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Principal Nomenclature

A1  cavity detachment point near or at profile nose

A2  cavity detachment point at profile trailing edge

a ( -V'j 2) /2 see related nomenclature below

b - 2 + T2 1/2 see related nomenclature below

C location of eigensolution singularity on unit

circle

CD drag coefficient

CL lift coefficient

Cp(O) pressure coefficient on wetted surface

c profile chord length, c =1

ds element of arc length in z-plane

E strength of eigensolution

F *+ i complex potential and complex F-plane

* velocity potential

4stream function

C stagnation point location

0' point at infinity in z-plane

U free-stream velocity

W intermediate mapping complex plane

w = u - iv = complex velocityd-

z intermediate mapping complex plane

z = x + iy complex variable in the physical (x,y) plane

* . .. . . . .. . .. . .*.- . . . . . . . . . . . ..-. ..- **.-%*°'
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angle of attack

6 angular location of stagnation point measured

from negative real axis

dummy variable

n normal effect from profile chord

complex semi-circle plane, = ei6

a distance along profile chord

T cavity thickness at trailing edge

y stagnation point angular location on unit

circle in C plane (cos y = a/b)

Yc angular location of eigensolution singularity

on unit circle

j value of 4 at A1

02 value of 0 at A2

w() = 8 + in q/U = 6 + iT complex logarithmic hodograph

0 flow inclination

q flow speed

Subscripts

0 pertains to flat plate solution w0.

l pertains to regular part of solution w1

c pertains to eigensolution wc

............................................................

.....................................................
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Introduction

The present paper bears upon the two-dimensional inverse or design

problem for fully-cavitating hydrofoils in which one specifies the pressure

distribution on the profile wetted surface and then calculates that wetted

surface shape which will satisfy this prescription. This design problem

is certainly not new to airfoil designers and as far as cavity flows are

concerned, both linear and nonlinear design methods have been worked out.

In the realm of nonlinear approaches to the problem, the very general

method of Yim and Higgins [11* is worthy of note because it applies to

single foils as well as to cascades of profiles for all cavitation numbers

in the cavity-flow regime. Another approach has been discussed

superfically by Khrabov [2]. Both of these contain far more generality

than is required for this study at zero cavitation number. For the

direct or off-design problem of exact cavity-flow theory, a good example

of the present level of development is represented by the work of Furuya

[31 and it is clear that now one can do both the design and off design

problems for fully-cavitating hydrofoils. Thus, one can attempt to

tailor the profile to an entire set of performance goals and failing

that he can at least design for the best compromise among a set of

conflicting requirements.

According to many authors [4-7], the inverse problem is not thought

to present much of a challenge at zero cavitation number. In this case,

the classical method of Levi Civita [71 can be applied to an isolated

•Numbers in square brackets indicate citations in the references listed

below.

• .
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body. This view is certainly proper as long as one is content, after

prescribing the pressure in the circle plane, to accept whatever

correlation between points in the circle and physical planes may result.

Of course, such a rudimentary approach does not lead to a useful design

procedure.

The motivation for the present investigation is that none of the

literature on the nonlinearized inverse problem we have surveyed so far

[1-81 has made use of the fact the exact theory admits the existence of

a "point drag" or complementary function. While this fact is of no

particular importance in the direct problem, we have already seen in

the case of the linearized inverse problem [9-111 that the complementary

function can play an important role. For the exact theory there has been

a question if a nonlinear eigensolution exists [1]. Therefore, in this

study, we explore the question regarding the existence of a "point drag"

or eigensolution in the nonlinear theory under the simplest set of

circumstances and this leads us naturally to the restrictions that the

free streamline flow pertains to an isolated profile and that the flow

be at zero cavitation number. These simplifications will free us from

the complications arising from non-zero cavitation numbers and other

boundaries in the flow domain such as a free surface or neighboring

cascade blades.

In this paper we use the term eigensolution in the sense of thin

airfoil theory as suggested by the work of Van Dyke* because we already

know that the inverse problem in the theory of fully cavitating hydrofoils

*J

Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford,
CA, pp. 48-54 (1975).
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is not necessarily unique. Our aim is to find a sufficiently weak

singularity which can be added to the classical Levi Civita solution and

can then be used to satisfy certain additional physical conditions relating

to the location the free streamline springing from the hydrofoil nose

and thereby provide a unique inverse cavity-flow solution. After we have

constructed the simple eigensolution, we will examine some of its

properties. The use of this solution in the design process will be

presented elsewhere.

Flow Geometry and Conformal Mappings

As noted above, this study uses Levi Civita's method [7] for the

analysis of the exact inverse problem for a fully cavitating hydrofoil

section. The flow geometry and the principal quantities associated with

the flow are illustrated in Fig. 1. The origin of coordinates in the

z = x + iy plane is taken at the stagnation point on the wetted surface

of the hydrofoil. This point is denoted by 0 in Fig. 1. The chordline

of the profile is inclined at the angle a with respect to the x axis

and the free-stream velocity U is taken as being parallel to this axis

as illustrated. The flow separation point at or near the profile nose

is the point A1 as illustrated for a sharp-nosed foil. The "upper"

cavity surface is shown as the dashed curve extending from A, to the

point 0' at downstream infinity. In the case of a round-nose profile

A1 can lie on the upper wetted surface behind the leading edge. This

case is not illustrated in Fig. 1. The point A2 denotes the location

of the trailing edge of the wetted surface. The lower surface of the

cavity leaves the wetted surface at A2 and extends as shown by the

dashed line to the point 0' at downstream infinity.

