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ABSTRACT

This report consists of two parts. In Part |, & ties dependent forw of
the reduced wave equacion of Berkhoff {s developed for the case of wvaves
propagating over a bed consisting of ripples superimposed on an othervise
slowly varying mean depth vhich sattefies che utld slope assveption. The
ripples are assumed to have wavelengths on the order of the surface vave
length bdut amplitudes which scale as a small parameter along vwith the bhotton
slope. The theory is vertfied by showing that (t reduces to the case aof plane
waves propagating over a one~dimensional, (nfilnite patch of sinusotdasl
ripples, studled recently by Davies and Hesthershav and Metl. Ue then study
two cases of interest; formulation and use of the coupled paradolic equations
for propagation over patches of arbitrary form in order to study wave
reflection, and propagation of trapped waves along 3n infinite ripple patch.

In the second part, we use the results of Part | to extend the results
for weakly-nonlinear wave propagation to the case of partial reflection froe
bottoms with mild-sloping mean depth with superposed small asplitude

undulat{ions.
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Chapter 1

Summary

Wave models for waves propagating over uneven topography have undergone a
great deal of development in the recent past, with the ma .rity of work
centered on the extreme examples of very abrupt topography, where the bottom
may be reasonably schematized by sections of constant depth separated by
discontinuities, and of topography with very mild hottom slopes, where the
depth is assumed to change very slowly over the space of a wavelength.
Although some of the work encompassed by the ongoing studies under the present
ONR support have dealt with the first example (Kirby and Dalrymple, 1983a,
plus continuing work on trenches and dredged channels with currents), most of
the effort in the present contract period has dealt with the mild-slope
extreme, where the basic formulations are either in the form of reduced wave
equations (Berkhoff, 1972; Xirby, 1984) or WKB formulations giving evolution
equations for the slowly varying domain (Chu and Mei, 1970; Djordjevic and
Redekopp, 1978).

This report presents two theoretical results which extend the
capabilities for modelling waves in shallow water. Chapter II presents a
linear, reduced wave equation which is applicable to the case of waves
propagating over bottom undulations which are small in amplitude but which may
have length scales on the order of the surface wavelength. This formulation
extends the basic mild-slope equation to the case of abrupt bars or similar
topography resting on an otherwise mildly sloping bottom. Comparisons to
previous theoretical and experimental results are given.

In Chapter III, the results of Chapter II are combined together with the

coupled forward—- and backward-scattered wave formulation of Liu and Tsay




(1983) and the perturbation method based on a Lagrangian formulation (Kirby,
1983) in order to develop a model for the gradual reflection of weakly
nonlinear Stokes waves. Numerical results are given for several examples

involving waves propagating in one and two dimensions.
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Chapter 11

A General Wave Equation for Waves over Rippled Beds

.l Introduction

The problem of reflection of surface waves by patches of large bottom
dulations has received an increasing amount of attention recently, due to
is mechanism's possible lmportance in the development of shore-parallel
rs. Davies and Heathershaw (1984) and Mei (1984) have recently studied the
se of reflection from sinusoidal topography and have provided analytic
‘eatments which elucidate the mechanism of a resonant Bragg reflection at the
yint where the wavelength of the bottom undulation is one half the wavelength
! the surface wave. The analytic results of both studies are seen to agree
i1ite well with the laboratory data of Davies and Heathershaw (1984,
riginally presented by Heathershaw, 1982). Based on the analytic and
xperimental results, Mel suggests that reflection of waves from an initially
solated bar (such as a break-point bar formed at the outer edge of the
urfzone) may be sufficient to induce the formation of bars further offshore
f the initial bar.

The analytic results presented to date illustrate the major features to
e expected when studylng reflection from a system of bars. However, they are
oo limited in scope to provide a direct treatment in the case of natural bed
orms varying arbitrarily in two horizontal directions. For this reason, the
resent sltudy concentrates on the development of a general wave equation which
s applicable to linear surface waves in intermediate or shallow water
epths. The resulting equation is similar in spirit to the reduced wave
quation of Berkhnff (1972), but extends the usual mild-slope approximation to
nclude rapldly-varying, small-amplitude deviations from the slowly-varying

ean depth.
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After deriving the general equation f{n Section 2, we consider the

rorrespondence between the present results and those of Mel (1984) {n .

L
Section 3. A simple numerical scheme 13 then useld to solve the reduced wave
equation for the case of reflection uver one-dimenstlonal topographies.

In Section 4, we apply a splitting method {2 order to reduce the elliptic ;
form to two coupled parabolic equatlions for forvward and hackscattered waves. "
The resulting equations for amplitude of the forward and hacaward propagating
waves extend the results of Mel to the case of arbitrary topographi.c - .
variations and include possible diffraction effects.

Finally, in Section 5 we consider the possibly interesting case of
trapped waves propagating along a ripple patch. The problem {3 developed s o
an eigenvalue problem for the wavelength along the patch, which {s thea soalved
numerically for the case of arbitrary topography, following the method of
Kirby, Dalrymple and Liu (1981). .
II.2 Derivation of Lhe Wave Equation

The depth-integrated wave equation for monochromatic, linear waves .‘
propagating over small-amplitude bed undulations may be formulated following
either a variant of the Green's formula method of Smith and Sprinks (1975) or
Liu (1983), or by using the Lagrangian formulation of Kirby (1984). Here the °
Green’'s formula approach is utilized; indications of how to proceed in the "A
Lagrangfan approach are included at the end of the section. :i:t

Let h'(x), x = {x,y} denote the total still water depth, and let ';?

h' = h(:f) ~ 5(5) (2.1)

where h{x) Ils a slowly varyliag depth satisfying the mild-slope assumption.

ol adh ah ol




Unfortunately, no laboratory data exists to test these hypotheses;
rification of the present results and conjectures thus require further

dependent effort.

4 Coupled Parabolic Equations for Forward and Back-scattered Waves

We now consider the development of coupled parabolic equations for
rward and back-scattered waves, following the results of Radder (1979) and
u and Tsay (1983).
'sults of Mei (1984) (as in 3.5 and 3.6) to cover cases where § varies
‘bitrarily in x and y, and where y-variations in § or h may induce
ifficiently strong amplitude variations to warrant the introduction of
ffraction effects.
lrection and assume that deviations from this direction are small.

:glecting time dependence in the wave amplitude, (Z.11) may be written iIn

lLliptic form as

~

P

ere

ad where

Py = (CCO, -

XX

~ 2 ~ ~
+ px¢x + k CCg¢ + (CCg¢y)y -

cc

The goal is to obtain an extension to the refraction

We take x to correspond to a principal propagation

4w '8

4ol !

4.1) may be written as

§
X

v+ 0(k8)2

4aQ' "

e (80 = 0 (4e1)
(4.2)
(4.3)
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Figure II.5. Reflection from a patch with two Fourier components,
§ = I)lsin)\x + Dosin(15Ax/8), n=4. --=, D/h = 0.32,
Da2/h = 0.0; , Di/h = 0.0, D2/h = 0.32;
Dl/h = Dz/h = (0.226.
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Figure Il.4. Reflection from a patch with two Fourier components, STl
§ = Disimdx + D2sin2Xx, n = 4, -—= Di/h = 0.32, Dy/h = 0.} RPN
Dy1/h = 0., Do/h = 0.32; Di/h = Dp/h = 0.226. T e
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For case one, we use the data of Figure I1.3 and set m=2 so that the
second wave has half the wavelength of the first. Three situations are
plotted in Figure 1I.4; Dl/h = 0.32, D2/h = 0.0 (as in Figure 11.3); Dllh =
0.0, D2/h = 0.32 (all variance at the shorter wavelength); and DI/h = D2/h =
0.226 (variance evenly divided between each component). The composite bottom
is seen to produce the same zeroes in R, and a peak in R associated with
resonance with each component of the bottom is apparent. The two resonance
peaks remain separate and clearly distinguishable.

For the second case, we use n=4 and m=15/8, so that the second component
has 7 1/2 wavelengths in the ripple patch. Curves of R for the same three
distributions of ripple amplitudes as described above are given in Figure
II.5. Now the reflection coefficients associated with each component acting
separately have different zeroes. The two patterns together interact and
destroy the zeroes; the resulting curve of R varies smoothly over the range of
2k/2 conslidered. The peaks associated with resonant scattering from each
component are agailn distinct and strong.

The strength of resonant reflection from an organized barfield implies
that a broad spectrum contalning a band of wavelengths which are nearly or
exactly resonant with the bottom may experience fairly significant reduction
in energy density near the resonance wave number. Further, the reflected wave
field, which may assume the form of a fairly narrow spectral band around the
resonant wave number, may be much "groupier” than the incident wave field.
This groupiness may lead to significant forced long wave motions propagating
in the offshore direction. These motions would be similar in form to the
offshore propagating long wave caused by wave-group pumping of the surf zone
(studied recently by Symonds and Bowen, 1984, and Symonds, Huntley and Bowen,
1982), but do not requlire the incident wave field to be distinctly groupy in

nature.
21
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Figure T1I.3.

