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Subject: The Role of Eigensolutions in Nonlinear Inverse
Cavity-Flow Theory

Abstract: The method of Levi Civita is applied to an isolated fully
cavitating body at zero cavitation number and adapted to the solution of
the inverse problem in which one prescribes the pressure distribution
on the wetted surface and then calculates the shape. The novel feature
of this work is the finding that the exact theory admits the existence
of a "point drag” function or eigensolution. While this fact is of no
particular importance in the classical direct problem, we already know
from the linearized theory that the eigensolution plays an important
role.

In the present discussion, the basic properties of the exact "point-drag"
solution are explored under the simplest of conditions. 1In this way,
complications which arise from non-zero cavitation numbers, free surface
effects, or cascade interactions are avoided. The effects of this simple
eigensolution on hydrodynamic forces and cavity shape are discussed.
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cavity detachment point near or at profile nose
cavity detachment point at profile trailing edge
see related nomenclature below

see related nomenclature below

location of eigensolution singularity on unit
circle

drag coefficient

1ift‘coefficient

pressure coefficient on wetted surface
profile chord length, ¢ =1

element of arc length in z-plane

strength of eigensolution

complex potential and complex F-plane
velocity potential

stream function

stagnation point location

point at infinity in z-plane

free-stream velocity

intermediate mapping complex plane

complex velocity

intermediate mapping complex plane

complex variable in the physical (x,y) plane
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a angle of attack o
8 angular location of stagnation point measured K
from negative real axis '5
T
z dummy variable ;ﬂff;
n normal effect from profile chord
g complex semi-circle plane, § = elf
o distance along profile chord . i
T cavity thickness at trailing edge
Y stagnation point angular location on unit

circle in ¢ plane (cos Y = a/b)
Ye angular location of eigensolution singularity
on unit circle
b1 value of ¢ at Ay
$2 value of ¢ at Ay
w(z) = 8 + i%n q/U = 8 + 1T complex logarithmic hodograph
8 flow inclination

q flow speed

Subscripts

0 pertains to flat plate solution wg
1 pertains to regular part of solution wj
c pertains to eigensolution w,
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Introduction

The present paper bears upon the two-dimensional inverse or design
problem for fully-cavitating hydrofoils in which one specifies the pressure
distribution on the profile wetted surface and then calculates that wetted
surface shape which will satisfy this prescription. This design problem
is certainly not new to airfoil designers and as far as cavity flows are
concerned, both linear and nonlinear design methods have been worked out.
In the realm of nonlinear approaches to the problem, the very general
method of Yim and Higgins [l]* is worthy of note because it applies to
single foils as well as to cascades of profiles for all cavitation numbers
in the cavity-flow regime. Another approach has been discussed
superfically by Khrabov [2]. Both of these contain far more generality
than is required for this study at zero cavitation number., For the
direct or off-design problem of exact cavity-flow theory, a good example
of the present level of development 1is represented by the work of Furuya
{3] and it is clear that now one can do both the»design and off design

problems for fully-cavitating hydrofoils., Thus, one can attempt to

tailor the profile to an entire set of performance goals and failing
that he can at least design for the best compromise among a set of ;:.;
conflicting requirements.

According to many authors {4-7], the inverse problem is not thought
to present much of a challenge at zero cavitation number. In this case,

the classical method of Levi Civita [7] can be applied to an isolated
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*Numbers 1in square brackets indicate citations in the references listed o
below. R
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body. This view 1s certainly proper as long as one is content, after

prescribing the pressure in the circle plane, to accept whatever

correlation between points in the circle and physical planes may result. :t;f;

0f course, such a rudimentary approach does not lead to a useful design
procedure.

The motivation for the present investigation is that none of the
literature on the nonlinearized inverse problem we have surveyed so far
[1-8] has made use of the fact the exact theory admits the existence of
a "point drag” or complementary function. While this fact is of no
particular importance in the direct problem, we have already seen in
the case of the linearized inverse problem {9-11] that the complementary
function can play an important role. For the exact theory there has been
a question if a nonlinear eigensolution exists [1]. Therefore, in this
study, we explore the question regarding the existence of a “"point drag”
or eigensolution in the nonlinear theory under the simplest set of
circumstances and this leads us naturally to the restrictions that the
free streamline flow pertains to an isolated profile and that the flow
be at zero cavitation number. These simplifications will free us from
the complications arising from non-zero cavitation numbers and other
boundaries in the flow domain such as a free surface or neighboring

cascade blades.

In this paper we use the term eigensolution in the sense of thin

airfoil theory as suggested by the work of Van Dyke* because we already

know that the inverse problem in the theory of fully cavitating hydrofoils .ffffj

*Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford,
CA, pp. 48-54 (1975).
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is not necessarily unique. Our aim is to find a sufficiently weak
singularity which can be added to the classical Levi Civita solution and
can then be used to satisfy certain additional physical conditions relating
to the location the free streamline springing from the hydrofoil nose
and thereby provide a unique inverse cavity-flow solution. After we have
constructed the simple eigensolution, we will examine some of its

properties. The use of this solution in the design process will be

presented elsewhere.

