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ASYACT

This report consists of two parts. In Pert 1, 4 time dependent torm of

the reduced wave equation of B.rkhoff is developed for the case of waves

propagating over a bed consisting of ripples supertimposed an an othorwise

slowly varying mean depth which satisfies the mtld slope 4teumption. he

ripples are assumad to have wavelengths on the order of the surface wave

length but amplitudes which scale as 4 slal parameter &long with the hottom S

slope. The theury is verified by showing that It reduces to the case of plan*

waves propagating over a one-dimensional, infinite patch of slnusotdl

ripples, studied recently by Davies and Heethershaw and Mlet. Ue then study

two cases of interest; formulation and use of the coupled parabolic ,qu4ttons

for propagation over patches of arbitrary form In order to study wave

reflection, and propagation of trapped waves along an infinite ripple patch.

in the necond part. we use the results of Part I to extend the results

for weakly-nonlinear wave propagation to the case of partial reflection from

bottoms with mild-sloping mean depth with superpoed small amplitude

undu lat ions.

2

S'°



6

ACKNOWLD E 14 EI

This work was supported by the Office of Naval Research. Coastal Sciences

Program under contract N0O0|4-84-C-0|88 through a contract with the University

of Delaware. The author Is grateful to Prof. R. A. Dalrymple for several

conversations. The mjority of the work in Chapter III was conducted white the

author held a position at the Marine Sciences Research Center. State

University of New York at Stony Brook. The technical assistance provided by

the staffs of MSRC and COE is gratefully acknowledged. with a special thannks

going to Cynthia J. Vey for typing the final report.

.0

30

.0.

0- -"

0? ')-

*0. .'

3.

?.".. :'.-.-.". . ..- ... ...- ,,..-......-......-.....-.......-.......,..............-.............................-......



TABLE Of CONTENTS

PAGE
ABSTRACT. ................................ *................................. 2

ACKNOWLEDGEMENT ... o ................................. 3

LIST OF FIGURES .. . . . . . . . . . . . . . . . . . . . . . . . . . .s . 5"

CHAPTER
I Summary ............. so............o........o....................... .

I1 A General Wave Equation for Waves over Rippled Beds ............... 9

11.1 Introduction ......... *...........*........................... 9

11.2 Derivation of the Wave Equation ............................ 10

11.3 Correspondence to Previous Results ....................... 14

11.3.1 Resonant Bragg-scattering .......................... 14

11.3.2 One-Dimensional Reflection fron s R1-ple Patch ..... 16

11.4 Coupled Parabolic Equations for Forward and Back-scattered
Waves ........ ..*............................................ 24,

11.5 Waves Trapped Over Iong Ripple Patches ..................... 32

11.6 Concluaions ................ ............. 0 ............... * 45

ItI On the Gradual Reflection of Weakly-Nonilnear Stokes Wav.4 In

Regions with Varying Topography ................................... 46 0

111.1 Introduction .. . . . . . . . . . .s. . . . . . . . . . . . 6

111.2 Derivation of the Equations Governing Wave Propagation ..... 48

111.2.1 The Lagrangian Formulation and Governing

Equations ........................................ 48 0

111.2.2 Explicit Results for Partial Standing Waves ....... 53

111.2.3 Effect of Reflected Wave and Mass Transport on

the Nonlinear Dispersion of the Incident Wave ..... 56

111.2.4 Extension to the Case of Rapid Red Undulations .... 59

111.3 The Coupled Parabolic Equations ............................ 62

111.4 Effect of Mass Terms on Nonlinear Reflection: Normal

Incidence on I-D Topography ................................ 65

111.5 Two-dimensional Topography ................................. 74 0

111.6 Discussion .................................................. 84

Appendix II[.A Integrals of ffunctions .................................... 86

Appendix [I1.B Components of the primitive Lagrangian L ................... .88

3Appendix IIt.C General Form for 0(c ) term in wave equation ............... 90

REFERENCES -................................................................91

4

. . . .. . . . . . . .*..



LIST OF FIGURES

FIGURE PAGE

11.1. Definition of depth components ................................... 12

11.2. Reflection coefficient for waves normally incident on a

sinusoldal patch. Case 1: D/h - 0.16, n - 10. - numerical

results; * laboratory data from Davies and Heathershaw (1984).... 19

11.3. Reflection coefficient for waves normally incident on a

sinusoidal patch. Case 2: D/h - 0.32, n - 4. - numerical

results; e laboratory data from Davies and Heathershaw (1984).... 20 0

11.4. Reflection from a patch with two Fourier components,

5 - D sinXx + D2sin2Xx, n - 4. -- D/h - 0.32,

D2/h - 0.; , 1 /h - 0., D2 /h - 0.32;

Dj/h D D2/h - 0.226 ........................ . .............. 22

11.5. Reflection from a patch with two Fourier components,

6 - D sin x + D2 sin(15x/8), n-
4 . ---, Dl/h - 0.32,

D2 /h - 0.0; *, Di/h - 0.0, D2 /h - 0.32;
Dl/h - D 2/h - 0.226 ...................... oo.......o.....o....... 23 -0

11.6. Amplitude contours with respect to incident wave amplitude;

waves propagating over two-dimensional ripple patch.

a) Incident wave field IA/Ao; b) Reflected wave field IB/Ao;

c) Total wave field - bottom contours; amplitude contours.. 29 .0

11.7. Rectangular ridge for trapped wave example ....................... 34

11.8. Comparison of parameters for trapped waves over a rectangular

ridge: a) a; mild slope, --- small amplitude bottom theory;

b) Ratio of kl/(a)1 /2 to k2; a from present theory.............. 38 0

11.9. Dispersion relation for 5 - Dcos(wx/2L) topography.

D/h1  = 0.3, h1  = 1 m ............................................. 42

I1.10. Surface profiles of trapped waves for cosine topography,

klL = 20, D/h1 - 0.3.

a) symmetric modes n - 0, 2, 4

b) anti-symmetric modes n - , 3 ................................. 43

111.1. Variation of D* with kh and reflection coefficient R.-,

including wave-induced return flow; --- , neglecting wave-

induced return flow.............................. 58

5
--"S -):



- - I - I I I I I | * P .

111.2. Critical reflection coefficient Rc for

as in Figure 111.1 ..............................*..... .......... 60

111.3. Topography for one-dimensional model tests....................... 67 0

111.4. Comparison of coupled parabolic equations to full linear wave

solution.

-linear solution, Davies and Heathershaw

--- coupled parabolic equations, &x - t/20 _

* Data, Davies and Heathershaw. .. . . ................... ....... 69

111.5. Variation of R. n - 10, D/h1 - 0.16 - nonlinear,

E - 0.2; --- Linear ............................................... 71

111.6. Variation of Ursell Number Ur and relative depth kh for •

example of Figure 111.5, c 0.2................................. 72

111.7. Normalized amplitude contours: linear wave

n - 4, X - 1, D/hj - 0.3, hl - i-1
, 2k/A - 1

a) Transmitted wave IAI/AO S

b) Reflected wave (BI/A 0

c) Total wave InIA 0

--- bottom contours 6' - 6/h1 , -amplitude contours ............ 76

111.8. Normalized amplitude contours: nonlinear wave, c = 0.2. 

a) Transmitted wave IAI/A 0

b) Reflected wave IBI/A 0

c) Total wave n(Ao - contours as in 111.7 .............. 79

111.9. Amplitude InI/A 0 for ripple patch.

n - 4, D/h 0.3, h -K

--- linear waves; - nonlinear waves, c 0.2

a) Amplitude along center-line y - 0

b) Amplitude along downwave transect x/t - 3..................... 82 0

6

. ... . . . . . . ..



Chapter I

Summary

Wave models for waves propagating over uneven topography have undergone a

great deal of development in the recent past, with the ma'rity of work

centered on the extreme examples of very abrupt topography, where the bottom

may be reasonably schematized by sections of constant depth separated by

discontinuities, and of topography with very mild bottom slopes, where the

depth is assumed to change very slowly over the space of a wavelength.

Although some of the work encompassed by the ongoing studies under the present

ONR support have dealt with the first example (Kirby and Dalrymple, 1983a,

plus continuing work on trenches and dredged channels with currents), most of

the effort in the present contract period has dealt with the mild-slope

extreme, where the basic formulations are either in the form of reduced wave

equations (Berkhoff, 1972; Kirby, 1984) or WKB formulations giving evolution

equations for the slowly varying domain (Chu and Mei, 1970; Djordjevic and

Redekopp, 1978).

This report presents two theoretical results which extend the

capabilities for modelling waves in shallow water. Chapter II presents a

linear, reduced wave equation which is applicable to the case of waves

propagating over bottom undulations which are small in amplitude but which may

have length scales on the order of the surface wavelength. This formulation

extends the basic mild-slope equation to the case of abrupt bars or similar

topography resting on an otherwise mildly sloping bottom. Comparisons to

previous theoretical and experimental results are given.

In Chapter I1, the results of Chapter II are combined together with the

JSP
coupled forward- and backward-scattered wave formulation of Liu and Tsay

7
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(1983) and the perturbation method based on a Lagrangian formulation (Kirby,

1983) in order to develop a model for the gradual reflection of weakly

nonlinear Stokes waves. Numerical results are given for several examples

involving waves propagating in one and two dimensions..

