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ABSTRACT 

High field solenoid magnets may experience internal damage or eventu- 

ally collapse due to the powerful magnetic fields they produce. Elastic 

deformations of the conductor and insulation in these magnets deserve 

attention because they can cause local damage that can lead to electrical 

breakdown. In conventional stress analysis of cylindrically wound mag- 

nets, the magnetic field gradient, or magnetic stiffness, is usually 

neglected. However, in this thesis the magnetic stiffness is shown to 

have a significant effect on the elastic stability and vibration of these 

magnets. 

One-turn and multi-turn superconducting rings were used to study the 

effects of deformations on stability and vibration. Both static and 

dynamic methods were used to determine the critical buckling currents. 

The dispersion of natural frequencies with increase in current and subse- 

quent in-plane and out-of-plane buckling of the rings near the critical 

buckling current were observed. 

A model based on ring theory and magnetic stiffness was developed to 

explain experimental observations and showed a fair to good agreement 

between experimental and theorietical values of the buckling current. This 

model was used to evaluate the buckling current of 7- and 10-turn mag- 

nets. The analysis showed buckling concentrated in the outer turns. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Superconducting Magnets 

Development of reliable magnets is central to the goal of economic 

usage of high magnetic fields in such applications as magnetic fusion 

energy, magnetohydrodynamics (MHD), accelerators in nuclear physics, 

and nuclear magnetic resonance (NMR) for medical use. 

The renaissance of magnetic technology started in the early 1950's 

with the establishment of high energy accelerators. About a decade 

later in 1961, high-field superconducting laboratory magnets became a 

reality, after the discovery of superconductivity. Conventional electro- 

magnets, which are still used widely, operate at near zero efficiency. 

To generate high magnetic fields in a useful volume, considerable amounts 

of power are needed. Superconducting magnets, on the other hand, consume 

a minimal amount of power required for refrigeration. 

The design and construction of superconducting magnets are central 

to the economic feasibility of high magnet field technologies. At the 

same time, these devices have to be constructed on a scale many times 

larger and more costly than any magnet constructed to date. This will 

require an interdisciplinary effort among engineers who today may have 

limited experience with magnet design fundamentals. 

The development of superconducting materials remarkably improved the 

magnetic energy storage capacity, which has led to the development of a 

number of superconducting devices and applications as mentioned above. 

-1- 
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At the same time, this technology brought with it a new set of engineer- 

ing problems in both the electrical and mechanical sciences. Some 

problems involve the design and manufacture of the superconducting 

material itself, while others involve magnet construction or overall 

system problems. This thesis seeks to explain the problems located 

within the mechanical aspects; specifically vibrations and structural 

stability of the superconducting magnets. 

1.1.1 Superconductor 

The superconducting phenomenon of mercury was discovered by 

Kamerlingh Onnes in 1911. However, it was 50 years before superconduct- 

ing materials were discovered which could sustain high current densities 

and magnetic fields without becoming resistive or normal [Rose-Innes 

(1978)]. They are generally referred to as "hard superconductors" of 

Type II. NbTi and Nb^Sn are the most common compounds of this type 

commercially available. 

In order for a superconductor to be in its superconducting state 

(as opposed to its "normal state"), the temperature, field and current 

must all be below certain "critical" values, and these values are inter- 

related [Brechna (1973)]. At a given temperature and level of transverse 

magnetic field, for example, the material has a "critical current," 

at which the transition from the superconducting to normal state takes 

place. The critical current for a given high-field material is extremely 

sensitive to material and structure. Any given alloy will show little 

change in critical temperature or upper critical field with changes in 

metallurgical treatment, such as cold work or annealing, but the critical 

currents will show wide variations. 
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Niobium-titanium conductors, for example, if operated at 1.8 K 

have sufficient critical current to generate field of 12 T. The 

superior mechanical characteristics of NbTi make them attractive 

despite the lack of temperature margin available. Conversely, 

Niobium-tin, with its much higher critical field,can be operated 

at 4.5 K but it has well known unattractive brittle mechanical 

properties. To achieve high current densities, it was found that 

the superconducting material should be backed with a good conductor 

or small filaments of these materials embedded in a copper matrix 

should be used. 

1.1.2 Superconducting Magnets 

The status of the technology of large superconducting magnets in terms 

of stored magnetic energy for selected devices is given in Table 1.1. 

The stored energy is the energy contained in the magnetic field at an 

operating level for each system. It is a measure of the size of the 

device, because stored magnetic energy is proportional to the integral 

of the square of the local magnetic field over all space. It is also a 

measure of structural requirements because the magnetic energy density 

can be interpreted as a nonuniform pressure which is exerted on the 

current-carrying elements. This pressure must be restricted by the 

structural components of the system. 

The systems in Table 1.1 are grouped into three basic types. The 

first four systems are bubble chamber magnets for high-energy physics. 

These are identified by locations as follows: Brookhaven National 

Laboratory (BNL), Argonne National Laboratory (ANL), Fermi National 

Accelerator Laboratory (FNAL), and Centre Europeen pour la Researche 
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Table 1.1  Comparison of Large Superconducting Magnet Systems 

Device Type Status Stored Energy (MJ) 

BNL Bubble Chamber complete 12 

ANL Bubble Chamber complete 80 

FNAL Bubble Chamber complete 395 

CERN Bubble Chamber complete 800 

U25 MHD complete 34 

ETL MHD complete 60 

CFFF MHD under construction 168 

CDIF MHD under construction 200 

ETF MHD design 2,900 

CDP MHD design 6,300 

BL MHD design 15,200 

MFTF Fusion (Mirror) under construction 3,000 

LCTF Fusion (Tokamak) under construction 700 

INTOR Fusion (Tokamak) design 35,000 

CRR Fusion (Tokamak) design 108,000 



Nucleaire (CERN). These four are complete. In comparison to the MHD 

and fusion configurations, the bubble chamber solenoidal magnets are 

simple and straightforward. The axial symmetry inherent in a solenoidal 

configuration leads to magnetic and mechanical design problems which are 

much less severe than the other two types. 

The second class of magnet systems consists of MHD magnet systems, 

of which two are complete and operational, two are under construction, 

and three are in the conceptual design stage. The first listed (U25-B) 

was built at ANL and installed in the bypass loop of the U25 MHD test 

facility in Moscow. The second system is at the Japanese Electro- 

Technical Laboratory (ETL). Of the two magnets under construction, the 

first is to be used at the Coal-Fired Flow Facility (CFFF) at the 

University of Tennessee, while the second is to be used at the CDIF in 

Montana. The final three magnet systems are conceptual designs for three 

successive stages of development envisioned for commercialization of 

MHD. These include the engineering test facility (EFT), the commercial 

demonstration plant (COP), and a full-scale magnet for base load (BL) 

operation. 

The last type of the magnet systems consists of fusion magnet 

systems, of which two are under construction and two are in the con- 

ceptual design stage. The first of these is for the Mirror Fusion Test 

Facility (MFTF) at Lawrence Livermore National Laboratory. The geometry 

of this system is different from that of the other three fusion systems 

listed here. This systems is the largest superconducting magnet pres- 

ently under construction in the United States. The second fusion magnet 

system under construction is for the LCTF at the Oak Ridge National 
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Laboratory. The final two systems listed are conceptual designs for 

the commercialization of fusion. Both are based on Tokamak configura- 

tions. The first is for the fusion engineering test facility (ETF), 

while the value given for the commercial power reactor (CPR) is based 

on the UWMAK III design generated at the University of Wisconsin. 

The range of stored energies given on Table 1.1 is indicative of 

the enormous size of the magnet systems which are believed to be 

necessary to commercialize MHD and fusion technologies. The step from 

existing superconducting magnets to the magnets necessary for commercial- 

ization is an enormous one, as indicated by the increase in stored energy 

and size. A clear understanding of the magnetic field and force design 

fundamentals is necessary for making such a step successful and cost 

efficient. 

1.1.3 Magnet Systems for Fusion and Their Structural Problems 

Development of reliable magnets is the main technological problem 

to realize economic fusion power. Because they are expensive and inter- 

locked aspects of the reactor, magnets must have a life-expectancy 

similar to the lifetime of the reactor. The Mirror Fusion Test Facility 

(MFTF) and the Large Coil Program (CLP) are the major superconducting 

projects which will provide technical data to design future magnets. 

Successful completion of these tests will give the confidence necessary 

to advance on the much larger fusion Engineering Test Facility (ETF) or 

International Tokamak Reactor (INTOR) in the last half of this decade. 

In this section the Tokamak reactor will be described first, 

followed by the MFTF, Mirror type, and finally their structural problems. 



Tokamak 

Tokamaks are "closed system" toroidal devices, as opposed to the 

"open system" linear mirror devices. The closed systems have achieved 

plasma confinement time and density combinations much in advance of the 

mirror systems and are therefore judged most appropriate for the next 

steps in the fusion program. 

An outline of the fusion EFT, the next-step fusion system, is shown 

in Figure 1.1 [Haubenreich (1981)]. The magnet system consists of 

toroidal field (TF) coils and the poloidal field (PF) coils. The TF 

coils produce the high magnetic field in the toroidal direction. The 

PF coils include the ohmic heating (OH) solenoid, interior and exterior 

equilibrium field (EF) coils, and create vertical and radial magnetic 

fields. 

The Tokamaks require a pulsed vertical or poloidal field for the 

induction of plasma current, produced by OH coils, in addition to a 

steady-state toroidal field produced by TF coils. After ignition the 

plasma is then controlled by EF coils. This is the major drawback of 

the Tokamak magnet system. The toroidal field coils will be in a steady- 

state, but the conductors will be exposed in varying degrees, to the 

pulse fields from the poloidal field systems. 

Superconducting magnet technology is being developed in the Large 

Coil Task Program, a six coil torus which will only simulate the electro- 

magnetic interactions from the plasma [Gray (1979)]. The majority of 

main-line experiments operating and under construction are all copper 

coil systems. The next-step Tokamak ETF will use superconducting 

magnets. The capital cost of copper and superconducting systems 
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are nearly the same. The choice of superconducting coils for the next- 

step is being made largely by the need for the development of 

reliable overall systems which will be required when economic electricity 

production becomes a primary focus. 

Mirror Fusion 

The magnetic mirror program has been a major driving factor of 

superconducting magnet development, mainly because of its steady-state 

magnetic field. In 1980, the mirror program embarked on a tandem mirror, 

MFTF-B which will store some 3000 MJ of energy, a factor of nearly four 

larger than the 800 MJ stored by CERN, the largest of the superconducting 

bubble chamber magnets built in the late 1970's. The birdseye view of 

the magnet system is given in Figure 1.2 [Henning (1980)]. 

The MFTF is being built in two stages. The first will consist of 

one mirror end-cell and multi-coil central cell. The Yin-Yang mirror 

coil for an end of the large tandem has already been constructed and 

tested. The severe structural requirements are evident in the scale of 

this structure which has nearly twice the volume of the coil. The 

magnets were designed with a design stress of 550 MPa. The structural 

material is 304 LN which has a yield stress of 925 MPa. The coil was 

wound on a 2.5 cm thick case which was later inserted into a heavier 

case varying in thickness from 7.6 cm to 12.7 cm. 

The conductor used in a superconducting magnet as large as MFTF 

must contain sufficient copper and helium coolant to prevent so-called 

unconditional thermal stability. To satisfy this stability condition, 

an arbitrarily long length of conductors must be able to recover from a 

temperature excursion which is above the critical temperature of the 
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Figure 1.2 MFTF-B with cutaways to reveal arrangement of machine components and magnetic configuration 
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superconductor. This means that all the current will momentarily flow 

in the copper stabilizer, and that there must be sufficient cooling 

capacity to lower the temperature back to the operating point. For the 

MFTF conductor this requires that there be 6.7 times as much copper as 

2 
NbTi, and that there be 8.17 cm of cooling surface per centimeter of 

conductor length. 

The conductor, were it a simple square 1.34 cm on a side, would 

2 
only have 5 cm /cm of length, and hence a novel conductor with an extended 

surface has been chosen, which creates further complexity. However, there 

are certain disturbance inputs which are exceedingly difficult to simu- 

late. For example, mechanical motion of the conductors within the 

housing generates heat through friction. 

Because materials have very little heat capacity at helium tempera- 

ture, even small friction heating can result in a significant temperature 

rise. If the heat input is large enough and occurs even a significant 

volume of the winding, it could vaporize a considerable amount of the 

coolant, leaving the winding without the means of recovery and conse- 

quently quenching of the system. The internal heating of windings 

inside the housing caused by structural motion of the windings is quite 

important and this is the main theme of this study. 

1.1.4 Internal Buckling of Windings 

As mentioned in previous sections, it is very important to analyze 

stress in large magnets because of their size and enormous amount of 

stored energy. This has been the main concern of magnet designers. 

However, structural devices are often load limited by the buckling of 

structural elements such as columns, plates and shells. The magnets and 

less-known cases of transformers are also load limited by buckling. 
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The example of the buckling of a transformer is given by Woodson 

and Melcher (1968). Figure 1.3 shows the primary and secondary windings 

of a distribution transformer which was intentionally subjected to 

currents in excess of its peak ratings. This is a step-down transformer 

with large secondary conductors on the outside and inside with primary 

windings sandwiched between. The secondary windings are constructed of 

sheets of aluminum which were originally wound in a rectangular shape. 

As shown in Figure 1.3, the excessive currents have distorted the 

secondary windings away from the primary windings. Although the result 

is not a gross mechanical failure of the structure, significant deforma- 

tion of the insulation causes local damage that can lead to electrical 

breakdown and also decreases the transformer efficiency. 

The internal buckling of the high field magnet was first reported 

by Daniels (1953). He was designing water-cooled solenoids to produce 

fields of up to 4 T continuously. He observed a mechanical breakdown 

in one of the solenoids. A picture of a damaged coil from his paper is 

reproduced in Figure 1.4. The waves observed in the picture show the 

buckling due to the inward body forces on the outer layers. 

Another example is the original design of superconducting dipole 

magnets for ISABELLE at BNL. The magnets were to achieve 5 T and be 

the highest performance superconducting dipole magnets ever built. 

However, due to the internal movement of windings or braided conductors, 

the magnet could achieve only 4 T and quenched for the higher currents. 

Internal buckling similar to that of Daniels was observed in this 

thesis by conducting a high current through a pancake coil. This experi 

ment will be described later in Section 3.2. 
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Figure 1.3    End view of rectangular distribution transformer coils with 

core removed after being subjected to short-circuit currents 

in excess design capability [Woodson and Melcher (1968)] 
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Figure 1.4    Part of the windings of a high-powered solenoid distorted 

through the action of electromagnetic forces. 

[Daniels  (1953)] 



-15- 

This study seeks to explain and analyze this internal buckling of sole- 

noidal magnets as well as the internal vibration of the coupled windings. 

1 .2 Literature Survey 

Most studies on mechanics to this date have dealt with forces of 

mechanical origin. However, along with the engineering utilization of 

high magnetic fields, there has been some work on the effects of magnetic 

field on the motion of solid body. This study, known as electromagneto- 

mechanics, encompasses the interaction of electromagnetism and Mechanics 

[Moon (1984)]. 