Flow Geometry and Conformal Mappings

As noted above, this study uses Levi Civita's method [7] for the
analysis of the exact inverse problem for a fully cavitating hydrofoil
section. The flow geometry and the principal quantities associated with
the flow are illustrated in Fig. 1. The origin of coordinates in the
z = x + iy plane is taken at the stagnation point on the wetted surface
of the hydrofoil. This point is denoted by O in Fig. 1. The chordline
of the profile 1s inclined at the angle a with respect to the x axis
and the free—stream velocity U is taken as being parallel to this axis
as illustrated. The flow separation point at or near the profile nose

is the point A; as illustrated for a sharp-nosed foil. The "upper”

cavity surface is shown as the dashed curve extending from A; to the
point 0' at downstream infinity. In the case of a round-nose profile

A] can lie on the upper wetted surface behind the leading edge. This

PSSRy

case is not illustrated in Fig. 1. The point A; denotes the location
of the trailing edge of the wetted surface. The lower surface of the
cavity leaves the wetted surface at Ay and extends as shown by the T

dashed line to the point 0' at downstream infinity. i}f5

PN B ™
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Let the coordinates of a typical point on the wetted surface be denoted

by X and ; and those on the upper cavity by X, and y. as shown in Fig., 1.
While the orientation of the profile in the z plane is convenient for the
purposes of analysis, the x-y system is not always a convenient reference
frame for foil and cavity contours. For this purpose we use a coordinate
system with the abscissa along the chordline as shown by the distance ¢
measured from the profile nose. The ordinates of the wetted surface are
then given in terms of o as n(o¢) and the upper cavity ordinates are given
by nc(o). At the trailing edge of the profile, the cavity thickness is
n. = T. These quantities are also shown in Fig. 1. In the o,n system
the stagnation point 0 is located at (co,no) as illustrated. The trans-

formation between the (x,y) and (o,n) systems is

ia

g+ in =g, + ing + ze , (1)

0

where z is the complex variable, z = x + iy, and a is the angle-of-attack
as measured by the inclination of the chordline with respect to the x axis

and free-stream velocity U.

The conformal mappings start with the complex potential in the

z-plane,

F=¢+1y , (2)

where ¢ is the velocity potential and ¢ is the stream function. As is
customary, we adjust these quantities to make ¢ = 0 at the stagnation
point, 0. The stream function is taken to be zero all along the
stagnation streamline. Therefore, the boundaries of the flow can be
represented by a cut all along the real axis in the F-plane as shown in

Fig. 2. Note that the wetted surface extends from the stagnation point

~ Cem e
L
-
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at 0 to the trailing edge at Ap and the lower cavity surface from Ap to o' -
must lie along the lower surface of the cut. This is so because downstream

from the stagnation point, the velocity potential increases in the flow

direction and the stream function decreases outward from the foil or

cavity surface. On the arc 0A;, the flow direction is reversed with a

consequent reversal in the gradients of ¢ and ¥ so that the point Ay is

on the upper edge of the cut.

One can use the mapping,

Ww=/VF (3)

in order to map the F-plane outside the cut into the upper half of the
W-plane. Corresponding points are shown by the locations of 0', Ay and
A, and 0' in Fig. 3. As before, the cavity surfaces are shown as dashed
lines and the wetted surface is shown by the solid line. Let the values
of ¢ at A} and Ap in the F-plane be ¢ and ¢, respectively. Then these
points are at W = /ET and W = - /$; and the midpoint of the distance

between Ay and Aj is located at

Vo. = V%,
W=a=—12——2—-. (4)

The distance between this midpoint and A} 1is

Yo, + 7%,

2

These distances are also shown in Fig. 3.

'
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dp = OF to. 4(/F) HENT
z—-U——e —-—U——e .

If we put t = E//F, we find for a profile of unit chord that

c
2 D .
dz = - 28 1 eitdt = —-—Cl—eltdt
U 3 ™ 3
t t
which has the indefinite integral,
<2 ot olt olt
z=ﬁ— t2+it+f tdt . (36)

Completion of this integration can be carried out in four parts starting from
either side of the stagnation point where z = 0 and t + =.
For example, on the arc 0A; we recall that 8 > Y. Put t =¢ty, y =1 =3¢

and 8y = 7 - & then

E

Y1 = B(cos E| - cos 8)

Because 0 € §; < 8, we have

E
——
b(1l - cos §) t1

{ @

After separating Eq. (36) into real and imaginary parts, we find for this

part of the wetted surface, the coordinates

e e e T e AT ..:‘4 ‘.'_‘:. RN ‘.\.-.~. o
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.= 0 [
and
E - E ‘
e (B) = = . (35) ®
- + -
c blcos Y - cos B] 2b sin X . B8 in X - 8
Since 7, = 0 on the wetted surface, we expect w. to make no contribution
to the lifc although the singularity at the stagnation point should lead to ‘
a drag force. Making use of Eqs. (21), (22) and (34a), we find that
CL =0
C .
®
and
2
CD = 2n E—C . -~ -
c ®
From Eq. (35) we see that the flow direction is not defined at the fo7
stagnation point, B = y. However, if B < ¥ m;ii
®
E .
g = - .
c blcos B - cos Y] <0 .
along the arc 0Ap. If 8 > ¥ ]
[
= E .
8. = b{cos Y - cos B] >0 .
Along the arc 0OAj. Therefore 8, changes sign at 8 = Y. R
®
The shape of the wetted and cavity surfaces follows from the
relationships of Eq. (14) which can be expressed as :éf;';ﬁ
T :
@ A
L

R T T ":' Pt T e e e e .
R N WL R PRI TR AT T SR VT DU PRI POt i S R
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At b




~— -~ -—
| e o p -y . v q —— * T S T PN
. q < e e A B i At S AN I At N M e - RS . R . . -

-20- 25 January 1985
BRP:1lhz

E

wc =0 + itc = —
¢ F

(33)

=

where E is a real constant, we have a function which satisfies the necessary
requirements. The two conditions w.(w) = 0 and q. = U on both the cavity and
the profile wetted surface can be satisfied by any member of the family of
functions having the form F*™, 0 < m < 1. But the condition 6, = 0 along the
entire stagnation streamline can be satisfied only when m = 1/2, This choice
for the complementary function seems to offer the advantage that it will
cause less alteration of the upstream flow field inclination than other
possibilities. Moreover, it appears to be the most convenient choice for
further analysis. Consequently, we shall adopt this functional form for
the eigensolution in this work.

