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1. INTRODUCTION

The Naval Underwater Systems Center (NUSC) sponsored Independent
Research, wFinite-Difference Solutions to Acoustic Wave Propagations," has
been successful. As a result to date, a useful product -- the implicit
finite difference (IFD) computer software program for the solution of para-
bolic equations -- has been developed for research and application purposes.
This software is now being used internationally in a number of research
laboratories as well as universities. In relation to the development of the
software package, the theoretical development attracted a number of inter-
nationally well-known scientists. In 1982, the Office of Naval Research
(ONR) Mathematics Group, under the coordination of Or. Richard L. Lau,
awarded a research grant to NUSC to encourage technical collaboration with
university scientists at the Yale University Center for Scientific Computa-
tion. These developments set the stage for four visiting scholars to spend
the summer of 1983 performing research aimed at the solution of underwater
acoustic wave propagation problems in all dimensions (mathematIcally,
physically, and computationally).

This report is arranged in sections. Each section reports the tech- .

nical accomplishments for a particular combination of authors. Some compu-
tations were performed by VAX 11/780 computers both at NUSC and at the Yale
University Computer Science Department.

The four visiting scholars, all professors at their respective
institutions, were

Frederick 0. Tappert Gregory A. Kreigsmann
University of Miami Northwestern University
Miami, FL 33149 Evanston, IL 60201

William L. Seigmann Donald F. St. Mary
Rensselaer Polytechnic Institute University of Massachusetts
Troy, NY 12181 Amherst, MA 01003

Other academic contributors to the work reported here were

Martin H. Schultz Kenneth Jackson
Yale University University of Toronto
New Haven, CT 06520 Toronto, Ontario, Canada, MSS 1A7

Navy contributors to this document were

Henry Weinberg Ding Lee
NUSC, New London, CT 06320 NUSC, New London, CT 06320

i'i- I1/1-1/2-.
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2. A WIDE ANGLE THREE-DIMENSIONAL PARABOLIC WAVE EQUATION

William L. Siegmann
Renssolaer Polytechnic Institute

Ding Lee
Naval Underwater Systems Center

Gregory A. Kriegsmann
Northwestern University

ABSTRACT: A simple extension of the standard two-dimensional para-
bolic wave equation to the three-dimensional case can be accomplish-
ed by retaining the angular derivative term. This extension is
limited to dealing with small vertical angles of propagation. A new
wide angle, three-dimensional partial differential equation is
developed to predict the sound propagation in a three-dimensional
ocean. This formulation is achieved by operator theory whose mathe-
matical derivation is given in detail. The validity of the formula-
tion is examined in full through discussion of approximation and
multiple scale analysis.

2-1/2-2
Reverse Blank
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INTRODUCT ION

A trire e-a iren s iona I parau.o Ii c equ at ion (PE) was aev elIopea by Tap per t

almost a ujecace ago. It was the same equation Tappert used to derive the

two.-oimnifsional parauohic wave equation, recognized as the stanorar smal

angle PE. Encountering the three-dimensional effect in the ocean, Baer2

initiateu the application of the primary three-dimensional PE to real

pruulems. Recently PerKins arid Baer implemented the Split-step algorithm-'

* into a computer code to solve the three-dimensional PE. Application of this

tniree-diflierislonal code oemonstrateo success in solving three-dimensional

proolems. Prior to Baer ania Perkins' three-dimensional applications,

Pierce4l formulatea a simplifieo three-dimnirsionial parabolic wave equation

*expressing one spatial variable in terms of arc length. It is seen from the

extension ut tfle two-cimensional stanoaro PE, the Tappert three-cimensional

PE, irnplementea Dy Baer-Perkins for real applications (for simplicity we refer

tu tne equation as the 30 PE), only handles the small angle propagation. So,

Pierce has not pursueu his development further. It is the purpose of this

paper to report trhe oeve lopment of the wide-angle three-dimensional PE, wniicfl

6., accommodates the 3D PE. During the course of this wide angle oeveloprnent, a

L runtoer of practical questions arose. We hignlight the importdince of these

questions anci try to answer these questions reasonably. The motivation of

* ~answering these questions led us to the formulation ot the ttiree-uimiersiutial

* wide angle PE. These questions help to define the region of validity and

* suggest when ano where the three-dimenlsional proulem can ue solveci

Lwo-dimcnsional ly. A formulation based on the operator theory is a starting

.......................................................
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point; the complete oetail is oiscussea. An analysis using the multiple scale

technique is includea to justify the operator formalism. A selected exact

soiution has been useo by Schultz et al. 5 to0 discuss the valloity of the

formulation as well as the accuracy of the solution. In this paper, a

simulated tnree-aimensional problem ano an application are incluoeo to

demonstrate the three-dimensional wide angle PE capability. All computations

were pertormea on the VAX 11/780 computer using the Yale Sparse technique. 5

OPERATOR FORMALISM

We Degir; from the thrve-aimensionai Helmholtz equation for the

spatially varying part of the acoustic pressure p = p(r,Q,z), written here in

cyilinrical coorainates (r,Q,z), i.e.,

_ p 1 ýp 22+ + 1 23 + LE+ 2 (1)
r ar - -- + +k0n p =0

ar r 'o az

The complex pressure is p times e-iwt, where w is acoustic frequency in - -

raG/s. In Eq. (I), ko = i/co ano the inoex ot retraction is n : n(r,o,z)

= coic, where c = c(r,G,z), the oceanic souno speeu, anr co is a reference

sound speea. A thorough aiiscussion of conditions and assumptions under whiich

Eq. '(1) appl les to ocecinic souno propagation has been given by Pierce. 6

Boundary conuitions for Eq. (1) are to be specitiea at the ocean surface anu

UoLtunl. Ine suurce term is omitteo from the right siue of Eq. (1) in

anticipation of Pl1 approximations that are valia away from the source, which

is assunieu nedr r = 0.

2-4
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Following lappert,l we let

p(r,u,z) u r,Q,z) v(r) , (2)

in which the factor v(r) represents a rapidly-varying portion ot the pressure

ana u(r,4,z) is its moaulation. Suostituting Eq. (2) into Eq. (1) yielus

2 1
u 1 2 v auV I au- (3)

+ V ÷v•) w -eV = 8 kon< v
Lar r '

r 'l

ri ar]

It follows from Eq. (3) that it an oscillatory function v is aetermineo as a

solution of

+ I av + 2-. ,2 T 17 Ko v=0 , (4)

ar

then the u sati sties

1 z 2 + v au 1 a2u a 2 u 2 2
T+(+- + v r+ d+r 2 - 1) u = 0 (5)

The outgoing-wave solution ot Eq. (4) is

V(r) = Ho ((Kor) (6)

whtre H I) is the Harikei function ot zero-th orderr of the first kina.

Since the parabolic approximation is desireo for the solution at large

dJistdrices from the source, it is apprupriate to apply a farfielo

approximation, which is expresseu by kor >>1. We aclfer unItil the next

2-b
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section a aiscussion of the vaiiulty aria the quantification of this

assumption. For now we employ it to approximate Eq. (6) by an asymptotic

expansion .. '

*21

11i 2 i(k 0 r - T) 
"

2(•r e kor o (7) '

(,kor) e0

Using Eq. (7) in Eq. (5) gives

F u Lu. + 1d2u+ a2 u + k2(f2 - 0 .()

+ o1ka r (n I)]u 0
arr ag az

If the first term in Eq. (8) is neglected, we obtain upon rearrangement a

tuncamental 3D PE, whicn is Eq. ( a.7) ot Ret. 1, i.e.,

i k 2
a -r Ln2 (r,o,z) - Iju + +u )u -

r @Z 2k-r a•

i 2u
Neglecting the termn -pr ano regaraing n(r,4,z) as azimutna: ly inuepencient

2k r aia

the stdnaaru two-uiniensional PE results, i.e.,

'1%"

1k [n 2 (r,z) _ lju + (10)

Equation (9) nas been expluited in calculation of sounu propagation through a

.iiesoscale edoy.2 If the last term in Eq. (9) is neglecteo but azimuthal

dependence is retainea in l(r,G,z), then a simpler PE is obtained fur which an

etflcieltL implementation has been Oemonstrateu. 3  Tlns equation ib useful

specifically in the absence of horizontal diffraction of acoustic energy, as

2-b
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for example with weak azimuthal sound-speeo variations and without azimuthal

redirection ot energy from bounuary interactions. Finally, it all azimuthal

dependence is neglectea in Eq. (9), the usual two-dimensional PE remains. As

is well Known, Eq. (9) ano its simpliticaLions are valiu for narrow vertical

angles of propagation. In order to obtain a 3D PE appropriate for wider

angles, we first employ an operator formdlism.

We return to Eq. (8) ano express it in operator form as

+ 21ko 2 + + -- + k (n i u 0-

L a zr 2 1)] (21)

An approximation to Eq. (11) is made by factoring the operator as follows;

+ 1+ i - ik B Q3 Lý + ik0 + ik 0 Q] u = 0 (12)

where

F 2' 8 1 2 11/2
-. -- + ( 2 -1 ) (13).

k0 @Z k0r

Equations (11) ano (12) are not equivalent because the operators Q and a/dr do

inot in general commute. However, provioea tnuse operators are in some sense

nearly commutative, it is appropriate to regarc Eq. (12) as a factorization

approximatiun ot Eq. (11). We make this approximation ann will aiscuss later

its validity. The solution of Eq. (12) consists of waves incoming ano

• outgoing in the rauial airections, ano we neglect the incoming WdVW (thie

second factor in Eq. (12)), which is usual in the PE method. Therefore, the

envelope u(r,4,z) satisfies the formal equation

2-7
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±U +1 kU ik Qu (14)

Determintiuln of u requires some definition of the operator Q in Eq. (14).

We specify Q by first expressing it as

Q LI + X + Y.,1/2 (i5)

ano

2 + a 2 2
X= (n 1) - , y (16)

7 -,T-2 --T

k z (k r) 3

The funoamental 3D PE,Eq. (9),can oe obtaineu by expanding the square root in

Eq. £15) in a Taylor series ana retaining only tne linear terms in X ano Y.

Rtnher thnd a (iinear) polynumiai approximation for Q, we use a rational

tunction approximation, i.e.,

1 + P1X + p2 Y (17)
Q"I + qlX + q'2 (7

where Pl, p2, qj, ano q2 are constants to be chosen. The

interpretation of the fraction in Eq. (17) is premultiplication of the

numerator by the inverse of tne uenominator. Tnus when Eq. (i7) is inserteu

in Eq. (14), the equation governing u becomes .-

u- + ik iko[l + qlX + q2 YJ- [ + plX + p2 Y]u (18)

or, equivalently,

LI qx + q uyj• ik L(P lq)X -qMu (19)

L q1  2 a r a 1 1) (P 2 2 JJ

2-8
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We note that wnen ql q2  0 O, Eq. (18) reouces to the parrow-angle

3D PE of Eq. (9) for the values P1 = P2 = 1/2, which are just those in the

linear Taylor series for (.For the two-dimensional problem Y 0,

rational-function approximations have been discusseu. 7 In particular, the

choices P1 - 3/4, q1 = 1/4 fur the two-aimensional case P2 = q2= 0

nave been suggesteu by Claeruout 8 for wiaer-angle propagation. These values

are precisely those necessary for an approximation to Q in Eq. (17) correct to

quacratic terms in X. The analogous result for the three-uimensionai case is

tounu by squaring Eq. (17) anU matching coefficients of X, y, X2, Y2 , ano XY.

It can be shown that the resulting five equations are satisfiec by the four

cnoices p, P2 = 3/4 ano qi = q2 1/4. Thus, these values give a

- rational-function approximation to Q correct to secona order in the operators

X anu Y. We use them in this paper to specify a wiaer-angle 3D PE from Eq.

"(19), i.e.,

Lk 0 z (kor) .-Q .

2 2 11(
4 z 4(k r r

0 02

Neglecting the terms invuiving -r -- anc regaroing n(r,@,z) as
(k r) aQ

azimutnally inoepenoent, the twu-aimerisional wiae angle PE results in the

sense of Claerouut

F ai .(ri (r,z) -1au~T
L ~~4k7 z

...........9.
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ik°[n2(r,z) -) + ,"(1).

0

Note that Eq. (20) is a third-order partial differential equation and a

discretizeo version has been analyzea for numerical stability. 9  Other

choices for tne parameters pl, P2, ql, and q2 have also been

investigateu.0-

DISCUSSION OF APPROXIMATIOi'S

The wide-angle 3D PE of Eq. (20) was derived subject to a number of

assumptions anu approximations. Ihe principal auvantages and limntations

convion to all PE approximations are aiscussed in Ref. 1 (see also Ref 11).

Fur applLcatiuns, we are particularly iinterested in determination of

"limitations on oceanic ranges where Eq. (20) is appropriate and where the

azimutnai-cerivative terms in Eq. (20) are significant. We focus here on

three of the assumptions used in the preceding section: farfield,

tactorization, ano rational-tunction approximations. Our aiscussion leads to

suggestive, rather than rigorous, conditions specifying range intervals where

Eq. (20) or simplifications of it should be employea. These conditions are

supported by arguments in this section; asymptotic derivations and numerical

rLesults will follow.

We turn first to the farfield approximation. Some inoication of the

range beyond which this approximation applies is very desirable in order to

"2-O0

i" ..................................• •.........,-• .•"•--"o ".. %.. .' N.-.".. -" /-
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provide an estimate for the minimum range of applicability for the 3D PE.

Denote by v(r) the right sioe of Eq. (7), i.e., the leauing term in the

asymptotic expansion for v(r) in Eq. (6) for large kor. Suppose we choose

to regaro 7 as an acceptable approximation to v if the relative difference in

their moduli is less than some tolerance s, i.e., if

I1v(r)l - 1I (r)l -'19(r)1-1 <_6 . (22)

This conuition focuses only on differences in modulus, rather than incluoing

oifferences in phase, which are of less interest here. Now it is known12"

that

v(r) I - (r). 1 + 0r(

In Eq. (23), the terms in braces ((1) alternate in sign and have the property

that the remainoer, after retaining any number of terms, is no bigger

than the first term neglected. From Eq. (23) it follows that the V is

regaraeo as acceptably approximating v if

k r > 1 (24)

In terms ot acoustic frequency f, Eq. kz4) requires range r to satisfy

C
r > rf : Btf (Ž5) ,""-

in whicn ri is the minimum range for the farfielo approximation to apply.

For example, suppose 6 = 0.01, corresponding to differences between v ano ,

2-11
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bein9 bounueu by 1%. Then as f increases from 10 to 200 Hz, rf oecreases

from about 60 m to about 3 m. An alternative expression for this case is

or > 2.5.

Adoption of a criterion such as the above suggests neglect of terms of

appropriately small estimateG size in the governing equations. For instance,

the approximation Y(r) satisfies

2- 2____
c2v 1T Tr + - =0 , (26)S* F dF * ko4(kor)2]:, •

d r dr7k

rather than Eq. (4) satisfiea by v(r). If Eqs. (24) and (25) hold, then the

last term in Eq. (26) is no oigger than 46. Thus, the approximation of v by V

is tantaniount to neglecting this term, wnilcn for 6 0.01 is of relative

magnitu(de no bigger than 46. This behavior is, of course, typical of a

regular perturbation for wnich neglect of a term of some small size prouuces

an error of comparable size in the solution. It follows that unless any term

in a governing equation is capaule of producing a singular-perturuation

effect, it is appark-ntly consistent to ignore the term if its relative size is

no bigger than about 4%. An immediate applicatiun of tnis criterion is in the

simplification of the coefficient of aular in Eq. (5). Using Eq. (7) and the

result that tne asymptotic expansion of dvy/r is the derivative of tnre

expansion for v, it is easily shown that the coefficient of au/ar in Eq. (8)

is multiplied by (I + 1/8(kor) 2 ). However, inequality (24) means that

this factor in the farfield approximation is no bigger than (1 + 26.) Thus,

it is apparently consistent to ignore tnis factor in the farfiela

2-12
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approximation. The inequality (24) with 6 = 0.01 (for instance) ensures that

no more than 4% error is committed in terms of both the u anu v equations

in the farfield approximation and that the error in the modulus of 7 is even

smaller. It can be shown by using anotner asymptotic expansion that the error

in the phase of V is actually of comparable magnituoe.

