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SOFTWARE AND ITS RELATIONSHIP TO METHODS t

by

Philip E. Gill, Walter Murray,

Michael A. Saunders an,! Margaret 11. Wright

ABSTRACT

One view of numerical software is that it is simply a computer implementation of a known
method. Implicit ill this view is the assumptio n that the flow of information is in one direction

only. lhowevr, (levh)pments in methods and software are intimately related, anid neither is
complete if consi(hred ill isolation. In this paper, we illustrate how the develol)ment of numerical
software has influenced our research in optimization methods.
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* .. 1. Introduction

It is almost a triiusin that an optimization mnethodl cannot be treatedl as practical unless an iinplc-
nientat lol has b~een pro(liced and~ a significanit aniotint, of complutationI performed. Thius, research
on) opt imliiza~ mtio lethd nece i('(ssarily o)verlap~s hetavily withI thle del(lopmen~it of softwatre. Since
tt(' adIvenut of sei(?1 work oil inivri('al software, 1tuutch has been written about tite coliplexi-
tics that ;arisv when t rartsforijg any mtathe mat ic al algorithmn inito atit imiplemen'Itationi (See, e.g.,
(Cody, 1974: (;Ill ('t ail. 1979 ('owell, 1983). Althbough most workers iii (ptiliization are aware

4 ~~of such1 issues'. t lie elffect of impiJlemuen~tation Oil miethods is much less widely understood. Ini fact,
lie relatijoniship bet we it methlods anid software is somnetimes dlescribed'( simplly by defining anl

* impllementtationl as at concret(' realization of it theoretical algorithin.

* ~~~~I our view, this statement dloes tiot iclnile the i(rciail influence that impllemlenltationI iay
have oii ItheoretiHal algoritlns. hImplemnentat ion liiist always b~e considered by the algorithmn
designer in the sIense that the( steps of at thieoret ica;l meHthod shiould( be implemnentable. However,
our experience suiggest s that implementation has a miuchl muore substantive effect onl mlethods5. This
paper accordiiigly develops the thenme that software creates new inetho(s, atit that a miethiod call
be produtced in its miost efrfect ive foriut only in conijunction with at careful inplveniitation. it ordler
to avoidi vaguie gener-alit H's, our own experiences with specific issues will be cited to illustrate the
So)l(tt hues slubtle interconnectiHons that can occur. Thus, we shall de'scrib~e the( evolution of certain
methods ats a result, of imlenmentation.

Inijtializationl and1 commnuriication are two critical areas in which the process of iiulenenta-
tioni iniies aill algorit bun. lit describing the coipuitat ion associated with an algorithmn, thle
biasic iterat ion is usujally tite maini cotic('u'l. Ini iinpleunenting a nmet hod, however, initialization
is crucial miot only tIllo couniplitat ionl that uttaut be performed to initiate ilhe method, but also
the( infroriatinn that is vontumticiated-( to an~d fronm tite algorithmrt. Ini our experience, the na-
tiire, co st amid( diffiilt y of iinit jalizat ii p~rocedures mlay lie obscuretl by tie( p~urely miathem~atica~l
descript it ) of art algit liii . Fairt Ieiv-mrc ti( relpres('tttat jol of lit e 61formnat ion needed by ani
algorithiir e.g.. ;k part iriar miatrnix fact orizat ion is ofteni left tiutlelitted until required iby an
itlipjaliit'ation. This ;ltter teitderiy onictt imt-; lead to a suirprisingjly optimist ic belief ii "black
box- soft ware; we shall Ilrscribt' several examitples inl whtih th li' t5( of "tdf-t he-slf" codles in a

* . to~~~CMtph'x algolnitlhin it rla-0ices Slilt), 'aili1 ial telhicieticies because of poor coutimuttmct oll bet.weeni
st ft ware mioilets.

A -(,tfill imiplt'ntentat jolt also ilhlnitnates quest ions of detail that are typically igniored inii
purely I ictoret ical settIing. lin t he analysis of algorit h11u1s, a -good- proof sholid have the Widest

* possibile appjlicat ion anil gciicralit y. hit ori(' rtIo facilitatev the( cotist run- ion of 511(11 proofs, met( htods
are oft (-it tc'srnibed wit It a rttlltlarahbh' level of abstraction. For ('xampicl(, theioret ical devscriptions
of a -v-set nloilhatear ptorlitn til t dws typ~ically t n'at linear midt niduiiiear rtttist raiiits 5 ii

* .a liutift in way. ( ollst'tltltl1Y. it i., not always apltrciat et that1 siibSt atitial iluprovelnetits ill
per'norimtutr(' ran ret'sult whwi algorit Itills e'xplotit tll d~tilrt'rt'itt prmrovi'rt is of linecar mit onlinear
cIlist tainits. Tll.t Stope fqor iittrt'amttl elhiittliry is ttit r4st rii i't) tosaviligs slith as LVtiitliilg the

0 ~~~~re'(omlptiatoi 1(11 f gnat int s 1(i- I ait'a (tist ratii. Limt(ar roust railit i~ hav lt' imllmil it lprtp'rt y
that. front anly iiolt-o ipt il1al feasipIht poit. directions (-aut he gelterat ci alotig which t here must
e'xist irit (rvals t f ft'asi I te pt nits. This fin o)(rty allows i lie devt'loltlit of mei(t hods t hat always
retaini fe-asibility, with It ut 1it't to fi t liitear cotistraitits. F'or such iin1d't il, the( path to the( solution
atild Iltiltl( 1flibcr t4 iten;Lt ilts tlnd to difft'r tomiptely front tose of mltlots that ignore linearity.

* ~~~rhiw maty wml-( ii ils o('l('.t of sep~arate ('treahi('mt oif linevar andh uioiliuear e nist raits will be a
rev'irt't top~ic ill tltis paper.
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2. Background on quadratic and nonlinear programming

2.1. Quadratic programming. Many of our examples will be drawn from a relatively simple
ol)tilnization probleni - quadratic progranining (QP):

ininize cTx + !xTHx

subject to e < < U,

where H is synmetric. The constraints involving the miatrix A will be ('alled the general con-
straints; the remaining constraints will be called lonUds. Ali equality (constraint correspouds to
setting fj u . Similarly, a special "infinite" value for e, or u, is used to indicate the absence of
one of tie bounds.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we
shall always consider a typical iteration and avoid reference to the index of the iteration.) Each
new iterate Y is defined by

x £ + ap, (1)

where the step length (a is a non-negative scalar, and p is called the search direction.
Throughout this paper, we shall consider otily a particular active-set fe ,'ible-point nethod

4 for quadratic )rogralning (see Gill et al.. 198 4Ia). An important feature of the inethod is that,
o!('e any iterate is feasible, all subsequ(ent iterates reinain feasible.