Reflection coefficient for waves normall- incident on a
sinusoidal patch. Case 2: D/h = 0.32, n : 4, numerical
results; ® lahboratory data from Davies and Heathershaw (1984)

20




PP '."--—.m- 3 . P Ty

1.0 T T l T T

o8- —

0]3) o —~
R

04 B —

0.2 -

%0 30

2k/ A

Figure 11.2. Reflection coefficient for waves normally incident on a
sinusoidal patch. Case 1: D/h = 0.16, n = 10, numerical
results; ® laboratory data from Davies and Heathershaw (1984)
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are given in Figures 11.2 and Il.3 for cases | and 2, respectively {(n
comparison to the laboratory data. Solutions were obtained using a grid
spacing of Ax = £/20 in order to obtain accurate results at large 2k/A. The
numerf{cal results are nearly indistinguishable from the analytic results of
Davies and Heathershaw (1984) with the exception of an occasional downshift (n
the positions of the peaks and zeroes of R by an amount 2k/A ~ 0.01. This
shift may be due to the neglect of nonpropagating waves at the ripple patch
edges as well as the numerical errors involved in the computation acheme. The
results are based on the same information as in Mei's approach, and compare
well to his predictions over the range of validity of the theory for near-
resonance.

Laboratory data from Davies and Heathershaw are included in Figures II.2
and 11.3 for comparison to the numerical results. Davies and Heathershaw
provide indications of how much the data at low R i3 contaminated by
reflections at the end of the wave channel; no effort has been made to correct
the data for this effect.

As a second example, we consider the reflection of waves from a bed

formed by the superposition of two Fourier components.

§ = Dlsinkx + DzsinmAx 0 <x S_Znnlk

We consider two cases; one where hoth Fourler components have an integral
number of wavelengths in the ripple patch, and the other where the ripple
patch terminates at a half wavelength for the second component. These cases
differ since, for case one, the zeroes of the reflection coefficient for each
component separately colncide; while for Lthe second case the zeroes for each

component do not coincide.

18




§ = Dsin(Ax) 0<{x<n2 (3.11)
K
where L = 2n/X {s the bed wavelength and n is the number of bed ripples. The
Bragg-scattering condition corresponds to 2k/A = 1. Equation (3.8) i{s written
in finite difference form, and radiating boundary conditions are applied 4.;
according to
Qx = - 1k($ - 2¢I) x, <0 (3.12) ‘
o
Ox = ik¢ X, > nd (3.13)
where T.
, . B
¢I = ei x (3.14) IR
is the incident wave of unit amplitude. The resultiag tridiagonal matrix 1is :bv
inverted using a double-sweep algorithm. .i;ifﬂﬁ
We first consider the experimental results of Davies and Heathershaw and
compare numerical results to the cases
l. n=10 , D/h = 0.16 R
2 n= 4 , D/h=0.32 |

Computed results for reflection coefficient R corresponding to a reflected

wave

-1k
= Re x

.........




Mei. All of Mei's subsequent results may be obtained from (2.11) following
this procedure and his assumptions. .
o
For later use, we define an unscaled frequency-like term Q' according to
2, = 2' (kD) (3.7) B
- ©
where ' ~ 0 (1). Q' will be advantageous in the general case since {t {s not
dependent on the geometry of the undulations. (Note that ' may still be s
slowly varying function of the mean depth.) R
L
IT.3.2 One-Dimensional Reflection from a Ripple Patch
We now test the reduced, elliptic form of (2.11) for the case of waves .
®
normally incident on a finite ripple patch. Variations in the y-direction are ‘
neglected; the resulting problem is equivalent to that studied by Davies and ':\-'
Heathershaw 1if we restrict attention to sinusoidal undulations of constant T
. o
amplitude and constant mean depth h. After setting h = constant, (2.11) e
reduces to ;jﬁf'i;?
. R n' - A Bt
bt KO = 6(5)8e ) =0 (3.8)
g -
where
®
~ - -iwt o .
¢ = 9(x) e , (3.9) -
Q' 1s defined by L
. @
Qr - — 8K — (3.10) -
4w coshkh
following (3.7), and where we have neglected time dependence in the wave A
([ ]

amplitude. For the case of sinusoidal bhed osciilations, we may take

16
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We consider an incident wave

= - %% A(x,t) et (kxut)

(3.’)
and reflected wave
~—~ i i(-k t
§ = - B(x,t) e (“kx-we) (3.2)

where A and B are slowly varying functions of x and t. The conditions for

resonant Bragg- scattering are satisfied when the bottom undulation has a

wavelengthk of one-half the surface wavelength, or

A= 2k (3.3)
il Employing this assumption, we proceed by assuming that derivatives of A and B
' are O(kS) in comparison to A and B and keep terms only to O(ké). Defining
2
‘l Qo - 8kD_ (3.4)
b coshzkh
and collecting terms of like powers in eikx’ we obtain
A+ CA = - 128 (3.5)
;- o
: B, — Cng = -1 OA (3.6)

r‘ 'l' n 'u‘_‘ _' N

which is a special case of the results of Mei, neglecting mean hoLtom slope

and oblique angle of {incidence. Solutions of (3.5) and (3.6) in relation to

the experimental results of Davies and Heathershaw are discussed in detafl by

15
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n
L[ {»
-h!

1 2 1 2
PO (e gz} dz

and then expanding the integral about z = - h., Equations (2.10) and (2.11)
follow after collecting terms of O(ka)2 and partially integrating the

variation of the integral of L over the propagation space, as in Kirby (1984).

II.3 Correspondence to Previous Results

In order to demonstrate the completeness and generality of the wave
equation (2.11), we first consider a reduction of the equation to the coupled
evolution equations of Mei (1984) for resonant Bragg-scattering by a finite
patch of ripples. We then employ a finite difference form of (2.11), after
neglecting time dependence, to study the one-dimensional (x only) reflection
for a range of incident wavelengths, and compare our results to the data

presented by Davies and Heathershaw (1984).

II.3.1 Resonant Bragg-scattering

Consider the particular example, studied by Davies and Heathershaw (1984)
and Mel (1984), of waves propagating normally over a ripple patch extending

uniformly to + = in y. Depth h 1s taken to be constant, while § i{s given by
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0 0 0
J‘_h fa, dz - J_hg £, dz = (to, - ofz]_h (2.9)

The integrals are manipulated to finally obtain

OLL Vh (CCthQ) + (w k CCSQ) + gf lhvh (6Vh.)

0
2 -~ ~
+ g f_h €V € dzo + gfY -9, h lho

-~ 2 ~
+ nghf-Vh6 lh¢ + g8(fV, ) 1“@

+ 2gsfvhfovh$ |h =0 (2.10)

where C = w/k and C, = d3w/3k. The last five terms are either proportional to

g
(th)2 or 6th, and are thus second order in the small parameter. Neglecting

them and substituting for f(z = ~ h) then gives

) -V «(CC V. ¢) + (W = k“CC )9 + —E vy «(8v. &)
ee T Y (GG, g ool B Th

= O(ké)2 (2.11)

Equation (2.11) governs the value of the potential at the free surface for an
arbitrary wave motion. Neglecting the term in § yields a time dependent form
of Berkhoff's (1972) equation for the slowly varylng boltom alone.

This completes the derivation using the Green's identity method. The
Lagrangian formulation proceeds by writing the integral of the tontal pressuro

over the local depth




Figure II.l. Definition of depth components
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th/kh <1 ’ Vh = {3/3x , 3/dy} (2.2)

6(x) represents rapid undulations of the depth about the mean level, as
indicated in Figure Il.1. We consider the problem to be linearized {n wave
amplitude but retain first order terms in the bed undulation smplitude. We

assume
0(V4,h/kh) ~ 0(k8) << 1 (2.3)

Linearizing the free surface boundary conditions and expanding the bottom

boundary condition about z = -~ h, we obtain to 0(k§)

