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A. STATEMENT OF THE PROBLEM

The Advanced Technology Laboratories (ATL) of RCA has

undertaken the task of developing sophisticated algorithms

for autonomous target acquisition and tracking. When this

contract was awarded, we had already demonstrated in a

simulation testbed that a statistical segmentation algorithm

using multiple features for classification performs well on

low resolution infrared images of tanks. This work followed

and extended the work of Dr. Gerald Flachs, Dr. Alton

Gilbert, and others, working at White Sands Missile Range

with Army Research Office support. We proposed with this

contract to investigate improvements to the tracker system,

and evolve towards a real-time hardware implementation.

B. SUMMARY OF IMPORTANT RESULTS

The goals of the original contract were met within two

years of the contract award. At that time, several analytical

and experimental investigations had been conducted. The

tracker simulator had gone through several revisions, as new

concepts were invented and tested. A report describing many

of the facets of the statistical tracking system that were

worked out by this contract is attached as an appendix.

The major accomplishments that occurred during the course

of the contract were:

1. An adaptive gate process was implemented interior to

the tracking window. The technique effectively controls

the size of the tracking window.

2. The idea of intelligently defining varying weights for

the misclassification costs C(T/B) and C(B/T) within

. .. . . . -



the tracking window was implemented and shown to

improve tracking in multiple target situations. The

technique was later dropped to allow for a new method

of controlling the decision threshold.

3. Initial simulations revealed that a fixed threshold

when computing the decision rule that segments out the

target from the background was inadaquate. We observed

that any fixed threshold would at some times grossly

undersegment the target and at other times grossly

oversegment the target. Given that there is a need for

varying the decision threshold, two separate issues

arise: what criteria to use to control the threshold,

and how to control the threshold to satisfy the

criteria. One of the accomplishments of the contract

was the development of a satisfactory solution to both

issues.

The criteria by-which the threshold is now controlled

is essentially Neyman-Pearson, the probability of

classifying a target pixel target (detection

probability) is maximized under the constraint that the

probability of misclassifying a background pixel (false

alarm rate) is held to a fixed level. Additional 

constraints were added that serve to guarantee that at

least some pixels will be labeled target.

A computational procedure was developed that allows the

threshold to be computed efficiently from the target

and background histogram data. This development will

allow the technique to be easily implemented in

real-time.

4. A study was conducted of performance measures that

might be used to sense and hopefully predict

breacklock. Many potential performance measures were

.-. . . . . . .. . . . - o " •



defined and tested with both Gaussian and real image

sequences. Several potentially useful statistical

segmentation measures were found. The results of this

investigation were then applied to the problem of

assigning the number of bits to features.

5. A coast mode was developed and implemented in the

simulator which significantly extended the tracking

situations that can be successfully handled. The coast

mode consists of three additions to the tracker

simulator. First, a Kalman filter that maintains a

running estimate of the target trajectory. Second, a

performance monitor that is used to detect breaklock

conditions. Last, a reacquistion strategy, that searchs

for a target based on size, statistical signature, and

trajectory.

6. In preparation for a proposal for a real-time,

fieldable implejmentation of the tracker system, the

simulator was used to finalize the version of the

tracker to be proposed. At this time, this real-time

system is being designed under contract with the U. S.

Army Missile Command (MICOM). As a result of our

efforts with the simulator, we were able to include

many of the concepts described above (particularly

breacklock detection and reacquisition) into the

fieldable system.

7. An investigation was conducted on image representation

and matching for motion analysis, which will have

application to tracking and autonomous navigation. When

applied to navigation, the motion occurs as the result

of a moving sensor observing a stationary scene. The

desired objective is to detect the motion of certain

points in the scene, and analyze this motion to provide

..ranging or depth information and coarse object



segmentation. The formulated approach is to employ

multiple processes on the images as follows: Laplacian

pyramid, contour extraction and representation,

structural matching, displacement field analysis, and

object segmentation. Some preliminary results were

obtained in the development of the contour extraction

and representation process.

C. PUBLICATIONS AND TECHNICAL PRESENTATIONS

o An Adaptive Gate Multifeature Baysian Statistical

Tracker, 26'th International SPIE Convention, August,

1982.

o Performance Measures for Statistical Segmentation, 26'th

International SPIE Convention, August, 1982.

o RCA Statistical Tracker, (Presentation) ARO Tracker

Workshop, February, 1984.

o Machine Vision for Motion Analysis (Presentation), IEEE

Computer Society Workshop on Applied Imagery and Pattern

Recognition, October, 1984.
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1.0 INTRODUCTION

T h is paper will1 describe the video tracking system

developed by the Advanced Technology Laboratories oi RCA

Corporation on IR&D and under Army Research Office contract. A

major theme is to explore the tradeoffs and interplay between
the three major influences in the development of the tracker
al gori thm: theoretical pattern recognition, human i nt u it ion ,
and finally the constraint to be able to implement the tracker
in real-time, that is, the tracker must be able to accept a
standard video signal and process every video frame. The impact

of this real time constraint will be highlighted throughout
this paper.

The development of the tracker algorithm took place from
1981 to 1983 using a tracker system software simulator written
i n FORTRAN. The video, inputs to the simulator were obtained b,,;
digitizing interesting sequences of video containing targets
such as tanks, trucks, and airplanes. The video was generated
by several types of sensors, both of the infrared and visible
band. One of the important capabilities of this tracker is its

ability to work with a variety of targets and sensors. The

reason it can be flexible lies in the generality of the
segmentation process, which does not rely on any a prior

knowledge of the sensor or target type.

RCA has a contract with the U.S. Army Missile Command
(MICOM) to build the real-time tracker system that so far has
only been simulated.



2.0 OVERVIEW OF TRACKER ALGORITHM

A functional block diagram of the statistical tracker is

shown in Figure 1. The major subsections of the diagram are the

front end feature generator (video preprocessing, median 

filter, feature computation, scaling), the segmentation

processing (histogram processing, decision rule computation,

segmenter), high level control (centroid, adaptive gate window

control, Kalman filter, mode control), and search processor.

The heart of the tracker is the statistical segmenter,

which examines the image data and identifies those pixels that

are target. The basic problem solved by the statistical

segmenter is illustrated in Figure 2. Within the track window

each pixel can be either target or background. Target pixels

have one distribution of feature vectors (Figure 2 illustrates

a single intensity feature) while background pixels most likely

have some other distribution of feature vectors. Assuming the

segmenter can learn what these distributions are, the problem

is to use them to divide up the feature space into target and

background regions. The statistical segmenter uses a likelihood

ratio test to generate the target/background decisions. The

complete process is described in a later section. In order to

maintain good estimates of the feature distributions, the

tracker must constantly update the window size and position in

order to keep the target enclosed. The tracker incorporates a

Kalman filter to estimate the -velocity of the target. The

velocity estimate modifies the position estimates from the last

frame to establish a prediction window for the target location.

This velocity prediction is especially important for targets

with high line of site rates and in the reacquisition mode

after breaklock has occurred.

...........................................................
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To further increase the robustness of the tracker, a
breaklock detection and target reacquisition capability has

been developed. Breaklock is detected by examining the quality

of the segmentation over a succession of frames. The target is

reacquired by searching the binary target image for a target of

appropriate size by correlation with a binary mask.

0

0

...............................................



3.0 SUBSYSTEM DESCRIPTIONS

3.1 FEATURE GENERATION

The steps to generation of features are front end video

preprocessing to digitize the video, median filtering that can

be optionally bypassed, feature computation, and scaling/

combining.

The preprocessing consists of global automatic gain

control, level correction and analog to digital conversion of

the input video. The output is a two dimensional image, 

image(i,j), 60 times per second.

The median filter computes the 3 by 3 median of medians.

Let the output of the median filter be denoted by pimage(i,j).

To compute the value'of the median at position i,j, we first

compute the median (middle valued sample) of each of the three

sets of intensities:

image(i-1,j-1), image(i-1,j), image(i-l,j+l)

image(i,j-1), image(i,j), image(i,j+1)

image(i+1,j-1), image(i+1,j), image(i+1,j+1)

We then compute the median of these three median values.

The primary benefit of median filtering is for noise reduction

when tracking targets in noisy video.

There are a number of features that can be used in the

tracker, and we have run tests using various combinations. We

have found that two features, intensity and edge magnitude, are

generally optimal.

. .. .. .. .



The edge feature is an approximation to the Sobel edge
magnitude. The calculation is shown in Figure 3. The intensity

feature is the sampled, filtered video intensity. Scaling of
features is necessary because the segmenter uses, at most, a
total of 8 bits from both features combined. Typically, we use
4 bits of intensity and 4 bits of edge, but any combination
that uses no more than 8 bi ts total w ill be operator

selectable. The limitation to e ig ht b it s is partly

implementation driven, but also driven by the need to be able
to estimate j o int probability den si ty functions of the

features. If too many bits are allowed then the amount of data

needed to make the estimates accurately becomes prohibitive. We

have typically used a total of 7 or 8 bits in the simulations,
whi ch has worked well1 even f or small1 targets (whi ch genera te
less data to estimate the probability densities).

The scaler scales the feature samples by any power of two

(saturating the number i f i t exceeds the range of l egal
numbers) , and then selects the speci fied number of bi ts from
the the most significant end of the number.

