP

WHERE P# NOT IN (P3,P4)

T

The result relation is: S#

82
83

B, ANY-MEMBERSHIFP OPERATIONS

The comparison operator, ANY, is used in conjunction
with the six standard relational operators, =, %=, <=, »=,
<y and >. It specifies variations aon the theme of set
membership as explained in the follawing subsections.

i. The Set Membership Operator, ‘=ANY’

The operator, =ANY, is interchangeable with the
ocperator, IN. The condition, A =ANY B, evaluates to be true
if¥f and only if the value of attribute A is equal to at least
one value in the enumerated set B. Example 1 and the
predicate logic definition given for the operator IN apply
equally to =ANY. In subsequent examples involving set
membership, we shall use IN rather than =ANY.

2. The Set Membership Operator, “=ANY’

The operator, ™“=ANY, is evaluated as follows. The
condition, A “=ANY B, evaluates to bé true if and only if
the value of attribute A is not equal to at least one value
in the enumerated set B, The formal definition in predicate

logic follows:

V:-: (xe A == 3y (yE B l X V= y))

EXAMFLE 3 If we wish to obtain supplier numbers for

suppliers who supply some parts, but do not

a4

[

T I
:
‘ .

supply both parts Pl and P2, we may use the

following query:

SELECT S#

FROM sP 3
WHERE P# “~=ANY (P1,P2) ;§fg
The result relation is: S#
s3 .
54 B |

-

3. The Set Membership Operator, ‘<=ANY’

The operator, <=ANY, is evaluated as follows. The
condition, A <=ANY B, evaluates to be true if and only if

the value of attribute A is less than or equal to at least

one value in the enumerated set B. This implies that the

value of attribute A ts less than or equal to the maximum ’)
value in the set B. <=ANY, then, is not particularly useful bi
in the case of enumerated sets. The operators »=, >, and <« :

are similarily of limited value when sets are enumerated in

the query. As previously stated, the usefulness of these
operators will become apparent when we discuss queries in
which the results of one SELECT operation determine the set

members in the WHERE clause of another SELECT operation f;}j

(nested SELECT). The formal predicate logic definition of A

“=ANY B follows:

Vi x & A c==> Jy (v € B | x <= y)) ==>

b& (x € A <==> x <= max {B}) A

45

As can be seen from the predicate 1logic definition, when
using the operator, <=ANY, it is logically unnecessary to
list more than one value (the maximum value) in the
enumerated set B. A similar comment is applicable when
using >=ANY, <ANY, or >ANY. However , in anticipation of our
nested SELECT discussion in Chapter V, example queries
utilizing these operators will each contain an enumerated
set having more than one member. The additional values
listed in the set are superfluous. However , they will help
demonstrate the differing results obtained through the use

of the ANY and ALL operators.

tXAMFLE 4: I+ we wish to obtain supplier names +for
suppliers whose status is not larger than =0,

we may use the following query:

SELECT SNAME
FROM S

WHERE STATUS <=ANY (10,20,30)

The result relation is:

4, The Set Membership Operator, ~>=ANY’
The operator >»=ANY is evaluated as follows. The
condition A >=ANY B evaluates to true if and only 1f the

46

el

value of attribute A is greater than or equal to at least
one value in the enumerated set B. This implies that the
value of attribute A is greater than or equal to the minimum
value in the set B. The formal definition in predicate

logic follows:

Vx (x € A <==3 By (y€ B , ® = y)) ==l

Vs (x € A <==» % >= min {B})

EXAMPLE 5: If we wish to get supplier names for suppliers
whose status is not less than 10, we may use

the following query:

SELECT SNAME

FROM S
WHERE STATUS >»=ANY (10,20,30)
The result relation is: SNAME|
Smith
Jonej
Bl ak
Clark
Adams|

3. The Set Membership Operator, ~<ANY’

The operator, <ANY, 1is evaluated as follows. The
condition, A <ANY B, evaluates to be true if and only if the
value of attribute A is less at least one value in the
enumerated set B. This implies that the value of attribute
A is less than the maximum value in set B. The formal

predicate logic definition follows:

47

B S iegh St S-S e-En e Jnean dun S

V‘r: (x E A «== 3y (y E B 1 X < y)) ==

h& (x E A <==> n < max {(B})

EXAMPLE 6: If we wish to obtain supplier names for
suppliers whose status i1is less than 30, we may

use the following query:

SELECT SNAME

FROM S
WHERE STATUS <ANY (10,20,30)
The result relation is: SNAME

Smith
Jones
Clark

6. The Set Membership Operator, >ANY’

The operator, >ANY , is evaluated as follows. The
condition, A >»ANY B, evaluates to be true if and only if the
value of attribute A is greater than at least one value in
the enumerated set B. The formal predicate logic definition

follows:

Vi x & A <==> dy (y € B | x > y)) ==>

Ve (x 8 A <==>x > min ¢B})

EXAMPLE 7: If we wish to obtain supplier names for
suppliers whose status is greater than 10, we

may use the following quervy:

Ty

SELECT SNAME

FROM =
WHERE STATUS »ANY (10,20,30)
The result relation is: NAME
iSmith
1 akel
Clark
Adams)

C. ALL-MEMBERSHIF OPERATIONS

Like the comparison operator, ANY, the operator, ALL, is=s
used in conjunction with the six standard relational
operators. It also specifies variations on the set
membership theme.

1. The Set Membership operatar, ‘=ALL°~

The operator, =ALL, is evaluated as follows. The
condition, A =ALL B, evaluates to be true if and only 1f the
value of attribute A is equal to every (each) value 1n the
enumerated set BH. The formal predicate logic definition

follows:

Vs (x € a <==> Jy (v EB | x =y A
Vy (y € B <==> Jx xE€E A | x =y

From this definition, it is apparent that the set E, whether
manually enumerated or determined by the results of an i1nner
SELECT, would contain only one value (or duplicates of that

value). Therefore, since we can always use a condition of

49

the form WHERE STATUS = 30, we shall not use the operator
=ALL in further discussion or examples.

-

2. The Set Membership Operator, “~=ALL’

The oaperator, ™“~=ALL, 15 interchangeable with the
operator, NOT_IN. The condition, A ~=ALL B, evaluates to be
true if and only if the value of attribute A is naot equal to
every value in the enumerated set H. In other words, there
12 no value in the set B to which the value of attribute A
is equal. The predicate logic definition of NOT_IN 1s

repeated for clarity:
V>: (x E A <I:==_‘_.~VY (y 6 B l x V= oy))

The query given in example 2 (with “=ALL substituted for NOT
IN) is applicable. In subsequent examples involving set

membership, we shall use NOT IN rather than ™=ALL.

I The Set Membership operator, ‘<=ALL’
The operator, <=ALL, is evaluated as follows. The
condition, A <=ALL B, evaluates to be true i¥ and only 1if

the value aof attribute A is less than or equal to every
value in the enumerated set B. Thi=s implies that the value
of attribute A is <= the minimum value in set B§. The

predicate logic definition follows:

Vx x € A '-.’.==>Vy (y €B l x <= y)) ==>

Vx (x € A <==% x <= min {B})

Again, as in the case of the operator ANY, our degenerate

50

examples utilizing the operators «<=AlLL, »=ALtL, <AtL, and

*ALL will be presented with enumerated sets containing more
') than one member (even though, logically, only one member 1s

necessary).

EXAMFLE 8: I+ we wish to obtain supplier names for
suppliers whose status is not greater than 10,

we may use the following quervy:

* SELECT SNAME
FROM S
WHERE STATUS <=ALL (10,20,30)
»
The result relation is: SNAME
; Jones
i Note that the difference between the comparison operators
V ANY and ALL is readily apparent when we compare this example
with example 4. In example 4, the operator, <=ANY, allows us
‘ to obtain supplier names for suppliers whose status is not
larger than 30. The result relation in that example

includes the names aof all five suppliers.

» 4. The Set Membership Operator, ' »=ALL’

The operator, »=ALL, 1is evaluated as follows. The

condition, A >=ALL B, evaluates to be true if and only i+

- the value of attribute A is greater than or equal to every
value in the enumerated set H. This implies that the value

of attribute A is greater than or equal to the maximum value

o1

Ec a4

in set B. The predicate logic definition follows:

Vx (x € A <If==?=-Vy (y € B | M F= y)) ==

V& (x€ A <==% % >= max {(B})

EXAMFPLE 9: If we wish to obtain supplier names for
suppliers whose status is at least 20, we may

use the following query:

SELECT SNAME

FROM =]
WHERE STATUS »>=ALL (10,20,30)
The result relation is: SNAME
Bl ake
LAdams |

S. The Set Membership operator, “<aLl’

The operator, <ALL, 1is evaluated as follows. The
condition, A <ALL B, evaluates to be true 1f and only if the
value of attribute A is less than every value in the

enumerated set B. The predicate logic definition follows:

Vi x€ na==3Yy (v €8 | x < y1) ==>

Vs (x €A ¢<==> x < min (B})

EXAMFLE 10: if we wish to obtain supplier names for

suppliers whose status is less than 10, we

may use the following query:

SELECT SNAME

FROM S
WHERE STATUS <ALL (10,20,30)
The result relation is: SNAME
Note that this 1s the empty relation. There are no

suppliers whose status is less than 10.

&. The Set Membership Operator, ~:ALL°

The operator, ALk, 1s evaluated as follows. The
condition, A rALL B, evaluates to be true if and only 1f the
value of attribute A is greatsr than every value 1n the

enumerated set B. The predicate logic definition follows:

EXAMPLE 11: I+ we wish to obtain supplier names +for
suppliers whose status i1is greater than 2, we

may use the following query:

SELECT SNAME

FROM S
WHERE STATUS >ALL (10,20,306)
The result relation is: SNAME
N
As in example ld, this is the empty relation. There are no

suppliers whose status i1s greater than 30.

53

D. EXPRESSING IN-MEMBERSHIF OPERATIONS IM AEBDL

In this and the following two sections, we present ABDL
transiations for the examples given in sections A, B, and C.
Each 5S0L example will be repeated, followed by the ABDL
translation.

1. The Set Membership Operator, ‘IN’

The SEL query presented as example | is

SELECT S#, SNAME
FROM S

WHERE SNAME IN (Smith,Jones)

Gur proposed SGL interface would provide the following ARDL

translation:

RETRIEVE ({(FILE

S) A (SNAME

Smithn)y \/

{((FILE

1
I

S) A (SNAME Janes}) <S#,SNAME:

One conjunction is created for each value in the enumerated
set, containing an equality predicate. The ABDL request
will have as many conjunctions as there are values in the

set.