°...,. .. \ < . ... ,,..,, .. .. ... : :, ,: L.. . .. . ., . . . . . ,- . . - - - - - - - - - -
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Let the coordinates of a typical point on the wetted surface be denoted

by x and y and those on the upper cavity by x and y as shown in Fig. 1.

While the orientation of the profile in the z plane is convenient for the

purposes of analysis, the x-y system is not always a convenient reference

frame for foil and cavity contours. For this purpose we use a coordinate

system with the abscissa along the chordline as shown by the distance a

measured from the profile nose. The ordinates of the wetted surface are

then given in terms of a as n(a) and the upper cavity ordinates are given

by n (a). At the trailing edge of the profile, the cavity thickness is

c - T. These quantities are also shown in Fig. 1. In the o,n system

the stagnation point 0 is located at (o,n 0 ) as illustrated. The trans-

formation between the (x,y) and (a,n) systems is

icta + in =o0 + in 0 + ze , (1)

where z is the complex variable, z = x + iy, and a is the angle-of-attack

as measured by the inclination of the chordline with respect to the x axis

and free-stream velocity U.

The conformal mappings start with the complex potential in the

z-plane, D

F= +i , (2)

where * is the velocity potential and i is the stream function. As is

customary, we adjust these quantities to make = 0 at the stagnation 0

point, 0. The stream function is taken to be zero all along the

stagnation streamline. Therefore, the boundaries of the flow can be

represented by a cut all along the real axis in the F-plane as shown in

Fig. 2. Note that the wetted surface extends from the stagnation point

............................... -. -.....
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at 0 to the trailing edge at A2 and the lower cavity surface from A2 to 0

must lie along the lower surface of the cut. This is so because downstream

from the stagnation point, the velocity potential increases in the flow

direction and the stream function decreases outward from the foil or

cavity surface. On the arc 0Aj, the flow direction is reversed with a

consequent reversal in the gradients of and ip so that the point A1 is

on the upper edge of the cut.

One can use the mapping,

W = /VF (3)

in order to map the F-plane outside the cut into the upper half of the

W-plane. Corresponding points are shown by the locations of 0', A1 and

A2 and 0 in Fig. 3. As before, the cavity surfaces are shown as dashed

lines and the wetted surface is shown by the solid line. Let the values

of @ at A, and A2 in the F-plane be j and 2 respectively. Then these

points are at W = 1and W V and the midpoint of the distance

between A1 and A2 is located at

W = a = 2 (4)2

The distance between this midpoint and A1 is

b = ~ + .7 (5)2

These distances are also shown in Fig. 3.

.- .. ... .... ...... ....... _... ... -.. -_... -.... -o......... .... .. .. -. --.......... -....-. .-.iii
,...3. .... ... .-....... . ......... .-. ..... .."- . ..""-. . . .-'. ". -'"--""
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dF ic - d(VF2) iE/VF
d z = - e - T-- e 

"

U

If we put t - E/F, we find for a profile of unit chord that

CD

d- 2E2 1 eitdt c I eitdt
U 3 I 3

t t

which has the indefinite integral,

E 2 e i e  i t f e i t d ,( 6
z = -..{-T+i dt} (36)

tt

Completion of this integration can be carried out in four parts starting from

either side of the stagnation point where z = 0 and t + :.

For example, on the arc 0A1 we recall that y ) y. Put t = tj, y = 7 -

and a1  i - I then

Etl = b~o I- cos 6) " "
1 b(Cos c7-

Because 0 E 6, we have

E
b(l - cos 6) 1

After separating Eq. (36) into real and imaginary parts, we find for this

part of the wetted surface, the coordinates
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T =0 
C

and

c(8) E = -E 35)
c b[cos y - cos 81 2b sin Y + B sin Y

2

Since Tc = 0 on the wetted surface, we expect wc to make no contribution

to the lift although the singularity at the stagnation point should lead to 0

a drag force. Making use of Eqs. (21), (22) and (34a), we find that

CL = 0
c

and

CD =2 r .

c

From Eq. (35) we see that the flow direction is not defined at the

stagnation point, 8 = y. However, if 8 < y

E

c b[cos 8 - cos y]

along the arc OA2 . If 8 > Y

E0
O = E > 0"
c b[cos y- cos 1 0

Along the arc OA1 . Therefore 6c changes sign at 8 = y.

The shape of the wetted and cavity surfaces follows from the

relationships of Eq. (14) which can be expressed as

• ".