As employed in this paper, the rational-function approximation to the

square-root operator Q is given by Eq. (17) withl P1  P2 = 3/4 ano qj = q2 = 1/4.

For convenience this is rewritten as

Q =(27)

where

Z= x + Y n2 - + I a. (28)
k 0 az (k 0) aQ

As mentioneo previously, a primary advantage of this approximation is that it

is correct to secono orcer irn Z, i.e.,

(i + ZZ) (G + tz)

1 1 2 3=1: + ½ z-- 0o(z) (29)

An alternative expression of this fact is that the only other conoition neeceu

for Eqs. (11) ana (12) to De ioentical, in addition to commutativity of Q and

a/ar, is

Q2 1 . (30)

2-13
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From Eq. (29) it can be shown that Eq. (30o) holOs to terms of O(Z3 ). Next,

we noce that
4~ 4 ,

2 2 1 2 4
J az (k r) r44 K 4r au ,j z

0 0

+ýn2 F2 + 1 F2 + 2 1
.+. 2(n -i) 1 2 + I 12 (n2 1 2 - - , (31)

ker' + k• Lz r au

anu it follows that the effects of the terms in Eq. (31) are incluoeo by Eq.

(27). Thus, even though Eq. (20) explicitly contains no fourth-order z and Q

derivatives the effects of fourth-order derivatives in Eq. (31) are in some

sense incorporated properly into Eq. (20). On the other hand, Eq. (20) does

not contain the effects of any sixth-order aerivatives, such as thuse

. appearing in Z3 , or similar terms like (n 2 - 1)3 or (n 2 
-1)

(Ko)-2 ( 2 ja 2 z). The comparison of terms neglected with those

retained is most easily accomplished by scaling and asymptotic expansions such

as those in the next section. The purposes of the limitelo discussion here are

to indicate which types of terms are modeled correctly by the approximation

Eq. •27) anu to pruvioe a basis for, examining the factorization approxilmation.

The factorizatiorn approximation is exact when q from Eq. (13) and a/ar

commute. Since this is not true in generdl, Eq. (12) can be expanueu to yielu

Eq. (11) with the additional term

- ur (3?) -

2-14
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on the left side. To appraise the neglect of this unboundeo operator, we

compare its terms witn those retaineo in the equation for u. We use the

expression Eq. (27) for Q, but other aefinitions from Eq. (29) or other

parameter choices in Eq. (07) coulo be treatea similarly. In view of

Eq. (29), it follows from Eq. (32) that

CU E ()U + C(2 u ,(33)

where

(1) iko a a

" Lz- Z (34)
ano

ik
(2) u La Z2 _ 2- (35)

Using Eq. (28) we fina that the leaoing term (1) has the form

'1' 2
= ikon n (36)k r )'

0

As with the farfiela approximation, a comparison shoula be made here of terms

neglecteo (the largest of whiCh are (M)u) with those retaineu Lin Eq.

, (lL)J. It follows that the factorization reiies un konan/ar being small

compareu to k2(n 2 
- 1), and (kor 3 )-1 (a 2 u/a3 2 ) being small

compareu to r- 2 (D2 uaG,2 ). Since n is close to one, these conaitions are

k-(n2 - 1) (an/ar) smal1 (37)

an a

(K r)-L small (38)

2-1b
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The condition [Eq. (37)] of sufficiently small range variation of the

index of refraction is anticipated from analysis of the validity of the

two-dimensional PEI. Equation (38) is related to the justification of the

farfield approximation since inequality (24) can be written as (kor)-1 < 46.

Thus, for 6 sufficiently small and Eq. (37) valid, both farfield and

factorization approximations are satisifed. Furthermore, Eq. (38) and Eq. (37)

can be quantified by recalling the argument following Eq. (26). It is

apparently consistent to ignore the effect of the second term on the right of

Eq. (34) if

(kor)-1 < 46 (39)
0

Here we have already neglected terms in governing equations of this relative

magnitude. Equivalently, for kor> (4 s)- = 25 (when 6 = 0.01), the

second term in Eq. (36) must be ignored; for f = 10 Hz (or 200 Hz), this

corresponds to ranges bigger than about 600 m (or 30 m). We note that this

represents a conservative estimate for the neglect of the term, which may i%

fact have an insignificant effect for even smaller ranges. Also, a similar

expansion of Eq. (35) and a comparison of terms neglected with those retained

could be carried out. This process yields Eqs. (37) and (38) along with other

conditions on slowness of n(r,e,z)-variations involving various partial

derivatives up to third order of n(r,e,z). We omit these conditions for

brevity.

2-16
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To summarize, the farfiela approximation has been arguea as valia for

ranges r bigger than rf given by Eq. (25). Similarly, the factorization

approximation in conjunction with the rational-function approximation of the

operator Q is appropriate for slow variations in n(r,Q,z) Lsee Eq. (37)j ana

for r bigger tnan 61/ 2 rf Lsee Eq. (39)j. When these conoitions hold, the

three-dimensional wide angle PE, Eq. (20), should be applied. As range

increases such that - is negligible, the two-uimensional wide angle
(k or) aQ

PE, Eq. (21), shoula be usea. In the two-dimensional application, if we

regard the g-partitions as N, this coincides exactly with the "N x 20 Problem"

*detinea by Perkins ano Baer. 3  It is important to remark that Eqs. (37)
DO

through (39) are not preaicated on any statement concerning the size of the

Q-varlatlon of u. The conuitions for validity ot bothi the farfiela ana the

factorization approximations are inoepenaent of whether or not the

g-uerivatives in Eq. (20) aftect the propagation significantly. One

resolution of this latter issue is proviaec by using the scaling arguments

presentea below to compare the (kr)- 2 (22/802) terms with

a2 ulir 2 . It is sufficient here to remark that azimuthal variation in u

can be introduced by three mechanisms: water-column variations; n boundary

fluctuatiuns, either from bottom topography anu structure or from surface

irregularities; and directionality in the representetion of the source

nearfielo.

2-17
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MULTISCALE FORMALISM

r.

In this section we provide a systematic asymptotic derivation for a class

of wide-angle 3D PEs. One advantage is that the farfielo, rational-furiction,

and factorization approximations, which were explicitly required in the

previuus oevelopment, are not necessary here. Instead the scaling ano

asymptotic expansions produce the effects of '.hese approximations without any

acoitional assumptions. Moreover, consioerable insight is gaireu into the

nature of these approximations ana the conditions for their validity. The

wice-angle 3D PE, Eq. (20) is founa as an important case unoer well-aefineo

conditions.

We begin witri the Helmioltz equation LEq. (1)] which does riot incorporate

source effects. In this paper, we do not treat a scaling and asymptotic

expansion appropriate to the near-source region. Consequently, we regard the

spatial portion of acoustic pressure as a specifieo function of depth and

aziniutn at some near-source radial distance. Further, we assume bounoary

conditions are specified at the ocean bottom and surface anu for the azimuthal

region ot interest. For, urevity we do not write these conditions in the

following development, but they are easily incorporated once physical models

for the bounuaries are specitieo. The only spatial conaitions which we

explicitly employ are the obvious ones of boundeo pressure for all ranges ano

ot only an outgoing wave at large ranges.

"2-18
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With some choice of tne reference sounu speea Co, we assume that

n2 (r, Q, z) can be written in the form

n2 (r,Qz) 1 + en(r*,G*,z*) , (40)

in which n is a function of oraer-of-magnituae unity1 2 and the scaleo

variables with asterisks are nondimensional. The quantity n could be taken as

the maximum relative deviation of c from co wnicn typically is no more than

about 10-2 in ocean applications. The scalea variables are defined by

r c k/r, Z E
2 kz -1/2 (41)

Tnr firsL two variables of Eq. (41) are chosen following TappertI who also

provides a justification for the aLove aefinition of c. (Other definitions,

such as a cnannel aspect ratio, may be appropriate for certain propagation

conditions, as, for example, in an isospeeo channel where no definition is

ioeal in all circumstances.) The third variable contains an oruering

parameter a that serves to account for the rapioity of the azimuthal variation

in n2 (r, Q, z) ario, more generally, in the solution. Thus, it a is of

order unity with respect to c Ldenoteo by a= 0()], then Lhe aimensional

azimuthal derivative r-1 ap/aQ is comparable to ap/az, so that one or more

of the three mechanisms mentioned previously are accounting for substantial

azimutnal variations. If on the other hana O - 0(EI/2), then r-1 ap/ag is

comparable to 6p/ar, aria azimuthal variations are relatively smaller. Our

oevelopment pruceeas witn •, or order one, ano extends to other cases.

2-15
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Employing Eqs. (40) ano (41) in Eq. (1) and dropping the asterisks

hencefortn (so that (r,@,z) now represent scaled variables), for p =p(r,.z),

we obtain

2
€2 + ipr) + (p +a-. .(Prr r zz 2 • Q) (I + n) p = 0 (42)

rr

where Subscripts denote partial aerivatives with respect to the scaled

varidbles. Motivated by Eqs. (2) ani (6), we apply the methoa of multiple

scales by seeKing a solution of Eq. (42) in the form

p(r,Q,z) = P(p,r,r4,z;c) , (43)

where r i rc. With Eq. (43), Eq. (42) can be written as

P] + c[2P + P pP + 2÷ P + nPj + 2 [Pr 4 j 01. (44)

LPP+rp r P zz rr r rr

We note that our results are, in fact, unchanged if (for example) the term
cr1  wittn -a but.

cr-I P• is written as PP, but the analysis woulo be more

involveu. We next assume an asymptotic expansion of P, i.e.,

p n p(n) (p,r,6,z) , c- 0 , (45)

n=O

anu inserting Eq. (45) in Eq. (44) proauces a sequence of equations. Tne

first three of which are

p(O) + p(O) 0 , (46)

2-20
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,jfp(1) _ p(o) +Ip(O) + p(O) p(O) + ,(0)

rp r p zz Go I

- MP( 0 ) (47)

anu--_. apA )= -Pprr r P• )] (48)

The solution of Eq. (46), satisfying the outgoing-wave condition for

large p, is

p A( (r,9,z) e (49)

Using Eq. (49) ano solving Eq. (47) with the outgoing-wave condition yielas

P(') = A( 1 )(r,Q,z) ep + L21iAO) + .r A(O)'

(A) + a A(0) + nA.O)JpeiP (50)
+z AO7 QQ

lne solution in Eq. (bO) is bounaea for all p only if the bracketeu ttrms sumn

to zero. Applying this concition ana setting .

A(0)'= U(0 (r,@,z)ir (51)

we obtain

2d

(0) 20 (O U-2iU r U + U) + rU2 ) . (52)

Equation (52), with • = 1 Lwhich can be chosen without loss of generality whenr

0(1)], is precisely Eq. (9), the fundamental narrow-angle 3D PE of Ref.

-With tne definition

2-21



TD 7145

p(l) : A(1) eiP = U(1 )(r,@,z) elrll 2  
. (53)

We insert Eos. (49), (51), ana (53) into Eq. (48) ana require p(2) to be

boundea for all P. It follows as before that u(I) must satisfy

I(1) U() + a 2U(I) + nU( 1  + U(0) + I (54)
r 4r

Our results thus far are summarizea by

( ) 2e 1  LU(0) + CU + 0(c C 0 (55)p ~ LU" ,'
r

wnere U(O) ano U(I) are obtainea from Eqs. (52) aria (54), respectively,

for • of oruer one. When O = 0(c'/2), the seconu term oin the right of

Eq. (.2) Ldno Eq. ( 54)j is ausent ano is replacea by r- 2 Uq)

Having obtained an analogue of the narrow-angle 3D PE, Eq. (9), we next

Soutain a wiaer angle version corresponoing to Eq. (20). Differentiating

Eq. (52) with respect to r yields

2 2
u(O) u(O) 2 a U) U(O) + nr u(O) + nUO) (56)rr zzr- 7-)- GO r-"7 Gr r' .r

rrr r

It we aefine an operator

i [a 2 2 a + n + 1 7)n = •-r rarzl 4r

[drZ r (s r br@Q r4

ana use Eqs. (b6) ano (57) in Eq. (54), we fino

2
-21) 2 - (58)

r + 2.. D6~ ~ U 0
r
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Adding Eq. (52) and E times Eq. (58) gives
2t

22  U + cnU - c2nU(1) (59)- Ur Uzz + UO ...'111

r

where we have definea

u = u(°)'+ 1) (60)

The last term on the right of Eq. (59) shoula be droppea, as is consistent

without neglect of O(c 2 ) terms. With this omission aria using Eq. (57),

Eq. (59) becomes

a2+2 ~2
- 7 + n) Ur .

3z r -0

+ r+ (o+) +.

The resulting wide-angle 3D PE from our asymptotic derivation is given by

Eq. (bl) when a is orGer one. Using Eqs. (40) ano (41), it follows that

Eq. (61) with = 1 agrees exactly with Eq. (20) but with the additional last "

three terms on its right siue. These three terms are multiplieu by .

(typically about i0-2) ana ao not involve a radial aerivative of the

solution so they are in some sense less significant than the remaining terms

in Eq. k61). In fact, tney can be ioentitieu precisely with contriuutions

that were argueo as small in the derivation of Eq. (20). Specifically, the

first two ot those terms correspono to triose neglectea via Eqs. (37) ano (38)

in the factorization approximation. Furthermore, the last term corresponds to

those aroppeu through Eqs. (24) ano (2b) in the farfiela approximation. In

this way, it follows that Eq. (20) is an apparently consistent approximation

2-23
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ot physical interest to the class of 3D PEs representea by Eq. (61). We note

tnat Lne result of tne analysis for (=x 0(=I1 2 ), i.e., for relatively weak

azimuthal variations, may be seen from Eq. (61) by setting a2 
= E ano

oropping the two 0(E 2 ) terms. Estimation of the appropriate magnitude for .

in any specific application depends on detailed consideration of the three

azimutnally-airective mechanisms mentionea previously.

A VALIDITY TEST

Tre accuracy of the 3D wide angle PE has been examineo by Schultz, Lee,

ano Jackson 5 using an exact solution test. Their exact solution u(r,p,z) is

required to take the form

u(r,Q,z) - sin(lz) e i 0(r) (62)

where 0(r) satisfied the differential equation

doki m /(ko0r)2.Ii 2 
2)dO• _\ -k m2/(kor)2

or -7 ý.kr (63)

For appropriate choices of z = an integer multiple ot f, m=1, anQ a

solution of Eq. (63), the expression of (62) satisifes the 3D wide angle PE

equation (20). On tne other hana, Eq. (20) is solveo by an implicit finite

aifference methou that discretizes Eq. (20) into a large sparse system of

equations. This system was solved by a Yale sparse technique wnhse solution

compares favorably with the exact solution (62) at every range and at every p

sector. Result. of comparison have been reported in Ret. 5.