2. The Set Membership operator, ‘NOT IN’

The S8L query presented as example 2 is

SELECT S#
FROM SP

" WHERE P# NOT IN (P3,P8)

S4

...........
LN,

IPp—

-y
—

The AEBDL translation is

RETRIEVE ((FILE = SP) AN (P# ~= P3) A (FP# ~= F4) <S#:

One predicate of the form (attribute ~= value) is created
for each value in the enumerated set. The ABDL request will
contain a single conjunction, which is the logical AND of

these predicates.

E. EXPRESSING ANY-MEMBERSHIF OPERATIONS IN ABDL

1. The Set Membership Operator, ‘=ANY’

fis previously defined, =ANY is equivalent to IN and
will not be included in our set of allowable SOL constructs.

2. The Set Membership Operator, '™~=ANY "

The S@L query presented as example 3 is

SELECT SH#
FROM SP

WHERE F# ~=ANY (P1,P2)

The ABDL translation is

RETRIEVE (((FILE

SP) A (P# V= P1)) V

((FILE

SP) A (P3I ™M= FP2))) <G#:

One conjunction is created for each value in the enumerated
set, containing a predicate of the form (attribute ™=
value).

-

3. The Set Membership Operator, <=ANY’

The SOL query presented as example 4 is

=1+

(Ol S aaut e s i |

SELECT SNAME

FROM S

WHERE STATUS

The ABDL translation is

RETRIEVE ((FILE

<=ANY (10,20,30)

S) A (STATUS <= 30)) <SNAME:

One predicate of the form (attribute <= max_value) 1is
created. The ABDL request will contain a single
conjunction. Note that the SGL interface recognizes that

the condition in the WHERE clause evaluates to true i+f and

only 1i1f a supplier’'s

status is less than or equal to at

least one of the status values in the enumerated set

{implying that that supplier 's status is less than or equal

to the maximum value in the set).

Therefore, only the

maximum value, 30, is utilized in the ABDL translatioan.

4, The Set Membership Operator, >=ANY’

The SEL query presented as example S is

SELECT SNAME
FROM S

WHERE STATUS

The ABDL translation is

RETRIEVE ((FILE

One predicate aof the

created. The ABDL

. e

>=ANY (10,20,30)

= 8) A (STATUS >= 10)) <SNAME:»

form (attribute »= min_value) 1is
request will contain a single
Sé

FCACTNT NI INE I SR R SRR I
. L Tl TP R Y T I
O I i S N SN

AR

conjunction. As in the "<=ANY case, only one value of the
enumerated set in the WHERE clause is utilized in the ABDL
translation. In this case, the wminimum value, 16, 1is
utilized.

5. The Set Membership Operator, <ANY’

The SBL query presented as example &6 1s

SELECT SNAME
FROM s

WHERE STATUS <ANY (10,20,30)

The ABDL translation is

RETRIEVE ((FILE = S) A (8TATUS < 30)) <SNAME>:

One predicate of the form (attribute < max_value) 1is
created. The ABDL request will contain a single
conjunction.

6. The Set Membership Operator, “>ANY’

The SQL query presented as example 7 is

SELECT SNAME
FROM S

WHERE STATUS »ANY (10,20,30)

The ABDL translation is

RETRIEVE ((FILE =5) A (STATUS > 10)) <SNAME:

One predicate of the +form (attribute > min value) is

created. The ABDL request will contain a single

conjunction.

F. EXPRESSING ALL-MEMBERSHIP OFERATIONS IN ABDL

1. The Set Membership Operator, ‘=ALL°

As previously defined, use of the operator, =ALL, 1s
equivalent to using the standard equality operator, =. We
will, therefore, not include it in our set of allowable SGL
constructs.

2. The Set Membership Operator, ‘“=ALL’

As previously defined, “=ALL 1s equivalent to
NOT_IN and will not be included in our set of allowable SOL

constructs.

-

3. he Set Membership Operator, <=ALL’

The S8L query presented as example B is

SELECT SNAME
FROM S

WHERE STATUS <=ALL (10,20,30)

The AEBDL translation is

RETRIEVE ((FILE = S) A (STATUS <= 10)) <SNAME :
One predicate of the form (attribute <= min_value) 1s
created. The ABDL request will contain a si1ngle
conjunction. As in the ‘'<=ANY ' case, the translator in our

SOL interface utilizes only one value from the enumerated

58

.'

-

K
.j

v e

-y
PV TN

set, Note that in this case, the minimum value, 1o, 18

chosen, whereas, in the "<=ANY ' case the maximum value, 30,
is chosen.

4. The Set Membership Operator, ~>=ALL’

The SEL query presented as example ? is
SELECT SNAME
FROM 5]

WHERE STATUS »=ALL €(10,20,30)

The ABDL translation is

RETRIEVE ((FILE = S) A (STATUS »>= 30)) <SNAME>

One predicate of the form (attribute »= max_value) is
created. The ABDL request will contain a single
conjunction. As in the ">=ANY’ case, only one value of the
enumerated set is utilized. In this case, the maximum
value, 30, is utilized in the equivalent RETRIEVE construct.
We recall that the minimum value, 10, was utilized in the
‘»=ANY’ case.

. The Set Membership Operator, “<ALL’

The SOL query presented as example 10 is

SELECT SNAME
FrROM S

WHERE STATUS <ALL (10,20,30)

The ABDL translation is

RETRIEVE ((FILE = S) / (STATUS < 10)) <SNAME -

One predicate of the form (attribute < min_value) 1e
created. The ABDL request will contain a single
conjunction.

6. The Set Membership Operator, “>ALL S

The S gquery presented as example 11 is

SELECT SNAME
FR3OM S

WHERE STATUS »ALL (10,20,30)

The ABDL translation is

RETRIEVE ((FILE = S) A (STATUS » 30)) <SNAME-

One predicate of the form (attribute > max_value) is
created. The ARDL request will contain a single

conjunction.

L)

,
-

V. SELECTIONS WITH SET MEMBERSHIFP OPERATIONS ON

MULTIPLE RELATIONS

In the preceding chapter, we have described SGL SELECT
queries which utilize the comparison operators, IN, ANY, and
ALL in the WHERE clause. These are simple, single-relation
queries in which the associated sets are enumerated. We now
discuss the nested S8L SELECT queries (or nested mapping) in
which the result of one mapping is used in the WHERE clause
of another mapping. In other words, the membership of the
set following IN, ANY, or ALL in one SELECT agperatiaon 1is
determined by the result set of another SELECT. We will
describe the operation of two-level, three-level and n-level
nested SELECTs in Sections A, B, and C, respectivelv. In
Section D, we show how the nested SOL SELECT is translated

into a series of ABDL RETRIEVEs.

A. HNESTED SELECTIONS WITH TWO RELATIONS

As previously stated, in a nested SBL SELECT, the
results of one SELECT agperation are used in the WHERE clause
of another SELECT operation. We view the former SELECT as
the inner (level of) SELECT, and the latter as the outer
(level of) SELECT. Figure 8 depicts an example of a two-
level nested SELECT operation. This particular example is
chosen for its similarity to one of our examples in Chapter

IV (i.e., Example 6) which utilizes the operator, <ANY, in

61

conjunction with a manually enumerated set. In the
degenerate case presented in that example, the operator,
<ANY, appeared to be of marginal usefulness. The usefulness
of this and similar operators (e.qg., <=ANY, >=ALL) in the
nested SELECT, will now become apparent.

Both our current example in Figure 8, and Example & of
Chapter IV result in a set of supplier numbers for suppliers
with status value less than the current maximum status value
in the § table. In our degenerate example, we must know
(i.e., enumerate) that that value is 30. In our present
example, we allow an inner SELECT to obtain the status value
for each supplier number in the S table. By employing an
inner level of SELECT, we are free from enumerating the

values.

SELECT S#

Outer
FROM S
SELECT
WHERE STATUS <ANY
(SELECT STATUS
Inner
FROM s)
SELECT

Figure 8. A Two-Level Nested SELECT

Frocessing of the two-level nested SELECT in Figure 8
proceeds as follows. First, the inner SELECT retrieves all
status values i1n the S table. fhe result of this SELECT is

the set (with duplicates) of status values {20,10,30,20,30}.

ot

) _'...' o !a- iy

The

WHERE the

outer SELECT then selects supplier numbers

status value is less than at least

the above result set,

The result

FROM table S
one of the

relation 1s

values 1in

S#

s1 s
i s2)
' Sa

BH. MESTED SELECTIONS WITH THREE RELATIONS

of We now describe a three—-level nested SELECT. We present

an example which demonstrates the usefulness of the

set/comparison operator IN, and of multi-level SELECTs 1in

) general. In the course of providing the requested data,

this three-level SELECT choosee data from each of the three

tables which comprise our sample database. The request is
i to get supplier names for suppliers who supply at least one ,--—»
red part. The query is presented in Figure 9. t
_ SELECT SNAME e
‘ Outermost .
FROM] .
SELECT
WHERE S# IN
{SELECT S#
J Inner
FROM SP i
SELECT
WHERE P# IN
(SELECT F#
J Innermost
e FROM P
- SELECT
g WHERE COLOR = 'RED’))
C Figure 9. A Three-Level Nested SELECT
)
- 63
3

:

.'s-l".l ' - - - - - . - -
PR YA NS, S R PR, S P

Frocessing of the query in Figure 9 proceeds as
follows.

Step 1: The innermost SELECT retrieves part numbers

(F#) from the parts relation (P) where the color

of the parts is red. The result of this SELECT

is the set of part numbers {FP1,P4,P&3.

Step 2: The next SELECT retrieves supplier numbers (S#)
from the shipments relation (SP) where F#s are
in the result set of step 1. The result of this
SELECT is the set of supplier numbers {S1,52,54%.

Step 3: The outermost SELECT retrieves supplier names

(SNAME) from the suppliers relation (5) where

S#s are in the result set of step 2. The result

relation passed to the user is SNAME

Smi th
Jones|
Clark

€. NESTED SELECTIONS WITH N RELATIONS

Although i1t seems unlikely that many users would utilice
a nested SELECT of more than 2 or 3 levels, the subqueries
can be nested to any depth. The form of an n-level nested
SELECT is shown in Figure 10.

The SET_OPR in Figure 10 refers to the various forms of
our comparison operators IN, ANY, and ALL. In the next
section, we describe the translation of nested SELECTs to a

series of ABDL RETRIEVESs. Therefore, 1t is 1mportant that

64

[2B

L))

SELECT =sel_expr_list

level 1 or

FROM relation_name_1 . outermast
SELECT

WHERE attribute_namel SET_0OFPR

(SELECT attribute_nametl
level 2 or

FROM relation_name_2 inner
SELECT

WHERE attribute_name2 SET_O0FK

(SELECT attribute_namein-1)
level n or

FROM relation_name_n innermost
SELECT
WHERE condition)...)

Figure 10. An N-Level Nested SELECT

we note the following information as succinctly stated 1in

{(Ref. 11.