The interaction of the electromagnetic field with the solid medium 

has been examined by a number of authors. The work can be broadly 

classified into three categories: 

1) Magnetization and strains in elastic magnetic bodies 

2) Magnetic field with conducting elastic solids containing 

induced currents or eddy currents 

3) Self magnetic fields of current carrying conductors and their 

deformation. 

In the first category, or interaction of magnetic and strain field, 

one of the earliest works was performed by Kirchoff (1885), who calcu- 

lated the change of shape of an iron sphere when magnetized by a constant 

magnetic field. Since then, many authors have worked on this subject. 

An important reference to the theoretical treatment of ferromagnetic 

solids is the work of Brown (1962). The application of theories of 

internal stresses to solve practical problems has remained very scarce 

in literature. 
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A new branch of this category was opened by Moon and Pao (1968). 

They pointed out that the moment on a ferromagnetic plate, when placed 

in a transverse magnetic field, is proportional to the rotational angle, 

and proved the existence of buckling both theoretically and experimentally. 

Known as the magnetoelastic buckling, this study gave basis for the 

buckling of current-carrying conductors. However, the theoretical 

critical magnetic fields obtained by them were larger than the experi- 

mental results by the factor of 2. 

Miya, Hara et al_. (1978) experimented with the buckling of a ferro- 

magnetic plate by systematically changing the ratio of width to 

thickness, and showed that experimental and theoretical values are close 

when the ratio of width to thickness is large. Also, they calculated the 

concentration of magnetic field using the finite element method, and cali- 

brated the experimental results. 

Miya, Takagi et al_. (1980) solved the out-of-plane deformation of 

plates and the magnetic field in them simultaneously using the finite 

element method, and showed the difference between experimental and 

theoretical results was in an error range of 25%. Recently Moon and 

Hara (1982) showed experimentally similar buckling with martinsitic 

stainless steel which is proposed to be used in fusion reactors. 

The second category of problems, or currents induced in elastic 

conductors by magnetic fields, has a lone history dating back to the work 

of riaxwell (1891). The work of Jeans (1925) followed the methods of 

Maxwell. Smythe (1968) presented solutions to a number of classic 

problems, including eddy currents in cylindrical and spherical bodies, 

and plane sheet conductors. The specialized monographs on the subject 
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of eddy currents were done by Lammeraner and Stafl (1966) and Stoll 

(1974). Most of the analytical methods are based on the magnetic 

field vector potential. The fields treated were mostly uniform and 

harmonically varying due to the limitation of analytical methods. 

However, the recent development of numerical methods such as the 

finite element and boundary methods has sparked renewed interest in 

eddy current research. Miya and Hara (1980) solved the problem of 

the induced current in a cylinder due to a transient magnetic field, 

by the finite element method using the vector potential. They also 

compared the result with the experiment in which the strain was 

measured directly with a strain gauge. Yuan et a2_. (1981) has solved 

the problem of induced currents in two-dimensional plates by the finite 

element method using the stream function. 

The last category, or the mechanics of current-carrying solids, 

includes the contents of this study. 

The earliest work dealt with the total force and moment on the 

body. These include the work of Maxwell (1891), Jeans (1925) and 

Smythe (1968). The other wor'ks concerning magnetic forces due to 

electric currents include Hague (1929) and Dwight (1945). 

However, it is the resulting stress distribution that is of 

interest to the designers of magneto-mechanical devices and to this 

author. Since even in self-equilibrated magnetic systems, large 

stresses exceeding yield stresses can be encountered, stress 

analysis is one of the main parts of magnet desian.   There are 

specialized monographs which deal with magnet design. These monographs 

were written by Brechna (1972), Montgomery (1980), and Thome and Tarrh 

(1982). 
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The survey of literature related to magnet windings or current 

induced stresses begins with Kapitza (1927) and Cockcroft (1928). In 

designing a pulsed magnet, they calculated the stress induced by 

currents. However, they neglected the circumferential stress in the 

equilibrium equation, which led them to an erroneous result of radial 

stress for a constant current density magnet. 

Daniels (1953) discussed the cause of failure in high field 

solenoidal coils due to internal buckling of the turn. He used the 

energy method involving both the magnetic and elastic energies. 

However, he neglected the contribution of the compressive circumfer- 

ential stress. 

Furth et al_. (1957) analyzed stresses in coils using the magnetic 

pressure concept. In Russia, Landau and Lifshitz (1960) gave a simple 

analysis of the stresses in a circular ring using the dependence of the 

inductance on the geometry of the ring. Kuznetsov (1960, 1961) pre- 

sented a two-dimensional analysis of stresses in a solenoid. 

An anisotropic analysis of wound coils was first given by Gersdorf 

et a^. (1965). They introduced different Young's moduli for the circum- 

ferential and radial directions, and a filling factor, namely the 

percentage of conducting volume to total volume. Their method was used 

by Melvill and Mattocks (1972) to analyze the failure of a pulsed 

cylindrical coil of 16 tesla. 

Recent studies have been further refined with the advancement in 

development of superconducting magnets. They include the winding pre- 

stress, thermal cooldown effects and magnetic body forces. Kokavec 

and Cesnak (1977) calculated all three effects and provided some 
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comparison with experimental results. Arp (1977) considered the cumula- 

tive effect of winding on a bobbin, bobbin removal, cooldown and magnetic 

forces for both constant and variable tension winding stress. He showed 

that a variable tension winding scheme can lead to a more uniform total 

stress across the radial dimension of the coil. 

Johnson, Gray and Weed (1976) treated the cylindrical solenoid as a 

concentric set of rings separated by an insulation layer. Each conductor 

ring is modeled as anisotropic material. They showed the combined effect. 

Bobrov and Williams (1980) treated the superconducting solenoid as 

a set of nested orthotropic rings. They presented stress states due to 

windings, cooldown, and magnetic forces. This study is one of the 

first to examine the radial vibration of such a composite coil. However, 

they did not take into account the effect of compression or tension on 

bending of the rings, and could not predict the buckling. 

1.3 Objective and Scope of the Work 

The turns in a high field superconducting solenoid magnet may move 

or eventually collapse due to the powerful magnetic field they produce. 

Significant deformations of the conductor and insulation deserve atten- 

tion because they cause local damage that can lead to electrical break- 

down. Linear stress analysis in some of these magnets has failed to 

predict high deflections and stresses, and in some cases failures of 

large superconducting magnets have occurred. 

The objective of this work is to study the vibration and stability 

of cylindrically wound superconducting magnets. A superconducting 

solenoid magnet represents a nonhomogeneous mechanical system. Figure 1.5 
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shows the typical cross section of a superconducting magnet, in this 

case from MFTF-B [Horvath (1980)]. The elements included in the struc- 

ture are supporting cores, active conductor and insulator layers, and 

layers of reinforcement. The strains and stresses arise in the magnet 

from conductor tension during the winding, from anisotropic differential 

contraction during cooldown, and from the Lorentz force. In this study, 

however, only the Lorentz force will be taken into account. In the 

experimental and analytical models, the helical winding of conductors 

are replaced by concentric rings, and the insulation is replaced by 

soft springs. 

The effect of the magnetic field gradient, or magnetic stiffness, 

on the vibration and stability analysis will be extensively examined. 

The linearized theory of elasticity used in the previous studies fails 

to predict the buckling of a ring due to a uniform pressure on it, 

because the effect of compression or tension on bending of the ring 

is neglected. In this study the effect of the initial stress on the 

bending deformation in the rings will' be taken into account. 

The basic equations are provided in Chapter Two. The theory of 

electromagnetism and the linearized theory of elasticity are summarized 

to provide a proper background of the theory of magnetoelasticity for 

nonferrous conducting material. The magnetic field and its gradient 

due to a current carrying ring are discussed. On the mechanical side, 

ring theory is given in detail. 

Chapter Three is devoted to the experiments. The experiment on 

the vibration and stability of superconducting rings will be treated 

first. One-turn and multi-turn superconducting rings are used to study 
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the vibration and stability. Both static and dynamic methods are used 

to determine the critical buckling currents. The dispersion of natural 

frequencies with increase in current are obtained. Then an internal 

buckling experiment of a normal pancake coil due to a high pulsed 

current will be described. 

Chapter Four compares the analytical and experimental results. 

The magnetic field produced by multiple concentric rings will be dis- 

cussed first. The equation of motion of a single ring in a transverse 

magnetic field with gradient is derived and the analytical results are 

compared with the experimental results. Finally the equations for the 

current carrying multiple ring model are derived. These results are 

also compared with the experimental results. This analysis is applied 

to general cases to predict the buckling and vibration of the system. 

Conclusions on the results of the present study on the superconduc- 

ting solenoid magnets are drawn in the last Chapter, together with some 

suggestions for further research in this area. 



CHAPTER 2 

GENERAL THEORY 

2.1 Theory of Electromagnetism 

Selected aspects of electromagnetic theory are reviewed in this 

section. Detailed, rigorous treatments are presented in standard texts 

on the subject [Jackson (1962) and Smythe (1968)]. 

2.2.1 Electromagnetic Field Equations 

The electromagnetic fields are defined by four vectors, the electric 

field intensity E, the magnetic induction B, the electric displacement D, 

and the magnetic field intensity H, which satisfy the following set of 

equations known as Maxwell's equations: 

(Faraday's Law) 
3B 

V X E +-g^= 0 (2.1.1) 

(generalized Ampere's Law) 

3D 
V X H - g^ = J (2.1.2) 

(conservation of magnetic flux) 

V . B = 0 (2.1.3) 

(Gauss's Law) 

7 • D = Pg        . (2.1.4) 

Here, J is the current density and p is the charge density. 
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Out of these four equations only the first two are independent. 

Equation (2.1.3)   can be derived from equation (2.1.1), and also 

from equations (2.1.3) and (2.1.4), 

^Pe 
div J + -^ = 0 (2.1.5) 

which is the equation of the conservation of charge. 

These equations can be written in the form of balance laws, or 

integral forms as 

(Faraday's Law) 

^^ E • di = - 1^ /^ B • dS (2.1.5) 

(Ampere's Law) 

^^, H . d£ = /3 J • dS +1^/3 D . dS (2.1.7) 

(conservation of magnetic flux) 

/^ B • dS = 0 (2.1.8) 

(Gauss 's Law) 

/^ D • dS = /y Pg dV (2.1.9) 

In the first two expressions, the area S is enclosed by the closed 

curve C, 

2.1.2 Electromagnetic Constitutive Equations and Ohm's Law 

In a vacuum, the vectors D and E, and the vectors B and H are 

related as 

D = EQ E (2.1.10) 
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B = UQ H (2.1.11) 

where e is the permitivity and u the permeability of the free space, 

In MKS unit systems they are related by the speed of light c as 

c^ =~-       • " (2.1.12) 
•^0 0 

In material media, on the other hand, the constitutive equations 

are more complicated, since material bodies are assumed to possess elec- 

trical polarization P and magnetization M. These are defined by the 

equations as • ' 

P = P - ^0 -        ' ■' (2.1.13) 

B 
M = — - H (2.1.14) 
~  ^0 

which are consistent with the definitions of D and H in a vacuum. 

In classical linear theory, these equations take the form 

P=eQnEor      D = £j^(l  + n)E = eE (2.1,15) 

M = xH        or      B = u  (1  + x)H = uH (2.1.16) 

where n and x.ai^e called the electric susceptibility and magnetic suscept- 

ibility. The additional constants z  and u are the permittivity and per- 

meability of the medium, respectively. 

In a typical magnetic field system the conduction process accounts 

for the free current density in materials. The most common constitutive 

relationship in stationary materials is Ohm's Law: 
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J = aE (2.1.17) 

where a  is the electrical conductivity. The conductivity is typically 

assumed to be constant within a region. 

However, for moving materials, the Ohm's Law is modified as 

J = a(E + V X B)     . (2.1.18) 

Thus a moving conductor in a stationary magnetic field will have induced 

currents even if the initial electric field E = 0. 

2.1.3 Boundary Conditions 

- The differential equations given in the preceding sections govern 

the relationship between the field variables in any region of space. 

If several regions having different properties are involved, boundary 

conditions are required to determine how the fields cross the surface 

which separates one region from another. These boundary conditions can 

be derived using the integral form of the equations given earlier. 

As to the magnetic field, two boundary conditions must be considered, 

one to specify the relationship between the components of the field normal 

to a boundary, and the other tangent to a boundary. First, equation 

(2.1.8) is applied to a small closed cylindrical surface placed so its 

faces are in two regions parallel to the boundary between regions, as 

shown in Figure 2.1.a. The dimensions of the cylinder are reduced about 

a point P located on the boundary, which is within the cylindrical sur- 

face. The result is a condition which requires that the component of B 

normal to the boundary be continuous, which can be expressed as 

n . (B^ - B2) =0 (2.1.19) 
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where B, and B^ are the magnetic flux densities at P in regions 1 and 

2, respectively, and n is a unit vector at P normal to the boundary and 

directed from region 1 to region 2. 

The second boundary  condition can be found by applying equation 

(2.1.7) to a contour which surrounds a small plane perpendicular to the 

boundary between regions 1 and 2, as shown in Figure 2.1 .b. If n is 

again a unit vector at P defined the same as before, then shrinking the 

dimensions about P results in 

n X (H2 - H^) = K (2.1.20) 

where K is a surface current density or current sheet which flows in the 

boundary. This is often absent in practical problems. This boundary 

condition requires that the component of H tangential to the surface be 

discontinuous at the boundary if a current sheet exists, and that the 

discontinuity in H be equal in magnitude to the surface current density 

and at right angle to it. 

Two boundary conditions of the electric field can be derived in the 

same way. They are 

n • (P2 - D^) = a^ (2.1.21) 

n X (E2 - E^) = 0 (2.1.22) 

where a    is the surface charge density to the boundary surface, 
s 

The same technique derives the boundary condition on the current 

density given as 

j . n  = 0 (2.1.23) 

on free boundary. 
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2.1.4 Potential Functions 

Potential functions can be used to reduce the number of variables or 

otherwise simplify the process of finding a solution to the governing 

equation. The requirement of equation (2.1.3) that the divergence of B 

be zero leads to the definition of a vector potential ^ of the form 

V X A = B    . (2.1.24) 

Though equation (2.1.24) alone is not sufficient to define A, by imposing 

V. A = 0 (2.1.25) 

as a constraint, A is fully defined. 

Substituting equation (2.1.24) into equation (2.1.1) leads to 

sA 
V X (E +^) = 0 (2.1.26) 

to the definition of a scalar potential <^.    This scalar potential auto- 

matically satisfies equation (2.1.25), since the curl of the gradient of 

a scalar function is zero. Therefore, 

3A 
E = - V* - -^    . (2.1.27) 

Equations (2.1.27) and (2.1.17) can be used with (2.1.6) to yield 

3A 
7 . a (v<}, + -^) = 0 (2.1.28) 

where there is assumed to be no free charge. In addition, substituting 

(2.1.17), (2.1.16), (2.1.21) and (2.1.25) into equation (2.1.2) 

yields 

3A 
(7 X iv X A) + a(v* + -^) = 0 (2.1.29) 
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These two equations are the governing equations in terms of the two 

unknown potential functions A and a  which can be used in place of the 

field equations for E and B. 