.. .- . . - . , .. . . . . ., . .. . ,.,........... .... ,. . . - . .. - -. .. , .- . .. _ .-
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E
W =8 + iT c E (33)

where E is a real constant, we have a function which satisfies the necessary

requirements. The two conditions wc(-) = 0 and qc = U on both the cavity and

the profile wetted surface can be satisfied by any member of the family of

functions having the form F-m , 0 < m < 1. But the condition ec = 0 along the

entire stagnation streamline can be satisfied only when m = 1/2. This choice

for the complementary function seems to offer the advantage that it will

cause less alteration of the upstream flow field inclination than other

possibilities. Moreover, it appears to be the most convenient choice for

further analysis. Consequently, we shall adopt this functional form for

the eigensolution in this work.

Equation (10) can be used to obtain the corresponding representation

for wc in the c-plane as

=c E =-2E (34a) "
b[cos y - ( +)] b(C - e')(; -eY)

In the c-plane wc(0) = 0 and when is real wc is real. Moreover, wc(c) is

an analytic function which is regular inside the unit circle and which has

simple poles at € = e±iY. Note from Eq. (34a) that on the "nose cavity"

Oc + 0+ as + - 0 and on the "tail cavity" 6c + 0- as + + 0, as
-iW

illustrated in Fig. I also. From Eq. (14), w = Ue c and we see thatc

the structure of wc leads to an essential singularity in wc at the

stagnation point 0. The complex velocity wc is bounded at this point

however, and a smooth foil contour will pass through z = 0. At points

on the unit circle, 4 = ei8 , we have

. . . . . . -. .. - .

. . ..
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These results will be used in order to start the functional iteration after

the formulation of the theory has been completed. As a final note, we

observe that the cavity thickness at the trailing edge of a flat plate

according to linearized theory (13] is

nc(1) = 1.681a

which can be compared to the corresponding expression from Eq. (31b). Within

the range of attack angles considered here the trailing edge cavity thickness

at zero cavitation number is about the same when estimated by linearized

or nonlinear theory. For larger values of attack angle we would expect

estimates from linearized theory to exceed nonlinear cavity thicknesses.

The flat-plate function o(;) is traditionally considered to possess

all of the singular behavior of the function w( ). The shape of the smooth

body is then represented by an analytic function wj( ) which is regular

inside and on the unit circle. It must also satisfy the same symmetry

requirements as are imposed upon w0 and we must also insist that wl(O) = 0.

Then one traditionally puts w(r) = w0 + wl. As mentioned previously, we

will add to this customary sum a new function, wc(C), which is the analog

of the point-drag function of linearized theory. We will now explore the

properties of this eigensolution.

The Eigensolution

The complementary function wc O ec + iTc, is to be determined from the

requirements that Tc - 0 on the cavity and the foil, ec = 0 along the

stagnation streamline and that wc vanishes at infinity. A function of the

form which satisfies these conditions can be found most easily by considering

the flow in the F-plane, Fig. 2. If we take

S!:ii i
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b 
2

Equation (28) gives the value of T- to be used in Eqs. (29) and (30).

it is useful to find the ordinate of the upper surface of the cavity

above the trailing edge of the wetted surface. This can be done by

calculating the quantity

f(~~aJ= -~c)2 -1

(Ic-cosa-2)

for several values of Cc and prescribed values of a. Then when ac = 1, one

can plot contours of a = constant in an f - Cc plane and note for each value

of a the value of Cc corresponding to f - 2(4 + T sin a). These values of

Cc can then be used in Eq. (30) in order to compute the value of rc(1) for

each value of a. It was found when these points were plotted in an

nc(l) - a plane that a linear relationship fitr the data for 0 4 a 4 100.

When a is measured in degrees this line has the equation

nc(1) = .2939a* . (31a)

The corresponding relationship for a measured in radians is

1c (1) = 1.684a • (31b)

The computed results are tabulated below.

Table 1. Cavity Thickness at the Trailing Edge of a Flat Plate

ac c(1) lc(1)

0.0 -- .0000
0.5 .1712 .0147
1.0 .1707 .0297
2.0 .1698 .0585
3.0 .1689 .0879
4.0 .1680 .1174
5.0 .1669 .1463
7.0 .1650 .2049
10.1 .1620 .2939

" - r ." ,...- .* .- .-."..,.......-...-,'..'..,......-.....',.•.,...............'.......-'...,..--....'.'-.----.
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Additional properties of the flat-plate solution which are important

for the present considerations relate to the shape of the upper surface of

the cavity. In Fig. (5) will be on the negative real axis for points

on this part of the cavity. Therefore, let us put C =- c where c is

a real positive number. Then we can use d(c + in) = eiadz, and write

Eq. (17) in the form

= 2

d(o + in) j exp i[a + O0(Cc)]d{[L ( c + -L) cos a]2}

U 2 cc

But now

exp i[a + 60] - i(ei ' a - c)/(e -  -c)

and so we have

d(a + in) z 2 . ice i - 2 + (2i sin a)/; c + 2/ - c

The integration in this case starts at A, where Cc = 1 and a = n = 0 and

proceeds to some value of ac'nc corresponding to 1 ( C( 0. This leads to

the parametric representation of nc(Oc) in terms of c which is given by

22 ( -c 2 ( cos a -2 (29)

and

l b2  1-_c
"c "" sina + 2 nc (30)