0
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Chapter 11

A General Wave Equation for Waves over Rippled Beds

.1 Introduction

The problem of reflection of surface waves by patches of large bottom

dulations has received an increasing amount of attention recently, due to

is mechanism's possible importance in the development of shore-parallel

rs. Davies and Heathershaw (1984) and Mel (1984) have recently studied the

se of reflection from sinusoidal topography and have provided analytic

•eatments which elucidate the mechanism of a resonant Bragg reflection at the

lint where the wavelength of the bottom undulation is one half the wavelength

the surface wave. The analytic results of both studies are seen to agree

ite well with the laboratory data of Davies and Heathershaw (1984,

riginally presented by Heathershaw, 1982). Based on the analytic and

perimental results, Mel suggests that reflection of waves from an initially

solated bar (such as a break-point bar formed at the outer edge of the

irfzone) may be sufficient to induce the formation of bars further offshore

I the initial bar.

The analytic results presented to date illustrate the major features to

a expected when studying reflection from a system of bars. However, they are

Do limited in scope to provide a direct treatment in the case of natural bed

,rms varying arbitrarily in two horizontal directions. For this reason, the

resent study concentrates on the development of a general wave equation which

9 applicable to linear surface waves in intermediate or shallow water

epths. The resulting equation is similar in spirit to the reduced wave

quation of Berkhnff (1972), but extends the usual mild-slope approximation to

nclude rapidly-varying, small-amplitude deviations from the slowly-varying

ean depth.

9
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After deriving the generdl equation In Section 2, we consider the

-orrespondence between the pre'ent results and those of Met (1984) in

3ection 3. A simple numerical qcheme 14 then usel to solve the reduced wave

equation for the case of reflection over .ne-dume'ional topograpies.

In Section 4, we apply a splitting wetho.l I- orler to redue the elliptic

form to two coupled parabolic equations for f.,rwisr, dud hacksc~ttered waves.

The resulting equations for amplitude of the forward dnd St!kwa rI propagattng

waves extend the results of Mel to the case of arbLtratry top,,r.Wit'!

variations and include possible diffraction effects.

Finally, in Section 5 we consider the possibly interentin, c s-. of

trapped waves propagating along a ripple patch. The problem is d,.v,,',.%pe o%

an elgenvalue problem for the wavelength along the patch, which Iq the'n n, ilve

numerically for the case of arbitrary topography, following the method of

Kirby, Dalrymple and Liu (1981).

11.2 Derivation of the Wave Equation

The depth-integrated wave equation for monochromatic, linear waves

propagating over small-amplitude bed undulations may be formulated following

either a variant of the Green's formula method of Smith and Sprinks (1975) or

Liu (1983), or by using the Lagrangian formulation of Kirby (1984). Here the

Green's formula approach is utilized; indications of how to proceed in the

Lagrangian approach are included at the end of the section.

Let h'(x), x = {x,yl denote the total still water depth, and let

h'1 h(x) - &(x) (2.1)

where h(x) is a slowly varying depth satisfying the mild-slope assumption.

10
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Unfortunately, no laboratory data exists to test these hypotheses;

rification of the present results and conjectures thus require further

dependent effort.

.4 Coupled Parabolic Equations for Forward and Back-scattered Waves

We now consider the development of coupled parabolic equations for

rward and back-scattered waves, following the results of Radder (1979) and

u and Tsay (1983). The goal is to obtain an extension to the refraction

suilts of Mei (1984) (as in 3.5 and 3.6) to cover cases where 6 varies

"bitrarily in x and y, and where y-variations in 6 or h may induce

ifficiently strong amplitude variations to warrant the introduction of

.ffraction effects. We take x to correspond to a principal propagation.

Lrection and assume that deviations from this direction are small.

!glecting time dependence in the wave amplitude, (2.11) may be written in

Lliptic form as

0 + + k 2 CCg4 (CCgy)y (6 y)y 0 (4.1)Pxx + Pxx +  9 y k = y41 __ -°

iere

4wSI '6
p = CCg - k (4.2)

id where

P Cx g ( C 6 + 0(k6)2  (4.3)
k x ]?-i?-' '

4.1) may be written as

2,4
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For case one, we use the data of Figure 11.3 and set m-2 so that the

second wave has half the wavelength of the first. Three situations are

plotted in Figure 11.4; D1 /h = 0.32, D2 /h 0.0 (as in Figure 11.3); Dl/h -

0.0, D2 /h = 0.32 (all variance at the shorter wavelength); and Dl/h = D2 /h =

0.226 (variance evenly divided between each component). The composite bottom
0

is seen to produce the same zeroes in R, and a peak in R associated with

resonance with each component of the bottom is apparent. The two resonance

peaks remain separate and clearly distinguishable.

For the second case, we use n-4 and m=15/8, so that the second component

has 7 1/2 wavelengths in the ripple patch. Curves of R for the same three

distributions of ripple amplitudes as described above are given in Figure

11.5. Now the reflection coefficients associated with each component acting

separately have different zeroes. The two patterns together interact and

destroy the zeroes; the resulting curve of R varies smoothly over the range of

2k/L considered. The peaks associated with resonant scattering from each

component are again distinct and strong.

The strength of resonant reflection from an organized barfield implies

that a broad spectrum containing a band of wavelengths which are nearly or

exactly resonant with the bottom may experience fairly significant reduction

in energy density near the resonance wave number. Further, the reflected wave

field, which may assume the form of a fairly narrow spectral band around the

resonant wave number, may be much "groupier" than the incident wave field.

This groupiness may lead to significant forced long wave motions propagating

in the offshore direction. These motions would be similar in form to the

offshore propagating long wave caused by wave-group pumping of the surf zone

(studied recently by Symonds and Bowen, 1984, and Symonds, Huntley and Bowen,

1982), but do not require the incident wave field to be distinctly groupy in

nature.
21
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Figure 11.2. Reflection coefficient for waves normally incident on a
sinusoidal patch. Case 1: D/h - 0.16, n -10. -numerical
results; 0 laboratory data from Davies and Ileathershaw (1984)
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are given in Figures 11.2 and 11.3 for cases I and 2, respectively in

comparison to the laboratory data. Solutions were obtained using a grid
0

spacing of Ax - L/20 in order to obtain accurate results at large 2k/). The

numerical results are nearly indistinguishable from the analytic results of

Davies and Heathershaw (1984) with the exception of an occasional downshift in

the positions of the peaks and zeroes of R by an amount 2k/A - 0.01. This

shift may be due to the neglect of nonpropagating waves at the ripple patch

edges as well as the numerical errors involved in the computation scheme. The

results are based on the same information as in Met's approach, and compare

well to his predictions over the range of validity of the theory for near-

resonance.

Laboratory data from Davies and Heathershaw are included in Figures 11.2

and 11.3 for comparison to the numerical results. Davies and Heathershaw

provide indications of how much the data at low R is contaminated by

reflections at the end of the wave channel; no effort has been made to correct

the data for this effect.

As a second example, we consider the reflection of waves from a bed "

formed by the superposition of two Fourier components.

6 = DlsinXx + D2sinm\x 0 < x < 21Tn/X

We consider two cases; one where both Fourier components have an integral

number of wavelengths in the ripple patch, and the other where the ripple

patch terminates at a half wavelength for the second component. These cases

differ since, for case one, the zeroes of the reflection coefficient for each

component separately coincide; while for the second case the zeroes for each

component do not coincide.

-019



6iDsin(kx) 0< x< nX (3.11I)

where I 27Y/) is the bed wavelength and n is the number of bed ripples. The

Bragg-scattering condition corresponds to 2k/)X 1. Equation (3.8) is written

in finite difference form, and radiating boundary conditions are applied

according to

Ox- - -k~ 2# ) x I < 0 (3. 12)

* M ikO > nL. 3 3

where .

* ikx
=e (3. 14)

is the incident wave of unit amplitude. The resulting rLdiagonal matrix Is

inverted using a double-sweep algorithm.

We first consider the experimental resuilts of Davies and Heathershaw and

compare numerical results to the cases .

1. n -10 *D/h =0.16

2. n= 4 ,D/h 0.32

Computed results for reflection coefficient R corresponding to a reflected

wave

-ikx
RRe ; ,<0 (3. 15)
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Met. All of Mel's subsequent results may be obtained from (2.11) following

this procedure and his assumptions.

For later use, we define an unscaled frequency-like term Q' according to

, '(kD) (3.7)

where a' - 0 (1). a' will be advantageous in the general case since it is not

dependent on the geometry of the undulations. (Note that 0' my still be a

slowly varying function of the mean depth.)