2-24
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We want to establish the validity of Eq. (20) and compare the solution of

Eq. (20) witn a known reference solution for an application (as reportea by

Baer 2 ). lhns application problem deals witn a profile that can be

calcuidteo by the formula (c(r,o,z) ; cm(zi + (0.001) rsin(), where cm(z)

takes on the values aescribea by the table below in the vertical plane at 0'.

z (M) c(z) (mis)

0.0 1536.5
"1b2.4 1539.243
406.3 ibUl.14,

"1015.9 1471.882
_, 5587.91 1549.606

_'_______. ___5__5__ lbbb.b26,

in the calculation, the source is placea at 254 m below the surface with

a frequency of 25 Hz, ano the receiver is placeo at 815 m. The propagation is

carried out up to 140 km in range. Results are proouceo in azimuthal '. -.

sectors. The sector bounoaries are assumeo absorbing. Of particular interest

is the result taken from the sector [-20', 20°] at range 120 km. Reference .

* results were reporteo by Baer 2 in tne same sector using the split-step

. Fourier algorithm, in figure 1, the solid line is the 3D PE result, the

daslito line is the Nx2D result, aria tne cottea line is the 3D wicJe angle PE

result, which was calculatea by the Yale sparse technique., t is seen that

..* tnu 3D wloe angle PE result compares closely witn reference solutions.

.2-25
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RANGE = 120 kmn
DEPTH = 815 m

~90

0
100 -

110
Cr -20 -10 0 10 20

ANGLE (deg)

Figure 1. Results from Sector [-20, 200] at 120 km

CONCLUSIONS

A wide angle partial differential equation hlas been developed to predict

the underwater sound propagation in three dimensions. This partial

differential equation is of the third order in theory. It is named after the

3D wide angle PE because the small 3D PE is a special case. The entire

development was based on an operator factorization whose theory was fully

justified by the operator analysis and supported by the multiple scale

analysis. The most important result is the information to indicate when and

where the three-dimensional problem can be solved two-dimensionally. The

mathematical validity was established by Schultz, Lee, and Jackson 5 in their

numimerical solution; however, the simulated example demonstrated further the 3D

wide angle PE capability. This 3D Wide Angle PE is, by far, a inore general

purpose model with useful flexible capabilities.
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3. DERIVATION, CONSISTENCY, AND STABILITY OF AN
IMPLICIT FINITE DIFFERENCE SCHEME

Donald F. St. Mary
Universlty of Massachusetts

Ding Lee
Naval Undezwater Systems Center

ABSTRACT: Parabolic equation (PE) approximations to the reduced
wave equation (Helmholtz equation) are used extensively in the
prediction of long-range sound propagation in ocean environments.
In two dimensions parabolic approximating partial differential
equations have been traditionally solved numerically via a Green's
function approach (Fast Field Program) and a Fast Fourier Transform
(split-step). Recently, Lee et al. created an implicit finite
difference (IFD) program to solve more general two-dimensional PE
approximations (those that accommodate wider angles of propagation).

In this paper, we present a three-dimensional PE (encompassing
small and wide angles) that is a third order partial differential
equation, and derive an IFD scheme to solve it numerically. The
"numerical scheme is presented in several different ocean
"environments, a wedge shaped region with absorbent bottom and
sides, the same region with hard bottom, and a full 3600
propagating region with soft/hard bottom. Matrix formulations are
carefully worked out in anticipation of the implementation. We
derive the consistency of the scheme with the original partial
differential equation and show that the scheme is second order
accurate. Finally, we present a discussion of the stability
properties that might be exhibited by the scheme.

3-1/3-2
Reverse Blank
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INTRODUCT ION

In this section we shall discuss the derivation of the implicit finite

difference scheme associated with the wide angle three-dimensional parabolic

approximatlon. We shall prove that the difference equation is unconaitionally

consistent with the partial differential equation and investigate the

- staoility of the scheme. The finite difference approximation is a

Crank-Nicolson type scheme. We shall show that it has consistency properties

that are very much like those of the classical Crank-Nicolson scheme when

applied to the canonical heat equation. In this regard we remark that the

straight forward explicit adfference scheme is stable under certain conditions

on the parameters when applied to the heat equation, but is unstable for all

combinations of the parameters even when applied to the simplest of our two

dimensional parabolic partial differential equations.

A CRANK-NICOLSON TYPE APPROXIMATION SCHEME

The wide angle approximating parabolic equation (PE) is given by

(i + q1 LI + q2 L2 ) L u iko((p 1 "' ql) L, + (P2 - q2 ) L2 )u"

q,~~~ L," q22)I 2u

LIU =[(n2 (r,z,o) - 1) + (1/ko)(a2Iaz2 )]u , L2u - [(lkor2 )(@21Io2)]u
n

u u(r,z,o), p, A qj, P2 k q2 " We shall let ur - U(rn ,Zm, ), where

rn ro + nk, r > 0, zm mh, o z + Zd, thus Ar = k, az = h, a = d, the

"3-3
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limits of the indexes are m-- 0,1,..., M or M + 1, 2 = 0,1,..., L or L 1.

n = 0,1,..... It an abuse of the notation, we shall use n in two different

ways: as the index of refraction and as a counter of the number of range

steps. (The context should make it clear which is intended in each case.) We

wisn to derive a Crank-Nicolson type approximation to (1).

A standard way in which the Crank-Nicolson approximation is derived for

traditional ,arabolic partial differential equations is to take the average of

the classic explicit (forward) difference approximation and the implicit

(backward) approximation. In order to motivate the application of this

procedure to (1), we shall briefly describe its application to a PE in

standard form, namely, the small angle Tappert equation

Ur =cu + duzz , c = ik 0 (no - 1)12, d i/2k 0  (2)

Consider the two stencils (for this demonstration, u - u(r,z))- - Zrni -
ZmI Zm_ ... i:..
Zm Zm 'z z

-+ - m+1
r r r: r:
rn rn+1 rn rn+1

The first of these is used to make the forward approximation based at the

point (rn,zm); the second is used to make the backward approximation based

at (rn+l,zm). The difference equations are

n+1 un cn un + 0n ( n n 2(urn m (Um+i m u ur )/h (3a)

ana

n+l n n+1 n+1 n+1 n+1 n+1 2
(u )/k Cm u + [um+I - 2um U U j/h (3b)

• . ,
3-4
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Note that the left-hand sides of these equations are the same. The

Crank-Nicolson approximation to (2) is obtained in taking ((3a) + (3b))/2.

In order to begin to carry out this development for (1) we need to define

the forward and backward (in r) discretizations of 2 T and 32 3.
az2 ar 7Q a

In each case we shall take the centered difference in the second order

variable and the standard difference in r. The key to taking the forward and

backward differences in r is to keep the base point of the stencils, the point

at which the approximations are being made, clearly in mind.

The two stencils associated with the z-derivative, base point encircled

are

(rnmtQ)•• z a
S•(n+11m,• in' z• • (n+lZm-l11"d.. 1i(rn,Zm),09 (r , (rn+lZm ) ,..',

(r n$'Zm+1 ' z _e_)' n+1 z M- " ,-.d

(forward) (backward)

The two difference approximations to urzz are equal, as above (the' forward

and backward approximations to the full differential equation (1) are not

equal though), ano have the common value

I( n+l - 2un+1 + un+I )/h 2  n 2U + un n 2]).h.(m+l1 2m,Z m-lk Um+l,t g mlgl2/ ,.

Henceforth we shall use the central difference operator notation

2 n 2u n + un
2 = (uM+ 1 , 2Um, Ul, ....-

A completely analogous development takes place for the second derivative in

g. The corresponding stencils in the r,o directions are as follows: 3-5
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(rn+IZm,Qz) rn+IZm,o1.)

* (r z '09')

n -
° .

(rn,Zm, I )Z

The approximations to Ure have the common value

[(2u) /d2 -(62u)"/d2]Jk

where

"2 n n n n
(6U) = UmZ+l 2u, + nmZ-1

m

It is not difficult to prove that for arbitrary sufficiently differentiable

functions 0(r,z,Q),

n n+l n )(rzz, - u ) n - ( •m :U)Z1//

n

n 2.2 2

-(•rr4z) (kh2/24) + O(k2 + M2

as h 0 0, k > 0 independently of the manner in which h,k approach zero. A

completely analogous formula holds for Orgo, which we shall use in the

ensuing development.

We shall now obtain the desired difference scheme by producing the

analogue of (3a) and (3b) for equation (1). For the first of these, the base

point is (rn,zm,g,) and, thus, the forward approximation is given by

3-6
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2÷ n n u" n)k) q k2o) 2u) n -1 2mu] Ck2
(1 + qn((n) 1) +U u m,2 a.-

1) L u9 -' uM9. /k) + 1 k0J m6u) z (4mU) zk
m, 2.

+ q2(korn)2 [fl+u - (6 u)Ikd2) (5a)

2 ( n , ..1 ..

= iko(p1 ql)((n2 2 - 1)U + (i/k )(p _ q- )(6mU)n/h2

_q ( In 
,-l9 1 M z

+(/ 2 U a2
+(i/Krn)(p2  q2 )(6zu 2.

The backward approximation has base point (rn+l,Zm,Qz) and is given by
n+1 ~ n+1 n 7 T

(I + q1 ((n 2 ) - 1) (U - u,)/k) + q1 (1/ko) (6~mU) 9  - (6au)9 /kh 2

+ q2 (11(Korn+l)[ 6u) - (6 u) /kd2 (5b)

n+1 n+n+
iko(pI ql)((n 2  -_ I)un,2  + (i/k )(p1  )( 2 u) / 2

2 2 n+ 2 2Ikon+l)(P2 - 2)(6~) I2il ..

m

Finally, the average of these two yields the Crank-Nicolson difference

approximation system. After considerable simplification the system can be

exprussea as follows:

( 2h2 ),Un+l + (-n/a2 )Un+l + (m ( 1hUm-1 ,2, Urn,2.-1 '...-.'

(2/d 2 )ETn n~ l + (6/h 2 ) n + (b-l 2 (6)
-M' )U, m+l'ý Umi+l

(b/h 2 )U + (bOn/d 2 )Um, . _l + o - (2/h 2 )b
2 n )u / + (bO /2

-(2 d 2)bon)um, (Uh 2 )Um+l, O /a )Um,+

3-7
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where

k2b = b(K) = qlko + ik(p1 - ql),2k,

bl=bl Ik - + k(P2 _+q 2 )]

[ 2k 0  r (r +k) 20 rbO =bO(r;k) r q2 (L_ + I + (71%"
r2 2r* 2ko r 2

al = al(r,z,o;k) = (1 + q1[(n 2 (r,z,o) + n2 (r+k,z,,))/2 - 1])

+ ikko(P - q)(n (r+k,z,g) - I)12

aO = aO(r,z,o;k) + ql[(n2(r,z,o) + n2(r+k,z,o))/2 - 1])

2
+ ikko(pl -ql)(n (r,z,e)- 1)12

The bar over an expression indicates the taking of the complex conjugate.

Note also that al ano aO are equal if n(r,z,G) is independent of the range

variable r.

BOUNDARY CONDITIONS AND MATRIX FORMULATION

We wish to express system (6) in a convenient matrix formulation, Dut the

precise form of the coefficient matrices aepenas on the bounoary conditions

imposed on the original problem. Throughout the discussion we shall assume

the surface bounuary conditions u(r,O,e) = 0. Another stanaing assumption is

the initial condition, namely, for a given function f(z,o), u(roz,) =--

f(Z,3 ) "4

3-8 '.I]L
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A frequently imposed bottom boundary condition is u(r,ZM+l,o) = 0 (in

this formulation the bottom is at z = ZM+1), the general assumption

associated with this condition is that an artificiall) imposed absorbing layer

below the ocean floor prevents energy from entering the water column.

Similarly we can consider propagation taking place in a cylindrical sector

(pie-shapeo region) between two azimuthal angles denoted by e and *L+1

with an absorption region on each vertical side of the sector. Thus in

aaoition to the conditions

u(r,z0,o) 0 u(r,zM+0,) 0 (8a)

we have

u(r,z,QO) = 0 u(r,z,QL+l) 0 , (8b)

Sfor all r 0 , z, e0 < e 5< L+1. This is the case considered by Baer and

Perkins for small angle PE. Finally, one assumes a given souna profile at a

distance from the source

u(rOz,Q) f(z,o) , (8c)

The system (6) in conjunction with the boundary conditions (8) can be -

expressed in a particularly nice symmetric block tridiagonal matrix form.

Namely

3-9
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n n n+"
AI -u (1)

n __n n n+1
81 Al2  U (2)

n n n n+1

n n n+1 '. -
BT ' - ,' '(L)

(9)
n n u n

AOB BO (-1)

n n n n
-0 AO BO (2)

3-10I

* * * S * * '. ** * *.- .

.. .. .... . - **.:SS *.-S-

n n nn

BO AOL_ -u()- -'.

where each block is M x M, the diagonal blocks are tridiagonal matrices ana ]•

the oft diagonal blocks are diagonal matrices with

3-10 :i
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BOn = diag LnOn/a 2  bOn/d 2 ]
Bln = diag [blno 2 , b1n/a 2  (9a)

n08

V n

K AO~=* (9b)-a/hO• ,O (1•b-(20 )O

8n

n

LO M-"- ...

2 n nn

A/n al -( (21h )b (212.a 1

mo M,

and

n

.OM, , . . .

,. - . *. -*- *... L

""n nn 2 2,
Oi (21 )b2 ~ , ~ (2/hd)b -( 2bn"-""

n, :::':!
allna

1 n ,',..'-',
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n iT
u n

'U1  ,•", .

U2 -- 2

n
() •(9a)

n

The system (9) shall be referrea to symbolically as

Sun+1 nun-T u aO u

We shall now turn to more general boundary conditions ana consider a

cylindrically shaped region 0 < e < 2w. Again we shall retain the pressure

release top surface boundary condition

u(r,zol) - 0 , r > 0 (10a)

The bottom boundary conditions are artificially located far below the actual

bottom of the wave guide, but in the current case we assume that the position

Z = ZM is the actual interface between ocean floor and water ana allow for

the possibility of reflection of rays. Fbr given real constants s, so, .

the condition is given by

uu(r,zM,Q) + aouz(r,zM,Q) = y 0 . (lOb)

The case of general interest is c - 0, B0 = 1, y = 0. Finally, we impose a

continuity condition on the motion in the Q variable, namely

"u(r,z,O) = u(r,z,2,) u (r,z,O) - u (r,z,2r) r > 0 (lOc)

"3-12
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We shall assume that to= 0 and o 2w.

First consider the discretization of the boundary condition (lOb). We

shall use a centered difference to approximate the derivative so as to

maintain the second order character of the approximations (as shall be seen in

the ensuing development, (6) is a second order scheme). We use

u (r,zM,Q) =u(r,zM+l,o) - u(r,zM_l,o)]/2h

and thus for (lOb) we write
n + n n.•

MUM, 0oM+l,• - UMCi,•/]2hh y , 0~o 0 (11)

The term uM+l, is ficticious in this context (recall the bottom is at u )n

ana can be expressea in terms of the real unknowns unM uMlLn using (11).

In order to encompass (11) into the matrix formulation of the problem, set m

M in (6) ano make the substitution, from (1l),

un nu 2h nM+k 2ahu M , + 2hy/1o , (ila)

to obtain
+i ~n+l 1"::

2(ý/ nl + ( n/a2 + Pal - (2/h 2) b (I + ah/oo)(/h)U M-1,i ,luM -.1 (am,z 0 • ;Z

n n+
(2/d -2 T .n+1 + Tn/a2. n~i

- U, . M,.•+ 1 "12v-2'

2d 2/h n + (bOn2 n ) (2h b(+ ahlo)
2bh)M-1, +UM , _1 + (aOM ,• z 0,..

2 n n2 n
(2/d) bo)u, + (bO/d )UM,+I +(12)

(2y/soh)(b -7o = 2yki(pI - ql)/oohko)

3-13
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Conuition (12), compared with (6), forces a change in the last row of each of

the diagonal blocks aln, aOn, z. 1,2,...,L, of the system (9).

