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1. INTRODUCTION

The Naval Underwater Systems Center (NUST) sponsored Independent
Research, "Finite-Difference Solutions to Acoustic Wave Propagations," has
been successful. As a result tn date, a useful product -- the implicit
finite difference (IFD) computer software program for the solution of para-
bolic equations -- has been developed for research and application purposes.
This software is now being used intarnationally in a number of research
laboratories as well as universities. In relation to the development of the
software package, the theoretical development attracted a number of inter-
nationally weli-known scientists. 1In 1982, the Office of Naval Research
(ONR) Mathematics Group, under the coordination of Or. Richard L. Lau,
awarded a research grant to NUSC to encourage technical collaboration with
university scientists at the Yale University Center for Scientific Computa-
tion. These developments set the stage for four visiting scholars to spend
the summer of 1983 performing research aimed at the solution of underwater
acoustic wave propagation problems in all dimensions (mathematically,
physically, and computationally).

This report is arranged in sections. Each section reports the tech-
nical accompiishments for a particular combination of authors. Some compu-
tations were performed by VAX 11/780 computers both at NUSC and at the Yale
University Computer Science Department.

The four visiting scholars, all professors at their respective
institutions, were

Frederick 0. Tappert Gregory A. Kreigsmann
University of Miami Ncrthwestern University
Miami, FL 33149 Evanston, IL 60201

William L. Seigmann Donald F. St. Mary
Rensselaer Polytechnic Institute University of Massachusetts
Troy, NY 12181 Amherst, MA 01003

Other academic contributors to the work reported here were

Martin H. Schultz Kenneth Jackson
Yale University University of Toronto
New Haven, CT 06520 Toronto, Ontario, Canada, MSS 1A7

Navy coniributors to this document were

Henry Weinberg Ding Lee
NUSC, New London, CT 06320 NUSC, New London, CT 06320

1/1-1/2
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i 2. A WIOE ANGLE THREE-DIMENSIONAL PARABOLIC WAVE EQUATION El&&
William L. Siegmann
Renssclaer Polytechnic Institute
, Ding Lee Lo
E Naval Underwater Systems Center -

Gregory A. Kriegsmann
Northwestern University

ABSTRACT: A simple extension of the standard two-dimensional para-

bolic wave equation to the three-dimensional case can be accomplish-

ed by retaining the angular derivative term. This extension fis et
Timited to dealing with small vertical angles of propagation. A new e
wide angle, three-dimensional partial differential equation is -
developed to predict the sound propagation in a three-dimensional e
ocean. This formulation is achieved by operator theory whose mathe-

matical derivation is given in detail. The validity of the formula-

tion 1is examined 1in full through discussion of approximation and

multiple scale analysis.

.
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INTRODUCT ION

p three-gimensional parawolic equation (PE) was developea Dy Tappertl
almost a vecade ago. It was the same equation Tappert usea to derive the
two-g1mensional paravolic wave equation, recognized as the stanoudrd sma il
angle PE. Encountering the three-dimensional etfect in thé ocean, Baer?

initiatea the application of the primary three-u1mensional PE to real

; pruniems. Recenily Perkins and Baer mplemented the Spiit-step algoritnm3

: into a computer code to solve the three-dimensional PE. Application of this
tnree-dinensional coge aemonstrated success in solving three-dimensional

i proclems., Prior to Baer ana Perkins' three-dimensional applications,

{ Pierced formulateu a simplifiea three-aimensional parabolic wave equation

E expressing one spatial variable in terms of arc length. It is seen from the

i extension of the two-gimensional stancara PE, the Tappert three-uimensional

li PE, mplementeu by Baer-Perkins for real applications (for simpiicity we refer

Zi to tne equation as the 3D PE), only hanales the smaill angle propagation. So,

Q Pierce has not pursuea his development further. [t is the purpose of this

paper to report tne aevelopment of the wide-angle three-gimensional PE, wnicn

accommodates the 3D PE. During the course of this wide angle cevelopment, a ;4

nunwer ot practical questions arvse. We hignlight the importance ot these ;}:}u
’ questions ana try to answer these questions reasonably, The motivation of . d

answering these questions led us to the formulation of the three-dimensicnal |

wide angle PE. These questions help to cefine the region of validity and

suggest when ana where the three-gimensional protlem can ve solved

two-dimensionally. A formulation based on the operatnr theory is a starting o

L e R I B TSP A R Y
-

.
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point; the complete cetail is discussed. An analysis using the multiplie scale
technique is includea to justify the operator formalism, A selected exact
soiution has been used by Schuitz et ai.®> to discuss the valiaity of the
formulation as well as the accuracy of the solution. In this paper, a
simuiated three-dimensional problem ana an application are includea to
demonstrate the three-dimensional wide angle PE capability. Al computations

were pertormea on the VAX 11/780 computer using the Yale Sparse technique.®
OPERATOR FORMAL ISM
We pegir from the three-dimensional Helmholtz equation for the
spatially varying part of the acoustic pressure p = p(r,e,z), written here in

cytindarical coorainates (r,e,z), i.e.,

.2

2 2 -
ap+lap+la +aE+k2nd
_— —_—— - p=0 . (1)
ar’i T oar r? ol a2¢ 0

The complex pressure is p times e-1wt where w is acoustic frequency in

rag/s. In Eq. (1), kK, = w/cg anu the incex ot refraction is n = n(r,e,z)

= Cyjc, where ¢ = ¢(r,e,2), the oceanic sovunu speeu, and Cg 1S a reference
sound speea. A thorough uiscussion of conditions and assumptions under which
Eq. ‘(L) applies to cceanic souna propagation has been given by Prerce.b
Bounaary conaitions for Eq. (1) are to be specitied at the ocean surface anu
votlum. Tne source term is omittea from the right siue ot Eq. ¢1) n
anticipation of PL approximations that are valia away from the source, which

is assuneu nedr r = Q.

ok

Lo
)

k.

)
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Following Tappert,l we let

D(I",O,Z) = U(T‘,O,Z) V(Y‘) ’ (2)

in which the factor v(r) represents a rapidly-varying purtion of the pressure

ang u(r,e,z) 1s its modulation. Substituting Egq. (2) intoc Eq. (1) yielus

Ve 2 2 ..
9u 1 2 &V, au 1 a7v a U Z .2
[j"z*(?*v’a?)rr"“z—z*'—z*“o” “}"
5r r-oae 3z
Z
3TV 1 sv
frets]e-o G

It foliows from Eq. (3) that it an osciilatory funclion v is determineu as a

solution of

PR 1 av 2
ZrtFrawr tkeV=0 (4)
ar
then the u satisties
P4 . V4 2 .
u 1 2 ¥V, au 1 a"u aTu 2 2
=t ErtTE otz ot Rt - u=0 (5)
ar r 30 92

where Hél) 1s the Hankel function of 2ero-th order of the first kina.
Since the parabolic appruximation is desireu for the solution at large
distances from the source, it is apprupriate to appiy a farfielu

approximation, which 1s expressed Dy K r 55 1, We defer until the next

2-5

...............
................................




10 7145

section a oiscussion of the vaiiuity ana the quantification of this
assumption., For now we employ it to approximate Eq. (6) by an asymptotic
expansion
: n
1/2 Hkgr = 7)

v(r) *(;Eig) e v kgr e . (7)

Using Eq. (7) in EQ. (5) gives

Z 2, ¢
2 Uy gk 244 ] "’“+a“+k2(n2_1):|u=o . (&)
[Z«? OF (25T 0

If the first term 1n Eq. (8) is neglected, we obtain upon rearrangement a

tuncamental 3D PE, whicn 1s Eq. (/..7) ot Ret. 1, 1.e.,

ik .l . l
U 0, 2 i au i a8
— = —— [n°(r,0,z) - lju + w7t ——o—7 - (9)
or 72 Ko az 2kor a0t
j azu
Neglecting the term — —7 ana regaraing n{r,e,z) as azinuthaily inuepenaent
2k r- ae
0

the stanaaru two-uimensional PE results, i.e.,

1 2
%%—: l;E [nz(r,z) - lju + ?%; %i% . (10)
: R
Equation (9) nas been exploited in calculation of sounu propagation through a :i
-mesoscale eaay.2 [f tne last term 1n Eq. (9) is neglectea but aczimuthal .f
dependence 1s retainea in n{r,e,z), then a simpler PE is obtained for which an - :

!
efticient implementation hds peen oemonstrateu.3 This equation 1% useful ‘

specifically in the absence of horizontal diffraction of acoustic energy, as

2~b
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for example with weak azimuthal sound-speea variations and without azimuthal
regirection of energy frum boundary interactions., Finally, if all azimuthal
dependence 1s neglectea in £q. (9), the usual two-dimensional PE remains. As
is well knuwn, EQ. (9) ana its swmplitications are valie for narrow vertical
angles of propagation. [n order to obtain a 3D PE appropriate for wider

angles, we first employ an operator formdalism.

We return to £q. (8) ana express it 1n operator form as

) - .
[f:? + 21k %_.+ 32? + %7 i—— kg(n2 - l% u=20 . (11)
1)

An approximation to £q. (11) is made by factoring the operator as follows:

d . : .
s * ik - ik, Q]L—+1k+1koQ]u=0, (12)
where
Z 2 12
2 1 3 1 3
Q=[1+ @ -1)+=52< . ——7] . (13)
[ kg 226 kéra ao‘

Equations (ll) ana (12) are nol equivalent because the operators Q and a/sr do
not in general commute., However, provided these operators are in some sense
nearly commutative, it is appropriate to regara Eq. (12) as a factorization
approximation of Eq. (ll). We make this approuximation anu will aiscuss later
its validity. The solution of Eq. (l2) consists of waves incoming ana
outgoing in the racilal airections, ano we neglect the incoming wave (the

second factor 1n Eq. (12)), which is usual in the PE method. Therefore, the

envelope u(r,0,z) satisfies the formal eguation

[y

R
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au
4aku = kg Quoo (14)

Determination of u requires some definition of the operator Q in Eq. (l4).

we specify Q by first expressing it as

1/2

Q=L1+X+Y, > (1%5)
ana
2 "
2 1l a 1 3
X = (n - 1) + ) Y = ——?— . (16)
;g :;? (kor) ;;7

The funoamental 3D PE Eg. (9),can pe obtained by expanding the square root in
Eq. {i5) 1n a Taylor series anu retaining only tne linear terms in X ana Y.
Ratner than a (1inear) polynumiai approximation for Q, we use a rational
tunction approximation, i.e&.,

) 1+ plx + p2Y 17
CrrearEey L)

where p, - p.  q), ano gz are constants to be chosen, The

interpretation of the fraction in Eg. (17) is premultiplication of the
numerator by the inverse of tne cenuminator. Tnus when EQ. (17) 1s inserteq

in £q. {14), the equation governing u becumes

. ) -1,
— + ik.U = 1ko[l t g Xt q,Y) (1 + pyX ¥ pZY}u (18)
or, equivalently,

du : ,
LL * aX % 9 Yuer = Tk LP=G )X+ (pymGp)YIu (19)

¢-8
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We note that wnen q; _ g, = 0, Eq. (18) reuuces to the parrow-angle

30 PE of EQ. (9) for the values p; - pp = 172, which are just those in the

linear Taylor series for (. For the two-dimensional problem Y = O,
rational-function approximations have been discussea.’ In particular, the
cnoices py = 3/4, q1 = i/4 for the two~dimensional case p = g2 =0

nave been suggesteu by Claerpout8 for wiver-angle propagation. These values
are precisely those necessary for an approximation to Q in Eq. (17) correct to
quadratic terms in X. The analogous result fur the three-uimensional case is
tounu by squaring Eq. (17) anu matching cuefficients of X, Y, X<, Y¢, ana XY,
It can be shown that the resulting five equations are satisfiec by the four
cnoices py; . pp - 3/4 ana q] = g2 = 1/4. Tnus, these values give a
rational-function approximation to Q correct to secong oirder in the operators
X ana Y. We use them in this paper to specify a wiaer-angle 3D PE from Eq.

(19), 1i.e.,

2
1, 2 1 @ 1 1 | au
1 +2(n" - 1) + + =
[ 4k02 222 4(kor)2 302] o
ik 2 2
0 2 13 1 3
- (n _1)+7_2+— —lu (¢0)
2 [ ko 3z (kor)2 aoz]

4
‘ . 1 ] .
Neglecting the terms involving ———5 — ana regaraing nir,e,z) as
(kor) 26
azimutnally ingepencent, the two-dimensional wide angle PE results in the

sense of (laerpout

2
L+ L (0@(r,z) - 1) + 4 L]ﬂ

2-9




D 7145

ik0 2 1 5
=—2-— (n (ryz) -1) +k7~§;2- u B (Zl)
o]

Note that Eq. (20) is a third-order partia® differentiai equation and a

discretizea version has been analyzeud for numerical stapbility.9 OQther

choices for the parameters Py, p,, q1, ana qz have also been

&:] investigateu,10

- DISCUSSION OF APPROXIMATIONS

The wide-angle 3D PE of Eq. (20) was derived subject to a number of

1Y

assumptions anu approximations. The principal auvantages and limitations
conmon to all PE approximations are discussed in Ref. 1 (see also Ref 11).
For applications, we are particularly interestea in ceterminatiun ot

limitations on oceanic ranges where Eq. (20) is appropriate and where the

azimutnal-gerivative terms in Eq. (¢0) are significant. We focus here on

thee of the assumptions used in the preceding section: farfield,

tacturization, ana rational-tunction approximations., Our discussion leads to

A L
P R S BRI

suggestive, rather than rigorous, conditions specifying range intervals where

Eq. (20) or simplifications of it should be empioyeu. These conditions are e

s dinr

supportea by arguments in this section; asymptotic derivations and numerical

results wiltl follow. RS

We turn farst to the farfield approximation. Some inuication of the

range beyong which this approximation applies is very desirable in order to ﬁ-ﬁ

''''''''''''''''''''''
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provide an estimate for the minimum range of applicability for the 3D PE.
Denote by v(r) the right sice of Eq. (7), i.e., the leauing term in the
asymptotic expansion for v(r) in L£q. (6) for large kor. Suppose we choose

to regara v as an acceptable appraximation to v if the relative difference in
their moduli is less than some tolerance ¢, i.e., if

i)t (22)

viryl = [¥(r)I] -

This conuition focuses only on ditferences in moaulus, rather than incluaing
gifferences in phase, which are of less interest here. Now it is knownlZ
that

1
16(k0r

IV(Y‘)I - lv(r)l ll = )z +0 [(kl“)a]]9 kor > . (23)
o

In Eq. (23), the terms in braces ({}) aiternate in sign and have the property
that the remaincer, after retaining any number of terms, 1s no bigger
than the first term neglected, From Eq. (23) it follows that the V is

regaruea as acceptably approximating v if

In terms ot acovustic frequency f, EQ. {<4) requires range r to satisfy

‘o

r>re= g;ﬁqi- (25)

i which vt s the minimum range for the farfield approximation to apply.

For example, suppose & = 0.0l, corresponaing to differences between v and v

2-11
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bewng bounded by 1%. Then as f increases from 10 to 200 Hz, s decreases

l from about 60 m to about 3 m. An alternative expression for this case 1is
: ll'Q'” > 2.5.
ll Adoption of a criterion such as the above suggests neglect of terms ot

appropriately small estimatea size in the governing equations. For instance,

the approximation v(r) satisfies ;I:E

a1 2g [1 — ] -0 (26) 2

. ;:7 r dr o} 4(kor)2 ’ ﬂ“j
L] hﬂ;é
.3 rather than Eq. (4) satisfiea by v(r). If Eqs. (24) ana (25) hold, then the ﬁ.ij

last term in EQ. (26) is no oigger than 4. Thus, the approximation of v by V

is tantamnount to neglecting tnis term, wnich for ¢ = 0.01 1s of relative

E -
ii magnitude no bigger than 4s. This benavior is, of course, typical of a -
= regular perturbation for wnich negiect of a term of some small size prouuces Eft:
an error of comparapble size in the solution. It follows that unless any term liﬁ?
in a governing equation is capaple of proaucing & singular-perturbation :ﬁﬁ

effect, it is apparcntly consistent to ignore the term if 1ts relative size is

no bigger than about 4%, An immediate application of this criterion is in the

simplification of the coefficient of asu/ar in Eq. (5). Using Eq. (7) and the i}
result that the asymptotic expansion of dv/ar 1s the derivative of tne '
expansion for v, 1t is easily shown that the coefficient of asu/sr in Eg. (8) -
is muitipliea by (1 + 1/8(k0r)2), However, inequality (24) means that i;:
this factor in the farfield approximation is no bigger than (1 + 2s.) Thus, ::;%
it is apparently consistent to ignore this factor in the farfiela :EE;
2-12
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approximation, The inequality (24) with & = 0.01 (for instance) ensures that

PR <% LAV

no more than 4% error is conmitted in terms of both the u anu v equations b

in the farfield approximation and that the error in the modulus of vV is even

smailler. It can be shown by using anotner asymptotic expansion that the error

AT

in the phase of v is actually of comparable magnituce.