They are used in the following manner. If the current density dis- 

tribution is known in a region and is the driver in the particular con- 

figuration, then the governing equation for the region becomes 

V X Iv X A = J^    • (2.1.30) 

This equation drives the solution in the other reqions, which are 

governed by equations (2.1.28) and (2.1.29). 

In a- region of constant permeability u and no displacement current, 

equations (2.1.2) and (2.1.22) require that 

v^A = -uJ       . (2.1.31) 

Each of the vector potential components must satisfy Poisson's 

equation, which has a solution of form 

J dV 
A=fc//F- (2.1.32) 

pq 

r  = distance from point p where J is measured to point q 

where A is measured. 

where the integral takes over the entire region. 

Equation (2.1.32) gives a physical interpretation of A. Consider 

a closed circuit of small cross-section wire which carries a current of 

density J. Outside the wire there is no contribution to the volume 

integral of equation (2.1.32), because J = 0. Inside the wire 
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J dV = I ds, where I is the current and the ds is the element of length 

in the direction of J. Then equation (2.1.32) becomes 

I ds 
^ = 47^?       • (2.1.33) 

pq 

This implies the vector contribution to A at a point by a current- 

carrying element in a closed circuit parallel to that element. 

Equations (2.1.24) and (2.1.32) can be manipulated to 

(J X 1   ) 

g = h ///v " r '^"^ ^^ (2.1.34) 
pq 

i  = a unit vector directed from p to q. 

This equation is ell-known as Biot-Savart Law. 

2.1.5 Inductance and Vector Potential 

The mutual inductance between two circuits 1 and 2 can be thought 

of as the flux linked by circuit 2 per unit in circuit 1 with zero 

current in circuit 2. Equation (2.1.24) defines the vector potential 

V X A = B     . (2.1.35) 

The integral form of this equation is 

^C ^ * "^^ = //s ~ ' - '^^ (2.1.36) 

where C is a closed contour, and the right-hand side is the flux through 

a simply connected area bounded by C. If the contour coincides with 

circuit 2 which has zero current and if the field B and thus A are 

generated by a current I, in circuit 1, then the right-hand side is 

the total flux generated by circuit 1 and linked by circuit 2 as follows: 
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//^ B • n dS = *^2      • (2.1.37) 

However, in linear systems 

*12 " ^^12^1   ■ ' (2.1.38) 

where M,^ is the mutual inductance between circuit 1 and 2. Therefore, 

^12 " T~ ^2 -1 ■ ^-2    • (2.1.39) 

The subscript is added to A to indicate that the vector potential is 

generated by the current I, in circuit 1, although it is measu^red and 

integrated around circuit 2 which has zero current. This relationship 

can be used to obtain accurate inductance calculations through numerical 

integration. 

However, the mutual inductance is defined by geometry only. 

Substituting equation (2.1.31) into (2.1.37) yields 

-,   r- I-, dSi -T dsn • ds« 

This formula is used throughout this study. 

2.1.5 Magnetic Force and Magnetic Stiffness 

Electromagnetic forces between steady, current carrying conductors 

can be calculated by a method which uses the magnetic energy function. 

When the current distributions can be approximated by a set of circuits 

with currents {I.}, the magnetic energy W can be written in the form 

„ = 1JJL,. I, I. ■  (2.1.41) 

where L.. is the mutual inductance when i f  j, and L^.^. (i = j) is the 

• 
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self inductance. Then the generalized magnetic forces F are repre- 

sented by [Crandall et aj_. (1968)] 

i J 
f.'in^^i, ij     • (2-1 •«) 

When the inductances are analytic functions of the displacements, one 

can further expand the L.. in a Taylor series in the {u } so that F 
TJ a a 

has the form 

'^ = f° - I < fl u. (2.1.43) 
p 

where <  are called the magnetic stiffnesses and are defined by a6 

1    ^'s-i 
1 J  a e 

where the derivatives are evaluated at u =0 fChattopadhyay (1973)], 

It should be noted that the magnetic stiffness depends on the 

currents and can be positive (restoring) or negative (destabilizing). 

F represents the modal magnetic forces that do not depend on the 

displacements and are defined by 

P° ^ TH^T^ 1. h '      ■ (2.1.45) a   £ ^ if 3u    1  J 
1 J   a 

In Stress analysis, it is convenient to consider the force on a 

differential element. The electromagnetic force per unit volume on the 

conductor with the current density J in the magnetic field B is expressed 

as 
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i f = J X B     . (2.1.46) 

The magnetic field may be expanded in a Taylor series in terms of the 

displacement of the conductor, {u }, as followed 

3B 5 

where (3B/3U ) is evaluated at u = 0 and is the maonetic field gradient 

and functions equivalently to the magnetic stiffness. 

2.1.7 Magnetic Field by a Circular Current Loop 

One has to calculate the vector potential A first to obtain the 

magnetic field by a circular current loop [Smythe (1968)]. A circular 

loop or radius a, centered at the origin, and carrying a current I is 

lying in the xy plane as shown in Figure 2.2. The current density J 

has a component only in the (ji direction. Since the geometry is 

cylindrically symmetric, the observation point may be chosen in the xz 

plane ( 4) = 0) for purposes of calculation. Then the azimuthal integra- 

tion in equation (2.1.32) is symmetric about the x axis and the x com- 

ponent of the current does not contribute. This leads only to the y 

component, which is A . Thus, 

A    = ^^ A = £l r       a cos^    d6       _ .     (2.1.48) 
d)      47T ^    r        2TT ■'O r^2   .     2   ,     2      ,,    ^„^  ^-li ^ [a   + p    + z    - Zap cos ijij 

This integral can be expressed in terms of the complete elliptic integral 

K and E: 

A. = 4 [-] [(T - il<^)K - E] ' (2.1.49) 

where the argument of the elliptic integral is 
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Figure 2.2 Current carrying loop located in the xy plane and point 

P where the magnetic field will be calculated 
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2 .   4 ap k' = 
C(a + p)2 + zh 

(2.1.50) 

The components of the magnetic field 

1     3/ 1     3/ 
3A, 

P p   3Z        (p p   3<p      Z 3Z 
(2.1.51) 

B, =T|(A ) --^(AJ  = 0 
(p        3Z     p dp     Z 

^   =   -7^^P\)   ^^^^P\)   =7^(P\) Z p   3p        p p   dp        9 p   3p        (p 

(2.1.52) 

(2.1.53) 

can also be expressed in terms of elliptic integrals: 

B =^ 
P    6TT 

,[(a + p)2 + z^]* L   (a - p) 

2   7? 
r.K. ^ " ^Y ^, E" 

+ z 
(2.1.54) 

B = 0 
i 

= £l[(a + p)2^z2-,-ir ^a- - o" - z 
'z  2^ 

2   2  _2  ^ 
E 

(a - p)2 + z^ 

(2.1.55) 

(2.1.56) 

On the xy plane where z = 0, the magnetic field reduces to one component 

B , which is expressed as 

z=0 
_ ul r ^ 1 ^ 1 

27T a + p      a -p 
(2.1.57) 

In the two-dimensional problem, in which there is only the z com- 

ponent of the magnetic field, the magnetic field gradient is calculated 

as 

'z _ ul   1 a + p 
3p  2TT p(a + p) \,    _    N2 

E - K (2.1.58) 
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(a + p!(a - p) 

2.2 Theory of Elasticity 

An elastic body has a natural undeformed state to which it returns 

when all external loads are removed. In this study, the current carrying 

elements are assumed to behave elastically according to the linearized 

theory of elasticity. The linearized theory of elasticity has been the 

subject of several treatises. In this study, the book by Sokolnikoff 

(1956) is the basic reference. 

The equations governing the linearized theory of elasticity are 

presented in the following commonly used notation: 

position vector     x (coordinates x.) (2.2.1) 

displacement vector   u (components u.) (2.2.2) 

strain tensor       e (components e..) (2.2.3) 

stress tensor       T (components T--) (2.2,4) 

2.2.1 Deformation - Compatibility 

The field defining the displacement of particles are denoted by 

u(x,t). As a direct implication of the motion of a continuum, the 

deformation of the medium can be expressed in terms of the gradients 

of the displacement vector. In the manner of the linearized theory 

the deformation is described in a very simple way by the strain tensor 

e, with components 

=ij=l("i,j*"j.i' (2.2.5) 
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It is evident that e-. = z-^,  i.e.,eis a symmetric tensor of rank two. 

2.2.2 Linear Momentum and the Stress Tensor - Equilibrium Equations 

A basic postulate in the theory of continuum media is that the 

mechanical action of the material points which are situated on one side 

of an arbitrary material surface within a body upon those on the other 

side can be completely accounted for by prescribing a suitable traction 

on this surface. Thus if a surface element has a unit outward normal n 

then the surface tractions Tare defined as a force per unit area. The 

surface tractions depend on the orientation of n as well as a location 

of the surface element. 

Suppose a closed region V + S, where S is the boundary surrounding 

the body V. The surface S is subjected to a distribution of surface 

tractions T(x,t). Each mass element of the body may be subjected to a 

body force per unit volume, f(x,t). The principle of balance of linear 

momentum leads to the equation 

/^ T dS + /^ f dV = ly.pU  dV     . (2.2.6) 

In magnetoelasticity the body force may be expressed as 

f = J X B + q E      . (2.2.7) 

for nonferromagnetic material. By means of the "tetrahedron argument," 

the equation (2.2.6) subsequently leads to the stress tensor T with 

components T. ,, where 

This equation is the Cauchy stress formula. Physically TJ^^ is the com- 

ponent in the x -direction of the traction on the surface with the unit 
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normal i. . 

Substitution of (2.2.8) into (2.2.6) and use of Gauss's theorem 

yields 

/V (-kuk " ^^z - ^\)^V = 0    . (2.2.9) 

Since V may be an arbitrary part of the body, it follows that wherever 

the integral is continuous- one hzs 

'kz,z ^^\  -P'^ = 0 • (2.2.10) 

This is the equation of equilibrium. 

2.2.3 Balance of Angular Momentum 

For the linearized theory, the principle of angular momentum states 

/3(x^T)dS + /^(xAf) pdV = /^ p|^(x/Nu) dV (2.2.11) 

if the body couple M is zero [Pao and Yeh (1973)]. By virtue of the 

equation of equilibrium, this equation reduces to 

/v ^;m ^en ^nm ^^^ = 0 (2.2.12) 

or 

^k.m ^.m = 0    • (2.2.13) 

This result implies that 

^£m = V (2.2.U) 

i.e., the stress tensor is symmetric. 
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2.2.4 Constitutive Equations 

For non-ferromagnetic, non-piezoelectric materials, the stress tensor 

is a function cf the strain and temperature. When the thermal stress is 

neglected, the linear relationship between the components of the stress 

tensor and the components of the strain tensor is 

^ij = Sjkl ^kl ^2.2.15) 

where 

^ijkl " ^jikl " ^klij " ^ijkl (2.2.16) 

because of the symmetry of stress and strain tensors. Thus, 21 of the 

81 components of the tensor C.., , are independent. The medium is elastic- 

ally homogeneous if the coefficients C. •> •, are constants. The material is 

elastically isotropic when there are no preferred directions in the 

material. 

It can be shown that the elastic homogeneity and isotropy imply 

that the constants C..,-, may be expressed [Sololnikoff (1956)] as 

^ijkl = ^^-j ^kl '  ^(^-k ^jl '  ^il ^jk)    • (2.2.17) 

Then the constitutive equation, well known as the generalized Hooke's Law 

takes the form 

^ij = ^^kk^j '  2..ij      . / (2.2.18) 

The two elastic constants .\ and u contained in these equations are known 

as Lame's elastic constants. 

Other elastic constants that often appear in linear elasticity are 

Young's modulus E and the Poisson's ratio v. They are expressed in terms 
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of Lame's constants as 

^='%ir^ (2.2.19) 

' 'ZTTT-^ • (2.2.20) 

2.2.5 Problem Statement in Dynamic Elasticity 

The system of differential equations governing the motion of a homo- 

geneous, isotropic, linearly elastic body consists of the equilibrium 

equations, the constitutive equations and the compatibility equations: 

^ij,j ^^ =^^ . (2.2.21) 

^ij = ^ = kk^-j ^ 2ue. . (2.2.22) 

and 

^. =l(u. . +u. .) (2-2.23) 

respectively. In the analysis of a current carrying medium, the component 

of the body force is given as 

^i = (J X B).      . (2.2.24) 

If the compatibility equations are substituted into the constitutive 

equations and the expression of the stresses are subsequently substituted 

into the equilibrium equations, then the equation of motion is obtained as 
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^"i,jj"(^"^'^:,Ji"^ =^^ (2.2.25) 

Equations (2.2.21)-(2.2.23) and (2.2.25) must be satisfied at every interior 

point of the body. 

On the surface S of the undeformed body, boundary conditions must be 

prescribed. The following boundary conditions are the most common: 

(1) Displacement boundary conditions; the three components u. are 

prescribed on the boundary. 

(2) Traction boundary conditions; the three traction components T. 

are prescribed on the boundary with unit normal n, through 

Cauchy's formula 

T. = X.. n.    . (2.2.26) 

In magnetoelasticity, this traction is zero on a free surface 

for a nonferrous media. But when magnetization is present it 

is sometimes expressed in terms of Maxwell's stress tensor 

[Brown (1962)]. 

(3) Mixed boundary conditions; displacement boundary conditions on 

part S, of the boundary and traction boundary conditions on the 

remaining part S - S-i. 

Initial conditions must be defined to complete the problem statement; 

in the body, at time t = 0, 

u.(x, 0) = S.(x) (2.2.27) 

u.(x, 0) = ?.(x)    . (2.2.28) 
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2.3 Ring Theory 

The linealized theory of elasticity in the preceding sections fails 

to predict the buckling of a ring due to a uniform pressure on it, because 

the effect of compression or tension on the bendino of the ring is neglected 

in this theory. To take into account the effect of the initial stress on 

the deformation of the ring, the theory of thin rods as given by Love 

(1922) is adapted in this study. 

To establish the formulae, the bending of a curved strin out of the 

ring which is assumed to be inextensional is considered and the differen- 

tial equations of its bending are developed. 

A differential element AB of a rectangular cross section cut out 

ring with its center line in the horizontal plane OAB is built in at A and 

is bent by a load distributed in an arbitrary way along the centroid AB 

(Figure 2.3). If the deflections are small, the deformed shape of the bar 

is completely determined by the displacement of the centroid of each cross 

section and the rotation of each cross section about the tangent to the 

center line. At any cross section of the bar defined by the angle 9 a 

system of local rectangular coordinates is taken with the origin at the 

centroid P and directed so that x and y coincide with the principal axes 

of the cross section, while z coincides with the tangent of the center 

line. It is assumed that initially the plane xz coincides with the 

plane of curvature of the bar, that the positive direction of the x 

axis is toward the center of the curvature, and that z is taken positive 

in the direction corresponding to an increase of the angle 9. 