In particular if one should use a bottom reflecting condition (11) in a

sector with absorbing vertical sides these row changes plus the addition of

the ghk vector would be the only change in (9). The resulting matrix

system, which we choose to denote by

a-'n un+l aO'n un ' (13a)

has the same coefficients as (9) except that for the AOn we substitute

nn

AO . . . , - 1,2,...,L, (13b)

n

2OM 1,9

where

n aOM, - (2/h 2 ) b(1 + ah/lo - (2/d 2 ) bOn

In

The analogous change in constructing the Al from (12) is maae,

all' = aiM,2n - (2/h 2 ) b(1 + ah/so) - (2/d 2 ) bin

and g is the M x L - column vector

g = [[O,...,O,gh,k 1] , LO,....O,gh,k T • (13c)-
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The system (13), which does not exhibit the symmuetric character of (9), will

be shown to be equivalent to a symmetric system.

Returning to the main consideration of this subsection, namely, a

cylinarically shaped region with bottom reflecting condition (11), the

conditions in (10c) can be represented as follows:

n 0 un n n, ] n un /d (14)

Urn0  m,L+1 3 LUm,1 - uI o]Id m [um,L+1 - uM,LId . -

The dummy index 0 L+1 is only used to help indicate direction of approach to

n nthe vertical plane o - 0, i.e., Um,L+1 - um,O. The two relations in (14)

reduce to
n n n

urn,0 (umI + Um,L)/2 (15)

One now re-examines (6) in the critical cases - 1, - L;',

m = 1,2,...,M. The new system of equations differs from (13a) only in the

first ano last rows of blocks. It is an (ML) dimensional square system

block-tridiagonal-like in form, except for the first and last rows of blocks

each of which has one additional block; i.e.,

A1 'n un+1 AO'n un+g (16)

where

3-15
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AK BK (1/2)BK-

BKn AKI" n Bn

i'nn

(i/2) BKn BKn AKLo~

m2

BOn, , @ are as in (9),

'InnK'I 
B

0n n

AKQK . .-. K ( )0,1 (16a)

= ,. L1 K (/ 2  (2d2 bI, 1,2,.. .,L -

aKM~,I uK"~ aK 1i (2/h_) ,(1 + hB)-(/ 2

'In

2€ •KM,z

where, for

1,L ; .Km, f mz- (21h2 b - (3/2d2) bkn ,m =1,2,....M-1

.KM. . M... (21h. b(l + h/o (3/2d2

and for

"n n n - 2h)b 2/2 bn
2,...,L-1 ; Km - aKm, aKm, -,2h b ( / m = 1,2 ,....,M- 1

"n I n In2
sKM,zý OK Mg aK M, (2/h') b(l + h/1o.) -(2/d2 bkn ,

3-16
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K = 0,1. Of course since everything on the right-hand side of (16) is known,

one could write it (but not the left-hand siae) without the addition of the

corner blocks, using (15) directly ano making the corresponding changes in the

vector g.

CONSISTENCY OF IMPLICIT FINITE DIFFERENCE (IFD)

A difference equation approximation to a partial differential equation is

said to be (unconditionally) consistent with the differential equation if the

difference equation approaches the differential equation as the mesh size

approaches zero, independently of the manner in which the mesh size approaches

zero. More precisely, (6) is consistent with (1) if

1 n n+1 n - n+1 + 2 2 b- n n+l
7 m-M1 Z 'T m'9_- (alm'9, -T )7 m,

""ni ,i+ ,z-4im (O, (17):'::

h d h
n+1 BT n+1 0 n bOn n on,

+•:+ 7 ,,-,• a -" ,',- +1 h-- 0~~• , _, - ( (7
""J an~ h a )...

_b 2n) bn b n bOn n

nT ,°'° - ' FOm ,+
h h '~ 

0 ,+

(I + ql L1 + q2 L2 ) Or - iko ((p 1 - ql)L1 + (P2 - q2 )L2  m

approaches zero as h, k 0 0, independently of the manner in which h, k

approach zero for arbitrary net functions 0(r,z,Q) having sufficient

differentiability. The factor 1/k is present since in the derivation of (6)

we previously cleared the k from the denominator. In order to help simplify

(17) we shall express, aO, al, bO, bl, and b in terms of their consistent

parts. Let

3-17
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Ra = Ra(r,z,o;k) .1 + q, [(n 2 (rae) n n2 (r + k,z,o))/2 - i]

2
la = Ia(r,z,e) iko (p1 - ql)(n (rzQ) - 1)/2

2 2 2
RbN = RbN(r;k) ( q2(1/r ) + (1/(r + k) ))/2ko

IbN - IbN(r) q l(p 2 -q 2 )/2kor 2

2 (2

Rb 0 ql/ko 2 Io i(p 1 - ql /2ko

c - c(r,z,G;k) = q1 n 2(r + k,z,G) - n (r,z,e)]/2

then

aO(r,z,Q;K) . Ra(r,z,o;k) + kia(r,z,o)

al(r,z,o;k) - Ra(r,z,e;k) + kla(r+k,z,e)

bO(r;k) - RbN(r;k) + kIbN(r)

bl(r;k) = RbN(r;k) + kIbN(r ÷ k)

and

b =RB + klb

It follows that

(I + q, Lj) Or = (Ra - c) Or + Rb~rzz

iko(p, - ql) LIO = 2(IaO + Iblzz)

ik (p2 -q 2 ) L2 • 2IbNO9

and that the standard Taylor approximation in the r variable yields

c(r,z,G;k) 2qn 2 + 0(k
qrn(rz,Q,) K/2 ( 2

ano

RbN(r;k) q2 /kor - kq2/kor 3 + 0(k 2 )

Now (17) can be expressed in the form

3-18
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r n+1 n 1 [(6m)) - (am0)-mL mJ mj h

Ran . - n + (Rb - kl b) J
m , k r m khZ

n+I 2

(6.0) - (n"0)
(RbNn kIbNn) m m m (r

kdl m[j ,I. .

n+1m• ' n+1 fn ].>.
-,a. [OmS n 0 1b" h 0-• ] [ I+•][am -°,

m j m ,j _I milj ,nr11
2 2O

(6 .0) (j 0)-[IbNn+l - IbNn] [a2in -2IbNn T2 f -blrZ n ""•- .. ,

1 n n n

nq2  n~+ Ib~ + 21bNn (0 )-q2• (•rQQ~m~j+ 21b(Oz~~ •~~

K r Mi,.j rnj ,

Each term appearing in brackets, L.,.], can be expanded using a standard

Taylor approximation, the centered difference approximation, or (4), thus we

obtain

r n n2 n
Ran. k2) k 02 + + (Rb- klb) 0+ (rz) k/2

rr, rzz m."rrzz)

+ 0(h2 + k2] + (RbNn -kbNn) L rQo)m,j + (Orrea)m'j k/2 + 0(d2 k2)]

F2 k 2+() (0nI+ [ (nr) k/2 + (k r am r) k + 0(k2."m,j

21b (zz)m0 + 0(h2 - + 0(k lar)n k + 0(k

-IbNrOn k + 0(k (0) + 0(k) + (d - 21bNn + 0(d)
[(br)n MJ

3-19
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n 1 n n n
-Rb(rzz m,j q - k r2 r) + 21b(0zz) + 21bN (4 G)m'jkOr m,j Zm,j e...

2(k/2) a + Rb+rrzz + RbNr + ql(n ) 4,rr rrz rree 1 r r

(2q 2 /k'2r 3) •re - 2 (IaOr + Ib 0rzz)

-2bN, -2a-2b (,) +(h k2 + 2

reOre r r eez21bN 0re 21ar - 21bNr( + 0(h2 + k+ d2 !i;

- (k/2) a4( q 1 L + q2  L2 )1r - ik o ((p 1  - qj) 1 / , - q2 )L2 )

+ 0(h 2 + k2 + d2) (18)

where the last equality uses the fact that kCr 2). It follows

immediately from the equality of (17) and (18) that in the range dependent

index of refraction case, n = n(r,z,e), the Crar.k-Nicolson difference scheme

(6) is unconditionally consistent with the partial differential equation (1).

Further, the truncation error or locdl discretization error can be

obtained as the inagnituie of the difference, at a point (rnZmve ) between

the differential equation and the difference equation both evaluated with the

net function 4 u, the exact solution of the partial differential equation.

Again, the equality of (17) and (18) yields immediately the result that the

local discretization error of (6) is O(h2 + k2 + d2 ).

TRANSFORMATION AND NONSINGULARITY OF THE DIFFERENCE SYSTEM

The system (16) is a square system of equations having M x L unknowns.

We shall show that a solution always exists, i.e., that al1n is nonsingular,

under practical assumptions on the parameters in (1). Looking at (16a) one

3-20
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can see that the last row of each AKjn causes nonsymmetry to enter (16).

We shall show that a very simple transformation of the original system

replaces it witn an equivalent system in which the AK"n are symmetric, K

=0,1.

First, we shall rewrite (16) in a manner which brings out the structure

of the inaiviaual blocKs AK'n. Let DKO be the M x M diagonal

matrices having diagonal elements as follows:

n n n niDK, diag [aK aKJ ... , aKM j - 1,...,L ; K 0,1,

and T be the M x M tridiagonal matrix

2 -1 2.

-1 2 -1

-2 2(1 2h)
0

then for

ln n - 2 n2
1, L, AK DK - (bin )T - (bK /d2 ) (3/2)1

and for

.3 = 2, ... , L - 1, AK n DK - b/h2 )T - (bKn/d2 )(21) , K 0,1,-

.3'.
where I is the M x M identity matrix. Let DKO ana d denote the FI x ML

(block) diagonal matrices

DKn aiag [UK', DK•, ... , OKL] K = 0,1
d1 3--

d = diag [1, 1, ... 1-7-1•=:
3-2.1,
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(J is the ML x ML identity matrix), and let S be the block triaiagonal matrix

with two additional blocks

31( I) -I I,,''

-I 21 -I

S = . ....

-1 21 -I

1 ;3

then

A 'In n / 2 bn /,(2 "
AK DK - (b/h )TJ- (OK )I S , K 0,1

where we are using some obvious scalar block multiplication of M x M matrices

ana ML x ML matrices.

We shall now pursue the transformations alluded to above. The

nonsynmmetry obviously arises from the involvement of the matrix T. Let P be --

the M x M diagonal matrix, i.e.,

P , diag [1, .... 1, 1/.] ,

then T V p-SP, where S is the M x M symmetric tridiagonal matrix having

exactly the same entries as T except in the lower right 2 x 2 block where S is

of the form

S(lower block) =[

2 2G + 3h-2

3-22>
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Let P, S be the ML x ML block diagonal matrices
0

P - diag [P, .. , P] , so diag [S, ... , S]

then
=n DKn _ (b/h 2) -1 S - (bKnld 2)IS

W p-P DKO - (b/h 2) P-IS P - (bKn/d 2 ) P-ISP
0

" P [ - (b/h 2) So - (bKn/d 2 )S]P

P- AtK p , K 0,1t

Thus the system (16) may be expressed in the symmetric form

A-• n n+1 U "n vn .
n v A v + Pg , (19)t .

where

un = p-in

and

A n n 2n2
AtK OKn- (b/h 2 )SJ- (bKn/d 2 )IS , K 0,1 (19a)til

In order to obtain the nonsingularity of the system we need to derive

conditions under which the matrix in (19a) is nonsingular. Let A - At"'n,

n be fixed but arbitrary, and suppose there exists an ML-vector y,

"Y I'Y2' "'" YL' "', rL M vectors, such that y 0, then

y* y U 0, i.e.,

2

(b/h2) y* oy + (bln/d 2 ) y*Sy y*Dlny .

The quadratic terms y*Soy,Sy* y are real since So, S are real symmetric

and it is easy to see that y*Sy > 0. Now separate the equation into two

equations by taking its real part and its imaginary part, then eliminate

oy from the two equations. The result is the expression
3-23
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[q1 (p q,) I. q q
2 (2 0)*Sy

r r kod rn÷ k d2

L M"-".

(p j , (n ) - (n2 )/2) y ,) (20) ',"
"~ ~ EP -q)( ( m,j m'j Jz

j -lm-1

yj- (.'((1 ) ... , yO)). We wish to state conditions under which it is

impossible for (20) to hold except for y the zero vector. The first condition

we shall state is where the index of refraction is slowly varying in range.

This is a standard assumption which is frequently utilized long before this

point in a development such as this in the general area of underwater

acoustics. We implement the condition here to imply that the difference

involving n2 in (20) is small. The standard choices of the p,q parameters

are P1 = P2 = 3/4, ql - q2 - 1/4; P1 -P2 -1/2, q, " q2 - 0,

or values close to these. Under such circumstances, the right side of (20)

can be seen to be close to the magnitude of the original vector y , which can

be taken to be unity (if y 0), and the left side of (20) can be made

arbitrarily close to zero by choosing appropriate range step sizes k. Thus,

we conclude that under appropriate conditions on the parameters that y must be

the zero vector, i.e., the difference system is nonsingular.

STABILITY

We now turn to the question of the stability of the scheme. A difference

system is said to be stable if an error (initial, round-off, etc.) made at the nth

step does not magnify uncontrolled in its propagation to the (n + 1)th. In the

simplest cases this translates into a need to show that for a system of the form

un+1 = Bun + g, the eigenvalues of B are less than or equal to unity is magnitude.

3-24
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In the current aevelopment the complicateo nature of the matrix Bn',

from (19), is

"in oi l"-'-
n "n

Bn t(]t ) (AtO)

"which makes it very difficult to attack the question of the magnitude of the

eigenvalues of Bn. Thus we shall pursue a more heuristic discussion of the

stability question. To simplify matters somewhat more we shall consider only

* the small angle PE, i1e., P1 - P2 m 1/2, ql . q2 . 0, and we shall

* assume the index of refraction is constant, i.e., n(r,o,z) . n. Thus the

* partial differential equation becomes

Ur = [ P1  (n2 1) u + 1 L7 (21)

3k k r aoP

The von Neumann or Fourier series method of analyzing stability is a

method that actually applies only to linear difference equations with constant

coefficients and then only to initial value problems with periodic initial

data. In practice the method is widely used outside of this narrow band of

problems and it frequently gives useful results.

We begin the method upon assuming that a solution of the difference

equation (6) is given by

un iw(mh) eiv(jd) n22)
whr M, e• e (22

where eO, a complex constant. We seek conditions under which (22)

satisfies (6) and IF1 < I for all n. Frequently ý is called the

amplification. Substituting (22) into (6) and simplifying one obtains

3-25
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S-• L• (1- cos wh) + 2 (1- cos vh) -k (no - 1J
d n+1

(23)

[ L (I 
- cos vh) k 2 (n 2 +

2 2where we have useaJ the fact that bi - bf(r +•k , bO - b , and al - aO 1 !i:;:

+ bk (n2 - 1) due to the assumptions enumerated above.

Case 1:

If the index of refraction n I 1 then

2, 22k 2 2 (1 - cos vh.1 +(4) (I- cos wh) cos vh

W• (24) ."-

1 h7 (I co wO h) 2 d~2 (1 cos vh F

n+1 i•i

We do not mean to imply that there is no dependence on the index n in the left

sioe of (24). We are here concernea only with the depenaence of E on n which

might be of magnitude grea,ýer than unity. Indeed separation of variables in

(21) indicates that its solution as a function of r has a factor of the form

ikop1 (n2 -. 1)reUrer

R(r) = e 0  Cur es/r

u,x constants. It is apparent from (24) that I&I > 1 which suggests

instability of the scheme in this simplest of cases. Extensive numerical

computations have not yet been carried out in connection with the scheme. If

it should turn out that the computations indicate no instability for this

particular case then it will be necessary to abandon the Fourier method and

analyze stability via a different approach.