As employed in this paper, the rational-function approximation to the
square-rooi operator  is given by Eq. (17) with P = p2 = 3/4 ana q] = Q2

For convenience this is rewritten as

1+ (3/4)2
Q= I—:-%sz%z ’ (27) S

AR o SEEMRNIK
n
—
—
F-3
:
e |
13

M

ru\‘-n
where T‘lf
2 2 o
Z=X*Y=n2-l+lz--a—2-+_l_zi__2 . (28) l:_‘.
k> az (k_r) 3¢ IR
0 0 .
Pff:
As mentioned previously, a primary advantage of this approximation is that it quk
{if
is correct to second oraer in Z, i.e., 23T

p, "L 3 -
Q=(1+g2) (1+37) o

1 1.2 3

<1 gz -t vod) . (29) 1:;11_‘:3

An alternative expression of this fact is that the only otner congition neededu

for Eqs. (l1) ana (12) to pe identical, in addition to commutativity of Q and E:;
A‘-:.
3/or, 15 ;ﬁ‘
€ -1=12 . (30) E::

P

..........................
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From Eq. (29) it can be shown that Eq. (30c) holds to terms of 0(Z3). Next,

we noce that

, 4 4 4
Z 2 2 l 3 1 a 2 )
" = (n" - 1)" + t——= %t 7777
:g ::K (kor) aoq Kgr aodaz
anf -1 (a8 L1 8] ,2 [22 2 1 2
+ _i.I?r__l L Iy 'l I dl e S L 1) + s (n® = )| , (31)
0 Y r° e o Loz roae

and it follows that tne effects of the terms in Eq. (31) are inciuceu by Eq.
(27). Thus, even though Egq. (20) explicitly contains no fourth-order z and o
derivatives the etfects of fourth-order derivatives in £q. (31) are in some
sense incorporated properly into £q. (20). On the other hana, Eq. (20) does
not contain the eftfects of any sixth-order gerivatives, such as thouse
appearing in 23, or similar terms like (n? - 1)3 or (n€ - 1)¢

(k,)=¢ (82/92z). The comparison of terms neglected with those

retained is most easily accompliished by scaling and asymptotic expansions such
as thouse 1n the next section. The purposes of the limiteu discussion here are
Lo indicate which types of terms are modeled correctly by the approximation

Eq. (¢7) anu to provice a basis for examining tne factorization approximation.

The factorization approximation is exact when Q from EQ. (13) and a/ar
commute. Since this is not true in general, £g. (l2¢) can be expandeu to yiela

€q. (11) with the adauitional term

1KOL%FQ -Gl U= U (32)

¢-14
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on the left side. To appraise the neglect of this unboundea operator, we
i compare its terms witn those retained in the equation for u. We use the
expression Eq. (27) for Q, but other vefinitions from Eq. (29) or other
parameter choices in Eq., (47) could be treatea similarly. In view of

I Eq. (29), it follows from EqQ. (32) that

| 2 S RO

EUu = ¢ ) (33)
where
3 ik
(1) o 3
. e = et -~y (34)
; ana
ik
. 2
AL T LI L (35)
ii Using Eq. (28) we finu that the leaaing term (1) has the form
“ .2
e (1) _ an i@
3 £ = 1k0n T ———srk " 6—07 . (36)
- (0]

As with the farfiela approximation, a comparison should be made here of terms
neglectea (the largest of which are (l)u) with those retaines [in Eq.

(11)J. It follows tnat the factorization reiies un konan/ar being smali
comparea to kg(n - 1), and (kp3)-1 (32u/202) being smali

compared to r-¢(sfusaed), Since n is close to one, these conaitions are

k‘l(n2 - l)'l

o (¢nfar) smail (37)

and

(kor)"l small (38)
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The condition [Eq. (37)] of sufficiently small range variation of the

index of refraction is anticipated from analysis of the validity of the

two-dimensional PELl, Equation {38) is related to the justification of the {
farfield approximation since inequality (24) can be written as (kor)—l < 4s. ;iﬁ
Thus, for & sufficiently small and Eq. (37) valid, both farfield and ]

factorization approximations are satisifed. Furthermore, Eq. (38) and Eq. (37)

can be quantified by recalling the argument following Eq. (26). It is : ;}h
apparently consistent to ignore the effect of the second term on the right of ,ﬁﬂ
Eq. (34) if i;q
oyl e
(kor) <45 . (39) ot
Here we have already neglected terms in governing equations of this relative ﬂ;?
magnitude. Equivalently, for kor > (4 5)‘1 = 25 (when ¢ = 0,01), the I?f
second term in Eq. (36) must be ignored; for f = 10 Hz (or 200 Hz), this b
corresponds to ranges bigger than about 600 m (or 30 m). We note that this Ljﬁ
represents a conservative estimate for the neglect of the term, which may iu ﬁfﬁ
)

fact have an insignificant effect for even smaller ranges. Also, a similar »e.

expansion of Eq. (35) and a comparison of terms neglected with those retained
could be carried out. This process yields Eqs. (37) and (38) along with other
conditions on slowness of n(r,e,z)-variations involving various partial

derivatives up to third order of n(r,e,z). We omit these conditions for &iﬂ

brevity.
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To summarize, the farfield approximation has been argued as valia for

ranges r vigger tnan s given by Eq. (25). Similariy, the factorization
approximation in conjunction with the rational-function approximation of the
operator Q is appropriate for slow variations in n(r,e,z) Lsee Eq. (37), and

tor r bigger tnen Gllzrf Lsee Eq. (39)). When these conairtions hola, the

three-dimensional wide angle PE, Eq. (20), should be applied. As range

V4
1ncreases such that ——1—72 3—% is negiigible, the two-dimensional wice angle
(kor 30

PE, Eq. (2¢1), shoula be usea. In the two-dimensional application, if we
regard the e¢-partitions as N, this coincides exactly with the "N x 20 Problem"
detines by Perkins ana Baer.3 It is important tou remark that Eqs. (37)
through (39) are not predicated on any statement concerning the size of the
e-variation of u. The conuitions for valigity ot both the farfield and the
factorization approximations are inaepenaent of whether or not the
e-derivatives in Eq. (20) aftect the propagation signiticantly.  One
resolution of this latter issue is provided by using the scaling arguments
presentec below tu compare the (kor)'2 (32/302) terms with

susard, 1t is sufficient here to remark that azimutnal variation in u

can be introduced by three mechanisms: water-column variations; n boundary
fluctuations, eitner from bottom topography ana structure or from surface
irregularities; and directionality in the representetion of the source

nedarfield.

2-17
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MULTISCALE FORMALISM

In this section we provide a systematic asymstotic derivation for a ciass
of wide-angie 3D PES. One aavantage is that the farfiela, rational-function,
and factorization approximations, which were explicitly required in the
previous development, are not necessary here, Instead the scaling ana
asymptutic expansions proouce the effects of “hese approximations without any
adoitional assumptions. Moreover, consicerable insight is gaineu into the
nature of these approximations ana the conditions for their validity. The

wice-angle 30 PE, Eq. (20) is found as an important case uncer well-defined

conditions.

We begin witn the Helmholtz equation [Eq. (1)) which does not incorporate
source effects. In this paper, we do not treat a scaling and asymptotic
expansion appropriate to the near-source region, Consequently, we regard the
spatial portign of acoustic pressure as a specifiea function of depth and
azimutn at some near-source radial distance, Further, we assume bounaary
conditions are specified at the ocean bottom ana surface and for the azimuthal
region of interest. For brevity we do not write these conditions in the
following development, but they are easily incorporated once physical models
for the bounuaries are specitied. The only spatial conaitions which we
explicitly employ are the obvious ones of boundea pressure for all ranges and

ot only an outgoing wave at large ranges.

e H
PR
e As At at

———




I'd

TD 7145
With some choice of the reference sounuy speed Cy, We assume that
F? né(r, @, z) can be written in the form
n(r,0,z) = 1 + en(r*,ox,z%) (40)
.
lli 10 wnich n is a function of order-of-magnitude unityl? ana the scaleo -

variables with asterisks are nondimensional. The quantity n could be taken as

the maximum relative deviation of c from ¢, wnicn typicaliy is no more than

about 10-2 in ocean applications. The scalea variables are defined by

=
E; r* = ¢ k r, * = 51/2 K.z, * = ¢ €-1/2 e . (41)
=" 0 0 .
o -
s: Tne firsL two variables of Eq. (41) are chosen following Tappert! who aiso ;
;f provides a justification for the avove definition of ¢. (Other definitions, :
7 such as a cnannel aspect ratiu, may be appropriate four certain propagation f‘Q
conditions, as, for example, in an isospeeg channel where no definition is Q;E
igeal in all circumstances.) Tne third variable contains an oraering Rii
parameter o that serves to account for the rapicity of the azimuthal variation s
-

in nZ (r, e, 2) anu, mere generally, in the solution. Thus, it « is of
order unity with respect to ¢ [denotea by a« = 0(l)], then the aimensional
azimutnal gerivative r-1 a3p/ae is comparable to ap/sz, so that one or nore
of the three mechanisms mentionea previously are accounting for substantial
azimuthal variations. If on the other hana a = O(el/<¢), then r-1 ap/ae is
comparable to ¢p/ar, ana azimuthal variations are relatively smaller., OQur

gevelopment pruceeds with a, or order one, and extenuas to otier cases,

~

i
—
w
»

e AT N at o T T Nt T e T T e T et e T TR ettt T T e A e et e e T e T e e e
DRI ~_m."..‘_‘\_.__‘._l_.,“'_"__,',_,__.‘,_,‘,_._...,..._. L Jom e
B “ Dl B R T N N N T N PEI

. . R S e . KT . e e
D B VI L R U AL Sl G i e QY PR ek s e el e e e
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Employing Eqs. (40) anu (41) in Eq. (1) and dropping the asterisks
]I‘ hencefortn (so that (r,e,z) now represent scalea variables), for p = p(r,e.z),

we obtain

2
2 1 ,
Pyt Pr) ¥ elp,, :—2 Pog) * (L ¥en)p=0 (42)

where subscripts denute partial dgerivatives with respect to the scaled
variables. Motivated by Eqs. (2) anu (6), we apply the methoa of muitiple

scales by seeking & solution of Eq. (42) in the form

p(I",O,Z) = P(p,P,Q,Z;e) ’ (43)
where p = r/e. With Eq. (43), Eq. (42) can be written as
a (P +Pl+c[2p +ip +p Peip s Pl + L P v Ep o0, (a0)
o bo re  T'o T2z Z7es " e

We note that our results are, in fact, unchanged if (for example) the tern

-1 . - .
er Pu is written as » l Pp, but the analysis wouiu be more
involvea. We next assume an asymptotic expansion of P, i.e., fff]

o e

P " e M ore,z) . ev0 (45)
n=0

anu inserting Eq. (45) in Eq. {44) proouces a sequence of equations. Tne

:
tirst three of which dre -
o

Apl0) L pl0) 4 pl0) (46) o

2-20
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2
(1) (0) , 1 ,(0) (0) , a 5(0) (0)
i XP = ~[2P 0t 5 Pp + P + Pog’ * 0P
: - w0 (47)
N ana
! (¢) (1) [(0) 1 .(0)
AP = MP - [Pee R, . (48)
The solution of Eq. {46), satistying the outgoing-wave condition for
. large p, 15
plO) a0 6,2y &' (49)
) Using Eq. (49) ana solving Eq. (47) with the cutgoing-wave condition yielas
1 1 i i j
Pl (r0,2) €'+ 3 21al0) « 1410)
: (0) , a2 4(0) , (0} _ip
i t At ;? Age’ + nA T Jee . (50)
The solution n EG. (50) is bounded for all ¢ only if the bracketea terms sum
ii to zero. Applying this congition anu settirg
4 A0 yl0 e 2y rte (51)
- we obtain
-.". 2
od (0) (0) , o ,(0) (0) :
e -2 = U ;7 Usg” * nl . (52)

Equatiun (52), with o = 1 [whicn can be chusen without loss of generality when
a =0(1)}, is precisely Eq. (9), the fundamental narrow-angle 3D PE of Ref.

1. With tne definition

...........................................................
.....................
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P(l) - A(l) e‘ip - U(l)(r,g,z) e‘ip/rl/2

. We insert Eus. (49), (51), ana (53) into Eq. (48) ana require P(Z) to be b

L boundea for all p. It follows as before that u(l) must satisfy

2 : ‘
ouftl o) a2 e

Our results thus far are sunmarizecg by

1p -
p~ = LU(O) + eU(l) + O(ed)] , ¢€+0 (55)

wnere U0) anu Utl) are obtaines from Egs. (52) ana (54), respectively,
tor o of orcuer one, When a = 0(:1/2), the seconu term on the right of

Eq. (bZ) Lanu Eq. (58)) s absent ang is replaced by r-2 Uﬁg)_

Having obtained an analogue of the narrow-angle 3D PE, Eq. (9), we next

ovtain a wider anygle version corresponaing to Eq. (20). Differentiating

Eq. (52) with respect to r yields ik
S00) L1 410 - 288 L(0) 4 &l y(0) 4 y(0) 4 y(0) (e
re T 7 Czzr T3 Tee 2 eer r Wy o - ‘

1t we gefine an operator

ﬂ-'-"i 83 _20.2 32 +Gd 33 + +n3_ + 1 (57)
¢ ar'azz —_I’B- —;2. Y'd ol" 36 r ar ;-2
anu use Eqs. (56) anu (57) in Eq. (54), we fing .
(1) _ 1), & (i) 4 (1) 4 (0) ;
Qa
—21Ur = UZZ + ;? U99 +nU + nl . (58)
2-2¢
R R L D T e S S S
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Adding Eq. (52) and ¢ times Eq. (58) gives
o’ 2 (1)
—21Ur = UZZ + ~ Uuo + U + enU - e nU , (99)
r
wnere we have defined
u=ul0 e tdl (60)

The last term on the right of Eq. (5Y) shoula be droppea, as is consistent
without neglect of O(e€) terms. With this omission ana using Eq. (57),

Eq. (59) becomes

Y4 r-oae
2 2 2 , . 2 2
CHNPSK- W: MY (TR A AL i e ) TR (01)
[:;z 2 ] 7 (v ) T

The resulting wide-angle 3D PE from our asymptotic derivation is given by
Eq. (bl) when a is oraer one, Using Egs. (40) ano (41), 1t follows that
£q. (61l) with « = 1 agrees exactly with Eq. (20) but with the additional last
three terms on 1ts right side. These three terms are multiplieu by «
(typically about 10-¢) anc go not involve a radial gerivative ot the
solution so they are in some sense less significant than the remaining terms
in £q. (61). In fact, tney can be identifiea precisely with contiiuutions
that were arquea as small in the derivation of Eq. (20). Specifically, the
first two ot those terms correspond to those neglecteu via Egs. (37) anu (38)
in the factorization approximation., Furthermore, the last term corresponds to
those dropped through Egs. (24) ana (2b) in the farfielda approximation. In

this way, it follows that Eg. (20) is an apparently consistent approximation

2-¢3

L e
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ot physical interest to the class of 3D PEs representea by Eg. (bl). We note
tnat Lne resuit of tne analysis for a« = 0(el/2), 1.e., for relatively weak
azimutha! variations, may be seen frum Eq. (61) by setting e = e ang
aropping the two 0(e?) terms. Estimation of the appropriate magnitudge for a
in any specific application depends on detaiied consideration of the three

azimuthally-airective mechanisms mentioned previousiy.
A VALIDITY TEST
Tne accuracy of the 3D wiue angle PE has been examined by Schultz, Lee,

ana Jack 5on° using an exact solution test. Their exact solution u{r,e,z) 1s

required to take the form

u(r,e,z) = sin(az) '™ p(r) (62)

where p(r) satisfiea the differential eguation

" :% Ky m2/(kor)2
ar = T2 7] ¢ - (63)
1 - zm /(kor)

For appropriate choices of 2z = an integer multiple ot =, m=1, ana a
solution of Eq. (63), the expression of (62) satisifes the 3D wide angle PE
equation (20). On tne otner hana, Eq. (20) is solvea by an implicit finite
gifference methou that discretizes Eq. (20) 1nto a large sparse system of
equations., This system was solved by a Yale sparse technigque wnose solution
compares favorably with the exact solution (62) at every range and at every o

sector. Results of comparison have been reported in Ret. 5.