To aid the processor in setting the power of two scale

factor, the scaler measures the peak value of each feature

within the track window every frame.

3.2 SEGMENTATION

The tracker uses a target segmentation technique based on
optimum decision theory. It is a widely applicable technique in

that the decision rule is derived totally from the video with
the only assumption being that the target is initially

* designated to the tracker. No assumption is implicit that the

target i s the brightest (or hottest) object in the field of
view. The tracker can, of course, track such targets, because

it quickly learns that the target is the brightest object.



The derivation of the segmentation decision rule ,ilI be

described in several steps. First, the hypothesis test is

stated. Several solutions to the hypothesis test are possible,

depending on what criteria is used to make the decisions. The

criteria selected for this tracker is similar to the

Neyman-Pearson criteria, so it is described first. Then the

modified segmentation criteria used by the tracker to derive

the decision rule is described. Finally, the methods by which

the theory is actually applied in the tracker are discussed.

Hypothesis Test - The formulation of the sementation

process begins with a description of the segmenters job in the

form of a hypothesis test: The segmenter is given samples of

the feature vector, X, at each pixel position. The segmenter

must classify the pixel as either target or background. One of

the two choices must be made. The assumption is now made that

the conditional probability densities are known:

p(XIT) - Probability of observing X, given that the

underlying pixel is target.

p(XIB) - Probability of observing X, given that the

underlying pixel is background.

These densities will be estimated by the segmenter with

histograms.

Decision Criteria - Several criteria for making the

decision are possible. In the past, we have used a Bayes risk

criteria to making the decision. With this approach, one

assigns costs to the classification mistakes (decide target

when actually the pixel is part of the background, or vice

versa). More recently, we have settled on a criteria that is

similar to the Neyman-Pearson criteria. The concern is with the

probability of false alarm, Pf, which is the probability of

deciding target when the underlying pixel is background, and

.... .-.. -.. ... . . .. *.*. .*.* *.* *.*. .*. .*.. . . .



the probability of detection, Pd, which is the probability of

deciding target when the underlying pixel actually is target.

With the Neyman-Pearson criteria, one constrains Pf#<=#k, and

designs a test to maximize Pd, while satisfying the constraint.

The optimum solution to the Neyman-Pearson hypothesis test

is based on the likelihood ratio (for derivation see Van Trees,

Detection, Estimation, and Modulation Theory, Part I, pg.

33-34.):

Target

p(XIT) >

Lambda

p(X1B) <

Background

The threshold Lambda is set so that Pf=k.

One complication bccurs with the whole derivation, due to

the fact that what is actually estimated in the segmenter is

not p(XIT) and p(XIB), but instead the distributions within the

window and frame regions: p(XIW) and p(XIF). In order to apply

the above optimum test, the following assumption is made: That

the target lies completely within the window region, leaving

only background in the frame. With this assumption, the

distributions within the window can be expressed in terms of

the target and background distributions, as follows:

p(XIW) = A*p(XIB) + (1-A)*p(XIT)

p(XIF) = p(XIB)

These equations say that the window distribution is given

by a weighted sum of the target and background distributions,

while the frame distribution is equal to the background

distribution, because by assumption, no target is allowed in

the frame.



The pair of equations can be solved for the window and

frame distributions, which can then be substituted into the

hypothesis test to give:

Target

p(XIW) >
Lambda'

p(XIB) <

Background

where Lambda' = Lambda*(1-A)+A. The constant A is the fraction

of the window that is background. The value of A is not known

precisely, but it is not needed anyway, because the technique

which is used to set the threshold, directly sets Lambda'.

Henceforth, the ' will be dropped and Lambda' will simply be

called Lambda.

The above discussion has placed on firm ground the fact

that the tracker uges window and frame distributions to

generate the decision rule. Because the segmenter uses a

likelihood ratio test, for a given false alarm rate, the

probability of detection is maximized. Now the method by which

the threshold, Lambda, is set will be described.

As Lambda is decreased, the resulting decision rule will

classify an increasing number of features as target. To set

Lambda, we apply two rules. First, we require that at least

some minimum fraction of pixels within the window be classified

target. So we automatically lower Lambda until that fraction is

reached. Second, we lower the value of Lambda further until

some maximum fraction of pixels in the frame region are

classified target. This second rule maximizes the fraction of

pixels in the window region that will be classified target.



The effect of the first rule is that even in situations

which are very difficult to segment, such as high clutter

situations, the segmenter will at least classify some minimum

amount of the window region as target. The effect of the second

rule is that, in easy to segment situations, the segmenter will

be able to pull out the whole target. As the difficulty of the

scene increases the segmenter will back off and classify only

the most likely pixels as target. In simulations, we have

settled on a value of .15 for the minimum fraction of target in

the window. Generally, the window control algorithm will drive

the window size to an area such that the target fills between

.25 to .30 of the window. So only in very high clutter

situations will the segmenter be forced to exceed the desired

false alarm rate in the frame region. The maximum fraction of

target pixels in the frame region has been set to. 015 in our

simulations. The application of this theoretical discussion of

decision theory by the tracker will now be described.

Every frame, thd segmenter collects histograms of the

features within the window and frame regions. The window

histogram h(XIW) indicates the number of times the feature

combination X occurred within the window region, and the frame

histogram h(XIF) indicates the number of times the feature

combination X occurred within the frame region. These

histograms are normalized by the number of pixels in each of

the regions to give estimates of the probability distributions

in the window and frame regions. These instantaneous (single

frame) distributions will be denoted pi(XIW) and pi(XIF).

In order to reduce short term fluctuations and improve the

quality of the estimates, the instantaneous distributions are

filtered in time over several video frames to obtain smoothed

distributions, denoted ps(XVW) and ps(X F). The filtering "

operation is given by:

ps(XIW)[new] = C * ps(XIW)[old] + (1-C) * pi(XV W)

ps(XIF)[new] = C * ps(X F)[old] + (1-C) * pi(XIF)

.% , .... .... ... . . .... ...... ,.. .. .



The constant C is chosen to provide 10 to 15 frames of

averaging, with exponential weighting.

The likelihood ratio is computed for all X:

ps(XIW)
L(X) ------

ps(XIF)

In order to set the threshold, we need to be able to

determine for any value of Lambda, how many pixels will be

classified target in both the window and frame regions. The

functions of interest will be denoted N(Lambda1W) and

N(LambdaIF). They are defined by:

N(LambdaVW) = Sum h(XIW) over all X satisfying L(X) >= Lambda

N(Lambda F) = Sum h(X1F) over all X satisfying L(X) >= Lambda

It might first appear that some sort of iterative search

for the threshold is necessary. Such an approach might not be

feasible considering the fact that this computation must be

performed 60 times/second in the real-time version of the

tracker. The following somewhat novel approach was conceived to

allow the computation to be non-iterative, with the sacrifice

of accuracy in the final value of Lambda, because Lambda will

be forced to one of a finite set of values.

We can compute the N(Lambda1W) and N(LambdaIF) functions at

discrete values of Lambda = k*D with a two step process. First,

we compute auxilliary functions:

dN(klW) = N(k*DIW) - N((k+1)*D W)

dN(klF) = N(k*DiF) - N((k+1)*DIF)

. ,"1



These functions are sort of like a histogram in the

threshold. They determine for a given value of the threshold,

what change in the numbers of target pixels in the window and

frame region would be caused by decreasing Lambda by the amount

0. The dN functions are computed with the following algorithm:

For all k:

dN(k W) = 0

dN(klF) = 0

For all X:

z = L(X)/D

k = Truncate z to integer and in the range [1..256)

dN(klW) = dN(klW) + h(XIW)

dN(klF) dN(klIF) + h(XIF)

The functions N(Lambda lW) and N(Lambda F) can now be

evaluated at the discrete points Lambda = k*D by

N(k*DIW) = Sum dN(iIW) over all i from k to 256

N(k*DIF) = Sum dN(iiF) over all i from k to 256

In practice these two functions are computed starting at

the maximum k (256) and then decreasing k until first the

number of target pixels In the window region, N(k*DIW), exceeds

Pd times the area of the window. Then k is possibly further

decreased, until the number of target pixels in the frame

region, N(k*DIF) would exceed Pf times the area of the frame

region. The final value of k is then used to compute the value

of Lambda using Lambda = k*D

S. .d .



The decision rule to be used during frame i is computed

during frame i-I using smoothed statistics up to frame i-2 and

using the instantaneous histograms from frame i-2 to set the

threshold.

The decision rule is stored in the segmenter in the form of

a look up table that, for each feature combination, contains

the binary decision. Incoming feature combinations, X, are

classified by looking up the decision. The output of the

segmenter is a binary image consisting of the one or zero

decisions for each pixel.

3.3 TARGET IMAGE PROCESSING

Target image processing entails many processes. The target

image is a binary image that represents the segmenters

decisions as to which pixels are target. The target image is

processed to obtain the target position using projections, and

the target size using an adaptive gate process. These

estimations, which are made every frame, are processed by a

high level controller in order to predict the size and position

of the target in subsequent frames. The window is placed in

each frame in the position where the target is anticipated to

be on that frame. The next section will describe the additional

processing on the target image for breaklock detection and

reaquistion.