"The nth level is the innermost SELECT. The 1st
level is the putermost SELECT. The sel_expr_list of each
inner SELECT, i.e., a SELECT lower than level 1, contains

a single attribute name, which 1is the same as the
attribute name used in the qualification of the next-
higher level SELECT. The relation names at any two levels

may be the same.™
D. TRANSLATING NESTED SELECTIONS 70O A SERIES OF AEDL
RETRIEVALS
As shown by Macy [Ref. 81, there exists a
straightforward mapping between the S@L SELECT operation and
the ABDL RETRIEVE operation. We can, therefore, simulate
the nested SELECT with a series of RETRIEVES, each
succeeding operation using the results of the previous one.

Thus, referring to our three-level example of Section E, the

&3

. DA

ABDL equivalent of the innermost SELECT is

RETRIEVE ((FILE = F) A (COLOR = 'RED')) <«<P#.

The resulting set of part numbers {F1,F4,F&) 1s then used 1n

the nmext ABDL operation as follows:

RETRIEVE (((FILE = SP) A (F# = F1)) V
((FILE = SF) A (F# = P4)) V
((FILE = SP)Y A (P# = P&))) <S#H:

The last retrieve (corresponding to the outermost SELECT in
ouwr example) then uses the resulting set of supplier numbers

{51,582,543 as follows:

RETRIEVE (((FILE

Sy A (S# S1)1) V

((FILE S) A (S# = 52)) V

((FILE

Sy A (S#

il

S4))) <SNAME:

It 1is intended that the operation of our S8L interface be
transparent +to the SOQL user. Therefore, the resulting
values of the attribute SNAME (Smith,Jones,Clark) are
returned to the user in the form of the result relation
previously described for our three-level nested SELECT

example of section B.

We have now demonstrated the operation of data
retrievals involving the nested SELECT construct. These
nested operations may include use of the various forms of

IN, ANY, and ALL. The sequence of actions necessary to

&6

I3
PR TR I SN

N

4
A‘J
.

translate the nested SOL SELECT

RETRIEVEs has been described.

present our propaosals for

translations.

the

&7

chapter,

implementation

R AL AT L L SRR AN S el el b b il BN

VI. IMPLEMENTING NESTED SELECTIONS

The 1logical process by which a nested S SELECT is
translated to a series of ABDL RETRIEVES has been described.
It is clear that each SELECT level, from the innermost to
the outermost, must be tranclated to an AEDL RETKRIEVE.
Then, each RETRIEVE 1i1s processed 1in turn, with each
succeeding operation utilizing the results of the previous
RETRIEVE in the QUERY part. In Section A of this chapter, we
present the algorithms for building the ABDL QUERY. In
Section B, a simple iterative structure for controlling the
execution of n—-level nested SELECTs is provided. Finallvwv.
in GSection C, the overall csoftware structure of our SaL
interftace will be proposed. Note that, as we continue our
bottom—up investigation and include additional SeL
operations in our set of allowable constructs, the
functionality of this structure may be augmented. However ,
it i1s expected that the software structure will remain

intact.

A. ALGORITHMS FOR BUILDING THE ABDL GQUERY

We recall that the Buery part of ABDL RETRIEVEs (DELETE
and UPDATE, as well) is written in a disjunctive normal
form. A OUERY may be a single conjunction or it mav be a
disjunction of conjunctions. The number of conjunctions

generated in the translation of nested SELECTs utilizing the

68

various forms of IN, ANY, and ALL has been noted in Sections
D, E, and F of Chapter IV, Figure 11 summarizes this
information. The figure also specifies the relational
operators involved, as well as the source of the values to

be used in each conjunction.

Set Opr #_Conjunctions Rel QOpr Value Source
In n = result set
NGT IN 1 ~= result set
~=ANY n N= result set
<=ANY 1 o= max (result set)
»=ANY 1 = min(result set)
< ANY i < max {(result set)
*ANY 1 E min{result set;
<=ALL i o= min{result set)
*=ALL i = max (result set)
<ALl 1 < mini{result set)
AL 1 > max {result set}

Figure 11. Summary of Nested SELECT
Set Compar-ison Operators

From Figure 11, 1t is clear that our translator must
perform a multiway selection depending upon which set
comparison operator is utilized at each SELECT level. We
describe an appropriate algorithm in Subsection 1{. It can

also be seen that, in the case of the operators IN and

69

B Jiese Baas 2anan 2o aue

]
|
:
]
}
3
.

.
N
[

»

.
e’e

T TTYTY

~=ANY, a number of conjunctions are generated, one for each
value 1i1n the result set of the previous agperatiaon. In
Subsection 2, we present an n—-conjunction algorithm to
handle these two cases. Note that in all remaining cases, a
single conjunction 1is generated. The l-conjunction
algorithm is presented in Subsection Z.

i. The Buery-Constructor Subroutine

As noted above, the top-level translator portion of
our SO0L interface must determine from the set comparison
operator the proper algorithm for constructing the GUERY
part of the resultant ABDL request. This can be handled bv
a multi-way selection or CASE construct, as shawn 1in the
Buery~Constructor Algorithm in Figure 12. The parameters
passed to Cuery_Constructor are Query Template (a
conjunction, described in Subsection 2, constructed to
facilitate the incorporation of succeeding result sets), the
Result_Set of the previous request, and the appropriate
Set_Opr from Figure 11.

In each alternative of the CASE statement of Figure
12, the correct relational operator is chosen, and either
the n-conjunction or the 1l-conjunction subroutine is called.
The parameters provided for each subroutine call are the
relational operator and the result set of the previous
operation, or the maximum/minimum value of the result set.
As previously discussed, when ANY and ALL are used with

these relational operators, only one value of the result set

70

J

»
A

Subroutine

CASE Set

IN:

NOT IN:

<=ANY:

»=ANY:

<ANY:

>ANY:

<ALL:

=ALL:

END CASE

Guery_Constructor (Guery_Template,Result_Set,

Set _Opr)
_Opr OF
Rel Opr <--—- '=°
call N_conjunction{Query_ Template,Result_Set,
Rel_Opr)s
Rel Opr <-— '™=
call One_conjunction(Query_Template,Result_Set
Rel _Opri;
Rel Opr <-- "“=-
call N_conjunction(@uery_Template,Result_Set,
Rel _Opri;
Rel Opr <—-— ‘<=~

call One_conjunction (Query_Templ ate,
max (Resul t_Set) ,Rel_0Opr)

0

Rel Opr <—— °'>=
call One_conjunction (Query_Template,
min (Result_Set) ,Rel _Opr)

Rel_Opr <{-— "<~
call One_conjunction(GQuery_Template,
max (Resul t_Set) ,Rel _Opr)

Rel _QOpr <— ">~
call One_conjunction{(Guery_Template,
min (Result_Set) ,kel_Opr)
Rel _Opr <-—-— <=~
call One_conjunction(@Guery_Template,
min(Result_Set) ,Rel _Opr?

Rel _Qpr <-—-— "&="
call One_conjunction{BQuery_Template,
max {Resul t _Set) ,Rel _Opr’

Rel _Opr <-- "<~
call One_conjunctian(Query_Template,
min(Result_Set) ,Rel Opr)

Rel _Opr <-— "’
call One_conjunction(Guery_Template,
max (Result_Set) ,Rel Opr)

END Query_Constructor

Figqure 12. The Guery_Constructor Subroutine

71

R PO

v
s, .
ettt

‘e e P Yy 8

1is utilized in the translation. Depending upon which form
of the set comparison operator is used, the selected value
will be either the maximum or the minimum value in the
result set. Therefore, a call to a standard Max or M™Min
function, as appropriate, must be made prior to sending the
resultant single value to the 1-conjunction subroutine. It
should be noted that the 1-conjunction subroutine is called
in the case of the operator NOT IN. However, there is no
need to utilize a Max/Min functiaon. We also note that a
call to HMax/Min is never needed prior to a cail to the n-

conjunction subroutine.

2. The N-Conjunction Subroutine

In the case of the set operators IN and “=ANY. the

above Guery—Constructor subroutine will call the n—
conjunctian subroutine. In the process aof translating
nested SELECTs which utili:ze these operators, one

canjunction of the form

((FILE = Relname) N {(Attrname Rel _opr Value))

will be generated for each value in the result set. These
conjunctions are ORed to form a disjunction of conjunctions,
as explained in Chapter 1V, Sections D and E. an
algorithmic representation of the n-conjunction generation
subroutine is provided in Figure 13.

The template, defined in Figure 13, is provided by

the top-level translator as it translates each SELECT level

S W ETN

-

1
{
‘
!
{
.
{
‘
!

.
»
»
[N

to an ABDL RETRIEVE. Value_of_Template is the only variable
which requires substitution. For the innermost (nth level)
SELECT of a nested SELECT request, the equivalent RETRIEVE
can be constructed completely. However, at translation

time, +the values to be used in the query portion of the

Subroutine N_conjunction{(Query_Template,Rel_opr)

/% Query Template: */
/* is ((FILE = Relname) A (Attrname Rel _opr Value)) =/
/% RQuery: */
7% is Query_Template V QOuery_Template V . . . */
/% V tuery_Template */
/* »/
/% For every value in the Result_set */
/% generate one conjunction using Template */
/#+ then OR-concatenate into Query. */
Rel opr_of_Template <-- Rel_oapr

if Result_set is NAOT EMPTY

then
Value_of_Template <—— 1st value from Result_set
Query <-~— Query_Template /# Relname % Attrname */
/% filled 1n */
while more values in Result_set do
Value_of_Template <-- next value from Result_set
Guery <-—- Query i} " V' ! Template
end while
else
Qluery <—- ° /* Query is nil #/

END N_conjunction

Figure 13. The N-conjunction Subroutine

remaining n~1 SELECTS are unknown. Therefore, the template
is provided to the N-conjunction generator which fills 1in
the missing values and constructs the QUERY part of each

RETRIEVE.

73

B R

T

e The 1-Conjunction Subreutine

In the case of the operator NAOT IN and all of the
ANY/ALL operators containing <=, =, <, oOr », the CASE
statement causes a call to the I-conjunction subroutine. As
described in Chapter 1V, one predicate of the form
(Attribute Rel_opr Value) is generated for each value in the
result set. These predicates are then ANDed to form a
single conjunction. An algorithmic representation of the 1-

conjunction subroutine is provided in Figure i4.