2-24
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We want to establish the validity of Eq. (Z0) and compare the solution of
Eq. (20) witn a known reterence solution for an application (as reported by
Baer?), Tnis application problem deals witn a profile tnat can be
calculateu by the formula (g(r,o,z) = Cn(z) + (0.001) rsin(e), wnere cp(z)

takes on the values described by the table below in the vertical plane at 0°.

z (m) c(z) (m/s)
0.0 1536.5
T57.3 1539.243
406.3 1501.143
1015.9 —1471.882
5587.91 1549, 606
558,91 555,526

In the calculation, the source is placed at 254 m below the surface with
8 frequency of 25 Hz, and the receiver is placea at €15 m. The propagation is
carried out up to 140 km in range. Results are proauced in azimuthal

sectors. The sector boundaries are assumea absorbing, Of particular interest

is the result taken from the sector [-20°, 20°] at range 120 km. Reference f‘ K
results were reported by Baer¢ 1n tne same sector using the split-step

Fourier algorithm. In tigure 1, the solid line is the 3D PE result, the

dasheu line is the Nx2D result, and tne dotted line is the 3D wive angle PE .

result, which was calculatea by the Yale sparse technique. !t i< seen that

tne 3D wiue angle PE result compares closely witn reference solutions,

2-25
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120 km
815 m

i RANGE
DEPTH

100

110 L1 1 1 1 I 1 J
-20 -10 0 10 20

ANGLE (deg)

TRANSMISSION LOSS (dB//1m)

Figure 1. Results from Sector [-20°, 20°] at 120 km

CONCLUSIONS

A wide angle partial differential equation has been developed to predict

the underwater sound propagation in three dimensions. This partial

differential equation is of the third order in theory., It is named after the

3D wide angle PE because the small 3D PE is a special case. The entire
development was based on an operator factorization whose theory was fully
Jjustified by the operator analysis and supported by the multiple scale
analysis. The most important resuit is the information to indicate when and
where the three-dimensional problem can be solved two-dimensionally. The

mathematical validity was established by Schultz, Lee, and Jackson5

in their
numerical solution; however, the simulated example demonstrated further the 3D
wide angle PE capability. This 3D Wide Angle PE is, by far, a more general

purpose model with useful fiexible capabilities.

2-26
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3. DERIVATION, CONSISTENCY, AND STABILITY OF AN
IMPLICIT FINITE DIFFERENCE SCHEME

Donald F, St. Mary
University of Massachusetts

Ding Lee
Naval Underwater Systems Center

ABSTRACT: Parabolic equation (PE) approximations to the reduced
wave equation (Helmholtz equation) are used extensively in the
prediction of long-range sound propagation in ocean environments.
In two dimensions parabolic approximating partial differential
equations have been traditionally solved numerically via a Green's
function approach (Fast Field Program) and a Fast Fourier Transform
(split-step). Recently, Lee et al. created an implicit finite
difference (IFD) program to solve more general two-dimensional PE
approximations (those that accommodate wider angles of propagation).

In this paper, we present a three-dimensional PE (encompassing
small and wide angles) that is a third order partial differential
equation, and derive an IFD scheme to solve 1t numerically. The
numerical scheme 1is presented 1in several different ocean
environments, a wedge shaped region with absorbent bottom and
sides, the same region with hard bottom, and a full 360°
propagating region with soft/hard bottom. Matrix formulations are
carefully worked out in anticipation of the implementation. We
derive the consistency of the scheme with the original partial
differential equation and show that the scheme is secound order
accurate. Finally, we present a discussion of the stability
properties that might be exhibited by the scheme.

Revers
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INTRODUCTION

[n this section we shall discuss the derivation of the implicit finite
difference scheme associated with the wide angle three-dimensional parabolic
approximation. We shall prove that the difference equation is unconditionally
consistent with the partial differential equation and investigate the
stability of the scheme. The finite aifference approximation is a
Crank-Nicolson type scheme. We shall show that it has consistency properties
that are very much 1ike those of the classical Crank-Nicolson scheme when
applied to the canonical heat equation. In this regard we remark that the
straight forward explicit difference scheme is stable under certain conditions
on the parameters when applied to the heat equation, but is unstable for all
combinations of the parameters even when applied to the simplest of our two

dimensional parabolic partial differential equations.
A CRANK-NICOLSON TYPE APPROXIMATION SCHEME

The wide angle approximating parabolic equation (PE) is given by

3 .
(L+ap by *ay Ly) 37 = k(P - ) Ly * (Py - Gp) Lyu,

(1)

Llu =[(n2(r,z,o) -1) + (l/ki)(azlazz)]u , L2u = [(llkﬁrz)(aelaoz)]u .

u=u(r,z,e), Y + Q- Py # 9. We shall let u; = u(rn,zm,o ), where

fh="* nk, o > 0, z, = mh, @

=9, + 2d, thus ar = k, a2 = h, ae = d, the

2
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limits of the inadexes are m = 0,1,..., Mor M+ 1, 2=0,1,..., Lor L + 1.
n=0,1,.... In an abuse of the notation, we shall use n in two different
ways: as the index of refraction and as a counter of the number of range
steps. (The context should make it clear which is intended in each case.) We

wish to derive a Crank-Nicolson type approximation to (1).

A standard way in which the Crank-Nicolson approximation is derived for
traaitional ,arabolic partial differential equations is to take the average of
the classic explicit (forward) difference approximation and the implicit
(backward) approximation. In order to motivate tne application of this
procedure to (1), we shall briefly describe its application to a PE in

standard form, namely, the small angie Tappert equation

Up = Cu+duy, e o= ik (nd < 1)/2, d = 2k (2)
Consider the two stencils (for this demonstration, u = u(r,z))
n-1 n-1
z, e z. AT .
z z
m+l m+l
"n T+l "n "n+l

The first of these is used to make the forward approximation based at the

point (fn,zm); the second is usea to make the backward approximation based

. e Ty
. e :
eratla_am

at (rp41,2,). The difference equations are O
+ 2 :
(u; l_ ug)/k = c; u; + 0(“;+1 - 2u; + u;_l)/hz . (3a)
and
n+l +1  nt n+ +1 +1. . T
T L I (A S AR B VT . (3m) R

3-4
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Note that the left-hand sides of these equations are the same. The

Crank-Nicolson approximation to (2) is obtainea in taking ((3a) + (3b)}/2.

In order to begin to carry out this development tor (1) we need to define

3
3

<

2

)
and L2- (3%).
a0

the second order

NS
5

the forward and backward (in r) discretizations of

D @
~N

In each case we shall take the centered difference i

variable and the stancard aifference in r. The key to taking the forwara and

| backward differences in r is to keep the base point of the stencils, the point

at which the approximations are being made, clearly in mind.
: e
) The two stencils associated with the z-derivative, base point encircled O
: are S
i (F o2y +9)
! n*“m-1°"2 (Fre122009) (Fo4122ma12%2)
: (rn’zm’°z) (rn9zms°2) (rn+1nzm:°2)
. (rZe1 29 ’ (Fpe12Zm_1%)
i (forward) (backward)

The two difference approximations to urzz are equal, as above (the forward
and backward approximations to the full differential equation (1) are not

» equal though), ana have the common value

ntl 5 n+l . ontl 2 n n n 2] ffjli
[(“m+1,z Qup g el M = Uy = U YUy MR SN
Henceforth we shall use the central difference operator notation T
n Yo

2 n n n T

(epuly = (“m+1,£ - 2ug um—l,z) ) e

A completely analogous development takes place for the second derivative in

6. The corresponding stencils in the r,o airections are as follows:

...................................
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(rn+lvzms°g,) (rn+llzm’°g)

(rn)zmxog.'.l) ‘

(rn’zm’ol) w l
("2 2me®g) ’

The approximations to Uroo have the common value

+1
(qu)n /d2 - (czu)" dz] k .
m 2 ' m

2 n n

n n
- +
(GQU)m = um,1+l zum,z um,z-l

where

It is not difficult to prove that for arbitrary sufficientiy differentiable

functions #(r,z,e),

n n+l n
(dbm)m - [( s,iu) - (6,?,U)2]/<h2
o

n

= ~(bregg) |, (KI2) = (Bl (0/12)  (4)
n 2 2, 2
~(Brrg)  (knPj28) + O(KE + n?)
m, %

as h » 0, k » 0 independently of the manner in which h,k approach zero. A

completely analogous formula holds for ﬁroo' which we shall use in the

ensuing development,

We shall now obtain the desired difference scheme by producing the
analogue of (3a) and (3b) for equation (1). For the first of these, the base

point is (rn-zm’°g) and, thus, the forwara approximation is given by

3-6
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n n+l n
(1+ ql((n2>m Y (upry = b )IK) + ql(l/kf,)[(sﬁu)2 - (sﬁu)z}/khz
n+l n
+ qy(1/0k r, ) [(siu) - (&du) ]/kdz) (5a)
m m

ik 8" L, k) )(e2u), /n?
= iky(py = g7)((n )m . Un g ik ) oy - a8 u)g

L2 2 \"
Hi/kgrp) (P - Q) (6pu) Ja
m

2

The backward approximation has base point (rp+],Im,9,) and is given by

2 n+l n+1 n+l 2 n

(1 *qn") - 1) (ugy - un 1K)+ a (1/K3) (su)y T - (sBu)g ki
2 2 ML M 2
+ o1/ (kgrpe) (GEU)m - (Gﬁu)m /kd") (5b)
n+l n+l

-wgm—qgu¥%1-1w$i+mu>wl a ) (), In°
n+l

+(1/k0rﬁ+1)(pz - qz)(siu) Ja? .
m

Finally, the average of these two yields the Crank-Nicolson difference
approximation system. After considerable simplification the system can be

expressea as follows:

B/l . Bttt . Ty, - (2/n8)5

m-1,% m,2-1
— +
L O A T P AR oW T (6)
- (b/hz)u;_l’g + (bOn/dz)u;,l_l * (a0p , - (2/n)b

n

2 2 n, 2
-(2/d )bOn)u;‘l + (b/h )“;+1,z+ (b0™/a")uy 441 ’

3-7
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where

b= b(K) = qllkg +ik(py - 4 )2kg

[ g k(p, - 9,)
2 /1 1 . 2 2
bl = bl(r;K) = ( + +1 N
22 2 (r e w)? 2K, (r + x)z]
[ q ik(p, - q,)
b0 = bO(r;k) = [—5 (15 + —1—,) + —2—2 , (7)
_2k° r (r + k) 2k, T
al = al(r,z,0:k) = (1 + ql[(nz(r,z,o) + nz(r*k,z.o))/2 -1]) A

+ikky(py - ap)(né(rek,2,8) - )2,
a0 = a0(r,z,03k) = (1 + q1[(n2(r.2.0) + n(r+k,2,0))/2 - 1)

+ ik (py = ay)(n(r,2,0) - 1)/2

The bar over an expression indicates the taking of the complex conjugate.
Note also that al anu a0 are equal if n(r,z,e) is independent of the range

variable r.

BOUNDARY CONDITIONS AND MATRIX FORMULATION

We wish to express system (6) in a convenient matrix formulation, but the
precise form of the coetficient matrices depenas on the bounagary conditions .
imposed on the original problem., Throughout the discussion we shall assume

the surface boungary conditions u(r,0,e) = 0. Another stanaing assumption is

AT

the initial condition, namely, for a given function f(z,e), U(ro,z,g) = - ii
f(z,e). j:j
e

o

"]

‘

3-8
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A frequently imposed bottom boundary condition is u(r,zM+1,g) =0 (in
this formulation the bottom is at z = 2y,;), the general assumption
associatea with this condition is that an artificially imposed absorbing layer
below the ocean floor prevents erergy from entering the water column.
Similarly we can consider propagation taking place in a cylindrical sector
(pie-shapea region) between two azimuthal angles denoted by 8, ang @ 4
with an absorption region on each vertical side of the sector. Thus in

aaartion to the conditions

L}
(=]
-

u(r,zo,o) u(r,zM+1,o) =0 R (8a)

we have
u(r,z,o

(]
o

0) U(P,Z,OL+1) =0 ’ (8b)

for all r >0, 2, 8 < 9 < 9 41. This is the case considered by Baer and

Perkins for small angle PE. Finally, ore assumes a given sound profile at a

distance from the source

u(r,,2,0) = f(z,0) . (8c)

The system (6) in conjunction with the boundary conditions (8) can be

expressed in a particularly nice symmetric block tridiagonal matrix form.

Namely
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l=

‘3

n+l

[ AI; BI 7T Y T
_n _n n G
Bl Al, BT (2)
" on “n T on uﬁ*l g?f
n n n+l .
~ ) AL - - (L) -~
(9) B
. n n un .'__
AQ; BO ] T (1) ] o
n n n G" {;,
. ) . ;-.L

n ’ n n ul'.\
BO A0, BO (L-1)

n n

n
e -
- 8O A - “() :
where each block is M x M, the diagonal blocks are tridiagonal matrices ana
v
the off diagonal blocks are diagonal matrices with -

............................
'''''''''''''''''
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BO" = diag [00"/d%, ..., bQ"/d?]
B1" = diag [b1"/c?, ..., b1"/d?] , (9a)

a0 8 -

a7

1,2

TS
‘2 4
3

x

ER PN

A"

(9b)

Sharish Rul¥ S I
T AT
.
»
.
.
-
*
~ 4
I

v okl

n
B alyp, B

n e
L. B GOMJ' _J ‘

-a0" - (2/h%)b - (2/d%)p0"

A" = . . . (9¢)

9 \
n P
B al B
M-1,2 -

n S
- 8 aly g | %iw

n n 2 2 n "
ﬂlm'g = alm’g - (2/h )b - (2/d ) b ’ [

and

3-11
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n
Y21
n
U(z) = .
L4 . (gd)
n
LUM,2.

The system (9) shall be referrea to symbolically as

n
We shail now turn to more general bounaoary conditions ana consider a
cylindrically shaped region 0 < @ < 2n. Again we shall retain the pressure

release top surface boundary condition

u(r,z,,0) = 0 , r>0 (10a)
The bottom boundary conditions are artificially locatea far below the actual
bottom of the wave guide, but in the current case we assume that the position
Z =2y is tne actual interface between ocean floor and water ana allow for

the possibiiity of reflection of rays. Fbr given real constants a, Bos ¥

the condition is given by

au(r,2y,0) *+ 8.u,(r,zy,0) =y , By # 0 . (10b)

The case of general interest is a« = 0, 8o = 1, y = 0. Finally, we impose a

continuity condition on the motion in the @ variable, namely

u(r,z,0) = u(r,z,2s) , u,(r,z,0) = u_fr,z,2s) , r >0 . (10c)
e 9

..............................

v

M
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We shall assume that 9, = 0 and °L+1 = 27,

First consider the discretization of the boundary conaition (10b). We
shall use a centered difference to approximate the derivative so as to
maintain the second order character of the approximations (as shall be seen in

the ensuing development, (6) is a second order scheme). We use

u,(rs2zy,0) = [u(r,zy,,,0) - u(r,zy 1,0)J/2h ,

and thus for (10b) we write

n n n
atly o ¥ Boluyyy , = Uy, /20 =y . By # 0 . (11)

n

M,z)

ana can be expressed in terms of the real unknowns ua o u&_l , using (11).
» »

The term ua+1 , is ficticious in this context (recal} the bottom is at u
14

In order to encompass (l11) into the matrix formulation of the problem, set m =

M in (6) ana make the substitution, from (11),

n n n
UM+1,2 = UM_l,z - ZuhuM.g,/sO + ZhY/BO . (lla)
to obtain
— + ___n _n‘%l _
2(b/h2)u;_i’£ * (bl ’“2)“ati-1 *(aly - (Z/hz) b (1 + ah/8,)

2, " n+l N 2 n+i
(2/d%) BT UM, g + DBl /a Uy, g 4]

2
- 2(b/h%)uy g, * (bOn/dz)ua‘R_l * (a0 , - (2/n%) n(1 + ah/s))

2 n, n n, 2.0
(2/d°) bO )uM'£ + (b0 /d )“M,E+l T , (12)

Ip,k = (21/8gh) (b =0 = 2vki(p - a))/Bghk,)

3-13
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Conaition (12), compared with (6), forces a change in the last row of each of

the diagonal blocks al, a0", ¢= 1,2,...,L, Of the system (9).