11.3.2 One-Dimensional Reflection from a Ripple Patch

We now test the reduced, elliptic form of (2.11) for the case of waves

normally incident on a finite ripple patch. Variations in the y-direction are

neglected; the resulting problem is equivalent to that studied by Davies and

Heathershaw if we restrict attention to sinusoidal undulations of constant

amplitude and constant mean depth h. After setting h - constant, (2.11)

reduces to

+ k  - 4( S)( ) 0 (3.8)

where

-iwt
* (x) e, (3.9)

Q1' is defined by

= gk(3. 10)
4w cosh 2kh

following (3.71), and where we have neglected time dependence in the wave
0

amplitude. For the case of sinusoidal bed oscillations, we may take

16
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We consider an incident wave

- - A(x, t) ei(kx-wt) (3 1)

and reflected wave

_ t!i (-kx- t

B- - B(x,t) e (3.2)2w

where A and B are slowly varying functions of x and t. The conditions for

resonant Bragg- scattering are satisfied when the bottom undulation has a

wavelength of one-half the surface wavelength, or

X = 2k (3.3)

Employing this assumption, we proceed by assuming that derivatives of A and B

are O(k6) in comparison to A and B and keep terms only to O(k6). Defining

2
gkD (3.4)

0 4w coshkh (

ikx* and collecting terms of like powers in e ,we obtain

A t + Cg A= - isoB (3.5)

Bt - CgB x  - iSIoA (3.6)
_0

which is a special case of the restilts of Mel, neglecting mean hottom slope

and oblique angle of incidence. Sobitions of (3.5) and (3.6) in relation to

the experimental results of Davies and fleathershaw are discussed in detail 1y

., ...... °.. ..
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L f t 2 2 )2 gz dz

and then expanding the integral about z - - h. Equations (2.10) and (2.11)

follow after collecting terms of O(ka)2 and partially integrating the

variation of the integral of L over the propagation space, as in Kirby (1984).

11.3 Correspondence to Previous Results

In order to demonstrate the completeness and generality of the wave

equation (2.11), we first consider a reduction of the equation to the coupled

evolution equations of Mei (1984) for resonant Bragg-scattering by a finite

patch of ripples. We then employ a finite difference form of (2.11), after

neglecting time dependence, to study the one-dimensional (x only) reflection

for a range of incident wavelengths, and compare our results to the data

presented by Davies and Heathershaw (1984).

11.3.1 Resonant Bragg-scattering_ S
Consider the particular example, studied by Davies and Heathershaw (1984)

and Mei (1984), of waves propagating normally over a ripple patch extending

uniformly to + - in y. Depth h is taken to be constant, while 6 is given by

D iAx -jAx
= (e + e ; x< L

where 0 < x < L is the range of the ripple patch, and

6-0 ; x < 0 , x > L

14
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0 0 0

f _ f$ dz- I _h f dz - [ - ,fz] (2.9)
-h h -h "

The integrals are manipulated to finally obtain

tt Vh(CCV*) + 2 k 2CC 9) + gf2  h Vh( 6Vh#)0 2tt h ft g-h

+ fVhf df + gf h f-V.h
+ -fh -h 4

-h -h

+ 2g6fVhf.VhO - 0 (2.10)

-h

where C - w/k and Cg = w/ak. The last five terms are either proportional togo ,

(V hh) or 6Vhh, and are thus second order in the small parameter. Neglecting

them and substituting for f(z - -h) then gives

.' .0

-tt Vh.(CCgVh) + ( 2  k2 CC) + hv )tt hgh C9 cosh kh h 6 h

= O(k6) 2  (2.11)

Equation (2.11) governs the value of the potential at the free surface for an

arbitrary wave motion. Neglecting the term in 6 yields a time dependent form

of Berkhoff's (1972) equation for the slowly varying bottom alone.

This completes the derivation using the Green's identity method. The

Lagrangian formulation proceeds by writing the integral of the total pressure

over the local depth

13
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V hh/kh << 1 , VI - (3/3x 3 ;/ 3y) (2.2)

6(x) represents rapid undulations of the depth about the mean level, as

indicated in Figure 11.1. We consider the problem to be linearized in wave

amplitude but retain first order terms in the bed undulation amplitude. We

assume

O(Vhh/kh) - O(k6) << 1 (2.3)

S

Linearizing the free surface boundary conditions and expanding the bottom

boundary condition about z - -h, we obtain to O(k6)

,S

2V + 0 h < z < 0 (2.4)
h zz- -

Ott + gz 0 ; z- 0 (2.5)

z=  hhVh + V(Vh) ; z-- h (2.6)
h h h h

To leading order, the solution to (2.4) - (2.6) may be expressed as

Q,z,t) = f(x,z) *(x,t) + E non-propagating modes (2.7)

0

where f = cosh k(h+z)/cosh kh is a slowly varying function of x, and where

2= gk tanh kh (2.8)

locally, with . being the fixed angular frequency and k the wavenumber. We

then use Green's second identity to extract the propagating component of 0;

." , o
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1 2 - 4w I
4 + p p, + k CC p + p (CC Xyy k . (6, )y (4.4)x xg yy k yi

- . where, to leading order in (k6), p- is given by

p1 =(ccg)-  {i + 4 ()6+ 0¢k6)2  (.5

~g
2

Next we denote an operator y 2 according to

2 k2 CCP-1 )+ p 1  -1(C ulp (6
2 CCgp-l + p(CCOy)y - 2. (6y)y S

g9y y k y y

or

= k {(I + 4 (-) 6)4 + L C y j r (64

(CC y 2 kC y (6)Sk2CC c -
g

+ O(k6) 2  (4.6)

The corresponding pseudo-operator y4 is obtained by the expanding the square

root to give

yo = k f(I + 2 ( 6)4 + 2 (CC k24 )- (6# y )Y

g 2kCC y y k Cg

+ 0(k6) 2  (4.7)

We now follow a simple scheme for obtaining the coupled para olic
qI

equations. Let 4 be expressed as the sum of forward and backward propagating

waves;

4 -

S= (4.9)
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* .7: .--. * .

N:o .. .o . . .. . . . . o,. .-* .** .** ..* %' o . . *•.- .. .. .

m... * mm.~- .



0

We then assume the coupled equations:

$ = iyo + + F( +,O - )

x

(4.9)
i , - + F + , - )  jL::

x

where the coupling term F is unknown. Repeated substitution of (4.9) in (4.4)

finally yields

0

F(O + , - ) - €+- ( -) (4. 10)
2yp

which may be expanded to give

(kCC ~ xlF(+€)= - ( kCC -) '- _ (
+

- *
- (4.11)

g g

to leading order in (k6). The coupled equations in expanded form are given by

+ 2 1' + + ()x = k{I 2i - } kC- (C yy -.

x 2kCC

g g .yy

21 ( W) 9 (C)X +

k - (6,y) - 2kCC (

g g

+ (C) 6(4+- -) ; (4.12)

g

X - 1k [I + 2(-) 2kCCg gyy

g g

2i - (kCC)"{=- 6yy+2C ( € 
- )

,:•-

k ~C' y 2kCC

at~L 6(2 ). (4.13)
g
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We introduce the complex amplitudes A,B according to

ik x
*=o Ae

-ik x
= Be 0

where k0 is a reference wavenumber. (4.12) and (4.13) become

2IkCCg A + {2k (k-k ) CC + i(kCC )ox g gx

+ 2w ' [2k6 - 0 ] A + (CC A ) " k (6Ay)
g y y k y y

-21k x 0.

= {i(kCCg)x - 21wQ'6 Be o (4.14)

2ikCCg Bx + {- 2k(k-k ) CC + i(kCC 9-X .

-2wrlt' [2k6 + i6 x] B - (CCgBy)y + --- (6B)y.

2ik x
= ji(kCC ) - 2 '6 Ae 0 (4.15)

The correspondence between the present equations and the results in

Section 3.1 may be seen by substituting for 6 using (3.11) and neglecting

terms with rapidly oscillating coefficients. Note that the equations

developed by Met neglect diffraction effects as well as the coupling between

the forward and backward propagating waves over the slowly varying depth. The

present equations include these effects. Further, they reduce to a set of

equations equivalent to those of Liu and Tsay (1983) when 6 is neglected.
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In the following example, (4.14) - (4.15) are discretized according to

the Crank-Nicolson method. The solution technique is equivalent to that used
0

by Liu and Tsay; hence, the details are omitted here.

We construct a two-dimensional patch of ripples of finite extent in the x

and y directions. Ripples with length X are alligned with crests parallel to

the y-axis. The patch is symmetric about the x-axis and has overall

dimensions of ni and 2n in x and y, where n is the number of ripple

wavelengths. The topography is given by h constant and

r Dsin(Xx)cos(Xy/4n);
6(x,y) = IxI~nZ/2, Iyjnt (4.16)

0 ; IxI>n/2, IyI>n9.

The computational domain is given by -3 < x/t 4 3 and 0 < y/L < 6. We

consider ripples similar to those of Figure 11.3, with D/h = 0.32 and n=4.

Results were computed for the resonant case 2k/X 1 and are plotted along

with the bottom contours in Figures 11.6a (for incident amplitude JAI) l1.6b

(for reflected amplitude JBI), and Figure II.6c (for the total wave field).

The present results were obtained using four iterations of the forward-

backward calculation, which was sufficient to provide a reasonable degree of

convergence. As in Section 3, a grid spacing of Ax =Ay X/20 was used.

Unfortunately, no laboratory data exists to test the two-dimensional model;

verification was limited to checking that results of the coupled parabolic

model are equivalent to results using the elliptic model for the one-

dimensional cases studied in Section 3.