Subroutine One_conjunction(Buery_Template,Result_set,

Rel _opr)
/% Puery_Template: */
/# is ((FILE = Relname) A ({(Attrname Rel_opr Value)) */
/% Predicate: */
/* is (Attrname Rel_ppr Value) */
/% Query: */
/* is Query_Template A Predicate A . . . * /7
/* N Predicate */

Strip right paren from Query_Template
Rel _opr_of_Template <-- Rel _apr

if Result_set is NOT EMPTY
then
Value_of_Template <-- 1st value from Result_ set
Query <—- Guery_Template
while more values in Result_set do
Value_of_Fredicate <-- next value from Result_set
Query <-—— Query ! "A ’ || Predicate
end while
else
Query «<—— * * /% Query is nil #/

Guery_Template <—- Query_Template !! ') °

Figure 14, The 1-conjunction Subroutine

K ad ‘

-

Mote, in Figure 14, that the template provided to the 1-

conjunction subroutine is identical to that used in the N-

E‘ ’ conjunction subroutine. An additional data structure,
Predicate is defined as (Attrname Rel_opr Value). The use

of this additional ‘template’ allows us to extend the single

conjunction,

((FILE = Relname) A (Attrname Rel opr Value))

to the multiple—-predicate single conjunction,

{(FILE = Relname)} A (Attrname Rel _opr Value) A . . .

A (Attrname Rel _opr Value))

The number of predicates generated is determined by the
number of values in the Result_set.
E. AN ITERATIVE STRUCTURE FOR CONTROLLING THE EXECUTION
OF N-LEVEL SELECTIONS
In the previous section, we have presented algorithms
for building the QUERY part of sach ABDL RETRIEVE generated
in the translation of a nestéd SOL. SELECT. We now consider
the process of controlling the execution of this process. An
algorithmic representation of a simple structure for the
control of this iterative process is provided in Figure 15.
This N_level Select subroutine is called by the Top-level
process of the interface (described in Section C). The -

parameters passed include a series of ABDL RETRIEVE requests

{in the form of a request stack), and the number, n, of such

1
J
o
-
--'1
;H

75

»

o et
PLAr
. .
. .
0. »

requests. We recall, from Chapter V, that the innermost
SELECT level is viewed as the nth-level. Request Stack has
the ABRDL translation of the nth-level SELECT on toap. The
ist-level SELECT is on the bottom. The stack is formed in
this order because the nth-level request is the only request
containing a fully formed query_part (as described 1in
Chapter V). Each of the other n-1 requests requires the
Result_set of the immediately preceding request before it

can be sent to MDBES for processing.

Subroutine N_level Select (Request Stack,n)

/#* Request_Stack has the ABDL translation of the */
/% nth-level SELECT on top. The lst-level SELECT */
/# is on the bottom. Each request in the Stack is */
/#* composed of the reserved word RETRIEVE, Target List, #/
/# Set_Opr, and Query_Part. The CGQuery_Part of the */
/% nth-level SELECT is fully formed. The Query_ Fart */
/% ot the n-1 —--> lst—-level SELECTs is a query template #/
/# having the form */
/* ((FILE = Relname) A (Attrname Rel_opr Value)) */
/% with a blank in the ‘Value’ position. * /
Current_Request <-- Fop (Request Stack)

Send (Current_Request)
Recieve (Result_Set)

for i <-— 1 to n—-1 do
Current_Request <—— Pop (Request_Stack)
Call Query_Constructor (Query_ Fart,Result Set,Set_0Opr)
Send (Current_Request)
Receive (Result_Set)
end for
Display(Result_Set)

end N level Select

Figure 15. An Iterative FProcess for Controlling
the execution of N-level SELECTS

76

The aperation of the N_level Select subroutine is as
fol lows. The nth-level request is popped off the top of
I ’ Request_Stack and becomes the Current _Request This

Current Request is forwarded to MDBES through the Send

- function. Upon completion of processing, the Result_set is
I obtained through the Receive function. The remaining n-—1
requests are popped off the stack and processed in order.
The nth and succeeding result sets are incorporated i1nto
»l each request through a call to Quervy-Constructor (described
in Section A). The Send and Receive functions are used on
each 1iteration to route request/result traffic between
» NM_level _Select and MDBS. When the last request has
completed processing, the final result set is provided to
the user through a call to the Display subroutine. Display
ii . presents the results of the original nested SBL SELECT as a

result relation (this is the format expected by a S@L user).

C. PROFPOSED SOFTWARE STRUCTURE
In this section, we present a saoftware structure for the

implementation of nested selections in our proposed SOL

interface. In fact, all of the translations heretofore
introduced 1in this thesis and in Macy ([Ref. 83, are
}ﬁ supported by this structure. Therefore, allowing for
X possible modifications required to support additional
J
- multiple and single-relation SGL operations, the software
&E structure depicted in Figure 16 represents the averall
- software structure of the SOL interface.
J .
- . E
. .
4

|_\

N AEAREERETR

As depicted in Figure 16, the S@L interface is compriced
of a single top-level process with multiple subroutines and
functions. The top-level process is called SOLI (SO

Interface). We have described the N_level Select subroutine

SOLI
[N T 1
Get SOL SaLT Send Recei ve Display N_level
Guery Select
O
l

Cuery Constructor
1_conjunction N_Conjunction

Figure 16. The Proposed Software Structure

group. We discuss the remaining subroutines as we explain

the functionality of SOLI. An algorithm for SELI is

presented in Figure 17.

The operation aof SOLI 1s an follows. Once a session 1s
itnitiated from the user terminal, the actions depicted 1in
;]) ALGORITHM SGLI are repeated until session termination. The i
SQL query to be translated into the equivalent ARDL
;_ construct 1is obtained through a call +to the subroutine

.l Get _SGL_Query. This subroutine polls the user terminal for

ALGORITHM SELI

Repeat

CALL Get SGL_EGuery (Buery)

CALL SOLT(Guery,Request_Stack N,Errors?

if N = O then /#* Syntax Errors */
CALL Display(Query) :
CALL Display(Errors) ' L

else if N = 1 then /¥ Single Request */
Send {(Fop (Request _Stack))
Receive {(Result_Set)
CALL. Display{(Result_Set)

else /# N—-level Request */
CALL N_level _Select (Request_Stack ,N) R
end if

End_of_session?
until end_of_session
end ALGORITHM SOLI

B % v e e e
Tt T T T
.

Figure 17. The Top-level Process of the Interface, SGLI

input. Note that when a query is obtained, the polling

stops until the result relation is received by the user (or

syntax errors are displayed for the user). This restriction
is placed in order to preclude the complexity of processing
more than one request at a time. (We assume that several - Y
user terminals have access to a copy of SELI, and that each

user makes a request and waits for a result before making

PGP TR I

annother request).

‘.4

79

-‘.'. RO '-I'- .

- e r "
LA AR SR AR,

The Qquery obtained by the call to Get_SOL_Query 1s
passed as a parameter in a call +to the SBL Translator
(SELT) subroutine. SGLT parses the query, recognizes the
query-type, checks for syntax errors, and translates the S@L
query to the appropriate ABDL request. If there are no
syntax errors, SOLT places the transiated requests 1n a
stack and returns this Request_Stack, along with the number,
M, of requests in the stack. In the case of simple, single-
relation operations, Request_Stack contains one request. In
the case of a nested selection, SOLT first parses and
transl ates the Dutermost SELECT placing the resultant
RETRIEVE request on the stack. As previously discussed, the
request contains & query—template. {Recall that only the
nth-level, or innermost, request is fully formed). I+ there
are syntax errors, SOLT returns a value of zero for N. The
erraors are also returned.

If the number of requests in Request_Stack is zero (N =
93, then SOGLT has detected syntax errors. In this case,
SGLI makes two calls to the Display subroutine in order to
provide the user a display of the query and ot the errors
detected. I+ the number of requests in Request _Stack 1s one
(N = 1), then the single request is popped off the stack and
forwarded, via the Send function, to MDBS for processing.
The Result_set is obtained through the Receive function.
The result relation is proviaed to the user through a call

to the Display subroutine. If the number of requests in

1
.
1
{

.

’

oA

Py

Request_Stack is greater than one, then N_level_ Select 1is
called. The subsequent processing is explained in Section
B.

As previously discussed, we propose that the SGL
interface be implemented such that S@LI and its subroutines
are resident on a host computer. This precludes the need to
place an additional workload on the MDBS Controlier. In
effect, MDBS is "unaware"” that the user is making database
requests in S@L, and the user need only know what
information 1is desired and how to form the request in the
syntax of §0@L. The 1logical structure of the system 1:ic

depicted in Figure 18.

(USER)

I i

})

! I in

! SeLI | host

: | computer
| f

in the
MDBS backends and
their controller

Figure 18. The Logical Structure of the System

81

VII. ADDITIAGNAL Sei-TO-ABRDL TRANSLATIONS

We have described single-relation set membership and
multiple-relation nested SEL SELECT operations. Far each
S0L operation, we have developed the appropriate ABDL
translation. In Chapter VI, we have proposed a software
structure to facilitate the implementation of these
transiations, 1in addition to the simple, singie-relation
translations which Macy [Ref. 81 has provided. In this
chapter, we investigate other selected single-relation and
multiple-relation SGL operations. Inclusion of these highly
desirable options in the SQL set operations supported by the
interface further demonstrates the power of ABDL to support
relational operations.

As in previous chapters, the approach of this chapter is
to describe each SGQL operation and then determine which ABRDL
constructs can be used to support the operation. As each
translation is devel oped, . we show graphically,
algorithmically, and through text how the software structure
of the interface {(described in Chapter VI) must evolve 1in
order to accomodate the additional operations. The single-
relation operations are presented in Section A, and the
multiple—-relation operations are presented in Section H. In
Section C, we present the modified software structure of the

SO interface.