Equation (10) can be used to obtain the corresponding representation

for w, in the g-plane as

E - - 2Eg
b[cos Y - —;- (2; + —é—)] b(C - eiY)(c - e—lY)

(34a)

In the g-plane w.(0) = 0 and when 7 is real w; is real. Moreover, w.(Z) is
an analytic function which is regular inside the unit circle and which has
simple poles at ¢ = e*lY, Note from Eq. (34a) that on the "nose cavity”

8. > 0+ as ¢ » - 0 and on the "tail cavity"” 8. + 0- as ¢ + + 0, as o
illustrated in Fig. 1 also. From Eq. (14), wc = Ue—lwC and we see that N
the structure of w, leads to an essential singularity in w. at the
stagnation point 0. The complex velocity w. is bounded at this point
however, and a1 smooth foil contour will pass through z = 0. At points S

on the unit circle, ¢ = eiB, we have

e e et s e et et
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These results will be used in order to start the functional iteration after
the formulation of the theory has been completed. As a final note, we
observe that the cavity thickness at the trailing edge of a flat plate

according to linearized theory {13] is

nc(l) = 1,68la ,

which can be compared to the corresponding expression from Eq. (31b). Within
the range of attack angles considered here the trailing edge cavity thickness
at zero cavitation number is about the same when estimated by linearized
or nonlinear theory. For larger values of attack angle we would expect
estimates from linearized theory to exceed nonlinear cavity thicknesses.

The flat-plate function wp(g) is traditionally considered to possess
all of the singular behavior of the function w(Z). The shape of the smooth
body is then represented by an analytic function w;(z) which is regular
inside and on the unit circle. It must also satisfy the same symmetry
requirements as are imposed upon wy and we must also insist that w;(0) = 0.
Then one traditionally puts w(g) = wg + w1+ As mentioned previously, we
will add to this customary sum a new function, w.(g), which is the analog
of the point-drag function of linearized theory. We will now explore the

properties of this eigensolution.

The Eigensolution

The complementary function w. = 6. + it., 1is to be determined from the
requirements that T, = 0 on the cavity and the foil, 8. = 0 along the
stagnation streamline and that w,. vanishes at infinity. A function of the

form which satisfies these conditions can be found most easily by considering

the flow in the F-plane, Fig. 2. If we take

. - . e - e B T T P L P Tt T s e
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bZ
Equation (28) gives the value of T to be used in Eqs. (29) and (30).

It is useful to find the ordinate of the upper surface of the cavity
above the trailing edge of the wetted surface. This can be done by

calculating the quantity

v 2 -
-] (-3
7T cos a - 2
c c

f(cc,a] = z

for several values of . and prescribed values of a. Then when o, = 1, one
can plot contours of a = constant in an f - {. plane and note for each value
of a the value of . corresponding to £ = 2(4 + 7 sin a). These values of
Lo can then be used in Eq. (30) in order to compute the value of n.(1) for
each value of a. It was found when these points were plotted in an

nc(1) - a plane that a linear relationship fits the data for 0 < a < 10°.

When a is measured in degrees this line has the equation

nc(l) = ,2939a° . (31a)

The corresponding relationship for a measured in radiams is
nc(l) = ]1,684a . (31b)

4
The computed results are tabulated below. T
>
..
Table 1, Cavity Thickness at the Trailing Edge of a Flat Plate "

a® ze(1) ne(1)
0.0 ——— .0000 R,
0.5 1712 .0147 e
1.0 .1707 .0297 )

2.0 .1698 .0585
3.0 .1689 .0879 e
4.0 .1680 1174 f:f:f
5.0 1669 .1463 R
7.0 .1650 .2049 S

10.1 .1620 .2939
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Additional properties of the flat-plate solution which are important
for the present considerations relate to the shape of the upper surface of
the cavity. In Fig. (5) z will be on the negative real axis for points
on this part of the cavity. Therefore, let us put § = - 7. where Lo is
a real positive number. Then we can use d(o + in) = el®dz, and write

Eq. (17) in the form

b2 1 1 2
d(o + in) = T exp i[u + eo(cc)]d{[i-(cc + E_) ~ cos a] } .
c

But now

exp i[a + 90] = e_ia(eia = Cc)/(e_ia - Cc)
and so we have

2

1 b -
d(o + in) = 5 o [z e 1

a 2 ia, 3
-2+ (21 sin @)z + 2/g] - e/ Jdr .