3-26
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Case 2:

I f n 1 and ko(nL 1) 'is such that

C(1 cos, +h 2 (n 1AS vh 0
n d r

then

x <~ UL, and thus

n+ <i- Xn
2

xn+
0

Hence the method indicates stability.
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4. APPLICATION OF THE YALE SPARSE TECHNIQUE TO

SOLVE THE THREE-DIMENSIONAL PARABOLIC EQUATION

Martin H. Schultz
Yale University

Ding Lee
Naval Underwater systems Center

Kenneth R. Jackson
Unive~rs1t of Toronto

ABSTRACT: The Yale University sparse matrix technique is an effi-
cient method for solving large sparse systems of linear equations
such as those that arise at each step in the numerical integration
of the stiff system of ordinary differential equations resulting
"from the application of the finite difference discretization to the
three-dimensional parabolic wave equation. We discuss the
procedure of a special technique, the Conjugate Gradient method for w

Normal Equations (CGNE) together with its advantage for solving
three-dimensional underwater acoustic wave propagations.
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INTRODUCTION

Interest in applying the parabolic equation (PE) approximation to solve

three-dimensional ocean acoustic wave propagation is on the rise. A

three-dimensional parabolic equation (3D PE), originally introduced by

Tappert,1 dealing with small angle propagation was solved by Baer-Perkins 2

effectively. Baer-Perkins solved the 3D PE by means of the split-step

algorithm extended to three-dimensional calculations. Their efficiency in

calculation is to specialize the problem into N by two-dimensional problems (N

x 20 algorithm). A second three-dimensional wave equation was recently

developed by Siegmann, Lee, and Kriegsmann3 that offers the wide angle

capability (3D wide angle PE). Reference 3 showed that the 3D PE is a special

case of the 3D wide angle PE. Since the 3D PE is a special case of the 3D

wide angle PE, we proceed only to seek the solution of the 3D wide angle PE.

' ~Bayliss, Goldstein, and Turkel 4 used the sparse matrix technique and

effective preconditioning to solve the Helmholtz equation. For the solution

of our problem, we introduce the Yale University sparse matrix technique. A

"brief discussion on the Yale sparse technique will be given in the next

section. In order to set up the 3D wide angle PE in the form solvable by the

Yale sparse technique, we apply an implicit finite difference scheme to

formulate the 3D wide angle PE into a finite difference equation. Numerical

solution to this implicit finite difference equation is carried out by the

conivergent Crank-Nicolson scheme. A section is devoted to discuss the finite

* difference formulation. To support the validity of the solution, two examples

are included: one demonstrates the exact solution test and the other exhibits

an application that had been considered by others.

4-3
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AN APPLICABLE YALE SPARSE MATRIX TECHNIQUE

A linear system of the form

Ax = f (1)

can be solved by two classes of methods, the direct method and the iterative

(indirect) method, where A is a square, nonsingular matrix of order N, and x

and f are vectors. All direct methods employ the Gaussian elimination

procedure, which is very suitable for dense systems but has limited usefulness

for solving sparse systems because excessive memory storage is required for

large N. This is where the sparse matrix technique plays an important and

useful role in obtaining an efficient solution. These large sparse matrices

usually come from the Method of Lines (MOL) discretization of partial

differential equations. There are many techniques introduced to solve the

sparse system and an overview of recent developments of these methods can be

found in Ref. 5 (Elman). Ainong these methods, a particular effective method

applicable to solve our three-dimensional wide angle underwater acoustic wave

equation is the Yale University sparse matrix technique package. 5  One of

the sparse techniques contained in the package is known as the Conjugate

Gradient (CG) method, 5 ' 6 which has been developed to solve symmetric,

positive-definite systems iteratively with great efficiency. In theory, these

". iterative methods must converge and must converge fast for efficiency. In

practice, conventional iterative methods require the estimate of some kind of

parameter (e.g., tile extreme eigenvalues of the matrix operator A) for fast

convergence. Without this estimate one has no idea how fast his applicable

4-4
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iterative technique converges. This is a drawback of most iterative methods.

The CG method minimizes a certain norm in each step and is in a sense optimal

over a class of iterative methods. Since the system is sparse, the operations

are inexpensive and easy to implement. All these properties make the CG a

strong candidate as one of the most robust, rapid convergent iterative

methods. This is the reason we introduce it tW solve the wide angle

three-dimensional partial differential equation. In application, the CG.

"•method is effective for solving symmetric, postive-definite problems. In

fact, the partial differential equation governing the ocean wave prnpagation

with wide angle capability does not always result in a positive system. On

the contrary, it results in a complex system. The CG method cannot be used

unless an effective preconditioning technique is applied. The efficiency of

the application of the CG method to solve the 3D wide angle PE can be enhanced by

"preconditioning. These preconditioning techniques solve the system

Ax f

by an equivalent system

Q-1 Ax .Q- 1 f (2)

where is in a sense an approximation of A-1 so that Eq. (2) can be

solved very economically because the actual operation of Q-1A need not be

performed explicitly, and at the same time the condition number of A is

Improved. Since our resulting MOL discretization of the 3D wide angle PE is

. neither a real system, nor has the positive-definiteness property, we use the

4-5 ".
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A* for Q-1 as the preconditioning matrix. We then extend the technique to

handle a complex, nonsymmetric system whose solution is to be shown

effective. The method we consider here is recognized as the application of

the CG method to the normal equation.

We begin by dealing with the solution of the system of equations of the

form of Eq. (1), i.e.,

Ax f

p where A is a nonsingular, square matrix with complex elements. This problem

is equivalent to the normal equation,

A*Ax A*f (3)

where A* is the complex conjugate of A. This suggests that one natural way to

solve a nonsyrmnetric system is by applying preconditioning to the original

system and solving the equivalent system (3), provided no extra work is

introduced.

In theory, when the CG method is applied to solve system (3), the iterate

xi minimizes the residual norm. 5 One member of the CG family that can be

used to solve system (3) is known as the Craig's method7 and was proposed by

Hestenes. 8  In this implementation, the iterate xi minimizes the residual

norm. This is the method we used fo our underwater applications and we

further extend this application to complex arithmetic.

"4-6
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CRAIG'S ALGORITHM

The computation of the Craig's method involves 5 steps, i.e.,

ai - (ri,ri)/(PiP 1i)

X" + a1
i

1

ri+1 o ri -a .Ap

bi - (ri1,ri)/(ri,ri).

-A*r 1 .  + b~pPi÷1 = ~i+1 + iPi' 
'>:

where r 0  f Axo, x0 is chosen arbitrarily, and Po - A*ro. The

above loop is repeated starting with i 0 until convergence.

The work per loop requires 5N multiplications, plus 2 matrix-vector products.

Besides, only 4N storages are required for the vectors x, r, p, and Ap.

When oealing with the solution of system (1), we apply the preconditioning

technique to transform system (1) into system (3). Then, Craig's method is

used to solve system (3). It is natural to think about the need for explicit

computation of A*A. The advantage of using Craig's method is that the A*A

need not be carried out explicitly. This has been clearly demonstrated In the

computation procedure.

THE 3-DIMENSIONAL WIDE ANGLE WAVE EQUATION

As we mentioned in the previous section, there exist two different types

of three-dimensional wave equations as a result of the PE approximation. One

4-7
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is the three-dimensional parabolic wave equation (the 3D PE), originally used

by TappertI to derive the standard two-dimensional PE. Solution to the 30

PE has been developed by Baer and Perkins 2 using the Split-step algorithm.

The second type is the three-dimensional wide angle partial differential

equation, developed by Siegmann, Lee, and Kriegsmarin. 3 (We refer to this

equation as the 30 wide angle PE.) We chose to concentrate on the solution to

the 30 wide angle PE because the 3D PE is a special case. We want to remark

why we are motivated to solve the 30 wide angle PE instead of 3D PE; in

particular the application of the Yale sparse technique. In this event, the

vertical angle of propagation is roughly larger than 15", due to the irregular

nonzero boundary conditions, or other environmental properties where the fast

Fourier transform (FFT) is not easily applicable, this is why a general

purpose solution is needed.

Now, consider the 3D wide angle PE.

1 4.' P1 [n (rioiz) - _1 4-44p
k__ __ _ 0k 0r) 3G

Iii--are u (-iko + io= + ql [n(r,G,z, - 1 + •k-] 2 +2(korl) 2 ae2•2 u,()",'.""i£L...,,

u -1k +ik [2 u (4)

T0 00

where n(r,o,z) is the index of refraction and ko is the reference wavenumber.

Note that when P1  P2 1/2 and ql q2 = 0, Eq. (4) reduces

exactly to the 3D PE. 2  Using the split-step algorithm to solve Eq. (4) is

" not easily applicable. One can easily see that an alternate general purpose

technique is needed to solve Eq. (4). One approach that was considered was to

4-8
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multiply both sides of Eq. (4) by the operator in the denominator of the riqht-

hand side of Eq. (4). The following was obtained

2 2
"ji'" q, [n2(rez) I + 42f+q 2  1.• :. -U

.7 1 +l 2 1 2 8 ,r•i

.k. 0) k,0,..,.(

•lp __l [n i 2] 2 u..

ikk3=io(-<) 2(ez)- 1 - (p 2-q2------ 7 '.-i-) a

Eq. (5) is not a PE, but a third order partial differential equation known as

the pseudo-differential equation. (A reminder to the reader here is that Eq.

(4) is called the 3D wide angle PE because the 3D PE is a special case and the

terminology PE is a very familiar term.)

In solving Eq. (5), St. Mary and Lee 9 attempted to seek a finite

difference solution. Their analyses indicate a restrictive stability

condition. For this reason, we attempted a similar implicit finite difference

scheme as used for the 30 wide angle PE because of its favorable unconditional

stability. The solution by means of an iterative technique is the mair. topic

of this paper; moreover, the efficient solution by means of the Yale sparse

technique will be the main result.

DIFFERENCE EQUATION FORMULATION OF THE 30 WIDE ANGLE PE

We are concerned with the solution of the 3D wide angle PE, Eq. (4). We

seek such solution by means of the Yale sparse technique, in particular,

Craig's method. To deal with the solution of Eq. (4), we must first discuss

4-9
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"the solution procedure as to how to bring Eq. (4) into the finite difference

equation such that it is in an easy and acceptable form for Craig's method.

Before this formulation, we have a few definitions to state.

Let m indicate the index in the z direction; az h indicates the

z-increment. Similarly, is used to indicate the index in the e-direction;

AD= S is the 9-increment; k is used to indicate the range step Ar; and n is

used to indicate the range level. Also, for brevity, define

x = n2 (roz) - 1 (6)

and
,> : Y (7)"

(ko r) 39

Then, Eq. (4) can be expressed in a short expression using the above

definitions, i.e.,

-u 1ik + iko + plx + (8)
ar (i 0  o TK0 1 qjx + q2Y)

Write

ki + ik1 + P~x +2Y (9)
(-•': iko 0  i+ +• (9)

0 k 1 T+ qjx + q 2y

"then, Eq. (8) can be written in a short operator form, i.e.,

F u =a4 u (10)

Numerical solution to Eq. (10) can be expressed as:

n+l = r un (11)

4-10
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Using a half-half splitting of the exponential, and setting up the solution to

Eq. (11) uy the Crank-Nicolson scheme (an implicit finite difference scheme),

we find that an implicit finite difference discretization to Eq. (4) becomes

- [~ ,un+l I + n •(12)

Using the definition ofA, x, and y, Eq. (12) becomes

÷ ql (n2(r,B,z) - 1 + L q2  1 02n+l "

1.2 '2 2

__I-K k (pl-ql) ~n(r,G),z) -1i + i..~ (p2 -c i u0 n+l 1.
2 IeI +

: I+ q, (n2(r'•a'z)- + L -2)•k + q2 ko• un--i:]!

k 0 ( r :k .7

-ik° k (pl-ql) (n(r,G,z) -q I + 2) + (P2_ 2) 2 2 9 '"u
0

2 2 2.

+sq, we(p.q ,z) 1 1tai

2. 0-7 +1 q2 -1 . +'- (p-7 2  Ta 2

(22q1  + 1 1 L2 "- 2
k ql(n2 -) - - (r )2 2 2 I -q)(n-1)

37 - (2 22 (rk)2

0 0
2• 2

Usngcetrldifeehe fo rk bohoeaor n nEq 1)n
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(r-)' rZ) "- /"

(q, 1 i un k n+1"

7r7) o -(r% (k)2 7) Umz1..:

7 R 2ql 1 2q2  1 I
( + ql(n 2 ) - h-k k P - 2 )

00

+~~+ (!21-Ykko (pq7 o 4 (P2 (1

+ (q2 1 + 1 n- 1
*o .° (n 2- q21 z 67, ,,•k-:"-.

000

+ 1 + i k 1

r2-j n l t. (PI •'k (p - _) un -,1)

+ e 21f i ne- 
_L'"

(p 1- 1

k~~~~~~~' r +7R 2q2-7-6 n +

2 i 21 1 +q r2 1).) I½k kP q) ( 14_ )"..i

ý7 7 0

__on• (l-l ko (ri-kY • JP-2 -•._[.

Ths istelagspresyti w.at oslv ficety
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q1  1 1k 1
f koh(l-l

k0  o h

"R 2  1 1 1 __" -
2 21 2k- (p2-q2)k 0 (r+k) 6 (r+k 6

+ 2 (2q, 1 212 1L 2Prn,• q, +1(n2-1) - -•oh- 2- r2T 6ko) i k. k (Pl-ql)(n2-1) i'"!!

0khk 1 k 1 1 j )i
TO - o (pl-ql) 1- 7 7 (P2 -q 2 , --.

" 1i k 11 1

R q2 I 1 + (15)7, 7-- 7-;7o 7P- 2)--4
k r 6

We can see Eq. (15) in a simpler form, i.e.,

Sun + Qun:l + nu + Ru n+ + n.n. P,•. ing t m+1 ,£ k UM-1, z iUmtl Um'k-I -""

• * n R + u n R+ u , (16)
- + Un 1 + Q 1-+1. + Q + +m (Z)

whiere Q* means the complex conjugate of Q. Pmt and Pmz matrices

depend upon the variation in r,e, and z. Q matrix is constant in all 3

variables. R and R matrices are dependent on the range variable only.

AN ILLUSTRATION

For illustrative purposes, we use a simple example to display Eq. (16) in

a matrix form. In general, m 1, 2, ... , M and 1 1, 2, ... L L. Note that

in = 0 indicates the surface boundary; mi M + 1 indicates the bottom boundary;

"and . 0 and Z = L + I will be explained below.

4-13
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. We start with assigning m = 1, 2, 3, 4 and - 1, 2, 3 at the initial

range level n and march to the next range n + 1. In this example, L = 3 and

1 1, 2, 3 mean there are three secLors, as shown in Figure 1. In

, computation, we must deal with the indexes z - 0 and Z - 4. Since the index

is periodic with a period L - 3, then, z can be regarded as 2 = 2 (mod 3).

Therefore, z= -0 is the same as z - 3, and z - 4 is the same as z- 1, as also

* shown in Figure 1.

2. Y,. nd21.rseciey. W.te ancntrc amtixi.

-40' 3,.

Figure 1. Azimuthal Sectors i'

• .T Now we make an attempt to put Eq. (16) in a matrix form encountering the ,

]•i boundary -onditions. We use the convention Z t (mod 3) to express Zo and.-

S•~94 by Z3 and Z1, respectively. We then carn construct a matrix in a..

general form making use of the periodic boundary condition. We find

4-14
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0 0 R 0 0 0 R 0 0 0 u0. ,

0 Q P3 ,1 Q 0 0 A 0 0 0 A 0 u3 1

P4 , 1 0 0 0 R 0 0 0 R u4 , 1  0 ,u-

A 0 0 0 P1 .2 Q 0 0 A 0 0 0 1l,. fu 0
.