28.. . . .
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11.5 Waves Trapped Over Long Ripple Patches

As a final example, we consider the propagation of a trapped wave along a

ripple patch which extends to y = t. This case has possible applications to

the nearshore zone, where waves may be directed onto a nearshore bar system by

reflection from headlands or coastal structures. This problem has been

investigated previously in the context of the mild-slope approximation by

Lozano (1977); the present analysis is presumably applicable to steeper bar

systems than would be allowed for under the mild-slope assumption. Further,

in the case of long coastally-trapped waves, the bar system may serve as a

wave guide for trapped wave energy; Kirby et al (1981) have suggested that

this trapping may effectively stabilize the offshore distribution of nodes and

antinodes of infragravity edge waves, rendering the bar system less subject to

destructive effects of a slowly changing wave climate.

The general case of trapped wave motion over a variety of offshore

profiles may be handled in a manner similar to that provided by Kirby et al

(:981); we remark that this method has also been used recently by Mclver and

Evans (1984) to study the waves trapped above a submerged horizontal cylinder

located close to the water surface.

We denote Z as the longshore (y) component of the wave number vector and .

assume that h and 6 are functions of x only (no longshore variation in the

depth profile). Letting

=(x,y) =(x)eity (5.1)

we obtain the second order ordinary differential equation governing (x);

JCC - 1,06ix + [(CCg k

+ {(k 2 - 1')GC + :0(5.2)....g k .

32
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2
This then provides an elgenvalue problem for ' and Z2 which must be

solved together with suitable boundary conditions. As a first example, we

consider the simple case of a rectangular ridge of height D and width 2L

resting on a flat bottom of depth hi. The depth of water over the ridge is

given by

h2 = h1 - D < h1  (5.3)

The geometry is shown in Figure 11.7. This case is of interest because it may

be solved analytically both by the present method as well as by using the mild

slope equation in its basic form (see Smith and Sprinks, 1975, for the

relevant formulation and matching conditions). In ad'ition, the shallow water

limits of both solutions may be compared to the results presented by Mei

(1983, Section 4.6). This case then provides us with a means for evaluating

the approximate upper limit on D/hl, which is determined by checking for

divergence of the solution for the present theory from the mild-slope theory

as D/h1 becomes large.

For the case of constant depth h2 = hI - D over the ridge and hI away

from the ridge, we divide the fluid domain into three regions and obtain

(2) 2 2 (2)
xx + (k z .2 0 x > L (5.4a)

xx
(3) 2 2 (3)) - = 0 ; x <- L (5.4b).. ..

and ""

+i4 4(k - Qa )'z 0 ; -L 4 x 4 L (5.4c)
xx

where k1 is the wavenumber corresponding to h1 and

33

,.., . ~.... ., ...... ,.......... ,... ..... . . . .. . .. . . .. ... , . .. .. . . .. , . .,



h S

D

so X.

Figure 11.7. Rectangular ridge for trapped wave example
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a= - 4 D (5.5a)

g

2k h h
-I- -h -- " (5.5b)

n sinh2k h h
1 11 1

In order for trapped waves to exist, solutions must be exponentially decaying
22

away from the ridge in regions 2 and 3. This requires that X2 > k while a

separate condition on *(1) implies that 92 < k2 /a. The solutions for each

region are given by

(2) = Ae- m(x-L) (5.6a)

0

(3) = Bem(x+L) (5.6b)

-() CeiXx + De-iXx (5.6c)

where A, B, C, D are arbitrary constants,

2 21/2
m (£ k > 0 (5.7) 0

and

1/2
= (k2/a 2) >0 (5.8)

Matching conditions are provided by considering the integral of the governing 0

equation across the jump discontinuity at the ridge boundary; we get

35
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(1) (2) x L (5.9a)

S
(3) x - L (5.9b)

x~) (2). ..
C(I1 =( x - L (5. 9c)

x x0

()= (3) x -- - L (5.9d)
x x

The solution to (5.6 - 5.9) may be found in a straightforward manner; the

notation of Mei (1983) is used to facilitate comparison to the shallow water

case. Trapped waves are given by the solutions (for ) of the relation

cot n even
a& (5.10)

(Z,2 2 -tan n odd

where n is the mode number of the trapped wave. Here, and * are given by - -

=.{(k21/nZ 2) } L XL (5.11)

* = (k L) ((I -c)/l) 1 /  (5.12)"

The condition that < * from (5.10) provides an upper cutoff limit for n; n

increases for increasing L or decreasing h2 (increasing D).

Following Smith and Sprinks (1975), the mild-slope equation may be solved

in analogous fashion. The solutions are given by (5.10) with the newly

defined coefficients

36
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= (CCg)2
1(CCg)1 (5. 13a)

= (ko - z2) 1/2 (5.13b) 6

_ 2 £2) 1/2
[ {(k2 - Z } L (5.13c)

2 1/2*={k -ki) j L (5.13d) 0

or the case of the present geometry, where the mild-slope equation is valid

xcept across the jump discontinuities, we may regard (5.10) together with

5.13) as a "correct" solution and compare those results to the present, small

)ottom amplitude solution given by (5.10) together with (5.8 - 5.12).

.omparing the various coefficients, we see that the present theory should

ipproximate the general depth, mild-slope theory well in regions where a from

:5.5) is a good approximation to a from (5.13a), and where k /al/2 (a from

(5.5)) is fairly close to k2.

1/2 ar ie i iuePlots of the two ci's and of the ratio (kl/ai )/k2 are given in Figures

[1.8a and b for a range of h2 /h1 and k h1 values. Interestingly, the

ieviations between the two theories are greatest in the intermediate depth

range and apparently decrease in deepwater. This result is due to the fact

Lhat the depth over the step becomes effectively deep unless h2 /h1 is small,

rendering the step ineffective in trapping or reflecting waves. In shallow

water, both theories give solutions which are asymptotic to the results given

by Mei (1983). The asymptotic values of a and * are

a = h 2/h 1

1/2 hl 0 (5.14)
2/

= h L (I - /

2

The two theories are essentially different in intermediate depths;

owever, the results differ little over the range 0.6 < h2 /h, < 1.0, or,
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+ b 2 1--- + (V(__ )2 -, (.h) -2 (2.13)2 g g 2 2 l - 2g 2 g 1 0t g t

:ter eliminating n, according to (2.9). Variation of L with respect

and partial integration yields a continuity equation2

+ b V + (0 V~ + V * (1 =0 (2.14)

2h 2 t - g h I h I h 2)h2
t

12 + b2) may be eliminated between (2.13) and (2.14) to yield a forced wave

quation for the quasi-steady motion 0 after averaging over the phase.
2

The equation containing the nonlinear modification to the linear wave

quation (2.11) may be obtained by varying L2 + L4 together by n 1 and and

liminating nl, yielding

2 C) 2 3{
C - Vh (CCgV 1h) + ( k2 - = e iN.L.T.} (2.15)

tt i' . .. "

N.L.T.} is a complicated expression involving products of 1, (n2 + b2 )0

2 and and is given in Appendix II[.C for completeness. We remark that

erms in N.L.T.} have been manipulated by substitution using the linearized

elationships, in analogous form to the treatment of higher order terms in the

oussinesq wave formulation. Equation (2.15) is in the form of a second order

yperboitc equation for a general wave motion in {x,y,t}; however, {N.L.T.}

ontains components proportional to the third harmonic These terms are

liminated in the derivation of the evolution equations. An equation similar

o (2.15) has been given previously by Lii- and Tsay (1984) for the case of " -

rogressive waves.
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0

at parameter, it is clear that the linear equation governing the behavior of

parameter of 0 (e n ) will come from the variation of L2n with respect to that

Lrameter. Thus the linear equation governing 4I will be contributed by L2,

dile L4 will contribute the 0(r 3 ) terms in phase with

We now derive governing equations which are generally applicable to any

00mtion described by the potential (2.4a) L0 and L1 contribute nothing in this

pproximation. The linear wave equation is derived by first varying L2 with

espect to Tl1 , yielding

-1 -
g € , (2.9)

t

he free surface boundary condition. Varying L2 with respect to and

)erforrming a partial integration over the propagation space yields

z0
- VIh (i V'1h~ + 1i1 4 0 (2.10)
t " "

Uiminating n I between (2.9) and (2.10) and inserting the values of the

Lntegrals yields

A2 2t h (CCgVh ) + (W 2 k CCg,)l = 0 (2.11)
tt

ihich is the time dependent form of the mild slope equation of Berkhoff

41972). Here,

2
C = w/k ; Cg = aw/k ; w =gktanhkh. (2.12)

Varying L4 with respect to ( 2 + b2) yields a free surface boundary

,ondition, which may be written as
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2+ 2 I + (h+n)(2 - y2)}(nt t t 

h21)  +..- 2 .

2
2 h h1)

S1,1 2 + 1,2hJ1 "h2 +  IYh n 2I

2 h )2

S 12,2 2 2 Vh 2 Vh2 + 2

2 z )2 3 4 z 2)2

+ a I I + 12 + ,2 (2.6)
I12 1,2 12 2,2 2

The integrals I are over the total depth and are defined in Appendix III.A.

The l's may be expanded about z=O in Taylor series according to

2 b2l, 2 , ( +2i
= I' + + + ( 2 '"} + {2n " '.