A. SELECTED SINGLE-RELATION OFERATIONS
The single-relation operations selected for discussion
ﬂi) in this section include: updating multiple attributes in a
single record; retrieving groups of attributes which satisfy
-l a group condition; retrieving computed values; providing
Il format options; retrieving ordered attributes (S50RT); and
eliminating duplicates (PROJECTION). These operations are
commonly suppoarted in commercial relational database systems
utilizing the S@L lanquage. A Sl —-trained user of the
interface proposed in this thesis would expect to be able to
utilize familiar SCGL constructs to perform these operations.
We address the SEL-TO-ABDL translations in the following
subsections.

i. Updating Multiple—-Attributes

A4ll data languages provide a data update capability.
Df interest here is the SG@L construct for update. This
construct allows the user to change the values of any number
of attributes stored in the record by issuing a single
query. This capability is both convenient and efficient.
The following example depicts the updating of multiple-
attributes (fields) in a single record. If we wish to
change the color of part P2 to yellow, increase its weight
by S, and set its city to Normandy, we may use the following

SOL query:

v e T TN T R T

UPDATE F
SET COLOR = ‘Yellow’',
WEIGHT = WEIGHT + 5, . -é A‘.
CITY = "Normandy’ i
WHERE P = 'P2°

In this example, we are updating the attributes COLOR,
WEIGHT, and CITY in a single record with primary key, F2.
The record 1is contained in the FParts (F) relation. Note -~l—Q
that any reference to an attribute on the right-hand side of
an equals sign refers to the value of that attribute prior
to updating. . ie

In studying the SGL example above, we note that
there are three cases to consider depending on the
attributes listed in the SET and WHERE clauses. We refer to
these as case-0, case—1, and case-2 updates. To facilitate
the following explanation, let S be the set of distinct

attribute names listed in the SET clause, and W be the set

of distinct attribute names listed in the WHERE clause. In

case—0 updates (e.g., the above example), no attribute is

listed in both the SET and WHERE clauses (i.e., S MW = Q).
In case—-1 updates, one attribute is listed in both clauses
(i.e., cardinality(SMW = 1). In case-2 updates, multiple

attributes are listed in both clauses

(i.e., cardinality(S VW) >). A case—1l modification of

our example is as follows:

DO T N

o

'- "-."\'—-_'-- 4 e e
A AR I S A N AR S e NS

UPRATE F
SET COLOR = ‘Yellow’,
WEIGHT = WEIGHT + S,
CITY = ‘Normandy’
WHERE (F# = ‘P2°) AND (CITY = ‘Paris’)

Note, CITY is in both S and W, and the cardinality of
(S M W is 1. A case-2 modification of our original

example is as follows:

UFDATE P
SET COLOR = 'Yellow’,
WEIGHT = WEIGHT + S,
CITY = ‘Normandy’
WHERE (P# = 'P2') AND (CITY = 'Paris’)

AND (COLOR = "GREEN’)

Note, CIiTy and COLOR are in both § and W, and
cardinality(S M W) > 1. The S@L—-to—-ABDL translations of the
three cases of multiple—-attribute update are described in
the following subsection.
a. The translation to ABDL

ABDL does not provide a single-request construct
which updates more than one attribute in a record. We must
translate the SQL UFDATE into multiple ABDL UPDATEs. Case-0
SOL. UPDATE queries can be translated directly to multiple
ABDL UPDATE requests. The order in which these reqﬁests are -

processed is immaterial. The case-0 example above

85

- o T N T A A T S N T T e e
AT a® - e . et et " ‘e U

-

RS
- ‘_:,]
AETRCY
=
o
T
-
-4
i

)

.

- "7']
o
‘»-;_"«;'.;
o
'Af]

¥,

. et
PRSI Y -
AP AP LR AT e e,
S e AT AT T e e T st e et O e A T S AT .
P AU DI e e T S e e e L.
S VR T A <

s .
PP)

translates to the following three independent ABDL UFDATE T

requests: ;;

Ve
UFDATE ((FILE = F) A (P# = P2)) (COLOR = Yellow) &;; ﬂ
UPDATE ((FILE = P) A (P# = P2)) (WEIGHT = WEIGHT +) o
UFDATE ((FILE = F) A (P# = P2)) (CITY = Normandy)

Our case—1 example translates to the same three
UFPDATE requests, however, the presence aof the CITY attribute
in both the WHERE and SET clauses effects the structure of
the translation. The order of request processing now

becomes important. For example, if CITY is updated first,

-,

the condition ((P# = "FP2°) AND (CITY = ‘Paris’)) is na
longer satisfied when a subsequent attempt is made to
process the COLOR and WEIGHT UPDATE requests. AQBDL provides f5’ j
a construct called a Transaction which specifies the order

in which a series of requests must be processed. Therefore,

the case—1 translation becomes

EBEGIN Transaction

UFDATE ((FILE = P) A (F# = P2)) (COLOR = Yellow)
UFDATE ((FILE = P) A (P# = P2)) (WEIGHT = WEIGHT + 5
UPDATE ((FILE = P) A (P# = P2)) (CITY = Normandy)

END Transaction

Requests within a transaction are processed in the same
order as they are specified. Therefore, we can obtain a

correct result.

86

.
-
-\‘- .,

~ . «*s®a* - '.-‘.'.‘-‘._.‘-'-'_.‘.‘_- YRS RIS W S T TP TP e -.\ h)
NN S S S S A S A L S ‘.'.'."-." Y '\.)\' AR RSN Sy *\'.'

A I]

The case-2 example also translates to a series
of three ABDL requests. However, the translation is more
complex. In this case, multiple attributes specified in the
WHERE clause are also listed in the SET clause. When the
first of these attributes is updated, all subsequent
attempts to update the remaining attributes will fail.
Since the WHERE condition is no 1longer satisfiable, the
record can not be found. The following sequence of ABDL
requests accomplishes the requested update. {Note that the
ABDL UPDATE construct is not used).

RETRIEVE ((FILE = P) A (P# = P2)) <P#,PNAME,COLOR,WEIGHT,
CITY>
DELETE ((FILE = P) N (P# = P2) A (PNAME = Bolt) A

(COLOR = Green) A (WEIGHT = 17) A
(CITY Paris))

]

INSERT (<FILE = Pi>,<P# = P2>,<PNAME = Bolt>,
<COLOR = Yellow?>,<WEIGHT = 22>,<CITY = Normandy:}
b. A proposed Software Structure
In order to implement multiple—attribute
updates, we must augment the functionality of the software
structure (SGELI) which we have developed in Chapter VI. We
specify an additional parameter, Request Type, to be
returned by SGLT. When the value of Request_Type is
‘CaseQ_update’, the subroutine Case0O_update is called. In
this case, the multiple ABDL RETRIEVE requests are simply
removed from Request_Stack and forwarded to M™MDBS for

processing. As previously stated, the order of processing

a7

does not effect the result. When all updates are complete,
the user is so i1nformed. When the value of Request_Type is
‘Casel_update’, the subroutine, Casel update is called.

When the value of Request _Type 1is ‘Case?_update ' ,the

subroutine, Casel update is called. The Casel_update and
CaseZ_update subroutines are presented in Figures 19 and 20,

respectively.

v v amm— -

Subroutine Casel_update(Request_Stack,Result_Set)

/# Transaction_Regquest: */
4 /* is a template with the Reserved word BOT */
i /% followed by multiple blank lines (to be used */
: /% by the series of requests) and the Reserved */
B /% word EOT. */

while NOT EMFTY (Request_Stack) do

Pop (Request _Stack)

Fill in blank lines of Transaction Request with

requests from Request_Stack
end while
Send (Transaction_Request)
Receive (Result_Set) /% Result_Set returned to */
/% calling routine */

end Casel_update

Figure 19. Subroutine Casel_update

The Casel_Update subroutine builds a transaction
of wupdate requests for MDBS processing. The subroutine is
provided the parameter Regquest_Stack which contains multiple
UFDATE requests stacked such that the request on the bottom

of the stack is the request which must be processed 1last.

Subroutine Casel_Update sends the request transaction to
MDBS, Receives the Result_Set, and returns the Result_Set to

the calling routine.

Subroutine Case2_update (Request _Stack,Result_Set)

/#* Insert_Template: */
/% is the INSERT request with values for the */
/* attributes-to-be-updated and blanks for the */
/* attributes whose values are obtained by the */
/® RETRIEVE request. */
Send (Fop (Request _Stack)) /* RETRIEVE request */
Receive (Resul t_Set)
Send {(Pop (Request_Stack)) /% DELETE the record */
Receive (Resul t_Set) /* deletion is complete */
While there are records to update do
Insert_Template <—— /% $ill in blanks with retrieved */
/% attribute values */
Insert_Request {—— /% form the INSERT request from */
/7% the record and Insert_Template */

Send (Insert_Request)
end while
Receive (Result_Set) /% INSERT is complete */
end Case2_update

Figure 20. Subroutine Case2_update

The Case2_Update subroutine contrals the
execution of the RETRIEVE-DELETE-INSERT series of requests.
The RETRIEVE obtains a copy of the appropriate record(s).
The DELETE deletes the original record(s) in the database.
The INSERT re-inserts the record(s) with all the modified
attribute values.

2. Retrieving Qualified Groups

Both SQL and ABbL provide an option wherehby

retrieved attributes may be grouped. For example, if we

89

wish to abtain the part number and the total quantitv for
each part supplied, we may utilize the following SELECT

construct:

SELECT P#,S5UM(QTY)
FROM SP

GROUP BY P#

The result relation is: P#
P1 | &00
P2 | 1000
P3 | 400
P4 | 300
PS | 900
FP6 | 100

Note that "...each expression in the SELECT clause must be
single-valued for each group; that is, it can be either the
GROUF_BY field 1itself, or a function such as SUM that
operates on all values of a given field within a group and
reduces those values to a single value." [Ref. 9]

The abaove SOQL operation is directly supported by the
software structure of Chapter VI. Using the SELECT-to-
RETRIEVE mapping which we have described in Chapter 111, the

equivalent ABDL construct is:
RETRIEVE (FILE = SP)<P#,SUM(QTY) > BY P#

S@L. provides a further option for use with grouped
attributes. Once the rows of a table are grouped by a

selected attribute, groups not satisfying a specified

90

DA A

condition can be eliminated through the use of the HAVING
operator. The following comprehensive example clarifies the
use of the 'GROUP BY with HAVING option. If we wish to
obtain the part number and the maximum quantity of the part
supplied for all parts such that the total quantity supplied
is greater than 300 (excluding from the total all shipments
for which the quantity is less than or equal to 200), we may

use the following query:

SELECT P#,MAX(QTY)
FROM SP

WHERE QTYy > 200
GROUP BY P#

HAVING SuM@QTY) >

We can imagine the result relation P#

F1 | 300
P2 400
P3| 400
FS | 400

being formed as follows. A copy is made of table SF (FRUOM).
The rows not satisfying "QTY > 200" are eliminated (WHERE) .
The remaining rows are then grouped by P# (GROUP BY). The
newly formed groups are checked against the predicate
"SUMRTY) » 300", Those not satisfying the condition are

eliminated (HAVING). Finally, part numbers and maximum

quantities are extracted from the remaining groups (SELECT).

a. The Translation to ABDL

As previously discussed, ABDL provides a
construct for the retrieval of data which i1s grouped by a
selected attribute. In the comprehensive SGL example above,
the use of the HAVING operator specifies a further
qualification on the groups. In this example, the groups

whose total quantity supplied is less than or equal to Z00

are to be eliminated. ABDL does not provide a facility for
checking this group condition. This condition must be
checked 1in the interface. The SGL query is translated to

the ABDL request

RETRIEVE ({(FILE = SP) A (GTY > 200)) <P#,MAX(QTY) ,SUM(ATY) *
BY F#

which we imagine returns the following table:

P# [MAX(QTY) | SUM(RTY)
P1 300 600
P2 400 400
P3 400 400
F4 300 300
PS 400 400

Software in the interface then checks the HAVING condition
"SUM(ATY) > 300". This eliminates the grouping faor part P4.
The remaining part numbers and maximum quantities are

returned to the user.