In particular if one should use a bottom reflecting condition (11) in a

sector with absorbing vertical sides these row changes plus the aadition of

the 9,k vector would be the only change in (9). The resulting matrix

system, which we choose to denote by

F) EATUAC TP SLUNL g ° (13a)

has the same coefficients as (9) except that for the AON we substitute

[ AN

a0p ¢ B ]

n
8 “02,2 8
" - . . . , «1,2,...,L,  (13b)
n
B Oy 8

- 2B GOM,,Q, i

where
a0 = a0 - (2/h%) b(1 + ah/8_ - (2/d%) bQ"
M, M,2 aiBy
The analogous change in constructing the Al'ln from (12) is made,

[}
(ler:Z = ala’z - (2/h2) b(l + uhlao) - (2/d2) bln ,
and g is the M x L - column vector

.
- g = [0, 008 D ooes L0400y T (13¢)

.
..
-,
.
N
S
e
-
b
L4
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The system (13), which does not exhibit the symmetric character of (9), will

be shown to be equivalent to a symmetric system.

Returning to the main consideration of this subsection, namely, a
cylinarically shaped region with bottom reflecting condition (11), the

conditions in (10c) can be represented as folluws:

n n n n n n
Um,0 = UYm,L+1 * [um,l - um'o]/d = [um,L+l - um.L]/d . (14)
The dummy index 0 = L+l is only used to help indicate direction of approach to

. : n n . X
the vertical plane ¢ = 0, i.e., U, L+l ™ “m,O‘ The two relations in (14)
recuce to

“g,o - (“;,1 + u;_L)/2 . (15)
One now re-examines (6) in the critical cases 2 = 1, o= L}
ma=1,2,...,M. The new system of equations differs from (13a) only in the
first and last rows of blocks. It is an (ML) dimensional square system

block-tridiagonal-like in form, except for the first and last rows of blocks

each of which has one additional btlock; i.e.,

AT U™ LA™ e g

where

3-15
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"AKI" Bk"
BK" AK,"
}
IR'ln = .
BK"
b(1/2)BK“

80", 81", & are as in (9),

— .0
QKl'z B

"

n
8 “KZ,Q 8

.

KT . ,

where, for

]
L = 1,L ; QKmr’ll-

(1/2)8K" 7]

Iln

AKL_1

BK

BK

AKL

28 ak

K = 0,1

K= 0,1
L ow 1,2,..4,0

aK; g - (2/h%) b - (3/2d%) bk" , m o= 1,2,... M40

“KMTR' aKM?a - (2/h%) b(1 + ah/g,) - (3/2d) bK" ,

(16a)

= 2,..-;L—1 ’ GKI:II:'!L’ GK:_.’Z = aKll;’R, - (2/h2) b - (2/d2) DKn , M= 1,2,...,M—1 :

" ' '
GKMTQS “KMTl = aKMTE - (2/h2) b(l + ﬂh/BO) _ (2/d2) bkn ,

3-16
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K = 0,1. Of course since everything on the right-hand side of (16) is known,
one could write it (but not the left-hand side) without the addition of the

corner blocks, using (15) directly ano making the corresponding changes in the

vector g.

CONSISTENCY OF IMPLICIT FINITE DIFFERENCE (IFD)

A difference equation approximation to a partial differential equation i$
said to be (unconditionally) consistent with the differential equation if the
difference equation approaches the differential equation as the mesh size
approaches zero, independently of the manner in which the mesh size approaches

zero. More precisely, (6) is consistent with (1) if

n
1[5 041 BT 0+l - 2 — 2 =" o+l
X [;2 °m-1,z * ET o’m,s&-l ¥ (alm,a - ;2 b - ;’Z ol ) ¢m,z

n
b ,n+l bl ,n+l b ,n 00" ,n n
4 tm+1,£ * P ¢snn,9.+1 = F ﬁm_l,p, -z bm’g_l - (aOm,Q (17)

+

n
N i? b - %? bo") ﬁa,m - %? ¢g+1,9, - Eg' brr:n,ul

- [(1 Ly Y ap L) b - ik (g - 9Lyt Ry - Q5L ¢];
approaches zero as h, k » 0, independently of the manner in which h, k
approach zero for arbitrary net functions ¢(r,z,e) having sufficient
differentiability. The factor 1/k is present since in the derivation of (6)
we previously cleared the k from the denominator. In order to help simplify
(17) we shall express, a0, al, b0, bl, and b in terms of their consistent
parts. Let

3-17

P
TPy |

e
IR I
St T
. PR
e
PR TR A
PP SV SNV T 1




TD 7145

Ra = Ra(r,z,0;k) = 1 + 9 an(r,a,o) + n2(r + k,2,8))/2 - 1]
la = la(r,z,6) = ik, (py - ql)(nz(r.z,O) - 1)/2 ,

RON = RON(rik) = gp((1/r8) + (Li(r + K)2))/2kE

IbN = IBN(r) = 1(p, - qz)/2k0r2 ,

Rb=aq ik, Iomi(p - 2k

c = c(r,z,0;k) = ql[nz(r + k,z,0) - nz(r,z.e)]/Z s
then
ad(r,z,0;k) = Ra(r,z,0;k) + kla(r,z,9) .
al(r,z,0;k) = Ra(r,z,0;k) + kla{r+k,z,9) ,
bO(r;k) = RON(r;k) + KIbN(r) ,
bl{r;k) = RON(r;k) + KIbN(r + k) R
and
b = RB *+ KIb .
It follows that

(1 + 9y Ll) = (Ra - ¢c) o, +Rbp

r rzz ’

'lko (p2 - qz) L2¢ = ZIbNﬁog ’
and that the standard Taylor approximation in the r variable ylelds
. 2 2
¢(r,z,0;k) = qyn.(r,z,0) k/2 + 0(k ) s
ana
RON(rsk) = q,/kEr? - kq2/k2 3+ 0k
Now (17) can be expressed in the form

3-18
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2 n+l 2 n

gn*l _ gn n (6p8) - (6p8)
| Ra] -Ebj-;——ﬂhJ]- (8.) + (Rb - kIb) J J
| m,J [ g kh*
‘. 2 n+l
C (536) -~ (5 ¢)
: no_ n m m .,
i + (RON" - KIDN") — [ m J] (¢, ) nj
: (626)
. m
) n+1 n n+l n+1
- - ma[ ]'2“’ [° ][I ]
'; n+l 2 n

(6 0) (s5#) n
. ﬁbN"*l - IbN"] —0 |- 21oh" || - Ro(8,,,)
d d rzz m,J
. " " —_
‘ -q ($0a) + 21b(¢,,) + 210N (¢
2 20 Zn ree’ v 22 m, j (1) m,J
Each term appearing in brackets, L...], can be expanded using a standard

—y
A Taylor approximation, the centered difference approximation, or (4), thus we

- obtain

| [w )’ %) " i
. /2 + 0(k ]+ Rb - KkIb [¢ + (9 k/2
::2 m.J m,J ( ( ) ( PZZ)m,j ( FPZZ)m,J
. + o(h? + k%)| + (RON" - kIbN" " " ke s o+
. ) ( - ) wroo)mhj (q’rroo)m“j / o )
E 2" 2 ] n n [ " 2 ]
- + kj2 + 0(k°) | (8 -1 9 Kk + 0O(k
, o o 0] @) - [ s o0

21b[(¢zz):"j + 0(h2)] - [";.J + O(k)] [(Iar)m R O(RZ)]

n 2 n 2 n n 2
SleN)™ ks 0(KS) (Bgg) | * O(k) *+ 0(d)| - 206N ({8 )+ 0(d%)
m,J m,J m,J
3-19
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" L4 )" +2mb(6.) 2N (8
+ 21b +
M, J 22 m,i % m, ]

m,J k

2
< [0r2) [Rag,, + R0, RO+ g 0?6,

- (2a,/k3r%) 8,00 ~ 2 (1ad, * Ib 4,,,)

2 2

n
- 2IbN dree -2lag - 2IbNr(¢ee)m,J]+ 0(h" + k

+ ¢2)

n
(k/2) aBl ALy g, Ly)d, - kg ((Dl - ql) 1t (Dz - qz)Lz) ¢]/ar .
™M,J

+ 0(h2 + k2 + 42 , (18)

where the last equality uses the fact that kcé,... = 0(k2). It follows
iimmediately from the equality of (17) and (18) that in the range dependent
index of refraction case, n = n(r,z,e), the Crark-Nicolson difference scheme

(6) is unconditionally consistent with the partial differential equation (1).

Further, the truncation error or local discretization error can be
obtained as the magnituue of the difference, at a point (rn,zm,e ) between
the differential equation and the difference equation both evaluated with the
net function ¢ = u, the exact solution of the partial differential equation.
Again, the equality of (17) and (18) yields immediately the result that the

local discretization error of (6) is O(h2 + k2 + dz).

TRANSFORMATION AND NONSINGULARITY OF THE OIFFERENCE SYSTEM

The system (16) is a square system of equations having M x L unknowns.
We shall show that a solution always exists, i.e., that al'm is nonsingular,

under practical assumptions on the parameters in (1). Looking at (16a) one

3-20
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can see that the last row of each AK;" causes nonsymmetry to enter (16).
We shall show that a very simple transformation of the original system

replaces it with an equivalent system in which the AK:]:n are symmetric, K

= 0,1.

First, we shall rewrite (16) in a manner which brings out the structure

. "
of the individual blocks AKJ", Let ng be tne M x M diagonal

matrices having diagonal elements as follows:

DK? = diag [}K?’J. akg,j, caes aKa,J] yd =1,..0,L 3 K=0,1,

and T be the M x M tridiagonal matrix

"2 -1 n
-1 2 -1
T = ) i ,
-1 2 -1
ah
| -2 2(1 + E; ]
then for
e N (Y B ST I E T3 S
and for

Pe2 Lo, A K] - (b/h2)T - (6K"/d)(21)  , K = 0,1,

where [ is the M x M identity matrix. Let DK" ana J denote the ML x ML

(block} diagonal matrices

oK" = aiag [DK?, DKS, veey DK ] , K =0,1 ,

J = diag (I, I, ..., 1] 3-21

....................................................................................
...........................
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(J is the ML x ML identity matrix), and let S be the block trigiagonal matrix

with two additional blocks

(1 - (1)1
- 21 -1
I I
_.1 S = | . ’
; -1 21 -1
| (g S

then

[}
AT a0k - ond)Ta - (k™S , k=01,
where we are using some obvious scalar block multiplication of M x M matrices

ana ML x ML matrices.

We shall now pursue the transformations alluded to above. The

nonsymmetry obviously arises from the involvement of the matrix T. Let P be

¥ ! ‘."-" -_.'. .'_ .‘. T
> R L

.%L“l;Ljs?PV*i"

the M x M diagonal matrix, i.e.,

P = diag [1, ..., 1, IANZ] ,

then 7 = P‘ISP, where S is the M x M symmetric tridiagonal matrix having

exactly the same entries as T except in the lower right 2 x 2 block where S is

of the form '_Q-'_,‘_.i

2 -V
S{lower block) =
V2 2(1 + ah/s,)

3-22
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Let P, S0 be the ML x ML block diagonal matrices

P = diag [P, ..., P] , 5, = diag [S, ..., S] ,

then

AK" = K" = (b/h%) =1 spD - (bK"/d°)IS

[}

-7l K = (b/nd) P‘lsop - (bK"7d2) pisp

P~k - (b/h?) S, - (bk"/d%)s]P

_1 " n
P AtK P ’ K=0,1

Thus the system (16) may be expressed in the symmetric form

KZT"" Vil At()"n v' + pg , (19)
where
W = Ly .
and
AK™ 2 DK - (b/h8)Sa - (bK™d2)IS , K=0,1 . (19a)

t
In order to obtain the nonsingularity of the system we rneed to derive
conditions under which the matrix in (19a) is nonsingular. Let A = Atlun,
n be fixed but arbitrary, and suppose there exists an ML-vector v,
v = (v, Yos «ees YU)s Y]» +oes v M vectors, such that y = 0, then

Y* Y = 0, i.e.,

(b/hz) ooyt (bln/dz) y*Sy = y*01%y .

The quadratic terms y*S y,Sy* y are real since S , S are real symmetric
and it is easy to see that y*Sy > 0. Now separate the equation into two
equations by taking its real part and its imaginary part, then eliminate

1*S,y from the two equations. The result is the expression
3-23




[0

| TD 7145 o
1 (1 L1 | q2(p1 ;) _ ) ql(pz - qa) xs

252 Z 22 2 K22 v -

I n n+l 0 n+l 0 e

LM nl

n n+l 2 s

: SCAEENID DD DR N (U0 MU M VL) ) R ) i

. m,J m,J a—

K jelmal e

K (Ygl), asas ng))- We wish to state conditions under which it is &k;

impossible for (20) to hold except for y the zero vector. The first condition

:2 we shall state is where the index of refraction is slowly varying in range. L:;
- This is a standard assumption which is frequently utilized long before this

point in a development such as this in the general area of underwater
!; acoustics. We implement the condition here to imply that the difference i

involving n in (20) is small. The standard choices of the p,q parameters

are pl =p2 =3/4, ql =q2~1/4; pl-pz- 1/2‘ q1 -qZ'O‘

ii or values close to these. Under such circumstances, the right side of (20) e
- can be seen to be close to the magnitude of the original vector y , which can P?f
. ._.\
N be taken to be unity (if y # 0), and the left side of (20) can be made .j§
arbitrarily close to zero by choosingiappropriate range step sizes k. Thus, :j

we conclude that under appropriate conditions on the parameters that y must be ;a

the zero vector, i.e., the difference system is nonsinguiar. tﬁ

STABILITY 3
We now turn to the question of the stability of the scheme. A difference o

system is said to be stable if an error (initial, round-off, etc.) made at the nth
step does not magnify uncontrolled in its propagation to the (n + l)th. In the

simplest cases this translates into a need to show that for a system of the form

Loyt 4 g, the eigenvalues of B are less than or equal to unity is magnitude.

3-24
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In the current deveiopment the complicatea nature of the matrix 87,

from (19), is
T .

B = (A1) (A0,
which makes it very difficult to attack the question of the magnitude of the
eigenvalues of B". Thus we shall pursue a more heuristic discussion of the
stability question. To simplify matters somewhat more we shall consider only
the small angle PE, i.e., P) « pp = 1/2, q] = G = 0, and we shall
assume the index of refraction is constant, i.e,, n(r,0,z) = n. Thus the

partial differential equation becomes

2 P 2
: 2 1 3%u 2 3u
Uo = Tkgpyp [(n® - 1) Ut Zp =] + oy =y . (21)
roorl kS a2 ] kor 20

The von Neumann or Fourier series method of analyzing stability is a
methoa that actually applies only to linear difference equations with constant
coefficients ana then only to initial value problems with periodic initial
data. In practice the method is widely used outside of this narrow band of

problems and it frequently gives useful results.

We begin the method upon assuming that a solution of the difference

equation (6) is given by

. . . n
W efulmh) g1y T (22)

where £ = e, o a complex constant., We seek conditions under wnich (22)

satisfies (6) and |¢

< | for all n. Frequently ¢ is called the

amplification. Substituting (22) into (6) and simplifying one obtains
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£ |-b [%7 (1 - cos wh) + —?3?——-(1 - cos vh) - kg (n2 -1)] + 1]

d P+l

(23)
-2 2 2 , 2
= |-b LEE-(l -~ C0S wh) + i (1 - cos vh) - kg (n” - 1)] + l] ,
N ! dr
. "
i where we have used the fact that bl = b/(r + k)z, b) = b/rz, and al = a0 = 1
+ bkg(nz -~ 1) due to the assumptions enumerated above.
y Case 1:
-
' If the inaex of refraction n = 1 then
3 Lo B h) + < (1 |’
- COS w - COS v
W) |7 P
g = . (28)
k2 [z 2 2
l+(TE-) —?(l—COSuh)"'—?—z——(l-COSvh
o |h d'rpsl

We do not mean to imply that there is no dependence on the index n in the left

sige of (24). We are here concerned only with the depengence of £ on n which

might be of magnitude greater than unity. Indeed separation of variables in *;@;‘

(21) inaicates that its solution as a function of r has a factor of the form

, 2 N
R(r) = eﬂl(opl(n - b e~y e"/r .

u,A constants. It is apparent from (24) that |£| > 1 which suggests
instability of the scheme in this simplest of cases. Extensive numerical e
computations have not yet been carried out in connection with the scheme. If

it should turn out that the computations indicate no instability for this

particular case then it will be necessary to abancon the Fourier method and o

analyze stability via a different approach.