_ T .• 2 . Ciiiiii
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22

dz -b 2 (cos - cos a) ei [cs - osa 2 + [sn + sin a)sn d
Uz- -- cos -o e [(o..)-.in.)si

e sgn(cos - cos a) 2 !-- [sin E + sin a sin 2  -cos a cos E sin &]dE

We can dispose of the product - ei0 sgn (cos E - cos a) by observing that on

the wetted surface when 0 4 E a the flow direction is 6 = 7 - a and when

a 4 E ir, 0 = - a. Therefore in the first of these cases, eie = - e- ia and

in the second ei6 = + e- ia. Hence in either of them the product

-eie sgn(cos E - cos a) = e- ia. Next we can introduce d(O + in) = eiadz

from Eq. (1) with the result that

b 2  -2
d(a + in) = 2 - [sin + sin a sin 2  - cos a cos E sin E]d .

This last result implies that n = 0 as is proper for a flat plate and

da is simply the arc length ds along the wetted surface measured from the

profile nose where a = 0. We can integrate this last equation from a 0

(= 0) to some value, 0 a 1 1 (0 4 w ir), and get

b2 "

s 2 11L [(1 cos E)(1 cos [1 + cos ) + - - sin 2  ) sin c] (27)2 2 2 2).

However, the profile is to have unit chord so that when E = w, a = s 1 1 and

U 4 + w sin a (28)

When Eq. (28) is used in Eqs. (24) and (25), one obtains the well known

Rayleigh formulae [12].

. . . . . . . . . .. . . . . . . . . ... . . . .

,.--.-. . .... ,. , ..- ,,.. -- _-.- - ... .......................
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2
b 2

0 2w - sin2 a (25)
0 c

and we see that L/D = cot a as is proper for the flat plate. We can also use

the relationhip Cp = 1 - e2T to find the pressure distribution on the plate. S

The result is

C 4 sin 8 sin y (26)
P0 (COS 8 - cos y)2 + (sin 8 + sin y)

From this result, we see that when 8 = y, C PO - and when8 0 or w, C =, 0
P0  P0

as required.

Continuing the study of the flat-plate solution, we can rewrite Eq. (23)

for points on the wetted surface as

0 ! - a + y + i9n[(eiY - ei")/(eiY - ei8 )] ,

in which case

TO  eiY ei8 _- -.-
e i C

e - eio PO

After some manipulation we find that

€ I -C 2 1c os B c o s y 1'
PO___ (cos - 2cos -2 + 2

cos 8)2 + (sin y + sin 8)2

Next we can put 8 ffir -n and y n n - a in this expression and in Eq. (17)

when it is written for points on the wetted surface. That is,

,:.->., . ','.. '.. .-,- --,.......--....,... .. . . .. . . .. . . .
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the real part of the analytic function iln( - eiY). However this function

by itself does not have the proper symmetry needed for admissible forms of w.

But if we subtract from it a similar function which has a like jump at the

image of 0 with respect to the real axis in the c-plane, we preserve the

necessary behavior at 0 and also satisfy the preceding symmetry requirements.

Aside from arbitrary additive constants, this function has the form

Un - eiY
e-iT

Finally, we require that w(0) = 0. Because of this condition the resulting

function which provides the flat plate solution is [4]

0 60 + iT0  a + in - eiy (23)

with y = - a in the case of an isolated flat-plate profile. For this case,

one can show that this function has the flow direction, 80 f - a or 60  - a

on C - ei8. Therefore, the wetted surface in the z-plane is a straight line

through 0 with its trailing edge inclined at the angle - a with respect to

the positive real axis. Moreover, since To vanishes on the real axis in the

C-plane, the free streamlines have Cp = 0 as required.

The contribution of w0 to CL and CD follows from Eqs. (21) and (22).

From Eqs. (21), (22) and (23) we get

CL 2r- sin a cos a (24)
L0 Uc

. . . .. . . . . . . . . . . . . . . . . . .- '. . . . . . . .
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T(-6) ,, - T() i

and

i ~ ~~e(-8) - e(8) .- :-

I

Hence T is an odd function of 8, or Im , and e is an even function of 8, or

Im .

Using the result,

e T /1 - Cp (20)

as noted above, and the fact that w(C) is now defined inside the unit circle I.

one finds [71 from the calculus of residues that

CL = L2- [4w(0) cos y- w(0)] (21)2 Uc '-

and

i 2 2
CD = 2 Uc [w'(O)]2 (22)

where the quantity c is the profile chord which is taken as unity in this

work. The moment can be calculated after the complete solution has been

found.

The Form of w(C) Near the Stagnation Point

This is also a well known result which we shall review briefly. The

form of w near 0 is dominated by the fact that on a smooth contour e jumps

by the amount w. In particular, as one traces the profile surface,

starting at Al in Fig. I and then passes through 0 while proceeding to A2,

the jump is a decrease in 0. This is precisely the behavior exhibited by

.. .. . . . . . . ............. .................. :......,.... :............................... .............
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where we have also made use of Eq. (18) because it applies to the wetted

surface. But from Eq. (15) we have

T - in - Zn VI - CU p

so that

b2 -
ds - 2 - [(Cos y - Cos B) sin /1/1 - C (0)]do (20)

p -

on the wetted surface of the profile. As we have noted previously, the flow

directions differ by w on either side of 0. Therefore, if the sign of dz is

positive on the arc OA2, it will be negative along arc 0AI. As a result of

this difference ds might have a like sign change in these two regions. Just

how this might occur depends on the form of V1 - Cp () in any particular

case. Therefore, we will defer consideration of this question to a later

* place in the development.