3+IV + O(E: (2.7).-

as shown in Appendix III.A. Substituting the expansions in (2.6), expanding

4the remaining appearances of n, and retaining terms to 0(e leads to the

expression

L = L0 + + 2 + L + .4L4  (2.8)

The individual coefficients Li are given in Appendix II.B. This ordering has "

also been utilized by Dysthe (1974) after averaging L over the phase function

according to Whitham's method. Serveral properties of (2.8) with respect to

the desired governing equations can be mentioned. Since variation with

respect to a dependent parameter will reduce the order of L by the order of
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f JL dx dt =0 (2.3)
t -x

where the integration is over the propagation space (x,y,t}.

Since we wish to study the spatial evolution of a time-independent wave

field, it is sufficient to choose forms for and n based on a slow-modulation

solution of the governing equations, as in Whitham (1967). Consequently, we

choose a wave steepness scale e and modulation scale u and propose a priori

that P-E2 . This assumption produces a mild slope approximation in which

bottom slope terms and nonlinear terms are isolated from each other, as in

Kirby and Dalrymple (1983). We choose * and n according to
0

= f 0 X,Z) (xt) + e 2 ff 2 (Ix,z)4 2 (2,t) + 4 (x,1t)-fY2 ( ix,t)dt}

(2.4 a)

= (x,t) + t + b2 (x_,t)} (2.4b)

Here, OPI)P,2, correspond to first and second order wavelike components,

4 is the potential for wave-induced mean flow, b2 represents the wave-induced

set-down, and 2is related to the Bernoulli constant. We remark that in a

partial standing wave Y2 cannot be trivially eliminated by choice of b2, and

that Y2, b2 and 40 may have fast variations as indicated. The quantities f"
2

and f2 are given by

20

f coshk(h+z) f cosh2k(h+z) h h(vx) (2.5)
coshkh 2 .4 . -

Substituting (2.4) in (2.1) and performing the integration results in the

express ion

49
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111.2 Derivation of the Equations Governing Wave Propagation

We wish to derive the equations governing the forward and backward moving -

wave components in a partial standing wave, where x is taken as the (positive)

direction of travel. Previous derivations of the nonlinear Schr6dinger

equation for forward scattered waves alone have relied on the WKB formulation

and a multiple scale expansion of the governing equations. However, a scheme

for providing coupled equations has not been devised using that approach.

Here, we will rely instead on a variational formulation using the Lagrangian

for irrotational motion of an inviscid fluid, given by Luke (1967). After

deriving equations for a general wave motion in two horizontal dimensions

(x,y) and time, the results will be specialized to the case of two waves

propagating in an anti-parallel direction. The method used here is further

discussed in Kirby (1983) and Kirby and Dalrymple (1984) in connection with

the problem of wave-current interaction.

[11.2.1 The Lagrangian Formulation and Governing Equations

The Lagrangian for irrotational motion is given by (Luke, 1967)

L = P 0{t + - (Vh4)- + -2 () + gz} dz (2.1)
-hz-. .. . .

Here, n(x,y,t) is the instantaneous position of the water surface with respect

to still water level z=0, and h(x,y) is the local water depth. The potential

(x,y,z,t) is related to the fluid velocity according to

u =}a ,s (2.2)

Further, Vh denotes a horizontal gradient vector {and subscrpts

denote differentiation. The corresponding variational principle is given by
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The results mentioned above are based on the assumption that the

reflected wave is absent or negligible. This assumption is certainly valid

locally in a slowly varying domain; however, a sizeable reflected component . '

may accumulate for waves propagating over long distances or over fairly abrupt

obstacles, such as those studied in Chapter II. Liu and Tsay (1983) have -

developed an iterative scheme based on coupled equations similar to those of

Radder (1979), and have shown that the coupled method for forward- and back-

scattered waves is capable of producing results in agreement with a finite

element solution of Berkhoff's equation, where the entire wavefield is

calculated simultaneously (Tsay and Liu (1982)).

In this study, we extend the results of Kirby and Dalrymple (1983) and "

Liu and Tsay (1983) to study the gradual reflection of Stokes waves by slow

depth variations. In addition, the results of Chapter II are incorporated in

order to allow for the application of the model to reflection from sand bars -

and related features. In Section 2, a derivation of the equations governing

the evolution of a slowly varying partial standing wave train are derived in

order to obtain the nonlinear coupling coefficients between incident and -.

reflected waves. Section 3 then presents a modification of the splitting

approach used in Chapter II, which produces the needed set of coupled

parabolic equations. In Section 4, we study a special case of waves normally

incident on topography varying in one direction, in order to evaluate the

effect of neglecting interaction with wave-induced currents which enter the

equations at third order. The parabolic approximation is then applied to the

study of a two-dimensional problem in Section 5.
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Chapter III

On the Gradual Reflection of Weakly-Nonlinear Stokes

Waves in Regions with Varying Topography

III. 1 Introduction

Various recent studies have explored the application of the parabolic

equation method to the problems of wave propagation in a slowly varying

domain. In the linear wave approximation, Berkhoff (1972) has provided a

second order wave equation governing the surface potential 4 (x,y) of a

harmonic wave, based on the assumption of modulation length scales smaller

than the wave steepness scale. Radder (1979) obtained coupled parabolic

equations for forward- and back-scattered waves, where it is assumed that both

waves travel at a small angle to a prespecified direction. A model for the

forward-scattered wave field alone is then obtained by neglecting the coupling -

terms. Berkhoff, Booij and Radder (1982) have provided a data set for wave

amplitude in an area of waves focussed by a submerged shoal, and have used the

data to test Radder's model. Additional results for forward-scattering alone

in a linear approximation have been provided by Liu and Mei (1976) and Tsay

and Liu (1982). Kirby and Dalrymple (1983) have extended the linear wave

approximation to include the effect of cubic nonlinearity for Stokes waves,

which leads to a nonlinear Schr'6dinger equation for the wave amplitude. Kirby

and Dalrymple (1984) have tested the nonlinear model in comparison to the data

set of Berkhoff, Booij and Radder and have shown a distinct improvement in

agreement between model and data in comparison to the results of Radder's

model. The nonLinear model has thus been shown to be a relevant addition to

the s tudy of combined refraction-diffraction.
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marked contrast to the case of edge waves on a plane beach, where the

shoreline singularity dominates wave amplification.

0

11.6. Conclusions

This chapter has provided a general wave equation for linear surface

waves in intermediate depth, which extends the range of applicability of the

mild-slope approximation by providing for relatively rapid undulations in

depth. Deviations from the mean, slowly varying depth must be small in

relative amplitude but may be of any arbitrary form. The present results thus

extend the previous analytic results for sinusoidal topography, and make it

possible to directly handle physically realistic, one- or two dimensional bed-

forms.

Although the results of Section 3 show that the small-amplitude theory is

able to predict physically realistic results for wave reflection over bed

undulations with amplitudes as large as 32 percent of the mean depth, it is

expected that some limitation to the present theory would occur with

increasingly higher bed forms. The limitations of the small amplitude theory

have been investigated by Dalrymple and Kirby (1984), using a boundary

integral approach for bottom undulations of arbitrary height. However, the

results of Section 5 indicate that fairly large bottom variations may be

treated with a reasonable degree of accuracy.

4

45



S

S

III

S

S

rl)

- S
w

cJ~
C

~C

I." -

0 * S
'-I

-
2 -
2

bfl
C

- 0

o -~

S
II
C

- 0 S* 0
0

c0

S

44 0

a . . 4 4 4 4 4 -



0

0

-: 0

U) U

(N U

-4

0

C ;-

.~ U)

0 U)

C

434



2.5-

=0.3

2.0-

0.5-

00

422



The symmetric and anti-symmetric cases correspond to even and odd mode numbers

n, respectively. As in the previous example, the wavenumber L along the ridge

must be > k, away from the ridge, while the presence of regions of constant

depth to either side of the ridge implies the existence of -utoff conditions

for the highest mode number.
0

Numerical results were obtained for the particular case of D/h1 = 0.3.

The curves representing the dispersion relation are given in Figure 11.9.

These results were obtained by varying L and using a fixed depth hl = 1, for

which k, = 1.2051. As expected, the number of trapped modes increases with

increasing L (increasing E*, above). The present computations are for a

fairly large amplitude bottom deviation; decreasing the amplitude D would have

the effect of decreasing the possible number of trapped modes at a fixed value

of L, due to the concurrent reduction in the * parameter.

Plots of the surface profiles for symmetric modes and anti-symmetric . --

modes are given in Figures ll.10a and ll.10b, respectively, for the case of

k L = 20. In contrast to the results of Mclver and Evans (1984), where the

depth at large x goes to infinity, it is seen that the maximum amplitude along . i

a given mode profile does not necessarily occur at the antinode in shallowest

* water, but instead typically occurs at an antinode nearer to the location of

the turning point for the profile in question. This effect was also noted by

Dolan (1983), who calculated edge wave modes over real profiles taken from the

Chesapeake Bay. The profiles studied by Dolan typically had fairly steep

foreshores and then were extremely flat out to the region of the caustic

(turning point) for the edge wave mode. In both that case and the pr it

case, the effect of shoaling between the line of symmetry (or shoreline) and

the region of the caustic is fairly mild, and the maximum amplification occurs

near the caustic due to the refractive singularity. These effects are in
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equivalently, 0 < D/h! < 0.4. This result indicates that the present small-

amplitude bottom variation theory is reasonably accurate in comparison to the

mild-slope theory for bottom variations on the order of 0-40% of the mean

depth, even when the deviation 6 is nearly constant and extends over a large

physical distance. It is therefore understandable that agreement between data

and theory was good for the D/h = 0.32 case in Section 3.