3-26
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Case 2:

If n>1and ko(n2 - 1) is such that

2 2 2
- xnn[;?(l-COSwh)'f?;E(l—COS \)h)-ko (n2-1)]<0 N
n

then

xn*l < Xn < U, and thus

Hence the method indicates stability. lé[f
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4. APPLICATION OF THE YALE SPARSE TECHNIQUE TO
SOLVE THE THREE-DIMEWSIONAL PARABOLIC EQUATION

Martin H. Schultz
Yale University

Ding Lee
Naval Underwater Systems Center

Kenneth R. Jackson
University of Toronto

ABSTRACT: The Yale University sparse matrix technique 1s an effi-
cient method for solving large sparse systems of linear equations
such as those that arise at each step in the numerical integration
of the stiff system of ordinary differential equations resulting
from the application of the finite difference discretization to the
three-dimensional parabolic wave equation. We discuss the
procedure of a special technique, the Conjugate Gradient method for
Normal Equations (CGNE) together with 1its advantage for solving
three-dimensional underwater acoustic wave propagations. ey
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INTRODUCTION

Interest in applying the parabolic equation (PE) approximation to solve
three-dimensional ocean acoustic wave propagation is on the rise. A
three-dimensional parabolic equation (3D PE), originally introduced by
Tappert,1 dealing with small anglie propagation was solved by Baer-Perk ins2
effectively. Baer-Perkins solved the 3D PE by means of the split-step
algorithm extended to three-dimensional calculations. Their efficiency in
calculation is to specialize the problem into N by two-dimensional problems (N
x 2D algorithm). A second three-dimensional wave equation was recently
developed by Siegmann, Lee, and Kriegsmann3 that offers the wide angle
capability (30 wide angle PE). Reference 3 showed that the 3D PE is a special
case of the 3D wide angle PE. Since the 3D PE is a special case of the 3D
wide angle PE, we proceed only to seek the solution of the 3D wide angle PE.
Bayliss, Goldstein, and Turke14 used the sparse matrix technique and
effective preconditioning to solve the Helmholtz equation. For the solution
of our problem, we introduce the Yale University sparse matrix technique. A
brief discussion on the Yale sparse technique will be given in the next
section., In order to set up the 3D wide angle PE in the form solvahie by the
Yale sparse technique, we apply an implicit finite difference scheme to
formulate the 3D wide angle PE into a finite difference equation. Numerical
solution to this implicit finite difference equation is carried out by the
convergent Crank-Nicolson scheme. A section is devoted to discuss the finite
difference formulation. To support the validity of the solution, two examples
are included: one demonstrates the exact solution test and the other exhibits

an application that had been considered by others.
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AN APPLICABLE YALE SPARSE MATRIX TECHNIQUE

A linear system of the form
AX = f (l)

can be solved by two classes of methods, the direct method and the iterative
(indirect) method, where A i3 a square, nonsingular matrix of order N, and x
and f are vectors. All direct methods employ the Gaussian elimination
procedure, which is very suitable for dense systems but has limited usefulness
for solving sparse systems because excessive memory storage is required for
farge N. This is where the sparse matrix technique plays an important and
useful raole in obtaining an efficient solution. These large sparse matrices
usually come from the Method of Lines (MOL) discretization of partial
differential equations. There are many techniques introduced to solve the
sparse system and an overview of recent developments of these methods can be
found in Ref. 5 (Elman). Among these methods, a particular effective method
applicable to solve our three-dimensional wide angle underwater acoustic wave
equation is the Yale University sparse matrix technique package.5 One of

the sparse techniques contained in the package is known as the Conjugate
Gradient (CG) method,s'6 which has been developed to solve symmetric,
positive~definite systems iteratively with great efficiency. In theory, these
iterative methods must converge and must converge fast for efficiency. In
practice, conventional iterative methods require the estimate of some kind of
parameter (e.g., the extreme eigenvalues of the matrix operator A) for fast

convergence. Without this estimate one has no idea how fast his applicable

4-4
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iterative technigque converges. This is a drawback of most iterative methods.
The CG method minimizes a certain norm in each step and is in a sense optimal
over a class of iterative methods. Since the system is sparse, the operations
‘ are inexpensive and easy to implement. All these properties make the (G a
I strong candidate as one of the most robust, rapid convergent iterative
methods. This is the reason we introduce it tp solve the wide angle
three-dimensional partial differential equation. 1In application, the CG

method is effective for sulving symmetric, postive-definite problems. In

3

N
: fact, the partial differential equation governing the ocean wave prapagation
with wide angle capability does not always result in a positive system. On
: the contrary, it results in a complex system. The CG method cannot be used
? unless an effective preconditioning technique is applied. The efficiency of
L; the application of the CG method to solve the 3D wide angle PE can be enhanced by
i preconditioning. These preconditioning technigues solve the system
:‘ AX = f
- by an equivalent system
N o lax -l (2)
» ;
;f where Q‘l is in a sense an approximation of A~ so that Eq. (2) can be
; solved very economically because the actual operation of Q'lA nead not be
?A performed explicitly, and at the same time the condition number of A is R

improved. Since our resulting MOL discretization of the 3D wide angle PE is

neither a real system, nor has the positive-definiteness property, we use the

4-5
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A* for Q"1 as the preconditioning matrix. We then extend the techniques to
handle a complex, nonsymmetric system whose solution is to be shown
effective. The method we consider here is recognized as the application of

the CG method to the normal equation.

We begin by dealing with the solution of the system of equations of the

form of Eq. (1), 1.e.,

Ax = f ’

where A is a nonsingular, square matrix with complex elements. This problem

is equivalent to the normal equation,
A*Ax = A*f | (3)

where A* is the complex conjugate of A. This suggests that one natural way to
solve a nonsymmetric system is by applying preconditioning to the original
system and solving the equivalent system (3), provided no extra work is

introduced.

In theory, when the CG method is applied to solve system (3), the iterate
X; minimizes the residual norm,s One member of the CG fanily that can be
used to soive system (3) is known as the Craig's method7 and was proposed hy
Hestenes.8 In this implementation, the iterate X; minimizes the residual
norm. This is the method we used for our underwater applications and we

further extend this application to complex arjthmetic.

hd + R R - ‘o - Wt A AN Nef TR . - . - - - . - .
L A S G e T Tl i LRI T I




TD 7145

CRAIG'S ALGORITHM
The computation of the Craig's method involves 5 steps, i.e.,

(ri’r‘i)/(p‘i’pi) ’

iy
o

-
]

Xgep = %5 T 2Py
E: ' rieg =y - AP
o b1

- Piey = AMrisg * B4y o

(Fapord (ryory)

'f? where ry = f - AXgs XQ is chosen arbitrarily, and py = A*r,. The

above loop is repeated starting with i = 0 until convergence.

The work per loop requires 5N multiplications, plus 2 matrix-vector products.

Besides, only 4N storages are required for the vectors x, r, P, and Ap.

When aealing with the solution of system (1), we apply the preconditioning

Then, Craig's method is

technique to transform system (1) into system (3).

used to salve system (3). It is natural to think about the need for explicit

computation of A*A. The advantage of using Craig's method is that the A*A ;;ﬁia
need not be carried out explicitly. This has been clearly demonstrated in the W
computation procedure. j%???
:.\-:r.'.

THE 3-DIMENSIONAL WIDE ANGLE WAVE EQUATION o

there exist twa different types j;jia

As we mentioned in the previous section,

of three-dimensional wave equations as a result of the PE approximation. One

4-7
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is the three-dimensional parabolic wave equation (the 3D PE), originally used
by Tappert1 to derive the standard two-dimensional PE. Solution to the 3D

PE has been developed by Baer and Perkinsl using the Split-step algoritnm.

The second type is the three-dimensional wide angle partial differential
equation, developed by Siegmann, Lee, and Kriegsmann.3 (We refer to this
equation as the 30 wide angie PE.) We chose to concentrate on the solution to
the 30 wide angle PE because the 30 PE is a special case. We want to remark
why we are motivated to solve the 3D wide angle PE instead of 30 PE; in
particular the application of the Yale sparse technique. In this event, the
vertical angle of propagation is roughly larger than 15°, due to the irregular
nonzero boundary conditions, or other environmental properties where the fast
Fourier transform (FFT) is not easily applicable, this is why a general

purpose solution is needed.

Now, consider the 3D wide angle PE.

1+ n2(r 8,z) -1+ —% —3; + "l"TZ —3;
A1 l k> 8z P2 (k r)' 20
. 0 ' 0 RO
i\ 1 2 j -1+ L 221, 1 ) ‘o N
+q n“(r,8,z} - — q — “
1 kO 3z° 2 (kor)2 20 Zpk}

where n(r,e,z) is the index of refraction and ko is the reference wavenumbar.

Note that when p; pp = 1/2 and q) = qp = 0, Eq. (4) reduces
exactly to the 3D PE.2 Using the split-step algorithm to solve Eq. (4) is
not easily applicable. One can easily see that an alternate general purpose

technique s needed to solve Eq. (4). One approach that was considered was to

4-9
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multiply both sides of Eq. (4) by the operator in the denominator of the right-

! hand side of Eq. (4). The following was obtained

- , 2 2

- 2 1l a 1 3 3

v 1+q [n"(re,z) -1 + Y, —— T
N 1[ k_f?] 2 k) Zael | "

0 0 -

—

2

, 2 3
= Kk, {{p1-q;) [n%(r,8,2) -1 + -5 —| + (p,-a ———g——z
o*"1771 [ ig 3z ] (p2 21 (k r) }

Eq. (5) is not a PE, but a third order partial differential equation known as

the pseudo-differential gquation. (A reminder to the reader here is that Eq.

! (4) is called the 3D wide angle PE because the 30 PE is a special case and the .
terminology PE is a very familiar term,) R

In solving Eq. (5), St. Mary and Lee’ attempted to seek a finite

difference solution. Their analyses indicate a restrictive stability

condition. For this reason, we attempted a similar implicit finite difference
scheme as used for the 30 wide angle PE because of its favorable unconditional 5
stability. The solution by means of an iterative technique is the main topic e
of this paper; moreover, the efficient solution by means of the Yale sparse -

technigue will be the main result.

DIFFERENCE EQUATION FORMULATION OF THE 3D WIDE ANGLE PE
We are concerned with the solution of the 3D wide angle PE, Eq. (4). We \':

seek such solution by means of the Yale sparse technique, in particular,

Crajg's method. To deal with the solution of Eq. (4), we must first discuss

4-9
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the solution procedure as to how to bring Eq. (4) into the finite difference
equation such that it is in an easy and acceptable form for Craig's method.

Before this formulation, we have a few definitions to state.

Let m indicate the index in the z direction; Az = h indicates the
z-increment. Similarly, is used to indicate the index in the e-direction;

40 = § is the e-increment; k is used to indicate the range step ar; and n is

used to indicate the range level, Also, for brevity, define

2
2 1 3
X = n(r,0,2) -1+ =2, (6)
K2 22
0
and
y = -1—75 : (7)
(kor) ;;?

Then, Eq. (4) can be expressed in a short expression using the above
definitions, i.e.,
L +p,x +p,y
2y oo [-ik + ik 1_ 270, .
ar 0 o T+ qqX + 9y

Write

G L+ pyx+pyy
‘;<’ = —1k0 1k0 Tffpjifi—;~agy s (9)

then, Eq. (8) can be written in a short operator form, i.e.,

-i u =v(u . (10)

ar

Numerical solution to Eg. (10) can be expressed as:

k3
ar N . (11)

n+
ul=e U

4-10
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Using a half-half splitting of the exponential, and setting up the solution to
€q. (11) by the Crank-Nicolson scheme {(an implicit finite difference scheme),

we find that an implicit finite diffarence discretization to Eq. (4) becomes

[1 -3 wt]u""l - [1 +1 wf]u" . (12)

Using the definition ofdS, x, and y, Eq. (12) becomes

2 2
bra ("Z(r'u) -t l2‘3"2‘) *ay oty
ko 3z Ko {r+k)“ ae

2
1 » 1 n+l
- = ik_ k¢({p,~q.) (n (r,0,2) -1+ ._,>+ (p,-q.,) A
2 "o 171 z.‘azz 272 magk
2 2
=[l +q1 (nz(r,g,z) -1+-1_2-a_2.)+q?—2‘1_73—'2' u"
kO 3z - ko r- o3
(13)
+ ik k{(py-a;) (nz(rQZ)—l +—73—2—)+(p—0) 1 ﬁi u”
2 o 11 v 2 272! TT 22
k0 az ko r- 38
2 2

Using central differences for both operators 3—? and 3-7 in Eq. (13), and
3z 19"

simplifying, we obtain




q : q .
1 1 ik 1} n+l 1 1 ik 1) n+l
+ (—7’ hT -5 E‘; (pl_ql) ;2‘) Um+1,g + (;2‘ h—z‘ -7 g (pl-ql)h_g') Un-1,2

k

", 0 0

L% 1 L1 Ky oy L 1)

o & (rk)? & B TR (re)? ) ™

_

' a

- o2 1 1-]—£(p—q) 1 1) ntl
(:(2)‘ (Hk)? ? ?ko 2 2 (P""K)z ?— miz—l

~ 24 2q

] 0

. k _1 k 1.1 n

; - i = (py=ay) - i (py=a,))u

Ko p2 171 Ko 2 42 2 2) m, 4

..

o9 0
:t:.;: + q_2__l._]; s 1 K (p,-a,) 141 u! (14)
i kg 2 2 2Ky 272t 2 2 m, -1

l,j:_'. This is the large, sparse system we want to solve efficiently. AN

Let's use some abbreviated symbols to simplify the coefficient in (14). T
Define j
2q 24 [ ERE
11 2 1 1 1 2 R
P = (1 +qy(n"-1) - - —— - ils k. k{py-a;,)(n°-1) R
m, & ( 1 —;g;z- -kz (r+k) :2- _2- 0 17
-
k 1 k 1 1

- = — (py-9y) - (P-a,)| ——

Ry 72 ) i T 7 U
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q
11 .1 k 1
Q=:§;‘-2--1-2-r0(91~01);2- R
[+]
9% 1 1 1 Kk 1 1
R=— < -1 3 (py=dy) -
kg (r+k)2 6 2kg 2720 (pag)2 2
2q 24
+
e (0 - - ) b et
o o r-é
Kk 1 k 1 1
- — 5 (py-qy) - (Po=tr )| »
ko 2 1T Tk 7T T PR
+ 911 1 k 11
R = + 15— (pr-a5) (15)
P A A A 4

We can see Eq, (15) in a simpler form, i.e.,

n+l n+l n+l n+l n+l
mg Ung T Qmet,e T Qnopg t RUn e T RUR
+ n * n * n + n + 0.
= Pmg Ume T Ugery YO Ung g TR U e TR U (16)

where Q* means the complex conjugate of Q. Pm ¢ and p; . matrices
¥ ’
depend upon the variation in r,e, and z. Q matrix is constant in all 3

variables. R and R* matrices are dependent on the range variable only.
AN TLLUSTRATION

For illustrative purposes, we use a simple example to display Eg. (168) in
a matrix form. In general, m=1, 2, ..., Mand =1, 2, ..., L. Note that
m = 0 indicates the surface boundary; m = M + 1 indicates the bottom boundary;

and ¢ =0 and ¢ =L + 1 will be explained below.
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ffj We start with assigning m=1, 2, 3, 4 and 2= 1, 2, 3 at the initial

a‘ range level n and march to the next range n + 1. In this example, L = 3 and »
% =1, 2, 3 mean there are three sectors, as shown in Figure 1. In é“f
‘232 computation, we must deal with the indexes ¢ = 0 and ¢ = 4. Since the index fi;
‘ is periodic with a period L = 3, then, % can be regarded as g = ¢ (mod 3).