V:¢ + ¢zz =0 ; - h.ﬁ z<0 (2.4)
S T 8,0 5 z2=0 (2.5)
¢z= - vhh-vh¢ + Vh-(évh¢) ; Z2 = =~ h (2.6)
To leading order, the solution to (2.4) -~ (2.6) may be expressed as
$(x,2z,t) = £(x,2) ;(5,t) + I non-propagating modes (2.7)

where f = cosh k(h+z)/cosh kh Is a slowly varying function of x, and where

w? = gk tanh kh (2.8)

locally, with 4 being the fixed angular frequency and k the wavenumber. We

then use Green's second identity to extract the propagating component of $;
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where, to leading order in (k8), p ~ is given by

pl = (ccg)‘l {1+ 4 (‘é—') &+ 0(k6)2} (4.5)
4

2
Next we denote an operator Y ¢ according to

-1
2 2 -1 ~1 4wl

= k“cC + cC P (s
Y ¢ 2P $ +p ( g¢y)y m ( oy)y

or

Y2¢

]
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~
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The corresponding pseudo-operator Y¢ 1is obtained by the expanding the square

root to give

y¢=k{(1+2(2—') «s)¢+—%—(cc

2 R
= (37 e}
g 2ce, k2 °C yy

¢ )., -
gyy g

+ 0(ké)? (4.7)
We now follow a simple scheme for obtaining the coupled parabolic -
~ 4
equations. Let ¢ be expressed as the sum of forward and backward propagating .

waves;

b =o +4 (4.8) K




We then assume the coupled equations:

@1 = 1v¢" + F(s¥,07)
(4.9)

- - -
9x="1Y0 "F(¢ o° )

where the coupling term F {s unknown. Repeated substitutfon of (4.9) in (4.4)

finally vields

(vp)
+ - X + -
F(d ,9 ) - p (v -9¢) (4.10)
which may be expanded to give
(kCC )
+ - X Q' + -
F(3 ,0 ) = = { e - (Cg) O (4.11)

to leading order in (ké). The coupled equations in expanded form are given by

. ') 51 4t 4 =1 y
d = ik {1+ 2 (57) 6} o7 + Zge (ce o)y
g g
(kCC )
21 Q' + B
- (C ) (6¢y)y ke (¢ - ¢)
g g
Qr +_ -
g
i ar g .
b=tk {1+ 2 (5) 8b e - g (CC e )y
g g
(kCC )
2L (8Yy 547y 4 —BE (4% 47
+ 5 (Cg) (8e.), + 2k (¢~ ¢)

- (%—? Gx(¢+- b ) - (4.13)
7
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We introduce the complex amplitudes A,B according to
ik x L
ot =18, © [
U .
_ { -1k x ji;:
" = - _& Be . J-:.-'
w Seels
®
where k0 is a reference wavenumber. (4.12) and (4.13) becone
21kCC_ A_ + {2k (k-k ) €cC + 1i(kCC )
g X o £ g£°X
®
&uid !
+ 2uQ' [2k§ - 16 A+ (CC A - —— (8A
[ Bl (cc Ay = S (BA)),
-21k x o
= r - ' .
{1(k,cg)x 21w 5x} Be (4.14)
21kCCng + {- Zk(k-k ) ccg + i(kCCg)x “»
-2w0' [2kS + 18 B - (CCB + 8B L
( R (CC,B) + 57— (6B) RN
@
Zikox
= - ' .
{1(kCCg)x 21w ax} Ae (4.15)
The correspondence between the present equations and the results in '.
Section 3.1 may be seen by substituting for § using (3.11) and neglecting
terms with rapidly oscillating coefficients. Note that the equations
developed by Mel neglect diffraction effects as well as the coupling hetween °

the forward and backward propagating waves over Lhe slowly varying depth. The
present equationsg include these effects. Further, they reduce to a set of

equations equivalent to those of Liu and Tsay (1987) when § s neglected. ..’




In the following example, (4.14) ~ (4.15) are discretized according to
the Crank-Nicolson method. The solution technique is equivalent to that used
by Liu and Tsay; hence, the details are omitted here.

We construct a two—-dimensional patch of ripples of finite extent in the x
and y directions. Ripples with length £ are alligned with crests parallel to
the y-axis. The patch is symmetric about the x~axis and has overall
dimensions of n and 2n! in x and y, where n is the number of ripple

wavelengths. The topography is given by h = constant and

Dsin(Ax)cos(Ay/4n);
§(x,y) = |x{<nt/2, |y|<nt (4.16)

0 ; Ix{>nt/2, |y|>nt

The computational domain is given by -3 < x/2 < 3 and 0 < y/2 < 6. We
consider ripples similar to those of Figure II.3, with B/h = 0.32 and n=4.
Results were computed for the resonant case 2k/X = 1 and are plotted along
with the bottom contours in Figures Il.6a (for incident amplitude [A|) II.6b
(for reflected amplitude |[B|), and Figure II.6c (for the total wave field).
The present results were obtalned using four iterations of the forward-
backward calculation, which was sufficient to provide a reasonable degree of
convergence. As in Section 3, a grid spacing of Ax = Ay = A /20 was used.
Unfortunately, no laboratory data exists to test the two-dimensional model;
verification was limited to checking that results of the coupled parabolic

model are equivalent to results using the elliptic model for the one-

dimensional cases studied in Section 3.
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Figure I1.6.

a) Incident wave field |A/A,l

Amplitude contours with respect to incident wave amplitude;
waves propagating over two-dimensional ripple patch.
-—— bottom contnursg; — amplitude contours
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b) Reflected wave field |B/A,!

Figure I1.6. Continued
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c) Total wave field
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II.5 Waves Trapped Over Long Ripple Patches

As a final example, we consider the propagation of a trapped wave along a
ripple patch which extends to y = £ ®. This case has possible applications to

the nearshore zone, where waves may be directed onto a nearshore bar system by

reflection from headlands or coastal structures. This problem has been T

investigated previously in the context of the mild-slope approximation by

Lozano (1977); the present analysis is presumably applicable to steeper bar

systems than would be allowed for under the mild-slope assumption. Further, -
in the case of long coastally-~trapped waves, the bar system may serve as a

wave guide for trapped wave energy; Kirby g&_g}_(1981) have suggested that

this trapping may effectively stabilize the offshore distribution of nodes and

antinodes of infragravity edge waves, rendering the bar system less subject to

destructive effects of a slowly changing wave climate.

The general case of trapped wave motion over a variety of offshore AR

profiles may be handled in a manner similar to that provided by Kirby et al

(1981); we remark that this method has also been used recently by McIver and oS

Evans (1984) to study the waves trapped above a submerged horizontal cyliander ;'5'r:':n

located close to the water surface.
We denote L as the longshore (y) component of the wave number vector and
assume that h and 6 are functions of x only (no longshore variation in the

depth profile). Letting
- ig
$(x,y) = w(xde 7, (5.1)

we obtaln the second order ordinary differential equation governing Y(x);

4uQt'é
l;n.ﬂ'é X .
{ch - k }vxx * {(ch)x - k }Px
2 4 "2
v {2 - 1yee, + 2L 8y -0 (5.2)

.....
......




This then provides an eigenvalue problem for ¥ and 12 which must be
solved together with suitable boundary conditions. As a first example, we -
consider the simple case of a rectangular ridge of height D and width 2L
resting on a flat bottom of depth h;. The depth of water over the ridge 1is

given by ST

The geometry is shown in Figure II.7. This case is of interest because it may -
be solved analytically both by the present method as well as by using the mild
slope equation in its basic form (see Smith and Sprinks, 1975, for the
relevant formulation and matching conditions). 1In ad!ition, the shallow water -
limits of both solutions may be compared to the results presented by Mel
(1983, Section 4.6). This case then provides us with a means for evaluating
the approximate upper limit on D/hl’ which is determined by checking for
divergence of the solution for the present theory from the mild-slope theory
as D/h; becomes large.
For the case of constant depth hZ = h1 - D over the ridge and hl away i;:;j:'

from the ridge, we divide the fluid domain into three reglons and obtain

wii) + (k% - 12) w(Z) =0 H x > L (5.4a)

3, 2,2 (D _
o P &= =0 5 x<-L (5.4b) S

v
and A

aw(l)+ (k? - alz) ¢(l)

=0 ; -L< x<L (5.4c)
XX

where k; 1is the wavenumber corresponding to hl and
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Figure II.7. Rectangular ridge for trapped wave example
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a=1-4 (%ij D (5.5a)

g
2k h h
11 2
=] - (1 - ——J . (5.5b)
nlbinthlhl hl

In order for trapped waves to exist, solutions must be exponentially decaying
2 2

away from the ridge in regions 2 and 3. This requires that & > kl while a

separate condition on w(l) implies that 12 < k?/a. The solutions for each

region are given by

9(2) o ppm m(x-L) (5.6a)

¢(1) - Ceikx + De—i)\x (5-6C)
where A, B, C, D are arbitrary constants,

1/2

m=0" -k >0, (5.7)

and
2 9 1/2
A= (kllu - 27) >0 (5.8)

Matching conditions are provided by considering the integral of the governing

equation across the jump discontinuity at the ridge boundary; we get
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MOSIN )
b1 2y
a2y
a2y )

x =1L
x = - L
x =1L
x = ~1L

(5.9a)

(5.9b)

(5.9¢)

(5.9d)

The solution to (5.6 - 5.9) may be found in a straightforward manner; the

notation of Mei (1983) is used to facilitate comparison to the shallow water

case. Trapped waves are given by the solutions (for £) of the relation

ag

(5+* - €2

1/2

cotg n even

-tan§ n odd

where n 1is the mode number of the trapped wave.

wm
#

£E*x

(kL) ((1 ~a)/a

) 1/2

{(k%/a -12% } L=2aL

1/2
) /

(5.10)

Here, § and &* are given by

(5.11)

(5.12)

The condition that £ < £* from (5.10) provides an upper cutoff limit for n; n

increases for increasing L or decreasing h, (increasing D).