The essence of the method is the definition of a working set of constraints (general and
bond) that are satislied exactly at x. The search direction is constructed so that the constraints
in the working set remain njaltered for any vahe of the ste1 ) length. For a bound constraint in
the, working set. this property is achieved by setting the corresponding component of the search
dire(ction to zero. Thus, ti associat(ed variable is fixed, and s)ecification of t( working set
iuh-duces a 1)artition of x into i.x(d awl free variables. During a given iteration, the fixed variables
are, ,ifectively retnoved front the lprol)h(w: since the r(levant cmi)onents of the search direction
ar(, zero. th( colhiums of .4 'orrisp oling to fixt'd variables may be ignored.

Let n denote the nviiiiber of general 'onstraints in the working set and let nF, denote the
11initer of free vriabhls. Let C (hemot e tlie in x n,., suldiatrix of general constraints in the
working ,,et correspoudiing to the free variahles, and let p (eui,t vI te search direction with respect
to the fre variables only. The general coitstraints in tie working set, will I(' unaltered by any
TuioV along p if

Cp = 0. (2)

Ii order to conj)ute p, the TQ factorizatioiu of C is used:

CQ 7- ( O T ),(3)

where T is an i x i rewrse-triai, tlar talrix (i.e., t,j -- 0 if i I j < rri), and the imio-singular
ii;L1 ,'ix Q is I le 11414'41l4t (if cither orthgotiau or ( it- sf ilizv d elhc ',ieutiury traisforiiuatioin (se (ill et
atl., 198.1c'). I 1his im)ajc. we' -oi.idcr ojily tiw c'asc wherv, Q is orlthogoi. If 7' is nion-sinlgilar
Atlll ti, vlihllllS of Q are' I)arlitiotwed so that

Q 7,( Y ),(4)

where Y is n,.,, x m, then the (nn, n) (cohimns of Z form a basis for the mtill sl)We of C. Thus,
' will satisfy (2) only if

p' Zp,,(5

2
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for somie vector p..
The definition of p, in (5) depends onl whether thc current point is feasible. If itot, p, is

taken as - ZT q, where q is the gradient of the cuirrent sum of infeasibilities with respect to the
free variables. Otherwise, p, is the solution of

RRp;2  ZTq,()

where R,~ is upper triangular and~ q is the gradient of the quadratic object ive fuiictioTi with respect
to thle free variables. The Cliolesky fact or R,~ is closely related to the projection of the Hlessiani
mautrix (with respect to the free variables) into the subspace defined by Z.

At each iteration. the working- set is changed b~y add(ing or deleting constraints. Each change
in t he workinig set leads to a siiiple clange to (C: if thle status of at general conistrainit chaliges,
at row (if C is altered; if a bound conist raint enlters or leaves the working set, at column of C
cliawwgs. The iiiet 110( recuirs exJplicit represent ations of T, Q, R, and (q, (the vector QTq, where
q (--z c f- Hxr) is the gradient of the qua1idratic objective fiiictioii).

2.2. Nonlinear programming. The second problemt to be discussed is the nonlinear program-
miing proiblemi:

NP mjinimuize F(x)

subhjvct to i A,x U,

where F(zT) (the objective function) is at smooth nonlinear function, A& is a constant matrix of
* linear conist rainits, andl ((x) is at vector of smooth nonlinear constraint functions. Notec that simple

I~miols and linear constraints are irepresent'( separately front nonilinevar constraints.
It is widely romisider(l todlay that. sequential quadratic pro~graminiig (SQP) methods are

lhe mos~t ('fect ivi goereml techiqules for treating constraint nonilimiearities. The idlea of solving
imiiear programs by a sequience of qpuadratic progranmming stimprohleiis was first, suggestedl ly
WVilsonl (1063). SQ1P licut hods1 were popularized iiiaiiuly by B~iggs ( 1972), im (1976) and Powell

* ~(1977). (A b rief hist ory of SQl' iiietods; and an 'XteV 1 i bibliography are given in Gill, Murray
;uol WrighT . 1981. For at stirvey oif recent re(sults and references, see Powell, 1983.)

TI te Imisic st ritctire of an SQPl m et lio( inivo lves miajor andti~nnor ite(rat ions. Associated withI
e11l iuajmr itecrat i(Ou are a search (lirectm inp, a Se't of 11111lt ipliers It For t It( wiioiiiear constraints,

AUif I a workiiig set of iiohiiiie-;Lr (-()list rajiti s (a pre fic tion oft t(i coiust raiiuts t hiat ie- sat isfied exact ly
at thle 5( ili ti(ii). In the met In ols coulihh 'ed ini this paper, all of thlese qlalit it i(' are coumuliited(
fromu a qjuadLrat ic prograuuuiiig siul~urobl'm. The vector p) of (1) is the solution it self, it is the
Lagrauug( ii itplicr vctor. from t lie Ql, sihprohlemu, and the "nouuliticar" working set is the final
actiVe set of thle suibprouleii. Sinlce sol vinug sutch a Subproblein is itself ani iterative proceduhtre, the-

* l~ii(ir iteratioiis of an SQP i met hod are.( thlose of t he QP muethod.
T Ic Q P' siprobhhl 11 is (eijiletd by a so t of ine ar cotist ral 11t s and a (11 ladIrat ic objec t iVe' funlct ionl.

I I )(IstI S QPIi iuie liod, v th line ar cm Ist r.aii111s ()I te cStI I W4prol1d1ii are li I ariz ion ofi~ I li or114 1igi Il
ii (iit raiii ll abliit tO lie tuuircuit piit . III ordlrto If 1aili rapid couiverl't-mice. IIe( obJect iv' fimictioui

(PC t Iii sili~pioldiluist appro'ixiliat e thle Lagiauugiaui funiction. Each miajor ii (rat ion t l11s includes
K ~~~a Iuiadlrat i( programiiiing sublprobil(em of the forim

mililnze T + I ~
iiiiiui( P 2 pi

pp

slibject to < & !5

AI



where g is the' gradient of F at x, the miatrix HI is anl approxijuat lol to the( Hessian of the
* Lagraian function, and A, is the Jacobian miatrix 'of c(x) evaluate'd at x. Lct e in NP be

p~art it jolle( into three sections e, IFe, ani f,\ - ('orres~)onding to tite hound, linear and
rionliznear constraints. Thew vector fis similarly Ipartitioned, anf(l is dlefinled as

P11 :_el)- X, PL - _eL - A~, and~ eN:I-e c,

jwhere c is the( vector of nionliniear conistrain~ts evaluiated at x. The vector t is defined inl an
auiaio-gous fashion.

