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1. INTRODUCTION

On 24 June 1982 a Boeing 747 operated by British Airways suffered engine failure
at 35 000 ft over Indonesia after flying through volcanic dust injected into the
atmosphere by Mt Galunggung, a 7500 ft volcano located in SW Java, which had been
erupting intermittently since 5 April 1982. Subsequently, on 14 July 1982, a
Singapore Airlines Boeing 747 experienced failure of two engines and overheating
of a third when it encountered dust at 39 000 ft. The air route concerned lies
partly within the coverage of the JINDALEE Stage B radar and the question arises: _4t4.,
could the JINDALEE radar detect or infer the presence of volcanic dust clouds so
as to alert air traffic to possible hazards?

There are several ways in which volcanic eruptions could conceivably modify the .
physical environment as observed by a skywave radar. The most apparent of these

" '.-- a r e :

-L (iW injection of volcanic material into the upper atmosphere where it
could reflect skywave radar signals via the Rayleigh scattering mechanism; -

(ii) physical and chemical processes involving volcanic dust whereby the
normal ionic equilibria in the upper atmosphere are upset to the point where
the refractive index is appreciably altered;

(iii) generation of acoustic-gravity waves which could propagate to iono-

*' spheric heights where they would manifest themselves as travelling ionospheric
disturbances.

"Of these only (i) and (ii) are relevant to the detection of dust clouds.

This note presents some rough estimates of the magnitudes and hence the signific-.
,.- ance of these mechanisms.

"2. CHARACTERISTICS OF VOLCANIC AEROSOLS

2.1 Composition

Individual volcanoes vary significantly in the composition of their ejecta butK. the fine, particulate tephra fall predominantly into four classes(ref.1):

(a) lithic fragments - particles of the rock which made up the summit of

the volcano prior to eruption;

(b) pumice - a rock froth formed by the rapid quenching of magma, composed . -

-...-. of volcanic glass, crystals of several different minerals, and gas bubble
"voids;
(c) crystals and crystal fragments of various minerals which were derived

from lithic fragments as well as from the crystallising magma; and

(d) shards of volcanic glass broken from the frothy magma.

The most important volcanic sources of high altitude contamination are the
so-called "Plinian" eruptions, that is, gas-rich, sustained explosive erup-
tions with exceptionally high (> 10 km) eruption columns (Table 1). For
example, the plinian eruption column was the principal means of transporting
particles and gases into the stratosphere during the 18 May 1980 eruption of
"Mount St Helens (Tables 2 to 4).

I._7
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The gases and nonsilicate aerosol particles contained in the plinian column
;<: -2have six possible sources: 1

-, (i) tropospheric air entrained by the ascending column;

(ii) geothermal fluids near the magma body; •
tA

(iii) vaporisation of ground water from melted snow, ice and rain;

(iv) reaction of vegetation with a cloud of hot ash and gas;

(v) gases released explosively from the silicate liquid in the erupted
magma; and 4

"(vi) gases released explosively from the silicate liquid in. the magma
"that was not erupted. ' -

"2.2 Chemistry

"The effects of the chemistry of volcanic emissions on the stratosphere and
"lower ionosphere are strongly dependent on the emission fluxes and the result- 5-

ing transport processes. It appears that the most important chemical
processes are:

.(i) the chemical production of aerosols which affect the Earth's radia-
tion budget; in particular the sulphur-containing gases and water vapour
are important;

"(ii) the chemical interaction of volcanic gases (and perhaps volcanic
aerosol surfaces) with the free-radical ozone chemistry of the stratosphere.
The important species are H20 and SO2 and perhaps reactive chlorine com-

pounds, CO, and oxides of nitrogen.

Most of the emissions of sulphur compounds eventually form sulphate aerosols.
The increasing dominance of sulphate particles over ash particles with time
in the stratosphere can be explained by: (a) early scavenging of ash by the
condensation of emitted water vapour to form rapidly settling ice crystals;
(b) rapid settling of large ash-containing particles; and (c) continuing
productions of sulphate by oxidation of sulphur gases.

2.3 Transport and dispersion

In the absence of strong, stable layers in the troposphere the eruption plume
encounters no significant buoyant resistance to its upward progress until it
passes about 12 km in altitude. Further penetration to heights up to 45 km
has been noted but 25 km is more typical (Tables 3 and 4; figure 1). ,

The subsequent evolution of the plume is obviously critically dependent on
the stratospheric winds.

Inspection of SAGE satellite, lidar and jet impaction data(ref.2 to 4)
suggests the preferential formation of thin laminar clouds due to wind shears .
(figures 2 to 4).

