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SUMMARY

During 1982 there occurred several incidents in which com-
- mercial jet aircraft suffered engine failure over Indonesia
- A as they passed through clcuds of dust injected into the

: stratosphere by an erupting volcano on Java. This paper
presents some theoretical estimates of the detectability of
such clouds using,skywave radar. The results imply that
detection would not be possible with the JINDALEE Stage B
radar.
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1. INTRODUCTION

On 24 June 1982 a Boeing 747 operated by British Airways suffered engine failure
at 35 000 ft over Indonesia after flying through volcanic dust injected into the
atmosphere by Mt Galunggung, a 7500 ft volcano located in SW Java, which had been
erupting intermittently since 5 April 1982. Subsequently, on 14 July 1982, a
Singapore Airlines Boeing 747 experienced failure of two engines and overheating
of a third when it encountered dust at 39 000 ft. The air route concerned lies
partly within the coverage of the JINDALEE Stage B radar and the question arises:
could the JINDALEE radar detect or infer the presence of volcanic dust clouds so
as to alert air traffic to possible hazards?

There are several ways in which volcanic eruptions could conceivably modify the
physical environment as observed by a skywave radar. The most apparent of these
are:

(1) injection of volcanic material into the upper atmosphere where it
could reflect skywave radar signals via the Rayleigh scattering mechanism;

(ii) physical and chemical processes involving volcanic dust whereby the
normal ionic equilibria in the upper atmosphere are upset to the point where
the refractive index is appreciably altered;

(iii) generation of acoustic-gravity waves which could propagate to iono-
spheric heights where they would manifest themselves as travelling ionospheric
disturbances.

Of these only (i) and (ii) are relevant to the detection of dust clouds.

This note presents some rough estimates of the magnitudes and hence the signific-
ance of these mechanisms.

CHARACTERISTICS OF VOLCANIC AEROSOLS

.

2.1 Composition

Individual volcanoes vary significantly in the composition of their ejecta but
the fine, particulate tephra fall predominantly into four classes(ref.l):

(a) 1lithic fragments - particles of the rock which made up the summit of
the volcano prior to eruption;

(b) pumice - a rock froth formed by the rapid quenching of magma, composed
of volcanic glass, crystals of several different minerals, and gas bubble
voids;

(¢) crystals and crystal fragments of various minerals which were derived
from lithic fragments as well as from the crystallising magma; and

(d) shards of volcanic glass broken from the frothy magma.

The most important volcanic sources of high altitude contamination are the
so-called "Plinian" eruptions, that is, gas-rich, sustained explosive erup-
tions with exceptionally high (> 10 km) eruption columns (Table 1). For
example, the plinian eruption column was the principal means of transporting
particles and gases into the stratosphere during the 18 May 1980 eruption of
Mount St Helens (Tables 2 to 4).
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The gases and nonsilicate aerosol particles contained in the plinian column
have six possible sources:

tropospheric air entrained by the ascending column;

geothermal fluids near the magma body;

vaporisation of ground water from melted snow, ice and rain;
reaction of vegetation with a cloud of hot ash and gas;

v) gases released explosively from the silicate liquid in the erupted
magma; and
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(vi) gases released explosively from the silicate liquid in. the magma
that was not erupted.
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2.2 Chemistry

The effects of the chemistry of volcanic emissions on the stratosphere and
lower ionosphere are strongly dependent on the emission fluxes and the result-
ing transport processes. It appears that the most important chemical
processes are:

(1) the chemical production of aerosols which affect the Earth's radia-
tion budget; in particular the sulphur-containing gases and water vapour
are important;

(ii)  the chemical interaction of volcanic gases (and perhaps volcanic
aerosol surfaces) with the free-radical ozone chemistry of the stratosphere.
The important species are H,0 and S0, and perhaps reactive chlorine com-

pounds, CO, and oxides of nitrogen.

Most of the emissions of sulphur compounds eventually form sulphate aerosols.
The increasing dominance of sulphate particles over ash particles with time
in the stratosphere can be explained by: (a) early scavenging of ash by the
condensation of emitted water vapour to form rapidly settling ice crystals;
(b) rapid settling of large ash-containing particles; and (c) continuing
productions of sulphate by oxidation of sulphur gases.

2.3 Transport and dispersion

In the absence of strong, stable layers in the troposphere the eruption plume
encounters no significant buoyant resictance to its upward progress until it
passes about 12 km in altitude. Further penetration to heights up to 45 km
has been noted but 25 km is more typical (Tables 3 and 4; figure 1).