For the computation of the target position, first,

projections are computed within the target window. The row

projection is obtained by summing the number of target pixels

in each row across the columns. The column projection is

obtained by summing the number of target pixels in each column



down the rows. These two projection functions are then

processed to determine the 50% points, that is the row and

column which split the area under the projection functions into

two equal halves.

The use of 50% points is preferred over a true centroid. A

true centroid (center of gravity) weights points that are

farther from the center more heavily than points that are

closer in to the center.

b The position of the target is processed through a Kalman

filter of order two (in each of horizontal and vertical

directions), which maintains a velocity and position estimate

of the target. The low order of the Kalman filter is due

partially to the difficulty of modeling the target motion in

the sequences that we have been using in the simulator. In the

sequences we use, sensor motion is also responsible for motion

of the target in the scene. At some later point in time, when

we actually close the loop and the tracker drives the sensor

pointing angle, we will have to revisit the issue of target

modeling. In any case the position estimate is used each frame

to position the target window where the target is predicted to

be according to the Kalman state extrapolation. Also, the

Kalman state vector is used during the reacquistion mode to

bias the search for the target to where the target would most

likely be located.

The dynamic control of the window size is accomplished

using an adaptive gate process which provides a means of

increasing or decreasing the size of the window as the target

size changes due to target motion or range closure. Edge gates

are placed in positions which are expected to lie on target

boundaries. Counts of target pixels are taken within these

gates. The size of the window is controlled by a servo which

drives the window size so that the number of target pixels

balances the number of background pixels in the gates. The

, I
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imbalance in any frame is passed through a low bandwidth

digital filter to generate the new window size. The filter

includes two cascaded integrators, therefore the closed loop is

a type two servo. It can respond to an expanding target size

with zero residual error.

3.4 BREAKLOCK DETECTION AND REACQUISTION

The breaklock detection and reacquistion system is provided

as a last resort to prevent loss of track. In simulations of

the tracker system, targets have been reacquired after

temporarily disappearing completely behind an occlusion. The

system should be able to handle reacquistion after loss of

track due to sensor jitter at launch.

Complete execution of breaklock detection and reacquisition

occurs in three phases, corresponding to the three tracker

modes: normal track,' track while coast, and search. For the

detection of breaklock, a segmentation performance measure is

monitored. The performance measure is an estimate of the

probability of misclassifying a pixel in the target window. It

is computed by counting the number of target pixels in the

window and frame regions. When the tracker is in normal track

mode, the performance is monitored. If the performance measure

falls below a certain threshold in any given frame, then the

mode is switched to the track while coast mode. Whenever the

transition to the coast while track mode occurs, several key

target parameters are saved: the histograms for computing the

decision rule, the target size, and the target trajectory (in

the form of the Kalman state vector estimate). While in the

track while coast mode, tracking continues normally, but now a

running average of the performance measure is computed. After

at least six frames in this mode, the average performance

measure is compared to two thresholds. If it rises above the

first threshold, then the assumption is made that the cause of
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performance degradation was temporary and therefore ignorable,

thus the tracker returns to normal track. If on the other hand,

the performance measure falls below the second threshold then

the assumption is made that breaklock has occurred. In this

case the tracker enters the search mode to try to reacquire the

target.

The search for the target is made within the binary target

image. The decision rule used to generate the target image is

computed using the histograms that were saved at the time of

initial performance degradation. The binary mask that is

correlated with the target image is shown in Figure 4. The size

of the binary mask is set according to the size of the target.

The mask shape and size are such that the correlation will peak

when at a blob of target pixels of about the correct size.

Successful reacquisition of the target is detected by comparing

the peak correlation to a threshold. The final piece of

information that is used to help find the target is the known

target trajectory. The trajectory is used to generate a penalty

function that is subtracted from the spatial correlation

function. The effect of the penalty function is to bias the

search towards the predicted target position and to limit the

region searched. The search region is steadily increased for

every frame that the target goes undetected. Eventually (after

a couple of seconds) the search region encompasses the complete

field of view.
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4.0 SUMMARY

This paper has attempted to describe the tracking system

that has been developed by RCA. Many of the techniques used

were a result of the contraint to be able to process video in

real-time. The use of histograms to estimate the probability

densities involved is one example. The simple performance

measure used to detect breaklock is another.

Also, at times the only justification for a design decision

is human intuition or experience derived through the simulator.

An example of such a design tradeoff was the decision to use a

modified Neyman-Pearson criteria that guaratees at least a

minimum probability of detection no matter what the false alarm

rate.
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Adaptive gate multifeature Bayesian statistical tracker

W. B. Schaming
RCA Advanced Technology Laboratories

Camden, New Jersey 08102

Abstract

A statistically based tracking algorithm is described which utilizes a powerful segmenta-
tion algorithm. Multiple features such as intensity, edge magnitude, and spatial frequency
are combined to form a joint probability distribution to characterize a region containing
a target and its immediate surround. These distributions are integrated over time to pro-
vide a stable estimate of the target region and background statistics. A Bayesian decision
rule is implemented using these distributions to classify individual pixels as target or
nontarget. An adaptive gate process is used to estimate desired changes in the tracking~window size.

Introduction

This paper documents progress during the past year toward the development and demonstra-
tions of a statistical tracking algorithm. Papersl, 2 presented in 1981 described some of
the initial concepts in this development. Since that time, the statistical tracking algo-
rithm has been expanded to incorporate (a) the simultaneous use of multiple features, (b) an
adaptive gate process for control of the window size, and (c) positional dependence of the
misclassification cost factor.

The tracking algorithm is based on the use of multifeature joint probability density7) functions for the statistical separation of targets from their background. The featurescurrently being used are intensity, edge magnitude, and a pseudo spatial frequency feature.
These features are combined to form the joint distributions which characterize a target
region and its immediate surround. The distributions are integrated over time to provide
a stable estimate of the target and background statistics. A Bayesian decision rule is im-

Al plemented using these distributions to classify individual pixels as target or nontarget
within a tracking window. An adaptive gate process is used to estimate desired changes in
the tracking window size. The algorithm at present assumes manual target designation.

RCA believes this tracking process is capable of operation in all environents; insensi-
tive to target type, signature, and orientation; applicable to a variety of sensors; and
extendable to multisensor processing and readily implementable.

Preprocessing and A/D conversion
I

The video preprocessing function is an important part of any imaging sensor system, but
is more critical when the sensor is an IR device which may exhibit very high dynamic range
capability. In this case it is insufficient to perform a simple AGC based ,pon global
statistics because the subsequent rescaling to reduce the dynamic range will destroy the low
contrast local detail. Instead, some form of local adaptive ontrast enhancement should be
applied in which the gain varies with the local contrast. Lo simulated and compared sever-
al such techniques.

4Although necessary in a hardware implementation, this function has not been included in
the simulations reported here. Ten-second image sequences were digitized from video tape
via an analog video disc and an image processing system. The input to the image processingsystem was passed through a video processing amplifier so that the levels could be properlymatched to the A/D converter.

Statistical tracking algorithm

Targets are often separated from their background by a simple thresholding scheme. Some-times the computation of the threshold is quite sophisticated and involves looking at the
statistics of the video signal. However, thresholding is inherently limited in ability ascan be seen by the diagrams in Fig. 1. A simple black and white target can be readily
thresholded to isolate it from its background. On the other hand a gray target cannot be
thresholded without using a pair of thresholds properly placed to contain the intensity
levels on the target. This dual threshold in itself is not prohibitive, but rather the prob-
lem lies in the ability to place the thresholds at the appropriate levels.
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INTENSITY INTENSITY

BLACK BLACK

THRESHOLD

GRAY PIGRAY

WHITE WH-ITE

SCAN DISTANCE SCAN DISTANCE

*(a) THIS TARGET CAN BE EASILY THRESHOLDED (b) THIS TARGET CANNOT BE EASILY THRESHOLDED BUT
REQUIRES A PAIR OF THRESHOLDS PROPERLY PLACED.

Fig. 1. Example showing two postulated targets. One is easily segmented from the back-
ground using a single threshold. The other, however, requires two thresholds
which are not easily 'determined. The statistical process provides a separate
threshold for each intensity level.

* The statistical segmentation process is a technique which provides an improved method for
extracting the target from its background. Figure 2 depicts this process. Shown are two

* histograms, one taken from a window area of the image containing the target and the other
taken from the immediate surround which represents the background. A single feature, in-
tensity, is shown in these histograms for illustrative purposes. The shape of the dis-
tribution shown is arbitrary; there are no assumptions made about their actual shape. The

* segmentation process makes a separate assessment of each bin in the histogram to determine
if pixels whose intensity falls in the bin are more likely to be target or background. in
addition to solving the threshold selection problem, the statistical tracking algorithm pro-
vides a method to both simplify the multimode tracking concept and provide added capability.

The simplification comes about in the following way. State-of-the-art multimode trackers
typically operate a contrast, edge, and correlation tracker in parallel. An executive
process may be defined to determine at any given .time which tracking mode is providing
the most reliable estimate of target position. The statistical process, as currently de-
fined, eliminates this mode polling process by combining the available features into multi-
dimensional statistics representing target and background. consider the use of intensity
and edge magnitude as the two candidate features. In this case the statistical approach
encompasses three tracking modes in an integrated single mode without the need to poll the
performance of the individual processes. When intensity is the best target background
separator, the algorithm operates like a contrast tracker. When edge magnitude is pre-

* dominate it operates similar to an edge centroid tracker. Because the process is searching
for pixels in the current frame that are statistically similar to those pixels selected as
target in previous frames, the algorithm is in a sense a correlation type process as well.