2.3.1 Kinematics 

The displacement of the centroid is resolved into three components, 

u, V, and w in the directions of the x, y, and z axes, respectively. The 
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out of the ring and orientation of the forces and moments 

at P 
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angle of rotation of the cross section about the z axis is called <J) and 

is taken positive when rotation is clockwise about z axis as indicated in 

the figure. The deformation of an element of the ring cut out by two 

adjacent cross sections consists, generally, of bending in each of the two 

principal planes xz and yz and of twist about the z axis. 

Let <i = 1/p, and <^  = l/p2 be the curvatures of the center line at P 

after deformation in the principal planes xz and yz, respectively. For a 

circular ring the initial radii of curvature are p, = R and p„ = 0. And 

let T be the angle of twist per unit length at the same point. 

To obtain the differential equations for calculating displacements u, 

V, w and the angle ^,  it is necessary to establish the expressions for 

the curvatures and the unit twist T as functions of u, v, w and t. 

In the case of small displacements, one can consider separately each com- 

ponent of the displacements and obtain the final change in the curvature 

and unit twist by summing up the effects produced by the individual com- 

ponents. 

The curvatures and twist of a ring after deformation are given, in 

the general case, by the following equations: 

^l4"\"4       • (2.3.1) 
'  ^  R^  dz^ 

Here, the condition of inextensional deformation of the ring 

u_     dw 
R " dz 

(2.3.4) 

is included, 
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2.3.2 Equilibrium Equations 

At the centroid P on the cross section the stresses can produce net 

transverse shear forces N , N as well as a tension T. The moments of X  y 

the stresses about the centroid produce bending couples G , G about the X  y 

X and y axes, respectively, and a twisting couple H about the centroidal 

z axis (Figure 2.3). 

Using this notation, one can deduce two sets of equilibrium equations 

They are the equilibrium equations of linear momentum and of angular 

momentum: 

2 
sN^ 3 u 
—i - N r + T<, + f^ = m  i- (2.3.5) 
"    J'     '   ^    3t 

^-T<2 + N^x.f^ = n,-/ (2.3.6) 

2 

ll- Vl^V2^^ = "'7? •        (2.3.7) 

^-G^x.H<^ -N^.c^=0 (2.3.8) 

3G„ 
--i^ - H<„ + G T + N + c„ = 0 (2.3.9) 3z    2  X   X  y 

-^ - G <, + G <, + c, = 0 ■ (2.3.10) 3z   X 1   y 2   z 

In the above equations, c represents an applied body couple and f the 

body force. The magnetic body couple on the current carrying medium in 

the magnetic field is expressed as ■ 
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?mag. = /A ^ ^ (^ ^ ?) da       _-  .        (2.3.11) 

Therefore, if the magnetic field or current is presumed to be distributed 

uniformly, then the couple may be neglected. Also diamagnetic effects and 

twisting of the filaments in the superconductor can lead to a nonzero body 

couple but are neglected here and c is set to be zero. 

In the analysis of the current carrying conductors under mechanical 

constraints, the body force is the Lorentz force. The mechanical constraints 

due to the springs connected to the ring are also treated as body force 

in this study. The electromagnetic body force is the integral of the Lorentz 

force over the cross sectional area: 

/mag- = /A ^ ^ (§° + §^) ^a (2.3.12) 

where B is due to external source and B is the self field. The mechanical 

stiffness is expressed in terms of the displacements as 

-Wh. =i-y (2.3.13) 

where the k is the mechanical stiffness tensor. In this study, k is assumed 

to be diagonal. Then the total body force per unit length is 

f = /, J X (8° + B"") - k u        . (2.3.14) 

2.3.3 Constitutive Equations 

To complete this set of equations one requires a relation between the 

bending and twisting moments G , G , H and the deformation. They are 
X  y 
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G^= AK2 

S = °(^1 - l^ 
H = C T 

(2.3.15) 

(2.3.16) 

(2.3.17) 

A = El and D = El are the two principal flexural rigidities or 

bending stiffness and C represents the torsional rigidity of the ring. 

E is the Young's modulus and I and I are the moments of inertia about x 
X    y 

and y axes, respectively. 

2.3.4 In-Plane Deformation 

For this case one can set v = 4) = 0. Also, it follows that N = G = 
y   x 

H = 0. Therefore, there are five unknowns: u, w, N , N and G . The 
X  z    y 

corresponding five differential equations are: 

(equilibrium equations) 

3N 
Tz^T<,.f^=.-, (2.3.18) 

2 
ST   W ^  X -F  - .^ 3 W 

0 Tt 

(2.3.19) 

3G. 
. + N = 0 
3Z    X 

(2.3.20; 

(constitutive equation) 

2 
- FT fU  . 3 U^ 

(2.3.2i; 

(2.3.22; 
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(compatibility equation) 

f = ^       . (2.3.23) 

The equation of in-plane motion of a ring or multi-rings will be 

derived later in Chapter 4. 

2.3.5 Out-of-Plane Deformation 

In this case one can assume u = f = f = 0. Also, it can be shown 

w = N = 6 = 0. Therefore, there are the following five differential A        y 

equations for the five unknowns: v, (ii, N , G and G . y  X    z 

(equilibrium equations) 

3N 2 
_Z.T<2> fy =m^ (2.3.24) 

3t 

+ J - N = 0       • . (2.3.25) 3z  R  y 

f -^=0 (2.3.26) 

(constitutive equations and kinematic equations) 

Z^  = AKJ = Ai-^ (2.3.27) 

The equation of out-of-plane motion of a ring can be derived by using 

the same technique adapted for the in-plane motion, but will not be dis- 

cussed further in this study. 



CHAPTER 3 

EXPERIMENT 

3.1 Buckling and Vibration of Superconducting Rings 

3.1.1 Purpose 

While the superconducting magnet produces a high magnetic field, 

each current carrying element is exposed to the magnetic field produced 

by the magnet itself, which consequently causes a high magnetic force 

on it. If any vibration or buckling occurred in the real size magnet, 

it could cause a quench of the system, or in the worst case, a collapse 

of the magnet. 

The superconducting magnet system has a complex structure as 

shown in Figures 1.5 and 3.1. The coil pack is made up of alternate 

layers of superconductor and insulator. According to the MFTF magnet 

design [Horvath (1980)], the transverse stiffness is quite soft as com- 

pared to the circumferential stiffness. The first purpose of this 

experiment is to make a simplified and generalized model of superconduct- 

ing magnets which includes the characteristics mentioned above, and to 

observe the existence of the buckling and the change of the natural fre- 

quencies due to the conduction currents. The effect of the difference 

of the stiffness in the transverse and circumferential directions will 

be verified also. 

Moreover, it is quite important to develop an analytical method to 

simulate the inner vibration and buckling of multi-layered solenoidal 

-50- 
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magnets. It is the second aim of this experiment to obtain the natural 

frequencies for various currents and the critical buckling currents in 

the modeled system in order to verify the analytical method. The veri- 

fied analytical method will be applicable to the real size magnets. 

3.1.2 Experimental Model 

As shown in Figure 3.1, the typical coil pack for superconducting 

magnets consists of layers of superconductors separated by perforated 

insulation. The perforation is for the liquid helium path for the 

cooling of the system. The pack is placed in the structural jacket. 

Any superconducting magnet has multi-layers of superconductors in 

the radial, direction with multi-turns in each layer. The numbers of the 

layers and turns depend on the size and performance of the magnet. 

Although the actual magnet is a three-dimensional structure, a two- 

dimensional analysis is adapted in this study. So, here we consider a 

pancake type magnet which has multi-layers in the radial direction but 

only one turn in the axial direction. To retain some of the structural 

details of the conductor and insulation, a concentric ring model is used. 

In this model, the helical winding of the pancake magnet is replaced 

by a series of concentric rings. Each ring is connected to neighboring 

rings by mechanical springs which attempt to simulate the insulation 

with soft stiffness (Figure 3.1). It is reported by Horvath (1980) that 

the compressive response of the superconductor coil pack exhibited soft 

elastic behavior for low pressure followed by a stiff linear behavior 

(high modulus) for higher pressure. 

The rings were made of NbTi superconductor and the experiments were 

conducted in liquid helium. This superconductor was chosen because of 

its high current density and small cross section. To enhance the magnetic 
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field on the rings the ambient field coils were made and placed inside 

the rings to simulate the inner layers of the pancake magnets. 

Four different models were used to measure the change of frequen- 

cies due to the conduction currents (dynamic test) and the critical 

buckling currents (static test). 

1) One-ring model without springs: In this model a supercon- 

ducting ring of radius 11 cm was placed around a 100 turn ambient field 

coil of mean radius 10 cm in the same plane. The ring was supported by 

two pins on opposite sides of the ring to prevent any rigid body motion. 

The schematic view is given in Figure 3.2. 

2) One-ring model with springs: The ambient field coils and the 

ring have the same specifications as above. However, they were connec- 

ted to each other by 16 equally placed brass shim springs. 

3) Two-ring model with springs: Two rings of radii 11 and 12 

cm were placed around the same ambient field coil and supported by two 

pins. Each space between the rings and between the ambient field coil 

and 11 cm ring had 16 brass shim springs. 

4) Three-ring model with springs: In this model three rings of 

radii 11, 12 and 13 cm were used. The top view is shown in Figure 3.2, 

too. 

In each experiment, the current directions in the rings and ambient 

field coil were the same so that the rings had the inward body forces. 

The experimental structure with structural platform is shown in Figures 

3.3 and 3.4. Three experiments were conducted at the same time to save 

expensive liquid helium. In these pictures, they are one ring model 

without springs, two ring model and three ring model from the top, 

respectively. 
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Figure 3.2 Schematic of one-ring model experiment and top view of 

three-ring experiment 
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Figure 3.3 Experimental apparatus for one-ring, two-ring, and three- 

ring experiments 
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Figure 3.4 Close up of experimental apparatus showing interturn 

springs, strain gauges, and driving coils 
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3.1.3 Experimental Apparatus 

The experimental apparatus consists of superconducting rings, an 

ambient field coil, springs, a driving coil, cryostat, an electric 

power supply and measurement system. 

Superconducting Rings 

The rings were made by NbTi superconducting wire. It was 2040 

NbTi filaments molded in copper stabilizer with a copper/NbTi ratio of 

1,8. The wire is insulated by formvar. Its cross section is 1 mm x 

2 mm and the moment of inertia about the in-plane bending is 1.67 x 

lO"'''^ m'^. The mass density is 0.017 kg/m . 

The Young's modulus was measured by a tensile test at room tempera- 

ture to be 88.2 MPa. Though the Young's moduli of most materials tend 

to increase several percent in liquid helium temperature, this value 

was used throughout the analysis in this study. 

The pin supports of each ring were made of stainless steel. At 

one end the support worked as a clamp to keep the wire in a circular 

ring. Because of the overlap at this end, the actual radius of the 

ring differs ±1 mm around this clamp. 

Ambient Field Coil 

The ambient field coil was made by 0.38 mm diameter NbTi supercon- 

ducting wire. This wire was wound in 100 turns over the groove carved 

on the edge of a circular polycarbonate (Lexan) plate. The coil was 

potted in epoxy resin to prevent any motion due to Lorentz forces. 

Though the ambient field coil has finite dimensions (mean radius: 10 cm, 

thickness: 4 mm and height: 8 mm), in this analysis it was considered to 
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be a one turn ring of radius 10 cm with a hundred times more current 

than in the ring. 

Brass Shim Springs 

These springs were made by the 0.2 mm thickness brass shim, because 

brass is nonferromagnetic and not affected by the magnetic field. They 

are U-shaped and can be seen in Figure 3.4. 

The spring constant of each spring in the radial direction (opening 

mode of the spring) is measured to be 170 N/m. This value was verified 

by frame analysis. Although in the experiment 16 springs were discretely 

placed, they were treated as a uniform elastic spacer of spring constant 

2 
4100 N/m in the analysis. 

The spring constant in the circumferential direction, which is the 

2 
shearing mode of the spring, is 295 N/m in each spring, and 7150 N/m 

as a uniform spacer.  The springs were designed to simulate the soft 

transverse stiffness of helically wound coils. 

Driving Coil 

This coil is also called a magnetic shaker, and used to measure 

the resonance frequencies. This coil was wound from a copper wire of 

size #30. It has 300 turns and potted in epoxy resin. The mean radius 

is 5 nm and the height is 12 mm. The driving coils were placed just 

over each ring (Figure 3.4) to give sinusoidal perturbation of the 

vertical magnetic field. The input was provided by a frequency generator 

through an amplifier. The amplifier used in this experiment, however, 

had poor gain for frequencies lower than 50 Hz, and we had difficulty 

measuring the resonance in that range. 
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Cryostat 

The experiments must be performed in a pool of liquid helium to 

obtain superconductivity. A schematic drawing of the cryostat used 

as a liquid helium dewar is shown in Figure 3.5. In order to prevent 

heat leaks, the cryostat has a carefully considered structure. 

The insulated space between the inner cylindrical liquid helium 

dewar and the outer cylindrical dewar is kept at a high vacuum. More- 

over, a liquid nitrogen reservoir surrounds the liquid helium dewar. 

The inner cylindrical dewar and liquid nitrogen reservoir are laminated 

several times with super insulators made of evaporated aluminum mylar 

to prevent heat radiation into the inner dewar. 

To fill the dewar with liquid helium, the inner vessel was pre- 

cooled to 78°K with liquid nitrogen. After the LN2 is removed, liquid 

helium was transferred from a storage dewar to the test dewar via a 

vacuum-jacketed transfer tube. About 60 liter of liquid helium was 

necessary to perform the experiment. 

During the experiment, heat leak and a subsequent loss of helium 

is inevitable. The main sources are heat conduction and radiation. 

To prevent heat conduction, a glass fiber wound-epoxy cylindrical tube 

was used as a structural support platform for test models. Also vapor- 

cooled current leads were used to minimize the heat leak through the 

leads. Styrofoam with a heat reflecting metal plate was used to 

minimize the heat radiation. 

3.1.4 Measurement System 

The measurement system consisted of strain gauges and amplifier, 

a current meter and a helium meter. In dynamic tests, the frequencies 
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of the driving coil was measured by a pulse counter. The diagram of 

the system is shown in Figure 3.6. 

Strain Gauges 

The bending deformation of the rings were measured by foil strain 

gauges. The gauge for low temperature (WK-06-062AP-350 by Micro 

Measurement) was chosen. The gauge position was at 45° from one 

of the pins, where it was supposed to have the largest deformation 

for the lowest bending mode. Two gauges were attached directly on 

both sides of each superconducting ring after its coating was scraped 

off (Figure 3.4). The used glue was two-component, solvent-thinned 

epoxy-phenolic adhesive (M-bond 610 by the same company). 