0 , 0 0 Q P 2,2 0 0 0 A 0 0 U2.2  0 '

o 0 R 0 0 Q P3 .2 0 0 0 P 0 3.?

,, 0 0 A 0 0 o Q P,, o . 0 0 A R ,,.2.

R 0 0 0 A 0 0 0 P1,3 Q 0 0 "1,3 ni" .3

0 R 0 0 0 'R 0 0 Q P2 , 3 Q 0 U2.3 0

0 0 A 0 0 0 A 0 0 0 P3 3 0 Q 3 ,3  0

0 0 0 , 0 0 0 A 0 0 Q P4 , 3  U4,3  LuS.3

,I Q, 0 0 0 0 0 A 0 0 0 Ul1 ll

Q, 0*,1 Q 0 0 R 0 0 0 A 0 0 0

0 Q* P, 

6

O* P;Q 0 0 R 0 0 0 A 0 U1. I

0 U

0 0 0 P 4 ,1  Q 0 0 RA 0 0 0 I1 u 4 , 1
lU 0?

0÷ 0 0 0 P, 2 Q 0 0 R0 0 0 "1.2

0 0 R0 0 0 0* 0 0 R* 0

0P;,2 0 0 0 0 u3,2

R4 0 a 4P *

0 0 0 A" 0 0 P,0 0 0 A"U ,

RA 0 0 0 A+ 0 0 0 PI, 3 Q' 0 L ul,3 0,3

0 •" 0 0 R * 0 0 Q .P 0

o 0 A' U 0 0 A' 0 0 fi P3 0 jj U3 03), 3 3 .)

0 0 0 H 0 0 0 R' 0 0 Q* F U 
1-k

In general, the large sparse system to be solved is in the form

n+1 :n:n+1,,
A~n u Bun + un+l 11 (18)

where un+1 contains surface and bottom boundary information at the

advanced range level and un contains surface and bottom boundary

4-15
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"information at the present range level. The A and B matrixes possess the

format

-.2

T 0 0 ... 0 0 R

0 T D ... 0 0 0

0 0 T ... 0 0 0

0 0 (19)

S0 0 0 ... T 0 0

R 0 0 ... 0 DT

All the block matrices (T, 0, and R) are of the same order MxM. Each T

matrix is tridiagonal; whereas each off-diagonal block matrix D and R are

diagonal matrices. Entire matrices are a 7-diagonal matrix with the property

that A - AT and 3 .BT.

The right-hand side of Eq. (18) can be carried out by one matrix-vector

operation and two vector additions. Eq. (18) is a large, sparse system, which

we want to solve by taking advantage of the Yale sparse technique.

Note that if we consider that the wave propagates all around a complete

360', we deal with a system where A and B are of the form (19), i.e., a

7-diagonal matrix. If we consider that the wave propagates only in a sector,

then the periodic boundary condition for the azimuthal plane disappears, and

we then solve system (18) where A and B are in a simpler form as below:

4-16
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TO0 ... 0 0 0

ST D... 0 0 0

0 T .. 0 0 0
,.• (20)

0 0 0 T D 0

0 0 0 ... T D

0 0 0 ... 0 D T

which is a 5-diagonal matrix.

Further, if we consider that the wave propagates only in a vertical

plane, this reduces to a two-dimensional case. We then deal with the system

(18) where A and B are tridiagonal matrices, i.e.,

T 0 0 0 0 0

0 T 0 ... 0 0 0

0 0 T .. 0 0 0
* (21)

0 0 0... T 0 0

0 0 0 ... o T o

0 0 0 ... 0 0 T

It is important to note that when P1 = P2= /2 and q1 = q2 : 0,

the system (16) reduces to the 30 PE.
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NUMERICAL RESULTS

As a test of accuracy, the Yale sparse technique (Craig's method) was

programmed on VAX 11/780 computer to solve Eq. (9) using the system of

equations expressed by Eq. (16). We used a known exact solution below as an

accuracy check.

To describe the test procedure, we express Eq. (9) in the form of Eq.

(5), i.e.,

r(~2~, . -1 1

2 2
jp+ q 1 [ (n r,,z ) -+ i) + -. -q2 (2 - 2  T I''

kz3z (k r) iG
0 0

We look for a solution to Eq. (5) in the form

u(ro,,z) =sin(u2z) eim 0(r) .(22)

Substituting Eq. (22) into Eq. (5), we find

2,' 
q M2

i0+ q l n(r,,z) - 1 I
10 0

_, + (p2-q) 2) I

0 ik(p,-1  In .r,ez) 1 - - 2 -~ - 7--4 (23)

0 r

4-18
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2
We 0 for computational simplicity. SinceWe select n2(r,o,z) - 2 T -';-

k0

k kon(r,GZ) Wlc, then

ko0 [0 12 (24)

Eq. (23) can be simplified using the k defined by Eq. (24) to give

2 2
p2 -q 2 ) m /(k0r) '5ar 1 - q2m2/(kor) 2  ) 0 -if(r)0 (25) .,:i

which is a first order ordinary differential equation.

The solution to Eq. (25) can readily be expressed in the form

iff(r) dr
(26)@dAre.W.us

The effort needed to find the O(r) is the evaluation of the ff(r) dr. We use

u(roa,z) = sin(siz)eimG 0(ro) (27)

as the initial field;

u(r,G,zo) sin(Qzo)e 0(r) 0 (28)

for the surface condition boundary; and

eim2
u(r,G,ZB) sin(QzB)e O(r) 0 (29)

4-19
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"for the bottom boundary condition. These boundary conditions are particularly

selected such that

,zo 0 and slzB an integer multiple of i.

The initial range is selected to start at 50 m so that the farfield

approximation is valid.

The azimuthal plane is divided into 10 sectors at 36" each. Since there

are 10 sectors and we partition the depth into 199 increments, then we solve a

system of equations of the size 1990 x 1990 dealing with a 7-diagonal matrix.

The results presented below are a display of boundaries between two adjacent

sectors. Not only do we compare the actual computed numerical complex numbers

with the exact solution but the dB values as well.

Case 1: Small Angle propagation (P1 - P2 - 1/2, q q2 - 0)

An evaluation of the Jf(r) dr gives _-n2 /(2kor). This produces the

solution

n2

'2k r
O(r) A e (31)

Table 1 describes the results; the first row indicates the computed

values and the second row indicates the exact solution. The results are taken

at the boundary between the third and the fourth sectors at 108' at a range of

50.4 in.
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Table 1. Results of Small Angle Propagation

,.,"Z(I) LOSS u(I)

3 30.00 12.636 (0.18834E+00 -0.13793E+00)
3 30.00 12.636 (0.18886E+00 -0.13722E+00)

6 60.00 6.859 (0.36627E+00 -0.26824E+00)
6 60.00 6.859 (0.36729E+00 -0.26685E+00)

9 90.00 3.749 I0.52397E+00 -0.38372E+00)
9 90.00 3.749 t0.52541E+00 -0.38174E÷00)

12 120.00 1.841 (0.65270E+00 -0.47800E+00)
12 120.00 1.841 (0.65451E+00 -0.47553E+00)

15 150.00 0.688 (0.74537E+UO -0.54587E+00)
15 150.00 0.688 (0.74743E+00 -0.54304E+00)

18 180.00 0.108 (0.79685E+LO -0.58357E+00)
18 180.00 0.108 (0.79906E+00 -0.58055E+00)

Case 2: Wide Angle Propagation (p, p2  3/4, ql q2 - 1/4)

An evaluation of the ff(r) dr gives the solution

- m(P2-q 2 ) kor-mvT2-i n,2,TI
2 Iq2 ko r +mrq•2 '"

•(r) A e (32)

Numerical results are presented in the same manner as in Case 1. These

results are given in Table 2.
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Table 2. Results of Wide Angle Propagation

I Z(I) LOSS .u(I)

3 30.00 12.645 (0.22578E+00 -0.58389E+00)
3 30.00 12.636 (0.22613E+00 -0.57994E+00)

6 60.00 6.868 (0.43904E+00 -0.11362E+00)
6 60.00 6.859 (0.43976E+00 -0.11268E+00)

9 90.00 3.757 (0.62819E+00 -0.16245E+00)
9 90.00 3.749 (O.62909E+O0 -0.16134E+00)

12 120.00 1.852 (0.78225E+00 -0.20236E+00)
12 120.00 1.841 (0.78365E+00 -0.20098E+00)

15 150.00 0.694 0.89377E+00 -0.23150E+00)
15 150.00 0.688 (0.89492E+00 -0.22952E+00)

18 180.00 0.117 (0.95544E+00 -0.24602E+00)
18 180.00 0.108 (o.95673E+O0 -0.24537E+00)

From the solution results, we examine the behavior of the solution of

Case 2 for large kor. First, we consider the real part of the solution for

m(P2-q2 ) 2 ko)

2 2 fL9r+'42J-

cos (x) co mqW- 1 m2 q2  ,

cot 2,rq2 [J o (k 0 r)

2Im,2  1 mIq 2

kor 2 2
0 (k 0r)

Then,

co~) sm(P2 -q 2) fl2 m(P2 -q 2) (3

cos -F [o 
(33)
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for large kor. For wide angle parameters p2 -q 2  112, Eq. (33) reduces

to the real part of the solution of Case 1.

In examining the cos (--i)' we note that the function increases

monotonically after ko - m2 1i. It approaches unity as k0r *> •. When

the function is close to unity, three-dimensional effects are lost, and Eq.

(4) behaves like the two-dimensional parabolic wave equation below

a i + P ,n(r~ z ) - 1 + " 1

k Oz

.. ~~ i + ik o °';

.
'a2

The more rapid the azimuthal variation (i.e., the bigger m2 ), the further

out in range the three-dimensional effects influence the solution.

An application is also presented here as a second example. This example

has ueen solved by Perkins and Baer,II using the Split-step algorithm for

three dimensions. The sound speed profile is taken from a Pacific profile

such that c(r,e,z) c (z) + (O.O0i)rsine, where c m(z) takes on the
.i

tabulated values below.
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Table 3. A Pacific Profile

Sz(in) c(z) (M/sJ.

"0.00 _ 536.500
152.400 1539.243
406.300 1501.143
1015.9 1471.882
5587.91 1549.606
5587.91 1555.526

This profile has a large linear gradient in the cross range direction;

. the gradient is 1 mrs per km. The profile in the vertical plane at 0* is a

typical profile in the North Pacific Ocean.

The source is placed dt 254 in below the surface with a source frequency

of 25 Hz. We calculated the propagation loss up to a maximum range of 140 km.

We choose to present below the results on one particular sector at 0". Along

with the 30 wide angle PE solution plot is the graphical result of Perkins and

BeaeriI for comparison. The propagation loss reading at 120 kin for the same

receiver depth is approximately 90 dB, showing satisfactory agreement with the

known result. The 3D wide angle PE result is presented in figure 2; and the

Perkins-Baer resulL is presented in figure 3.

4-24
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Figure 2. Propagation Loss vs. Range at Zero Degree Azimuthal Angle
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CONCLUSIONS

In situations where FFT is applicable, the FFT can do well. Under the

same situation, the CG method can also solve the same problem with the same

accuracy, but the computation speed is not competitive with the FFT"

computation. The solution to the wide angle three-dimensional partial

differential equation cannot be directly solved by the FFT; this is a definite

advantage of the Yale sparse technique. The applicable CGNE that we used here

requires 5N multiplications per loop plus two matrix-vector products, and only

4N storage locations are required for the vector operations.

Since CG is an iterative technique dealing with inner products, it is

desirable to implement the procedure in a vectorized machine. This is another

advantage of the Yale sparse technique.

"The numerical solutions produced in this paper demonstrated the general

purpose capability of the Yale sparse technique. Even though the solution is

accurate, the present solution can by no means be regarded as the most

efficient solution. It is believed that a clever preconditioning technique

can be developed to enhance the efficiency of our applications.
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5. A RANGE REFRACTION PARABOLIC EQUATION

Frederick 0. Tappert
University of Mlami

Ding Lee
Naval Underwater Systems Center

ABSTRACT: Application of the standard parabolic wave equation to
solve real problems requires a clever selection of the reference
wavenumber ko. An extended parabolic equation (PE) having range
refraction capability is reintroduced to be totally independent of
ko. The existing implicit finite difference (IFO) model was
applied to test the range refraction PE. Results compare favorably
with known solutions for weakly range-dependent environments, but
yield significant corrections for propagation through strong ,,-
oceanic fronts.
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INTRODUCTION

rhe RAnge REfraction Parabolic Equation (RAREPE), introduced by Tappert

[1] over a decade ago, has important acoustic effects but has been neglected.

Since the standard parabolic equation (PE) is performing satisfactorily, users

have not paid attention to the RAREPE. Besides, there did not exist efficient

algoritnins directly applicable to solve the RAREPE. Now, we have the implicit

finite-difference (IFD [2]) package, and the effort required to modify the

available IFD code to solve the RAREPE is inexpensive. To give a complete

understanding of the RAREPE, we first summarize the derivation of the RAREPE,

then describe how we solved the RAREPE by the finite difference solution. A

special section is devoted to discuss a set of illustrative examples. These

examples are used to show (1) the close agreement between the standard PE and

the RAREPE if there is no front, (2) the important property, independence of

ko, of the RAREPE; and (3) the range refraclion effects by weak, moderate,

and strong fronts.

DERIVATION OF THE RANGE REFRACTION PE

We start with the two-dimensional reduced wave equation, i.e.,

S+ 2 n 2(r,z)p 0 (1)
rr Pr ÷zz 0

Setting p(r,z) = and applying the farfield approximation, k r >> 1, we

find Eq. (1) becomes

urr + u + k0n2(r,z)u 0 (2)

Write Eq. (2) in the form"
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+ k Q Q 0(3)

arr

where Ttu

Q2 n (r,z) + .- 2'Q (6)

We assume that te dependence of n(r,z) on the range variaole r is weak

O+(r~z) and ncmngwaetir))

such that we deais negligible, but we shall later pick up the neglected
ka

ik r
antaerm uhse ofthssupinallenvelope dpefintion u ho coz)ue ,w hich Q lecads tow

factor Eq. (3) into two equations: J'

5-4U

i;r + k 0 Q. + =0 ,.(5)

and -

-i a k0 Q6 = 0 (6) "
-i3r 0

Then, the solution field u(r,z) is just the combination of the outgoing wave),.

0+(r,z) and incoming wave 6_ (r,z). •.

The operator Q, defined by Eq. (4), is actually •,-.

Q = 1 + (n2(r,z) - 1) + (7) :L:L:...:

In this paper, we deal with the small angle PE, i.e., we approximate the Q by.../

Q + ½(n2(r,z)- +)ko 7":-•

ikor ,','.
and make use of the usual envelope definition u = 6(r,z) e ,which leads to •.-:

5-4 "-"
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the standard PE originally introduced by Tappert [1], i.e.,

Lu i k (n2(•)u+ a2u (9) ..•r • k(n 2 (rz 1 )u+ 2k 2 i1_i

(r~z),--1)

ar2 o 2k0  2()0 ,.

To make the local error small, we need

andIn2(r,z) 11 << «1and .

1<< 1

k azi

2 
2

A detailed discussion of the estimate of Iln (r,z) - 111 and Ii-21I' can be

found in reference 1. k0 az

To keep tr'dck of the relative errors made in the course of calculation,

we can monitor the size of in 2 (r,z)- Ill and 111 11 and keep them both
k0

small. We now present a modified PE, which requires that only one of the

n (rz) - 1 and be small, as occurring in Q, but is of order unity.

0

This modified PE is capable of dealing with a large range variation of the

index of refraction.