As a final example, we consider the waves trapped over a ridge with

continuous profile

SDcos(-nx/2L) xj4L

&(x) = ,(5.15)

0 jxj>L

and with h = constant. The dispersion relation and surface profiles are ...

obtained numerically using (5.2) and the formulation of Kirby et al, without

any coordinate stretching. Due to symmetry, the solution is obtained only

over the region 0 4 x 4 XM, with the boundary condition - -

*(XM) 0 (5.16)

imposed as an approximation of the requirement that ' + 0 as x + . The

resulting trapped waves may be symmetric or atitsymmetric about x = 0; the

approximate boundary conditions are:

'(0) = 0 ; anti-symmetric case

(5.17)

x(0) =0 ; symmetric case
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111.2.2 Explicit Results for Partial Standing Waves

We now wish to construct parabolic approximations for the amplitude of

two wave components of the same frequency w and with an angle of 1800 between

the assumed direction of the wavenumber vectors. We choose

+ +

--1 A(2wy,pt) E + +* B(ix,uy,ut) E + * (2.16)

where

= ei(kx-wt) ; E = ei(-k x - ot) (2. 17)

*and where * denotes the complex conjugate of the preceeding term. The

- propagation direction of *+ is oriented with the +x direction. Using this

splitting and the equations of the preceeding subsection, we obtain

A B
;+ E- + *+ 0(') (2.18)

-3iw 2 2 -3iw 2 2
-6 A E+ + 16B E +* + 0(u) (2.19) "

n k (cosh2kh -2) .{A 2 E2 + s2g 2 + r2
4 sinh 2kh + - g 2

k coshkh(cosh2kh+2" ,A2 2 2 2 + + O(w) (2.20)

8 E + * B E(
sinh kh

2 2,b2 k(JAI +IBI 2 ) kcosh 2kh (AB*E (2.21)

= 2 2sinh2kh 2sinh 2kh +

g+ in(2

t'- "53
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The third term in (2.21) corresponds to a rapid standing variation at cos(2kx)

corresponding to the envelope of the partial standing wave. Further, .

? -gh(2cosh2kh-1) JABS + *1 (2.22) . -

2 sinh 2kh +

which represents a spatially slowly varying oscillation at cos(2wt). We

remark that Y 2 may not be eliminated by choice of b2, 11 contrast to the

progressive wave problem. Elimination of (n2 + b2 ) between (2.13) and (2.14)

yields the forced wave equation for the O( 2 ) mean motion:

2 2 2 ak (A2 2
- h(ghVh02) = k -x - 2sinh 2kh + B)t

tt

gkcosh 2kh +(2.23)
2sinh 2kh (AB*E+E + *)t

The third term in the r.h.s. of (2.23) indicates that spatially fast (-2kx)

adjustments in b2 and 42 will occur in response to slow temporal changes in

the amplitude of or o • .

Substitution of (2.16) - (2.21) in the expression for N.L.T. yields the

result

2k
2  +.' -. "

N.L.T. = - w {k4 - k} 4
" 2wcosh 2kh 2t I

2

,~ + 2 2 1
k 2wcosh kh t

w k2 I(A2 + B2

- w2 km~l(IAl 2  + IBI 2 ) S)

_ 2k2 2(IfB2, + JAI2-

+ terms proporLional to F3  (2.24)
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In the following, a Fourier decomposition will eliminate terms aE3, which

would have been taken care of by inclusion of 3.' The coefficients D1 and D2

are given by

2
= osh 4kh + 8-2tanh kh (2.25)
D14 (2250

8sinh kh .

4 2
D2 = -(16 sinh kh + 4 tanh kh) (2.26)

8sinh 4kh

0
and have the deepwater asymptotes (kh+-) of I and -2, respectively, in

agreement with the results of Benney (1962) and Roskes (1976). Noting that

the l.h.s. of (2.15) is a linear operator on I' we then arrive at decoupled

equations for and 4l given by

+ -V.(CCgV0+) + ( 2 -k 2 CCg) + + - o k + itt 9 02 + x{0 2wcosh 2kh t }0 1 .
ttx t ,0

2k2.2 2)

-+ wk (IJAI2+ D2 BI 0 (2.27a).

2 1

2t 2 k ..-2
7- ~V(CCgV70 + (w2 -k2CC)* - 2w {k + k

tt gx 2ucosh kh t

+ w2k2(DIIBI2+ D2 1AI
2) 0 (2.27b)

2 1 . .2b.

The change in sign of the terms k ' is related to the different directions of
2x  7_0

propagation of and . Since D2 is always <0, while D is >0, it is

apparent that the presence of a reflected wave component 01 weakens the effect

of nonlinear self-interaction in the incident wave component. Parabolic 0

approximations governing A and B follow by neglecting time dependence for
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purely harmonic motion, and further by assuming that O(IAxx)<<O(kIAx) as in

Kirby and Dalrymple (1983). The decoupled parabolic equations are then given _ ....

by (following the method of Kirby and Dalrymple (1983))

2ikCCgAx + 2k(k-k0)CCA + i(kCCg)xA +

(Cgyy x 2k(DIk0 AC2 kC2 g2 2

+(CC Ay) - wk 2(DI1A12 + D 2 BI 2 + 2 ( )) A=O (2.28)

and

2ikCCB - 2k(k-k )CCgB + i(kCCg) B-gx 0 g gx

2k2 (  2 D2  2 2(,
-(CCgBy)y + w k (DIJB I + DAj -J A2)) B=0 (2.29)

where k0 is a constant wavenumber defining the reference phase function k0 x -

wt. These equations are sufficient for modelling the propagation of the

individual components and *I including their nonlinear interaction;

however, we have not yet achieved a coupling capable of predicting the

appearance of a gradually reflected component 1  This coupling is achieved

in the following section.

111.2.3 Effect of Reflected Wave and Mass Transport on the Nonlinear

Dispersion of the Incident Wave

The effect of reflected wave components and induced flow on the third

order dispersion of the incident wave may be examined explicitly in the case

of one directional propagation over topography varying only in the direction

of propagation. In this case, we may integrate (2.23) after neglecting time

dependence to obtain
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2 - A 2 2
- I 2 ) + Constant (2.30)

where the integration constant represents an externally imposed flow which is

set to zero. Assuming that IBI < JAI; i.e., that 4l represents a small wave

arising due to reflection, and taking R = jBJ/AJ to represent a reflection

coefficient, the governing equation for the incident wave may be written as

2ikCCgAx + i(kCC ) xA -
2k2 D*IA 2A 0 (2.31)

where

D* = D + D2R 2 _ . (1 - R2 (2.32)1 2 W2 -R

The last term in D* represents the effect of wave-induced return flow

balancing the shoreward mass flux of the waves. Since D2 < 0 for all kh, the

generation of a reflected component reduces the dispersive effect of

nonlinearity. Conversely, incrasing reflection tends to reduce the effect of

the wave-induced return current, as the mass flux of the reflected wave tends

to balance out the flux of the incident wave.

Figure 111.1 gives plots of D (kh, R) for a range 0 < R < 1, with and

without current effects included. It is noted that, for all reasonably small

values of kh, the mean current has a noticable effect on D , with the effect 9

becoming pronounced for kh < 4. It is also apparent that the reflected wave

can act to entire cancel the amplitude dispersion of the incident wave, with

0 the critical value being given by

D 1/2
D

Rc (2.33)

D)w 2 h 2)
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Neglecting current effects, this becomes

1/2

(2.34)
2

which is defined for all kh and + 21/2 as kh + =. When current is included," - -

Rc is undefined for kh < 0.649; the deepwater asymptotic value is

unaffected. A plot of Rc with and without currents is given in Figure

111.2. Since it is apparent that the effect of the wave induced flow can

significantly alter the coefficient of the nonlinear term for values of kh

small enough to give significant depth change effects over a short spatial

scale, we investigate the effect of retaining or dropping the current in a

one-dimensional example in Section 4, eliminating 02x as was done here. The

general problem of coupling between A, B and 2x in two dimensions is left to

a subsequent study.

111.2.4 Extension to the Case of Rapid Bed Undulations

The theory derived to this point is limited in a_ I1ication to waves

propagating over mild bed slopes, with slope parameter P presumed to be of

0() in order to separate nonlinear and bottom slope effects. Reflections

from such mild slopes are likely to be extremely weak in intermediate water

depth. Therefore, it is desirable to incorporate the rapid undulation, small

amplitude bed features in the manner of Chapter 11. We thus add a bed

amplitude parameter k6 to the list of 0(i) parameters. If we retain the

scaling assumptions used to this point in Chapter III terms like

6A, 6X A, etc.
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0

will still be of O(c ); the addition of this feature will not affect the

amplitude dispersion and interaction with the wave-induced mean flow at the

highest order of magnitude (3 ) retained here. We therefore consider the .0

extension of the linear wave Lagrangian formulation to incorporate the

features of Chapter II. The nonlinear terms are unaffected and may be

retained intact from Section 111.2.2.