The integration in this case starts at Ay where {, =1 and 0 = n = 0 and
proceeds to some value of o.,n. corresponding to 1 < £ < 0. This leads to

the parametric representation of nc(oc) in terms of g, which is given by

2 2
2 (1-¢) (1+¢)

o = lb < < cos a - 2 (29)

c 2 U g 2z

c _ c _
and
1 b2 l"i

nc ’—2"'U—' sin «a 2;—24' 2 chc (30)

c

e e T T AT e T e e e e e e S L e
R K R A A




-16- 25 January 1985
BRP:1lhz

b2 (cos £ - cos a) 16

dz = - IT-ATEbs T~ cos af'e [(cos g - cos a)z + (sin £ + sin a)zsin £ dg

2

= - eie sgn(cos & - cos a) 2<%— [sin & + sin a sin2

We can dispose of the product - el® ggn (cos £ - cos a) by observing that on
the wetted surface when 0 < £ < a the flow direction is 8§ = m - a and when
a<§<n, 8 =-a, Therefore in the first of these cases, el = - e-ia apg
in the second el® = + =12, Hence in either of them the product

-el® gsgn(cos £ - cos a) = e71@, Next we can introduce d(o + in) = eladz

from Eq. (1) with the result that

2

d(o + in) = 2 %— [sin £ + sin a sin2 E - cos a cos £ sin E]dE .

This last result implies that n = 0 as is proper for a flat plate and
do is simply the arc length ds along the wetted surface measured from the
profile nose where ¢ = 0, We can integrate this last equation from ¢ = 0

(E = 0) to some value, 0 < 0 <1 (0 < £ < ), and get

2
s,zg_[(l_cos £)(1 - 2222 1 + cos £]) + (€ - sin® g) 832 . an

However, the profile is to have unit chowd so that when £ =7, 0 = s = 1 and

b2 1
7

- m™ sin o

(28)

When Eq. (28) is used in Eqs. (24) and (25), one obtains the well known

Rayleigh formulae [12].

g - cos a cos § sin E]dE
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2
C. = 21 2 gin? o (25)

D0 Uc

and we see that L/D = cot a as is proper for the flat plate. We can also use

the relationhip Cp =1 - e27 to find the pressure distribution on the plate.

The result is

c - 4 sin B sin v . (26)

Py (cos B - cos Y)z + (sin B + sin Y)Z

From this result, we see that when B = vy, C =] and when 8 = 0 or w, Cp = (
0 Q
as required.

Continuing the study of the flat-plate solution, we can rewrite Eq. (23)

for points on the wetted surface as

Wy =T Aty + ten[(elY - e18)/(e71Y - 18]

in which case

T eiY _ eiB
e = _i iB = 'l - C .
e *Y — ¢ L
After some manipulation we find that
T = 2|cos B - cos v/

p0 (cos Y - cos 8)2 + (sin Y + sin 8)2 .::1 ‘:
Next we can put B =% - £ and Y = 7 - a in this expression and in Eq. (17) S
k
when it is written for points on the wetted surface. That is, ,._..;
L
Rl
A -:\
DR
® 4
c ;Zﬁ
Lo -'_‘.]

. .
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the real part of the analytic function ifn(g - eiY). However this function
by itself does not have the proper symmetry needed for admissible forms of w.
But if we subtract from it a similar function which has a like jump at the
image of 0 with respect to the real axis in the Z-plane, we preserve the

necessary behavior at 0 and also satisfy the preceding symmetry requirements.

Aside from arbitrary additive constants, this function has the form

¢ - elY
g -e Y

i4n

Finally, we require that w(0) = 0. Because of this condition the resulting

function which provides the flat plate solution is [4&]

g - el
w (c) = e + ir = - + 1in ———e—a— ,
0 0 0 1 - CeiY

(23)

with ¥y = T = a in the case of an isolated flat-plate profile. For this case,

one can show that this function has the flow direction, 8 = - a or 6p =7 - a

on § = elB, Therefore, the wetted surface in the z-plane is a straight line
through O with its trailing edge inclined at the angle - o with respect to
the positive real axis. Moreover, since Ty vanishes on the real axis in the 1913{
Z—-plane, the free streamlines have Cp = 0 as required. ;: 1
The contribution of wy to Cp and Cp follows from Eqs. (21) and (22).

From Eqs. (21), (22) and (23) we get

b2
CL = 2% Te sin a cos a (24)

0
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t(-8) = - 1(8)
and
8(-8) = 6(B) .

Hence v is an odd function of B8, or Im Z, and 6 is an even function of 8, or
Im z.

Using the result,

T e ———
e =171 Cp (20)

as noted above, and the fact that w(z) is now defined inside the unit circle

one finds [7] from the calculus of residues that

RER SR 2

_ 2

F c, = %-%E [40"(0) cos ¥ - w (0)] (21)
: and

2

i ¢ =r= '@, (22)

where the quantity c is the profile chord which is taken as unity in this

work. The moment can be calculated after the complete solution has been {E?{f}

nac ama
L J

found. T

The Form of w(Z) Near the Stagnation Point

This is also a well known result which we shall review briefly. The
form of w near 0 is dominated by the fact that on a smooth contour & jumps
by the amount m. In particular, as one traces the profile surface, ‘#£ 21
starting at A} in Fig. | and then passes through 0 while proceeding to Aj,

the jump is a decrease in 6. This is precisely the behavior exhibited by
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where we have also made use of Eq. (18) because it applies to the wetted - d

surface. But from Eq. (15) we have o

j::;-i

t=gnd=env/T-cC_ , ]

u P N

]

so that g

o

. "4

2 SR

b .

ds = 2 T [(cos ¥ - cos B) sin B/VT = CpZB)]dB (20) o]

4

on the wetted surface of the profile. As we have noted previously, the flow ?

directions differ by v on either side of 0. Therefore, if the sign of dz is '

positive on the arc 0OAy, it will be negative along arc 0A). As a result of : j

this difference ds might have a like sign change in these two regions. Just iif?