Therefore, 2= 0 is the same as 2 = 3, and ¢ = 4 is the same as &= 1, as also :;i

shown in Figure 1. !
V
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Figure 1. Azimuthal Sectors

Now we make an attempt to put Eg. {16) in a matrix form encountering the .

boundary ‘onditions. We use the convention £ = & (mod 3) to express L, and

L4 by %3 and %1, respectively. We then can construct a matrix in a

general form making use of the periodic boundary condition. We find
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n*l n*l )
FP, @ O 0 R 0 0 0 R 0O o o 1 "um] P“o.\} .
] PZ.I Q 0 0 R 0 0 0 R 0 0 "2,1 [\] :
0 Q P].l Q 0 0 R 0 0 0 R 0 u:"1 ] :
0 0o 0 P00 0 0 R o o o0 R LR Qg é;':‘i' 2
R o o o0 P,0 0 0 R o 0 0 o2 Mg 5 S
1] R /] 0 Q '2,2 qQ 0 0 R 0 0 “2,2 R 0 =
0 a R 0 0 Q 93.2 Q 0 [ r 0 Uy 2 o
o 0 1] R 0 0 Q P‘.z [} 0 0 R "4.2 005.2
R [ 0 1] ] 0 0 0 '1.3 Q 0 0 ul’._‘ ""0.3
0 R 0 0 Q R 0 0 Q "2.3" 0 “2.3 0
0 0 R 0 [ Q H Q 0 [+] PL: Q MJ.J 0
Lo o o "R 0o 0 0 R 0 0 @ Pl Lug 3. Lnug 5
" * * » n
Pl.l ¢ 0 0 R Q 0 Q R 0 [1] 0 " u"1 0"‘0.\]
L] p‘ - +* a‘
Q 2,1 q v} 0 R 0 0 [+] [4] o] u?.l o]
» * » + *
(4] Q PJ.I Q 0 0 R 0 0 0 R 0 uyy 0
L * * +
Q0 0 Q P‘.l Q 0 0 R 0 0 o R “4.1 0."5.1
+ * L] >
R 0 0 0 '1.2 Q 0 0 R 0 0 [ "1'2 0'\!0'?
- * * L] *
0 R 0 0 [ Pz'z qQ 0 0 R 0 0 "2.2 . n
+ - * * L]
Q Q R 0 0 Q 93'20 0 0 R 0 u3.2 n
» * L4
0 0 0 R ] 0 Q 90.2 0 0 0 L u“, O'u,‘.?
+ + » L]
R 0 \] 9 R 0 0 0 Pl.J 0 ] o "1,1 ﬂ'uo'J
o & o 0o o R 0 0o q Ppq 9 0 T 0
* + * * *
0 0 R 0 ] 0 R 0 o} Q9 F;JQ 03.] ¢
* L4 * *
l_ 0 o o k¥ 0o 0 0o R 0 0 Q@ Pyl Lu"J J L)-um | ho
In general, the large sparse system to be solved is in the form -.: :::
+ + n
Au"1=8un+un1+u , (18)
0 o
where ug+1 contains surface and bottom boundary information at the - -
advanced range level and ul contains surface and bottom boundary -
A4-15
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information at the present range level. The A and B matrixes possess the

m format

= T DO ... 00 R
X DTDO ... 00O
. 0D T ... 000
B : (19)
000 ... T DO
000 ... 0T D
RGO .. 0DT
e -

A1l the block matrices (T, D, and R) are of the same order MxM, Each T

matrix is tridiagonal; whereas each off-diagonal block matrix D and R are

diagonal matrices. Entire matrices are a 7-diagonal matrix with the property

that A = AT and 8 = BT,

The right~hand side of Eq. (18) can be carried out by one matrix-vector

operation and two vector additions. Eg. (18) is a large, sparse system, which

we want to solve by taking advantage of the Yale sparse technique,

Note that if we censider that the wave propagates all around a complete
360°, we deal with a system where A and B are of the form (19), i.e., a
7-diagonal matrix. If we consider that the wave propagates only in a sector,

then the periodic boundary condition for the azimuthal plane disappears, and

we then solve system (18) where A and B are in a simpler form as below:

.......
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(=] < —
—~
[w)
: .
o o
o [ o
o (o] o l

(20)

o o
o o
o o
. .
:
o
—

- o o

which is a 5-diagonal matrix.

Further, if we consider that the wave propagates only in a vertical

plane, this reduces to a two-~dimensional case. We then deal with the system

(18) where A and B are tridiagonal matrices, i.e.,

(21)

[t is important to note that when Pl = pp = /2 and gy = a3 = 0,

the system (16) reduces to the 3D PE.
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NUMERICAL RESULTS

As a test of accuracy, the Yale sparse technique (Craig's method) was
programned on VAX 11/780 computer to solve Eq. (9) using the system of
equations expressed by Eq. (16). We used a known exact solution helow as an

accuracy check.

To describe the test procedure, we express Eq. (9) in the form of Eq.

(5), i.e.,
[/ 2 1 92] 1 32 3
1 +q, h"(r,e,z) - 1) * +qQ, ——s—5 t T U
1|_< ) ;‘g;’f 2 (kor)z el | T
' 2 2
- ik (pl—ql)[(nz(r,e.Z) SV ?}%]*“ (pydy)——7 25| v -
o 2 (kor) LY}
We look for a solution to Eg. (5) in the form
u(r,e,z) = sin{Qz) eim9 o(r) . (22)

Substituting Eq. (22) into Eg. (5), we find

2
2 q,m
L+ q [(nz(r,e,Z) - 1) —97]-—2—2—— 14,
Ko kg T

. - & (py-ap)n” |
= \kol(pl—ql) [(n r.e,z) -1 ——k—g] - —-—k?—‘:z’ u (23)
0

o

4-18
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2
We select n2(r,e,z) -1 - if = 0 for computational simplicity. Since
0

k = kon(r,a,z) = wfCc, then

Eq. (23) can be simplified using the kg defined by Ea. (24) to give

2

. 2
~ik_(p,=a,) m°/(k,r)
‘g;t"( 0172 22 Cz) )¢ = —1f(7‘)¢ ’ (25)
' which is a first order ordinary differential aquation.

The solution to Eq. (25) can readily be expressed in the form

; ife(r) ar
& ¢ = A e i . (26)
‘ The effort needed to find the ¢(r) is the evaluation of the ff(r) dr. We use
-~ u(ro,e,z) = sin(ﬂz)eim9 ¢(r ) (27)
Y 0
: as the initial field;
u(r,e,2,) = sin(azg)e'™ #(r) = 0 (28)
!% for the surface condition boundary; and
X B(r.6,2q) = sin(azg)e™ g(r) = 0 (29) KRV
. B B 0N
D
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for the bottom boundary condition. These boundary conditions are particularly

selected such that

25 = 0 and Qzp = an integer multiple of =.

The initial range is selected to start at 50 m so that the farfield

approximation is valid.

The azimuthal plane is divided into 10 sectors at 36" each. Since there
are 10 sectors and we partition the depth into 199 increments, then we solve a
system of equations of the size 1990 x 1990 dealing with a 7-diagonal matrix.
The results presented helow are a display of boundaries between two adjacent
sectors. Not only do we compare the actual computed numerical complex numbers

with the exact solution but the dB values as well,

Case 1: Small Angle propagation (p; = p, = 1/2, q) = Gp = 0)

An evaluation of the J}(r) dr gives —m2/(2kor). This produces the

solution

2k r
g(r)=Ae ° . (31)

Table 1 describes the results; the first row indicates the computed
values and the second row indicates the exact solution. The results are taken

at the boundary between the third and the fourth sectors at 108° at a range of

50.4 m.
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Table 1. Results of Small Angle Propagation

I (1) LOSS u{l)
3 30.00 12.636 (0.18834E+00 -0.13793E+00)
3 30.00 12.636 (0.18886E+00 -0,13722€+00)
6 60.00 6.859 (0.36627E+00 -0,26824E+00)
6 60.00 6.859 (0.36729€E+00 ~0.26685E+00)
9 90,00 3.749 (0.52397E+00 -0,38372E+00)
9 90.00 3,749 (0.52541E+00 -0.38174E+00)
12 120.00 1.841 (0.65270E+00 -0.47800E+00)
12 120.00 1.841 (0.65451E+00 -0.47553E+00)
15 150.00 0.688 (0.74537E+00 ~0.54587E+00)
15 150.00 0.638 (0.74743€E+00 -0.54304E+00)
18 180.00 0.108 (0.79685E+00 -0.58357E+00)
18 130.00 0.108 I(0.79906E+00 -0.58G55E+00)

........

.........

An evaluation of the j}(r) dr gives the solution

. m(pz—qz) k0r~m/aé
-1
Z%Eé korhnﬁié

¢(r) = Ae

.............

results are given in Table 2.

..................

Numerical results are presented in the same manner as in Case 1.

Case 2: Wide Angle Propagation (p; = Pp = 3/4, 4 = dy = 1/4)

These

4-21
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Table 2, Results of Wide Angle Propagation

I (1) LOSS u(l)
3 30.00 12.645 {0.22578E+00 -0.58389E+00)
3 30.00 12.636 (0.22613£+00 -0.57994E+0Q)
6 60.00 6.868 (0.43904E+00 -0.11362E+00)
6 60.00 6.859 (0.43976E+00 -0.11268E+00)
9 90.00 3.757 (0.62819E+00 ~0.16245E+00)
9 90.00 3.749 (0.62909E+00 -0.16134E+00)
12 120.00 1.852 (0.78225E+00 -0.20236E+00)
12 120.00 1.841 (0.78365E+00 -0.20098E+00)
15 . 150.00 0.694 0.89377E+00 -0.23150€+00)
15 150.00 0.688 0.89492E+00 ~0.22952E+00)
18 180.00 0.117 (0.95544E+00 -0.24602E+00)
18 180.00 0.108 (0.95673E+00 -0.24537E+00)

..........................

From the solution results, we examine the behavior of the solution of

Case 2 for large kor. First, we consider the real part of the solution for

m(p,~a) 2n[kor—m/a'z] ’
Q

X a
ZJﬁé K r+m¢ﬁé
2
(x) = cos mipy-ay) [} m/@; ) ma,
cos = - - -
2N, ko Z (kor‘)z
2
™ 1 M
kor 2 (kor)e
Then,
m(p,-q,) 2 A,m n” (p,-q,)
cos(x) = cos 2 2 [. " E ] = COS{~ Zr 2
Zvﬁé 0 0
4..22
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for large k,r. For wide angle parameters p,-q, = 1/2, Eq. (33) reduces

to the real part of the solution of Case 1.

2
In examining the cos (é—%L?), we note that the function increases
0
monotonically after k = me v, It approaches unity as k,r > =. When

7145

the function is close to unity, three-dimensional effects are lost, and Eq.

(4) behaves like the two-dimensional parabolic wave equation below

2
1 +p nz(r,z) -1+ —% -37
3 ’ . ko az
U= -1k0 + 1ko > ) 32 )
1 +qn(r,z) -1+ —
ko az

The more rapid the azimuthal variation (i.e., the bigger m2), the further

out in range the three-dimensional effects influence the solution.

An application is also presented here as a second example. This exam
has peen solved by Perkins and Baer,ll using the Split-step algorithm for
three dimensions. The sound speed profile is taken from a Pacific profile
such that c(r,e,z) = cm(z) + (0.001)rsine, where cm(z) takes on the

tabulated values below.

ple
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o Table 3. A Pacific Profile
E;f z(m) c{z) (m/s)
o 0.00 1536.500

s 152.400 1539.243

" 406.300 50L.143

e 1015.9 471,882

- 5587.91 1549.606

- 5587.91 1555.526

This profile has a large linear gradient in the cross range direction:
the gradient is 1 m/s per km, The profile in the vertical plane at 0° is a

typical profile in the North Pacific Ocean.

The source is placed at 254 m below the surface with a source frequency
- of 25 Hz, We calculated the propagation loss up to a maximum range of 140 km.
til We choose to present below the results on one particular sector at 0°. Along
: with the 30 wide angle PE solution plot is the graphical result of Perkins and

gaertl for comparison. The propagation loss reading at 120 km for the same

receiver depth is approximately 90 dB, showing satisfactory agreement with the

known result. The 3D wide angle PE result is presented in figure 2; and the

Perkins-Baer resull is presented in figure 3.

et stk

? T N
t e ,
ata’ ke a4
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Figure 2. Propagation Loss vs. Range at Zero Degree Azimuthal Angle N
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Figure 3. Propagation Loss as_a Function of Azimuthal Angle Q?
Between =20 and 20° at a Range 120 km 0
and a Depth of 315 m, s
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CONCLUSIONS

In situations where FFT is applicable, the FFT can do well. Under the
same situation, the CG method can also solve the same problem with the same
accuracy, but the computation speed is not competitive with the FFT
computation., The solution to the wide angle three-dimensional partial
differential equation cannot be directly solved by the FFT; this is a definite
advantage of the Yale sparse technique. The applicable CGNE that we used here
requires 5N multiplications per loop plus two matrix-vector products, and only

4N storage locations are required for the vector operations.

Since CG is an iterative technique dealing with inner products, it is
desirable tc implement the procedure in a vectorized machine. This is another

advantage of the Yale sparse technigue.

The numerical solutions produced in this paper demonstrated the general
purpose capability of the Yale sparse technique. Even though the solution is
accurate, the present solution can by no means be regarded as the most
efficient solution. It is believed that a‘c1ever preconditioning technique

can be developed to enhance the efficiency of our applications.
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ABSTRACT: Application of the standard parabolic wave equation to
solve real problems requires a clever selection of the reference
wavenumber ko. An extended parabelic equation (PE) having range
refraction capability is reintroduced to be totally independent of
kog. The existing implicit finite difference (IFD) model was
applied to test the range refraction PE. Results compare favorably
with known solutions for weakly range-dependent environments, but
ylield significant corrections for propagation through strong
oceanic fronts.
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INTRODUCTION

The RAnge REfraction Parabolic Equation (RAREPE), introduced by Tappert

[1] over a decade ago, has important acoustic effects but has been neglected.

Since the standard parabolic equation (PE) is performing satisfactorily, users

have not paid attention to the RAREPE. Besides, there did not exist efficient

algoritnins directly applicable to solve the RAREPE. Now, we have the implici
finite-difference (IFD [2]) package, and the effort required to modify the

available IFD code to solve the RAREPE is inexpensive. To give a complete

understanding of the RAREPE, we first summarize the derivation of the RAREPE,
then describe how we solved the RAREPE by the finite difference solution. A
special section is devoted to discuss a set of illustrative examples, These
examples are used to show (1) the close agreement between the standard PE an
the RAREPE if there is no front, (2) the important property, independence of

ky» of the RAREPE; and (3) the range refrac.ion effects by weak, moderate,

and strong fronts.
DERIVATION OF THE RANGE REFRACTION PE

We start with the two-dimensional reduced wave equation, i.e.,

),
Por ¥ FPa Y, Y kg nf(rz)p=0 . (1)

Setting p(r,z) = %ﬁ;lil and applying the farfield approximation, Kot >> 1, we

find €q. (1) becomes

A a 2 2
+ +
ur'r‘ uZZ kon

Write Eq. (2) in the form

il

(ry2)i =0 . (2)
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2
3 2.2\~
(—'2_+k00)“=0 , (3)
ar
I where
" 2 _ 2 1 9?
Q% = n%(rz) + > —5 . (4)
o k- az
N 0
i' We assume that the dependence of n(r,z) on the range varianle r is weak

such that Eﬂégiii is negligible, but we shall later pick up the neglected

terms. This assumption allows the operator %F to commute with QZ. We can now
factor Eq. (3) into two equations:

SRy

- I .

. 'lﬁ_—"' kO QU+ =0 » (5)
fl and

e ad

’A . G -

;;; -1 57 + kO Qu_=0 . (6)
'52 Then, the solution field G(r,z) is just the combination of the outgoing wave

d,(r,z) and incoming wave 0_(r,z).

The operator Q, defined by Eq. (4), is actually

Q- (1 ¢ (né(r,z) - 1) + —%;327)“2 : (7) o
kS az R

In this paper, we deal with the small angle PE, i.e., we approximate the Q by

i
021+ Mtz -1+ 2251 (8) .
L9 ¥4 e

ik r
and make use of the usual envelope definition u = G(r,z) e 0 , which leads to

[}

5-4
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the standard PE originally introduced py Tappert [1], i.e.,

. . .2
au i 2 i a"u
ok (n(r,z) - ) Ut 55— —5 . (9)
ar 20 2ko az2
To make the local error small, we need
2
[|n®(r,z) = 1]] < 1
and
2
1
“-?T--—Tf << 1 .
k0 az
2 1 5°
A detailed discussion of the estimate of |[|n“(r,z) - 1]} and ||—§-—7§H can be
k> az™
o)

found in reference 1.

To keep track of the relative errors made in the course of calculation,

2
we can monitor the size of an(r.z) - 1]l and Hl? —zfll and keep them both
K- az

small. We now present a modified PE, which requires that only one of the

2
Inz(r,z) - ll and ‘l?-i—zl be small, as occurring in Q, but is of order unity.
k
0

This modified PE is capable of dealing with a large range variation of the

indgex of refraction.

2
Consider two operators A and B, where A = nz(r,z) and B = —% E—Z. In
k0 3z
general A and B do not comnute. We expand (A + 63)1/2 by the formula
(A + 68)1/2 = AI/2 + 8C + 0(52) . {10)

5-5
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where

c =f e“‘/A_s B e"/A? ds . (11)

The proof of (10) is given in reference 1.

We now apply Egs. (10) and (11) to the operator Q given by (7).

2
For small —% -3?3 we obtain
k- az
0
— 2
Q=1 4-'/{n2(r,z) -1) + fe'"(r‘z)s (k—é- ——3-2-) e-n(r,z)s ds . (12)
0 3z
0

It can be found that

0

K
1 Uz 1 ni 22
=n(r,z) u +§;‘2‘ (——n)z "'-2' F—-—n? u . (13)
Q

2
1Y) 1 a 1 au 1 "z N2z
'Ia—'*'ﬁ(—ﬁ'(nr,z S_Z-> +KOH(P,Z)+;‘:§(—n—3-———?)U=O . (14)
o}

Eq. {14) is the RAREPE and is valid to all orders in (nz(r,z) -1).