The trajectories of the clouds at different levels can meander, loop and i -
diverge in a very complex fashion making prdiction extremely difficult. This
is evident in figures 5 and 6(ref.l). Attempts to model cloud evolution have
not met with great success. For example, in the case of the Caribbean
Soufriere eruptions in 1979, trajectories were calculated using a geostrophic

S" i ~ -..... ---------- 1- ..... ....I.I .... .
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wind model based on NOAA geopotential maps, assuming that the injected
material resided on the 70 mb surface(ref.4). While a qualitative agreement -,.i was found with subsequent plume positions over West Africa as observed by the _•
SAGE satellite, the arrival times did not match. Further, airborne lidar

measurements of optical extinction disagreed with the computed trajectory
(figure 7). This discrepancy is variously attributed to the tendency of
global maps to emphasise large-scale features of the flow fields and neglect -:
"local fluctuations, and to the fact that the geostrophic approximation appears
to overestimate wind speeds when used closer to the equator than about 15 of
latitude.

3. ESTIMATES OF AEROSOL EFFECTS

3.1 HF radar cross section

"The scattering of electromagnetic waves from a tenuous distribution of small
.','. particles is an important problem which has attracted interest since

Lord Rayleigh's original work in 1899. *" - '

Two distinct frameworks exist for dealing with "multiple scattering" phenomena:.
analytical theory and transport theory. Analytical theory begins with the
"underlying differential equations describing the field properties, introduces .
the scattering and absorption properties of the individual scatterers and then
expresses the quantities of physical interest in terms of appropriate integral
"equations. These can then be solved by iterative or diagrammatic techniques.
Transport theory deals directly with the flow of energy using the radiative
transfer equation. A respectable attempt to calculate the transmission prop-
erties of a volcanic aerosol would require one of these approaches but time
does not permit such an endeavour on this occasion. Instead the simpler

,.problem of estimating the backscattering radar cross section is addressed. 1..•4.

Owing to the extremely small dimensions of the aerosol particles it turns out
that the result obtained here is equivalent to that which would result from
the cumulative forward-scatter, single backscatter approximation of
De Wolf (ref.5).

Consider the contribution to the backscattered field from one aerosol particle,

assumed spherical. It can be shown (reference 6, page 510) that

i- ES = - E T e(1) •:,.,•
.... 

.. -'...- e i k-
L'.- O ~~~n2 + 2 .,.-. - -"

with n the refractive index, a the radius and R the distance to the field
point.

Defining the backscatter cross section ab by

47r R2 IE 12

?": I ~~E I1'"2""
,' 

- -

S.'. "?" .' -.- -

i• ': ... I......I . .... i "i I b El..2 -I .. - -
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The only information available about size distribution for this eruption is ":.'.:
that the great majority of aerosol particles had a < 100 pm while about 1%
of the mass was present in particles with a < I Am.

From figure 9 a reasonable lower limit for a theoretical model of N(a) is
0.1 mm. Any errors in a introduced by ignoring particles smaller than this
are likely to be negligible given the a6 weighting in equation (4). Hence the
following constraints apply: ,.-: •

÷.,••=• (:.,I A 100 JAM .. -S-,- ""'p- a3 N(a) da 102 1 a3N(a) da (6)-

<.1 Am "0.• AmI

4ip 100 Am6 '--bud(7-

3 fp a3 N(a) da x 10 g cm (upper bound) (7)

0.l1pm

These two equations suffice to specify a two parameter model of N(a).

Physical considerations suggest a model of the form

log N(a) - • log(a) = 1 (8)

with a and 1 to be determined from equations (6) and (7), and this form is
supported by the asymptotic distribution. Rewriting equation (8) in exponen-
tial form, substituting in equation (6) and integrating yields

6 -. -'
i0" 10- . - . ..

4 0 +4 1-24+
a = I0-.a 44a (9) -

10-• 10 - :.°a- '

provided d * - 4. -

Analytic solution of this equation is nontrivial. Reasoning that the ratiu of

the ranges of integration of the two sides of equation (9) is about 10-2, so
the mass density should therefore be only a weak function of a implies that u .

- 3. Using perturbation techniques leads to .

"a = -3.024 (10)

"Substituting in equation (7),

N(a) = 3.S8 x 10" a.o m02 ,- .~,e.
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Inserting equation (11) into equation (5) with D 2 km and the angle of
elevation set to 6 yields

:'-" 0TOT 2.3 x 10-15 m2  (12),•. O~~~TOT ...- :

This is the radar cross section for one square metre of aerosol measured
normal to the propagation vector. Converting to ground coordinates and taking -,
radar parameters appropriate for Mt Galunggung observed with the JINDALEE
radar, the effective radar cross section per radar resolution cell becomes

"a eff = 2.4 x 10- m (13)

This value is many orders of magnitude below detectability with a skywave '
radar.