Since the actual bending strain was not the focus of this experi- 

ment, the gauge output was not calibrated. Miya and Takagi (1980) 

reported that the gauge factor of the similar gauges increased about 

4% at liquid helium temperature. Also, Walstrom (1975) reported that 

the effect of magnetoresistivity on the gauge output is not significant 

if the magnetic field is less than one tesla. In this experiment, 

however, the two gauge method was adapted and the difference of the 

change strain gauges was measured through a differential high gain 

amplifier in order to cancel out these effects if there were any. 

Current Meter 

The current conducted through the system was measured by a current 

meter which uses a non-contact probe. This probe consists of a magnetic 

core and a hall generator, and measures the magnetic field around the 

current. The magnetic field is then converted to a current using 

Ampere's Law, 
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Helium Meter 

To assure that the rings were covered by liquid helium, a helium 

meter was used to measure the liquid helium surface. The probe of 

this meter is made by a NbTi superconductor and the change of its 

resistance was indicated as the change of the helium surface. 

3.1.5 Procedure 

The experiments were performed through the following sequence: 

1) Manufacturing rings and coils 

2) Strain gauge attachment 

3) Assemblage of the system 

4) Connection of the leads 

5) Pre-cooling of cryostat by LN^ 

6) Pump out the LN- cooled N^ gas 

7) Pour in LHe into cryostat 

8) Measurement. 

Since initial distortion can cause an error in the buckling experi- 

ment, great attention was paid to the assemblage of the system. If the 

experiment assemblage is too close to the helium tank wall or the LN2 

for precooling is not removed fast enough, the remaining LN2 can turn 

into an ice bridge which causes a large heat leak when LHe is poured 

in through the transfer tube. This causes evaporation of LHe and one 

is unable to obtain a LHe pool for the experiment. Careful attention 

must be paid in this procedure. 

After it was confirmed that LHe covered the whole system, the 

following two tests were conducted for each ring model. 
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Static Test 

In this test the bending strain was measured as the current was 

increased. Near the buckling current the bending became large which 

indicated possible magnetoelastic buckling of the rings. 

Dynamic Test 

The natural frequencies of the rings were measured as the current 

was increased. By changing the frequency of the perturbating magnetic 

field by the driving coil, the resonance frequencies of the rings were 

obtained for different currents conducted through each model. 

3.1.6 Experimental Result 

The experimental results are shown in Figures 3.7-3.17. They are 

divided into four groups as mentioned in section 3.1.2. Each group 

has two different test results; static and dynamic. 

Static Test: In this test the static bending strain of the ring 

was measured as a function of the current. This measurement is sensi- 

tive to misalignments and imperfections of the system. Since magneto- 

elastic buckling is similar to Eul.er buckling, there should be a dis- 

tinctive deflection vs. force curve, which has a large deflection near 

the critical buckling force. For each static result, the bending 

strains were plotted against the current squared, which is proportional 

to the magnetic force. The other method, particularly when misalign- 

ments or imperfections are significant, is a Southwell plot [Southwell 

(1932)1. In this method the current-deformation relation is approximated 

by the equation 

5(1^ - I^) = k (3.1.1) 
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or 

6 - ll^ + K (3.K2) 
^ r    r 

where I is the critical buckling current and k is a constant. If the c 
2 

deflection 5 is plotted against 5/1 , then the slope of this line is 

the square of the critical current. 

Dynamic Test: The frequency-current dispersion relations were 

obtained experimentally in this test. When the current in the system 

is less than a critical buckling value, the total stiffness in the 

system is softened or stiffened as the current changes. When the 

softening occurs, the natural frequency decreases as the current 

increases. In the linear analysis this is shown as 

(jj   =0) n   on '1 (3.1.3) 

where oj  is the frequency of the nth mode with zero magnetic coupling on — 
in the system. The negative sign is replaced by a positive sign when 

2 
the system stiffness hardens. Therefore, f^n^'-^on '^^^  plotted against 

I^ in this experiment. Then the experimental buckling currents were 

obtained from the slopes of the curves. 

One Ring Model Without Springs 

The force vs. deflection curves obtained from the static test 

are shown in Figure 3.7. The different curves were obtained from a 

series of two experiments. Because of the imperfections and misalign- 

ments of the system, the curves do not indicate a sharp buckling, A 
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buckling current of 167 A was obtained from the Southwell plot 

(Figure 3.8). 

The results of the dynamic test is shown in Figure 3.9. Only 

the resonance around the natural frequency 80 Hz was obtained in the 

experiment, though the natural frequencies of 38 and 80 Hz were 

obtained by the free vibration test in the room temperature. The 

two frequencies correspond to the second and third circumferential 

modes, respectively. The pictures of these circumferential modes 

are drawn in Figures 3.8 and 3.9. The reason the resonance around 

39 Hz could not be observed is thought to be because the perturbed 

magnetic field was not large enough due to the characteristic of 

the frequency amplifier used. The critical buckling current obtained 

from this experiment was 156 A and close to the value from the static 

test. 

One-Ring Model With Springs 

Figure 3.10 shows the relationship between the deflection and the 

applied force or current squared. In this case, too, no significant 

buckling curve was observed. The Southwell plot from these data is 

given in Figure 3.11. There are observed two slopes in this graph. 

They represent two different critical buckling currents, 159 A and 

225 A. Since 16 springs were placed between the ring and the ambient 

field coil, they correspond to the second and fourth radial modes, 

respectively. The pictures of these radial modes are drawn in Figure 

3.11. The comparison between these experimental values and the theo- 

retical values is given in the later chapter. 
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The frequency-current dispersion curves are shown in Figure 3.12. 

Two different circumferential modes, which have natural frequencies of 

no and 150 Hz, were observed here. The decrease in the natural fre- 

quency with the increase in the increase in the current shows the 

relaxation of the stiffness due to the magnetic field. 

Two-Ring Model 

The bending deflections of both the inner and outer rings were 

measured as a function of the current. In the deflection-force curves 

shown in Figure 3.13, circles and triangles represent the bending of 

the inner and outer rings, respectively. The typical curves, which are 

the increase of the deflection as the current increases, were obtained. 

Both rings bent in the same direction. Interestingly, the deflection 

of the outer ring was larger than that of the inner ring, though the 

magnetic field applied on it was smaller. It is considered that there 

was a lateral deformation in the inner ring, since the deflection here 

was smaller compared to that of the three ring experiment. The sharp 

buckling was not observed, and the Southwell plot did not have any 

significant slope, or the plotted points were scattered. 

The result of the dynamic data is given in Figure 3.14. Three 

natural frequencies were obtained for different circumferential or 

radial modes. The curves corresponding to the frequencies 70 and 

130 Hz showed the destabilization. In these cases both rings 

moved or bent in the same direction, which is defined as the first 

radial mode. In this mode the two rings behave as a single mass. 

On the other hand, the third mode showed the stabilization, in which 

the frequency increased as the current increased. Contrary to the 
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other modes, the magnetic stiffness was stiffened with increase in 

the magnetic field in this case. Also in this mode, the two rings' 

deflection were in the opposite direction radially. 

Three-Ring Model 

The static test showed the increase in the deflection of all 

three rings as the current increased (Figure 3.15). In this model 

the deflections are larger for the inner ring than the others. The 

outer ring did not deform further for current more than 80 A. The 

deflection of the middle ring was similar to one obtained in the two 

ring model, while the deflection of the inner ring was much larger 

compared to the preceding model.- The deflection vs. force curve for 

the middle ring is a typical buckling curve with the misalignments 

or imperfection. 

The Southwell plot for the middle ring is shown in Figure 3.16. 

The data from two experiments were plotted here. The slopes of both 

results coincide and give the critical buckling current 195 A. How- 

ever, the Southwell plots from the inner ring data (Figure 3.17 gave 

different results. In this figure, too, two sets of data were plotted. 

The first set showed the critical buckling current of 134 A, while 

223 A was obtained from the second set. The slopes of these plots, 

though, are not as clear as that of the middle ring. 

Figure 3.18 shows the frequency-current dispersion curves for 

the three ring model. The natural frequencies measured 50, 66, 87 

and no Hz, and all showed the decrease in frequency with increase in 

the current. The natural frequencies were measured at room temperature 
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in the air. They were 93, 105, 122 and 155 Hz of which 105 had the 

highest resonance. 

3.2 Buckling of Pancake Winding by a High Current Pulse Discharge 

3.2.1 Description of Experiment 

In solenoid magnets, the current flows at right angles to the 

magnetic field, and the Lorentz force interaction between the current 

and the field results in stresses within the coil. The force at the 

inner winding is the largest and the direction of force is outward. 

This force is the major concern of the magnet designers because the 

force might burst the coil radially outward. On the other hand, the 

magnetic force on the outer winding has the inward direction, though 

the force is smaller than that on the inner turn. 

To observe the effect of the inward force on the outer winding, 

a pancake coil was wound and a high pulse current was conducted through 

the coil. A copper wire of diameter 1.4 mm was used as a conductor. 

The wire was wound helically around a bakelite core of diameter 10 cm 

and thickness 1.5 mm without pretension, or loosely. The pancake coil 

was sandwiched by polycarbonate plates to prevent any lateral movement. 

In the first experiment, plexiglass plates were used instead. However, 

they fractured due to the large lateral force and because of the brittle- 

ness of the material. 

Both ends of the pancake coil were connected to a high power 

capacitor bank (Figure 3.19). After the capacitors were charged to 

3 kV, the current was discharged through the coil. The current was 

measured by a Rogowski coil. 
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measured current 



-83- 

3.2.2 Experimental Result 

The measured current is shown in Figure 3.19. The current reached 

its peak at 3900 A in 1 msec, decreased and reversed the direction. The 

kink at t = 3.3 msec is due to the polarity of the capacitors. The 

current is equivalent to one with the frequency of 1 kHz and the mag- 

nitude of 3900 A. 

The deformed pancake coil is shown in Figures 3.20 and 3.21. 

Figure 3.21 is a close up of the upper section of the coil. Originally 

the inner turn was at the edge of the bakelite core. It moved plasti- 

cally about 7 mm outward due to the radial magnetic force, or 14% of 

plastic elongation was observed. 

The deformation in the outer layers is of particular interest. 

The typical deformations of buckled rings were observed not only in 

the very outer layers where the magnetic force is inward but also in 

the middle layers where the magnetic force is outward. The circum- 

ferential buckling mode was observed to be 12, which means there were 

12 sinusoidal waves along the circumferential direction. The deforma- 

tion mode depends on the magnitude and frequency of the applied current 

and also the mechanical constraints of the system. Since the maximum 

radius of the outer layer remained the same, the overlaps of the 

layers were observed even though a mechanical restriction was imposed 

laterally. 

The polycarbonate plates were screwed together with 12 screws to 

prevent lateral deformation of the coil. Six of them were placed out- 

side of the pancake as seen in Figure 3.20. Near these constraints 

the radius of the outer layer stayed the same, while the layer moved 

inward betwe.en these points. 
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^ -i 

Figure 3.20 Pancake winding buckled by pulsed high current 

(r = 5cm) 
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Figure 3.21 Close up of buckled pancake winding showing expansion inside and deformation outside 

due to compression {i/\ =  15) 
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It is observed in Figure 3.21 that the seven outer layers buckled, 

while the other layers deformed uniformly outward. There are overlaps 

in those layers. This is because the inner layer gets more force, 

which results in more deformation, jhe ratio between perimeter and 

wavelength {i/\)  in this particular retion is 15. 



CHAPTER 4 

THEORETICAL ANALYSIS AND COMPARISON WITH EXPERIMENTAL RESULTS 

4.1 Magnetic Field in the Concentric Ring Model 

The magnetic field for a finite length solenoid can be calculated 

by numerical methods. The extensive studies on this subject were made 

by Brown et al_. (1962). Their result shows that for a constant current 

density the axial magnetic field drops to zero almost linearly through 

the thickness and a small reversed field near the outer radius is 

observed. 

In this section the magnetic field produced by multiple concentric 

rings will be discussed. The concentric ring model preserves the 

characteristic of the magnetic field in the superconducting magnets. 

However, this model neglects the out-of-plane force caused by the 

actual helical winding of magnets. This is because the helical winding 

produces an out-of-plane force due to the radial component of current 

and the magnetic field gradient in the circumferential direction, and 

it becomes a coupled problem on in-plane and out-of-plane motion. 

The magnetic field produced by a current carrying ring on the same 

plane as the ring is expressed by eqn. (2.1.57) and is shown in Figure 

4.1. The direction of the field changes outside the ring. When there 

Is more than one ring, the magnetic field is given by superposing the 

field produced by each ring. For example, the magnetic field of 10 

rings, whose radii range from 11 cm to 20 cm, is shown in Figure 4.2. 
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In this case, the conducted current is assumed to be 200 A, The results 

of the buckling and vibration analysis of this model will be given later 

in section 4.3.3. 

At the position where the ring exists the magnetic field shows the 

singularity. However, since any ring has finite width, it is feasible 

to assume that the magnetic field changes linearly through the width. 

When the magnetic force on a ring is considered, the applicable 

magnetic field may be divided into two parts; the field produced by 

itself and the field produced by the rest of the rings. The field 

produced by the rest of the rings is 

N ... 

B -^ I other  4. .^T I r. + r.  r^ - r. 
(4.1.1) 

J7i 

where K and E are the complete elliptic integrals and N is the total 

number of the rings. The self field is substantially smaller than 

the field produced by the rest of the rinqs (see Section 4.2.1 for 

discussion). Therefore, the applicable magnetic field for the magnetic 

force calculation is defined as the field produced by the rest of the 

rings. 

For example, if the force on the 14 cm ring is of interest, the 

magnetic field due to the rest of the rings gives the profile of the 

field acting on the ring (Figure 4.3). In this case the field is 

0.0081 tesla. Similarly the force on the outer or 20 cm ring is given 

by the magnetic field produced by the inner 9 rings (Figure 4.4). The 

field is -0.0073 tesla, which places this ring under compression. 

The magnetic field on each ring in the 10 ring case is plotted in 

Figure 4.5. The transverse field does not change linearly, particularly 
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near the outer and inner turns. Also the reversed magnetic field is 

about 40% of the maximum field and is not necessarily small. 

The magnetic stiffness applied to each ring is determined by the 

magnetic field gradient. In this example, the gradient on the 14 cm 

ring is larger than that of the 20 cm ring, which implies that the 14 

cm ring is more susceptible to the magnetic stiffness. 

4.2 Single Ring in the Transverse Magnetic Field 

4.2.1 Derivation of Equation 

In this section the equations are derived for the buckling and 

vibration of a single circular ring placed in a vertical magnetic 

field. This problem was analyzed by Daniels(1952) who observed such 

a failure in a normal conductor solenoid. However, in his analysis he 

did not include the effect of the initial tension due to the magnetic 

force on the current. 