Ilavigl obtillell 1). the' major itcratioli lroceds by det ermning at steplengthl a in (1) that
* p~1ro(hllces a -suficienlt decreasc- inl 501111' nwrit filinctiou) (a 'omblinlat ion of the objective and

const rainit functions t hat niwasm irs progress toward tite solution).
Because exact second( derivatives may be unavailable' iii practice. mxost work on SQP methods

has 'lulceit rated oil thli case ill which the( iliat rix H iii tie( sutbproblemi is a positive-fle finite
(jlasi-Ncwtou appIroxiilatioul to tilie llessiaii of the Lagrangiaii function. (For a review of quasi-
Newt oni methlodls, see Dennis awd Scltiahel, 1983.) After 4. has been obtained, the( new Hessian

appjro Xi lliLt ii 1u is t yl icallV ll('lin ed ats a low-rank mod' ificat ion of the old, so that the Hessian
miatrices of 51lcccssiv( ()tiaduraLVi( p~rogramnh lg- silIbproI'lemus are related i a special way~ (see

p Sect ion 6). With ite BFGS uipdat e, for example. the new niatrix 11 is given by

IfHsTI +T-fle (7)

where q-- x - x (the change in x), and Ye is the( difference inl gradhents of the Lagrangian function,

ye e -ge ~ -4A - (g - A

whe(re A ;tit(l A are Lagrange' umhtipJier estimnates at the new and 01(1 poinlts. Ili most SQP mtethods,
b othI A atll A JLit-( set to it, thle muilltiplhiers of tie( latest suibprolem.

It sn hihi he clear froiii tiev above descritiont that atii SQ1P miethod0( is inherently ('oliplvx. Any
* illdeullviltatl 1(f' atii SQl) jiet hod nulist iiichuide: (1) the Solut ion of a (Imtla~litic prograttinurig

sutpOblemu (withi sonie provisiou for thle treat itiii of inlconistenlt conist rainuts); (2) deinition of

4 111Vrit fiutuCt ion: ;ill (3) sj(ieciiat jolt Of the HeSSian.

p3. Finding art initial feasible point

As at b ri('f exam ie1 ~f' flow ali aigllrit Iiin (lescriptfiolln 1wti benisicaoling with respec4t to the efliciency
('f till' illJII('Ilelltat lll conisid1er all SQP iie110(o ill wich- a slI-callell two-j1llase (p~rimnal) quiadratic

pro''I';ilulillg Illet 11(14 is 1sv41 to solve tite 511yb1)'ldell. The1 two phlases al*.(.: lilliug aul inlitial

l I mIitllf by liuillitli'/ilg (he S1111i or illfasibihit les (thec feasilrity Y lhldsc), anld illimtlinug

p ~~Illr l;Lkrat ic betv Funuctioll ill tilc f(';sjbb' region (I he Q11' phIase). Whlenl describinig such
ll 11(14(1. it Is (I~ulv'li(lt to State( siuuiJOy that, all init ial feasible poiuit. uiuuist. he founid by a
1ase- Ip edir (tli' pre-(sent auit hors hlave dlone so1 mlany Otiies!). Ui fort imat ely, t his foriri

4 d ilsc ri ptio m111 ay lbe ( wroiigly ) interpreted as imiplying t hat. a "lblack box" phase- I simplex
ilicr 1prllgralllillg ;roccllurc should Ill' in~vokedl before the( QIP lplase. If so, seriouls ilhiccy

((11 r-sidt if 'everal si llillvlX ite(rat ions were reluirecl ill ordler to 1111(1 a fea;Sible' )oillt (since a

vcrt Ix sol itin oi '~ld needI to lbe created'(): stanudard linear 1)rogI'a~linig soft ware is also highly
111111kely to produice tlie factorizat ions needled tI iiiiatedt 14 Q Pphiase. Couiseoieit ly, atIwo-phiase

4



quadratic programnming method might be considered as ineffective simply biecause of a lack of
,et ail ili specifying the initialization procedure.

)n tile contrary, the proper impnlementation of a two-phase quadratic progralming method
-114)111(1 rl't tile essential sameness of the linear algebraic conllmutations associatcd ' wit h iterations
ini both tie Iteasilhility and QP phases , particilar, cach iteration ilvolves al Ud)ate of the TQ
,wtorizat ion of the working set. It is typical for the sulbproblems in later major itera ions of an
S.21) iithod to reach o)ptiniality in a single, iteration bmeallse tile, optimal a('tivw set is available

-fi'(' solviiig tile suproblem. In this case, the phase-I procedure merely perfoirms a feasibility
,kc,')k that would be re(lliired in any case.

In our implenentation. teie computations in both phases are performed by exactly the same
1)411 ris. Te two-piase nature of the algorithm is reflected by chan-ging the fumction being

ri imiz'd from the sum of infiasibilitics to the quadratic objective fmiction. The feasibility phase
oI,),s ht perform tile standard simplex method (i.e., it does not find a vertex), and requires no

:,4l4iti mial work in the later iterations of an SQP method.

4. Factorization of the working set

'hc (pladratic programnning method of Section 2.1 requires an explicit matrix Q in order to
'4,,,ri ipdates to tile working set. Ili this section, we consider tile evolution of a (Iladratic
r),.raimniinig method with respect to its computation of the initial Q.

As iiientincd previously, the active set of each subproblem in an SQP method eventually
",,,c,(lies the active set of the nonlinear problemi. Since the iterations in a QP met hod are directled

,irely toward finding the active set, it woild appear that a good initial estimate of the active
-(4i ,l pcrmit later subproblems to reach optimality in only one iteration.
(hir first idea alomg thes, lim's was to incluhe a "warm start" option ini the QP method,

Iv,. t, spcify the dcsire(d iiit ial working set as input to the feasilility phase (foir details, see
;ill ct al.. 1985a). Hey d adding this opt ion, however, the original imuplennt.ation retained in

"WIC pail Hie philosophy that tie (vclitilal SQP miethod should utilize as much as possible an
,j-tlh,,-sllf ve'rsion Of the ipuadralic prograimming miiethod discu|ssed in Section 2.1.

(m)iltation of liic TQ factorizalion associated with a specified working set iiay be viewed
't- )lI; li l 'xistilig factOrization as nlew rows are ahhdedl iin le last position. Assumne that
i I, TQ Lt hwizafim (3) Of (" is avail;li('. ald co|Isider (lhe matrix (, which is C aumgnuinntd by
!1w row ('7. Then

,:r Q 0=  T8
cQ (Q T sT tT (8)

, %'r .r and I arc liet r('hevaiit part itiotis (If QTc. Let 0 deinote a homscholder iat rix of the form

1 T
-- -- uu ,

:;,r' t l v'oo it it and ..calar /1 are chOseit to atinihilal c all bIt t hc last d'chieit of qs, and to leave'
it l hcd. (lOr dltails If how tlese quantities arc dli'ed, sce Stewa't, 97'.) Theni

T : 0 0, Tt; 7)t (9)

7Q (0 T),

5(



where Q QQ.
III at genecral-purlpose QP algorithmn, the initial TQ factorization of C would probably be

coliipite(I by the so-calledI -Stanclardl procedulrv. which can he iiiterpre . aS versioni of (8) and
(9) lit winchi tie( ro ws of C are add(ed to thle iwill mat rix one by one. The iniitijal Q nmatrix is taken as
lhe idlent it y. anid t ie( initial T is the ill mnat rix. While comp~uting tie( facto)rizatijon, tite sequence

01 Ilmi1s ioler t ratisl'( rmiat1011 is sto( red l i (onipJa('t form (i.e.. Q is iiot st orce xpil icitly); the
vcct or cTQ li''hee ill (8) is (lit aii(d bly applyiii g tie( sequenice of stored t rainsform iations1. Onice the
i iit ial factorizatloln Imis b~een compilleted. ti( lie cessary explicit imaitrix Q i5 olt aineol by miuilt iplying
Ih comp11i~act I Ioiiseliol(er t raiisforiitjolis t oget her iii reverse ordler.