Defining the total water depth as in Chapter II, we have

h'= h- 6 (2.35)

where h varies slowly with length scale v, and where 6 may vary rapidly but

has amplitude scale v. Following (2.1), the Lagrangian for the inviscid

motion may be written as

nl I (V 2 1 )2 +0
L = t + { + () + gz} dz (2.36)

2We now expand the Lagrangian about z = -h and retain the O(e contributing

to the linear motion.

2 0 (Vh)2 (Vh*)2

L - + nrtf + f - dz 2 'z=-"2z=O -h 2z2-h "•

2 2
0(*) ()

+ f 2 dz 2 6- (2.37)
-h 2-2 Lh

We now introduce

= f101X,Z) 0 1(z,t) (2.38)
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where f is given in (2.5). Making the substitutions and integrating gives

'2 2 2
2 cc (V w k CC 02 0

2 2

6 -. (2.39)

cosh 2kh 2

Taking variations and eliminating n leads to the modified wave equation

0(11.2. IA),

tt- h.'(CCgVh ) + ( 2_ R2 CC ) + 2 V (SVNh; 0(u 2
SV*gCg cosh 2 kh h" = ) (2.40)

The nonlinear model follows, to 0( 3), by adding the N.L.T. terms (2.24) to

the modified equation (2.40).

111.3 The Coupled Parabolic Eqnations

The desired set of coupled equations is derivable in aI lArge number of

ways (see McDaniel (1975), Corones (1975), Radder (1979) and Liu nd Tsay

(1983) for examples) involving the application of a spIltting Tmifrix to the

second order wave equation. We retain the added term for bed undulltions

derived above for generality. Restricting attention t harmoni- wav"; ind

substituting

-1 e-ibat (3. " 1).-
t• t

into (2.15), we write

^-I 2' ' (3.-
+y .¥ + N 4  3( x x +  p  x (  x  Y ).
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where, to leading order

P = CCg - k (3.3a) 0

p = (CCg) l 1 + 4 (") (] + 0(. (3.3b)

g

'= gk/4wcosh 2kh (3.3c) 0
2{ 4-) 6) * + 2 (CCg y)y J (6y)y

k2 {) g k2CC g

g

(3.3d)

cc2 2 wk

and

22 - 2 + D 2 2 (3.4b)
g

We remark that the pseudo-operator y is constructed without isolating a

refraction factor k/ko, alleviating the need for making the assumption that

2

0

when performing the binomial expansion of the pseudo-operator (Liu and Tsay,

1983). This assumption may be violatc' drastically for waves propagating

throuh regions with large depth variations.

We follow the heuristic scheme of Chapter II for obtaining the parabolic

eqiations. Let

0= iy + F + aN (3.6a)

" -tyO- F + 3N2 (3.6b)
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where F, 3, and 0 are undetermined. a and B are chosen so as to eliminate

nonlinear terms from the coupling term F, leading to equations of the form of

(2.28-29). Repeated substitution of (3.6) in (3.2) then leads to

a = - 0 = -i/2k (3.7a)

and 0

(kCCC
F = - 2CC(. b

g g

where we have retained terms only to 0(p,e) and have used the fact that

CCg {N , N9  I x ikCCg IN ? - N2 -}^  (3.8a)

and

(CC) IN + , N2 ? (3,) (3.8b)

The resulting coupled parabolic equations are then given by

+ + i ( cc " )(+ + 21
-ikx 2kYg gyy 2kCCg x 2k C y

9 ° 9 9
g- g

' - i ^'+ S
C (+ + Tk Nl 0 (3.9)

and

4 x -k~ i (cc ) (kC x4 - 21k (%);- 2i ) (6y

+ik 2kCC (CCg y 2kCC -1k--g g g g -"

- - N2  = 0 (3.10)
g

Equations of the form (2.28-29) are recovered by making the substitutions

ikox -ikox
+ = Ae 0 = Be 0(3.11)

yielding
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2IkCCA + 2k(k-ko) CCgA + (CCA ) + 2wQ' [2kd - i]A 4-a'-(6A
gx g gy y k y y

-21kox .CC N A {i(kC ) 21ws''5 Be 0 (.2
i(kCCg) A - Ngx x(3.12)

nd

4wQ2 ikCCgBx - 2k(k-ko) CCgB - (CCgBy) - 2u&V [2kS + ix] B + k (6By)

+ i(kCCg) x B + CCgN2B ={i(kCCg)x - 2iWQ 6 x} Ae (3.13)

Squations (3.12-13) may be used in an iterative fashion to calculate the

evolution of the amplitude envelopes A and B. The numerical scheme used in

subsequent sections is based on the Crank-Nicolson method, with each equation

being solved for the entire domain using the scheme of Yue and Mei (1980),

after which iteration between the equations is performed according to the

method provided by Liu and Tsay (1983). Details are thus omitted.

111.4 Effect of Mass Transport Terms on Nonlinear Reflection: Normal

Incidence on I-D Topograpy

As a test of the effect of nonlinearity on the partial reflection

process, we first study the reflection of normally incident waves propagating

over a continuous, one-dimensional region of slowly varying depth. This

reduction of the problem allows for the direct integration of the forced wave

equation (2.23) as given by (2.30). 'qeglect of the integration constant

forces the wave induced return flow to balance the net mass transport, and is
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0

thus consistent with the situation of wave-tank expei imenLs. Further, we

remark that the generation of free-long waves would be absent from the problem

due to the lack of wave-like modulations in the amplitude envelopes.

The choice of computational examples which exhibit significant reflection

over a short spatial scale is difficult in this problem, since water depth

would have to be relatively shallow in order for an isolated topographic

variation with an extent of one to two wavelengths to have a significant

effect on the incident wave. For example, the numerical example chosen by Liu

and Tsay (1983) was run for a water depth at infinity corresponding to

kh=0.42. The range of admissible waveheights yielding an Ursell parameter of

a permissible size for the Stokes theory to be valid is thus severely .

constrained. Likewise, the linear transition studies by Booij (1983) covered

a range of depths corresponding to 0.2<kh<0.6, again too small to be of

particular use.

For the purposes of this study we have chosen to consider the case of

reflection from an isolated patch of sinusoidally undulating topography as

studied recently by Davies and Heathershaw (1984) and Mei (1985) as well as in

Chapter 11.

The topography is given by

h ; x<O

h'(x) = hDsin(2;x/) O<x<nt

11 x>nZ (4.1)

where k is the ripple length and n the number of ripples. The topography is

illustrated in Figure 111.3.
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dimensional patch of ripples of finite extent in the x and y directions.

Ripples with length t are aligned with crests parallel to the y-axis. The

patch is symmetric about the x-axis with dimensions n9x2nX in x and y, where n

is the number of ripples as before. The topography is specified according to

Section 11.4, equation (4.16). Computations were run with 2k/X = 1, D/h, =

0.3 and a farfield relative depth khl = 1, giving hl = w with Z = 1. The

Ursell number Ur = (a/h1 )/(kh1 ) and wave steepness e ka are thus both given

by irA0 for the incident wave.

Results were shown for the case of n = 4 in Figures 111.7 and 111.8.

Figure 111.7 gives results for the linear case, with normalized amplitude

IA/A01 given in 7a, IB/A0 1 in 7b, and the total wave field in 
7c. In Figure

111.8, results are shown for the case of c = Ur = 0.2. A comparison of the

figures indicate some differences in the transmitted wave field over and

downwave of the ripple patch, with the amplitude downwave of the last ripple
"

being increased in the nonlinear case, indicating the greater tendency towards

diffraction effects due to nonlinearity. This result is consistent with the -

phenomenon of self-defocussing as demonstrated by Kirby and Dalrymple (1983),

and further is in agreement with Yue's (1980) results showing that diffraction

of waves into a shadowed region proceeds more quickly In the nonlinear case.

The reflected wave amplitudes are quite similar for both cases, with a minor

increase in peak amplitude at the upwave end of the ripple patch being noted

in the nonlinear case.

Comparisons of normalized amplitude for the total wave field along y = 0

and along x = 3U are given in Figures 111.9 a and b, respectively, for the

linear and nonlinear cases. Differences are largely confined to a reduction

in transmitted wave height downwave of the ripple patch in the nonlinear case,

as discussed above.
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2ga k
coskx cos { x+ t} (4.8)

g

which reduces to the usual stationary form at U+O. It is clear that the

stationary component cos(kx) is unaffected by the presence of U; the relation -

between the wave envelope and topography is thus unaltered.

The effect of nonlinearity is thus limited to the lengthening of the

incident wave (for small R) with respect to the topography at fixed W

(or k). For large 2k/X, the effect is a downshift of the maxima and minima of

R which increases with increasing e. It is remarked that, for large R, the

incident waves may be shortened by nonlinearity; the shift in the pattern of R .

would then be expected to be towards higher values of 2k/X.