To examine the elastic stability, the body force is divided into 

initial and deformation dependent terms and the equilibrium equations 

are linearized [Moon (1984)]. The initial stress state in the circular 

flat ring is expressed by the circumferential tension given by 

0    0 
(4.2.1) 

where f is the Lorentz force (eqn. 2.3.11) in the unbent configuration, 
0 

For a coil with circular cross section with radius a, T^ is given by 

u 

T = 4TT 
0 

0^0 n 8R  3' 
  In — - ^ + I B R 

0 y 
(4.2.2) 
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The current I is positive when its direction is in the positive z 
0 

axis. If the ring is in a large enouqh mannetic field, then the value 

of the first term is considerably smaller than that of the second 

term. Therefore, T may be expressed as 

T^ = IQV       • . ^^'^'^^ 

There is an associated radial displacement due to the tension or 

compression. However, the radial displacement u is assumed to be due 

to in-plane bending only, in this analysis. 

Then the linearized equilibrium equations in the in-plane deforma- 

tion (section 2.3.4) take the following form [Love (1922)] 

3N 1   T,        „2„ 

sT,  N        ,2, 
3Z   R   z   ^^2 

SG 
-^+ N = 0 . (4.2.6) 
dZ     X 

In these equations T, is the added tension due to the bending, and f 

is the distributed force, which will be discussed later. The other 

governing equations are 

Gy = Ey<T -1) =D(<^ -1) (4.2.7) 

_ 1 , u , 3 u (4 2 8) ., -^.-j.-5 ^    (4.2.8) 
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3W _ U_ 
32 " R 

(4.2.9) 

Substitution of equation (4.2.8) into equation (4.2.4) yields 

—^ + T 
3Z    0 

.+ u" + ^+ f = m (4.2.10) 

After differentiating by z and substituting into equation (4.2.5), 

N" + T 
X    0 4 fN 

2 
X X m 9 W + f 

X 
(4.2.11) 

where the primes are differentiations by z. The final equation of the 

motion is given by substituting equations (4.2.6) and (4.2.7) into 

equation (4.2.11) 

-D(y^+ u")'" + TQ 

FT 

^+ u" 
R^ 

D 

7 7 +  u" -   , 'z + f 
X " W 

3/1   W\ 

3t^ 
R' 

(4.2.12) 

Now one assumes that all variables vary as e^"" , where j - v^ 

Then equation (4.2.12) yields 

.D{%+  u")"' + T 
R^ 7''T-^-^ ° (F + ^")' + f: -/ 

f. 
X ' R" 

2/ I  Wx -mu (u' - -p) (4.2.13) 
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The force term (f' - f /R) may be divided into two components; the 

perturbed magnetic force components and the mechanical stiffness. The 

discussion on each component will be given in the following paragraphs. 

The perturbed magnetic force: The perturbed magnetic force is a 

consequence of three effects. Two of them are due to the ring movement 

in the uniform magnetic field [Moon (1984(]. First if u' f  0, the 

direction of I x B is no longer radial. The inward, radial component of 

I produces a circumferential force component f = IB u'. The second 

perturbed force results from the fact that when \s f ^  the actual length 

of the differential element becomes R(l - u/R)de instead of Rde in terms 

of first order in u. Thus the difference between the actual and initial 

radial force is f = IB u/R. This term is required in order for the 

buckling behavior to be independent of rigid body translation in the 

plane of the ring. With these assumptions one has 

IB„u 
5^ fiv + IJ^u'e, (4.2.14) -min,mag  R  -x  o o -z 

and 

'\    '\. - D^ = 0    . (4.2.15) 
3Z   R 

Thus the perturbed magnetic forces due to the ring movement in the uniform 

magnetic field do not affect the buckling or vibration directly. 

The last effect is due to the magnetic field gradient. In linear 

analysis, if r is the first derivative of the magnetic field about the 

radial deflection, then the force due to the magnetic gradient is given 

by equation (2.1.47) as 
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mag.grad. ~  ^ (4.2.16) 

This is defined as the force due to the magnetic stiffness. 

The mechanical stiffness: In this analysis the ring has mechanical 

constraints by linear springs. These effects can be expressed as 

f    = -k u 
mech.x   x (4.2.17) 

Wh.z ~ ■'^z'^ (4.2.18) 

where k and k are linear spring constants per unit length in the x 

(radial) and z (circumferential) directions, respectively. 

Now the total distributed force on the ring is expressed by summing 

equations (4.2.15) to (4.2.18) 

f; - R^= (-k^u)' + (r I u)' - 
k w 
z 
R 

k w 
= (-k^ + rl)u' +-^ (4.2.19) 

Then the governing equation of the ring is 

.Df-„+ u")'" + T 
R^        ° 

\+u" 
R"^ 7 H^+u" R^ 

k w    2    w 
+ -^ = -mw (u' - ■^) 

+ (-k^ + rl)u' 

(4.2.20) 
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By applying the equation of inextensibility (4.2.9), the governing 

equation becomes a function of w only as to the deformation. Now we 

impose the circumferential deformation mode 

(4.2.21) jne 
w = w e''   or 

0 
u = jnw 

where z = Re and j = /T . 

into the governing equation. Here w is the magnitude of the deforma- 

tion in the z direction. The deformation mode is expressed by n which 

is integer (n = 0, 1, 2, 3, ...). n = 0 and 1 implies the rotational 

and translational rigid body motions of the ring, respectively (Figure 

4.6). For n larger than 1, the ring exhibits   bending deformation. 

When n = 2 the ring performs the fundamental mode of bending deforma- 

tion. In this mode the circular ring changes into an ellipse at the 

extreme position. When n = 3 the ring changes into a rounded triangle, 

In general, the deformed ring shows the n waves on its circumference 

in the n-th mode. The extreme positions of the ring during the defor- 

mation are shown in Figure 4.5 by dotted lines. 

Substituting equation (4.2.21) into equation (4.2.20) yields the 

characteristic equation 

n   n 

R^  R^ 
+ T. 

z _ -mo) 

D 

'7 
f    n2      l' 

2 41 n n 
■ ■ JL" + 
? R'. 

^ (-^ ^ PI)^ 

(4.2.22) 

or 

D 

7 
n2(^2 _ 1)2 _ _o_ ^2(^2 . ^^ ^ (^2^^ + ^^ _  ^^2) , ^^2(^2 ^ ^^ 

(4.2.23) 
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Figure 4.6 Inplane rigid body motion (n = 0 and 1) and bending 

deformation (n = 2, 3, 4, ...) of circular ring 
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The critical buckling current for the given magnetic field, spring 

constants and the magnetic field gradient can be obtained by putting 

u = 0. The natural frequency for the given condition is obtained from 

this equation, too. 

4.2.2 Comparison Between Theory and Experiment 

When the experiment is simulated, the magnetic field B^ and its 

gradient r in equation (4.2.23) is produced by the ambient field coil. 

The ring and the ambient field coil were connected directly and had the 

same current. Therefore, the field and its gradient are calculated 

using equations (2.1.57) and (2.1.58): 

E 
^0 " 2^ 

^0 r K 

r = o- 

a + R  a - R 

1 

ml = al 

-a2 . R2 
277 R(a + R) (a - R) 

? K ml -I 

(4.2.24) 

(4.2.25) 

where R and a are radii of the ring and ambient field coil, respectively, 

m is the number of turns in the ambient field coil, and K and E are the 

complete elliptic integrals. For convenience, the magnetic field and 

the magnetic gradient coefficients a and y  are introduced. 

Then the critical buckling current is given as 

l2 = 
{D/RWin^ 1)^ + n\ + k^ 

(a/R)n2(n2 
(4.2.26) 

1) + yn' 

The frequency of the ring under the given current I is obtained from 

the equation (4.2.23), too, and 

1 2 _ 
CO 

m(n^ + 1) 

^(^2 _ T)2 ^ ^2^^ ^ ^^ f^ii^.Ji^ 
(4.2.27) 
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The square of the frequency is a linear function of the current squared 

in the one-ring model. 

One-Ring Model Without Springs 

The critical buckling current and the natural frequencies were cal- 

culated from equations (4.2.26) and (4,2.27), using the material con- 

stants given in section 3.1.3. The spring constants k^ and k^ were 

set to zero in the simulation of this model. 

The theoretical results are listed in Table 4.1 along with the 

experimental results. The current-frequency dispersion curves are 

shown in Figure 4.7. These curves were obtained by calculating the 

change of the frequency as a function of current in the system. In 

this figure Cn stands for the circumferential n-th mode of the deflec- 

tion. For example, in C2 mode the circular ring changes to an ellipse. 

Since the out-of-plane deformation of the ring was prevented by pin 

supports in the experiment, the comparison is given only for the in- 

plane motion. The comparison shows that the experimental buckling cur- 

rent of about 160 A and the frequency 80 Hz are of the third mode instead 

of the lowest second mode. This was due to the misalignments and imper- 

fections of the system in the static test. In the dynamic test the 

natural frequency 34 Hz for the second mode was not excited because the 

amplifier used for the driving coil has poor gain in the range below 

50 Hz. 

One-Ring Model With Springs 

The effects of the initial tension and the magnetic stiffness will 

be discussed in the analysis of this model. Table 4.2 shows the criti- 

cal buckling current of the ring obtained from the experiment and theory 



Table 4.1  Experimental and theoretical values of buckling constants and natural frequencies for 

one-ring model without springs 

Circumferential (?) 0 < 
C4 j) 

Mode \_^ v=>>^ A ̂  

Buckling   Natural 
Current    Frequency 

Buckling    Natural 
Current    Frequency 

Buckling 
Current 

Natural 
Frequency 1 

o 
C4 
1 

Experiment - 

vibration test 
in the air        34 Hz         69 Hz 103 Hz 

static test 167 A         

dynamic test 156 A       80 Hz 

Theory 

static analysis 62 A         145 A       —-- 236 A 

dynamic analysis        32 Hz         92 Hz 177 Hz 
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Figure 4.7 Theoretical current-frequency dispersion curves for one-rinq model 

without interturn sprinqs 
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under several different conditions. The experimental data are from the 

Southwell plot of the static test (Figure 3.7). The theoretical values 

were calculated under different conditions for the second, third and 

fourth circumferential modes using equation (4.2.26). 

The effect of the magnetic stiffness on the critical buckling 

current is significant. The calculated values are close to those 

obtained from the experiment. When only the initial compression is 

taken into account, the critical current is lower for the higher cir- 

cumferential modes. This will be explained in the next section. 

The calculated critical current when the initial compression is 

neglected is shown at the bottom. For the second mode the value is 

close to that under the existence of both the initial tension and 

magnetic stiffness. Therefore, the critical current is more likely 

to be governed by the magnetic stiffness for the lower circumferential 

modes, while for the higher modes the effect of the initial tension is 

larger. 

As for the effect of the circumferential springs, it is negligible 

for the higher modes. As a matter of fact, the buckling current is 

identical for the fourth mode, and the experimental values are closer 

to the values when the circumferential springs are neglected. 

The theoretical frequency-current dispersion curves are shown 

in Figure 4.8 along with the experimental data. The rate of dispersion 

is higher for the theoretical values than the experimental ones, and 

the natural frequencies associated with the same mode are different. 

In the analysis the discretized springs used in the experiment were 

replaced by the elastic foundation. Also, the effect of the non- 

linearity of the springs may have caused these results. 



Table 4.2  Experimental and theoretical critical buckling currents for one-ring model with springs 

Circumferential Mode 

Experiment 
(by Southwell plot. Figure 3.11) 

Theory [eqn. (4.2.26)] 

w/Initial Compression 

w/Magnetic Stiffness 

w/Torsional Spring 
w/o Torsional Spring 

w/o Magnetic Stiffness 

w/Torsional Spring 
w/o Torsional Spring 

w/o Initial Compression 

w/Magnetic Stiffness 

(A) 

141 

169 
145 

389 
339 

185 

151 

(A) 

191 
186 

311 
301 

243 

(A) 

225 

257 
257 

354 
351 

378 

o 
I 
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I 

Figure 4.8 Theoretical current-frequency dispersion curves for one-ring model with 

interturn springs 
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4.2.3 Nondimensionalization 

The critical buckling current for a ring in a transverse magi 

field depends on the spring constants and the magnetic field gra^ 

as well as the size. In this section their effects are discusser 

In this analysis the effect of the circumferential springs i 

neglected. First, the effect of the radial spring is discussed, 

followed by the effect of the magnetic stiffness, and finally bo 

the effects will be taken into account. 

The governing equation for the static case is given from equ 

(4.2.23) as 

^ n2(n2 - 1)2 - -0_ n2(n2 - 1) + n^k^ - rln" = 0 

where the directions of the current and magnetic field are set 

that the resulting force is inward. When there is neither the i 

turn nor magnetic stiffness, the buckling load, which is the mul 

cation of the current and the magnetic field, denoted by P^, is given 

rather simply. 

P = B I 
0    0 

(n^ - 1)D 

"     R3 

The lowest buckling load is given when the mode n is two and 

P   -4 %,2  7 
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and this value is the same as given by Timoshenko and Gere (1961). 

This value is set as a standard P^. The other buckling loads are 

expressed as a ratio to this value and nondimensionalized. For 

example, without the mechanical and magnetic stiffness, the nondimen- 

sionalized critical buckling loads for the other modes are 

(3rd mode)  P^_3 = §§ = | P^ (4.2.31) 
K 

(4th mode)  P„ /, = ^ = 5P^ (4.2.32) 

and so on. 

If only the interturn radial stiffness is assumed to exist, then 

the buckling load is 

P  = B I 
sp   0 

(n^ - 1)D ,  kR 

^   R3    n^-l 

= P ni^ + ^l-^ (4.2.33) 
S3    n^ - 1 3D 

and the nondimensional buckling load for each mode is a linear function 

of the nondimensional spring constant and is given as 

''sp-2 . -, + 1 kR^ . (4.2.34) 
P    '  3 3D 
e 

''sp-3 .8,1 kR^ (4.2.35) 
P^   3  8 3D 
e 
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The nondimensional critical loads are plotted against the nondimensional 

spring constant. The relationship between the buckling load and the 

deformational mode is shown in Figure 4.9. The lowest critical load 

does not necessarily associate with the lowest deformational mode. For 

example, when the nondimensional spring constant is 30, the lowest 

critical load is associated with the 3rd mode. The second lowest is 

the 4th mode, followed by the 2nd mode. This phenomena was seen in 

Table 4.2. 

On the other hand, when only the magnetic stiffness exists, the 

governing equation may be rewritten as 

\ n2(n2 - D^ - ^ "^(n^ - 1) - xB^In^ = 0 (4.2.37) 
K 

where X is the ratio of the magnetic field gradient to the magnetic 

field and defined as 

, =r      ^ (4.2.38) 

The critical  buckling load is then given as 

P        = B^I ■ 
mag       o 

=  (n^ - DP  .  ]  (4.2,39) 
R^ 1  + (1/n^ - 1)  xR 

or 
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Nondimensionallzed Spring Constant, kR /3D 

Figure 4.9 Nondimensionallzed critical buckling vs. nondimensionalized 

spring constant for current carrying ring in transverse 

magnetic field 
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jm.nL-LL L    . (4.2.40) 
e     -^   1 + d/n'^ - 1) XR 

In Figure 4.10 the nondimensionalized critical load is plotted 

against the nondimensionalized magnetic stiffness for the different 

deformation modes.  A sharp decrease of the buckling load is observed, 

particularly for the 2nd mode, as the magnetic stiffness increases. 