The subsequent evolution of the plume is obviously critically dependent on
the stratospheric winds.

Inspection of SAGE satellite, lidar and jet impaction data(ref.2 to 4)
suggests the preferential formation of thin laminar clouds due to wind shears
(figures 2 to 4).

The trajectories of the clouds at different levels can meander, loop anc
diverge in a very complex fashion making prediction extremely difficult. This
is evident in figures 5 and 6(ref.l1). Attempts to model cloud evolution have
not met with great success. For example, in the case of the Caribbean
Soufriere eruptions in 1979, trajectories were calculated using a geostrophic
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wind model based on NOAA geopotential maps, assuming that the injected
material resided on the 70 mb surface(ref.4). While a qualitative agreement
was found with subsequent plume positions over West Africa as observed by the
SAGE satellite, the arrival times did not match. Further, airborne lidar
measurements of optical extinction disagreed with the computed trajectory
(figure 7). This discrepancy is variously attributed to the tendency of
global maps to emphasise large-scale features of the flow fields and neglect
local fluctuations, and to the fact that the geostrophic approximation appears
to overestimate wind speeds when used closer to the equator than about 15" of
latitude.
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3. [ESTIMATES OF AEROSOL EFFECTS

3.1 HF radar cross section

The scattering of electromagnetic waves from a tenuous distribution of small
particles is an important problem which has attracted interest since
Lord Rayleigh's original work in 1899.

Two distinct frameworks exist for dealing with "multiple scattering' phenomena:
analytical theory and transport theory. Analytical theory begins with the
underlying differential equations describing the fieid properties, introduces
the scattering and absorption properties of the individual scatterers and then
expresses the quantities of physical interest in terms of appropriate integral
equations. These can then be solved by iterative or diagrammatic techniques.
Transport theory deals directly with the flow of energy using the radiative
transfer equation. A respectable attempt to calculate the transmission prop-
erties of a volcanic aerosol would require one of these approaches but time
does not permit such an endeavour on this occasion. Instead the simpler
problem of estimating the backscattering radar cross section is addressed.
Owing to the extremely small dimensions of the aerosol particles it turns out
that the result obtained here is equivalent to that which would result from
the cumulative forward-scatter, single backscatter approximation of

De Wolf(ref.5).

Consider the contribution to the backscattered field from one aerosol particle,
assumed spherical. It can be shown (reference 6, page 510) that

2 2.3 X
E = -E n -1 k®a e-1kR
S (o] 2 R
n“ + 2

with n the vefractive index, a the radius and R the distance to the field
point.
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Defining the backscatter cross section % by
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The only information available about size distribution for this eruption is
that the great majority of aerosol particles had a < 100 #m while about 1%
of the mass was present in particles with a <1 gm.
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From figure 9 a reasonable lower limit for a theoretical model of N(a) is
0.1 um. Any errors in Oy introduced by ignoring particles smaller than this
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are likely to be negligibie given the a® weighting in equation (4). Hence the
following constraints apply:

1 um . fIOOum
/‘ a’N(a) da = 1072 ] a’N(a) da (6)
0.1 um ‘0.1 pm

amp 100 um
=5 a’N(a) da ~ 5 x 107° g cm™® (upper bound) (7

0.1 um

These two equations suffice to specify a two parameter model of N(a).
Physical considerations suggest a model of the form

log N(a) - @ log(a) = B (8)

with @ and B8 to be determined from equations (6) and (7), and this form is
> supported by the asymptotic distribution. Rewriting equation (8) in exponen-
- tial form, substituting in equation (6) and integrating yields

O} Ry pha
Ol )
’

XAy
G
>

PR}

107¢ 1074
at*e = 1072.2%% (9)

1077 1077

provided a # - 4,

Analytic solution of this equation is nontrivial. Reasoning that the ratiuv of

the ranges of integration of the two sides of equation (9) is about 1072, so
the mass density should therefore be only a weak function of a implies that
~ - 3. Using perturbation techniques leads to

% a = -3.024 (10)

Substituting in equation (7),

N(a) 3.58 x 1073 g3 024 p73 il

— T Ry = 5 PO ) o
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Inserting equation (11) into equation (5) with D = 2 km and ¥, the angle of
elevation set to 6° yields

.
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Oror = 2.3 x 1075 p? (12)
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This is the radar cross section for one square metre of aerosol measured
normal to the propagation vector. Converting to ground coordinates and taking
radar parameters appropriate for Mt Galunggung observed with the JINDALEE
radar, the effective radar cross section per radar resolution cell becomes

. (A%
‘.',"

Oee = 2.4X 107% m? (13)

This value is many orders of magnitude below detectability with a skywave
radar.