- —_— T

how this might occur depends on the form of v1 - CP(B) in any particular L
case. Therefore, we will defer consideration of this question to a later —

place in the development.

Hydrodynamic Forces

The development of general formulae for the hydrodynamic forces on the

profile depend upon certain properties of the function w(g) which result

from the previously noted fact that w(g) is real when f is real. For
then one can apply Schwartz's principle of symmetry in order to write -

w(Z) = w(z) and thereby obtain the analytic continuation of w(g) into the

lower half of the unit circle [6]. Thus we can write for a prescribed

modulus, r, = lz] <1,

8(B) - it(B) = 8(-8) + it(-B) ,
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l We can now use Eqs. (13), (14) and (15) in order to write ' i';"'
f 2 -T+i8 :’;‘_.‘_:E
: dz = dx + 1dy = 22 [L (0 & 2) - cos ¥](z - DE . an o8
b On the wetted surface ¢ = elB and Eq. (17) leads to .. A
b
4 2 \
i - -
} dx=-g-8—-er[cosy-cosﬁ]sinBcosedB
‘ and " . (18) 4
- 2p® -1 o
dy=-U—e [cosy-cos B] sin B sin 8 dB | o
_ °
Note that dy/dx = tan 6 as it should if the wetted surface is to be a stream- SO
line. On the upper surface of the cavity T = 0 and arg ¢ = m so that Eq. (17)
leads to .,.._...
W .
b’ 1 1, dz
dx = 5~ cos B [2 (¢ + -E) - cos Y)(z - -E) T
r (19) w
2 [
1 1) dz )
dyc = — gin 6 [?(; + =) - cos Y](c --C-) T
provided that = 1 < § < 0. L
Returning to Eq. (17), we can write the square of the arc length along ®
the wetted surface as e
2 - b2 -1 2 e
(ds)” = dz dz = {2 T e [cos Y - cos B] sin 8 dB} s °
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2 1 1,42 i}
F=b[cosY--2-(z; +~C-)] . (1o

Then we introduce the complex velocity,

dF
w=u-iv===, (11)
in order to write
=18 _ .2 1 1 1y 1 dc i
h W = qe =b[c05Y--2-(c+-c-)](-c+E)-Ea-z- , (12)
- or
%’ wdz = dF = b2 [% (¢ +%-) - cos Y](C'%)%E . (13)
[ . These quantities are now used to define the logarithmic hodograph or w-plane:
s .

-lw(z) (L dF _w _q -if _ 9.
e T -"T°T¢® = exp[4n T ie] . (14)
:-.:: Therefore we have

m(§)=6+iln%=0+ir , (15)

where T = £n % On the free streamlines q = U so that v = 0 there. In the
{-plane, these free streamlines are on the real axis and at 0' we know that

8 = 0 also. Therefore,
w(0) =0 (16)

and w(g) is real when [ is real. At the stagnation point q + 0 so that
T + - @ there. The flow directions differ by v on either side of 0 and

so the w-plane with the various corresponding boundaries can be

represented as illustrated in Fig. 6.
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* One can now use the mapping
- 6y = Yoy
. W= ——==—"(Z + cos Y) (6)
i where
; a /¢l B /¢2
- cos Y =g = ———— , (7
‘ /¢2+/¢1
. in order to map A} into Z = + 1 and Ay into Z = - 1. The point O maps into
1 Z = cos Y as shown in Fig. 4. The significance of the point C, also shown
r

in this figure, is discussed later. Then the Joukowski transformation,

S N A |
z=-3(+3 (8)

maps the upper half of the Z-plane onto the interior of the unit circle in

the Z-plane. The inverse of this mapping must be

7=-2+YZ2° -1 (9)

in order to make the point o' map into the origin of the Z-plane. Various
corresponding points are denoted by A}, Ay and O in Fig. 5. The arc of
the unit semi~circle corresponds to the wetted surface. Coordinates on
the wetted surface are given by g = elB ag shown. The stagnation point is
at 8 = Y. The upper surface of the cavity is on the real axis between

A; and 0' and the lower surface of the cavity is on the real axis between
A, and 0' as marked in Fig. 5.

One can now use Egqs. (3) through (8) in order to write the composite

of the preceding mappings as

T et e e T et P T e e T e
“atet et a4 .

..... -

DY e T .'-( .. .".-~- T I R R R N R SN S P S

- d - - . - . . 0y - - ) - -
AL, e T T Y e T T T e e T T e A T e e e e e T e et KR K
S FURPRFIPOV PN IS NIEIERE e s e s
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_ — 3
2 cos t sin ¢t
E 1 1
e 5 - = — * it
t 1
— 1 -—
and .
2 sin t cos t
_E 1 1 ﬂ
Y, =% s— +—— +si(t)) - 3
t 1
_ ]

On the rest of the wetted surface, that is, on arc OAj between the
stagnation point and the tail, we know that B < y and we put t = - ts,

Yy=7~-4§ and By =7 = Er. Then

E
2 blcos 8§ - cos 52] °

In this case, § < €9 € 7 and it follows that

E

I I b(l + cos §) °

Then we have

2 cos t sin t
E 2 2
X, = o > - +01(t2)
t 2
— 2 —
and r.
EZ sin t2 cos tz T
T T Tt siy) -3
t 2
2
- - J
SR T e e e e e e e

................................