Equation (14) is approximately equal to the standard PE, Eq. (9), when nir,z)

5-6
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. . . nz(r z) -1
is range-independent and is close to unity; n this case the 2

in the standard PE can be replaced by (n(r,z) - 1).

It ought to be noted that Eq. (14) and Eq. (9) are the same if the n(r,z)
is a constant in both r and z variables, and n(r,z) = 1. Substituting the

constant n(r,z) into Eq. (14), we find

: 2
au i 3%u
= = ik n(r,z) u + 50— —% . (15)
ar 0 2 o 322
Eq. (15) can be put in the form
Ao (nz(r z) - 1)y + 7%- 33£ (16)
ar ° ’ ! 0 322 ’

and replacing (n(r,z) - 1) by (1/2)(n2(r,z) - 1), we find
2

%% = %-ko(nz(r,z) - 1)+ ?%; 2;% . (17)

We see that Eq. (17) is exactly in the same format as Eg. {(9).

We now have established the relationship between (15) and (16) based on

the transformation

ikor L ‘
u{r,z) = w(r,z) e . (18) ]

We now proceed to show that solutions to Eq. (15) and Eq. (16) are identical ol ]

in magnitude in order to establish the k, independence.

5-7
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Substituting Eq. (18) into Eg. (15), we find

. 1
wl" = TKO(N(T,Z) - l)w + —k; \bzz ’

which is identical to €q. (16). From the relationship of Eq. (18), it is

easily seen that

Juf ¢ = el .

This shows that the solution of (15) is egquivalent to the solution of (18) in

magnitude independent of Ko-
THE REFERENCE WAVENUMBER Ko

We return now to the standard, small angle PE, which takes the form

2 k
‘ %%+2&_0:_z%+—% (n®(ryz) = 1)u=0 . (20)

[t is clear that Eq. (20) is k -dependent, thus, different ko's lead to
different suvlutions. Obviously, there is only one ko associated with a
given set of environmental conditions that will produce the solution closest
to the real solution. We have been confronting the problem of how to select

the best ko. In fact, PE users never have to worry about the ko~-selection

because existing PE models, such as the split-step code [3] and the [FD

package [2], all offer the option to have a default Ko value if the user is

not certain what kg to use. The default kg is chosen from Ko =

PEEPNRN .,;.._ L.'_‘.

PR PR
------
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walco, where c, is the reference speed and is selected to be the average
sound speed in the water column. 7The user can choose k0 to be the sound
speed at the source level for range-independent environments. Moreover, for
range-dependent environments and for range-dependent sound speed profiles, the
user can ask that an interpolation of the sound speed profile be performed
within each range interval and apply the same procedure to select €, as in
the range~independent case. These choices so far present no big problem; and
make the selection of the ko ignorable. Pierce [4] re-emphasized the
iinportance of the ko selection and introduced a formula to determine the
range-dependent ko based on the Rayleigh quotient. Some numerical
experiments have been carried out at NUSC, New London Laboratory. The results
show some phase effects on ko variation. A detailed study of the
ko-selection is going to be reported separately when it is completed. A1l
these facts strongily suggest the desirability of having either a variable k0
PE selection or a ko-independent PE. This paper chooses to deal with the

latter.
THE FINITE DIFFERENCE FORMULATION AND SOLUTION

Rewrite Eq. (14) in the form

. 3u 1 afl a
‘w*zﬁgﬁ(aﬁ)*ko“” ' (21)

where

2
1 ("2 "z
V=n+m(: -n—3'-—-n—2- . (22)
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1
Vin = nm[l * al n? 2 (nm = Mo+l nmﬂ)] (27)
n_ h
o m
o
Using tne definition k n = == — = = = k, (27) can be written as
0 ¢, ¢ ¢
4
c c
0 m 1 1
V. = — 1 + - (28)
m Gy 4u2 h (?n{ Cm+1 cm-1)
Substituting (24) through (28) into Eq. (21), we find
au,
ar =% Ynel T8 Un T Ym Upal o (29)
where
. = i
m- o, (1 . 1\ ’
wh Cm+l Cm
v = i
m - 1 1 ?
2 [— +
wh (Cm Cm-l)
and
m m m m 4m2 h2 Cm+l Cm-1 J
* *
Note that @, = =8 and Tn = “Ymol® We see that
3 2 * * *
3?4um‘ = “m(ym Un+l = Y+l um) * Ym(tum Un-1 T Y-l um)
This implies that
3 2 * * * *
3?‘:2 :|“m|) = Z 0‘m(um Yael 7 Y-l um) +Z:"m(um Yn-1 7 Yme1 um)
m m m
5-11
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* *
= Z (“m - Ym+1>(um Ype1 = Yl um) :
m

But, a; = y,4;- Therefore

3%(2|um|2) =0 > Elumlz = constant .
n m

This implies that the finite difference scheme is energy conservative.

Next, from Eg. (29), we set up the Crank-Nicolson difference equation as

il follows:

& k n+l n+l k n+l) ¥l k n+l n+l
. “ 7% Yl Y (1 =7 % ) Yn "Zm Yn-l

Kk n n Kk n\ n_k nn
=7 Uy Upep (1 7 B%) Un 7 Y Ypo1

This is the exact IFD format recognized by the IFD model. The solution by the

IFD code becomes easy.

NUMERICAL I[LLUSTRATIONS

For qualitative information, this section presents three examples which

are used to show the various effects of range refraction.

We use the following cannonical profile whose input parameters are

defined and tabulated below:

...............
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c(ryz) = cpll +e(e™ -1 +m)] (31)
where
z -2
A

"=y (32)
Cp = sound speed of axis,
2 = depth variable,
Z, = depth of axis of sound channel, and
B = thickness cof thermal front.

We assign an ocean depth of 5 km and assume the ocean bottom to be flat.
We calculate the propagation loss up to 140 km in range. We place the source

at 100 m below the surface with a source frequency of 100 Hz.

Define

where rc is the range at which the front occurs,
L is the length of the front, and

31, B, are parameters.

In addition, define

e(r) %3; , (34)

where g = 2cp /B . (35)

—
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3 PROFILE 81 82 Za e L REMARKS
(B (k) (ki) (km) (km) (km)
1 1.2 1.2 1 50, 60 - No front
2 1.2 1.0 1 50, 60 20 moderate
front
B
3 1.2 0.8 1 50, 60 20 strong -
front .

. ‘J
fhe cannonical profiles for these different examples are described in figure 1. :f
SOUND SPEED (m/s) 3
kﬁ:a14so1soo1aso1eoo1eso .4.}
1 Lo
- .d
101 ':'_:.:,
3 204 -
€ 30 L
s 401 e
-M
501 -
oo
A
60 2

Figure 1. Cannonirzal Profiles

The examples (using the above three profiles) are executed using the following oo

information:




i
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EXAMPLE

INITIAL
RANGE
(ki)

INITIAL
PROFILE

FINAL
RANGE
{km)

FINAL
PROFILE

RANGE
FRONT

(km)

140

No

140

60

140

60

The following set of graphs (figure 2) were obtained by the IFD model

using the input information of Profile 1.

.............
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;.' The results have the following meanings: ;;?i
i 4
CASE RANGE FRONT AT FRONT SOLVED BY
: kin RANGE j%
ZEE A -~ No Standard PE :é
. B3 60 Moderate RAREPE L
c 60 Strong RAREPE J

D 50 Strong RAREPE

Figure 3 presents the propagation loss curves over the range interval [0, i};ﬂ

140 k] for three different receiver depths. There is no front present in l;<i€

these examples. The left column displays the standard PE results; the right ;l'ﬁ

column displays the results with range refraction. Notice that the ? !

differences among these results are very small. In order to make the

difference more visible, we must group the results together in a magnified

plot.

| R
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% 80 . -
#0- Receiver Depth = 100m o0 RocelverDepth- 100m | o
No Range Refraction -
70+ 70 s
8o 80 | :2”4
100+ 100 et 1
110 1104 ol
0 20 4o 60 80 100 120 140 o 20 4o 100 120 140 o 1
_ 60 g0 S
8 . Recelver Depth = 300m - Receiver Depth = 300m Lo
g No Range Refraction Range Refraction -
Q 70 70 Coe
| Lo
g e | 8 ; -
§ 90 90 3 v
Ewo Ji 100 .
110 T 1 T L T 1‘cl L] T T T T L Ll ’ B
40 60 80 100 120 140 O 20 40 60 80 100 120 140 :
50 80

0 Receiver Depth = 500m 00 Receiver Depth = 500m
No Rangs Refraction Range Refraction .
70 70 T
%0 80 L
100 100 ﬂ! R
110 1Ho+———— —-— ; v 1 s
0 20 4o 100 120 40 0O 20 40 60 B0 100 120 140 - o
RANGE (km g

Figure 3. Results Without Range Front

The original Helmholtz equation is k_-independent. For a T

range-ingependent problem, we use an accurate fast fiela program (FFP [3])
solution as a refcrence for comparison. The split-step [1] solution is also
inciuded. Figure 4 contains the solutions produced by the IFD, the -

split-step, ana tne FFP, with and without range refraction effects.
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From the comparison, a little difference is shown among the IFD,

El split-step, and the FFP solutions. When comparing results among IFD, IFD

.-
.
at e
[ S
e
i

range refraction, and the FFP, also a 1ittle difference is shown. However,
the comparisons among the I1FD wide angle, IFD range refraction, and the FFP,
we experience a difference between the IFD wide angle and the IFD range
refraction; this is expected because the present IFD wide angle model
accommodates the range refraction. This is going to be pointed out in the

next example. -

Similar as the set of no range refraction results, the next set (figure
5) consists of propagation loss curves over the range interval [0, 140 km)

with a strong range front that occurs at the range of 60 km. f{

5-20

..............
.....................
........




. 60 ——— i ———— ey
f o IFD TD 7145
- No Range Refraction
) 70
il 80
~ 80
- )
. g 100
- S 1104
0 § 0 1oo 120 140
5 3w
g 0 FD
70
80
—
Al 90
N 100
t ‘10 | I '
o 4 60 B0 100 120 140
- AANGE (km)
]

Figure 5, Results Witn a Strong Range Front

Whenever the range frunt is present, especially the strong front, the
RAREPE resuits are more meaningful than the standard PE results. Resuits on
e figure 6 show a difference between the RAREPE and the wide angle PE. Both the

standard PE and the Wiae Angle PE were formulated dependent upon the special

approximation of the square root operator\/l + ¢ * yu, where ¢ = n2(r,z) -1,
2
ana u = —%-—3? . The IFD solution considers the square root to be approximatea

kD 92

; in the form %-;—g%%—;—%§ . When p = ? and q = 0, the resulting PE is the

stanudry PE. When p = 3/4 and q = 1/4, the resulting PE is the wide angle PE,
Expanaing (1 + qle *+ w™L (1 + ple * u)) = (1 = qle + u) + g2le + u)?
° * ol +pletw)) =1*(p-alle*u)-ap-glle* u)é + high oruer

terms. Notice that tne portion (e + u)z represents the wide angle anu

(e + p)z =l + AR ue, where tne last two terms represent thz range
refraction. Therefore, the present widge angle PE LFD version accommouates the

range refraction,
5-21
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Figure 6. Results Comparison

CONCLUSIONS

A parabolic equation, having range refraction capability, is
re-introduced. This range refraction PE is independent of the choice of k,,
and is also more efficient to hanale a rapialy varying index of refraction on
the range variable. Numerical results show that the range refraction PE is
useful for strong range fronts. Under such environments, the range refraction

PE has an auvantage over tne stancara PE. However, a price has to be paid on

the conputation speed.
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ABSTRACT: Using the standard parabolic equation to solve high o

frequency problems 1{s fimpractical because of excessive running DR

time. A new HYbrid Paraholic Equation using Ray theory (HYPER) is e

developed to handle high frequency problems. This paper discusses ‘

the theory and development of the HYPER discussed in detail. T
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INTRODUCTION

Successful applications of the standard parabolic equation (PE) (1] have
been evident. However, using the standard PE to solve nigh frequency problems
suffers an excessive running time [2]. To overcome this difficulty, a new
HYbrid Parabolic Equation using the Ray theory (HYPER) is designed to be
particularly effective in handling high frequency problems. A complete
discussion is given to describe how the HYPER is derived. Within the

discussion, how the ray equation is obtained will also be described in full.

THEORETICAL BACKGROUND ANC DEVELOPMENT

Prior to the development of the high frequency parabolic equation

(HYPER), it is necessary to list a set of definitions below.
Let u(r,z) be the pressure field, n(r,z) be the index of refraction, Ko
be the reference wavenumber, C, be the reference sound speed, and c¢(r,z) be

the sound speed profile.

The standard PE takes the gereral expression

"
. au 1 3%y S
i =+ 5= -~k Ulr,z) u =0 (1) S
? 2K, ;;? 0 L
2 ..
. 1 2 1 o Xk
for small propagation angles, and U(r,z) = ?(l-n {r,z)) = > 1 --jzz———— . T
¢ (r,z) ]

6-3 R
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An observation of Eq. (1) stirs up two motivations that lead to the 7¥§i

ﬂ development of the HYPER *“

;i Motivation l: The standard PE, Eq. (1), has no limit on frequency, but the ;

- equation itself is strongly frequency dependent. As a function -
P! of frequency, the computation time is excessive; because of

this we need a more effective way to handle high frequency
problems. We feel that there is no reason why we cannot
develop a high frequency PE that possesses the same format as

(1).

Motivation 2: The geometry of the acoustics is independent of frequency. It
is highly desirable to have a ray PE model independent of
frequency but with full range effects. We, thus, seek to LQ:;

develop a high frequency PE in format (1) but totally frequency

independent.
———
Based on these motivations, we proceed to develop the HYPER. Motivation R
X 1 suggests that the HYPER takes the expression
: 13£+L32:_k V(ir,z) u = 0 (2)
ar K, ;25 0 S
where V(r,r) is related to U(r,z) by the relationship
V(r,g) = Ur,zp(r) + 2) = Ulr,zp(r)) =g 3= Ulr,zp(r)) (3) -

where

- ik IS (r) + zzy(r)
u(r,z) = u(r,z) e] °[° TR r] , (4)




@
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the dot "+" indicates the r-derivative; So(r) is taken for granted as a
function of r for the time being and is defined later in the section on the
development of ray equation (the particular ray equation associated with
(2)). Now, we proceed to show how (2) was derived. Write
ikOS(r,z)
u{r,z) = A{r,z) e . (5)
For large kos substitute (5) into the standard PE, Eq. (1), and use
asymptotic expansions for k, (keeping order up to o(l/ky)), we find
2
aS . 1 faS !l
?'-_-"'-2-(?2—) "’U:O(-ro) . (6)
Equation (6) is an inhomogeneous, noniinear partial differential equation
(PUE) called tne Hamilton-Jacoby equation. Rays of the PDE (6) are the
characteristics of the PDE (6). To solve eq. (6), differentiate (6) with

respect to z, we find

325 +35 3S Al 2 0
araz 3 ;;7 Y3

Then, let & = 3S/az and substitute it into the above equation, we obtain

LS T T

ar 3z ez : (7)
Write

de 390 , . 28

ar *ar %z
but,

6-5
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Comparing the above 2 equations, e must equal dz/dr. Solving (7) by the

method of characteristics, we have on the curve z(r)

%% =0 , (8) :“::"
do , dU iii
and F*‘a?-o . (9) ‘w
3 B
- Combining (8) and (9) gives the HYPER ray equation, i.e., E}§j
o : ML
".. : 2 ’ .':' "a
d°z 3 N
P oz "z uinn) (10) "o
. r
Suppose we trace a particular ray (i.e., a particular solution z = zp(r)). :ﬂft
To deal with the standard PE, letg= 2 - zp(r). Corresponding to the i
operator 3%, we find 5%-- z, 5% ; similarly 3% for 5% . The standard PE can be EZf
transformed into o
2 -
;AU .2 3U 1 o
TR i B g -k Urazgr) t ) w0 () L
Now, recall the So(r). We express
So(r) - S(f,ZR(P)) s (12) -
and we refresh our memory that the S(r,zp(r)) satisfies the Hamilton-Jacoby
equation (6). -
From the relationship of o, we see that
o o 45 _ dz
dz = dr .
Then, "
=
6-6
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) :
.f(-é-(-;:—i‘) - U(r,z)| ar

which implies that

[l o))
So(r) = 4 s \&+/ - U r‘,zR(r' )) dr . (13)
This is the complete expression for 5,(r). We need the r-derivative of

So(r). We find that

d L (92%)°
Fr Solr) = 7<3,,—) - Ur,zp(r)) (14)

Now, substitute expression (4) into Eq. (2), we obtain the desired HYPER, i.e.,

~ 2-
P, ﬁ;ﬁ‘ -k, [utrazgtr) * 2) - U(r2q(r))

~

—c% U(r,zR(r))] u=0 . (15)

Next, we shall show how (15) was obtained making use of all the developments.