92

LAY B WP

S ‘
Lt AN

. L R~

PP ST NI

e

b. A Proposed Software Structure

When SBLTY returns the value, ‘Group_by_having’
for the parameter, Request_Type, we assume that the HAVING
condition 1s also made available to the Group-By—-Having
subroutine. (We make a similar assumption for other
Request_Types). The subroutine sends the request, rece:ves
the result set, checks the HAVING condition, and returns
only those tuples satisfying the having condition to the
user. Figure 21 depicts this operation.

Subroutine Group-By-Having(Request_Stack ,HAVING _condition,
Result_Set)
Send (Fop (Request_Stack)
Receive{Result_Set)
Eliminate groups not satisfying HAVING condition

end Group_By_Having

Figure 21. Subroutine Group_By_Having

3. Retrieving Computed Values

The concept of retrieving computed values is simple,
yvet it typifies the important options that database
management system designers are providing in order to ensure
user—friendliness and user—flexibility. This option supports
the inclusion of arithmetic expressions involving fields as
well as simple field-names. For example, the user should be
able to specify units—of-measure for numerical results. SOL

supports this concept. If we wish to obtain the part number

and the weight of the part in grams (given in table F ir

e

pounds), we may use the following query:

SELECT F#,WEIGHT = 454

FROM e
The result relation is: P#
F1 | 5448
P2 | 7718
P3| 7718
P4 | 6356
FS | 5448
EL | 8626

a. The Translation to AEDL
In this translation, the ABDL request retrieves
the indicated attributes 1leaving any computation to be
accomplished in the interface. For the example above, the

ABDL. translation is
RETRIEVE (FILE= P) <P#,WEIGHT:>

The specified arithmetic operation is performed by interface
software on the retrieved values for WEIGHT (i.e., WEIGHT =
454) prior to returning the final result relation to the
user. The software required is a simple interpreter for
evaluating arithmetic expressions.
b. A Proposed Software Structure

An Expression_Evaluator subroutine can be used
to accomplish the arithmetic operations specified in the S@oUL
query. The subraoutine simply utilizes the appropriate

function (e.qg., Mult,Add,Sub,Div) to pertorm the operation.

MLl ol ARt - ol ol el agetc

:

4, Froviding Format Options

Gften, the information retrieved from a database 1s

intended for use in published reports. The availabilitvy of
formatting options can make generating these reports
simpler. For example, while it 1s prudent to save dist

space by storing the names of suppliers as values for an
attribute—name such as SNAME, an end-user unfamiliar with
the database 1is psychologically more comfortable with a
column heading such as SUPPLIERS. In S50L queries, the
desired format 1s indicated in the SELECT clause. For
example, if we wish to obtain the names of all suppliers, we

may use the following quervy:

SELECT SNAME SUFFLIERS

FRrROM s

The result relation is: SUPPLIERS

Smith
Jones
Bl ake
Clark
___Adams |

Note that the column heading is SUFPLIERS rather than the
field name, SNAME.
a. The Translation to AEDL
This translation is similar tao that presented in
Subsection 2 above. Information, returned from MDES, is
modified by the interface software. The S@QL SELECT querv is

translated to the ABDL request

95

O S
P PN S
-t

e e e e e e . DT . . R - e e . . JN J e e wo.
. ORI SO TN D e I I A . oA et L ey N e el e P S P PN .
D T I T e A R R TP AP L.l . A A T R P IRNCT ST
(O -t . Vet At . . . e L . AT L R o B -~
-

oW .
et BT . (RN S
L ACRCVADMAC AL WRLTAE R PR AL WAL WAL WA VAT,

AD-A151 501 DESIGN RND ﬁNﬁLVSIS OF A COMPLETE RELﬁTIONﬂL !NTERFRCE
FOR A MULTI-BRCKEND DATABASE SVSTEH(U) NAYAL
POSTGRADUATE SCHOOL MONTEREY CA ROLLINS JUN 84

UNCLASSIFIED

[FRCHML A gy iy IF_‘J'_.._!'.'.H
i

RPN A A e

DAV SAR A ST IEAA AR A T A v 10

. .0 b e
oy 5
E—— 18
fles
2 I b

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

RETRIEVE (FILE = S) <SNAME:>

The results of this request are modified by the SGL
interface (5GQL1) prior to returning the final result
relation to the user. In this case, the column heading,
SNAME, is changed to the new heading, SUPFLIERS.
b. A Proposed Software Structure

Format options can be provided in the Display
subroutine. Any change in the form of the table heading can
be passed at the time of the call to Display.

S. The Retrieval with Ordering (SORT)

Generally, the result of a SELECT operation is not
guaranteed to be in any particular order. Ordering (SORT) 1is
normally not accomplished in SGL queries unless specifically
requested by the user. This operation may be costly, and
the additional expense is often unwarranted. In SGL, the
user may specify ordering through the use of the ORDER_BY
operator. As an example, if we wish to obtain supplier-
numbers for all suppliers providing shipments, such that the
result is ordered by supplier—-number, we may use the

following query:

SELECT UNIGUE S#
FROM SP

ORDER BY S#

st

Lt S i it g

......

Ry ..'.'-\i Dy o'-‘.'\'\-‘k".ﬁ'.'-'-‘ el U SN TR W - . . g - D)
P " S R T R S VL P -

The result relation is: S# |

S1
S1
S1
S1
S1
Ss1
s2
82
S3
sS4
sS4
S4

a. The Translation to ABDL
In the translation of the above S@L query, we
assume an ordering capability within MDBS. The development
of this capability is the goal of a current thesis by Muldur

[Ref 15]1. The ABDL request

RETRIEVE (FILE = SP) <S#> ORDER BY S#

returns all supplier numbers (ordered by increasing supplier
numbers) contained in the SP file (including duplicates).
b. A Proposed Software Structure
We assume that the ordering of selected
attributes 1is directly suppaorted by MDBS. Therefaore, no
augmentation of SOLI is required.

6. An Elimination of Duplicates (PROJECTION)

The results of a SELECT operation may contain
duplicates. The elimination of duplicates (PROJECTION), as

in the case of retrieval with ordering (SORT), is normally

not accomplished in SOL queries unless specitically
97
e e e e e e e T T T T e N
PETRNRIAS AN IERP A AL PN AP AL NN . WO .

CNONE 4

e,

requested. Again, the cost is high and often unwarranted.
An exception to this rule is that duplicate rows are
automatically eliminated in UNION operations. (UNION
operations are described in Section H).

In S8L, the elimination of duplicates may be
specified through the use of the UNIRQUE operator. As an
example, if we wish to aobtain supplier—-numbers for all
suppliers providing shipments such that no supplier—number
is listed more than once, and the result is ordered by

supplier—-number, we may use the following query:

SELECT UNIGUE S#
FROM SP

ORDER BY S#

The result relation is: S#

St
g2
83
s4

This example is a modification of the example presented in
Subsection S. Note that duplicate supplier—-numbers are
eliminated.
a. The Translation to ABDL
The ABDL translation for the above SBL query is
identical to the translation for our Subsection 5 example.

figain, the ABDL request

RETRIEVE (FILE = SP) <S#> ORDER BY S#

98

¥ N

RS AP PR A SO S g S S Sk sl Suih A A fete Sevt A S i 4 S Sne SPR S B AN B o st S Bere Do ne- T T w e

AR
y

S

returns all supplier—-numbers (ordered by increasing :

<

supplier—-numbers) contained in the SP file (including ' fi

. —

duplicates). Since UNIGUE is specified in the SELECT clause
of the 8SOL query, SALI must check the ordered rows fi?

eliminating duplicate values for the S# attribute prior to

forwarding the result relation to the user. I¥f our example

is modified such that the ORDER BY clause is omitted, we may -,;;

DRSO r‘rr"v—l"‘vlﬁ—‘r‘wm—p - f,'_‘,741 B
. . a0 ' Lt

facilitate the elimination of duplicates by "forcing" a SORT
of the selected attributes. That is, the ABDL RETRIEVE
request is written to include an ORDER BY specification.
b. A Proposed Saftware Structure S

When UNIQUE is specified in the SOL query, the

Result_Set from_ MDBS is passed in a call to a %f;}
Duplicate_Elimimnator subroutine. This subroutine scans and :iaf

- . : - 7
compares adjacent members of an ordered Resul t_Set . o
eliminating duplicate members. We assume that the

Result_Set is always ordered prior to being passed to

Duplicate_Eliminator. The ordering is either user—-specified .
or "forced" in the SOLT translation. i
N
L
B. SELECTED MULTIPLE-RELATION OPERATIONS e

|
In this section, we discuss two additional multiple- i »1
relation operations which are supported by SOL: retrieval j
using the UNION operator and retrieval specifying JOIN
operations. These two operations and the nested SELECT

(described in Chapter V) give S@L much of its power and

flexibility. The availability of query constructs which

99 L

DA ¥ I AN I A S A S AT I A A AACIMOR I AR I

.......

allow access to related data in multiple tables greatly
enhances the ease with which a user can obtain the desired
information +from the database. We investigate UNION and
JOIN operations in the following subsections.
1. The Retrieval Using UNION

From set theory, we recall that the UNION of sets A
and B (i.e., A UNION B) is the set of all objects x such
that x is a member of A or x is a member of B. The formal

predicate logic definition of A UNION B is:

Ve [(x A V (x Bl

In S@L, the UNION operator is used in a query
comprised of multiple-SELECT constructs. As an example, i+
we wish to obtain numbers for parts that either weigh more
than 16 pounds or are currently supplied by supplier S2 (or

both), we may use the follaowing query:

SELECT P#
FROM P

WHERE WEIGHT > 16&

UNION

SELECT P#

FROM sP

WHERE S# = 'G2°

100

The result relation is: P#

P2
P3
Fé
P1

From the sample database of Chapter I, we can see that parts
F2, P3, and P& weigh more than 16 pounds (x EA). Part P1
weighs less than 16 pounds, however, Pl 1is currently
supplied by supplier S2 (xEB). Part P2 weighs more than 16
pounds and is supplied by supplier S2 ((xEA) A (x € B)).
Note that duplicate rows are eliminated from the result of a
UNION operation.
a. The Translation to ABDL

In the SBL query above, each SELECT construct

translates into an equivalent ABRDL RETRIEVE request. In

this example, the two ABRDL requests

RETRIEVE (FILE P> A (WEIGHT > 16) <P#> ORDER BY F#

0

RETRIEVE (FILE

]

SP) A (S# = S2) <P#> ORDER BY P#%

are processed concurrently. The results are combined 1in
SOLI, where duplicate rows are eliminated. The remaining
rows are forwarded to the user.
b. A Proposed Saftware Structure
When the value of Request _Type is UNION, the
translation and processing are as follows. An MDBS SORT is
specifie& ,in the ABDL translation. A subroutine called

UNION pops all ABDL RETRIEVE requests off of Request_Stack

101

.,;.'.‘..‘_'-._'...'--;. RN

SRR A I i

CIMICT A e U e Soent i S T 3 T T e e e e A A i e

.....