(37

(38)

< '_-
S
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On the cavity surface AIO' the integration starts at § = - 1 and ends
somewhere between 7 = - 1 and 7 = 0. Note that the value of t at = - 1
equals that of t; when B = 0. So that if we ﬁut t=t3, y=m-~2¢§ and
L =-1¢3, we have

t. = E

3 .l 1
b5 (24 +g;) - cos ¥]

?

then the upper cavity joins the nose arc of the wetted surface and its

coordinates are

2 cos t sin t
E 3 3
X, = =— - + Ci(t,)
3 U t3 t3 3
and L. (39)
2 sin t cos t
E 3 3 n
y3 T 5 Tt sig) -7
t 3
= - )
In this case
E

0< tc < b(1 - cos &)

Finally, the cavity surface from the trailing edge is obtained by

putting t = - t4, vy =7 - § and ¢ = g4, where O < g4 < 1. Therefore

t =

E
b[cos § - %

(5, + 7))




and

0<t

Then we have
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€ ——FE
4 " b(l + cos 8§) °

2 cos t sin t
_E 4 4
X% T — - —— * cilt,)
t 4
— 4 —
and [
2 sin t cos t
E 4 4 m
Y4 =TT Tt *tsily) -3
tA 4

(40)

As we found for the upper cavity, the lower cavity surface starts smoothly

from the wetted surface.

Equations (37), (38), (39) and (40) will provide the shape of the

wetted surface and the cavity surfaces for the simple complementary function

of Egq. (33).

We shall consider the ratio E/b, which determines the strength of the

However, these equations contain the undetermined ratio E2/U.

complementary solution, as a parameter which we can prescribe -— at least

for the time being.

We also consider the value of y (or §) to be known.

Therefore, we need to "scale” our results in order to obtain a profile of

unit chord.

Since we anticipate that the complementary function can

produce a rounding of the wetted surface nose, the scaling procedure must

account for this possibility.

Accordingly, we shall need to determine

explicitly the location of the apex of the wetted surface nose with respect

to the profile chordline.

L vle TV e,
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Figure 1 shows the chordline for the sharp-nose or for the round-nose
case when the upper cavity separates at the leading edge with respect to
the hydrofoil chord. The geometry for the rounded nose with the separation
point on the upper wetted surface behind the apex of the wetted surface
contour is illustrated in Fig. 7. The apex is located at the origin of

0, n coordinates in this illustration with the n axis being tangent to

the contour at this point. Denote the x, y coordinates of this point by
X4, Yg+- Then since the o-axis is normal to the n axis, we see that at the

apex the slope of the contour is
a m
= = tan (E- - (!) = cot a . (41)

We will restrict our attention to those cases in which the apex is on the

]
arc OAj., Let t = t] = t, at the apex. Then from the equations preceding ’ ]
Eq. (37), which define t;, we have

t = E 0 < E < 6 (42) [
a b(cos §, ~ cos §) a ’ )

-

and Eq. (42) can then be used in Eqs. (37) to define X, and y, once the value

f.i
B

of &, (or B;) has been found. Thus, we must determine the unknowns EZ/U and
£, in terms of the prescribed quantities E/b and 8(or Y). Two conditioms
are available for this purpose. The first is given by Eq. (41). The second
will be that the profile has a unit chord.

An alternate form of Eq. (41) is

cos a = gin ta

and , (43)

sin a = cos ta

NN - P A T S N R
LIRSV IA SO IR S R S s Ty S P Sity I S0 TR Sty s W v |
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which follows from the complex equation just above Eq. (36) when we put

t = t;. We will use Eq. (43) as the appropriate expression for the slope
of the foil contour at the apex. Now let us differentiate Eq. (1) so
that

d(o + in) = ei“dz .

Then from the complex equation just preceding Eq. (36) we have

2
e iad(c + in) = - Z%_.lg eitdt R (44)
t

Starting from 0 where [o,n) = (co,no), we integrate Eq. (44) to Ay, where

(o,n) = (1,0). This step gives

-ia EZ [ cos t sin tt

e 1 - 9 - ino) T — - — + cift,)

t t
—— t —
sin t cos t
t t w
-4 st +sit) - 7 ,
t t
— t —
where
. E

t = b(l + cos §) °*

corresponding to t; with £7 = 7 in Eqs. (38). Next we can use Eqs. (37) with

€1 = &3 and t) = t, or

.. .
......
----------
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E
a b(cos Ea - cos &)

t

at the apex in order to integrate Eq. (44) from O to the apex along the arc

OA);. This step results in

-ia EZ cos ta sin ta
- e (oo +1iny) = 5 — - —— * 01(ta)
t a
—-— a —
sin ¢t cos t .
+ - .
t 7t sile) - 3
ta a

and

S 45)*

U
Ei sin a =G - g(ta])