2 1 a2

Consider two operators A and B, where A n (r,z) and B - In
Sa-Z

general A and B do not conmnute. We expand (A + B)2 by the formula

(A + SB)12 AI/ 2 + SC + o(a6) , (10)

5-5 "''
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where CO

C=f e-As B e- ds (d)

0

The proof of (10) is given in reference 1.

We now apply Eqs. (10) and (11) to the operator Q given by (7).

F:; 2
For small i we obtain

k a z
0

Q= i .'.n(rfz) -1) + en(rz)s ( 12 e-n(rz)s ds (12)

It can oe found that

1urz nrz 4 fen(uz - Snz U - 2SnzUz + s2n~s ds ."
00Qu(r,z) n(r,z) u+,- e-n sn u 2nu+ ')d

k o 0 (ZZ z,": zi .-

n2
n(r,z) u + Uz (13)

Substituting Eq. (13) into Eq. (5) for the outgoing wave, we obtain

i •ar 2k01aza n z) +k 0[n(r,z) + 41- /n3-• u 0(4).,l.>..

0' 2

~i-u+ 10~L ~ ~ u 0 (14)

Eq. (14) is the RAREPE and is valid to all orders in (n2 (r,z) - 1).

Equation (14) is approximately equal to the standard PE, Eq. (9), when n(r,z)

- ilii~~i 5-6 
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n2

is range-independent and is close to unity; in this case the (r,2) - 1

in the standard PE can be replaced by (n(r,z) - 1).

It ought to be noted that Eq. (14) and Eq. (9) are the same if the n(r,z)

is a constant in both r and z variables, and n(r,z) 1. Substituting the

constant n(r,z) into Eq. (14), we find

2u k n(rz) u + 2u (15)a = i2k n~~)u+ 0 az2•a a

Eq. (15) can be put in the form

2
a'P 2 1 al (1) *

ar ik 0 (n (r,z) - i)t + i - 2(1
0oaz

and replacing (n(r,z) - 1) by (1/2)(n 2 (r,z) - 1), we find

r k2(n(rz) -1)p+ . (17)

We see that Eq. (17) is exactly in the same format as Eq. (9).

We now have established the relationship between (15) and (16) based on

the transformation

ik r
u(r,z) p(r,z) e (18)

We now proceed to show that solutions to Eq. (15) and Eq. (16) are identical

in magnitude in order to establish the ko independence.

5--70.. . . ....

5_7'i



TD 7145

Substituting Eq. (18) into Eq. (15), we find

r= ik(n(rz) - 1)* + (19)r 02k'I-

which is identical to Eq. (16). From the relationship of Eq. (18), it is

easily seen that

Ijuj12 2 1*11 2

This shows that the solution of (15) is equivalent to the solution of (18) in

magnitude independent of ko.

L
THE REFERENCE WAVENUMBERk 0

We return now to the standard, small angle PE, which takes the form

lu- + 1 a• u + -0 (n 2 (r,z) - 1)u 0 . (20)
0 3z

It is clear that Eq. (20) is ko-dependent, thus, different ko's lead to

different solutions. Obviously, there is only one k associated with a

given set of environmental conditions that will produce the solution closest

to the real solution. We have been confronting the problem of how to select

the best ko. In fact, PE users never have to worry about the ko-selection

because existing PE model,, such as the split-step code [3] and the IFD

package [2], all offer the option to have a default ko value if the user is

not certain what ko to use. The default ko is chosen from ko

5-8
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21rf/co) where c. is the reference speed and is selected to be the average

sound speed in the water column. The user can choose ko to be the sound
speed at the source level for range-independent environments. Moreover, for

range-dependent environments and for range-dependent sound speed profiles, the

user can ask that an interpolation of the sound speed profile be performed

within each range interval and apply the same procedure to select co as in

the range-independent case. These choices so far present no big problem; and

mnake the selection of the ko ignorable. Pierce [41 re-emphasized the

importance of the ko selection and introduced a formula to determine the

range-dependent k0 based on the Rayleigh quotient. Some numerical

experiments have been carried out at NUSC, New London Laboratory. The results

show some phase effects on k0 variation. A detailed study of the

k0-selection is going to be reported separately when it is completed. All

these facts strongly suggest the desirability of having either a variable k

PE selection or a ko-independent PE. This paper chooses to deal with the

latter.

THE FINITE DIFFERENCE FORMULATION AND SOLUTION

Rewrite Eq. (I14) in the form

u+(I Ž+ k v u , (21)
ar 2k0 az \naz 0

where

v :n +4 n-lnz Z) " (22)

5-9
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1 n1 (n n2 n (27)
in Inm 4k2 n4 h 2 - nm+l nm+l

0C

Using tne definition kon = Co c- c k, (27) can be written as

F 41

vr CO + Cm 1 i (28)Vm ~ 47 :7c -•, + m+1 C_

Substituting (24) through (28) into Eq. (21), we find

aUm

ar -'-m -m+1 + 8m Urn + Y U M-1 (29)

where

i
m 2c- +

wh C- 1 )Ci
wh2 Cm C

and

Bin -(nm+ Yimn + i 10 + z In c+ "nCm~
.... ( 4w h +jj MŽ.__ 1

Note that a = -Cm and ym = -ym-l" We see that

7F 2 
= u Um+l- Um+l urn) + Ym(um Umil - Uml urn)

This implies that

7 Lmi in M a 1(U +l - UM-1 u) + Z nm( I Um- 1 - Um 1 U)
rnm m

5-!1
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= (m - ym+D(u - Uml Um+.
m

But, am = Ym+" Therefore

a,(:Iu 12) = E constant

This implies that the finite difference scheme is energy conservative.

Next, from Eq. (29), we set up the Crank-Nicolson difference equation as

follows:

k n+1 n+ ÷ - k rn+1' un+l k n+1 un+l'in U1g\n+l m -nm rn-i (3 0
(30)

k anLn k nn) k n + k n un
in m+1 + T in m "m m-1

This is the exact IFD format recognized by the IFD model. The solution by the

IFD code becomes easy.

NUMERICAL ILLUSTRATIONS

For qualitative information, this section presents three examples which

are used to show the various effects of range refraction.

We use the following cannonical profile whose input parameters are

defined and tabulated below:

5-12
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c(r,z) c IA+c~~ + ri] ,(31)J

where

Z zA (32)
n= -F/-2- ,

C A = sound speed of axis,

z = depth variable,

zA depth of axis of sound channel, and

B = thickness Gf thermal front.

We assign an ocean depth of 5 km and assume the ocean bottom to be flat.

We calculate the propagation loss up to 140 km in range. We place the source

at 100 m below the surface with a source frequency of 100 Hz.

Define

1 f~r -rF1. .

B(r) B 2 + 21 + tanhr-- F] (33)

where rF is the range at which the front occurs,

L is the length of the front, and

1l, B2 are parameters.

In addition, define

€(r) • ,(34)

where g 2cA /B .(35)

5-13
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PROFILE B1  B2 ZA rF L REMARKS
(km) (kin) (km) (ki) (ki)

1 1.2 1.2 1 50, 60 - No front

2 1.2 1.0 1 50, 60 20 moderate
front

3 1.2 0.8 1 50, 60 20 strong
front

rhe cannonical profiles for these different examples are described in figure 1.

SOUND SPEED (m/s)
1400 1410 1500 1N 16000 1650

10.

20-

30-

40-

50-

60

Figure 1. Cannonical Profiles

The examples (using the above three profiles) are executed using the following

information:

5-14
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EXAMPLE INITIAL INITIAL FINAL FINAL RANGE
RANGE PRO)FILE RANGE PROFILE FRONT
(kin) (kin) (kin)

0 1 140 1 No

2 U 1 140 2 60

3 0 140 3 60

The following set of graphs (figure 2) were obtained by the IFD model

using the input information of Profile 1.

I

. .2.



TD 7145

WY -

040

(E) SSI NOLE)d,

052 816 5



TD 7145

The results have the following meanings:

CASE RANGE FRONT AT FRONT SOLV BY
kin RANGE

A _ No Standard PE

13 60 Moderate RAREPE

C 50 Strong RAREPE

D 50 Strong RAREPE

Figure 3 presents the propagation loss curves over the range interval [0,

140 kin] for three different receiver depths. There is no front present in

these examples. The left column displays the standard PE results; the right

column displays the results with range refraction. Notice that the .

differences among these results are very small. In order to make the

difference more visible, we must group the results together in a magnified

plot.

5-17
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50' - 50" :

Recelver Depth 1-0l m Recevr Depth -lOOm
No RFg ReWraction Ro ngeRact

70 70-
80{ 80" •

90'1 so ".:

100' 100-:; '

110-1 110 ..
0 20 40 60 60 100 120 140 0  20 40 60 80 100 120 140

.50 50
S Recafer Depth - 36m 0mce• Dep - 30m

60No Ruig RsfahvOw 60RWRfw
70 70

80 80

90- 90

~100 100

110 110"
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

50 50

60 Recelver Depth - 600m s0 Ree•e Depth - 500m
No PRige Refractdo Roe Reration

70 TO

90- g0"

100- 100'

110" - - - 110'
0 20 4060 O0 100 120 '140 0 20 40 60 "80 100 120 140

RANGE (krr'.

F igure 3. ResulIts Without Range Front

The original Helmholtz equation is ko-mdeFor a
d-inepenuent.Foa

range-inuepenaent problem, we use an accurate fast field program (FFP [3])

solution as a refcrence for comparison. The split-step [1] solution is also

included. Figure 4 contains the solutions produced by the IFD, the

spl it-step, arna tne FFP, with and without range refraction effects.

5-18.--
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From the ,:omparison, a little difference is shown among the IFD,

split-step, and the FFP solutions. When comparing results among IFD, IFD

range refraction, and the FFP, also a little difference is shown. However,

the comparisons among the IFO wide angle, IFD range refraction, and the FFP,

we experience a difference between the IFD wide angle and the IFO range

refraction; this is expected because the present IFD wide angle model

* accommodates the range refraction. This is going to be pointed out in the

next example.

Similar as the set of no range refraction results, the next set (figure

5) consists of propagation loss curves over the range interval [O, 140 km]

with a strong range front that occurs at the range of 60 km.

5-20
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60- No Rw'ge Refrmction.
70~

100 -i>
I10

0 20 40 60 80 100 120 140

70

TO"80
AA 90

100

110
0 20 40 60 80 100 120 140

RANGE (kM)

Figure 5. Results With a Strong Range Front

Whenever the range front is present, especially the strong front, the

RAREPE results are more meaningful than the standard PE results. Results on

figure 6 show a difference between the RAREPE and the wide angle PE. Both the

stanuaro PE and the Wioce Angle PE were formulated dependent upon the special

approximation of the square root operator 4 -+ P, where c - n2 (r,z) 1,

ana , = 2 . The IFO solution considers the square root to be approximated
kaz

in the form + k: + .- When p aria q = 0, the resulting PE is the

stan0dru PE. When p = 3/4 and q = 1/4, the resulting PE is the wide angle PE.

2 2Expanuing (I + qlc + p)-I ki + p(c + )= ( - qlE + p) + q 2  + uJ

+ .. ) (1 + p(E + p = 1 + (p - q)(£ + )- q[p q)(c + 1 +2 + high oruer

ternms. Notice that tne portion (E + u)2 represents tile wide angle ano

(c + )2 E +2 + 2+ + wF, where tile last two terms represent thM range

refraction. Therefore, the present wide angle PE IFD version accomrouates the

range refraction,

5-21
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Figure 6. Results Comparison

CONCLUSIONS

A parabolic equation, having range refraction capability, is

re-inLroduceo. This range refraction PE is independent of the choice of ko,

ana is also more efficient to handle a rapidly varying index of refraction on

the range variable. Numerical results show that the range refraction PE is

useful for strong range fronts. Under such environments, the range refraction

PE has an auvanLage over tne stanuara PE. However, a price has to be paid on

the coi'.putatlon speed.
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6. THE HYBRID PARABOLIC EQUATION -- A RAY MODEL

Frederick 0. Tappert
UnP'ersity of Xlam"

Ding Lee "
3laval Underwater Systems Center

Henry Weinberg
Naval Underwater Systems Center

ABSTRACT: Using the standard parabolic equation to solve high
frequency problems is Impractical because of excessive running
time. A new HYbrid Parabolic Equation using Ray theory (HYPER) is
developed to handle high frequency problems. This paper discusses
the theory and development of the HYPER discussed in detail.

. .'. ° '
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INTRODUCTION

Successful applications of the standard parabolic equation (PE) [l] have

been evident. However, using the standard PE to solve high frequency problems

suffers an excessive running time [2]. To overcome this difficulty, a new

HYbrid Parabolic Equation using the Ray theory (HYPER) is designed to be

particularly effective in handling high frequency problems. A complete

discussion is given to describe how the HYPER is derived. Within the

discussion, how the ray equation is obtained will also be described in full.

THEORETICAL BACKGROUND ANL DEVELOPMENT -

Prior to the development of the high frequency parabolic equation

(HYPER), it is necessary to list a set of definitions below.

Let u(r,z) he the pressure field, n(r,z) be the index of refraction, k 0

be the reference wavenumber, co be the reference sound speed, and c(r,z) be

the sound speed profile.

The standard PE takes the general expression

2 i.

i a2ku + k U(r,z) u = 0 (1)ar 2ko 0z .
0az

for small propagation angles, and U(r,z) = (1-n2 (rz)) =

6-3
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An observation of Eq. (1) stirs up two motivations that lead to the

development of the HYPER

Motivation 1: The standard PE, Eq. (1), has no limit on frequency, but the

equation itself is strongly frequency dependent. As a function

of frequency, the computation time is excessive; because of

this we need a more effective way to handle high frequency

problems. We feel that there is no reason why we cannot

develop a high frequency PE that possesses the same format as

Motivation 2: The geometry of the acoustics is independent of frequency. It

is highly desirable to have a ray PE model independent of

frequency but with full range effects, We, thus, seek to -

develop a high frequency PE in format (1) but totally frequency

independent.

Based on these motivations, we proceed to develop the HYPER. Motivation

-I suggests that the HYPER takes the expression

i + 2k0 - k V(r,ý) u = 0 (2)

where V(r,c) is related to U(r,z) by the relationship

V(r,ý) U(r,zR(r) + - U(r,zR(r)) -ý- U(r,zR(r)) (3)RIRaz zRr)

where

ik o[So0(r) 4+ R(r)](4

u(r,z) = u(r,ý) e [(4)

z = aR(r) +

6-4
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the dot "-" indicates the r-derivative; So(r) is taken for granted as a

function of r for the time being and is defined later in the section on the

development of ray equation (the particular ray equation associated with

(2)). Now, we proceed to show how (2) was derived. Write

ikoS(r,z)
u(r,z) A(r,z) e (5)

For large ko, substitute (5) into the standard PE, Eq. (1), and use

asymptotic expansions for ko (keeping order up to o(l/k,)), we find

a U. (6)

Equation (6) is an inhomogeneous, nonlinear partial differential equation

(PUE) called the Hamilton-Jacoby equation. Rays of the POE (6) are the

characteristics of the POE (6). To solve eq. (6), differentiate (6) with

respect to z, we find - -

_2 s a's aS + au
araz az -7 a2

az

Then, let a aS/az and substitute it into the above equation, we obtain * -

+ e La- + a U ,0 (7)
ar az az

Write

de ae + -
U-a Tr az

but,

do aG adz a&

"'..jj "

6-5
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Comparing the above 2 equations, a must equal dzfdr. Solving (7) by the

method of characteristics, we have on the curve z(r)

dzrU- . a , (8). .

do dU

and dF + = 0d (9)

Combining (8) and (9) gives the HYPER ray equation, i.e.,

d2d =z a-. U(r,z) (10)

Suppose we trace a particular ray (i.e., a particular solution z - zR(r)).