A shift in perspective occurs whn this comiputation is performed wit hiniii anSQP method0(
tl~l olt( a p~robleml that conit ains 1)0th linear ;tit(] nionlinear conist raint s. (We shiall utse the terti

litivar row to dlenote a row (of the working set associated with a linear cnist rainit iii the( original
problhemi. andt simuilarly for nilinecir row.) Since the rows of A, are tie( sam ie iii each stibprohlein,A
it secius highly desirable to avoid recfactorizat ion of linear rows. We eli ij asi', t hat by conisiderinig
this po ssil-ili ty. we have alrecady (deviat ed froni seeking at g('iiral-pirpose quiadrat ic programiiing
c ele. whnich is mil ikely to maike dlist itict jolis bet weemi ro1w types. Hence, to take advanitage of the
presemice oif linear const rainits. a lieore specialized QP method(1( iiiist be dlevised.

Eveni if tie( Q P net hod calli (list iigiiish amiong rows, it is still not st raighitforward toI exploit
(',Ilstraiiit linvaritii'- iiillliplit iii"' thle initial TQ factorizat ion. Ili order for t lie same houiseholder
ranisfoIrmiat ions to b~e used again. tie( order oIf the( rows must remain mincliangeo. However, the

omde1r (If t lie rows, Ii thle filnal C is (leteriied by the ordler iii which coiist rainits enter or leave the
wI rkinig sct oliiriiig tIll' ite(rationls (If thle (pumadrat ic Tpr(gramiiin, method1(1. If thle const raints of the
ii' hili hear prob1le'm arce ordered so that tie( linear const raitts precede thle tilolinvllar constraints, and
if ci st raiias are always add~edl to the iinit ial working set imi order. we ('all (let erlinil iii the major
it erat ion hlow iialy roiws (If C have niot cliamiged sinice the( lpreviotis stibproleiii. Ideally, time, part
iof thle TQ lict oriatio01 correcspo( In lig to th limiiliaiiged linear rows hieeh n ot be' recomiputed. In
pairt iimlar. if the( first m, rows of C are linear. thle imll~eimenit at ion shjoild be able to uitilize the first

m, lomisvelolIhr t raiisfOriiatiells fronti Olie iiiit ial TQ facto(rizatio loll(f I lie precvioms sublproblemn
l'v4,ut nal ly. as tihe' SQ1 i~ te(rates coniverge. thle act ive set will inoit cliauige ll'tweeni sutbprolecxns,

anid a~ll the housewholder traiisformiatiomis correspondiiig to linevar roIws can bev savedl.

I Uifort iiiately. t his ailil is ext reiniely (liflicillt to achieve Within anl iiiileIuttl 11onl that, uses

flie st aiillaril lroceullire to obt aiii thle Iniit ial 'Q facto(riyzat io. lie explicit Q fiomnt thli previous

siibprolliii does not allow recillist riuct iou of the lloiiseliolder traiisforn.it ions front which it wasI
(IipIiti'(l. TIlerefore. iii o~rder tol avoid recfact orizilig the( linear' rows, the Q 1 iiiet hod would have
toI !save the( compilact tralisformiatitols correspominlg to tlle iiiear conist rainits at thle ieginiiuiig of

ie( iiiit ial working set. Eveii I lien, the saveul comitpict traiisforiiat ions wolil be (If no utse if just
(1)1 homid hade chiaiigeul sI atils dhiring thle QP itertions11. (Tlhe comiiidiiisioii (If C2 chiainges
whieni thle s(et (I free VihLblies is alItered.)

Alt)(1,10 1i11gi IllAYiS is (is(Iulraglil, we jlersist('( ill t rying to 'xlli (((lstrajint linearities

imiler If linear cmuist raili iiih Illld ons. 'I'hic(' rsult Was to (liaullg' tge d('clihit of11 both 1 (1Ii t QP
;IIIh tie( SQl1 inct iods. Hat her thanL~ attempijt tol lijie soic~I way For tIll' (hladrlr~tic prougrammliing

icie luu l o(ist iigiisli ;Lillig. low types. clollipiultat ilh of th lint ial R2 fact orizat ill wats rciiiovedl
fronii the( Q11 mlilol p~roper to( I li(' lhi4]( it('iiit on, which uiit mirally" ha.s access to inifolrmation

;Lluut whichi const raiints are linear anid iioiiimear. A im o'((ssary'1 (oise(piie was t hat t lie qpuadratic

jlr(Igralliiiii iiio'tlld twist iidell a hot start option11. ill Which tie( imijumit plallieters of the

qulad~rat ic programl ilichidl( not1 onlly th Il'Spec'ificatio 1(1(f I working se., liit also its associateo 7'Q



fat( t orizat ion.

lIn a(Iflit ioul to this ('lialige III struicture of' the tliadrlti(' progranining mnethiod, I hc Jroceduire
tr oiip iitiig the iiiitijal factorizationi wats CliaIgC(. In the iipiltiiig znetlJodl the explicit miatrix

Q froni the previns stib prohlein is t aken as,, tho initial mnatrix Q inl (8). Ili coiitrast to tile
st aL i~lard lin icediire. where thle initial Q is takent as the idlentity initrix. this iieaiis that each
new ro w ii iist lie I raisfi rni c(l lby a fiill oirthiogonal niatrix rather thban a sequence of llonselioldler

'r;OluSforiiiat ions. aulo that e'ach llouzselohler trauisforniatjoni must lbe iiltilied into Q after the
c(orci'sIiouiiliuig row has beni traiisforie(l. The benefit frouin this p~roce&hrv with respect. to linear
ri Iws of C 'is that thli fitial iiat rix Q frou n tw li lreviolis snipoblein atitoiiat ically tranisforms the
ni it bLI Cl iii~t auit rows of C7 iit( reversc-i rianguilar forin (regardless of any (11an ges that occuirre1
ill tilie statuis of hounid .onlstrainlts). Thuis. no work is requiired to ob)tain the first rio, rows of T.

Thiis exauIil)le, of thle shift in a1 mieth11(1 becaulse of imlplenlienitat ion is ighily relevant 1)ecalise
of hie -oiuiplex issuies that led to ouir choicev of tile tiI)(lat ing inet 110(. It should bie ('mIphiasizc(1
that thle uipdating nietliod canII he less expensive than the coiiilination of the standard niethlod

withl the sp~ecial foriiiat ion of Q, depending 01n the nuiber of linear rows. (For detailed operation
(*oiits, see Gill e't .'Il., 1985b.)