Following Smith and Sprinks (1975), the mild-slope equation may be solved

1n analogous fashion.

defined coefficlients

The solutions are given by (5.10) with the newly




a = (ccg)Z/(CCg)1 (5.13a)
A= 0 - 22)1/2 (5.13b)
£ = {(kg - 22)1/2} L (5.13¢)
Ex = {(kg - kf)l/z} L (5.13d)

or the case of the present geometry, where the mild-slope equation is valid
'xcept across the jump discontinuities, we may regard (5.10) together with
5.13) as a “"correct” solution and compare those results to the present, small
jottom amplitude solution given by (5.10) together with (5.8 - 5.12).
Jomparing the various coefficients, we see that the present theory should
ipproximate the general depth, mild-slope theory well in regions where a from

1/2 (a from

$5.5) 1is a good approximation to a from (5.13a), and where kl/a
(5.5)) is fairly close to Ko.

Plots of the two a's and of the ratio (kllallz)/kz are given in Figures
[T.82 and b for a range of h2/hl and klhl values. Interestingly, the
leviations between the two theories are greatest in the intermediate depth
range and apparently decrease in deepwater. This result is due to the fact
that the depth over the step becomes effectively deep unless hy/h; is small,
rendering the step ineffective in trapping or reflecting waves. In shallow

Jater, both theories give solutions which are asymptotic to the results given

by Meif (1983). The asymptotic values of a and &* are

a = h2/h1
1/2 h, » 0 (5.14)
) 1/2 L
Ex = EEEJ L (1 - hz/hl)

The two theorles are essentially different in intermediate depths;

however, the results differ little over the range 0.6 < h2/h1 < 1.0, or,
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' e v e
 + b2=—¢—2-i§—$2+2l‘2 @, )2--5;—;—‘(vh$1)2—%—;}$f (2.13) o
t g t
‘ter eliminating N according to (2.9). Variation of LA with respect ,} ;i
) ¢é and partial integration yields a continuity equation ) :‘;d
(M, + b)), £V - (W) - évh . ($ltvh$1) AN (Iévh$2) =0 (2.14)
) L
1, ¥ b2) may be eliminated between (2.13) and (2.14) to yield a forced wave
quation for the quasi-steady motion ¢é after averagzing over the phase.
The equation containing the nonlinear modification to the linear wave °
quation (2.11) may be obtained by varying L2 + La together by N, and El and
liminating ny, yielding
" e
€ {51 - v, (cc vh$1) + (u)z ~ ke )51} = e3{N.L.T.} (2.15)
te g g
N.L.T.} is a complicated expression involving products of ;l’ (n2 + bz), -;fi.n-
2 and ?é, and is given in Appendix IIL.C for completeness. We remark that L
erms In {N.L.T.} have been manipulated by substitution using the linearized
elationships, in analogous form to the treatment of higher order terms in the °
oussinesq wave formulation. Equation (2.15) is in the form of a second order
yperbolic equation for a general wave motion in {x,y,t}; however, {N.L.T.} S
ontains components proportional to the third harmonic ;3. These terms are 1;.;

liminated in the derivation of the evolution equations. An equation similar

o (2.15) has been gziven previously hy Liu and Tsay (1984) for the case of

rogressive waves.




at parameter, it is clear that the linear equation governing the behavior of

parameter of 0(c™) will come from the variation of Ly, with respect to that
irameter. Thus the linear equation governing ;1 will be contributed by Lo,
1le L, will contribute the 0(63) terms in phase with 51'

We now derive governing equatfons which are generally applicable to any

otion described by the potential (2.4a) L, and L; contribute nothing in this
pproximation. The linear wave equation is derived by first varylng L, with

espect to Ny yielding
- 213 (2.9)
n, = z ¢I ’ .

‘he free surface boundary condition. Varying L, with respect to ¢l and

rerforming a partial integration over the propagation space yields

~ 2z o~
- - - N =
nlt Vh (Il,lvh¢l) + Il,l ¢l 0 (2.10)

iliminating ny between (2.9) and (2.10) and inserting the values of the

integrals ylelds
SV, - (CCT.3 )+ (P -KkXC ). =0 (2.11)
¢1 gh¢1) w g¢1 = .

vhich {s the time dependent form of the mild slope equation of Berkhoff

{1972). Here,

2
C =w/k ; Cg = dw/dk ; w =gktanhkh. (2.12)

R .
heded mfaa aa s

Varying L, with respect to (nz + b2) yields a free surface boundary

rondition, which may be written as

5t

~a

Faf s

- e e e e e e o . . . o .
R R . R K " K . . - . . . o . + o . .~ . - - . - - e ‘. » . 0 - - v . - . A v .
.« e CRE T TR T AR AP e, . M N oS T e e e
P P PR DI AL AR 0, T A TR P R I DAL I I N A I NI I, N . et e T
bonbsbiuiundinafonbtostunieahiniontoisintiintt ittt bt et bt ona




.8 ,2 2 ~ 2 ~ —
L=50"+n) +e1 ¢lt + € {12¢2t + (h+n)(¢»zt Y}

—

-
—
N
—

-
[\S
=3
—

—_ (2.6)

The integrals I are over the total depth and are defined in Appendix IIIL.A.

The I's may be expanded about z=0 in Taylor series according to
I =1'+e€en 1" + 62{(n +b,)I'' +n 21"'} + 53{2n QIS PODRRR
1 272 1 12 72

+ 0(54) (2.7)

+n 3IIV}

1
as shown in Appendix IIT.A. Substituting the expansions in (2.6), expanding

the remaining appearances of n, and retaining terms to 0(64) leads to the

expression

= 2 3 4
L=1g+ eL1 + €Ly + £7Ly + €7L, . (2.8)
The individual coefficients L; are given in Appendix I[ILI.B. This ordering has
also been utilized by Dysthe (1974) after averaging L over the phase function
according to Whitham's method. Serveral properties of (2.8) with respect to
the desired governing equations can be mentioned. Since variation with

respect to a dependent parameter will reduce the order of L by the order of

——y———w




§ [ [Ldgde =0 (2.3)
tx
where the Integration is over the propagation space {x,y,t}.

Since we wish to study the spatial evolution of a time-independent wave
field, it is sufficient to choose forms for ¢ and n based on a slow-modulation
solution of the governing equations, as in Whitham (1967). Consequently, we
choose a wave steepness scale € and modulation scale u and propose a priori
that u~82. This assumption produces a mild slope approximation Iin which
bottom slope terms and nonlinear terms are isolated from each other, as in

Kirby and Dalrymple (1983). We choose ¢ and n according to

¢ = Sfl(ui,z)$l(£,t) + sz{fz(ux,2)$2(3<_,t) k2 (z,ut)-sz(uz,t)dt}
(2.43)
N =eny (ut) + e, (mt) * by(xue)} (2.4b)

~

Here, ¢l,n1,$2,n2 correspond to first and second order wavelike components,

¢é 1s the potential for wave-induced mean flow, b, represents the wave-induced
set-down, and Yo is related to the Bernoulli constant. We remark that {n a
partial standing wave Yo cannot be trivially eliminated by choice of b2’ and
that Y, b2 and ¢2 may have fast variations as indicated. The quantities fl

and f, are given by

+z 5 +
. coshk(h+z) : £ = cosh2k(h+z) ; h = h(ux) (2.5)
1 coshkh 2 4 X
sinh kh

Substituting (2.4) in (2.1) and performing the integration results in the

expression
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III.2 Derivation of the Equations Governing Wave Propagation

We wish to derive the equations governing the forward and bhackward moving
wave components In a partial standing wave, where x is taken as the (positive)
direction of travel. Previous derivations of the nonlinear Schrédinger
equation for forward scattered waves alone have relied on the WKB formulation
and a multiple scale expansion of the governing equations. However, a scheme
for providing coupled equations has not been devised using that approach.
Here, we will rely instead on a variational formulation using the Lagrangian
for irrotational motion of an inviscid fluid, given by Luke (1967). After
deriving equations for a general wave motion in two horizontal dimensions
(x,y) and time, the results will be specialized to the case of two waves
propagating in an anti-parallel direction. The method used here is further
discussed in Kirby (1983) and Kirby and Dalrymple (1984) in connection with

the problem of wave-current interaction.