It is interesting to note that with a microwave radar operating at 10 GHz,
the radar cross section per unit volume of aerosol would be greater by a
large factor:

ab (microwave) 6.25 x 1010 ab (HF) (14)

If the beamwidth of the microwave radar were taken into account and integr.i- -
tions performed for more appropriate geometries, detection at sensible ranges

[.. -. , might then be predicted by this theory. No effort has been applied to this
problem.

3.2 Aerosol effects on ambient ionisation
Rayleigh scattering of radio waves from the volcanic aerosol, as discussed in

Section 3.1, is the only available mechanism for skywave radar detection of
dust clouds at the heights where they could pose a threat to aircraft. The
mechanisms postulated in this section relate to phenomena which may occur at 0v.2. higher altitudes - over 50 or 60 km, say - and in general it would not be;.•'"',.possible to infer reliably the presence of low altitude dust clouds from the -',::.,.

observation of high altitude effects.

3.2.1 Enhanced recombination

The enduring volcanic aerosol distributions are concentrated in the lower
stratosphere, well below the levels of strong ionisation (figure 12(ref.ll)).
Accordingly, the most likely mechanism for influencing radio wave propaga-

•. . tion is modification of D-layer absorption via changes to the electron
density.

At D-region heights the availability of three-body channels

X +e+ M X + M

and the presence of molecular ions with the degrees of freedom to undergo
dissociative recombination
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XY~ + e +X + Y (16)

.:, I£ mean that electron loss mechanisms are not in short supply. Below 80 km
altitude there are also multiply-hydrated proton complexes with a very

* high recombination coefficient approaching 10-5 cm3 s-', compared with

about 6 x 10- cm s- for NO+ ions which dominate above 80 km
*'• l •. (figure 13(ref.12)). ,- -:.

It follows that for aerosols to have a detectable effect some particularly
efficient reaction would need to operate.

The reaction postulated here is catalytic recombination in which the
surface of the aerosol particle provides a 100% efficient agency for the
reactions

e A+ [XAl (17)

[X+A] +e [XA X +A (18)

and
E4--

e + Z z (19)

X + Z' X+Z (20) -

In order to estimate the rate constant for this process, assume the
capture cross-section of the aerosol is equal to its physical cross-
section. Since T > T. (figure 14) the inequality v >> v. is ensured and

1 e

hence the rate is governed by v.. From simple kinetic theory considera-

tions, for diatomic ions which dominate below 100 km (figure 15), the
'7 recombination coefficient is given by

s- 1

a* 7I N N a' (21)
[ m3 i a

where N. and N are the ion and aerosol number densities.
I. a

Now T. T 3 x 1 0 K while a < 0.5 gm above 40 km. The dominant",.'.7,• U I[ ." • neutral ,\-••.

"ion species is NO+ so m. = 30 m ; N. 10s cm-3 at 90 km (figure 15) whence, ... ,,..

at most, 1~

a* 2.9 x i0-s N cm3 s-1 (22)
a
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-- ;Thus, in order to be significant in competition with the dominant loss

mechanisms below 80 km an aerosol particle density of over 1 cm"3 is
required. ,

s•.K:' For altitudes in the range 20 to 40 km where aerosol number densities near

,1 cm could apply for 0.5 atm particles, N. is at least two orders of

magnitude less than it is at 90 km (figure 16). On the other hand, for

altitudes near the D-E transition where N. cm3 , aerosol densities

- of 1 particle (of 0.5 ;Am radius) per cubic centimetre equate to a mass

loading of 10-6 g cm" 3 compared with an air density of about 10-7 g cm--

(65 kin) or 10-g cm- (83 km) (figure 11). In other words, the air is not .-
dense enough to support the aerosol.

Since this hypothetical 100% efficient recombination mechanism could not
produce observable effects, it is reasonable to assert that more realistic
(and more complicated) mechanisms are unlikely to do so.

3.2.2 Capture of free electrons without recombination

Another hypothetical process which could be advanced as a possible agent
for observable effects is preferential attachment whereby electrons are .
readily captured by aerosol particles according to equation (19) but, for

* . -- some reason, recombination processes such as equation (20) are suppressed.