5. The initial projected Hessian for indefinite quadratic programs

)uir quiadratic prograiiiimg algorithin does niot reluire HI to he piositive definite, anll hence muist
allow f( possiIbhe indlefiiteness andl singularity of the p~rojected Hecssiami in the QP phlase. (Tile
(piiallratic prograniiimig stiilprolemiis inl an SQl' niethod inay be inideinite when exact second
(herivat ives are 115(11 to (lile the Ilessiaii.) The treatmiieuit of ind~efiniiteness (lpids critically
onl the resuilt that, if thle iiitial p)rojectell Ilessiaxi is p)ositive definite, the I)roject('(lHessian can
tcrafteri becomie juid(-tinjte (111)3 when it con.Ara izit is deletedl fromn the working set (see Gill

am id Mi rray. 1978). This pri pert y iinlj)lics t hat inidefiniteniess ca;n lbe (-oiti'ollvd exlicitly, and
prrriiit s a iiiimirically stable (liolesky factorization to be IisCe iii solving (6) for p~, even whexi
Ii i he ivrjil t ('(I Ilesslill is iiiletinuit e. (For (letails. see ( i11 ando Muriray, 1978. and Gill etI al.., 1085a.)

Inl all imnlemiextat ion. thle iiiiiLiZillionl Jrocedlure imist therefore (teriii alpositive-delinite
inr~c Ii 'iteI I lis'siami Ilo w cali I lhis be achiieved l most eectivi'ly? We coiisi(ler several strategies for

imuitializitig te( I)oji'cti'l hleSSi;uil. all1 Of which are' baJsed oi the observation that thie lirojecteil
lbs-siai iiiat nix will b In'psitive dlefimiite if i'ioiigli conist rainuts are iiclidl(il i thle initial workiig set.
(The' 11imll mat ix is Jiosit ive ibliiiite by (b'jiiuitioli, ,oi'respoinliiig to the (' (' whli (C (oitailis 7 1

FH

ti inst raimit s.) TIhiis siuggests soniliow adida1ng conustrints to tli( working set to iake the projectedI
I 'ssiami jiosit ive (definilte.

Tlhue first strategy (heals with inle~hfiniut eiiss thlrouigl tble initializat ion of the feasibility Jllase.
'Thle initial workiing set ill thle lplasi'- I lirlceiure is -omistnic ted to 'oiitain 74A, co nstrainits (i.e.,
to decline a virtex) by aiuguuiemitiiig I lie -uiatnuraP' workinig set ([lie ('(11151raiuits exactly or nearly
sal isliedtl t lie start ig poit) with Ii siialei iiluluilber of "tenuplorary" bluiiiis, each uif which hias
lihe Orcc(t ot* te~liumoan-Ily fixinig aI varialb at its, ctirr'itl value. Silwice1 I lPase- I proceduire is

'itiiMbIit to t4 lie SiIiilib'Xme blvlool if started aIt a Vertex. Ow lifinakl workingj set of' t h(, fcasiliility
1;lihia' will also lie a ve-rte-x. Ifeiwe. the inlitial 2 oif the QI' phlase will be' null1, and the pirojectedl
I lessiaii will he (trivially) jiosit ive definite.

,A ,co:-ond opt i in is to c-arry iiit aI phase- I hirocedunre t hat do~es not requiire c-reaioi of a vertex,
and( to forml thle pnoiected hlessiaui as soon ias a feasibile 1 ~iiirt is fouIuid. u sing t lie' filial Z of the
fe;tsib i lity pl ase. If iliideli lil t eness is detcted while perforuiiig tlie ( in dsky fact orizat ion of the
p~rojec(tedI Ilessiami, t lie ciiureitl p~oint can be ma1.de into aI "ve'rtex" by aldig, tenuili~irary honds S
as desc-ribed above, along, witli iiijlatiuig the 'PQ factorizationm.



Wih either Oif thiese' techiqutpes. thlo working set for t lie iniitial (ltiatrat ic p~rogrammling itera-

tion is given by the square iiiatrix

E (10)

w here E iniic s roIws of the iit it y mattrix corresponiding to t lie tveinpi wary bomids. In slibse-
(pliit iteratibus, a temp~jorary bound1( is treated as at standard constraint until it, i5 deletodt fromn

lhe Working set. Ini which (as' it will ne~ver be addied againi.

Becaiise t hicr( se('iid( to beI no ablsolute t lieoretical gromuids, for chioosinig between tire above

ap~proaclhes. our init ial impilietittion of' d ie quiadratic programiniig algorith huiilsed1 the first
si ratcegy. for tw 1i rasolis. W lieuit )liiut ing thle TQ fact orizat ion fron scratchl. addinig b~ounlds is

free". aidIi te si/ze of t he' first IQ f*'act ( izat ionu t mUust be comunt ed decreases as mioIre bounds

aire inch led in t ie iiutial wo rkinig set (for detailed analysis (If thle operations requiired, s('e Grill et

al. 981.r). ct oiifl it iii" H it' i lit iad IQ factoizationl of phaise' I is cli('aIper withI thei first strategy.
Flirt Ihorn to re. tie sct it ;q a r I t)ac 1i ha; s t lo'v disaolvanitage, t I kilt all t ie w( Irk of t lie init ial CI iolesky
fattoriza~tioni in thle (1' phase nliilit lbe wast ed, ilepelildiig oil t lie (unknown) p~roblabilit y tw '-,
pro ji'ftc ('f vtssial i i s Sitive defiit it(at tilie first feasile point.

Thel( reslultinug iIciettat ion of t lie initializat ion performned exactly as iiitend(('(. /cver, a
c'ltose analysis oif the It tuiplitat 1111 associated1 withi each quadrat ic jlr(gril.ullniilIg siibprohiin within
anu SQP i nctliod reveah 'd t I at tlIic treat ion of a temporary vertex at tb he egiiiig of' plias( A

less t han sat isfacto(ry IToI set' Why. a155111111 t hat the it' 0t ial pro *jected Hlessiani is positive dchnite.
Ini this case. ea1ch ttf tilie tt'Iifpr;Lry bound~its iiiii-t I)e deleted inl turn. followed b~y iniliiuization
(If t lie quiLdrat ic funict ion wit lii aL Slillslac of iiicre;ased dimlenision; the effect otf these moves

is imuplitcitly tot clOmilte thle ( liofesky factr (If thit prtjeccteth llessian by rows. In Ilii' extreme

CaLse tf a qtjtar;ti c Jtritgr.Lini wth ani iiicoiist raiii'o so~lut ion. thle wtork rt'qlliredl tot optimuize the
t1 ,iadrat it furlict ioi (IiIt 1;t lliftI rtry iiaiiifttlds is molre than twice thec wotrk r((hirvdt to compuite

lie it x ri. ( litdesk 'v factor dirct hy.