L\ S

and forwards them to MDBS for concurrent processing. The

ordered result sets are merged (through the use of a
standard merqge function), and then passed to
Duplicate_Eliminator. Finally, the uniquely selected
results of the UNION operation are returned to SGLI +for
display to the user. Subroutine UNION is presented 1in

Figure 22.

Subroutine UNION(Request_Stack,Result_Set)
while NOT EMPTY (Request_Stack) do
Send (Pop (Request_Stack)

end while

Recei ve (Resul t_Set1)

Recei ve (Resul t_Set2)

Merge (Result_Set! ,Result_Set2)

CALL Duplicate_Eliminator (Result_Set)
end UNION

Figure 22. Subroutine UNION

2. The Retrieval Specifying Join Operations

Join operations are characteristic of data languages
intended for use with relational databases. SEL provides
the capability to specify implicit join, equality join, and

inequality join operations. In an implicit join, attribute-

values in multiple tables are compared, however, the values
returned to the user are taken from only one table.
Implicit Jjoins can be formed through the use of the nested
éOL SELECT constructs which we have described in Chapter V.

In the nested SELéCT, multiple tables are accessed and the

102

T
hy $r

L

Yr, .
. []

-' '.
h-_ .
v
L
a

RS AT ANt B U e e A S r_.*r_r_.:?"r_r_v—.'-"~v~_w-_r-r

values of selected attributes are compared. We note that
only values from the ocutermost SELECT are returned in the
final result set. This operation results in the formation
of an implicit Jjoin.

Equality join and ineguality join operations are

specified by referencing multiple tables in a single SELECT
query. As an example of an equality join, if for each part
supplied we wish to obtain part numbers and names of all

cities supplying the part, we may use the following query:

SELECT UNIQUE P#,CITY
FROM SP,S

WHERE SP.S# = S.5#

The result relation is: # |CITY
F1 | London
F1 | Paris
P2 | London
P2 | Paris
P3 | London
F4 | L_London
PS | London
6 | London

Note that table—names may be used as qualifiers 1in the
SELECT and WHERE clauses in order to resolve ambiguities or
to ensure clarity, For example, the SELECT clause may be

equivalently written

SELECT UNIGUE SP.P#,5.CITY

103

S
.,*..-- <

s !

- . - - - . - S T i m et mm mme— = st m c v w - m oW m e m o w T RT WA wT owTw T -
AR i g T — TE I L. TR S Y. had ST B R P B S PRI

Although there are optimization techniques which

facilitate a more efficient implementation, we can visualize

! the join operation as follows. First the Cartesian product .)
of SP and S is formed. Then, rows not satisfying the

condition SP.S# = S.S# are eliminated. Next, columns F# and

CITY are projected from the remaining rows. Finally, since
the operator UNIGUE is used, all duplicate rows are removed
before the result relation is returned to the user. (For an

r indepth discussion of the efficiency and optimization .
considerations of implementing join operations, the reader
is referred to Demurjian [Ref. 11).

; a. The Translation to ABDL)
The attribute-based data 1l anguage, as

implemented in MDBS, does not provide a join capability.

Muldur [Ref. 151 is currently investigating the practicality

of incorporating join operations within MDBS. I¥ we assume

M ARREGE) T

that the functionality of MDBS is augmented to support the

i equality join and inequality join operations, we might use -

; the following translation for the equality join (as

F discussed in Demurjian [Ref. 11). The general form cf a f%ﬁf”
4
r to- g
P simple, two-way equality join expressed in the syntax of SAL ’

: is

%

SELECT sel_expr_list
FROM relation_namel, relation_name?2 RS

WHERE relation_namel.attribute = relation_name2. attribute
AND qualification

104

TR T TR T A T A W T T AT s T v (S Oaa Jaus et no w L -

e

The general form aof the ABDL translation is

PRy

RETRIEVE (attribute_list_1) (query_1)

P

if CONNECT ON (attribute_1, attribute_2) :?
: (attribute list 2) (query_2) iﬁfﬁ
= =
The sel_expr_list of the SEL SELECT is divided into a target
{
list consisting of attributes from relation_namel and a
target 1list consisting of attributes from relation_nameZ.
The qualification of the SOL SELECT is likewise partitioned.) :
The attributes named in the equality predicate become the
object of the CONNECT ON clause in the ABDL request.
-t

Following this general form, the translation for the

equality join example of the preceding subsection is

RETRIEVE < (S#%,F#) (FILE = SP) >

- CONNECT ON (SP.S#, S.S5#) T
:§ < (S#,CITY) (FILE = §) > o
Z b. A Proposed Software Structure :jﬁ
As stated previously, we assume a join j%k?
capability for MDES. Therefore, no augmentation of SOLI is -;i?
required. ..?
o
C. THE MODIFIED SOFTWARE STRUCTURE OF THE SGL INTERFACE H}i

In this section, we present the modified software
5 structure of SGLI. We modify the structure which we have ;;u

?. presented in Chapter VI in 6rder to facilitate the

implementation of the additional operations described in Rt

e e e

.
. .

L. .
b SR

- -t a . Ve et . . LR
QPR RICIRS TSI TR TR ACTAF TP Tl S T T N RPN

et
0

~

X j

LI U

P——

w:

’
this chapter. The modified version of the top-level
process, SOLI, is shown in Figure 23. Note, we have
simplified this algorithm through the use of the
Request_Control subroutine. The functionality of this
subroutine 1is presented in Figure 24. The purpose of .
Request_Control is to provide overall control of request ’
processing for the interface. A high-level view of the
modified software structure is shown in Figure 25, and the
relationship between Subroutine Request_Control and 1ts ’
subordinate group of subroutines is depicted in Figure 26.
»
ALGORITHM SELI (Modified)
Repeat
CALL Get_SOL_Query (Guery)
CALL SOLT (Query,Request_Stack,N,Errors,Request_Type,
Format_Option,Arith_Expr)
if N = 0 then /% Syntax Errors */
CALL Display (Query)
CALL Display(Errors)
else
CALL Request_Control (Request_Stack,N,Request_Type,
Arith_Expr,Result_Set)
CALL Display(Result Set,Format Option) ’
end if
End_of_session?
until end_of_session
end ALGORITHM SBLI (Modified)
Figure 23. ALGORITHM SGLI (Modified)
»
106

CaseC_Update:
Casel lUpdate:
Case2_ Update:

Group_Having:

UNION:

Others:

END CASE

Gt
-
-
n S S)
- L WL e < e
o

Subroutine Request_Control (Request_Stack,N,Request_Type,

Arith_Expr,Result_Set}

CASE Request_Type 0OF

CALL Case®_Update(Request_Stack,Result_Set);
CALL Casel_Update (Request_Stack,Result_Set);
CALL CaseZ_ Update(Request_Stack,Result_Set);

CALL Group_Having (Request_Stack,
Condition,Result_Set);

CALL UNION(Request_ Stack,Result_Set);

if N = 1 then

CALL DOne_Reguest (Request_Stack ,Result_Set)
/% for simple, directly—-supported #/

/#% single request */

else
CALL N_Level Select (Request_Stack,
N,Resul t_Set)

é' Figure 24. Subroutine Request_Control
!

107

. ~'.'-'~‘.'.'.‘.‘.'.'-'.‘.'.

- - . ..\......'.-.'.'..

&"\- '- T RN RS .J- _'- _"- T MA._.".AAM ~WM¢M~A T T e T e e S e

SeL I

Get _SGL
Query

Figure 25.

DY
et T

SeLT

A High-Level View of the Saftware Structure

Request
Control

Display

~. ¥

108

TTTY T R A i Tk Sl p— al — v L e S e pae o
~ o — A ARG A R I A S ATI SR A I AT 2 A I S [Y AT ACS A SIS A P e i i B A=l S AT i e S g

Casel CaseZ2 Union One)

Update Update Request -
Casel Group N_Level f3q
Update Having Select Lo
i
1_Conjunction| ... N_Conjunction e

Dupe

Elim -
Figure 26. Request_Control and its Subroutines -
o 109 .
N »

V KRS
' ' o { _D N ') R - . - e . b TP I I S T TSI \._’-'.\..'.‘ W, . PRI '_--'.- ot e e et e T el LA ..‘.'-' o
N A S AN O N e T T AT .' e N NN

VIII. CONCLUDING REMARKS

In this thesis, we have concentrated on the language
interface aspects of using an attribute-based database
system, MDBS, as a kernel for the support of the relational
data madel and the relational query 1language, SGL. A
related thesis by Weishar [Ref. 161 provides the design and
analysis of an interface for the hierarchical model and the
hierarchical data language, DL/I. This work is part of
ongoing research being conducted by the Laboratory +for
Database Systems Research under the direction of Dr. David
k. Hsiao. As stated in [Ref. 11, the goal of this phase of
the laboratory’'s research "...is to provide increased
utility in database computers. A centralized repasitory of
data 1s made available to multiple, dissimilar hosts.
Furthermore, the database is also made available to
transactions written in multiple, dissimilar data
languages. "

The rapid evolution of database technology has provided
the motivation for this research. Commercial database
management systems have only been available since the
1960 °s. Today, organizations of all types are critically
dependent on the operation of these systems. This

dependency comes from the need to centrally control large

110

“pm L
Lol

SR AP T s I T T R R . RPN S e U S N R P P S - RN
~ '.:h-.' R ‘.:_\-_\:l_\,\'.-. O A A -~ I I I e ST A LA

- - e

Lt e T

T Pl e s o T T T LWL YT, Y T T s Lioglh fadt S Jund nad an ol —. W
R B - T PR AN AN P N ROCRR LN g T NI TTeTTY T

quantities of operational data. The information must be
accurate and readily accessible by relatively inexperienced
end-users.

There are three generally known approaches to the design }i“

of database systems. These are the network, hierarchical,
relational approaches. An organization normally chooses a
caoammercial system based on one of these models. The

database must be created and operator and user personnel

must be trained. Because of the re-programming and re-

training effort {(and money) required, an organization is
7 unlikely to change to a system based on one of the other o
h model s. .;:‘i
We have discussed an alternative to the development of f?

separate stand-alone systems for specific data models. In

tl

this proposal, the three generally known models and their

3

model-based data languages are supported by the attribute- %fé

L hen 4 B o oy

based data model and data language. We have shown (in the Qi

relational case) how a software interface can be built for

"1

such suppoart.
Specific contributions of this thesis include extremely

thorough explanations of S0OL operations such as: set-

; -ﬁ"j*v T
I T R

membership, nested retrievals, retrieval of grouped .

attributes, join operations, retrieval of computed values,

providing format options, retrieval using UNION, updating

multiple fields, retrieval with ordering, and elimination of j{
duplicates. We have extended the work of Macy [(Ref. 8] by }f

T

111 s

~

n\.h

S

B

R R R R R AT BT P R T i e S e S A A N R L AL ';‘.'_‘.',\'_-:',‘.
A R N N A iy ..;__.‘:.__\. NSO

Pt B T T T T R T T T T T T AT T T s T T TN R T TR T I s A, T T Tw T T T R T A T T L T T T A T AT g T AT s T e T e T AT M TR T M T e TN T AT e T T e T e s T

showing that many of the SGL constructs +for the above
operations are directly supportable by ABDL and MDBS.