From (4), we find

6-7
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r ® [‘3% + iko(% 2 - U +r;’z'R)5 eik°[s°(r)+ CzR(r)] ,
o [%% * iky 2 U]eik°[s°(r)+ wr]

and
2 [ 2, 2 g ] ol st

By substituting the above partial derivatives into (2), we obtain (11).

Q.E.D.

COMPUTATIONAL ASPECTS

To perform the computation completely, a number of steps are involved.

Each present step depends upon the previous step after the problem is properly

started. We discuss the computations required for each step and show the
continuity from one step to the next. Most of the present computations are
carried in a practical manner to make the solution work. Room exists for

future improvemeni in computations.

Step 1: <Calculation of the Ray Equation

One important portion of the computation is the calculation of the ray

equation to describe how the ray is traced. The ray trace pcrtion requires

the implementation of the ray equation, (10), i.e.,

6-8
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&z, au
E drz az -
2
f; The ray equation is a second order ordinary differential equation (ODE) and
o

can be treated as a purely initial value problem. This second order ODE can
be solved efficiently by an existing convergent numerical ODE, equation such

as the methods given in reference 3. We apply the Stomer-Cowell formula to

iii

perform the ray trace.

We express our ray equation in a short form as

3l
2 - fr,z) (16) .
h
The Cowell corrector formula takes the form
-2 vz . 1%513 £ .. +10f +f (17) 5535
n+l n n-1 [ n+l n n-ﬂ * i
:i To get the predicted value to integrate formula (17), we use the Stormer
E; predictor formula L
7 PL..\.‘-’M
3 2hey - 22, t 2o = ()P (18) Y
Since we are solving an initial value problem, the z(0), z'(0) are known. We Eﬁi?
*! . also know f . and zp, which is z(0). We need to know zy, which we choose -
E' to obtain by the Taylor series expansion, i.e., '
=
- 7y = 2(0) + (ar) 2*(0) * 3(ar)? 2 (0) + ...

= 2(0) + (ar) 2'(0) + %(Ar)z £(0) + ...

6-9
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The Taylor expansion has an ordcr of accuracy in truncation error less
accurate than the numerical ODE methods used. We overcome this difficulty by

using a very small step size.

According to Henrici [3], the selection of the step size to satisfy the

1 1/2
Il
17

corrector's convergence is such that ar < , where L is the Lipschitz

constant of f(r,z).
To carry out the complete procedure will give Zp(r).
Step 2: Determination of the Ray Trace Region
Next, we make use of the information obtained from the previous step, and

attempt to define a strip (called the wide W) covering the ray path. The

figure below shows the picture in the r-z plane.

6-10
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here z. is the source depth and, z. is the receiver depth. The region of

interest is determined to be !

therefore, the width is 2W. We see that if we solve the problem in the
original r-z plane, we need to solve the problem in the entire original

region; therefore, the amcunt of work is by no means able to be reduced. - -

The advantage is evident if we solve the problem in the equivalent r-

plane as shown by the figure below. ;55
o cup aED SED Sl D GMED CRED GNP GENP TR GENG WP CILED GEEP LN GEND S S S -— Gu "‘“”

Zg o f e
——-——-————_-————————t-—zr ‘:“.:_“-

B

The region covered in the r-g plane is small; therefore, much less work is
needed to complete the computation and should be more accurate. This above

illustration shows one single ray; for a family of rays, we handle the family

by taking the union.
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Step 3: Computation of V(r,z)

Function VY(r,t) is calculated using Formula (3), i.e.,

V(r,z) = U(r,zg(r) + £) - U(r,zp(r))

-t5e Ulr,zp(r))

where U(r,z) is defined to be

2
%o

1
U(F,Z)-?lum .

On the ray path, U(r,z) is calculated by

2
o

1
Ulr,zp(r)) = 5|1 - m) )
l"R

and ;% U is calculated by

2 U(rz(r)) = 3 [Ulrazg(r) + 82) - Ulr,zg(r))]

Step 4: Computation of So(r)

Solr) = S(r,zg(r)) is calculated by formula (13).

Step 5: To Obtain the Solution u{r,z)

(19)

(20)

Our main objective is to obtain the solution of Eg. (1), i.e., u(r,z).

We summarize the procedures invalved in order to obtain the u(r,z) and show

how the u(r,z) is obtained.

6-12
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: Obtain the ray equation solution zp(r).
. Using zg(r), compute V(r,z) by means of V(r,g) - U(r,z)
relationship.
. Group a family of rays together that have strong effects between the
source and receiver.
. Determine the grid points in the r-z plane and set up the numerical
solution for u(r,z).
Solve u(r,z) by the [FD model.
Solve So(r) = S(r,zg(r)) by formula (13).
* Finally,

~ ik .[S + 2
u(r,z) = u(r,z) 81 0[ o(?‘) R(Y‘)]

CONCLUSIONS

We have developed the HYPER specially for handling high frequency
problems. Through an efficient implementation, the advantages of the HYPER
are clear--not only is it accurate but also it reduces the execution time
tremendously. Thus, the HYPER should be considered to be a practical high

frequency model.

6-13

..........

N




T 7145
’ REFERENCES
|
: 1. F. D. Tappert, "The Parabolic Approximation Method," Wave Propagation
and Underwater Acoustics, edited by J. B. Keller and John S. Papadakis,
] vol. 70, Springer-Verlag, New York (1977).
_ 2. D. Lee and G. Botseas, IFD: An Implicit Finite-Difference Computer Model
: for Solving the Parabolic Equation, NUSC Technical Report 6659 (1982).
3. P. Hearici, Discrele Variable Methods in Ordinary Differential Equations,
. John Wiley and Sons, Inc. (1962).
.
]
i
’
’
.

................................



TD 7145

7. A VARIABLE DENSITY PARABOLIC EQUATION

Gregory A. Kreigsmann
Northwestern University

0ing Lee
Naval Underwater Systems Center

Frederick Tappert
University of Miami

ABSTRACT: In this paper, we derive a new parabolic equation (PE)
that incorporates the effects of a variable ocean density. This
density can be smooth or piecewise-smooth. Thus, our model reduces
to the standard PE when the density is constant and it alleviates
the need for interfacial conditions when the density is stratified
in a piecewise fashion. We also present a numerical scheme that
will be used to solve our new equation. This difference scheme has
a conservation law that 1is the discrete analog of the new PE's
conservation law.
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DERIVATION

- The propagation of sound in an ocean with variable aensity p is governed

by the elliptic equation

ov .3 prklfpa0 (1)

where p is the acoustic pressure, k' = m/co, w is the frequency of the time

harmonic source, ¢, is a reference sound speed, n = cy/c, ana c is the

souna speed in the ocean. A time dependence of e~tut g suppressed. “911

Equation (1) is to be solved in a spatial domain D', which contains the by
water., A simple model is obtained by assuming both the ocean bottom ana the Lf?ST
water-air interface are flat. Specifically, ;i?ﬁ?
o

L’- _'_'51

D' = (x',y',z')||x'| <oy |y <o O<zt<HY e

=

where the primea variables dencte dimensional quantities. Since equation (1)

is elliptic, boundary conditions are required to complete the mathematical

description of the problem. The conditions used in this report are

9

aZ

=0, 2' = H' (2)
and
p=0,2'=0 . (3)

Thus, the ocean has a hard bottom ana a pressure release (free) surface.

7-3
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The source deriving equation (1) is usually modeled as a point

disturbance located at x' = y' =0, 2' = Z,'. It is omittea from equation

(1) for simplicity.
In many underwater applications the domain (in polar coorainates), D' =

[(r‘,z',e) |0 <r'<R',0cz'H,0<¢0 < 21] , where equation (1) must be

soivea is extremely slenuer. By this we mean the parameter
€ = (HIIRI)Z (4)

satisfies ¢ << 1 where R' is the maximum range of interest. We now introduce

the aimensioniess variables r and z used by Tappert (1], i.e.,
r=ck'r' (5)
and
=\E k'z' . (6)
Accordingly D' is transformed into
D = [(r,z,o) ‘0 <r<sge, 0<z0e, 0<oc< Zn} , (7)
where £ = (kK'H')H'/R' . We asume that this number is fixed and is order one

with respect to the parameter ¢. Introaucing this change of variables into

equations (1) - (3) we find the acoustic pressure satisfies

...............
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and

In aggition to the bounagary conditions (9) anc (10), we demana that p is

boundea as r+ 2.

We now make the assumption that n¢ deviates slightly from a constant

and takes the functional form
n2(x',y',2') = 1+ ef(r,z) (11)

The constant 1 in this equation is arrived at by taking C, to be the average
of ¢ throughout D. The factor ¢ in (11) demonstrates the weak dependence of ¢
on depth and range. (This apparent minor perturpation creates profound

effects on acoustic propagation when the range is as short as a few

waveiengths!)

We also assume that the density p depends upon the variables r and z in a

smooth or piecewise smooth fashion.

When (11) is insertea into (8) we observe the presence of the small
parameter ¢ in front of nearly every term. To cavalierly set these terms to
zerv wouila render a physically meaningless result. Guided by previous
experience with such matters, we apply the method of multiple scales to this

equation. Specifically, we assume that

p(xlay"zl) =P(£,Y‘,Z; E) ’ (12)

.................................
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where the fast variable £ is defined by

| Exrle . (13)
ii Inserting this variable and (11} into (8), we obtain the equation : .5
.‘ 1 Pr oz ] .
- [P££+P]+c[2PrE+FP LI e L o
adi o :
2[ 1 r ]

. e P R P 5 Pl - (14)
- The subscripts denote partial differentiation. Next we make the assumption -
. -
. that P has the asymptotic expansion
- = ;ﬂﬁ}
~| p - E " P(Er,2,8) , €40 . (15) S
o n=0 ,:j .

When this expression is inserted into (16) we eguate to zero the coefficients

[

ii of the powers of e¢. This yields an infinite sequence of equations of which T

the first two are ;5;
-' L Po = POEE + PO =0 ’ (16) * ‘
o ang .
< Le aop, +lp Irp o ip P2y g (17) L
- 1 Oorg r "0f p  Ug 0zz p 02 o] ’ e
:.' -—

7-6
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for 0 <z< g, 0<r <. Inserting (15) into the boungary conditions (9) and

L EEW L L

(10) and equatinc *o zero the coefficients of the powers of e, we obtain an Lo

infinite sequence of boundary conditions. The companions for (16) and (17) are

i Po=0,2=0, n=01 |, (18) g
and Ti '
P, 71;;;
-az—z 0, = 2; n= o,l . (19) R

The solution of equation (16) is

Po = Ao(r,z) eiz + Bo(r,z) e'ig . (20) N

where the amplitudes Ay and By are functions of tne listed variables.

Because of the assumed time dependence, e'i“t, we set

Bo(r,z) =0 (21)

as a failure to do so would yield incoming waves from infinity. Inserting

(2C) ana (21) intu (17) gives

\ . o, Pz
P = [‘?1 Aor * 7 Ao - e Ao * Aoz = % Poz * f Ao] €

—_

B (225 T

which has the general solution

T it
Py = A(r,z) e'* + 3 M(Ag) e, (23)

7-7 oy
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where M(Aq) is the bracketed term on the right-hand side of equation (22).

m We observe that P, remains bounged as ¢ = r/e»« only if
" . i fo, R e .
, M(AO) = 2i AOP vy Ab -3 AO AOZZ - AOZ f AO =0 . (24)

If we now set

Yo

AO(?‘,Z) =4/0\T,2 \'7;— (25)

into (24), we find that u, must satisfy our new variable density parabolic
differential equation (VDPE)

A, 3 [l a
-ZTFr—'s\/B-a-z— F'é—z'(\/o- Uo)] +fU° . (26)
We now make a few interesting observations about this new equation.
First, when p is a constant, (26) reduces to the standard parabolic equation

[1]. Seconaly, the differential operator involving z is symmetric or formally

self-adjoint [2]. Thirdly, the quantity

2
E = /]uf dz (27)
0

is indepenaent of range, i.e., dE/dr = 0. This follows directiy from (26) ana

the bounaary conditions for U, are

7-8
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and

) =0, zan . (29)

Equations (28) and (29) are direct consequences of (18), (19), and (25).
Fourthly, we observe that equation (26) itself was derived without using the
bouncary conditions given in (18) and (19). Thus, our new parabolic equation
will hold even when more realistic boundary conditions are implemented.
Finally, equation (26) can be used even when p is piecewise smooth., This will
allow us to study interfaces that are not planar or straight lines. In this

sense our new parabolic equation extends the analysis given by Lee and

McDaniels [3,4]. -
A CONSERVATIVE FINITE DIFFERENCE SCHEME

In this section, we present a finite difference scheme, which is second
order accurate in depth and first order accurate in range, for solving
equation (26). This difference scheme will conserve a discrete analog of
de/dr = 0, where E 1s given by (27), The method of analysis and other

examples are given by Kriegsmann andg Mahar [5].

We begin by rewriting (26) as

Mo g,
EARTRL IRy [b az (a“oﬂ ML (30)

7-9
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where a =g ana b = 1/p. Setting ug E Ug(rpszj), it is easily

verified by Taylor's theorem that

- =2 2
a 3% [bE%‘(auo)](rn,z.) = L(u)(az)™ + 0(az2)¢ (31)

[

where r, = ner, zj = J4az, and L is defined by

n

n n,n ﬂ n _al n + n n [n n - n n]
071 (3501 WGer - 9 U] ¢ ° 1 i B U B

i(u-) = a,
J J itz

The Crank-Nicholson scheme for solving (30) is the one we shall use. It

is simply

-21[u2*1 - ug] . xE(UQ*l + Ug) afg(bg*l + ug) i=0,1,2,...,N, (33)

where a = (1/2) ar/(az)2, 8 = ar/2, and U] is the numerical

approximation of UJ, Equation (33) is solved in the usual fashion.

We now define the vector UM by

- _ ((n .n n\1
U= (Uo’ Uy, ... UN) ' (34)

where the superscript T denotes a transpose. The quantity E defined by the

L5 - norm of ", i.e.,

)

.. .
"r'r‘#ff',“/, .
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y A 2
; £, = [lonl gt (35)
u e

is the discrete analog of E defined by (27). We shall now prove that E is

range independent, i.e.,

En+1 2 En' for all n. (36)

Defining HJ by

W = ug*l + ug , (37)
aif?@
ana multiplying (33) by Wi we obtain :iii#
. mlz n2 n N n 2 :ir
_21{\UJ | - |uj‘ *RY = ARy LW v sfj|Nj| . (38) :

The term Rg is real and given by

p {
. n__ n nt+l .
RS = -mm (U] 0] . (39)
é. : Surming (38) from j = 1 (2, =0) to j =N (zy =2), we obtain ?}f}]
: -2i [ﬁ -E}'x % N.W, + 8 % fnl“ \Z’i‘ (40) *
_ n+l n j0 3 j=0 J 1 J n ’ L

7-11
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B Mmoo, n
where R is tne %, norm of the vector R, with components Ry,

Ei defined as in (34). The last two terms on the right-hand side of (40) are
I‘ - Nﬂ -~
[ real. The result given in (36) follows because the term a 2, ﬁj LNJ is real
J=0
also., To verify this fact we rewrite this sum as
N N 2 s
Z WJ LNJ = —go + gN+1 - Z bj 1 aij - aJ_le_l’ ’ (41) :h .
Jj=0 i=0 97 A
where Lo
= D n n
9% 3 b wo(al W - 4 wo) ’ (42)
Z
and o
‘ n.n n n O
. za, b N (5 Wyyei - 8y W . 43 el
= In+1 N n+% N N+% N+l N N) (43) 5;.-

Now the g, term is zero, because W, w= U8+1 + Ug ana both

Ug+1 ana Ug are zero. The third term in (41) is real. The term

- 9y+1 vanishes. This is because the bracketed term in (43) is the discrete

implementation of the boundary condition (29).
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8. CONCLUSIONS

- "“Mathematical, physical, and computational contributions to the
i underwater acoustic wave propagations have been made due to combined
multiple efforts among the authors presented here. These accomplishments
“ not only enhance the PE capability by extending the solution to three-
dimensional problems, but the work can be extended to handle acoustic wave
propagations in elastic media. It is necessary that a complete numerical
computation be performed to confirm the validity of these theoretical and

computational developments. | o
™ ot }'-?ﬂ'jwvr% ,'w;hw S A M
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