Aft foiigli one' inighli anirui' litit a so tcissftil ;ifgorit bi should nolt htt' distor'ted to cater for
this special cast'4. ft nt I 'rl cxall i tt it n rveah't t fiat iniiicnoy wtilt bet t lie rul' rather than
lie ece-pt itu. As tni SQl1 

litt ittd prtoceetds. thec actilvt sets (if (21' si 1 1)robileiris in later major
if C'ratiollS ltecoHIte fit(' SILIJII' t I' seO(f ('()list r',illt 5 act Ive attshit itlicsl o tof ft( O'uriginalif monufininr

prblem tht'in f see lttl (stll. 9711. ft u a p~rtttf). jfii'r(fOre. wfit'i so lvinhg t itt scelfteice of quladratic

protgrrtIls thfat alise w~tit iiall SQl' u1tt'tliotl lltreisa iigIli firoblabllt I fiat the active set frotix (li

if lqrtftf'ui isafsttlie ttrrt'ft aft ivi' 5t Forl tilt'li('Xt l tn hi1sc((Iitt'Xt tfic'iiiit ial pII't~cct('( Hevssian
is fikly to Ito fttsit ivt' thefinit. ani cleat ilg t l itllpoftlrr vt'rtt'x is tilitcessary. Wlien tle initial
wori-ill' Set ftIatpt'is to b pt Iillif. Iht fp'tlfSs tlf creat ing antltiit t'iilating I to templforary

ltototl (s rt'tlirts hqlptitoxilAtt'VY twit' V tf11C wtrIk that wttut ltei ( II'tfiir'ed t o ttlfllfI ct to ('hCIiolesky
f;t14 I,[ Irtcti V. fl11-1rt 'rort' totitt iti it a llehtr Iitial TIQ fat rii~at lol OWitlli tc'liflt trary hounds

tft4,4" hlt~ Itad to t 01ti~''tl11I iVIle" (If Wttrk., Siiitt' tI ftt' fattttat it 01 1111A evt'uitu1ahy In' lljdttfit't to
ftcr I tIhv11,4, l idt (Itt he 1011 ('tt'c saly hounids.

adi- .i. IlliftlY !'t it'il (tmll tr.Ll as t(5 t' Iary to cttnstire ai ptt ~ttve-t ifillit t'prop'ct etlI lssiali, huit

t ollipittad t i flr(tcc -i''t> thlt At tHit hl'glit(t I t (2f' pttst', thec wttrkiiijg se't C' anid its TQ

f,-worlzato (3~) art' atvulallft. 'Ilt' miat rix Tji1 / -oo'.;it lt ( 'hith'sky flrot'vtlle with
syitf trnc uittcrthlingts is, illiltiatutdl. Iboaf~ I t fat t iI 'I t liels ky flrtltclII r( wit fit lit iit lianiges
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will ire;Lk t )w ii if tiit( mat rix i, i iot posit iv Vt'tltiiitc. However, b~y jtrflorli g interchaniges (suich
that tlit( it 1 iii ii withI large-slt m Itlivc d iagonual elenliciit is lrocesscl niext at (-aei stetp), we canl
lemlitifY tlht largest jIts.'ilIl pitsitive-(l~iiiito p rinicipl~ moinor.

III ;dellritic tteiii5. itssii llat; it 11fhtaItjll iiat rix P has lwe,(Ii tlitisci so that the uppeitr

h-f sil iiatFiX(4f)T ~i I~isptisiIiVt'tlljjit(.I f tllkc h cohiinis o)f ZPJ are part itionied ais

'I, X ) iie that ZTiizI is )()SitiVe tlthjijite, i.e.,

A *xllrkiig-It mfl)r wicht /I dilic.5 tlic !hull spiace cani lie oltji-I y iieiligth( r-OWS )f ZT as

TcmpitjIr Lrv -,'IIril t(ItiIstraLiiit s After P' is dletermlinedl (by fte( .iolesky p~roceduhre-), the collillilis
-If Z aLrt I--rdIlrell (i.e.. Z i., repllaccdI by ZIP): note that the propert ies of Z &ts a basis for the miill

pc ()f C are, IlLfeltet by its lollillin i lriilg. The minimiizationi of' tHe qluiadat'- fiimictioni
bIc Irel I tIS Wt 0I1111 t IeI ,Ilbslpacc-( I ledW by Z1

tI ditiiiss linre onII, iyt( icase wliit Q is orthiogonial. (For diet ails about ft(i case when Q) is a
;)rtitlIct of 0railizedt e~lun-tltary t rairfrmiiatiomis, see Gill ei id., 1985a.) In contrast to (1(1), the
I t'lipmltriily a gmicintc (-lwIorking set is giVeli b~y

i that 7) will satisfy CIO - (I and Zf T fl. y decfinitioi oif thec T4) factorizatioin, C aIutomlatically
-,tri~is fill, folIlowing.:

xx Q7)4 z~(T )ZI Z2  Y )( 0 ) t

v. I-re

T 0z T)

L1111 t licil t lit' TQ f thii t itn t o(f (11) is free.
Thli iltc Iltll I t tll tl t) Ow, pfircIIIII- invtilvc.s st'vtral stilt)]Ic points. 'Fit' 1mat 1iix Z2 1ie"A

t- kt-tI tixttl it It, Init itI Sailv it-c siit tIrt' tif th li'txt ra tttist raiis is iuirt-Iy to detimne ani

'tIIJII~~iYItil~F~l~t ,i~tti~td with / hllt' Z/T 0. si nt' thIis s~ imply iiivt ii vt-s rt'lart itiolnimig

Q icl dclvl willit i1ll lltr f im-~~tii t tite th 111h lit' vetor ti ,,)il ith vtrowgst (f

It lv( -i t III / Tq ;ti' t It- ill i lI 1 tip lir' (i ;I Itt -t Ili I!i tt ii It I Ii;'- 1 tt'tii) I heV "Itt 11 Ilic tm-i i t i I y

pr " t i t 1'tt :11t ci1i.

6. H ejiro-sieit:t tionl of thet fcittijaln

'ctpltn Iis t' drilltl tHit- li. iin rt-lrt-stiitation tt4a factorizat ion tif the woirkinig set ini ouir

mc lmlb CL~S (fi, lt li( IS 111ll;I "( 1 1111M . WV9O



turn to aJI evenI m~or( specialized questioni: tite replresenitationl of tite Hlessian inatrix ill ia quasi-
Newton SQP method, i.e.. one ill which I! is a p)osit iV(-(hefliitV al)pr)Xil,:Ltiol to the Hessian of
the Lagrangian fuiniction that is modified by a low-rank change between sibl)roblems.

In all th( quadratic programmling metho(s discussed tlis far, the Cholesky factorization
of the initial projected lessian is compuited from scrat ch at tie beginning of th( QP phase.
Although this proce(hire is perfectly satisfactory for a single quadratic program. it has certain
disa(vaitages ill a (luasi-Newt on SQP meth(1 In particuilar. when applied to a prol)lem with no
constraints or only linear constraints. such a 114hod isuiich less efcieint than standard quasi-
Newton methodis for tlhiese prO)beIIs. ill whiCh t01 fHeS.sian approximation is updated between
iterations. The question therefore arises: (an ait SQ' meth(d maintainti an efficient treatment of
nonlinear constraints, yet remain compet it iv(' with unconstraine(l or linearly constrained quasi-
Newton methods if constraint nonlinearities are, not present?