[IT.2.1 The Lagrangian Formulation and Governing Equations

The Lagranglan for irrotational motion is given by (Luke, 1967)

n 1 2 1 2
L=/ olo + 5007+ 500"+ gz} dz (2.1)
-h -

Here, n(x,y,t) is the instantaneous position of the water surface with respect
to still water level z=0, and h(x,y) is the local water depth. The potential

d(x,y,z,t) is related to the fluid velocity according to
u =96 , (2.2)

) L)
Further, v, denotes a horizontal zradient vector { %’ 5;—} and subscripts

denote differentiation. The corresponding variational principle is given by




The results mentioned above are based on the assumption that the
reflected wave is absent or negligible. This assumption is certainly valid
locally in a slowly varying domain; however, a sizeable reflected component
may accumulate for waves propagating over long distances or over fairly abrupt
obstacles, such as those studied in Chapter II. Liu and Tsay (1983) have
developed an iterative scheme based on coupled equations similar to those of
Radder (1979), and have shown that the coupled method for forward- and back-
scattered waves is capable of producing results in agreement with a finite
element solution of Berkhoff's equation, where the entire wavefield is
calculated simultaneously (Tsay and Liu (1982)).

In this study, we extend the results of Kirby and Dalrymple (1983) and
Liu and Tsay (1983) to study the gradual reflection of Stokes waves by slow
depth variations. In addition, the results of Chapter II are incorporated in
order to allow for the application of the model to reflection from sand bars
and related features. In Section 2, a derivation of the equations governing
the evolution of a slowly varying partial standing wave train are derived in
order to obtain the nonlinear coupling coefficients between incident and
reflected waves. Section 3 then presents a modification of the splitting
approach used in Chapter II, which produces the needed set of coupled
parabolic equations. In Section 4, we study a special case of waves normally
incident on topography varying in one direction, in order to evaluate the
effect of neglecting interaction with wave-induced currents which enter the
equations at third order. The parabolic approximation is then applied to the

study of a two-dimensional problem in Section 5.
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Chapter III

On the Gradual Reflection of Weakly-Nonlinear Stokes

Waves in Regions with Varying Topography

III.1 Introduction

Various recent studies have explored the application of the parabolic
equation method to the problems of wave propagation in a slowly varying
domain. In the linear wave approximation, Berkhoff (1972) has provided a
second order wave equation governing the surface potential ; (x,y) of a
harmonic wave, based on the assumption of modulation length scales smaller
than the wave steepness scale. Radder (1979) obtained coupled parabolic
equations for forward- and back-scattered waves, where it is assumed that both
waves travel at a small angle to a prespecified direction. A model for the
forward-scattered wave field alone is then obtained by neglecting the coupling
terms. Berkhoff, Booij and Radder (1982) have provided a data set for wave
amplitude in an area of waves focussed by a submerged shoal, and have used the
data to test Radder's model. Additional results for forward-scattering alone
in a linear approximation have been provided by Liu and Meif (1976) and Tsay
and Liu (1982). Kirby and Dalrymple (1983) have extended the linear wave
approximation to include the effect of cubic nonlinearity for Stokes waves,
which leads to a nonlinear Schrddinger equation for the wave amplitude. Kirby
and Dalrymple (1984) have tested the nonlinear model in comparison to the data
set of Berkhoff, Boolj and Radder and have shown a distinct improvement in
agreement bhetween model and data in comparison to the results of Radder's
model. The nonlinear model has thus been shown to be a relevant addition to

the study of combined refraction-diffraction.




marked contrast to the case of edge waves on a plane beach, where the

shoreline singularity dominates wave amplification.

Il.6. Conclusions

This chapter has provided a general wave equation for linear surface
waves in intermediate depth, which extends the range of applicability of the
mild-slope approximation by providing for relatively rapid undulations in
depth. Deviations from the mean, slowly varying depth must be small in
relative amplitude but may be of any arbitrary form. The present results thus
extend the previous analytic results for sinusoidal topography, and make it
possible to directly handle physically realistic, one- or two dimensional bed-
forms.

Although the results of Section 3 show that the small-amplitude theory 1is
able to predict physically realistic results for wave reflection over bed
undulations with amplitudes as large as 32 percent of the mean depth, it is
expected that some limitation to the present theory would occur with
increasingly higher bed forms. The limitations of the small amplitude theory
have been investigated by Dalrymple and Kirby (1984), using a boundary
integral approach for bottom undulations of arbitrary height. However, the
results of Section 5 indicate that fairly large bottom variations may be

treated with a reasonable degree of accuracy.
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The symmetric and anti-symmetric cases correspond to even and odd mode numbers
n, respectively. As in the previous example, the wavenumber £ along the ridge
must be > k| away from the ridge, while the presence of regions of constant
depth to either side of the ridge implies the existence of -~utoff conditions
for the highest mode number.

Numerical results were obtained for the particular case of D/hl = 0.3.
The curves representing the dispersion relation are given in Figure II.9.
These results were obtained by varying L and using a fixed depth h; = 1, for
which k| = 1.2051. As expected, the number of trapped modes increases with
increasing L (increasing £%*, above). The present computations are for a
falrly large amplitude bottom deviation; decreasing the amplitude D would have
the effect of decreasing the possible number of trapped modes at a fixed value
of L, due to the concurrent reduction in the &* parameter.

Plots of the surface profiles for symmetric modes and anti-symmetric
modes are given in Figures IT.10a and II.10b, respectively, for the case of
le = 20. In contrast to the results of McIver and Evans (1984), where the
depth at large x goes to infinity, it is seen that the maximum amplitude along
a given mode profile does not necessarily occur at the antinode in shallowest
water, but instead typically occurs at an antinode nearer to the location of
the turning point for the profile in question. This effect was also noted by
Dolan (1983), who calculated edge wave modes over real profiles taken from the
Chesapeake Bay. The profiles studied by Dolan typically had fairly steep
foreshores and then were extremely flat out to the region of the caustic
(turning point) for the edge wave mode. 1In hoth that case and the pr t
case, the effect of shoaling hetween the line of symmetry (or shoreline) and
the reglon of the caustic is fairly mild, and the maximum amplification occurs

near the caustic due to the refractive singularity. These effects are in
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equivalently, 0 < D/hl < 0.4. This result {ndficates that the present small-~

amplitude bottom varlation theory Ls reasonably accurate {n comparison to the

mild-slope theory for bottom variations on the order of 0-40% of the mean -
depth, even when the deviation § is nearly constant and extends over a large ';;f,f;
physical distance. It is therefore understandable that agreement between data ?l';
and theory was good for the D/h = 0.32 case in Section 3. L
As a final example, we consider the waves trapped over a ridge with
continuous profile - °
Dcos(mx/2L) [x[<L
§(x) = (5.15)
L
0 |x|>L .
and with h = constant. The dispersion relation and surface profiles are --'-:-;:'-'
obtained numerically using (5.2) and the formulation of Kirby et al, without R
any coordinate stretching. Due to symmetry, the solution is obtained only A_jtf
over the region 0 € x £ XM with the boundary condition - P
Vixy) = 0 (5.16) T
imposed as an approximation of the requirement that ¢y + 0 as x + ». The . ;
resulting trapped waves may be symmetric or antisymmetric about x = 0; the v
approximate boundary conditions are: _..L
N
$(0) = 0 ; anti-symmetric case e
(5.17)
¥(0) =0 ; symmetric case
40 S
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I11.2.2 Explicit Results for Partial Standing Waves

We now wish to construct parabolic approximations for the amplitude of
two wave components of the same frequency w and with an angle of 180° between

the assumed direction of the wavenumber vectors. We choose

~ + —-—
¢1 = ¢l + ¢1
-1 -1
= ESE'A(UX,HY,Ut) E+ +% EBE'B(ux,uy,ut) E_+ * (2.16)
where
E+ = ei(kX'wt) ; E_ = ei(_k){'mt) (2.17)

and where * denotes the complex conjugate of the preceeding term. The
propagation direction of ¢+ is oriented with the +x direction. Using this

splitting and the equations of the preceeding subsection, we obtain

A B
“I‘EE++*+§'E_+*+0(u) (2.18)
Y =3iw 2.2 -3iw 2 2
¢y = —1g AE  + * —[g BE_+ *+ 0() (2.19)
k ( 2kh -2) 2.2 2 9 Iee
_ k (coshZkh -2) | R -
"2 7 % “sioh Zkh {A%E] + B°ED + 4} ' ¢2t
- k coshkh(cosh2kh+2® {AZEZ . BZEZ . *} . 0G) (2.20)
8 3 + -
sinh "kh
2 2
Sl S k(IA]"+|B|") . kcosh_ 2kh 20 x4 %
b2 2 Jsimhzkh ¥ 2sinh 2kh CABXE EX + %) (2.21)
5 t
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The third term in (2.21) corresponds to a rapid standing variation at cos(2kx)

corresponding to the envelope of the partial standing wave. Further,

- -gh(2cosh2kh-1)

* 02
2 2 sion 2kn  UABEE_ + #} (2.22)

which represents a spatially slowly varying oscillation at cos(2wt). We
remark that Y, may not be eliminated by cholice of bz, {1 contrast to the
progressive wave problem. Elimination of (n; + bz) between (2.13) and (2.14)

ylelds the forced wave equation for the O(ez) mean motion:

b= 9 e (ghv ')—33(||A|2—k|312) - ik af? + IBIZ)
d’2tt p' {8V, 05) = 5 (k x ~ Zsinh 2kn © t
_ gkcosh 2kh
~ 2sinh 2kh (AB*E+E- + *)t (2.23)

The third term in the r.h.s. of (2.23) indicates that spatially fast (~2kx)
adjustments in b, and ¢é will occur in response to slow temporal changes in
the amplitude of ¢: or ¢I.