The added capability comes from the fact that there are target/background conditions
which are inseparable using two features independently but are readily separable using the
same two features jointly. This is illustrated quite simply in Fig. 3. In this example,
neither edqe magnitude nor intensity can be used independently to separate the target from
background because both flat distributions cover the entire variable range for both features.
On the other hand, the joint distribution clearly delineates the two areas.
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NUMBER A
OF
PIXELS

TARGET WINDOW
HISTOGRAMTARGET 

ACKGROU

BACKGROUND WINOW WINDOW

THISTOGRAMM

HISTOGRAM INTENSITY

NUMBER OF PIXELS IN EACH INTENSITY GROUP

Fig. 2. Example of how histograms are used to separate a target from its background. Each
bin in the histogram is examined to determine if the intensity value falling within
that bin are more likely to be target or background. Although this is a single
feature (intensity) example, the same process is used with multiple features in an
N-dimensional histogram representing a joint probability density.

INTENSITY

TARGE W AKGROUND

INTENSITY

BACKGROUND TAGE

EDGE MAGNITUDE

IA) JOINT DISTRIBUTION OF INTENSITY (I INDEPENDENT DISTRIBUTIONS FROM THE
AND EDGE MAGNITUDE FOR A SAME POSTULATED TARGETI/ACKGROUNO SCENE
POSTULATED TARGET/BACKGROUND SCENE (TARGET AND BACKGROUND DISTRIBUTIONS

LOOK ALIKEI

Fig. 3. Simple example showing how the use of joint statistics aids in the separation of
target from background in situations where the use of the features singly fails.

Figure 4 is a flow diagram of the statistical tracking mode. The preprocessed video is
used to generate multiple feature images to be used in the decision process. The features
are combined into two joint probability density functions for (a) a target tracking window
and (b) a background window frame. These distributions are the basis of a statistical
decision process which is used to classify the image pixels inside the tracking window to
separate the target from the background. In actuality the statistics from previous fra:-,s
are used in the classification process for the current frame. At the same time, histo-
grams are generated from the current image frame so that the statistics can be updated for
processing subsequent frames. At the end of the classification process the segmented ima.e
is analyzed to determine the appropriate error signals as well as the window size and posi-
tion for the next frame. In parallel with the pixel rate computations for the Nth frae,,
the statistics from the N-lst frame are integrated with past history and a decision rule is
generated for the N+lst frame.

A sample output from the process is shown in Fio. 5. Only two features wk'rc' uskJ ! J
this example, namely, intensity and edge magnitude. The total number of bits utilized for
the features is seven - four for intensity and three for edge magnitude. The edac m.ana-
tude used is the absolute value approximation to the Sobel operator.

The next few paragraphs describe some of the steps in this process in more detail.

Comiutatlon of features

The first step in the statistical process is the qeneration of the eatures to 'I Ll ''.-
There are many potential candidates, some of which are computationally too burdensur :,i-
real-time implementation at this tim, . W, thireforr, have ]imited our selection o!. i--.is
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FIpOCSSE VTOO

Ze GStTI : O A UE SIG.ENTED TARGET
*ROCOSTS F O. T AREAS

ERROR SIGNALS

Fig. 4. Block diagram of the Bayesian statistical tracking mode. The feature computation,
statistics generation, and pixel classification are performed at the pixel rate.
The computation of error signals is performed during vertical sync.

INPUT PREPROCESSING TARGET TRACKING
VIDEO SEPARATION

I MEDIAN FILTER
B ADAPTIVE GATE

SBAYESIAN * PROJECTIONS

FEATURE STATISTICAL

EXTRACTION SEGMENTATION

* 4 BITS INTENSITY
S3 BITS EDGE

Fig. 5. Sample output from the Bayesian statistical tracker simulation using a 64-x-64
pixel image of an aircraft at a mounta'in boundary. Two features were used in the
statistical segmentation with a total of ,seven bits.

to those which are readily implemented. These features are intensity, edge magnitude, and
spatial frequency.

The intensity feature is simply a requantized version of the digitized video signal to

obtain the desired number of bits of intensity resolution. The edge magnitude feature is

the sum of absolute values approximation to the Sobel operator. The absolute sum is an

acceptable and computationally more appealing approximation than the true edge magnitude.

The third feature is an approximation to spatial frequency in the horizontal direction.
Because it is a measure of object size, it could also be considered a simple texture

measure in a broad sense. The spatial frequency is defined as the function of the run
length where a run is the number of consecutive pixels between which the pixel-to-pixel

difference does not exceed a predefined threshold. The threshold used is the mean value of
the absolute difference beweeen pixels in the previous frame. The feature value is then
defined as:

SrF= MAXIMUM [0 (2N - RUN LENGTH)]

where 2 N is the number of levels into which the spatial frequency feature will be quantized.
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An example of the spatial frequency feature is shown in Fig. 6. An arbitrary function
is plotted to represent the image intensity I at successive pixels in the x direction.
Beneath the plotted data are shown the actual pixel intensities, absolute differences, run
lengths, and feature values. The threshold used to compute run lengths in the example
is 1.3 and the number of quantization levels is 8(N - 3 bits). The first sample-to-sample
difference which exceeds the threshold 1.3 is the sixth sample. Samples 1 to 5 represent
a run of length 5 in which the differences do not exceed threshold. The corresponding
feature value is 3 which is assigned to all pixel locations in the run. The higher feature
values indicate smaller distances between gradient values exceeding threshold. Note that
the low amplitude variation between the pixels 6 and 14 do not exceed the threshold and
therefore do not define the boundary of a run. The feature is intended to provide informa-
tion about the size (in the x direction) of areas or patches which have uniform or slowly
varying intensity.

Generation and integration of statistics

Histograms from two separate regions in the image must be computed to provide the prob-
ability density functions required by the decision rule. The regions from which the histo-
grams are generated are shown in Fig. 7. The assumption in the segmentation algorithm is
that the target is absent from the frame region. For both the frame and window regions a
multifeature histogram is defined as

HFR (fi' f2' f3)  Frame Region Histogram

NR (fl' f2, f3) Window Region Histogram

for the Nth image in the sequence.

After normalization by the respective areas of the frame and window regions the histo-
grams become the discrete joint probability densities

PFR ' 3
N

PWN (fl' f2 f3 )

~WR 21 3

[I .' IIIISENSOR
• iX ! m X",,'s- -FIELDO F-VIEW

FRAME REGION

(FR)

WINDOW REGION

7j747~t.XX ~(WA)

____ L LIH f(f f2 f3) - multifeature hutogpm from r eep.on

. .. .. .. . . . . FWR (fl fZ2 f3 - multifesture histopaom from wmoiowrtolpon

Fig. 6. Sample which shows the procedure Fig. 7. Areas of the image over which the
for calculating the pseudo spatial multifeature histograms are com-
frequency feature. The absolute puted. It is assumed that the
difference threshold used to compute target is absent from the frame
run lengths in the exampIc is 1.3, region which is defined as a
which is the average difference. The border around the window region
number of quantization levels for containing the target.
the feature is 8.

72 / SPIE Vol 359 Applications of Digital Image Processing IV (1982)



To minimize short-term statistical variations these probability densities are combined
in a weighted sum with the past history of the statistics. This fading memory filtering
is performed once each frame so that the statistical updating keeps up with the frame rate
of the video. The filtering is defined by

N N N-i
FPFR =aPFR - FPFR (2)

FR b PN + (1 - b) WR (3)

where

RN FPWR are the filtered probability density functions at the Nth frametime
N N

PFR' P are the unfiltered density functions computed from the current frameN

a, b are the weighting factors which control the amount of smoothing
performed.

In the simulations performed to date, the filtered statistics up to and including frame
N-i are used to generate the decision rule to be used on frame N.

Minimal cost decision rule

The decision rule used in the classification of pixels as target or background inside the
window region is based upon minimizing the cost or risk associated with making a particular
choice. A pixel is called a target pixel if, and only if, the cost (or penalty) associated
with deciding background is greater than the cost associated with deciding target. Mathe-
matically this is written as follows:

Decide target if and only if

P(B/X)C(B/B) + P(T/X)C(B/T) > P(B/X)C(T/B) + P(T/X)C(T/T) (4)

where

P(B/X) is the probability of a pixel being background given that the pixel has the
feature vector X.

P(T/X) is the probability of a pixel being target given that the pixel has the feature
vector X.

C(B/B) is the cost associated with classifying a background pixel as background.

C(T/T) is the cost associated with classifying a target pixel as target.

C(B/T) is the cost associated with classifying a target pixel as background.

C(T/B) is the cost associated with classifying a background pixel as target.

Clearly C(B/B) and C(T/T) are zero because there should be no penalty for making a correct

decision. The decision rule then becomes the- following:

Decide target if and only if

P(T/X)C(B/T) > P(B/k)C(TIB). 5

Using Bayes theorem this inequality is rewritten as

p (X/T)P(T)(CB/T) - P(X/B)P(B)C(T/B). (6)

These distributions can be expressed in terms of the window and frame regions shown in
Fig. 7. Because the basic assumption is that the target is absent from the frame region,
the background distribution is the same as the frame region distribution, therefore,

P(X/FR) = P(X/B) 7.