Such efficienicy can he guarante(-d if ali algorithm satisfies a S)Ccific criterion: when the

working set includes rn, nonlinear rows, tihe init ialization of T, Q and R, should require O(mZ +
,nF ) operations. This criterion is not satistie(d by the hot-start option (escribed in Section

4. since changes ill Z mean that both ZTHZ and R, must be comllputed1 from scratch. Our
approach involves recurring I?, the (holesky factor of the transformted lessian approximation
QTIIQ (- H,) ii 1oth th(, major and minor iterations. (Th(, form (4) of Q implies that the

* imatrix R1/ needed to compute ti(, search (irection is simply the upper left corner of RQ.)
To illustrate how the i(,iethod works, consider th(, case when the working set at a given

iteration contains n,, linear rows and a single io)nlin(,ar row. Assuie that, oui completion of the
QP sii)tproblem at ti(, point x. R, is available, As in(licated by (8) (9). tile effect of replacing

th( last row of ti(, working set is to po st-multiply Q (and therefore [? ,) by a matrix of rank one.
Since Q = QQ, wlre Q -I - (l//i)uu7, we have

T (2RQQ RI? =IQ - [2)

Th( new (C]olesky fac'toir fi, is tieu found |)y (onstructiiig an o'tliorogonal matrix P that restores
uiper-triangular form to IQ, i.e.,

R,-PIQ.

A suitable matrix P can be cC'oistricted f roi two sweeps If )lan( rotati(u s; for more (details,
se (Gill ,t al. (1074). In gemiral. if tilie working set coot ains m, nonlihiiar rows, rn, rank-one
ul)dlates must be applied to obtain R,.

(ivii this procedure for iij)(latig R.,, we now sho)w how to recur tih transfrlmied gradient
q, which cliaiges ti t w() (litl',r(nt situations. First. as co nst raints ('lter or leave tite working
set,. th e planm r)Wat ions used to umj(lat e Q (;n| :'imply be applied to q,,. The secoml change ini qQ

o('('irs wh(,n v is r()lace(d by p -f (p. where thlie scarch directin i( ") is (helinel as

* 6- zu sQ . (13)

Let d, enote t( traiisformed g;radirint at ji. It follows from| (13) aii t he (efinitions of q and R
that

* QT(. j QTI(I) _1 (kb7))

QT(,. 111)) + (kQTJ!Cp
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= qQ + aQTHQ ( 6 P.)

= qQ + aRjf?Q (0z)

which shows that I is not required to update qQ.

11 order to avoid access to H in the quasi-Newton update between subproblems, RQ can
be updated directly. II this situation. Q remains unchanged, and H undergoes a rank-two
modification. The BF(;S update (7) of H leads to the following change in HQ:

1 HsQsHQ + - YQY (14)
tQ HQ TH Q~H~ QT Q YQ

where yQ QT(§t - gt), sQ = QT(: - x) and ge denotes the gradient of the Lagrangian function.

This update may be expressed as a rank-one update to RQ (see Dennis and Sclnabel, 1981). Let

a and -y denote the scalars (.,tts )-i and (y, ), respectively. The u)dated matrix (14) may

then be written as ft Q ., where

R + vwT, with v =-RQBQ, W= ,y= - HQsq.
or -y a

Again. the matrixR ri may be restored to upper-triangular form by two sweeps of plane rotations.

It should be emphasized that these changes in the representation of the projc('ted Hessian
imply that tIe matrix R, must be uipdate(d during tile feasibility phase as well is the QP phase.
The SQP method is also altered in a fundanrntal way. Now, the fac(tor R, is altered hy three
surces: clang('s in the constraint gralieints (see (12)); changes inl tile curvatur of the Lagrangian
fi ction (the Ouasi-Newton updal(e); and, finally, changes in the prediction of the active set.

Several interesting research issues have resulted from these changes in the SQP method. If
the correct q-superlinear 'm )vorgen'' rate is to I)o' a'iieve'd at tihe solut,ion. it is necessary to
slhow tihai sulail chliamgVs il tihe varialdes lead 1ou small changes in Ihe matrix R., (for details of
tih' pr~of, see( (,ill oi ;., 1985b). Similarly, certain choices of least-squares iultillicr estimates
lead Io mnetIods simIiilar to i)rcjo'et(,l qua.si-Ncwtonj methods (see, e.g., Murray ard Wright, 1978;

(Cholem; and (omi, 1982; (abay. 1982; aiOd Nocedal and Overton, 1983; Byrd and Schinabel,
1984). li the next sectlion, we shall discuss a class of new methods with a more speialized
treatrenit of liniar constraints.

7. A more specialized t.reatnnent, of linear constraints

"JTie alility 14) ulimlad'' am aplmlmrmmxiat imall t) Ilie Ihlssiati of Ilie Iagraligiall flli't li1 as eacir new

1ninlinrear ro4w is factorized Ihads 1 ) ;L olass of IeMlliods with so'jmrat, active-sot straitegies for tie
Inear and totlinvar conrstraidts. Insteal of using the qoiadrac progranming sul))ro)lem to
dlefine, the colmlplete, working set. t heo "active" linm'ar conist raits and bouls are determined in the

major ite'ration by ai active-s ,t stratcgy typical il metiods for linearly cmnstrained optimization
(see (;ill aid Murray, 1974; Gill, Mrray and Wright, 1981). With this approach, the linear
rows never need to be refactorizd even (huring early major ilerations, before the active linear
constraints have beetrn, determined.

11



III sti('li a method. an nult ial point is found that is feasible with respect to the linear constraints
and l)ouit (see Sectioni 3). Witiiii each ulmajor iteration, a working set of bounds and linear

contrantsis dIefin~ed ili the( usuial way. Let 6%', denlote tili, suilnuatrix of genei~ral ]in('ar constraints

Ii the( working,, set corrcspolidirig to tite free valriales(, with Z1, tite corresponding basis for the
miill space. Tl crl ieto stii eciiie rmtemdfe udai rga mn
sub hprobleml

nIiiinlize YT + jf

sublject to f< A~p < Uf,

01,p =0,

where A . oleriotces thle cohuiiiins' of tie( .lacoltiali of ujoui nilear constraints correspouinug to the free
variab~les.