Hydrodynamic Forces

The development of general formulae for the hydrodynamic forces on the

profile depend upon certain properties of the function w(C) which result

from the previously noted fact that w(C) is real when C is real. For

then one can apply Schwartz's principle of symmetry in order to write

W(Z) = W(C) and thereby obtain the analytic continuation of w(i) into the

lower half of the unit circle [6]. Thus we can write for a prescribed

modulus, r0 = 1,

'- e~(8) - iT(8) - ec-8) + it(-8) ,""

or
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We can now use Eqs. (13), (14) and (15) in order to write

2 --+i6
dz = dx + idy -be + O Yco _ (17)

On the wetted surface C = ei8 and Eq. (17) leads to S

dx 2b Te CSY CSa

dxT [COS y - cos ] sin a COS 6 d-

and (18)

d-= 2b62  T- CS O

dye cos y - cos ] sin a sin 6 dO

Note that dy/dx = tan 6 as it should if the wetted surface is to be a stream-

line. On the upper surface of the cavity r = 0 and arg t = so that Eq. (17)

leads to

b2dxc b- COS 6 [1 (C + )-COSy] - - -'''[i

(19)

b 2

provided that - I < 0.

Returning to Eq. (17), we can write the square of the arc length along 0

the wetted surface as

b2 e-T[cos y -cos 8 sin B dB }2(ds) 2 = dz d {2 --

d Uc s d

• S

. 0
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" F = b2[cos Y -2 (O
F b 2(10)

Then we introduce the complex velocity,

w = u -iv dF (1d

in order to write

-1 2i 1~ 1~ 1 d

w = qe -ie b 2[cos Y (C + 1 1 +z (12)

or

wdz dF b 2  + - Cos - 1) dC (13)

These quantities are now used to define the logarithmic hodograph or w-plane:

e -7- e exp[In i] • (14)

Therefore we have

= e + ln = e + iT , (15)
U

where T = In S. On the free streamlines q = U so that T = 0 there. In the

U

c-plane, these free streamlines are on the real axis and at 0' we know that

8 = 0 also. Therefore,

•(0) = 0 (16)

and w() is real when is real. At the stagnation point q + 0 so that

r - there. The flow directions differ by w on either side of 0 and

so the w-plane with the various corresponding boundaries can be

represented as illustrated in Fig. 6.
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One can now use the mapping

W 2 (Z + cos y) , (6)

where

CO , 2 (7)cos y= =_

in order to map A1 into Z =+ 1 and A2 into Z - . The point 0 maps into

Z = cos y as shown in Fig. 4. The significance of the point C, also shown

in this figure, is discussed later. Then the Joukowski transformation,

z + - '(8)

maps the upper half of the Z-plane onto the interior of the unit circle in

the c-plane. The inverse of this mapping must be

= - Z + 2 (9)

in order to make the point 0' map into the origin of the C-plane. Various

corresponding points are denoted by A1 , A2 and 0 in Fig. 5. The arc of

the unit semi-circle corresponds to the wetted surface. Coordinates on

the wetted surface are given by = ei8 as shown. The stagnation point is

at 8 = y. The upper surface of the cavity is on the real axis between

A, and 0' and the lower surface of the cavity is on the real axis between

A2 and 0' as marked in Fig. 5.

One can now use Eqs. (3) through (8) in order to write the composite

of the preceding mappings as

* . . . .~. . .. . . . -. . . ° . . . . = .* -.-* * -*-*
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2 cos t sin t
E 1_ 1

1 U 2 t C~j
t 11

and (37)

E2  sin t1 cos t1
Y + + si(t 1) -i t 2 1

On the rest of the wetted surface, that is, on arc 0A2 between the

stagnation point and the tail, we know that y ( y and we put t -2,

y = - 6 and a= 2 - C2. Then

t E

2 bcos 6 - cos E 2]

In this case, 6 E 2 < w and it follows that

E
2 b( + cos 6)

Then we have

E2 cos t2  sin t2 +
2 T 2 2 Ci(t 2)

U2

and (38)

2 sint cos t2

E2  s t2 + - (t2 ) _
2 2

....... ... ......... 7............ -.. ...
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On the cavity surface A10' the integration starts at C = - 1 and ends

somewhere between 1 - 1 and 0 - 0. Note that the value of t at 4 - - 1

equals that of tj when8= 0. So that if we put t t3 , y -6 and

= - C3, we have

S3 E

b[ (3 + ) - Cos
3

then the upper cavity joins the nose arc of the wetted surface and its

coordinates are

2 cos t3  sin t3

-3 U 3  t3 Ci(t 3 )

and (39)

2 sin t cos t
E 3 _3+ +J

In this case

0<t c b(l -cos 97

Finally, the cavity surface from the trailing edge is obtained by

putting t f  t4, y and C 4, where 0 1 4 4 1. Therefore

=.iE

b[cos 6 - 7 ( 4 +

2 4 .. . . . . . . . .
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and

0 <t 4 E
4 b(1 + cos 6)

Then we have

E2 E cos t4  sin t4 + J

~4 ~U t2 t 4  (4
t4

and (40)

2 sint cos t
E 4 4 T4 s + Si(t 4 )Y 4 T - 2 t '

As we found for the upper cavity, the lower cavity surface starts smoothly

from the wetted surface.