The window region contains both target and background, therefore

P(X/WR) = P(B)P(X/B) + P(T)P(X/T) (S)
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where

P(B), P(T) = the a priori probability of background and target respectively in the
window region.

Substitution of P(X/B) and P(X/T) results in

f (/)+ C(B/T)]
P(X/WR) > PC(T/B (B/T)1p(B) P (X/FR) (9)

L C(B/T)
which is a decision rule based upon the measurable distributions in the frame and window
retgions. This is more simply written as

P(X/WR) > aA P(X/FR) (10)

where

= P(B)

C(T/B) + C(B/T)A = C(B/T)

The parameters A and a play an important role in the overall process. In the operation of
the tracking algorithm, a is maintained approximately constant by attempt-.. to maintain a
fixed relationship between the size of the target and the window size. In subsequent para-
graphs it will be shown how the parameter A is used both as a control parameter as well as
a means of introducing pixel position into the decision process. The parameter A is referred
to as the misclassification cost.

Window size and position control

The dynamic control of the window size is accomplished using one of the most successful
techniques of modern trackers, namely the adaptive gate process. This provides a means of
increasing or decreasing the size of the window as the target size changes due to target
motion or range closure. The approach being used places the appropriate edge gates inside
the statistical tracking window as shown in Fig. 8. The central area defined by the heavy
black lines is the area in which the segmented target is confined. For ideal operation
the edge gates would contain half background and half target pixels. The adaptive gate
process is an attempt to balance the number of target and background pixels in the hori-
zontal and vertical edqe gates independently to control the height and width of the window.
The unbalance in the edge gates is the difference between the number of target pixels and
background pixels. To control the horizontal window size this unbalance is used to either
expand or contract the window size horizontally. If ,WE as defined in Fig. 8 is positive,
there is more target area than background area in the edge gate regions. The gates are
then expanded. Conversely, if AWE is negative there is more background area which suggests
that the gates should contract. The effect is to make a change in the width of the central
region in which the target is being contained.

Recall in the previous para-
graph it was stated that a (the
a priori probability of back-
ground in the window region)

" r- - * --,could be maintained approximate-
0 ' _ *,,, I.., ly constant. This is accomp-

- lI lished during tne window size

I", i lI "- control process. If LWE is the
desired change in width of the
central target area as derivedfrom the edge gates, then the

,...u,,., ,,,, corresponding change in the
. ..... . statistical tracking window

width W is defined as

AW = -WE

Fig. 8. Target edge gates are located inside the window (l-)/2

area. The change ,WE in the combined width of
the two-edge gates is related to the background A similar process defines the
vs. target area unbalance within the gates. change in the window height.
This change then defines the change .'W to be This process tries to maintain
made in the tracking window width W to maintain a central target area which is
a constant nominal value for a. A similar proc- (1-a) times the window area.
ess defines the change tH in the window height.
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The probability of background inside the window is then approximated by a.

The relative position of the tracking window with respect to the image frame is con-
trolled in one of two ways. In the case of bench test video tape input (or in fact any
input which is not directly controlled by the error signals) the error signals must drive
the position of the tracking window for the next frame. On the other hand when the track-
ing error signals are driving a seeker, the window position within the frame will vary only
in certain circumstances such as the initiation of a search and reacquisition strategy.

The error signals are computed as the difference between the centroid of the segmented

target region and the current position of the window in the frame.

Misclassification cost control

The misclassification cost, A, is controlled in two ways. First, it is a function of the
pixel position relative to the expected aim point and second, it is adjusted in a control
loop using the parameter a as a reference. This in effect puts a positional dependency in-
to the decision rule so that the classification of a pixel as a target point is a function
of its location in the image relative to the current best estimate of target location. The
adaptive gate mechanism provides an ideal method for assigning relative weights to the two
cost factors C(T/B) and C(B/T). Figure 9 shows the layout of the frame and window regions
along with a plot in the X direction of the relative magnitude of the composite cost func-
tion A. The area labeled R1 in the figure should correspond to the central area of the
target assuming the adaptive gate window control function is performing properly. In this
region we expect mostly target pixels. The penalty for mislabeling a background pixel as
target in area Rl therefore should be less than the penalty for calling a target pixel back-
ground. In the edge gate regions R2 there should be half background and half target pixels
in the ideal case; therefore the misclassification costs C(T/B)and C(B/T) should be equal.
In the area R3 between the edge gates and the window boundary very little target area is
anticipated. This provides a buffer zone between the target and the frame region which is
assumed to contain no target data. Consequently, the relative magnitudes of the misclassi-
fication costs should reverse. Finally, because the frame region should not contain any
target pixels, the penalty for misclassifying background pixels as target in this region
should be even higher.

A similar function is applied in the Y direction and the actual misclassification factor
is the larger of the two. This does not, however, set the actual magnitude of A which is
required for given image conditions. Consequently the overall amplitude of the parameter A
is made adaptive. This is done in the following way.

The two parameters in the decision rule which impact the pixel classification in addition
to the statistics are the misclassification cost A and the a priori probability of back-
ground in the tracking window a. It is desirable to hold a at a constant value inside the
window. Therefore, (1-a) is used as the reference parameter in a simple control loop as
shown in Fig. 10. After classifying the pixels in an image frame, the adaptive gate

'S..... 65,1DE SIRED %IA"
TARGET AREA M. A

PREDICT % ADJUST
rill. TARGET AREA IN INDOWISZ

I iNEXE FRAME F OR JOE XT FRAME
.2 f- 1 GATM CITMI C. ClO 1
63 II J m *WCFRN ROC Crt , - nI.,

Fig. 9. Diagram showing the positional de- Fig. 10. Control loop used to adjust the
pendence of the misclassification misclassification cost used in
cost. A plot of the relative am- frame n (An) to a new value to be
plitude of "A" as a function of the used for frame n+l (An+l).
pixel position is shown for the X
direction.
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process is used to set the window size for the next frame. The number of pixels expected
to be classified as target in the next frame is estimated to be the same as the current
frame. Using the estimated target size and the window size calculated for the next frame,
the percentage target area expected in the next frame can be computed. The predicted target
area is compared to the desired reference (I-ca) to obtain an error which defines a scale
factor by which the cost function A is scaled. The adjustment in A will tend to improve
the classification in the next frame. Lowering the magnitude of A will cause morei pixels
to be classified as target and vice versa.

Conclusions

A statistical tracking algorithm has been demonstrated via simulation which incorporates
the concepts of a multimode tracker in a single mode. The use of multifeature joint
probability distributions provide better target separation than using the same features
individually. The statistical process is insensitive to sensor type and operating scenario
which provides a wide range of applicability without the need for application dependent
training. The technique is also insensitive to target orientation (such as that caused
by platform roll) because no specific target-related information is assumed. The algorithm
is directly extendable to multisensor operation which would provide a wider range of opera-
ting conditions.
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Performance measures for statistical segmentation

Dov J. Shazeer
RCA Advanced Technology Laboratories, Camden. New Jersey 08102

Abstract

Performance measures for statistical segmentation have been developed for a space-and-time
critical Bayesian statistical tracker. They are intended to become an integral part ot a
knowledge-based tracking algorithm, which has been developed by RCA. The performance
measures are serving to quantify the usefulness of the processed input, to assist in the
identification of each tracking state and give its reliability, and to predict impending
changes of state. They have been tested using stochastically generated target-background
frames. Performance measure results have correlated well with the parameters which char-
acterize the difference in the target and background distributions. A host of possible
performance measures are discussed in relation to their strengths and weaknesses. Experi-
mental results for the measures currently being employed by RCA are given, and areas for
future research are indicated.

Introduction

Space-and-time constrained tracking algorithms have suffered from a lack of intelligence.
Recent work on a statistical approach to a 2-dimensional image segmentation using Bayesian
decision criteria has given hope that this deficiency can be remedied. 1 ,2 During the past
two years the RCA Advanced Technology Laboratories has had considerible success in the
development of a Multifeature Bayesian Intelligent Tracker (MFBIT). An intelligent tracker
must adapt to rapidly changing tracking conditions. MFBIT is intended to handle a variety
of tracking strategies which are dependent on the tracking conditions. In addition, it must
identify tracking conditions and impending changes in them. A knowledge-based tracking
processor is being implemented which responds to the current input based upon a tine-series
record of measures extracted from previous inputs. The tracking conditions are implemented
as a finite state automaton. The anticipated tracking states are (1) target acquisition,
(2) multiple targets, (3) breaklock, (4) target leaving field-of-view, and (5) target con-
fusion. The performance measures have been developed to add to the intelligence of MFBIT.
They will be utilized (1) to predict and identify changes of tracking state, (2) as an
experimental instrument to define each tracking state, (3) in a near-optimal allocation
scheme of computational resources to the competing features, and (4) in the determination of
Kalman weights by which the present input is integrated with the past to reduce wild oscil-
lations in tracking strategy.

Picture segmentation

Picture segmentation is a procedure which locates the tarqet and background domains of an
image. Each image is initially digitized, to form a 2-dimensional array of pixels. Using
appropriate operators, features such as intensity, edge magnitude, texture, etc., can De
extracted. Based on its feature values, each pixel is assigned to the states-of-nature
"target" or "background." A Bayesian decision rule determines the set of feature values
JT and -JB which causes the pixels to be assigned the state-of-nature "target" or back-

ground," respectively.