It is interesting to note that with a microwave radar operating at 10 GHz,
the radar cross section per unit volume of aerosol would be greater by a
large factor:

P A
T v

s oy
o g

o, (microwave) ~ 6.25 x 10*° o (HF) (14)

If the beaimwidth of the microwave radar were taken into account and integr.-
tions performed for more appropriate geometries, detection at sensible ranges
might then be predicted by this theory. No effort has been appliied to this
problem.
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3.2 Aerosol effects on ambient ionisation

Rayleigh scattering of radio waves from the volcanic aerosol, as discussed in
Section 3.1, is the only available mechanism for skywave radar detection of
dust clouds at the heights where they could pose a threat to aircraft. The
mechanisms postulated in this section relate to phenomena which may occur at
higher altitudes - over 50 or 60 km, say - and in general it would not be
possible to infer reliably the presence of low altitude dust clouds from the
observation of high altitude effects.

3.2.1 Enhanced recombination

The enduring volcanic aerosol distributions are concentrated in the lower
stratosphere, well below the levels of strong ionisation (figure 12(ref.11)).
Accordingly, the most likely mechanism for influencing radio wave propaga-
tion is modification of D-layer absorption via changes to the electron
density.
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At D-region heights the availability of three-body channels
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Xt +e+M X+ M (15)
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and the presence of molecular ions with the degrees of freedom to undergo
dissociative recombination
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mean that electron loss mechanisms are not in short supply. Below 80 km
altitude there are also multiply-hydrated proton complexes with a very

38 -I'tl' 2
A
-

high recombination coefficient approaching 107° cm® s, compared with

2 4 ‘f"x [2 .l
»
A

t3

about 6 x 10°7 cm s~! for NO* ions which dominate above 80 km
(figure 13(ref.12)).

It follows that for aerosols to have a detectable effect some particularly
efficient reaction would need to operate.

The reaction postulated here is catalytic recombination in which the
surface of the aerosol particle provides a 100% efficient agency for the
reactions

X+ A> [xTA] (17)

[X*A] +e> [XA] > X+ A (18)

e+ 2> 272

X'+ 27 X+ 2

In order to estimate the rate constant for this process, assume the
capture cross-section of the aerosol is equal to its physical cross-
section. Since Te >'Ti (figure 14) the inequality Ve >>'vi is ensured and

hence the rate is governed by v, From simple kinetic theory considera-

tions, for diatomic ions which dominate below 100 km (figure 15), the
recombination coefficient is given by

5 kT.1
N.

at = 7 |-
3 mi ia

a et el T
3
o

where Ni and Na are the ion and aerosol number densities.

OO it i

P

Now T, ~ ~ 3 x 10° °K while a < 0.5 um above 40 km. The dominant

neutral

1
v

M b

ion species is NO' so m, = 30 mp; Ni ~ 105 cm™® at 90 km (figure 15) whence,

Sin‘ e e
PR

at most.,

A e
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a* ~ 2.9 x 105 N, cm® s!
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Thus, in order to be significant in competition with the dominant loss

mechanisms below 80 km an aerosol particle density of over 1 cm ® is
required.

For altitudes in the range 20 to 40 km where aerosol number densities near
1 cm™® could apply for 0.5 4m particles, Ni is at least two orders of
magnitude less than it is at 90 km (figure 16). On the other hand, for

altitudes near the D-E transition where Ni > 10° cm™3, aerosol densities

of 1 particle (of 0.5 #m radius) per cubic centimetre equate to a mass

loading of 10°® g cm™® compared with an air density of zbout 1077 g cm’?

(65 km) or 10 %g cm™® (83 km) (figure 11). In other words, the air is not
dense enough to support the aerosol.

Since this hypothetical 100% efficient recombination me¢hanism could not
produce observable effects, it is reasonable to assert that more realistic
(and more ccmplicated) mechanisms are unlikely to do so.

3.2.2 Capture of free electrons without recombination

Another hypothetical process which could be advanced as a possible agent
for observable effects is preferential attachment whereby electrons are
readily captured by aerosol particles according to equation (19) but, for
some reason, recombination processes such as equation (20) are suppressed.