Under the existence of both the mechanical and magnetic stiffness, 

the nondimensionalized buckling load is expressed as 

P_- n^ - 1 ^  1  kR^      1 (4 2 41) 

The nondimensional buckling loads were plotted three-dimensionally as 

a function of both the nondimensional mechanical and maanetic stiffness 

in Figure 4.11. This graph shows the dependence of the buckling loads 

on both stiffnesses. For example, when the nondimensional spring con- 

stant is 30, the lowest mode is the 3rd and the 2nd mode is the highest 

if the magnetic stiffness is zero (Figure 3.9). However, as the magnetic 

stiffness increases the 2nd mode turns out to be the lowest mode. 

4.3 Multi Ring Analysis 

4.3.1 Derivation of Equations 

In this section the equations are derived for the buckling and 

vibration of multi-concentric rings. The governing equations are 

basically the same as those for a single ring model. The major differ- 

ence is the magnetic field on each rinn is produced by the other rings 

and it depends on the movement of those rings. Also the mechanical 
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Mechanical 
Stiffness, 

Figure 4.11 Three dimensional plot of nondimensionalized critical 

buckling load vs. mechanical stiffness vs. magnetic stiffness 

for current carrying ring in transverse magnetic field 
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force depends on the movement of the neighboring rings. 

The model used in this analysis consists of N concentric rings of 

radii R-, to R^,, which are connected by uniformly distributed elastic 

springs. The spring constants per unit length are k and k for the 

radial and circumferential directions. 

The governing equation for the i-th ring is the same as that of 

a single ring and given by eqn (4.2.13) as 

1        1^^   1 
+ T 

«li 

fiS LI." 
.f(^) 

-7^—  = m — 

where u^"^ = 9"u/3z" 

3t 

,(T) 
w, 

(4.3.1) 

:(1) The force term (f^^ - f /R) may be divided into two components. 
X.    z. 

In this case, too, the perturbed magnetic forces due to the ring movement 

in the uniform magnetic field cancel out (Section 4.2.1), which leaves 

the mechanical constraints and the magnetic stiffness due to the magnetic 

field gradient. 

Mechanical constraints: The forces due to the mechanical springs 

are affected only by the movement of the neighboring rings. The radial 

and circumferential components are expressed as   . 

(radial direction) 

(circumferential direction) 

(4.3.2) 

^p-z = ^2K--l - 2Wi ^w.+l) 
(4.3.3) 
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Magnetic stiffness: The magnetic stiffness is expressed as the 

magnetic field gradient at the i-th ring. The gradient is divided 

into two components; one due to the movement of the i-th ring itself 

and another due to the movement of the other rings. 

1) Magnetic stiffness due to the i-th ring movement 

The magnetic field gradient coefficient y.   .  is given by 

equation (2.1.58) as 

i,J 
V 1 
2^ R.(R 

1 
+ RTy 

J  1 

~2   2 

'"j 
R,)' 

(4.3.4) 

and Y- -I implies the magnetic field gradient at i-th ring position 

produced by j-th ring due to the movement of the i-th ring. 

2) Magnetic stiffness due to the movement of the other rings 

In this case the magnetic field coefficient B,- . is given by 

equation (2.1.59) as 

^-,j 
u 
2^ 

2R 1 
(Rj + Ri)(Rj - R^)' 

(4.3.5) 

and s. -I implies the magnetic field gradient at i-th ring produced 

by j-th ring due to the movement of the j-th ring. 

Then the total magnetic stiffness is expressed as 

N N 

mag,x 

JT^i J/*i 

j/i . 

(4.3.6) 
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Therefore, the total distributed force on the i-th ring is given 

as 

r2.,. 
f ^ N 

^;. -R^ = ^(^]-i-2ui^^i.i)^^i^'^i%iT ^i,j^'"j 

-I^^-.l -2Wi +w.,^)     . ^ (4.3.7) 

1   1 

The initial tension on the i-th ring is calculated by using equa- 

tion (4.2.3) as 

N N 

T = y   B. ,1 = y f- 
0  -ii  T,j   j^T 2. 

K   ,  E 
R. .R.  R. -R. 

T2 _  T2 I  = a.l (4.3.8) 

After substituting equations (4.3.7) and (4.3.8) into equation (4.3.1) 

the same procedure used in section 4.2.1 yields the governing equation 

for the i-th ring as a function of circumferential displacement vector 

{w.} which is proportional to radial displacement vector {u.}. 

Ctj 

^ n2(n2 - D^w. + ^ n2(n2 - Dl^w. - k^n |^ 
RT 

1 

21 1-1  o _L + T*"! 
" "^ R_.  R 

^i-1 

.2r2 ^i 
N 

i   i+1 

2 2 ^i 
-R7K--1 -^-^Vl^-^i"^ RT- .1^ ^-J^" r. 

(4.3.9) 

The final governing equation for the multi-ring system is obtained 

by assembling equation (4.3.9) for N rings. This is expressed in the ■ 

matrix form as follows 
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^[K^] + [K2] + {[B^] + [62]}!^" 
2 

{w} = mo) {w} (4.3.10) 

where 

[K,] : bending stiffness matrix (diagonal) 

[K ]  = °^n2(n2 - 1)2 (4.3.11) 

and 

[K^] : mechanical stiffness matrix 

[B,] : magnetic field coefficient matrix (diagonal) 

i 

[Bp] : magnetic field gradient coefficient matrix. 

(4.3.12) 

The components of matrices [K^] and [B^] are shown in the Appendix, 

The matrix [K^] is modified by changing the spring constants per unit 

length to the spring constant per radian to get the symmetry. The 

matrix [Bp] is also symmetric because 

[B,],, = 
T,J 

2'ij   R. 
u 
2^ 

(Rj^R^.)(Rj-R,)' 

= "R~" '^^2^ji 
(4.3.13) 

The boundary conditions of the system are imposed on the matrices [K^], 

[B-,] and [B^]. If the inner or outer ring is fixed, then the equation 

of the motion for that ring will not be included in equation (4.3.10). 

Instead it will be considered as an ambient field coil and the effect 
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of the magnetic field on the system will be imposed in matrices [B,] 

and [B«]. The condition on how the inner or outer ring is connected, 

for example whether it is connected to the foundation or only to the 

neighboring ring, is imposed on the component [Ko^ll ^"^ ^'^2^NN' 

The equation (4.3.10) is interpreted as a double eigenvalue problem. 

If the frequency  is set to be zero, then the equation yields 

([K^] + [K2]) - (-[B^] - [Q^l)!' {VI}    = 0 (4.3.14) 

or 

([K^] + [^2^) - i<^^'^ - I^B^Di I = 0 (4.3.15) 

for arbitrary set of {w}. The critical buckling current of the system 

is then given as a square root of the eigenvalue of this determinant. 

If the eigenvalue of I is negative, then the system is stable for the 

corresponding eigen-vector. 

On the other hand, if the frequency is not zero, then equation 

(4.3.10) yields 

[{[K^] + [K2] +  ([B^] + [B2])r}  - m-J^M = 0 (4.3.16) 

or 

{ [K^] + CK2] - ([B^] + [B2])I^ m-o) I = 0 (4.3.17) 

for the arbitrary set of {w}. Then the natural frequency for the given 

current is given as a square root of the eigenvalue. When the current 
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is zero, the equation (4.3.15) gives the natural frequency of the 

system. Since in this case the determinant 

[K^] + [K2] (4.3.18) 

is real, symmetric and positive definite, all the eigenvalues are real 

and positive. 

The current-frequency dispersion curves can be obtained by calcu- 

lating the eigenvalues as a function of the current. For the un- 

stable mode, the frequency decreases and approaches to zero as the 

current is increased. If the current is higher than the certain 

critical value, then the corresponding eigenvalue or the squared 

frequency becomes negative. However, this is purely mathematical 

and has no physical meanings. 

In this study a computer program was written to calculate the 

critical buckling current and the current-frequency dispersion relation- 

ship. The iteration method was used to calculate the eigenvalues. 

4.3.2 Comparison Between Analytical and Experimental Results 

The critical buckling current and the current-frequency dispersion 

curves were obtained for the models simulating the experiment. The 

effect of the ambient field coil was included in the diagonal elements 

of the matrices [B-,] and [82]. A discussion of these analytical results 

and a comparison with the experimental results is given for the in-plane 

deformation, since the out-of-plane motion was prevented in experiments. 

Two-Ring Model 

Since the critical buckling current could not be obtained from the 

static test experimentally, the comparison of results on the dynamic 
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test is given here. The theoretical results for the selected modes are 

listed in Table 4.3 along with the natural frequencies obtained experi- 

mentally. 

The modes chosen are the circumferential 2nd and 4th modes. They 

are represented by C2 and C4. For each circumferential mode there 

are two radial modes represented by Rl and R2. For the Cn or circum- 

ferential nth mode the n sinusoidal waves are along the circumference. 

In the two ring cases, the two rings deform in the same way in the Rl 

mode, which they move oppositely in the R2 mode. 

The natural frequencies 70 Hz and 130 Hz are considered to be those 

of the C3R1 and C4F1 modes, respectively, since the directions of the 

movement were the same. The current-frequency dispersion curves ob- 

tained theoretically are shown in Figure 4.12. A strona nonlinearity in 

the J'-l'^  function is observed in th-is graoh. The slopes of the dis- 

persion curves do not necessarily show the critical buckling currents. 

The slope of the C4R1 mode when the current is low indicates the higher 

critical current but actual critical current for that mode is lower 

than that. The curves of the C2R2 and C4R2 modes sow the opposite 

tendencies. 

For the Rl mode, the magnitude of vibration for the outer ring 

is higher when the current is small. As the current increases the 

magnitude of vibration of the inner ring increases. The magnitude 

of the inner ring in the C4R1 mode becomes almost twice that of the 

outer ring near the critical buckling current although it is about 

one third when the current is low. On the other hand for R2 modes, 

the magnitude of the inner ring decreases as the current increases. 



Table 4.3  Comparison of experimental and theoretical critical currents and natural frequencies for 

two-ring model with interturn stiffness 

Circumferential Mode 

Radial Mode 

Critical Current 
(Static) 

Experiment 

Theory 

w ^1 

Natural Frequency 
(Dynamic) 

Experiment 

Theory 

w 1 w. 

Rl 

151 A 

0.8:1 

70 Hz 

56 Hz 

0.5:1 

R2 

348 A 

-0.3:1 

134 Hz 

-1.6:1 

Rl 

270 A 

2.2:1 

130 Hz 

162 Hz 

0.3:1 

R2 

391 A 

-0.1:1 

215 Hz 

-2.8:1 

^Ratio of the extreme deformation of the inner ring to the outer ring at the buckling. 

^Ratio of the extreme deformation of the inner ring to the outer ring when the current is zero 

I 
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Figure 4.12 Theoretical current-frequency dispersion curves for two-ring model with interturn stiffness 
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Three-Ring Model 

The analytical results of the critical buckling current of the 

model is shown in Table 4.4. The eigenvector and frequency corres- 

ponding to each mode are also listed. 

As to the static result, three different buckling current were 

obtained experimentally by the Southwell plots. They are 

Inner ring 134 A, 223 A 

Middle ring 195 A 

Since all rings deformed in the same direction those results correspond 

to the Rl modes. These three values are close to theoretical buckling 

currents of the C2R1 , C3R1 and C4R1 modes. 

The current-frequency dispersion curves obtained analytically are 

shown in Figures 4.1.3 and 4.14 for the circumferential second and 

fourth modes. The significant nonlinearity is observed particularly 

in the fourth mode. Since this kind of nonlinearity is not obvious 

when the high ambient field is absent (section 4.3.3), this nonlinear- 

ity is due to the ambient field coil. To compare the theoretical and 

experimental results, their dispersion curves are plotted for the low 

current region in Figure 4.15. They show the qualitative agreement of 

the decrease in frequency with increase to the current. The experi- 

mental lowest mode of 50 Hz seems to correspond to the C2R1 mode 

though the dispersion rates differ. 
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Table 4.4  Theoretical critical currents, natural frequencies and 

deformation ratios of the three ring model with interturn 

stiffness (simulating experiment) 

Radial Mode 

Circumferential 
Mode 

Rl R2 R3 

Cl 179 A 36 Hz 420 A 104 Hz 858 A 151 Hz 

(()) 

0.6 
0.8 
1.0 

0.4 
0.7 
1.0 

-0.4 
0.5 
1.0 

-1.0 
0.7 
1.0 

0 
-0.6 
1.0 

2.0 
-2.4 
1.0 

" ./^^s 
145 A 42 Hz 288 A 102 Hz 546 A 145 Hz 

0 0.5 
0.9 
1.0 

0.3 
0.7 
1.0 

-0.4 
0.5 
1.0 

-1.1 
-0.7 
1.0 

0 
-0.6 

1 

2.2 
-2.4 
1.0 

201 A 79 Hz 305 A 126 Hz 473 A 163 Hz o 1.5 
1.2 
1.0 

0.2 
0.6 
1.0 

-0.2 
0.7 
1.0 

-1.1 
1.1 
1.0 

0 ■ 
-0.6 
1.0 

3.1 
-2.8 
1.0 

" .^=\. 
272 A 138 Hz 395 A 182 Hz 506 A 217 Hz o 6.0 
2.0 
1.0 

0.1 
0.4 
1.0 

-0.2 
1.0 
1.0 

-1.0 
-2.0 
1.0 

0 
-0.4 
1.0 

8.6 
-4.4 
1.0 

Three rings 

- 

Critical Current 
deformation ratio 

of three rings 
at buckling 

Pin Support 

Natural Frequenc"y 
deformation ratio 

of three rings 
at zero current 
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Figure 4.13 Theoretical current-frequency dispersion curves for circumferential second mode for 

three-ring model with interturn stiffness 
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Figure 4.14 Theoretical current-frequency dispersion curves for circumferential fourth mode for 

three-ring model with interturn stiffness 



1.0 

o 
3 

,0.9- 

I/) 

O 

^0.8 
c 
OJ 

or 
Of 

5 10 
Current Squared     I^(A^) 

15 X 10^ 

CO 
I 

Fiqure 4.15 Comparison of experimental and theoretical current-dispersion curves for the three-ring 

model with interturn stiffness 



■129- 

4.3.3 General Analysis 

The critical buckling currents and the current dispersion curves 

were obtained for 3-, 7- and 10-concentric rings connected by mechanical 

springs. In this analysis the material constants of the rings and spring 

constants were of the same material used in the experiment. 

Three-Ring Model 

The radii of the concentric rings are 11, 12 and 13 cm. The neighbor- 

ing rings are assumed to be connected by the same springs used in the ex- 

periment. Neither the inner nor the outer ring is connected to the founda- 

tion. The results of the static calculation is listed in Table 4.4. While 

the C2 modes are all unstable, the C3 modes have two unstable and one 

stable modes. For the circumferential modes higher than eight, there is 

only one unstable mode and the rest are stable. 