In Eqs. (45) we have

*The F introduced here is not to be confused with F = ¢ + iy from Eq. (2).
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x U <cos t sin t
i St S B
E t t
t
and ; (46)
y U sin t cos t
G=——=—5—+ t+Si(t)-%
E t. t

which contain known quantities because t. is known. The remaining pair of

functions,
cos ta sin t \
£(t,) = ¥ - ) + cit,)
a
and L , (47)
sin ta cos t -
g(ta = 2 + t + Si(ta) )
ta a ]

contains t, which depends upon the unknown, B = 7 = £,. Thus, Egs. (45) are
two simultaneous equations containing the quantities U/E2, a and B, which
must be determined. Therefore, Eqs. (43) and (45) form a determinate system
which can be solved by iteration. In order to do this, we can write the

complete system as

tan a = F—_?(—t:)- , (48)

e e e T T e
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cot t_ = tan a (49)
and
v F- £(t,) ¢ -g(t,)
—_— = = . (50)
E2 cos a sin a

In the derivation of this system we have assumed that the apex, z,, is
on the arc 0A;. On the other hand, we specify the quantities E/b and
Y=m - 8. We must now determine whether or not our assumption regarding
the location of z, can restrict possible choices for the parameters E/b and
§. 1In particular, we recall that, as is true for the quantity &;, we must
also require that 0 < £; < §, as noted in Eq. (44). The limiting conditionm,
corresponding to the coincidence of the apex and cavity separation point at
the nose of the profile corresponds to £4 = 0. 1In this case, the smallest

value of t] for any choice of E/b will be found when

E

al in b(l - cos §)

t

On the other hand, by inspection Eqs. (46) and (47), we see that the largest
values of f and g are found for t; = t;j,. The values of F and G are also
obtained from the smallest value of t; because t, is calculated from t;

with £7 = 7, namely:

E

tt " %(1 + cos &) °

Let us compare the values of F with f and G with g. Suppose that E/b is
selected so that cos t; ~ cos t, ~ 1, sin t; =~ t; and sin t, = ty. Let

§ < 1. 1In this case we can see that
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ta 2 2 ta 2
-F-.. = miﬂ (3)1‘ 1 - .—26 and _G. = _—_min = (—2-)2 1 - 6—.
f €, 8 3 g te 8 6 *

For example, if § = .1, we would estimate F/f ~ (20)% and G/g ~ (20)2. These
estimates imply that both E/b and § are significantly smaller than unity.
In the applications contemplated, E/b will probably be less than unity

although § might conceivably approach or exceed unity. Therefore, we shall

consider the ratio,

al .
min n = 1 + cos §
t 1 - cos §

[

, m>1

which permits us to consider roughly the ratios of F to f and of G to g

for various values of §. In particular, we can solve for cos § and obtain

cos § = A= 1
n+1
which permits us to plot a curve of n = (ta /t ) versus § as shown in
min

Fig. 8. This curve illustrates the effect that the choice of stagnation

point location has on the ratio, n. The value of n in turn gives a rough

indication of how large the ratios F/f and G/g will be. ]

. L
It appears for most cases that these ratios will be very large and
one need not solve Eqs. (48) and (49) by iteration. Instead one can

obtain an accurate value of a from ° 1
1
G
tan a & T (48a) i
> |

o
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and he can then determine U/EZ from

F
cos a

!2. - (50a)
E
Should cases arise in which Eqs. (48a) and (50a) are not accurate, they can
be used advantageously to start the iteration. In order to illustrate these
points and in order to show a profile shape derived from the complementary
solution, we have prepared the following numerical example.

We started the calculation by selecting § = 70° and E/b = .0l.
Figure 8 shows that n & 2, The values t = ,01520 and tt = ,00745
follow from the formulae for these quantit?i:. From Eqs. (46) we find that
F = 18,004 and G = 266.83. Equations (48a) and (50a) lead to tan a = .01482

and U/E2 = 18,006. From the formulae just after Eq. (35) we have for the

cavity drag due to a profile of unit chord

2

CDc = 2r — = ,00035

=] | &

as the contribution for this point-drag profile. The value of t, can now

be found from Eq. (49). It is t; = 1.556. Equation (42) can now be used

to find that £, = 69.61°. Note that for this case the apex is almost
coincident with the stagnation point. Because Eq. (34a) shows the
complementary function to be at the stagnation point this result is

expected. The fact that the apex is not exactly at § = 70° is due only

.
ol

to the inclination, a = .85°, between the chord line and the x axis.
Once U/E2 has been found, the values of x. and y, can be found from j{fﬂj

Eqs. (46). The values are x, = .99989 and y, = - .01482. Now one can

CatalaalaAl sk

,.v . i) T
y

N .
[P 3 P\ RPN
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use the conditions that in Egqs. (1), (x¢,y.) +* (0=1,n=0) and

(xa,ya) > (c=0,n=0). These lead to a system of equations from which

op and ng can be eliminated and one finds that

= - = - sin
X, =% -cosa=x =-sint ,

= = + .
Ya Ye + sin a Ye cos t

When the above values of Xy and o were used in these equations, the values of
X5 and y, were found to be zero to within five decimal places. This result
1s consistent with the location of £, noted previously. Continuing with

Egs. (1), we can use the fact that x

a = Y3 = 0 to see that it must also

follow that o5 = ng = 0. Accordingly, the form of Eqs. (1) for the present

calculations is

o = .99989x - .014796y

’

n = .014796x + .999989y .