In the simple model proposed here, the aerosol particle accretes charge
until electrostatic repulsion prevents further capture. This limit corres-
ponds to a balance between the thermal energy of the electrons and the
Conlomb potential on the aerosol surface:

3 kT Ne?

2 ~ 4me a
)

At altitudes below 50 km the electron density is too low to allow
appreciable absorption. For the upper D-region, T, ~ 10° °K. Then the

maximum number of charges which could be accumulated by a single particle
is given by

- .o
ARRARA

I

o
@

N ~ 9x10 a (24)
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where a is in metres.
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Setting a = 0.2 4m which, from figure 8 seems a reasonable upper bound for
aerosols above 50 km, leads to N = 18 electrons per particle. Now, for

mid-D region and night-time E, electron densities of ~ 10° cm™> are

typical. It follows that if the aerosol density were to approach ~ 10 cm 3
a large fraction of the free electrons could be captured, thereby removing
the main absorption mechanism without affecting the ionisation density.

Such a density is not possible at a = 0.2 um because the corresponding
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mass loading is 6 x 10™® g cm™® which is ~ 0.1 p(air) at 50 km but
exceeds p(air) at 70 km.

¥ l-‘l

g0

&,

If a were smaller, say 0.02 4m, the char§e captured would decrease by one
order of magnitude but there would be 10° more particles for the same
density. Using a mass loading of 0.1% of the air density (equal to the
mean value in the model of Section 3.1 based on Mount St Helens data) still
leaves the depletion a factor of 10 too small to be significant at 70 km.
Thus only a minor effect on absorption appears possible even when
recombination processes are prohibited.

P R A e
P et Th 2t el V]
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To place these absorption calculations further in perspective, pathloss
experiments during the JINDALEE program indicate typical two-way absorption
losses of about 6 dB(ref.13). Thus the most severe effect of a major
reduction in non-deviative absorption is still essentially a threshold
effect given the other variabilities which characterise skywave propagation.
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3.2.3 Depletion of sporadic-E

There is no available data on aerosol densities at E-region heights but
any reasonable extrapolation to 90 km and above yields exceedingly low
concentrations of only the smallest particles. Thus ionisation modifica-
tion of normal E-region plasma properties can safely be regarded as
negligible. The only avenue which could conceivably lead to aerosol
influence is interaction with sporadic-E (Es).

Sporadic-E is believed to be due to the presence of long-lived metallic
ions of mainly meteoric origin. The principle loss processes for these

. . + + + + . . .. . . .
ions - mainly Mg , Na , Fe and Ca - is dissociative recombination via
ion-exchange reactions, eg

Mg® + 0, > Mg0* + 0 (25)

MgO+ +e>Mg+0 (26)

The rate coefficients for reactions of this type are very low,

~107'% cm’ s7'(ref.14). It could be the case that active sulphated
radicals produced from the volcanic aerosol provide a depletion mechanism
for these metallic ions which is otherwise lacking, leading to the
destruction of ES layers. From the point of view of detection, however

this is probably irrelevant since the stratospheric aerosols of concern to
aircraft would not be correlated with the high altitude phenomena (eg
R figure 5). In any event, horizontal structure in ES is usually so

pronounced that observability and recognition of perturbed ES would not be
possible.
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4. CONCLUSIONS

By means of the simple physical models developed in this paper, rough estimates s
have been derived for the magnitudes of several mechanisms whereby skywave radar

might detect volcanic aerosols. The conclusion in each case is that detection
is not viable.

In the case of direct radar echoes from the dust clouds, the calculated effects
are many orders of magnitude too weak to be detectable. In contrast, some of
the high altitude effects appear to be within one or two orders of magnitude of
being observable, but these effects have been calculated for idealised hypo-
thetical processes which may not cccur in reality.
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Microwave radar detectability of dust clouds could be computed by a simple
extension of the model developed here for HF but this has not been attempted.
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Postscript

On 3 February 1984 it was learned that Mt Galunggung was erupting. The JINDALEE
radar was used in a variety of modes to observe the region around the volcano

F; but no unusual echoes or fading could be detected.
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WITH OTHER ERUPTIONS(REF.1)
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TABLE 1. COMPARISON OF 18 MAY ERUPTION OF MOUNT ST HELENS

g
e torldide - porlanie
St Helens 250 years all time
Total magma volume erupted,
(expressed as cubic kilometres
of dense rock) 0.5 > 1000
Eruption magnitudea 6 10
Eruption column height, 23 to 27 d d
(kilometres above volcano) maximum 18 28 to 35 40 +
average
Duration of climax of eruption
(hours) 9 38 48
Volcanic explosivity index
(VEI)b 5 7 8
Area covered by isopﬁch
enclosing half volume of
deposit (square kilometres) 1 x 10° 6 x 10° 10° :
Area of complete devastation e
(square kilometres) 500 1000 5 x 10°

Tsuya (1955).
Newhall and Self (1982).