Equations (37), (38), (39) and (40) will provide the shape of the

wetted surface and the cavity surfaces for the simple complementary function

of Eq. (33). However, these equations contain the undetermined ratio E2/U.

We shall consider the ratio E/b, which determines the strength of the

complementary solution, as a parameter which we can prescribe - at least

for the time being. We also consider the value of y (or 6) to be known.

Therefore, we need to "scale" our results in order to obtain a profile of

unit chord. Since we anticipate that the complementary function can

produce a rounding of the wetted surface nose, the scaling procedure must

account for this possibility. Accordingly, we shall need to determine

explicitly the location of the apex of the wetted surface nose with respect

to the profile chordline.

. . . .. .. . . . . . .

. . . . . . . . . . . . . .. ---.. .. -
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Figure 1 shows the chordline for the sharp-nose or for the round-nose

case when the upper cavity separates at the leading edge with respect to

the hydrofoil chord. The geometry for the rounded nose with the separation

point on the upper wetted surface behind the apex of the wetted surface

contour is illustrated in Fig. 7. The apex is located at the origin of

a, n coordinates in this illustration with the n axis being tangent to

the contour at this point. Denote the x, y coordinates of this point by

Xa, Ya" Then since the a-axis is normal to the n axis, we see that at the

apex the slope of the contour is

dya
dx tan (1- a) cot a . (41)

a

We will restrict our attention to those cases in which the apex is on the

arc 0Aj. Let t = tI = ta at the apex. Then from the equations preceding

Eq. (37), which define tj, we have

ta b(cos Ea - cos 6 ) 0 4 a 6 (42)

aq

and Eq. (42) can then be used in Eqs. (37) to define xa and Ya once the value

of Ea (or Oa) has been found. Thus, we must determine the unknowns E2/U and

Ea in terms of the prescribed quantities E/b and S(or y). Two conditions

are available for this purpose. The first is given by Eq. (41). The second

will be that the profile has a unit chord.

An alternate form of Eq. (41) is

cos a = sin t
a

and , (43)

sin a cos ta. ..- .. . . . .
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which follows from the complex equation just above Eq. (36) when we put -

t ta. We will use Eq. (43) as the appropriate expression for the slope -

of the foil contour at the apex. Now let us differentiate Eq. (1) so

that

d(a + in) = e dz

Then from the complex equation just preceding Eq. (36) we have

e- id(a + in) 2E2 1 it (- e eidt .(44)

U 3t

Starting from 0 where (o,n) (o0,no), we integrate Eq. (44) to A2 , where

(a,n) = (1,0). This step gives

- -in 0  ~ 2 [cos t~ sin te-"' 0 -in)= t  tt

sin t cost -t + tt Si(tt) .1
where 0

Et b(1 + cos 6)

corresponding to t2 with E2 T in Eqs. (38). Next we can use Eqs. (37) with "

El Ea and tI = ta or

"S . .
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t E
ja (cos 9 a cos 67)

at the apex in order to integrate Eq. (44) from 0 to the apex along the arc

OAj. This step results in

-e ia (0 + in0 ) 2 C a ~ - i a + Ci(t
U t2 a

a a ai~

2 i + Co t a +ri~

*t2 t a a 21
a-J

Eliminating the sum ao+ in 0 from these two equations, we get

*U2-cos a =F- f(t)

and .(45)*

2!L sin a =G -~ a

In Eqs. (45) we have

*The F introduced here is not to be confused with F =+ up from Eq. (2).
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x U cos t sin t
F t t t + Ci(tt)
F 2 t2  ti t .

t

and (46)
S

yt U  sin t t  Cos tt

2- = + sittt -
E2 t + t

t

which contain known quantities because tt is known. The remaining pair of

functions,

cos t sin t
f(ta ) = 2 a t a + Ci(t a )

a

and (47)

g(t sin t + cos t a + Si(t
~a) t 2a t a Sta) 27

t a
a

contains ta which depends upon the unknown, 8 a - - a" Thus, Eqs. (45) are

two simultaneous equations containing the quantities U/E 2 , a and 8 a which

must be determined. Therefore, Eqs. (43) and (45) form a determinate system

which can be solved by iteration. In order to do this, we can write the

complete system as

G - g(t)
tan a = F - f(ta )J (48)

....................................................