The Bayesian decision rule is obtained by making the assumption that the set of pixels
belonging to the state-of-nature "target" will have a different statistical distribution of
feature values than pixels belonging to the state-of-nature "background." Two regions are
therefore defined for each frame in a sequence of images: a rectangular window region (WR)
containing pixels which belong to both states-of-nature, enclosed in a frame region (FR)
whose pixels have the states-of-nature, "background" only (see Fig. 1). We obtain the prob-
ability density histograms, hFR(j) ,from the frame region. hFR(J) corresponds to the condi-
tional probability, P(J/BR), that if the pixel is from the background region, then the
chance variable will have the feature value J. The window region probability density histo-
gram., hWH(j), is obtained. This probability, P(J/WR), that the chance variable will have a
feature value J in the window region, is the expectation value, summed over both states-of-
nature, of the conditional probability of feature value 3.
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Fig. 1. The window region contains both target and background
. -pixels. The frame region contains background pixels only.

Because only the window region is segmented, P(J/WR) is simply written

as P(J). Then,

P(J) = P(T)P(J/T)+P(B)P(J/B) (1)

where P(T) is the a priori probability of the state-of-nature "target" in the W? and P(B) is

the a priori probability of the state-of-nature "background" in the WR. For thu sake of

simplifying notation, P(B) a, P(T) - 1 -a, P(J/T) hT(J), and P(J/B) hB(j). If we now
assume that hB(j) = hFR(j), and that we can reasonably estimate a, then equation I can bL, used

to solve for hT(j)

hT (j) h hWR J) _ahFR(j) (2)

Bayes theorem allows a calculation of a posteriori probabilities from a knowledge of the

a priori probabilities.

P(T/J) P(T)P(J/T) - (l-a)hT(3) (3)
P(J) hWR (J)

and

P(B/J) P(B)P(J/B) = hFRj) (4)
P(J) hWR (M)

The a posterior probabilities are used in decision rules. Several are extant. The rule

that a pixel whose feature value is J will be labeled "target" if

P(T/J) > P(B/J) (5)

otherwise it will be labeled "background" is known as the maximum likelihood rule. Using

equations 3 and 4 we may restate the rule. Label the pixel "target" if

hT(J) (6)

hFR(J) I -a

In the 1920s it was shown by Neyman and Pearson
4 that optimum decision rules are formulated - -

in terms of the ratio (P(J/T)/P(J/B) . This ratio, hT(J)/hFR(j) for the tracker, is known

as the likelihood ratio. The value it must e.,ceed (i.e. /I-,) is called the decision

criterion. The maximum likelihood rule guarantees that the majority of the pixels are

correctly labeled.

Another Bayesian decision rule is known as the minimum risk rule. The risk in labelln.2

the pixels "target" or "background" is calculated by defining the misclassification costs

C(B/T) and C(T/B). C(B/T) is the cost of labeling "background" a pixel whose state-of-

nature is "target," and C(T/B) is the cost of labeling "target" a pixel whose state-c.f-

nature is "background." The Bayesian risk in labe linq "target" a pixel whose feature vi lu

is J is R(T/J,B) = C(T/B) P(B) P(J/B). Likewist!, the Bayesian risk in labeling , pixul

whose feature is J as "background" is R(B/J, T) = C(B/T) P(T) P(J/T) . The Bayesian decision

rule is to label a pixel to minimize the risk. This leads to the rule: a pixel whose

feature value is J will be labeled "target" if

C(T/B) P(B)P(J/B) ,C(B/T)P(T)P(J/T) (71

otherwise, label the pixel "background."

Equation 7 demands that a pixel be labeled "background" unless

hT (J) [fC( T/B)

hFR(J) CCBIT)

We can rewrite equation 8 by using equation 2.
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h WR(j) > C(B/T) + C(T/B) 9
hFR Wj) C(B/T) 9

define A C(B/T)+ C(T/B)

C(B/T)

Thus, the decision criterion for a Bayesian classifier is Aa.

It is of interest to note that the minimum risk and maximum likelihood rules are identi-
cal for equal misclassification costs (i.e., C(T/B) = C(B/T)).

Estimation of performance

The Bayesian decision rules partition the set of feature values {J; into two mutually
exclusive sets, {JT } and iJBl . If a pixel in the window region has a feature value which
belongs to the set {JT}, it will be labeled "target," regardless of its state-of-nature.
In a like manner, if the pixel has a feature value belonging to the set .JB:, it will be
labeled "background." Because the histograms hT(J) and hFR(j) usually overlap, this labeling
scheme will lead to the misclassification of some pixels. The maqnitude of the error, i.e.,
the number of pixels misclassified, will depend on the amount of overlap and on th, value
of the decision criterion, As. The number of misclassified pixels is a minimum if A = 2,
the maximum likelihood decision rule. However, other values of A may minimize, in some
fashion, the risk of misclassification. In any case, our choice of the decision criterion
reflects our bias. Thus, performance measures which take the partitioning of the set J:
into account will be called biased performance measures. Performance measures which compare
the shapes or functional forms of the histograms, hT(J, dnd hFR(j) , will be called un-
biased performance measures. Both types of estimations are useful.

Biased performance measures

Hit rate and false alarm rate

Assume a decision rule divides observation space into two disjoint sets, .JT and JB,
as in Fig. 2.

FR
It can be seen that h (j) P(T/B) is the

JT
probability that a pixel state-of-nature is "back-

* ' !L , ? . ,ground" is labeled "target." Alternativel,
"1K. P(B/T) = h'(j) is the probability that a ixel

whose state-of-nature is "target" is labeled

"background." P(T/T) = hT(J) = I - P(B T) is

Fig. 2. Probanility distribution the probability that a pixel whose state-of-nature
histograms. is "target" will be labeled "target." P(TT) is

called the hit rate (HR). P(B/T)is the miss rate (MR). P(T/B) is the false alarm rate
(FAR), and P(B/B) is called the correct rejection rate (CRR) . Because we locate the cen-
troid of the target by operating in some manner on the pixels labeled "target," it is evi-
dent that a false alarm is generally more costl' than a miss. Note that HR and FAR cannot
be independently varied. From Fig. 2 it is seen that they depend on each other implicitly
through the decision criterion.

Bayes risk, error

We can calculate the total risk of mislabeling pixels by calculating the risk of mis-
labeling background pixels,

R(T/B) R(T/J,B) = aC(T/B) (FAR) (10)

and adding to it the risk of mislabeling target pixels

R(B'T) 1P(B/1J,T) (i-) C(B T) (1-11R) (11)
JB:,
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0

The sum is known as Bayes risk:

Bayes = R(T/B) + R(B/T) = uC(T/B) (FAR) + (l-u) C(B/T) (MR) (12)

The total number of misclassified pixels will be called ERROR:

ERROR = N [a (FAR) + (1-a) (MR)] (13)

where N - total number of pixels in the window region.

ERROR is minimized for the maximum likelihood conditions C(T/B) = C(B/T) . The ERPo< =
times the shaded area under the graph (see Fig. 3). If the decision criterion is moved to
the right, the decrease in false alarms is smaller than the increase in the misses. If the
decision criterion is moved to the left, the decrease in misses is smaller than the
increase in false alarms.

Another performance measure which is a function
of the HR and FAR is the ratio of densities (1J,):

h T(3)
ROD HR J T' = P(T/TJ (14)

,:.TTTT%; FAR hFR(j) P(T/BI

; , : .' !, 'T , .

Fic. 3. Probability density distribution.

T () a ]Fc(T/ B 11 h FR(J
Because h (L) > L t37 T hJ (J) if Jt "aT'

h T (J) > C(T/B) hFR (J)

;j ~ C(B!T) J
.R O D > _ . cT( B

If ROD is large relative to the Bayesian classifier is performing we'l.

It would obviously be helpful in the accurate location of the target, if the number ef
false alarms were a small fraction of the total number of pixels labeled "target." ho.le-

S fore, a performance measure called the false alarm fraction (FAF) has been dc ined:
. hFR (3)

Fraction of false alarms' a(FAR) .,, __"__

FAF Fraction of pixels labeled target a(FAR+(l-a)HR) hWR(j)
'IT

In Fig. 3, if we move the decision criterion to the right one bin, the total nurbLr c:
errors increase, but the FAF decreases. We probably will locate the target centr1l. .ori,
accurately.

unbiased performance measures

These measures compare the histograms hT(J) and hFR(j) , independently of the cho'ice ot
decision criterion. However, if these unbiased measures show that hT(G1 and hVR(JI are" x-".
tremely similar in functional form, no amount of cleverness will allow us to se,;ment thy
image. on the other hand, if the unbiased measures show the histograms to be different,
but the biased performance measures show that segmentation is poor, we have the 0):. rtu t'
to remediate. Tnus, the unbiased performance measures can be used to monitor the -> ir* -
ance of the biased performance measures. The two types of measures should aqree.

SPIE Vol 359 Applica ions of Dgital Image Processing IV t? 982 351

.. ° ° , .. . . . .

° ., . ."