The next phase of the calculations is the evaluation of the equations
for the wetted surface and cavity contours in accordance with Egs. (37),
(38) and (39). The result of these calculations is shown in Fig. 9. In
this figure, the chordline distance, o, has been labeled as X and the g
ordinate, n, has been labeled as Y. Note that the Y-scale is magnified

five times compared to that of the X~scale. The trailing edge of the

wetted surface is at X = 1. The upper surface separation point is at °

0 =X = ,240., The cavity thickness at X = 1 is Y = T = ,02980. This
point is marked to the same scale as the X-scale by the dot and the line
at X = 1 in order to give an idea of the actual thickness of this example

of a point-drag profile. Finally we can calculate the value of t(1)

'
falaa 4

f
e
oo
[
diad

. . . . "
', . . v .
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in this example in order to compare it with the values found previously for
the flat-plate. It is found from the value of t. = (E/b)/[(g. + 1/5.)/2 cos Y]
at 0 = 1, The calculations indicated give Z.(l) = .3290 which is roughly two
times the values of Table 1.

Our desire to retain as much simplicity as possible in the preceding
analysis of the complementary function has caused us to place the point-drag
singularity at the stagnation point. This restriction on the location of the
point of application has allowed us to show that such a solution exists,
that it definitely leads to a smoothly rounded profile nose and that it will
cause an incremental thickening of the cavity depending on its strength, E.
0f course, we need not restrict ourselves to the stagnation point as being
the location of the point-drag singularity.

For example, suppose we choose some other point C on the wetted surface.
Such a point is illustrated in Fig. 5 and it happens to be located between
the upper cavity separation point and the stagntion point, although C could
just as well be at some other wetted-surface location. The main idea is
that now B = y,. at the location of the point-drag signularity and if we

simply replace Eq. (34a) by the modified expression,

w,(g) = 2 - — 8% . (3b)

b[cos Y. % (¢ + %)] b(z - eiYc)(c - e_iYc)

we still have a function which satisfies those conditions needed for a
complementary solution. It is clear that in the g-plame, w.(1) = 0.

Moreover, when 7 is real w. is real and on the unit circle 1. = 0 every-
+iy
where except possibly at the simple poles, 7 = e €. From Egs. (21) and

(22) it follows that

.. RS _..‘-_.. . - '~.|..'..“~‘.' e TN
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C, =21 — (51)

as before. On the other hand, because of the displacement of the point C

away from 0, a lift force is produced and we find that now

= 8bE sin Y+ YC si T Yc = 8wbE sin Gc r sin 5C ~° (52)
L, Uc 2 nT3 Uc 2 ’

C

where Y = 1 - § and Yo = ® - 8. in accordance with previous convention. The
profile chord, ¢, should be set at unity in Eqs. (51) and (52). Equation (52)
shows that C; = 0 when §, = §. However, §. < § when the point C moves toward

the point A] and a negative lift results. In the limit as §. »+ 0, we have

_ _ 8mbE 24
CLC = Ue sin 5

If C is between O and Ay a positive lift is produced and in the limit

when C is coincident with A, we have

c o BTE 28
L Uc cos 7 .

c

1f one were to let E be negative the sign of the foregoing trends with

respect to C; would be reversed. However, we must insist that E > O g ?
because this function produces a thickening of the cavity and because then i
w;(o) = - 2E/b. Similarly, we have also found that mé(o) =0 2 sin Y. :
Thus, the effect of adding wp and w. increases the net drag. Neither of *
these functions can act to reduce it. Accordingly, we shall take Eq. (34b) Ef?fﬂ%
as the appropriate form of the eigensolution which has been sought.

[
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Conclusions

The chief finding of this paper is that one can construct many eigen-
solutions for the exact inverse problem of two-dimensional cavity flow at
zero cavitation number. From among these, we have chosen that eigensolution
which appears to offer the least disturbance to the upstream flow field
inclination of any cavity flow which does not already include a point-drag
solution as one of its elements. This particular choice also seems to offer
the greatest analytical convenience. The physical conditions satisfied by
this eigensolution are:

(1) At points on the cavity and on the wetted surface of the profile,
the flow velocity is equal in magnitude to the free-stream
velocity.

(2) The point-drag solution vanishes at infinity, but it does have
an integrable singularity on the profile surface.

(3) This function produces no additional flow inclination on the
entire upstream stagnation streamline.

A specific example of the flow geometry represented by an isolated
eigensolution has been given above to show how this function can produce
round-nosed profiles. In general, it is found that the point-drag solution
produces a widening of the cavity which is directly proportional to its
strength., An incremental cavity drag accompanies this widening and this
drag is proportional to the square of the eigensolution strength. No lift
is produced by the point-drag function when its location coincides with
that of the stagnation point on the profile surface. In contrast to the
linearized theory, the complementary function singularity need not be at
the stagnation point. In these cases, the incremental cavity drag is

not changed from its value when the singularity is at the stagnation point.
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But when the singularity is located between the stagnation point and the
upper separation point a negative incremental 1ift is produced. If the
singularity is on the lower surface, downstream of the stagnation point,
a positive lift increment is found.

As a result of these findings, it appears that an eigensolution exists
for the nonlinear theory of cavity flow at zero cavitation number and that
it is now most liekly that a similar eigensolution can be found for such
fully cavitating flows at cavitation numbers which are greater than zero.
The results found so far suggest that the nonlinearized theory and the
linearized theories parallel ome another very closely as far as the nature
of the point drag solution are concerned. But the present results exhibit
some features which are lost whea the process of linearization is applied
in the linearized formulation. Finally, the way is now clear to augment
the method of Levi Civita by adding in the eigensolution, We, in order to
formulate an exact inverse theory which permits one to control the cavity
thickness and to prescribe the wetted-surface pressure distribution

simultaneously.
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