- . .. .. .. . . . . . . . .
. .-. .
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cot t= tan a (49)
a .

and

U F -f(t a  G -g(t a)  (0
E2  cos a sin a

In the derivation of this system we have assumed that the apex, Za, Ls

on the arc 0A,. On the other hand, we specify the quantities E/b and

y = - 6. We must now determine whether or not our assumption regarding

the location of za can restrict possible choices for the parameters E/b and

6. In particular, we recall that, as is true for the quantity El, we must

also require that 0 < Ca < 6, as noted in Eq. (44). The limiting condition,

corresponding to the coincidence of the apex and cavity separation point at

the nose of the profile corresponds to a = 0. In this case, the smallest

value of tj for any choice of E/b will be found when

min b(l - cos 6)

On the other hand, by inspection Eqs. (46) and (47), we see that the largest

values of f and g are found for ta tmin. The values of F and G are also

obtained from the smallest value of t2 because tt is calculated from t2

with 2 = 7, namely:

E
t b(l + cos 6)

Let us compare the values of F with f and G with g. Suppose that E/b is

selected so that cos ta 0 cos tt  1, sin ta t Ca and sin tt  tt Let

6<< 1. In this case we can see that

.................. ,........... -. , .o. . .
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F [ = (mi) - 26 n = t - 621

~~ 3j~ and -. I t ~ ~ -

For example, if 6 = .1, we would estimate F/f (20) 4 and G/g - (20)2. These

estimates imply that both E/b and 6 are significantly smaller than unity.

In the applications contemplated, E/b will probably be less than unity

although 6 might conceivably approach or exceed unity. Therefore, we shall

consider the ratio,

ta min + cos 6

n 1 - cos , n6)
t

which permits us to consider roughly the ratios of F to f and of G to g

for various values of 6. In particular, we can solve for cos 6 and obtain

n-i
Cos 6 =

n +n1

which permits us to plot a curve of n = (ta  /tt) versus 6 as shown in

Fig. 8. This curve illustrates the effect that the choice of stagnation

point location has on the ratio, n. The value of n in turn gives a rough

indication of how large the ratios F/f and G/g will be.

It appears for most cases that these ratios will be very large and

one need not solve Eqs. (48) and (49) by iteration. Instead one can

obtain an accurate value of a from

tan a G (48a)

FS

%*

............. .. .... ......

• .
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and he can then determine U/E2 from

U_ F (50a)
E2  cos a (50a)

Should cases arise in which Eqs. (48a) and (50a) are not accurate, they can

be used advantageously to start the iteration. In order to illustrate these

points and in order to show a profile shape derived from the complementary

solution, we have prepared the following numerical example.

We started the calculation by selecting 6 = 700 and E/b = .01.

Figure 8 shows that n A 2. The values ta al 01520 and t .00745

follow from the formulae for these quantities. From Eqs. (46) we find that

F = 18,004 and G - 266.83. Equations (48a) and (50a) lead to tan a = .01482

and U/E2 = 18,006. From the formulae just after Eq. (35) we have for the

cavity drag due to a profile of unit chord

2
CD = 27 F-- .00035
c

as the contribution for this point-drag profile. The value of ta can now

be found from Eq. (49). It is ta = 1.556. Equation (42) can now be used

to find that Ea 69.610. Note that for this case the apex is almost

coincident with the stagnation point. Because Eq. (34a) shows the

complementary function to be at the stagnation point this result is

expected. The fact that the apex is not exactly at 6 = 700 is due only

to the inclination, a = .850, between the chord line and the x axis.

Once U/E2 has been found, the values of xt and Yt can be found from

Eqs. (46). The values are xt = .99989 and Yt - .01482. Now one can

. . --. .

•- . ,. ... - -. .. . ., . • . -.-- . - .. .'- - ."- .. ''-..:.'''-. ''-'---.-.2".'' .': ------.-- "-" . -" ."- - -".
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use the conditions that in Eqs. (1), (Xt,yt) ++ 1 o=1,n=0) and

(xa,ya) (+ (o-O,n=O). These lead to a system of equations from which

0 and no can be eliminated and one finds that

x = xt  cos a = x - sin ta t t a'

Ya = Yt + sin a = yt + cos ta

When the above values of xt and a were used in these equations, the values of 0

xa and Ya were found to be zero to within five decimal places. This result

is consistent with the location of Ea noted previously. Continuing with

Eqs. (1), we can use the fact that xa = Ya = 0 to see that it must also

follow that o0 = no = 0. Accordingly, the form of Eqs. (1) for the present

calculations is

a = .99989x - .014 796y

S= .014796x + .999989y

The next phase of the calculations is the evaluation of the equations

for the wetted surface and cavity contours in accordance with Eqs. (37),

(38) and (39). The result of these calculations is shown in Fig. 9. In

this figure, the chordline distance, a, has been labeled as X and the 5

ordinate, n, has been labeled as Y. Note that the Y-scale is magnified

five times compared to that of the X-scale. The trailing edge of the

wetted surface is at X 1. The upper surface separation point is at 5

a X= .240. The cavity thickness at X= 1 is Y = T= .02980. This

point is marked to the same scale as the X-scale by the dot and the line

at X I in order to give an idea of the actual thickness of this example 5

of a point-drag profile. Finally we can calculate the value of 4c(l)

0 -'
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in this example in order to compare it with the values found previously for

the flat-plate. It is found from the value of tc = (E/b)/[( c + 1/ c)/2 cos y]

at a = 1. The calculations indicated give c(1 ) = .3290 which is roughly two

times the values of Table 1.