Walker (1980).

inadequately substantiated.
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> 40 km supposedly reached by Krakatoa, 1883 and Bezymianny, 1956: both
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TABLE 2. ESTIMATES OF VOLATILES RELEASED BY THE 18 MAY ERUPTION(REF.1)

Mass of magma erupted at Mount St Helens

18 May volume? ¢.3 kn®
post-18 May volume  0.03 kn®
Total 0.33 km®

[ A A A At i ¢ b
e L‘lﬂ‘,.’..‘-;" e N

Initial contentb

S < 500 ppm
C1 1000 ppm
H, 0 S wt. %

Minimum volatiles erupted
S (0.33) km’) (250 ppm) (2.4 g/cc) x 105 = 2 x 10'! g
c1 (0.33) km®) (1000 ppm) (2.4 g/cc) x 10'5 = 0.8 x 10*% g

H, 0 (0.33) km*) (5%) (2.4 g/cc) x 10! 4 x 10'* g

-

L

Rl ot S i
N A
s

"y i
" S

These values assume:

(a) no meteoric, hydrothermal, or atmospheric water;
(b) no scavenging;

(c) complete degassing; and

(d) no contribution from intrusive magma.

Estimates of atmospheric impact will have to consider and evaluate these factors.

a Value is uncertain, between 0.2 and 0.5 km’.

b Values based on data of Melson et al (1980).

Note particularly the uncertainty for S.
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TABLE 3. ERUPTION RATES AND COLUMN HEIGHTS FOR SOME RECENT

VOLCANIC ERUPTIONS (REF.1)

Maximum volume
flux rate
(m*/s dense rock)

Maximum column height
(kilometres)

a
above volcano

Mount St Helens, 1980 2 x 10 22(0)
Hekla, 1947 2 x 10* 24(0),21(c)
Agung, 1963 3 x 10* 23(c)
Bezymianny, 1956 2 x 10° 45(0),42(c)
Santa Maria, 1902 4 x 10* 34(c),29(0)
Hekla, 1970 6 x 10° 16(q),15(c)
Ngauruhoe, 1975° 2 x 10° 10{0),10(c)
Taupo, 160 AD 1 x 10° > 50(c)

3 5= observed, ¢ = calculated.

b

A vulcanian (less intense than plinian) eruption.

TABLE 4. MAXIMUM HEIGHTS OF ERUPTION COLUMNS AT MOUNT ST HELENS(REF.1)

Date of eruption

Maximum column heights
(kilometres)

Duration of ash emission
at elevations above 12 km

18 May >24.4, 17.3, 14.6, 19.2 about 9 hours :
25 May 12.2 less than 30 min T r
12 June 15.2, 10.7, 9.8, 10.7 about 30 min ‘e
22 July 13.7, 14.5, 13.7 25 min
7 August 13.4, 10.0, 6.1, 7.6, 2 to 5 min
5.2

16 October 12.8 less than 5 min

:éj 17 October 14.3, 13.7 less than 5 min

N 18 October 5.2, 7.9 less than 5 min

'y
o
LA

1
)
. #and

1From Harris et al, 198la.
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TABLE 5. VOLUMES OF SOME RECENT AIRFALL DEPOSITS(REF.1)

Volume

Volcanic eruption (cubic kilometres of dense rock)

Mount St Helens, 1980 0.2 to 0.48

Fuego, 1970 0.1

Agung, 1963 ' 0.6 to 1.2 (March and May events)
Bezymianny, 1956 0.5 to 2.0

Hekla, 1947 0.3

Santa Maria, 1902 4 to 9
Krakatoa, 1883 5 to 10
Tambora, 1815 30 (very approximate)

Taupo, 160 AD 6 to 10
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Figure 7. SAGE and Lidar measurements of Soufriere Plumes (ref.4)
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