To deal with the standard PE, iet - z - zR(r). Corresponding to the

operator -, we find a- z ; similarly -1 for -• The standard PE can bearar R a a az
transformed into

au .. au+ 1 a2 k
ai -iR a 0 a4 U(r,zR(r) + o) • = 0 . (11)

Now, recall the So(r). We express

S0 (r) - S(r,zR(r)) , (12)

and we refresh our memory that the S(r,zR(r)) satisfies the Hamilton-Jacoby

equation (6).

From the relationship of e, we see that

dS dz

Then,

6-6
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S(rz) L dz + L dr d z ) dr

+ a
=+as\ dr

1 M - U(rz) dr

- (

which implies that

So(r) - - U(rz(r')] dr (13)

This is the complete expression for So(r). We need the r-derivative of

So(r). We find that

odz)2  (14)

-w S r - - U(r'zR(r))

Now, substitute expression (4) into Eq. (2), we obtain the desired HYPER, i.e.,

- 1 2-r
i-+ 2 3 U **°UrRr + -) - U(rzR(r))

_-I U(rzR(r))] u 0 . (15)

Next, we shall show how (15) was obtained making use of all the developments.

From (4), we find

6-7
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r / ikoSo(r)+ r+(r)]
.a. oa R R R

ni -1 2ko[Sorik+[S0(r)+ ¢Rr(r)]

and Uj

a 2u a 2  a 2 2k -]j iko[S)(r) C'~R(r)]

dy substituting the above partial derivatives into (2), we obtain (11).

Q.E.D.

COMPUTATIONAL ASPECTS

To perform the computation completely, a number of steps are involved.

Each present step depends upon the previous step after the problem is properly

started. We discuss the computations required for each step and show the

continuity from one step to the next. Most of the present computations are

carried in a practical manner to make the solution work. Room exists for -

future imnprovemený in computations.

Step 1: Calculation of the Ray Equation

One important portion of the computation is the calculation of the ray

equation to describe how the ray is traced. The ray trace portion requires

the implementation of the ray equation, (10), i.e.,

6-8
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d2z _U "
dr2 - -zx .

The ray equation is a second order ordinary differential equation (ODE) and

can be treated as a purely initial value problem. This second order ODE can

be solved efficiently by an existing convergent numerical ODE, equation such

as the methods given in reference 3. We apply the Stomer-Cowell formula to

perform the ray trace.

We express our ray equation in a short form as

S-- f(r,z) (16)Jz

The Cowell corrector formula takes the form

zn+1  2zn +zn- I [n+1 + 10 1n + fn- (17)

To get the predicted value to integrate formula (17), we use the Stormer

predictor formula

P . (t 2"-•
+- 2Z Z - (Ar) f (18)

Since we are solving an initial value problem, the z(O), z(O) are known. We

also know fn and zo, which is z(O). We need to know zI, which we choose -.

to obtain by the Taylor series expansion, i.e.,

z1 z(O) + (Ar) z'(O) + Z(Ar) 2 z''(O) +

z(O) + (ar) z'(0) + ½(Ar) f(O) +

6-9*.............,V x'.' . .*.....-.'. .... .... ...
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The Taylor expansion has an order of accuracy in truncation error less

accurate than the numerical ODE methods used. We overcome this difficulty by

using a very snmall step size.

According to Henrici [3], the selection of the step size to satisfy the

corrector's convergence is such that Ar < '2, where L is the Lipschitz

constant of f(r,z).

To carry out the complete procedure will give zR(r).

Step 2: Determination of the Ray Trace Region

Next, we make use of the information obtained from the previous step, and

attempt to define a strip (called the wide W) covering the ray path. The

figure below shows the picture in the r-z plane.

r

zS. ,0 Zr.\\II " ,.

6-10
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here zs is the source depth and, zr is the receiver depth. The region of

interest is determined to be

z -W < z < z + W
,,S - -s

therefore, the width is 2W. We see that if we solve the problem in the

original r-z plane, we need to solve the problem in the entire original

region; therefore, the amount of work is by no means able to be reduced.

The advantage is evident if we solve the problem in the equivalent r-

plane as shown by the figure below.

Zt s one single ra; rr .

----- -Zr,' .

_ ~Thle region covered in the r-i plane is small; therefore, much less work is,

* needed to complete the computation and should be more accurate. This above

.* illustration shows one single ray; for a family of rays, we handle the family '•

" by taking the union.

I6-11
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Step 3: Computation of V(r,ý)

Function V(r,C) is calculated using Formula (3), i.e.,

V(r,C) - U(r,zR(r) + - U(r,zR(r))

_•••U(r, zR(r))

where U(r,z) is defined to be

11cO
U(r,z) T (

C'

On the ray path, U(r,z) is calculated by

U(r,(r)) (r,zR(r)

and~~~~ (ra r)sUrz~r)-(
and U is calculated by

az

SU(r, (r)) i [U(rzR(r) + Az) -U(rzR(r))] (20)8z rzR~r AZ Uzz

Step 4: Computation of S0 (r)

So(r) = S(r,zR(r)) is calculated by formula (13).

Step 5: To Obtain the Solution u(r,z)

Our main objective is to obtain the solution of Eq. (1), i.e., u(r,z).

We summarize the procedures involved in order to obtain the u(r,z) and show

how the u(r,z) is obtained.

6-12
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* Obtain the ray equation solution zR(r).

Using zR(r), compute V(r,;) by means of V(r,4) - U(r,z)

relationship.

Group a family of rays together that have strong effects between the

source and receiver.

Determine the grid points in the r-; plane and set up the numerical

solution for u(r,c)"

• Solve 5(r,C) by the IF9 model.

Solve So(r) - S(r,zR(r)) by formula (13).

* Finally,

iko[So (r)+ 2R(r)]u(r,z) = (r,4) e '.i

CONCLUSIONS

We have developed the HYPER specially for handling high frequency

problems. Through an efficient implementation, the advantages of the HYPER

are clear--not only is it accurate but also it reduces the execution time ,

tremendously. Thus, the HYPER should be considered to be a practical high

frequency model.

6-13
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7. A VARIABLE DENSITY PARABOLIC EQUATION

Gregory A. Kreigsmann
Northwestern University

Ding Lee
Naval Underwater Systems Center

Frederick Tappert
Un~vers~ty of Miamlzr

ABSTRACT: In this paper, we derive a new parabolic equation (PE)
that incorporates the effects of a variable ocean density. This
density can be smooth or piecewise-smooth. Thus, our model reduces
to the standard PE when the density is constant and it alleviates
the need for interfacial conditions when the density is stratified
in a piecewise fashion. We also present a numerical scheme that
will be used to solve our new equation. This difference scheme has
a conservation law that is the discrete analog of the new PE's
conservation law.
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DERIVATION

ihe propagation of sound in an ocean with variable density p is governed

by the elliptic equation

1 2
, p + k 2 n2p .(.)
pv *i

where p is the acoustic pressure, k' w/co, w is the frequency of the time

harmonic source, co is a reference sound speed, n = co/c, and c is the

sound speed in the ocean. A time dependence of e-iwt is suppressed.

Equation (1) is to be solved in a spatial domain D', which contains the

water. A simple model is obtained by assuming both the ocean bottom and the

water-air interface are flat. Specifically,

DI . (x',,y ,z') Ix'l <-, ly'l < 0 < z' < H'J

where the primed variables denote dimensional quantities. Since equation (1)

is elliptic, boundary conditions are required to complete the mathematical

description of the problem. The conditions used in this report are

0 0, z' = H' (2)

*' and

p =, z'= 0 (3)

Thus, the ocean has a hard bottom ana a pressure release (free) surface.

7-3

°.o.....°....•.• .. ,. .... =...,,..o..° . °.° o,........ °.%....... .°°..•o.-... •.°. °...,°



TO 7145

The source deriving equation (1) is usually modeled as a point

disturbance located at x' y' 0, z' Zo'. It is omitted from equation

(1) for simplicity.

In many underwater applications the domain (in polar coorainates), D' =

* (r',z',1) < r' < R', 0 < z' H', 0 < G < 2w where equation (1) must be

soiveo is extremely slenoer. By this we mean the parameter

S(H-'/R•) 2  (4)

satisfies c << 1 where R' is the maximum range of interest. We now introduce

the aimensionless variables r ana z used by Tappert Li], i.e.,

r = ck'r' (5)

and

z = r k'z' . (6)

Accordingly D' is transformed into

S{(r,z,Q) 10 < r <_ , 0 <_ z 0 , 0 < o< 2,} (7)

where X. (k'H')H'/R' . We asume that this number is fixed and is order one

with respect to the parameter c. Introcucing this change of variables into

equations (1) - (3) we find the acoustic pressure satisfies

rr 1z 12 r 8p[Prr + ' pr _ p 0r Pr + £[Pzz - Pz + = 0 (8)

7-4 p 0, z= 0 (9)
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ano

o, z -1 (10)
az

In aaoition to the bounaary conditions (9) ana (10), we demana that p is

bounaea as r-.- x.

We now make the assumption that n2 deviates slightly from a constant

and takes the functional form

n2 (x',yo,z') 1 + cf(r,z) (11)

The constant I in tlis equation is arrived at by taking co to be the average

of c throughout 0. The factor c in (11) demonstrates the weak dependence of c

on depth and range. (This apparent minor perturbation creates profound

effects on acoustic propagation when the range is as short as a few

wave I eng ths )

We also assume that the density p depends upon the variables r ana z in a

smooth or piecewise smooth fashion.

When (11) is insertea into (8) we observe the presence of the small

parameter c in front of nearly every term. To cavalierly set these terms to

zeru wouio render a physically meaningless result. Guidea by previous

experienLe with such matters, we apply the method of multiple scales to this

equation. Specifically, we assume that

p(x',y',z') =P(&,r,z; •)(12)

7-5
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where the fast variable C is defined by

(13)

Inserting this variable and (11) into (8), we obtain the equation

+ +P [2 + P 0r + P + f "S-r- P & zz P z -]

+ C2 + Pr P -P Pr] (14)
€2[Prr r r P

The subscripts denote partial differentiation. Next we make the assumption

that P has the asymptotic expansion

p 2  c" n (t,r,z,o) , +0- . (15)

n=O

When this expression is inserted into (16) we equate to zero the coefficients

of the powers of c. This yields an infinite sequence of equations of which

the first two are

L PO -PO + PO 0  , (16)

anGa

r1 Pr
L P 2P + P P +p P . p + (7I Or r F O p UP Ozz p oz ' (17)

7-6
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for 0 < z < , 0 < r < t. Inserting (15) into the bounaary conditions (9) and

(10) aria equatin( to zero the coefficients of the powers of e, we obtain an

infinite sequence of boundary conditions. The companions for (16) and (17) are

Pn= 0, z 0 0, n - 0,1 , (18)

and

aPn
n-- 0, z - Z; n = 0,1 . (19)

The solution of equation (16) is

PO - Ao(rz) e ÷ Bo(rz) e- i , (20)

where the amplitudes A0 and B0 are functions of tne listed variables.

. Because of the assumed time dependence, e-iWt, we set

Bo(r,z) = 0 (21)

as a failure to do so would yield incoming waves from infinity. Inserting

(2C) ana (21) into (17) gives

L PI 2 i A AzOr rAO AO+ AOzz Aoz f A e (22)

which has the general solution

P1  Al(rz) e + M(A0 ) e , (23)

7-7
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where M(A0 ) is the bracketed term on the right-hana side of equation (22).

We observe that P1 remains bounoed as { . r/fc€ only if

ar A
M (AO) 2i Aor +A A- + Aozz 2 A0 z + f A0  0 . (24)

If we now set

U
Ao(rz) "/rT:Th 7z 0 (25)

into (24), we find that uo must satisfy our new variable density parabolic

differential equation (VDPE)

au
- "o 0)] +f u (26)

We now make a few interesting observations about this new equation. -

First, when p is a constant, (26) reduces to the standard parabolic equation

Lij. Secondly, the differential operator involving z is symmetric or formally

self-adjoint [2]. Thirdly, the quantity

E -f u a dz (27)

0

is independent of range, i.e., dE/dr 0. This follows directly frnm (26) ana

the bounaary conditions for u0 are

u 0, 0=0 , (28)

7-8
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and (

* /P u.) O, z - (29)

02%

Equations (28) and (29) are direct consequences of (18), (19), and (25).

Fourthly, we observe that equation (26) itself was derived without using the

bounoary conditions given in (18) and (19). Thus, our new parabolic equation

will hold even when more realistic boundary conditions are implemented.

Finally, equation (26) can be used even when p is piecewise smooth. This will

allow us to study interfaces that are not planar or straight lines. In this

sense our new parabolic equation extends the analysis given by Lee and

McDaniels [3,4].

A CONSERVATIVE FINITE DIFFERENCE SCHEME

In this section, we present a finite difference scheme, which is second

order accurate in depth and first order accurate in range, for solving

equation (26). This difference scheme will conserve a discrete analog of

dElor = 0, where E is given by (27). The method of analysis and other

examples are given by Kriegsmann ana Mahar [5].

We begin by rewriting (26) as

aa r a
-2i -a ' b (au.) + fu (30)ar=a az [ iT 0j

7-9
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where a - ana b Fi/. Setting u9 Uo(rn,zj), it is easily

verified by Taylor's theorem that

a Lb- (aUo) - L(u )(6z) + 0(z)2  (31)(rn,zj)

where rn = nar, zj- jAz, and L is definea by
An n nnu nbL(uj) -aj bj+½ [a9+1 un aý uf] + b' 1 u _ a' u"]

The Crank-Nicholson scheme for solving (30) is the one we shall use. It

is simply

-2i +1 = xL0+ j u) + fý(Un + U) j 0,1,2,...,N (33)-"J ,oo I )

where x - (1/2) arl(Az) 2 , s - ar/2, and UV is the numerical

approximation of Uq. Equation (33) is solved in the usual fashion.

We now define the vector Un by

-6n= (Uon Un ... n)l

1. U (34)

where the superscript T denotes a transpose. The quantity E defined by the

92- norm of tn, i.e., L.

* 7-l0
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E -n-II 2 (35)

is the discrete analog nf E defined by (27). We shall now prove that E is

range independent, i.e.,

En+1 En, for all n. (36)

Defining Wj by

wj un+1 + u , (37)

anc muItiplying (33) by Wj we obtain

-2i u 4 12 0- u'2 + Rm LW+ of 2  (38)

The term R'1 is real and given by

n n nT:)..l

R Im [U• j]+l] (39)

Summing (38) from j = 1 (zo 0 0) to ij N (zN = ), we obtain

-2i En+I -En1" L W LWj + a f (40)

7-11
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where Rn is the 12 norm of the vector R with components R9

defined as in (34). The last two terms on the right-hand side of (40) are
N

real. The result given in (36) follows because the term x 320 LW. is real

also. To verify this fact we rewrite this sum as

NN 2LIjTW3 -go + N9 b a b,.aWJ a a-Wj- (41) ::'
j 0o N+ =o "- ".- j

where Wb

,=- abo (n a Wo) (42)
0 " 0

and

Sn a1 a• bn. gN•aNN+½WN+l - an WN) (43)

Now the g term is zero, because Wo U n+ + Uo ana both
00 0 0

Un+l ano Un are zero. The third term in (41) is real. The term0 0

gN+l vanishes. This is because the bracketed term in (43) is the discrete

implementation of the ooundary condition (29).

7-12
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B. CONCLUSIONS
• Mathematical, physical, and computational contributions to the

underwater acoustic wave propagations have been made due to combined
multiple efforts among the authors presented here. These accomplishments

,. not only enhance the PE capability by extending the solution to three-
Sdimensional problems, but the work can be extended to handle acoustic wave

propagations in elastic media, It is necessary that a complete numerical
computation be performed to confirm the validity of these theoretical and
computational developments.
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