These results are confirmed by the current-frequency dispersion 

curves in Figures 4.16, 4.17 and 4.18, which correspond to the circumfer- 

ential second, third, and eighth modes, respectively. In the C2 modes, 

the frequencies decrease as the currents increase. In the C3 mode, the 

frequency corresponding to the R3 mode increases with the current. In 

the C8 mode, only the frequency associated with the Rl mode decreases 

with increase in the current. 

As for the deflection, all rings deform in the same way in the Rl 

modes. As the circumferential mode gets higher, only the outer ring 

shows significant deflection. 

The outer ring deforms in a different direction than the rest in the 

R2 modes, which show stability for the high circumferential modes. In 

the R3 modes, the deflection direction of the rings alternate. 
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Table 4.5  Theoretical critical buckling currents for three ring 

model with interturn stiffness 

Radial Mode R1    "    R2 R3 

Circumferential Mode   (1-mass mode)  (2-mass mode)  (3-mass mode) 
 (A) (A) (A) 

Cl (rigid body motion) 0 965   

C2 334 , 1814 8519 

C3 854 3214   

C4 1457 3257   

C5      ■   ' 2079 4910   

C6           ^ 2689 7933   

C7 3283 14883   

C8 3866              

C9 '   4441 ■            

CIO 5011              

Cll 5575              

C12 6135              

C13 6693              

C14  ' 7245              

C15 7799            

C16 8350              

C17 8899 ——   

C18 9446              
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Figure 4.16 Theoretical current-frequency dispersion curves of circumferential second mode 

for three-ring model with interturn stiffness 
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FlQure 4.17 Theoretical current-frequency dispersion curves for circumferential third mode 

for three-rino model with interturn stiffness 
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Seven-R1ng Model 

In the 7-ring analysis, the radii of the rings range from 11 cm to 

17 cm. Table 4.6 lists the critical buckling currents for the different 

circumferential and radial modes. For example, for the circumferential 

sixth mode the system is unstable for the lowest four radial modes. This 

is shown in Figure 4.19 by the current-frequency dispersion curves. 

The magnitudes of the deformation of each ring when the current is 

zero and at buckling for the circumferential sixth mode are shown in 

Figure 4,20. For zero current, each radial vibration mode excites one 

ring more than the others. For the lowest frequency, the outermost 

ring vibrates the most, and the innermost ring vibrates the most at the 

highest frequency. As the current increases the lowest four modes show 

buckling. The deflection ratio at buckling is shown on the right-hand 

side of the figure. The shape of the deflection vs. position curve is 

similar to the curve with no current. But energy is more spread out 

among the neighboring rings. 

Ten-Ring Model 

The 10 coplanar rings with radii ranging from 11 cm to 20 cm were 

analyzed in the same fashion. The buckling current results are shown in 

Table 4.7. The stability exhibits the same pattern shown by previous 

results. The circumferential third and sixth modes are chosen for the 

plot of the current-frequency dispersion curves, which are shown in 

Figures 4.21 and 4.22, respectively. The R6, R7 and R8 modes, which are 

unstable in C3 mode deformation, become stable for the higher C5 mode. 

The deflection vs. position curves at buckling for these modes are 

plotted in Figure 4.23. The comparison of the curves shows that the 
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Figure 4.19 Theoretical current-frequency dispersion curves of circumferential sixth mode for 

seven-ring model with interturn stiffness 
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Figure 4.20 Radial or circumferential deflection vs. position curves 

when current is zero and at buckling for circumferential 

sixth (C5) mode of seven-ring model with interturn springs 



Table 4.7  Theoretical critical buckling currents for 10 ring model with interturn stiffness 

Radial Mode     Rl   R2    R3    R4    R5     R6     R7     R8     R9     RIO 

(A)   (A)    (A)    (A)    (A)    (A)    (A)     (A)     (A)     (A) 
Circumferential 

Mode 

Cl 0 447 374 628    955 1078 1202     
C2 148 324 555 854 1212 1626 2075 2431 2877 
C3 321 550 796 1089 1445 1844 2245 3044   
C4 541 834 1142 1491 1879 2236 2431     
C5 791 1158 1531 1970 2679 4700       
C6 1048 1489 1962 2685 4501         
C7 1297 1826 2486 3742         —— 
G8 1537 2179 3104 5166           
C9 1770 2547 3883 8253           
CIO 1990 2926 4562 13476           
Cll 2226 3311 5379 24189           
C12 2450 3699 6244      -'        
C13 2673 4088 6871              
C14 2895 4477 8087              
C15 3116 4866 9054              
C16 3336 5253 10044 - —-           
C17 3556 5640 11053              
C18 3775 6025 12078              

OQ 
I 
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deflections concentrate as the circumferential mode increases. For 

example, in the radial first (Rl) mode, the outer rings have more 

significant deflections compared to the inner rings in the circumfer- 

ential sixth (C6) mode. 

In summary, the deflections concentrate for the stable mode and 

spread out for the unstable mode as the current increases. At buckling, 

the deflections concentrate for the higher circumferential mode. 

This phenomenum was confirmed by the buckling of pancake winding 

experiment (Section 3.2). The experiment shows that only the outer 7 

turns out of 20 deformed in the bending mode, while the inner turns 

deformed in the expansion mode (Figures 4.20 and 4.21). This is the 

typical buckling of the radial first (Rl) mode for the high circumfer- 

ential mode. On the other hand the result of Daniels (Figure 1. 

shows the typical buckling of the radial first (Rl) mode for the low 

circumferential mode with the most windings buckled. 
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Figure 4.21 Theoretical current-frequency dispersion curves for circumferential sixth (C6) mode 

for ten-ring model with interturn springs 
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Figure 4.23 Deflection vs. position curves at buckling of circumferential 

third (C3) and sixth (C5) mode for ten-ring model with inter- 

turn springs 



, CHAPTER 5 

CONCLUSION 

Development of reliable magnets is one of the main technological 

problems to be solved before economic usage of high magnetic fields can 

be realized; for example, magnetic fusion energy, magnetohydrodynamics 

(MHD), accelerators in nuclear physics, nuclear magnetic resonance (NMR) 

for medical use. Because they are expensive and are interconnected to 

other parts of the system, magnets must have a life-expectancy equal to 

the life-time of the overall system. This thesis has presented an inte- 

grated study of the internal vibration and buckling of cylindrically 

wound superconducting magnets. The two-dimensional concentric multiple 

ring model was adapted to preserve the characteristics of the supercon- 

ducting solenoid magnet. A summary of the work presented in this thesis 

is given below.  Conclusions from the present study are then drawn. 

Some suggestions for further research are made at the end of the chapter. 

5.1 Summary 

Cylindrically wound superconducting magnets were modeled by two- 

dimensional multi-rings connected by soft springs, and the internal 

vibration and buckling of the system were studied both experimentally 

and analytically. Since the linear elastic theory used in the previous 

studies has failed to predict buckling and vibration of the internal 

turns in the bending mode, elastic ring theory was used in this study. 

Also the effect of the magnetic stiffness was extensively examined. 
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In Chapter 2 the linearized theories of electromagnetism and 

elasticity were summarized to provide a proper background of the 

theory of magnetoelasticity for nonferrous conducting materials. 

Ring theory was given in detail to take into account the effect of 

the initial tension on the bending of the ring. The magnetic field 

and its gradient due to a current carrying ring were discussed to 

calculate the initial tension and the magnetic stiffness on the ring. 

Chapter 3 is devoted to the experiments. Two different experiments 

were conducted. A set of experiments on the vibration and stability of 

the superconducting concentric rings was treated first. These experi- 

ments were conducted in the cryogenic dewar at liquid helium tempera- 

ture. One-turn and multi-turn elastic superconducting rings in the 

magnetic field of a 100-turn concentric rigid ring magnet were used 

to study vibration and stability phenomena. Elastic brass shim springs 

were used to simulate the flexibility of the insulation between the 

turns of an actual solenoid. Both static and dynamic methods were 

used to determine the critical currents. In the static test, the 

typical buckling cruves could not be obtained because of misalignments 

and imperfections in the shape of the elastic rings. The critical 

buckling currents were obtained by the Southwell plot. The dispersion 

of the natural frequencies with increase in current was obtained in 

the dynamic test. The decrease of the natural frequencies suggesting 

an instability was observed except in one mode of the three ring experi 

ment. The second experiment was the in-plane buckling of a normal 

pancake coil. A 20-turn copper pancake coil was made and a high pulse 
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current was conducted through it. A large plastic outward deformation 

was observed in inner turns, while the outer turns buckled and deformed 

to form waves. 

Analytical and experimental results were compared in Chapter 4. 

The magnetic field and gradient produced by multiple concentric rings 

were discussed first. It was verified that the direction of the mag- 

netic field in the outer turn is always reversed, that the reversed 

magnetic field applied on the outer ring is not necessarily much smaller 

than one on the inner ring, and that the magnetic field inside the wind- 

ing does not change linearly. The equation of motion for a single ring 

in a transverse magnetic field with gradient was then derived. The 

buckling of the ring was predicted and the frequency-current dispersion 

curves were obtained analytically. These results were compared with the 

experimental results. The theoretical and experimental critical buckling 

currents agreed reasonably when the magnetic stiffness was included in 

the analysis. However, the dynamic results agreed only qualitatively. 

The nondimensional analysis showed the dependency of the critical current 

on the spring constant and the magnetic stiffness. It was shown that 

the lowest circumferential mode was not necessarily the lowest buckling 

mode, depending on the spring constant and the magnetic stiffness. 

Finally, the equations for the current carrying multiple ring model 

were derived. The results were compared with the experimental results. 

They showed a qualitative agreement. These equations were applied to 

general cases to predict the buckling and vibration of the system. The 

buckling of the system was predicted for some circumferential and radial 

modes. The stability was shown to depend on the modes as well as the 
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spring constant. The frequency-current dispersion curves showed that 

the unstable radial mode turned to be stable for the higher circumfer- 

ential mode. 

5.2 Conclusions 

The following conclusions may be drawn for the work presented: 

1) The two-dimensional multiple ring model was adapted to analyze 

the inner stability and vibration of cylindrically wound superconducting 

magnets. By taking into account the effects of the initial tension on 

the bending of the ring, the buckling of the system could be predicted. 

Also the frequency-current dispersion about the vibration of the bending 

mode was obtained. These results were verified by the experiment. It 

is believed that this is the first complete analysis of internal buckling 

in solenoidal magnets. 

2) The effect of the magnetic stiffness was included in the analysis 

and was shown to play an important role in the vibration and stability 

properties of the system. The critical buckling currents and the vibra- 

tion frequencies calculated by this analysis agreed reasonably with the 

experimental results in the one-ring model, while they agreed qualita- 

tively in the two- and three-ring models. For the one-ring model, the 

analytical value of the critical currents when the magnetic stiffness 

was neglected were much higher than the experimental values. For these 

reasons, the analytical method adapted in this study was proved to be 

effective. 

3) The effect of the magnetic stiffness is larger for the lower 

circumferential mode. As the circumferential mode increases, the effect 

of the initial tension becomes dominant. 
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4) The non-dimensional analysis on the one-rinq model showed that 

the critical buckling currents largely depend on the spring constant of 

the system and the magnetic stiffness. The lowest circumferential mode 

is not necessarily the lowest buckling mode, depending on them. 

5) According to the analysis, the dispersion of the frequencies 

with increase in current did not necessarily mean instability of the 

system. The increase of the frequency, which implies the stability of 

the system, was obtained as well as the decrease of the frequency, 

which implies the instability. This phenomenum depends on the circum- 

ferential and radial modes of the vibration of the system. 

5) In the multiple ring system with interturn stiffness, each 

radial mode excited one ring more than the others when the current was 

zero. For the lowest frequency the outer ring vibrated the most, while 

the innermost ring vibrated the most for the highest frequency. As the 

current increased the deflection spread out among the neighboring rings 

for the unstable mode. On the other hand, the deflection concentrated 

for the stable mode. 

7) In the same system, the deflections at buckling concentrated as 

the circumferential mode increased. For the radial first (Rl) mode, 

the deflections concentrated in outer rings and inner rings did not 

deform in the bending mode particularly for the high circumferential 

mode. 

5.3 Suggestions for Further Research 

The following suggestions are made for further work. 

1) For the continuation of the experimental work, the multiple ring 

and helical coil experiments without the ambient field coil should be 
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conducted. This shall supply the experimental data on-the analysis 

and also the stable in-plane vibration as well as the unstable one. 

Out-of-plane stability and vibration experiments should also be 

performed. 

2) In this study the insulation between the superconductors were 

replaced by the radial and circumferential springs. To apply this analy- 

sis to the existing magnets, or those under design, these spring constants 

should be expressed by the elastic moduli of the insulation. 

3) A nondimensional study of the multi-ring model should be executed 

as well as a parameter study. 

4) The analytical method adapted here should be expanded into a 

three-dimensional ring model. This should not be difficult, if the 

radial deformation and the axial deformation are separated. Then a 

similar technique could be applied to other shapes of magnets such as 

the D-shaped magnets for Tokamak fusion and the three-dimensional coils 

for Yin-Yang coils. In this case, too, the effects of the initial 

tension and the magnetic stiffness must not be neglected. By assuming 

the deformed shape one could obtain characteristic euqations for the 

buckling and vibration. 



-  APPENDIX A 

COMPONENTS OF MECHANICAL STIFFNESS AND MAGNETIC FIELD 

GRADIENT COEFFICIENT MATRICES 

Components of mechanical stiffness matrix [K^l 
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Boundary Conditions 

r = 1 if the element is connected to the neighboring element only, 

r = 2 if the element is connected to the foundation too. 
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Components of magnetic field gradient coefficient matrix [B2] 
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APPENDIX B 

FLOW CHART OF PROGRAMS "STATIC" AND "DYNAMO" 

"STATIC", calculates buckling current of multi-ring system 

([K^] + [K2]) - (-[B^] - [B2])I^| = 0      (4.3.15) 

"DYNAMO". . calculates frequencies due to change of current 

{[K^] + [K2]  -  ([B^] + [B2])I^}  - nico^l   = 0    (4.3.17) 

^TART\ 

INPUT 

FIELD 

MATRIX 

Read 

Ambient field coil data 

Ring data 
Interturn stiffness data 
Boundary conditions 

Calculate magnetic field using 
elliptical integral tables 

[B,]...Magnetic initial tension 
'    eqn. (4.3.12) 

[B-]...Magnetic field gradient 
Appendix A 

Calculate mechanical stiffness 

[KT]...Bending stiffness 
'    eqn. (4.3.11) 

[K^]...Interturn stiffness 
^ eqn. Appendix A 
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Form final detenninants 

[P] = [K^] + CK2] 

[D] = -[B^] - [B2] 

"STATIC"....|[D]"^[P]I 

"DYNAMO".... Im'"'([P] + CD]!^)! 

EIGEN Calculate eigenvalues and eigen- 

vectors by iteration method 

Repetition of calculation for 

different currents for "DYNAMO" 

Print out results 
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