Cose

A simply implemented yet effective measure called cos e can be utilized. Suppose the
chance variable J is partitioned into N grey levels. We may view hT(J) and hFR(J) as two,
N-dimensional, generalized vectors, T hFR. Their dot product would be hT • R(j) =

FR cos e = 'h T(J) h solving for cos 8 we have

N T F
zhT(J) hFR(J)

cos 8 N T 2 N [hFR(L] 2 (16)

K=[h L=

Schwartz's inequality assures us that the denominator is always less than or equal to the
numerator. Note that if hT(j) = c * hFR(j) for all J then cos 8 = 1 and = 00. If, on the
other hand, hT(J) = 0, if hFR(j)* 0 or hFR(j) = 0, if hT(J)* 0, then cos 0 0and 6 900.
In the first case either all the pixels will be labeled "background" or they will all be
labeled "target."

Unreliability parameter

The unreliability parameter (UPAR) measures the probability that a target pixel is likely
to be labeled background. We define Up(J) = P(B/J) P (J/T) as the probability that a pixel
whose state-of-nature is target and whose feature value is J is labeled "background." Sum-
ming Up(J) over all J results in the unreliability parameter.

U = P (B/T) = EU (J) = ZP (B/J) P(J/T)
*P j P j

However, P(J/T) = hT(j)

and P(B/J) = chFR(j)
hWR (M)
hT ( F hR~j) ;'

Therefore, U Z (J) hF (17)
p h WR W

There are two extremums. First, hT(j) = hFR(j) for all J, and in this case, U=
Second, there is no overlap between hT(J) and hFR(j), i.e., hT(J) = 0 whenever -hFR(j) - 0and
hFR(J) = 0 whenever hT(J)* 0, and in this case Up = 0. It will take on intermediate values
for intermediate cases of overlap. However, if a approaches either one or zero, Up - a.
Therefore, it is wise to scale UT by a. Values of U close to zero indicate favorable
conditions for segmentation, while values close to ohe indicate poor segmentation conditions.

:hT (J) hFR (j)

Because Up = P(B/T), it is interesting to note that the P(T/B) = (Q-i ) W'R (J )

- ()U and thus there is a symmetry between the two performance measures.CL p

Weighted second moment

The Weighted Second Moment (WSM) is derived by rewriting equation 1 in the following manner:

hWR(3) = M hFR(J) + (l-)hT (3)

hWR(J) and x (j)(8)if we define y hFR(j) hFR(J)

we havey= + (1-a) x

Equation 18 is the equation of a straight line with intercept a and slope I-a). The
line goes through the point (1,1). The set of data points [x(J) , y(j) I can be distributed
in any fashion on the line. In fact the distribution of the points on the line is used
as a performance measure. The point (1,1) has special significance. At that point, hT(j) =
hWR(I) = hFR(j), and only the crudest type of image segmentation can occur. If the set of
points { (x,y)) are confined to a small interval about the point (1,l), segmentation is
poor. If, on the other hand, the data points are far from (1,1), the image is highly
segmentable (see Fig. 4).
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An error in a will not effect y, because hWR(J) and hFR(J) are ob-
tained experimentally. The value of x will, however, be affected. If
the calculated value of a (a cal) is smaller than its correct value,
ac, the data point will appear closer to (1,1) and the performance
measure will be more pessimistic than warranted. If we overestimate
the value of a, acal >ac, the data point appears further from (l,l).

Fig. 4. Linearized The performance measure will be overly optimistic (see Fig. 4).
pdf equation.

The percent error in the value of [I - xJ) can be derived by defining acal = uc + aE

where acal = estimated value of a
(1c = correct value of a
aE  = the error in a

Also define [1 - X] cal = the value of (l-x) obtained by using acal and (l-x)c = the value
(l-x) obtained by using ac.

The fractional error = (=x)cal - (lx)c = E
(1-x) 1-aa

Y&c cal

and is independent of the point (x,y).

xca -x c

The fractional error in x, i.e., is, however,
Xcal

dependent of (x,y).

This discussion indicates strongly that the point (1,1) plays a unique role. To calcu-
late the variance of the set of points i(x,y)) about the point (1,1) use the following:

WR + (19)
WSM = h WJ -y(J)j I IlxJJ(9

and from equation 18 it can be spen that

(l-x) 1 (1 - y) (20)

and therefore,

WSM 2 {(~)+ I h hWR (J) [1 -y(J)] 2 (21)

The usefulness of WSM as a performance measure arises in the fact that the percent error
in WSM due to an error in a is independent of tho distribution of data points (x,y). Thus,
if we were to compare the performance of two features in segmenting the image, say intensity
and edge magnitude, the ratio of WSM for the two features would be independent of the value
of a.

Entropy

Several entropy measures have been tested. The entropy H is defined as:
N

H = - P(J) log 2 (P(J)) (22)
J=l

where J - the probability of occurrence of feature value J and N = the number of feature
values. H measures how evenly the feature values are occupied. If one feature value alone
is occupied, then H = 0. If all feature values are evenly occupied, H = Hmax = log 2 N
(i.e., the number of bits allocated to the histogram). Obviously, for H = 0 an image is
ronotonic, but for H = Hmax the image contains the greatest possible variety. For example,
if we count the number of unique adjacent pairs of intensity values an image contains, wC
would find just one unique pair for H = 0. However, we would find, on the average, the
greatest number of unique pairs for an image when H = Hmax. A small value of H indicates
one or more narrow peaks in the feature value histograms, whereas a large value of H in-
dicates a large deviation of the feature values.
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The entropies for the window HW, target HT, and background histograms HB have been
tested. In addition, AH = JHB - HTj has been used as a measure of the difference in the
standard deviation of the background and target histograms. It is worth verifyinq if 'H,
combined with the difference in mean values between the background and target histograms,
can parameterize the segmentability of the image. This appproach is taken in analogy with
the difference in means, and ratio of the standard deviations, completely parameterizing
two Gaussian distributions.

Computer simulations

The utility of the performance measures was tested using synthetic imagery. Two types of
simulations were performed.

Image sequences

Twenty-five sequences, each containing 50 frames, of a Gaussian target moving through a
a Gaussian background were generated on the HP-1000 and viewed on the 12S. ihe target and
background statistics are characterized by the equations

(X-mT)2  (X-mB)

T 1 202 2a2
h - e Tand hB(X) 1 e B (23)V27 aT 2r _B

where X E grey level (it is transformed into the appropriate quantized value J)
MT = the mean grey value of the target

T = the standard deviation of the target grey values

mB the mean grey value of the background
GB = the standard deviation of the background values.

Two parameters were used to characterize the segmentability ot the images. They are

mB - 1 OB

andp= 24)aT OT

Fifteen sequences had unvarying statistics while 10 sequences had either L or p varying from
trame-to-trame. The crudest segmentation procedures were implemented. a was set to u.75 for
all sequences. The maximum likelihood decision criteria was used, i.e., A = 2. No time
series integration to minimize short-term statistical variation was attempted (see Table 1).

TABLE 1. CATALOGUE OF SYNTHETIC IMAGE SEQUENCES
Sequence Mean No. of Grey The Increment The Increment
Number Grey Levels Spanned p in _ per in z per

Level by OT Frame Frame
SEQ 60b 80.0 10.0 3.0 2.0 N N
SEQ 607 80.0 10.0 2.5 1.0 -0.1 N
SEQ 608 127.0 5.0 0.0 10.0 N -0.198
SEQ 609 127.5 5.0 0.0 10.0 N -0.3
SEQ 610 80 10 0 0.1 N N
SEQ 611 80 10 0 0.5 N N

* SEQ 612 80 10 0 i.0 N N
SEQ 613 80 10 0.5 0.1 N N
SEQ 614 80 10 0.5 0.5 N N
SEQ 615 80 10 u.5 1.0 N N
SEQ 616 80 10 1.0 0.1 N N
SEQ 617 80 10 1.0i 0.5 N N
SEQ 618 80 10 1.0 1.0 N N
SEQ 619 80 10 2.0 0.1 N N

* SEQ 620 80 10 2.0 0.5 N N
SEQ 621 80 10 2.0 1.0 N N
SEQ 622 80 10 2.5 0.1 -0.1 N
SEQ 623 80 10 2.5 0.5 -0.1 N
SEQ 624 80 10 2.5 1.0 -0.1 N
SEQ 625 80 10 0 2.0 N -0.0416667
SEQ 626 80 10 0.5 2.0 N -0.0416667
SEQ 627 80 10 1.0 2.0 N -0.0416667
SEQ 628 80 10 2.0 2.0 N -0.0416667
SEQ 629 80 40 0.0 0.1 N N
SEQ 630 80 10 0.0 10.0 N N
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Unitary frames

Single frames were generated on the VAX-780. The target and background statistics were
again Gaussian, but the more general minimum risk rule was applied, i.e., A varied. In
addition, frames which represented the whole range of a values were examined. Analytical
results can be obtained for Gaussian distributions and these are compared with the results
of the simulation. The analytical results can be thought of as the limiting case when the
number of pixels in the image approach infinity. For example, the performance measure
cos e can be expressed analytically in the following manner:

cos e + 2 e /2(l + p (25)

Also, the locations of the decision criteria Jc can be analytically determined. The follow-
ing two cases apply:

1. OT = CB

S-+ ln (1 -a) C (B/T)
c = aC (T/B)

whre =mB -mT
where B =T ,the distance between the two means measured in standard deviations.aT

As a-0, Jc-+- and as a-1, Jc -

2. B  = OT,4-l

- [ 2 *2 + 2( 2 -11 2 ln p(1-aIC(B/T)
L xC (T/B)

J=
c 2

12
The two values of Jc will be Jc and J2

where jl + -+[c2 2-1

j2 = -. L- I '-
c 2

- 1

Jc can have zero, one, or two solutions. Suppose D>l. As a-0 jl. + and J - + that_ c c '

is all !J} are to be labeled "target." As becomes larger, the two values of J. aLroa:h
andt eT1narrows, 2c1

2 and the set JT<Jc . When a reaches a critical value there is one

solution. J. 1 = J = c 2 --. If a becomes larger still, there will be zero solutions and

{J, is labeled "background." Suppose p<l. As -0 there are no solutions and all J .1.<

labeled "target." As a reaches a critical value there will be one solution and *i = 2

As a becomes larger still Jc]<{JB
} -J 2. When i-l all {J} are labeled "background."