Others can be translated into a series of the primary and

A o AAMARERNARERERAS DR

E\ aggregate operations of the attribute-based system. In all

E cases, SEL-to—-ABDL translations are provided. We have also

4
. - . . . ' .
FEIRBCINICICIR U TN

proposed a software structure to facilitate the future
implementation of the SGL interface.

A major design goal has been to design a S@L interface
to MDBS without requiring that changes be made to the MDBS J
system. We have shown that the complete interface can be
implemented on a host computer. All translations are
accomplished in the SOL interface. MDBS continues to '
receive and process requests written in the syntax of AEDL.
We have also shown that the interface can be designed to
utilize existing ABDL constructs (either one or a series of

ABDL requests). No changes to the ABDL syntax are required.

We also have not proposed any changes to the syntax of SoOL.
We have designed the interface to be transparent to the S@L L
; user. ' The intention is that a trained S6L user need know

nothing of the existence of the interface or of MDES. The

user can log in at a system terminal, input a S@0L query, and '

e

obtain result data in a relational format.

In retrospect, our unconventional bottom-up approach to

design seems entirely appropriate. We have built upon the Lo
basic subset of SEL-to-ABDL mappings provided by Macy LC[Ref.

8], making additions to the set as selected SGL operations

112

o »'
T %a e e, T N N L S AT R R S -
-'..4' .:--'.:f !:-'-' .).‘..‘-c';-' _.-':.-' \1.\-N-'\J ..f -'\- " - e

.
. -

o « "
'''''''''

AT N A Il A A Al Al AT O et SN UL et i Al

have been 1incorporated into the interface. As our
investigation begins in Chapter IV, the form of the
interface software structure is not clear. When the nested

S@L SELECT is described in Chapter V, the requirements for
the structure begin to solidify. We become aware that an
iterative structure is needed to control the processing of
series of ABDL requests. As the algorithm, SaLi, is
completed in Chapter VI, it is clear that we have developed
the overall software structure for the S8L interface. The
functionality of the structure is enhanced as additional SEL
operations are selected. However, the general structure
remains intact.

As an alternative to implementing the SEL (network and
hierarchical, as well) interface on a hast computer, the
interface can be placed inside of MDES. We have studied
this possibility, and recommend against such an
implementation, A major design goal of MDBS is to minimize
the role of the controller. This goal can not be attained
if the controller must support the operation of resident
relational, network, and hierarchical interfaces.

We have shown that the attribute-based system supports
relational database applications. We have provided SG_-to-
ABDL translations for selected database operations, and we
have proposed a sof tware structure to facilitate

implementation. The next step is to implement the interface

on a host computer. In order to finally determine the

Y ey . W wTvT

4
RO T

.
a4

........ " — ——— T ———— IR AV M e codk JiE aeun aieh Miis APUA s A0 A S B £

overall practicality of using MDBS as a kernel database
system, we must also implement the hierarchical interface
design of Weishar [Ref. 161. Additionally, an interface to

support the network model must be designed and implemented.

Ty A

114

S R RS = ’.‘-',7-'.‘ .'r‘ Lt _v"’-_tv-__v'_ - ‘-‘.’T‘f PRGNt A i N L G s e _]
) IR
APPENDIX A: FORMAL SPECIFICATION OF THE ATTRIBUTE-BASED ,“;

—
al

DATA LANGUAGE,

The following
language developed
Square

constructs.

Fredicate

attribute

attribute_being_modified

base_attribute

value :=
Conjunct :=
Query 1=
Stat :=
list_el 1=
list 2=
Target_list =
Attrib_val pair =
Half _ record =
Record z=
e R e e S e

ABDL

brackets £] are

used to

is the BNF for the attribute-based data

by Hsiao and Menon [Refs. 4 and 1013,

indicate optional

attribute rel_op value

char_string

attribute

attribute

string

number
float

(Predicate)

(Conjunct / Predicate)

Conjunct

GQuery / Conjunct

AVG | MAX | MIN i SUM | COUNT

Stat (attribute)

attribute

list_el
list,attribute
list,list_el

(list)

<attribute,value:>

Attrib_val _pair

Half_record, Attrib_val _pair

(Half_record)

115

-_

PR

- M T T S N UL PR S IPUL P IY WL YL UL SN

-
R
LY
- L

. 4
o
'1

-1

Y

;Y

PRl S e

Fointer
Modifier

type-0
type-1I
type-11
type-111
type—lv
Request

Insert
Delete
Update

Retrieve
uc-letter
string

lc-letter

char_string
digit

number

[SR S M g Al S AT Sl S S e ,"‘.WH- . ~._". ——

number
type-0

{ type-I

! type-11
i type-1I11
i type-IV

<attribute_being_modified
value?>

<attribute-being_modified
expri’

<attribute_being_modified
expr2>

<attribute_being_modi fied
expr2 of Guery’

<attribute_being_modified
expr2 of Pointer:>

Insert | Delete | Update !
Retrieve

INSERT Record

DELETE Query

UPDATE Query Modifier
RETRIEVE @Guery Target_list
CBY attributel

[WITH Pointer]

Al!IBIC I ... V Z

uc_letter
! string uc_letter

a'lt bl ci .. V 2

uc_letter
i char_string lc_letter

o111 21314516
7 1819
digit

! digit number

116

:
float = number.number
add _op HE .
' * mult_op 1= #* | /
j; expri :t= arith_termi
- i exprl add_op arith_terml
- arith_termi := arith_factori
l { arith_term!l mult_op
arith_factorl
arith_factorl := attribute_being_modified
{ number
Y] expr?2 t= arith_term2
: { expr2 add_op arith_term2
arith_term2 := arith_factor2
. { arith_term2 mult_op
. arith_factor?22
)
arith_factor?2 := base_attribute
i number
)
R
"y
.. -.q‘
. R
- 9
)
: 4
Dj ¢ - .
E 117
- =
: L
. ADA
AN R R B g e T T R I S LR LA R LRSI R S T RSl
R R 3 R R S T S S S A A T SV |

LIST OF REFERENCES

Demurjian, S. A., and others, An Attribute-based System
as a Database kernel of Database Systems, unpublished.

Hsiaa, D. K., "A Generalized Record Organization," IEEE
Transactions on computers, Vol. C-20, No. 12, December
1971.

Wong, E., and Chiang, T. C., "Canonical Structure in
Attribute Based File Organization," Communications ot
the ACM, September 1971.

Hsiao, D. K., and Menon, M. J., "Design and Analysis of
a Multi-Backend Database System for Perfarmance
Improvement, Functionality Expansion and Capacity
Growth (FPart I)," Technical Report, 0SU-CISRC-TR-81-7,
The Ohio State University, columbus, Ohio, July 1981,

Baner jee, J. and Hsiao, D. K., "A Methodology for
Supporting Existing CODASYL Databases with New Database
Machines," Proceedings of National ACM Conference,
1978.

Baner jee, J., Buam, R. 1. and Hsiao, D. K., "Concepts
and Capabilities of a Database Computer," ACM
Transactions on Database Svstems, Vol. 4, No. i, pp.
347-384, December 1978.

Baner jee, J., Hstiao, D. K., and Ng, F., "Database
Transformation, Query Translation and Per faormance
Analysis of a Database Computer in Supporting
Hierarchical Database Management," IEEE Transactions on
Software Engineering, March 1980.

Macy, G., Design and Analysis of an SQL Interface for
a Multi-Backend Database System, Master ‘s Thesis,
Naval Postgraduate School, Monterey, California, March
1984,

Date, C. J., An Introduction to Database Systems, 3d
ed., Addison—-Wesley, 1981.

118

vy

r=- = - W w e

. L L A
Gt e e .
o PPN

11.

14.

15.

16.

Hsiao, D. k., and Menon, M. J., "Design and Analysis of
a Multi-Backend Database System for performance
Improvement, Functionality Expansion and Capacity
Growth (Part 1I)," Technical Report, OSU-CISRC-TR-81-8,
The Ohio State University, Columbus, Ohio, August 1981.

Astrahan, M. M., and others, "System R: a Relational
Approach to Data Management ,” ACM Transactions on
Database Systems, Vol. 1, No. 2, pp. 97-137.

Chamberlin, D. D., and Boyce, R. F., "SEQUEL: A
Structured English Query Languaqe", Proceedings of ACM
SIGFIDET Workshop, Ann Arbor, Michigan, May 1974.

Ullman, J. D., Principles of Database Systems, 2d ed.,
Computer Science Press, 1983.

Chamberlin, D. D., and others, "SEQUEL 2: A Unified
Approach to Data Definition, Manipulation, and
Control”, IBM J. R&D 20, No. 6, November 1976.

Muldur, S., The Design and Analysis aof Join and
Ordering Operations for a Multi-Backend Database
System, Master 's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

Weishar, D. J., Design and Analysis of a Complete
Hierarchical Interface for a Multi-Backend Databacse
System, Master’'s thesis, MNaval Postgraduate School,

Monterey, California, June 1984.

119

P

CafERahEE - ata et o L ol sans atin gl sgin) Tee——— P — " " — LM A St M S B Sagh Sl a2 Y

INITIAL DISTRIBUTION LIST

No. Copies

8]

i. Defense Technical Information center
Cameron Station
Alexandria, Virginia 22314

2. Library, code 0142 2
Naval Fostgraduate School
Monterey, California 93943

3. Department Chairman, Code S2 S
Department of Computer Science

Naval Fostgraduate School

Monterey, California 23943

4. Curricular Officer, Code 37 1
Computer Technology
Naval Postgraduate School
Monterey, California 93943

S. Dr. D. K. Hsiao, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

- 6. Dr. P. R. Strawser, Code 52 1
g Computer Science Department

Naval Postgraduate School

Monterey, California 93943

7. Commanding Officer 1
ATTN: LT Griffin N. Macy
Naval Security Group Activity Northwest
Chesapeake, Virginia 23322

8. Office of the President 2 Aﬂ
ATTN: CDR Rich Rollins B
Naval War College oL
Newport, Rhode Island 02841 s

9. Robert A. Rollins 2 1

89346 Pardee Road
Saint Louis, Missouri 63123

4-85

-

Pt R A