In the simple model proposed here, the aerosol particle accretes charge
until electrostatic repulsion prevents further capture. This limit corres-
"ponds to a balance between the thermal energy of the electrons and the
Conlomb potential on the aerosol surface:

3 kT Ne2  • .","
2 47re a '(2'3\)'

0
[4. -H:;-

At altitudes below 50 km the electron density is too low to allow 5
-44..- Iappreciable absorption. For the upper D-region, Te l 0 K. Then the

e.,. .
maximum number of charges which could be accumulated by a single particle
is given by

N 9 x 107 a (24)

"where a is in metres. %,-

Setting a = 0.2 1m which, from figure 8 seems a reasonable upper bound for
aerosols above 50 km, leads to N = 18 electrons per particle. Now, for

• "., mid-D region and night-time E, electron densities of - 103 cm are

"typical. It follows that if the aerosol density were to approach - 102 cM
a large fraction of the free electrons could be captured, thereby removing
the main absorption mechanism without affecting the ionisation density. S___
Such a density is not possible at a = 0.2 .um because the corresponding '
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mass loading is 6 x 10' g cm" which is 0.1 P(air) at 50 km but
exceeds p(air) at 70 km.

If a were smaller, say 0.02 jim, the char e captured would decrease by one
A-,, .* order of magnitude but there would be 10 more particles for the same

density. Using a mass loading of 0.1% of the air density (equal to the
mean value in the model of Section 3.1 based on Mount St Helens data) still
leaves the depletion a factor of 10 too small to be significant at 70 km.
Thus only a minor effect on absorption appears possible even when
recombination processes are prohibited. L,9,F

To place these absorption calculations further in perspective, pathloss
experiments during the JINDALEE program indicate typical two-way absorption '.
losses of about 6 dB(ref.13). Thus the most severe effect of a major ,,-.
reduction in non-deviative absorption is still essentially a threshold
effect given the other variabilities which characterise skywave propagation. -,S

3.2.3 Depletion of sporadic-E

There is no available data on aerosol densities at E-region heights but ,.:--A.

any reasonable extrapolation to 90 km and above yields exceedingly low
concentrations of only the smallest particles. Thus ionisation modifica-
tion of normal E-region plasma properties can safely be regarded as .-.

'"-:i '-''" negligible. The only avenue which could conceivably lead to aerosol ..-."influence is interaction with sporadic-E (Es).

s

Sporadic-E is believed to be due to the presence of long-lived metallic
-. ions of mainly meteoric origin. The principle loss processes for these

ions - mainly Mg+ Na+, Fe÷ and Ca+ is dissociative recombination via '---'A.,
ion-exchange reactions, eg

- Mg + 02 Mg0 + 0 (25)
- :. * .= .-v .

MgO + e Mg +0 (26) %7c

The rate coefficients for reactions of this type are very low,
10-10 cm s-(ref.14). It could be the case that active sulphated

radicals produced from the volcanic aerosol provide a depletion mechanism
for these metallic ions which is otherwise lacking, leading to the

* .destruction of E layers. From the point of view of detection, however
this is probably irrelevant since the stratospheric aerosols of concern to
aircraft would not be correlated with the high altitude phenomena (eg -.
figure 5). In any event, horizontal structure in E is usually so
pronounced that observability and recognition of perturbed E would not be
possible.

•--.. -,

•" ,, ~..A- ,..,•
• %" ,~~~.-• ,°%
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4. CONCLUSIONS "

By means of the simple physical models developed in this paper, rough estimates
have been derived for the magnitudes of several mechanisms whereby skywave radar
might detect volcanic aerosols. The conclusion in each case is that detection
is not viable.

In the case of direct radar echoes from the dust clouds, the calculated effects
are many orders of magnitude too weak to be detectable. In contrast, some of
the high altitude effects appear to be within one or two orders of magnitude of
being observable, but these effects have been calculated for idealised hypo-
thetical processes which may not occur in reality.

Microwave radar detectability of dust clouds could be computed by a simple _,__-_,

extension of the model developed here for HF but this has not been attempted.

, ~. ". ."." .

-" -ii

"%

. '-7'.7 ' .7 '7

Postscript

:' -"< - -1 Z

On 3 February 1984 it was learned that Mt Galunggung was erupting. The JINDALEE
radar was used in a variety of modes to observe the region around the volcano

but no unusual echoes or fading could be detected.