The HR and FAR can then be analytically determined using both the decision Jriteril '.. tcd
i- "here and approximations to the Gaussian cumulative distribution function.

Results

The following types of questions have been addressed:

1. How well do the performance measures correlate with the statistics of the imaces?
In our case the statistics are completely specified by :, the difference in the
means, and ;,, the ratio of the variances of the target and backqround histoqrams.

2. How well does each calculated performance measure correlate with the actual perform-
ance of the algorithm? For example, how well does the calculatel hit rate correlate
with the actual hit rate?

3. How large is the range of values that a performance measure takes as a function of
the variation in the statistics of the imaqes?

4. Are any performance measures redundant? That is, are there vairs of performance
measures which correlate well with each other?
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Figures 5 through 9, obtained from the VAX-780 simulations, show the correlation of some
of the performance measures with A and p. Figure 5 illustrates that the Gaussian statistics
can be parameterized by A and p. The legend "infinite (-) pixels" indicates the results were
obtained analytically and are not subject to the statistical fluctuations which occur when
a finite number of pixels are sampled.
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Fig. 5. Gaussian background distributions as a Fig. 6. Unreliability
function of A and p. parameter vs. A.
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Fig. 7. False alarm fraction Fig. 8. Cos e with p varying Fig. 9. Cos e with a vary-
(FAF) vs. A. from 0.1 to 1.0. ing number of

pixels.

To test the performance measures fairly for a finite number of pixels, the image se-

quences which were generated on the HP-1000 were sbjected to two operations. The means
and standard deviations of all performance measures were calculated. These were compared
to the parameters A and P which characterize the segmentability of the images. Each per-
formance measure was calculated in two different ways. One value was obtained by presuming
omniscience. The target and background histograms were obtained by scanning the target and
background domains in the window region. The performance measures obtained in this manner
are the control results. The other value was obtained by assuming the same iqnorance of

the target and background histograms that were obtained for the tracker. hT(J) and hB(,i)

were obtained from hFR(j) and hWR(J) and are test results. The correlation function for
the control and test results of each performance measure over the 50 frames of each se-
quence were calculated. These values are called the self-correlations. The results indi-
Cate that when the performance measures have a high standard deviation, such as those oL-

tained for SEQ 622, the self-correlation is high (see Fig. 10 through 14). Note that the
peaks in cos 0, UPAR and Bays coincide with each other and coincide with the valleys of 11R.

Nute that Bays is less than 0.25 for the entire sequence because , = 0.75. The maximum
likelihood criterion makes it probable that under very poor segmentation conditions when

0 and p , 1, all pixels will be labeled "background" if , , 0.5. Thus, for poor seq-
mentation conditions

BAYS ,( - 'z) for r . 0.5 and BAYS . for t' 0.5
and Bays is therefore in general • 0.5.
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Fig. 13. SEQ 622, Bays. Fig. 14. SEQ 622, Entropy -

HW/(HW)max.

This argument implies that when a > 0.5 the errors tend to be misses rather than false
alarms and vice versa. This may explain the lack of variation in the FAR for most of the
data.

One phenomemon that cannot be explained at present is the coincidence of the peaks of the
entropy in Fig. 14 with the valleys of the HR in Fig. 11. The general trend of the graphs,
as expected, is the same, but the peaks should also coincide.

In summary most of the performance measure appear to be useful. The WSM did poorly and
needs to be dropped or reworked. Cos e and UPAR.are highly correlated and are therefore
redundant. The FAR and FAF vary little due to a > 0.5. Both performance measures need to
be tested further on imagery for which u < 0.5. For such imagery the HR is expected to do-
viate little. Performance measures such as FAR, FAF, and entropy, which have small stand-
ard deviations, can be useful as alarms that indicate a drastic variation in the trackin
condition when they themselves change. Cos 0, Bays, HR, and UPAR appear to be the most
sensitive performance measures.

Figure 15 through 20 are from SEQ 623. Note that the test performance measures at%
more and on the average give a more optimistic estimate than the control. Also note the
high correlation between cos 0 and UPAR illustrated in Fig. 15.

The graphs from SEQ 628 (see Fig. 21 and 22) show that the performance measures are less
sensitive to variations in c than to variations in ... Although the self-correlation is uoor
(0.657 for Fiq. 21), note that the standard deviations are also smaller. Also notc' thit th

sel f-correlations would be(- considerably improved if some type W ,C.,;ni 11 trc
were performed.
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alarm fraction.

SEQ 610 and SEQ 629 have the same values for Aand P. The difference between the se-
quences is that OT spans 10 grey levels for SEQ 610 and 40 grey values for SEQ 629. HW
differs considerably for the two sequences as illustrated in Table 2.
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TABLE 2. NUMBER OF BITS VS. ENTROPY OF WINDOW A comparison of the other performance
Number of SEQ 610 SEQ 629 measures shows that SEQ 629 is more seg-
bits HW/(HW)max HW/(HW)max mentable than SEQ 610. Table 3 illustrates
2 0.05 0.31 the correlation of HW with L and Table 4

3 0.07 0.34 does the same for LH and P. Note the

4 0.29 0.50 variation of HW with Z. in Fig. 23 and note

5 0.32 0.50 the higher average values when compared to

6 0.34 0.56 Fig. 14. Figure 24 illustrates the
correlation between HW and HR.

TABLE 3. ENTROPY OF THE WINDOW TABLE 4. tH VS. r

Sequence HISTOGRAM VS. t,. ,H* Standard Devia-Sequence (maximum entropy=5.0) tion of I.H*Number (MW) max Sequence Cnto

SEQ 110 .1 0.0 .32 Number .. p Experi- Control Experi- Control
SEQ 113 .1 0.5 .21 mental mental
SEQ 116 .1 1.0 .25 SEQ 613 0.5 0.1 2.33 2.35 0.10 0.10
SEQ 119 .1 2.0 .26 SEQ 614 0.5 0.5 0.73 0.86 0.17 0.10

SEQ 111 0.5 0.0 .37 SEQ 615 0.5 1.0 0.35 0.10 0.31 0.07
SEQ 114 0.5 0.5 .37 SEQ 616 1.0 0.1 2.19 2.10 0.10 0.11

SEQ 117 0.5 1.0 .40 SEQ 617 1.0 0.5 0.60 0.85 0.26 0.12
SEQ 120 0.5 2.0 SEQ 618 1.0 1.0 0.34 0.10 0.29 0.07

112 1.0 0.0 SEQ 619 2.0 0.1 2.34 2.34 0.07 0.07
SEQ 115 1.0 0.5 .48 SEQ 620 2.0 0.5 0.53 0.85 0.30 0.10
SEQ 118 1.0 1.0 .50 SEQ 621 2.0 1.0 0.55 0.08 0.42 0.06
SEQ 121 1.0 2.0 .55 1_ _

*Average difference between target and background
entropies, H.

Future research

ENTROPY-HW - Bimodal and trimodal synthe-
HIT RATE tic Gaussian sequences will be

generated and the performance
measures will be tested. The
performance measures will be in-

o tegrated into MFBIT. The calcu-
lation of entropy is computation-
ally costly and a replacement

Z is being sought. A function of
the grey level distribution of

V the histograms which is an ex-
I I tremum is needed when all grey

levels are uniformly occupied.
One possibility being considered

ar jo . ri is
FRAME NUMBER FRAME NUMBER N "

SHIR r h(J) '

Fig. 23. SEQ 624, entropy- Fig. 24. SEQ 607, entropy - J=l
Sh rtwhere h(J)= number of pixels with

grey level J with the proviso
that h(J') = 1 if no pixels occupy grey level J'.- Another possibility is to calculate theaverage absolute deviation of the grey value occupation from a uniform distribution.

Conclusion

It appears that the performance measures cos 0, UPAR, HR, FAR, and Bays are useful
measures for statistical segmentation algorithms. Their validity and reliability have been
proven by computer simulations. The entropy measures may be used to characterize the prob-
ability distribution functions (pdf) in a manner analogous to the characterization of
Gaussian distributions by the mean and standard deviation. The entropy is less sensitive to
variations in the pdf and can be used to signal drastic changes in the imagery. Some of the
performance measures, such as cos e and UPAR, are highly correlated with each other. It is
therefore likely that only a subset of the performance measures will be implemented on
MFBIT.
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