In the present example, the large reflection coefficient at the peak 2k/X

causes a significant weakening of the nonlinear dispersion in the incident

wave on the upwave side of the ripple patch. Referring to Figure III.1, we .

see that a reflection coefficient of 0.6-0.7 would lead to an effective

nonlinear parameter D* with values in the neighborhood of 0. Nonlinearity

thus has little effect on the reflection process when reflection is strong;

this is born out by the result of little or no shift in peak value or location

of R for this example. This conclusion in partially supported by the

experimental results of Davies and Heathershaw, who saw little or no effect of .

varying wave steepness on peak reflection, up to the point of breaking in the

incident wave.

111.5 Two-dimensional Topography

In order to take advantage of the relatively strong reflections caused by

the undulating topography studied in the previous chapter, we construct a two-
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The curve for nonlinear reflection shown in Figure 111.5 is for the case

of no wave-induced current. It was found that the presence or absence of the

0
wave-induced flow had no significant effect on the reflection process; the

corresponding curve for reflection including mean flows is thus not

included. This result may be partially explained by considering a simplified

set of equations taken from (2.28 - 2.29); 9

WU
tax A =0 (4.3)

g
U1

iBx CC B =0 (4.4)x cc
g

where depth is constant and amplitude dispersion is neglected. The quantity U

may represent the wave-induced return flow or a small flow (<O(p)) imposed by

boundary conditions. Oscillatory solutions of constant amplitude are given by

{A(x), B(x)} - {a,be ik x (4.5)

where

k' = - kU/Cg (4.6)

so that

i[k(l U x wt]
+ ig g cc

S 2w +CC(4.7a)= 2w ae +cc

i[-k(1 + C x - wjt]
2w -- g be + c.C. (4.7b)2w b

For simplicity, b may be set equal to a; the resulting standing wave may be

written as

73

AD .. ..°.. . . . . . . . . . . . . .. . .



0.3 -2.2

0.2- -1.6

Ur kh

0.1- 1.0

00

05 1.0 1.5 2.0
2k/X

Figure 111.6. Ursell number Ur for the nonlinear reflection
example; c 0.2
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In Chapter II, a numerical solution to the linearized elliptic problem

was developed in order to compare to the analytic linear solution of Davies

and Heathershaw (1984). The elliptic solution was shown to provide an

accurate reproduction of the analytic results; comparisons with data were -

given above in Figures 11.2 and 11.3.

The theoretical results of Davies and Heathershaw were used as a check of

the iterative scheme (3.12-13) in its linearized form. Results for the cases

illustrated in Figures 11.3 and 11.4 were recomputed using the coupled

parabolic equations, using a grid spacing Ax=/20. The reflection

coefficients for both cases are shown in Figure 111.4. The peak reflection

coefficients R obtained using the parabolic model are slightly less than the

values predicted by the corrected theory of Davies and Heathershaw. For

2k/X>2.0 the number of points per incident wavelength drops below 20, and some

reduction in the reflection coefficient was noted. A further reduction in

grid spacing to Ax=/10 caused a reduction of the reflected wave amplitude at

2k/X=l of 6.6% for the case with n=l0. Therefore, the value of Ax=Z/20 was -

used for all subsequent runs.

We now use the nonlinear form of the parabolic equation to study the

reflection process. Tests were performed using the geometry of Figure II. 4a

(D/h1 = 0.16); results are presented in Figure 111.5 for incident wave

steepness E = kA0 = 0.2. A plot of Ursell number Ur = (Ao/h)/(kh)2 for this

case is given In Figure 111.6. The plot indicates that, for the chosen value

of c, results of the Stokes wave model are only roughly valid for the region

2k/X<l. For small values of 2k/X (large wavelength) it is anticipated that

the incident wave phase speed is overestimated. This would have the effect of

over emphasizing the differences between the linear and nonlinear reflection

curves in this range.
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Figure 111.9. Amplitude Jni/A0 for ripple patch.
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b) Amplitude along downwave transect xIZ =3

Figure 111.9. Continued
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The effect of diffraction in the present example may be estimated L i
simply. If we take the peak reflection along the centerline to be

approximately R = 0.6 from Figures 7 or 8 b), we conclude that the transmitted

amplitude downwave of the patch should be

2 1/2T (1-R 2 )  - 0.8

This value is in rough agreement with the linear result but underestimates the

nonlinear value of T = 0.9, again indicating the more rapid effects of

diffraction in the nonlinear case.

S

111.6 Discussion

In this study we have utilized a variational principal to develop a wave

equation governing the propagation of Stokes waves in a varying domain, after

which use is made of a splitting method to provide coupled equations for

forward and back-scattered components of an initially plane incident wave

propagating over uneven topography.

The restriction to Stokes waves and the resulting constraints on water -

depth relative to the incident wavelength made it difficult to develop

computational examples which describe a significant reflection process arising

over a short spatial scale. Under the mild-slope conditions, it is likely

that the gradual reflection process would be apparent over only fairly long

spatial scales. For the case of shallower water, the Stokes wave formulation

is no longer valid, and recourse must be made to appropriate equations such as

the Boussinesq equations. The parabolic approximation for a spectrum of

steady (in time) forward-scattered waves in the shallow water regime has been

provided by Liu, Yoon and Kirby (1985); the development of a model for partial

. ---. ..-. ".-

84 . .

~ .% " -°" -



reflection in this case will be the subject of a further investigation. Also

of special interest is the case where the incident wave amplitude is modulated

in space and time. The treatment of "groupy" waves is not approachable using

the reduced wave equation of Section 111.3; however, the general time . . -

dependent model (2.15) may form the basis of such an approach, after further

accounting for terms arising due to possible fast modulations of 0(c) in the

amplitude functions.

*40
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Appendix II1.A Integrals of f functions

The integrals t are defined as the integral over total depth of an

integrand f, and may be expanded according to

n 0
I =Jfdz I fdz +nfl 0 + + f ~ l +~ n f -ZO

-h -h 2 6

=It + nd'' + n21''' + + ... (A.1)

Substitution of the expansion (2.4b) for n yields (2.7). The individual

integrals and required components are given by

n
I f dz w i'=, ' =w/2g, I1  k k/6 (A.2)

-h

= Jl f2 tz W i c/, =,i' w/g (A.3)

z2 z' 2 2 ' 4 2 2' 2
-h f dz ; z 1, (w ~k cc)/gI"~ /g , I'; = k w /g

(A.4).

fl coshh i'' =cosh2kh =2kcoshkh (A5
12  f2 dz 2~ 3 '24 '2 3

-h ksinh kh sinh kh sinh kh

11, = ffdz ; 1 ~ cs~h(A.6)
-h ' sinh kh
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I J f z2 4k 2 /s inh 2 kh (A. 7)
,2 -h z z

2sinh2kh 2
22= f fdz I ' -h22 2sihk sinh kh C C (A.8)

I j f 2~ ;z - 2ksinh2kh chkh- I}(A)
2,2 _h 2z 2,2 sinh 8kh gcs~h C9 C A9
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Appendix III.B Components of the primitive Lagrangian L

The Lagrangian L is expanded as a series in powers of the wave steepness

parameter e without regard to the relative size of the modulation parameter

Pi. After expanding ni and the integrals I in (2.6), the individual components

of L in (2.8) are given by (after dividing out the constant density p) - .

2
ghL

1 I 12O (B.1,2)

2S

2 )2 -2

2 -2 +n + 1 1 V4 1 2t 1 22
1, 2t+ - 2) I2

(B.3)

2 2-L gn(n +b) (n~ ~ b) 1  + I' 1  + W 2 Y

t

h
212 + 'I:I 1 n 2 + 1,2 h 1 0h2 1 VhCh

-2

Iz 11 I (B.4)
1,1 2 1,2 2
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2S

_g(n 2 + b 2  1v 3-'r1

2 + ~2

+++ 2- + 2h
("2 b2 2 11(12

22t 2 1 2t 12 2

2 V 12 (Vh4jz)
2  h0)

I+ In 2 + I122 2 +h 2 + I 1,2nlVh~l*Vh2

ZV 2 12

T)00 *O I02V2' 11,1 (n2 b 2  2 1,1 "1 2

-2

z 2) Iz:;n 2 Y 2 b2 (B.5)
2:2 2 1,2 12 2
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Appendix I11.0. General Form for 0( 3) term in wave equation

The term (N.L.T.) in (2. 15) is given here in terms of *l '(71 2 + b 2)

and 4.The first order surface n1 has been eliminated through use of (2.9).

Further, we have made use of the fact that .--

2- 2-
'(1'$'2)tt (-W j 4w ;2) + O(P) (0.1)

2S

Vh( P,2) (-k 4,, -4k ' 2 + O(11) (C.2)

for both progressive and standing waves. {N.L.T.} is then given by - --

2~ 2 2
gk2w k - )2 4 2 -2

(N.L.T.1 coh2= (nI2 + b2) + 92 t k tanh kh(4 1)

-k tsh nh2k 2

-ktnhih - 8kh t

2 2
+ -2 tnhhn +4k (1 2sinh kh)

t sinh kh

ktanh kh2
* g (V h;1) i ;I

t

07

ktanhkh -2 cosh2kh --
+ IgV h 012 + b 2  + g V h($l h 4kh J~2 h Vi

tsinh kh t

where we have substituted for all I values from Appendix I1.A.
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