Substitution of (2.16) - (2.21) in the expression for N.L.T. yields the

result

k2

+
w {kby - =595} 0
X 2wecosh kh t

N.L.Ts =

k2 -
o ey s~ )]
X 2wcosh kh t

- wikn ([al%] + |B|2¢I)
+ 2 -

+ terms proportional to E3 (2.24)
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In the following, a Fourier decomposition will eliminate terms cE3, which

would have been taken care of by Ilnclusion of 33. The coefficients D1 and D2

are given by

2
D, = cosh 4kh +48—2tanh kh (2.25)
8sinh kh
-(16 inhakh + 4t nhzkh)
Dy = S " 2 (2.26)
8sinh kh

and have the deepwater asymptotes (kh*») of 1 and ~2, respectively, in
agreement with the results of Benney (1962) and Roskes (1976). Noting that
the l.h.s. of (2.15) is a linear operator omn ;1, we then arrive at decoupled

+ -
equations for ¢1 and ¢1 given by

2

. + 2.2 + - —k M
0] - vecce o)) + @ikPec) o) + w {k%x Zucosh 2kh “’ﬁt} *

tt

+ mzkz(D1|A|2+ D2|B|2) ¢+1 =0 (2.27a)
- - 2 2 - K2 -
) = 9. (CC 94 ) + (w -k CC)¢1—2u»{k¢é +——-———2—¢é}¢1
tt g g X 2w cosh kh t
+ w2k @ (81 % pylal®) o] = 0 (2.27b)

The change In sign of the terms k¢; is related to the different directions of
X

propagation of @t and ¢I. Since Dy is always <0, while Dl is >0, it is

apparent that the presence of a reflected wave component ¢I weakens the affect

of nonlinear self-interaction in the lncident wave component. Parabolic

approximations governing A and B follow by neglecting time dependence for

s e




purely harmonic motion, and further by assuming that O(IAxx|)<<0(k|Ax|) as 1in

Kirby and Dalrymple (1983). The decoupled parabolic equations are then given

by (following the method of Kirby and Dalrymple (1983))

Zikcchx + Zk(k—kO)CCgA + i(kCCg)xA +

2.2 2. 2,2 2
+(CC A ), — 0k (D1|A| + D7[B|T + = (¢i)x) A=0 (2.28)
and
21kCCyB, = Zc(k—k()CC B + 1(kCC,) B -
22 2. 2,2 2
-(CCB)y + 0k (D817 + DJA]" = = (43) ) B=0 (2.29)

where ko is a constant wavenumber defining the reference phase function kox -
wt. These equations are sufficient for modelling the propagation of the
individual components ¢: and ¢I including their nonlinear iateraction;
however, we have not yet achieved a coupling capable of predicting the
appearance of a gradually reflected component ¢I. This coupling is achieved

in the following section.

I1[.2.3 Effect of Reflected Wave and Mass Transport on the Nonlinear

Dispersion of the Incident Wave

The effect of reflected wave components and induced flow on the third
order dispersion of the Iincident wave may be examined explicitly in the case
of one directional propagation over topography varying only in the direction
of propagation. In this case, we may integrate (2.23) after neglecting time

dependence to obtain




-
»

k 2 2
%x = - 5+ ([a]” - |B|") + Constant (2.30)

where the Iintegration constant represents an externally imposed flow which is
set to zero. Assuming that |B| < |A[|; i.e., that ¢I represents a small wave
arising due to reflection, and taking R = |B|/|A| to represent a reflection

coefficient, the governing equation for the incident wave may be written as

2 2
24kCCgA, + 1(kCC) A - wAPD*|a%a = 0 (2.31)
where
De = D + DR - B (1 - &%) (2.32)
w h

The last term in Di represents the effect of wave-induced return flow
balancing the shoreward mass flux of the waves. Since Dy < 0 for all kh, the
generation of a reflected component reduces the dispersive effect of
nonlinearity. Conversely, incrasing reflection tends to reduce the effect of
the wave-induced return current, as the mass flux of the reflected wave tends
to balance out the flux of the incident wave,

Figure III.l gives plots of D*(kh, R) for a range 0 < R < 1, with and
without current effects included. It is noted that, for all reasonably small
values of kh, the mean current has a noticable effect on D*, with the effect
becoming pronounced for kh <~ 4. It is also apparent that the reflected wave
can act to entire cancel the amplitude dispersion of the incident wave, with

the critical value being given by

g 1/2
(w—“-zh D)
RC = EI__.__)_ (2. 33)
>—+ D
mzh 2
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Neglecting curreat effects, this becomes

1/2

o

1
2

R, = {- (2.34)

=]

1/2

which fs defined for all kh and + 2~ as kh + ®», When current is included,

Rc is undefined for kh < 0.649; the deepwater asymptotic value is
unaffected. A plot of R, with and without currents is given in Figure
II1.2. Since it is apparent that the effect of the wave induced flow can
significantly alter the coefficient of the nonlinear term for values of kh
small enough to give significant depth chaange effects over a short spatial
scale, we Investigate the effect of retaining or dropping the current in a
one-dimensional example in Section 4, eliminating ¢éx as was done here. The

general problem of coupling between A, B and ¢§x in two dimensions is left to

a subsequent study.

111.2.4 Extension to the Case of Rapid Bed Undulations

- et
- - . * “e - - " . - - - -
DR A SN B SCAEAERC AT AL AT

The theory derived to this point is limited in a; ;lication to waves
propagating over mild bed slopes, with slope parameter u presumed to be of
0(62) in order to separate nonlinear and bottom slope effects. Reflections
from such mild slopes are likely to be extremely weak in intermedlate water
depth. Therefore, it is desirable to incorporate the rapid undulation, small
amplitude bed features in the maanner of Chapter II. We thus add a bed
amplitude parameter k8 to the list of O(u) parameters. If we retain the

scaling assumptions used to this point in Chapter III terms like

§A, § A, etc.
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will still be of 0(83); the addition of this feature will not affect the
amplitude dispersion and interaction with the wave—induced mean flow at the
highest order of magnitude (83) retained here. We therefore consider the
extension of the linear wave Lagrangian formulation to Incorporate the
features of Chapter II. The nonlinear terms are unaffected and may be
retained intact from Section III.2.2.

Defining the total water depth as in Chapter II, we have
h* = h - 8§ (2.35)

where h varies slowly with length scale u, and where § may vary rapidly but
has amplitude scale u. Following (2.1), the Lagrangian for the inviscid
motion may be written as

n

L=f oo, +3 00 +30)°+ gl g (2.36)
=h!?

We now expand the Lagrangian about z — h and retain the 0(52) contributing

to the linear motion.

2 2
2 0 (v, ¢) V. 9)
z=0 -h z==h
2 2
0 () “,)
+ 5 dz - 2 8 <2037)
-h -h
We now introduce
¢ = £,0x,2) 3 (5,0) (2.38)
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where f; is given in (2.5). Making the substitutions and integrating gives

~. 2 2 2

cc v -k“cc_ ~2
L=y 5 + (—5) Fp$) + (m AR
2 t g’ 2 g ‘2
~ 2
6 Vu$)
- 5 (2.39)

Taking variations and eliminating n leads to the modified wave equation
(11.2.11),
3 - vh-(ccgvhS) r - kZCCg) 7+ —E—— 7 . (37.3) = 0w?)  (2.40)

2 h h

t cosh kh

The nonlinear model follows, to 0(83), by adding the N.L.T. terms (2.24) to

the modified equation (2.40).