. '+7 " .+ . +
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-, ;:•"TABLE 1. COMPARISON OF 18 MAY ERUPTION OF MOUNT ST HELENS " '
WITH OTHER ERUPTIONS(REF.1)

Mount Worldwide Worldwide
Mont Hmaximum past maximum

St Helens 250 years all time

Total magma volume erupted,
(expressed as cubic kilometres

, of dense rock) 0.5 > 1000

4. "E•ruption magnitudea 6 10 " "'":A
Eruption column height, 23 to 27 d

(kilometres above volcano) maximum 18 28 to 35 40 +

P Javerage

"Duration of climax of eruption
- (hours) 9 38 48

' Volcanic explosivity index
b

(VEI) 5 7 8

Area covered by isopach

enclosing half volume of

deposit (square kilometres) 1 x lOs 6 x l04 106

Area of complete devastation
(square kilometres) 500 1000 5 x 104 c

a Tsuya (1955).

.:Newhall and Self (1982).

c Walker (1980).

d > 40 km supposedly reached by Krakatoa, 1883 and Bezymianny, 1956: both
inadequately substantiated.

'" " "'":";I ? .'.x .:

p-vSt"..,.'..

=S- ., ,,**

:.". .'Z-'.o .."0

o ' -,.a

I I I I I I I I I I I I I I I.I I
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TABLE 2. ESTIMATES OF~ VOLATILES RELEASED BY THE 18 MAY ERUPTION(REF.1)

Mass of magma erupted at Mount St Helens

18 May volumea 0.3 km3

post-18 May volume 0.03 kM3
____

Total 0.33 kM3

C.- * ~b Initial content

S < 500ppinm

Cl 1000 ppmH2 0 5 wt
Minimum volatiles erupted

S (0.33) kin3) (250 ppm) (2.4 glcc) x 10'" 2 x 10"1 g

Cl (0.33) k) (1000 ppm) (2.4 g/cc) x 1015 0.8 x 102

H-2 0 (0.33) kin3  (5%) (2.4 g/cc) x 101'1 4 x 1014 g

These values assume: .

(a) no meteoric, hydrothermal, or atmospheric water;

(b) no scavenging;

()no contribution from intrusive magma.

Estimates of atmospheric impact will have to consider and evaluate these factors.

aValue is uncertain, between 0.2 and 0.5 km3.

bc opeedgsig n
bValues based on data of Melson et al (1980).
Note particularly the uncertainty for S.
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TABLE 3. ERUPTION RATES AND COLUMN HEIGHTS FOR SOME RECENT ..

VOLCANIC ERUPTIONS(REF. 1) .

Maximum volume Maximum column height L'~

* . . 4.,flux rate (kilometres)

Mount St Helens, 1980 2 X 104 22(o)
Hekla, 1947 2 x0 24(o),21(c)

Agung, 1963 3 x 1'23(c)

Bezymianny, 1956 2 x 101 45(o),42(c)

Santa Maria, 1902 4 x 104 34(c).,29(o)

Hekla, 1970 6 x 103 16(Q),15(c)

Ngauruhoe, 197Sb 2 x l0of0o),l0(c)

Taupo, 160 Q. 1 X 106l > 5O(c)

F a
o =observed, c =calculated.

bLbA vulcanian (less intense than plinian) eruption.

K ~TABLE 4. MAXIMUM HEIGHT.,S OF ERUPTION COLUMNS AT MOUNT ST HELENS (REF. 1)

= Dte f eupton Maximum column heights Duration of ash emission
'...(kilometres) at elevations above 12 km F771

18 May > 24.4, 17.3, 14.6, 19.2 about 9 hours

25 May 12.2 less than 30 min.

12 June 15.2, 10.7, 9.8, 10.7 about 30 mmin

22 July 13.7, 14.5, 13.7 25 min

F7 August 13.4, 10.0, 6.1, 7.6, 2 to 5 min

16 October 12.8 less than S min

17 October 14.3, 13.7 less than 5 min

18 October 5.22, 7.9 less than 5 min

1From Harris et al, 1981a.
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-~ TABLE S. VOLUMES OF SOME RECENT AIRFALL DEPOSITS(REF.1)

Vocni ruton(ubc Volume L
Volcnic rupton (ubickilometres of dense rock)

Mount St Helens, 1980 0.2 to 0.48

Fuego, 1970 0.1

Agung, 1963 0.6 to 1.2 (March and May events)

Bezymianny, 1956 0.5 to 2.0

F hiekla, 1947 0.3 --

Santa Maria, 1902 4 to 9

Krakatoa, 1883 5 to 10

- -. Tamibora, 1815 30 (very approximate)

Taupo, 160 AD 6 to 10

- 6
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Figure 3. Lidar Non-Rayleigh backscattering coefficient profile(ref.2)
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Figure 7. SAGE and Lidar measurements of Soufriere Plumes (ref. 4)
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