Our desire to retain as much simplicity as possible in the preceding

analysis of the complementary function has caused us to place the point-drag

singularity at the stagnation point. This restriction on the location of the

point of application has allowed us to show that such a solution exists,

that it definitely leads to a smoothly rounded profile nose and that it will

cause an incremental thickening of the cavity depending on its strength, E.

Of course, we need not restrict ourselves to the stagnation point as being

the location of the point-drag singularity.

For example, suppose we choose some other point C on the wetted surface.

Such a point is illustrated in Fig. 5 and it happens to be located between

the upper cavity separation point and the stagntion point, although C could

just as well be at some other wetted-surface location. The main idea is

that now = Tc at the location of the point-drag signularity and if we

simply replace Eq. (34a) by the modified expression,

Wc(4) =b E Y 2E1 -iy (34b)

bLcos y+ - ( +  )] b( - e )(C- e )

we still have a function which satisfies those conditions needed for a

complementary solution. It is clear that in the C-plane, wc(1) = 0.

Moreover, when is real wc is real and on the unit circle c = 0 every-
±iYc

where except possibly at the simple poles, e . From Eqs. (21) and

(22) it follows that

..... : .: .::_.-. °.- ..... --.--......................,-.--...---.... -.,.........................,...."..".....,-." " "- - -. "... . .. . ... . . . . .
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E
2

CD =2 7 r (51)D Uc

as before. On the other hand, because of the displacement of the point C

away from 0, a lift force is produced and we find that now

Y 8+bEi + c -Y c 87bE c + 6 6c
L Uc 2 2 Uc 2 2 , (52)
c

where y - 6 and yc = n - 6c in accordance with previous convention. The

profile chord, c, should be set at unity in Eqs. (51) and (52). Equation (52)

shows that CL = 0 when 6 c = 6. However, 6c < 6 when the point C moves toward p

the point A1 and a negative lift results. In the limit as 6 c + 0, we have

CL 87tbE sin 
2 6

L -c 2
c

If C is between 0 and A2 a positive lift is produced and in the limit

when C is coincident with A2 we have

8nbE 26
C = - cos 2

c

If one were to let E be negative the sign of the foregoing trends with

respect to CL would be reversed. However, we must insist that E > 0

because this function produces a thickening of the cavity and because then

w'(0) - 2E/b. Similarly, we have also found that w'(0) = 0 2 sin y.

Thus, the effect of adding w0 and wc increases the net drag. Neither of

these functions can act to reduce it. Accordingly, we shall take Eq. (34b)

as the appropriate form of the eigensolution which has been sought.

........-.........
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Conclusions

The chief finding of this paper is that one can construct many eigen-

solutions for the exact inverse problem of two-dimensional cavity flow at

zero cavitation number. From among these, we have chosen that eigensolution

which appears to offer the least disturbance to the upstream flow field

inclination of any cavity flow which does not already include a point-drag

solution as one of its elements. This particular choice also seems to offer

the greatest analytical convenience. The physical conditions satisfied by

this eigensolution are:

(1) At points on the cavity and on the wetted surface of the profile,

the flow velocity is equal in magnitude to the free-stream

velocity.

(2) The point-drag solution vanishes at infinity, but it does have

an integrable singularity on the profile surface.

(3) This function produces no additional flow inclination on the

entire upstream stagnation streamline.

A specific example of the flow geometry represented by an isolated

eigensolution has been given above to show how this tunction can produce

round-nosed profiles. In general, it is found that the point-drag solution

produces a widening of the cavity which is directly proportional to its

strength. An incremental cavity drag accompanies this widening and this

drag is proportional to the square of the eigensolution strength. No lift

is produced by the point-drag function when its location coincides with

that of the stagnation point on the profile surface. In contrast to the

linearized theory, the complementary function singularity need not be at

the stagnation point. In these cases, the incremental cavity drag is

not changed from its value when the singularity is at the stagnation point.



-37- 25 January 1985BRP:lhz

But when the singularity is located between the stagnation point and the

upper separation point a negative incremental lift is produced. If the

* singularity is on the lower surface, downstream of the stagnation point,

a positive lift increment is found.

As a result of these findings, it appears that an eigensolution exists

for the nonlinear theory of cavity flow at zero cavitation number and that

it is now most liekly that a similar eigensolution can be found for such

fully cavitating flows at cavitation numbers which are greater than zero.

The results found so far suggest that the nonlinearized theory and the

linearized theories parallel one another very closely as far as the nature

of the point drag solution are concerned. But the present results exhibit

some features which are lost whea the process of linearization is applied

in the linearized formulation. Finally, the way is now clear to augment

the method of Levi Civita by adding in the eigensolution, wc, in order to

formulate an exact inverse theory which permits one to control the cavity

thickness and to prescribe the wetted-surface pressure distribution

simultaneously.

.
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