ITI.3 The Coupled Parabolic Equations

The desired set of coupled equations 1{s derivable in a large number of
ways (see McDaniel (1975), Corones (1975), Radder (1979) and Liu ind Tsay
(1983) for examples) involving the application of a splitting matrix tn the
second order wave equation. We retain the added term for bed undalations

derived above for generality. Restricting attention to harmoni - waves and

substituting
~ “_,t
¢1=¢e“ (3. 1) e

into (2.15), we write

-1

~ ~ 2A ~ A~ -
@) + P b, )+ YD =N N (3.2) .
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where, to leading order

409 16
p =CCq - o (3.3a)
- - Qr 2
p = e (1w 4 () 8] 40w (3.3b)
g
Q' = gk/4wcosh’kh , (3.3¢)
22 2 Q! - 1 - 4 Q' N
Yo = k" {1+ 4 8) ¢+ (cco ), - (&) G ),
Cq kZCCg gyy 2 °C y'y
(3.34d)
w?k> 2 2,2
Ny = ., (DIIAI + D, |B|" + == ("é)x) , (3.4a)
and
2,2 2 2 2
-_— u ——
Ny = cc, (D) 1B17 + Dyla]” - 5 03),) (3.40)

We remark that the pseudo—operator Y is constructed without isolating a

refraction factor k/k;, alleviating the need for making the assumption that
- (89« (3.5)

when performing the binomial expansion of the pseudo-operator (Liu and Tsay,
1983)., This assumption may be violatc! drastically for waves propagating
through regions with large depth variations.

We follow the heuristic scheme of Chapter II for obtaining the parabolic

equations. Let

PN

° +
ox = {Y¢ + F + aNl¢ (3.6a)

®x = -{y¢ - F + BN2¢ (3.6h)
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where F, a, and B are undetermined. a and B8 arec chosen s0 as to eliminate
nonlinear terms from the coupling term F, leading to equations of the form of

(2.28~29). Repeated substitution of (3.6) in (3.2) then leads to

a=-8=-1/2 (3.7a)
and
(kccg)x Q! T =
F=-{ e - (Eg—) sx} b -9 ) (3.7b)

where we have retained terms only to O(u,e) and have used the fact that

~ - -
+ - -

+ 3
tkec, {N1¢ , = Ny b+ 0¢e”,m) (3.8a)

ne

and

~ ~

+ ~ 3
(ced, (Mo, Mo } = 0(e7,m) (3.8b)

The resulting coupled parabolic equations are then given by

) A ) (CC). .. A
b i + x okt Q1 S L 2L Q') vk
o, ~tke” - gee (cC o)+ g (00 ~e0) -2tk () s+ g (e (se)y
g g g g
Q! “+ - i “+
- (-C-g') s (67 =07 ) + oM =0 (3.9)
and
A ) A (kCC ) .. . A
e - Bx ;4 01y (37 L 2L AN (5
o+ ko ¥ g (CC o) - B (07 7) + 2uk (Cg) 8 - (Cg) (o)
Q! + - i “ -

Equations of the form (2.28-29) are recovered by making the substitutions

. ik x . -ik x
¢+=—:’E’=Ae N =_&“i) Be © (3.11)

*

ylelding

PR
R - . .« Tt - -
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4!
21kcchx + 2k(k-kg) cch + (cchy)y + 200" {2k - iéx]A e (6Ay)y

'S -Zikox
+ i(kCCg)x A - CCgNlA = {1(kccg)X - 210R'S } Be (3.12)

nd
21KCC.B, - Zk(k=kq) CC_B - (CC_B.). — 262’ [2k§ + 16 ] B + 21 (55 )
gx 0 g gyy = X k yy
Zikox
+ i(kCCg)x B + CC,NpB = {i(kccg)x - 200076} Ae (3.13)

iquations (3.12-13) may be used in an iterative fashion to calculate the
evolution of the amplitude envelopes A and B. The numerical scheme used in
subsequent sections is based on the Crank-Nicolson method, with each equation
being solved for the entire domain using the scheme of Yue and Mei (1980),
after which iteration between the equations is performed according to the

method provided by Liu and Tsay (1983). Details are thus omitted.

IIT.4 Effect of Mass Transport Terms on Nonlinear Reflection: Normal

Incidence on 1-D Topography

As a test of the effect of nonlinearity on the partial reflection
process, we first study the reflection of normally incident waves propagating
over a continuous, one-dimensional region of slowly varying depth. This
reduction of the problem allows for the direct integration of the forced wave
equation (2.23) as given by (2.30). Neglect of the integration constant

forces the wave induced return flow to balance the net mass transport, and is
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thus consistent with the situation of wave-tank experiments. Further, we
remark that the generation of free-long waves would be absent from the problem
due to the lack of wave-like modulations in the amplitude envelopes.

The choice of computational examples which exhibit significant reflection
over a short spatial scale is difficult in this problem, since water depth
would have to be relatively shallow in order for an isolated topographic
variation with an extent of one to two wavelengths to have a significant
effect on the incident wave. For example, the numerical example chosen by Liu
and Tsay (1983) was run for a water depth at infinity corresponding to
kh=0.42. The range of admissible waveheights yielding an Ursell parameter of
a permissible size for the Stokes theory to be valid is thus severely
constrained. Likewise, the linear transition studies by Booij (1983) covered
a range of depths corresponding to 0.2<kh<0.6, again too small to be of
particular use.

For the purposes of this study we have chosen to consider the case of
reflection from an isolated patch of sinusoidally undulating topography as
studied recently by Davies and Heathershaw (1984) and Mei (1985) as well as in
Chapter II.

The topography is given by

hl 5 x<0
h'(x) = hl—Dsin(Zﬂx/Q) : 0<x<nk
h ;. xond (4. 1)

1

where £ is the ripple length and n the number of ripples. The topography is

{1lustrated in Figure 1II.3.
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dimensional patch of ripples of finite extent in the x and y directions.
Ripples with length & are aligned with crests parallel to the y-axis. The
patch is symmetric about the x—axis with dimensions nfx2nf in x and y, where n
is the number of ripples as before. The topography is specified according to
Section II.4, equation (4.16). Computations were run with 2k/)\ = 1, D/hy =
0.3 and a farfield relative depth kh; = 1, giving hy = ﬂ_l with £ = 1. The
Ursell number U, = (a/hl)/(khl)2 and wave steepness € = ka are thus both given
by ®Ay for the incident wave.

Results were shown for the case of n = 4 in Figures III.7 and III.S8.
Figure III.7 gives results for the linear case, with normalized amplitude
IA/AOI given in 7a, [B/AOI in 7b, and the total wave field in 7c. In Figure
I1II.8, results are shown for the case of € = U, = 0.2. A comparison of the
figures indicate some differences in the transmitted wave field over and
downwave of the ripple patch, with the amplitude downwave of the last ripple
being increased in the nonlinear case, indicating the greater tendency towards
diffraction effects due to nonlinearity. Thils result is consistent with the
phenomenon of self-defocussing as demonstrated by Kirby and Dalrymple (1983),
and further is in agreement with Yue's (1980) results showing that diffraction
of waves into a shadowed region proceeds more quickly in the nonlinear case.
The reflected wave amplitudes are quite similar for both cases, with a minor
increase in peak amplitude at the upwave end of the ripple patch being noted
in the nonlinear case.

Comparisons of normalized amplitude for the total wave field along y =0
and along x = 3% are glven 1in Figures II1.9 a and b, respectively, for the
linear and nonlinear cases. Differences are largely confined to a reduction
in transmitted wave height downwave of the ripple patch in the nonlinear case,

as discussed aboves.
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2ga
4 = =52

kU
coskx cos {E—'x + wt} (4.8)

g

which reduces to the usual stationary form at U+0. It is clear that the
stationary component cos(kx) is unaffected by the presence of U; the relation
between the wave envelope and topography is thus unaltered.

The effect of nonlinearity is thus limited to the lengthening of the
incident wave (for small R) with respect to the topography at fixed w
(or k). For large 2k/A, the effect is a downshift of the maxima and minima of
R which increases with increasing €. It is remarked that, for large R, the
incident waves may be shortened by nonlinearity; the shift in the pattern of R
would then be expected to be towards higher values of 2k/A.

In the present example, the large reflection coefficient at the peak 2k/)
causes a significant weakening of the nonlinear dispersion in the incident
wave on the upwave side of the ripple patch. Referring to Figure III.1l, we
see that a reflection coefficient of 0.6-0.7 would lead to an effective
nonlinear parameter D* with values in the neighborhood of 0. Nonlinearity
thus has little effect on the reflection process when reflection is strong;
this 1s born out by the result of little or no shift in peak value or location
of R for this example. This conclusion in partially supported by the
experimental results of Davlies and Heathershaw, who saw little or no effect of
varying wave steepness on peak reflection, up to the point of breaking in the

incident wave.