Diiriii g- ti( liemjor iterat ioiis. tit( TQ fact orizat ion of (C,. is reciirrel ats lin ear conist raint s entear
and leave thle wt rkii ig set. 'Iliese chaniges are, reflected ili thle ( holesky factor RI, of Zf1-ZL
andI are ident ical to t hic iii)tLdts Hu5 t it occuri ill all ait iv-st't mitthod for linearly constrained
min iuizat ioll i.e.. IR, grow., by a roiw and coldim i w i('ii aI const raiiit leaves thei working set,
R 1, shirink- by a row andh cttiiiii WluezIit aconIstrint eniters the workinig set. Before solving thc
Q11 siihprobtlen. ('acii nineiar row is atltlet to the ttv('ralh wvorkinig set, leading to updates to
the( 'EQ fact orizationi antil to R?, . as ill ( 12). (Thel( iiat rix R,/ req~uiredl to compute the qluadratic

prograimilg sc;arch (lircctioni is in th vi tipper leftum chaom ner of R,!.) Onl completion of the
* ~~~slIbI tobi li. U?, is' lij1tiLt et direr t lV to jiorpor ira? new ci irvatlure otf t lie Lagrangufan function.

If t ie( working, set cimot ;uiis 110t ittilititar cotlst rand t Ilit' inut ioil becomes('5 a projectedI quasi-

Newton iit'it-tho (sot (;il. M1urraiy ai i ght 1981). hii geuiril. thec seq(ice oIf iterates will
uill'tr frtmui ti at ,tvncraitc 1, , th li S l ntit tt lteillist only (lit(- linear constraint ('lters or leaves
the( wotrkiig, set (htirii oahulllttlr iterat Itolo. This uilitboil is likely to(I I licieitt oil problems in
which rehao vtly unaijy tioist raiins akrt aol fivt ait tl( lot'hlit i. If the iiiiiial workinig set tof houinds

amnd line ar tttnI-l rai IIts s a;Ir,,t4. otIi rvattl I i ( II(tuuII it Ilim l bo' accouilato'tl ill R, wit liolit the risk
tf tb-Ittilig to ttt nuy cqmutsr;tiit s ilurijijig a >iuil iat 0 itcrat itti. (Iliiler ths li'('tirciiistauices, the
mat rix Zf7 117, mtay Ito iipolatt't withI a jttt'itlv iv-tlltiiiitt t(tasi-N('wto~ applrolximiat ion when the
lill It camlitot.

8. Represent at ion of the H~essin in spaurse quadI(rautic programs

* ~~All tI be ttomiplcxit its of Imiiiliituiat toll Intufit ioit-i tarlier are muaguiitietl wlueii developing me(thlods
ft 'r hogt-sah t lt? jll/;titou. Ton ilithitalt tt' shift ill httrsitt4t ivi' we coniside'r ani SQP method

* ~~~for. t tvilig iiotiliittarly titus? uinc uit'l l ) temus Ili whiich thIeo llossiaii of tit' Lagrarigiani is sparse

alit ktioiwi exactly. litms in ali thQ1, 11tuobtmi I! i availalet Inl solie forui tHat allows the
- tjtipli-rat it ttb))t ivo- ait Its g"raditlut q ( l!;u 1 !j) ttt bct tolnjllited.

rItta;Ll t hat0 ill t11 i' Q ' llias. t lit scar( Ii lint-ct iti is t ak'i as Zp,. Micero' 1, satisfies

''ll' first issuvt ili st lviiig (15) is t li rrtst'it atio o~ltf Z . Alt limgli tuct iods for computing
anl orti 'lit tiid b asis Z ftor tit', null space (If a sparse' miat rix have boen thev subject, of umiutcl
ru'etrt r'st'arcl (Ste. 1'. g.. ( oltuiaui aul th4 lien. 198-1), tbIny are ntot ptract ical for sp~arse' (padratic

jpitI-rLlis beiils(' otile it'vied to lipdate X at every it('rat itui of tlie Ql' mvui'tIoo. Iiisleaol, meithods

lavi' ben lcv'olditl iwichi tit' miatrmix 7, is liltt stored ('xjli('itly.
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Assume that the nFR columns of the working set C arc ordered so that

~~fC C B S,

where the mf x m nmatrix B is non-singular. (In practice, the columns of B may occur anywhere
in C.) Trhe matrix Z defined by

provides at basis for the null space of C, andl is called the reduced-gradicnt form of the null
space (see, e.g., Murtagh and Saunders, 1978). This form is effective for sparse problems because
operations with Z and Zr may be performed using a factorization of the sparse matrix B. Let a

- - denote nFR - ?n (the number of columins of S). The reduced- gradient form of Z can been used
with great success in quasi-Newton methods for sparse linearly constrained problems in which a
is small, lby maintaining a dense Cholesky factorization of a quasi-Ncwtomi approxiniation to the
projected Hessian (see Murtagh and Saunders, 1978).

In the case of sparse quadratic programming, a factorization of the projected Hessian matrix
ZTIIZ is needed to solve (15). In a general dlense QP method, the initial projectedl Hessian would
simply be formed at the start of the QP phlase by multiplying the( exp)licit matrices Z and H. One
might suippose that this procedlurv could carry over to the sparse case, assiuming that q is small

* enough so that the explicit projected Hessian can be stored. (Note that the( projected Hessian
will generally be dense, e'venl if H and -B are sparse.)

Unfortunately, even if s is small, foruming thic explicit initial projectcd Hessian may involve
a substazitial amiount of work. When Z is defined by (16), computation of ZTHZ requires the
solution of 2s systems, of size m x rn. For this reason, if the nurnber of iterations in the( QP mnethod
is -.mall, complutation of'the first search direction will dominate the tune requiired to solve the
quadlratic program. (This situation always applies during the( last few major iterations of an SQP

* method.) To put the relative costs into perspective, note that computation of at single row and
colmnn of ZTHIZ requires app)roximIately the( samne aniount of work as at single iterationi of the
simhl)le.x method (i.e., two linlear systems of order mn). If .4 = 100, forming the initial projected
hlessiami would require the eluivaleit of 100) iterations of thme simiplex method!

Ai alternative approach is to use at (jIasi-.Newton i ethod to solve the quiadratic p~rogram.

The( re(Iiiie(I quasi-Newton appr oxiiiiat ion to ZTJI I is maintainled uising the clhallg( ill p amid
q between successive ininor iterates. (HI is needed only to form 111p, from which q anid the( QP
objective ftinction are easily obtained.)

It may not. be obvious wily this is ani improvement. If tit(e exact p~rojected Ilessiam i s not uised,
0 the resitfiig search direction is no longer the( step to the iiniki of fte qu1adratic funlctionl inl

the subspace def[ined by Z. Imm effect, the( cost of forming the initial projected Hessian seems
mevrely to have been spreadl over a mniher of iterations, simnce at least, .4 iterations sholid be
rcjlnredl t~o produce the "ti e pro4 jecled lIlessiami . However, ill thme SQP conmtext, thli major gain
is th1 at the (1mm lesky factor of t lle I )roJm'cteml lcessiaui at tlhe so hit ion of oii(' tquudrat ic prmgran
cam be 115cm1 to inii at e i lie 501l1.iol or ie tjext. Th'is apprtpach has provedl to be very sticcessful

o ~~~ill the i uipdemuwmmtlatimn iof al SQl inil14 in for solvh ig large-scale prob miuus aisinmg inl the( optimal
(list rilmt ion of electrc neal power (see JMirclmetR, ll anid Viem'atli, 1984).

This is anmot her sitinat ion ill which chanlges to the initialization p rocv~hire ittimnately prodluce
a met hod which is (lfite in'iniiit from the( original. During early iterations, sign ificauntly (differemnt
working sets are geumeratedn by the( quasi-Newtois qwuldratic program becauise thme working set is

* ~usuially altered well b~efore the approximate projectedl Hessiani has amy reseniblamee t~o the exact
projectedl Hessian.
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