III.5 Two-dimensional Topography

In order to take advantage of the relatively strong reflections caused by

the undulating topography studied in the previous chapter, we construct a two-
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The curve for nonlinear reflection shown in Figure IIl1.5 is for the case
of no wave-induced current. It was found that the presence or absence of the
wave—-induced flow had no significant effect on the reflection process; the
corresponding curve for reflection including mean flows is thus not
included. This result may be partially explained by considering a simplified

set of equations taken from (2.28 - 2.29);

wl

1Ay = ¢ A =0 (4.3)
wU

iB, - EE;. B =0 (4.4)

where depth is constant and amplitude dispersion is neglected. The quantity U
may represent the wave-—induced return flow or a small flow (<O(u)) imposed by

boundary conditions. Oscillatory solutions of constant amplitude are given by

{A(x), B(x)} = {a,b)el®'® (4.5)
where
k' = - kU/Cg (4.6)
so that
1fi(1 = g) x - wt]
?) = 7E ae g + coc. (4.7a)

1[-k(1 + %—) x - wt]
o, = Zig be & + c.c. (4.7b)

For simplicity, b may be set equal to a; the resulting standing wave may be

written as
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Figure ITI.6. Ursell number U, for the nonlinear reflection
example; € = 0.2
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In Chapter II, a numerical solution to the linearized elliptic problem
was developed in order to compare to the analytic linear solution of Davies
and Heathershaw (1984). The elliptic solution was shown to provide an

accurate reproduction of the analytic results; comparisons with data were

given above in Figures I1.2 and II.3. ":Zik:
The theoretical results of Davies and Heathershaw were used as a check of
the iterative scheme (3.12-13) in its linearized form. Results for the cases
illustrated in Figures II.3 and II.4 were recomputed using the coupled
parabolic equations, using a grid spacing Ax=£/20. The reflection
coefficients for both cases are shown in Figure III.4. The peak reflection
coefficients R obtained using the parabolic model are slightly less than the
values predicted by the corrected theory of Davies and Heathershaw. For
2k/2>2.0 the number of points per incident wavelength drops below 20, and some
reduction in the reflection coefficient was noted. A further reduction in
grid spacing to Ax=2/10 caused a reduction of the reflected wave amplitude at
2k/A=1 of 6.6% for the case with n=10. Therefore, the value of Ax=2/20 was

used for all subsequent runs.

We now use the nonlinear form of the parabolic equation to study the
reflection process. Tests were performed using the geometry of Figure III.4a
(D/h; = 0.16); results are presented in Figure III.5 for incident wave
steepness € = kAO = 0.2. A plot of Ursell number Ur = (Ao/h)/(kh)2 for this

case 1s given in Figure IIT.6. The plot indicates that, for the chosen value

of €, results of the Stokes wave model are only roughly valid for the region

2k/X<l. For small values of 2k/X (large wavelength) it is anticipated that oo
the incident wave phase speed is overestimated. This would have the effect of g{f
over emphasizing the differences between the linear and nonlinear reflection o
®
curves in this range.
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The effect of diffraction in the present example may be estimated
simply. If we take the peak reflection along the centerline to be

approximately R = 0.6 from Figures 7 or 8 b), we conclude that the transmitted

amplitude downwave of the patch should be

T = (1-R") = 0.8

e
PR

ML.

This value is in rough agreement with the linear result but underestimates the - 4

~

nonlinear value of T = 0.9, again indicating the more rapid effects of

diffraction in the nonlinear case.

PR

I111.6 Discussion :
In this study we have utilized a variational principal to develop a wave ;
equation governing the propagation of Stokes waves in a varying domain, after e

which use is made of a splitting method to provide coupled equations for
forward and back-scattered components of an initially plane incident wave

propagating over uneven topography.

The restriction to Stokes waves and the resulting constraints on water

depth relative to the incident wavelength made it difficult to develop

computational examples which describe a significant reflection process arising

over a short spatial scale. Under the mild-slope conditions, it is likely . ;
that the gradual reflection process would be apparent over only fairly long :
spatial scales. For the case of shallower water, the Stokes wave formulation IR

is no longer valid, and recourse must be made to appropriate equations such as

the Boussinesq equations. The parabolic approximation for a spectrum of
steady (in time) forward-scattered waves in the shallow water regime has been

provided by Liu, Yoon and Kirby (1985); the development of a model for partial




reflection in this case will be the subject of a further investigation. Also

of speclal interest is the case where the incident wave amplitude is modulated
in space and time. The treatment of "groupy” waves is not approachable using
the reduced wave equation of Section III.3; however, the general time

a dependent model (2.15) may form the basis of such an approach, after further

accounting for terms arising due to possible fast modulations of O0(e) in the

amplitude functions.
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Appendix III.A

Integrals of £ functions

The integrals I are defined as the integral over total depth of an

integrand f, and may be expanded according to

n (o}

I=]fdz=]fdz+nf|+n2f|+n3f|+...
“h “h o z o zz'o
2 6
1 vy 2!" 31V
Substitution of the expansion (2.4b) for n yields (2.7). The individual
integrals and required components are given by
n 2 v _ .2
I, = Jh £,dz Ii' =1, 1" = /2g, Ii =k"/6 (A.2)
L= 2 1" . =CC /g, I'', =1, I''! = u%/ (4.3)
1,1 192 5 1 g B L, RSN g .
-h
n
2 z' 2 2 =t 4 02 2" 22
11’1 -{h flz dz 11’1— (w kCCg)/g, Il’1 =w/g°, 11,1 =k“w/g
(A.4)
n
1, = | £,dz ; I = coshkg , It = coshikh , Ié" - 2kco§hkh (A.5)
-h ksinh "kh sinh kh sinh kh
n h2kl _
1, 9 =/ £,f,dz 5 117, = EEELTT'l (A.6)
’ ~h ’ sinh kh




[coshzkh - Cg/C}

z = z'' 2 2
11’2 ih flzfzz ’ 11’2 = l‘k /sinh kh
" inh2kh
122—1 fydz  ; 152=_S_!.'___~
’ -h ’ 2ksinh kh
z "2 z' 2ksinh2kh
1,0=] fdz 51, ,= 8
’ -h 2z ¢ sinh kh
, 87
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{sinhzkh + cg/c
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(Aog)

(A.9)
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Appendix III.B Components of the primitive Lagrangian L

The Lagrangian L is expanded as a series in powers of the wave steepness
parameter £ without regard to the relative size of the modulation parameter
u. After expanding n and the integrals I in (2.6), the individual components

of L in (2.8) are given by (after dividing out the constant density p)

2

= —gh_ . - 1' 7
L, = & ; L= 1§ (8.1,2)

t
2 ~ 2 ~ 2
gnl ~ (Vh¢1) 2! (¢1) ~

= — vy [} - '

fze ot him P ha T =2 ° h(°”2t Yy) * I24’2t
(.3)

2 ~ 2~
= ' " [ -
Ly = gny(n + b,y) + I}7 (n, + b2)¢lt + I n1¢1t + n1(4>2t Y2)

~ 2
(Vh¢1)

~ L L S ' o7 ' T e '
+ [i'“x“’zt RS I e AR S A RN R BN RN S

+ 1 —+ 1 ¢l$2 (B.4)
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2
g(n2 + bz)
L, = ————

1 ]
Ty g v_3»
2 + (ny + b2)¢it + 20y (ny + b2)"’1t I

~ 2
(7, 3))

[N ] ~ tee
+ L(ny 4 b2)“’2t +1 2

2~ L ]
2 ' ™M ¢2t * I (ng + by)

~ 2 ~ 2 2
2 (Tpty) (T 99) (9,43) .
EE! —_— [ 1 .
M 7 177 —*th T —+ IVt W

+

N
~~
o

—
-

+

~ ~ Tt
R ' . '
M % bVt LV 6o 60 + Ty (ny + b))

(B.S)
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Appendix III.C. General Form for 0(83) term in wave equation

The term {N.L.T.} in (2.15) is given here in terms of 31,32, (np + bz)

and ¢é. The first order surface n has been eliminated through use of (2.9).

Further, we have made use of the fact that

(;lssz)tt =

2~ ~
7, (8)56,)

(-wzzl, ‘szzz) + 0(w) (c.1l)

= %5, -aEy) + o) (c.2)

for both progressive and standing waves. {N.L.T.} is then given by

2 2.2

(N.L.T.} = {—E— (ny + by) + 20 k (3, y? - k“canhzkh($1)2
t

coshzkh g2

2
8k ~ ~
—5— %, } &

«Ztannlen (7, 3)% - —25
sinh kh t

2 2
+ {-2% tanhkhn, + 4k_(1 - 2siph kh) 3,
t

sinhakh

+ ktanh kh

~ 2y~
g a4

t

~

ktanhkh
no1

coshZkh o =

Vyby b o @
sinhakh h Zt

~ 2
+ {gvh(n2 + by) + Vh(¢lt) -

2cosh2kh ~ ~
+ {—th¢é - vh¢2} - Y0 . (C.3)
sinh kh t

where we have substituted for all I values from Appendix IIL.A.
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