

6

. . . .

MICROCOPY RESOLUTION TEST CHART NATIONAL INTERVIEW (1999) 1999 A

•

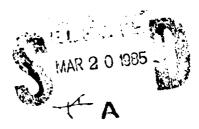
COP

FILE

CR 262

Contractor Report 262 December 1984

INTEGRATED DISBURSING AND **ACCOUNTING FINANCIAL INFORMATION PROCESSING SYSTEMS (IDAFIPS) TELECOMMUNICATIONS SUBSYSTEM PROJECT PLAN (TSPP)**


G. Wright K. Robinson WESTEC Services, Inc.

Naval Ocean Systems Center San Diego, California 92152-5000

Approved for public release: distribution unlimited

The views and conclusions contained in this report are those of the authors and should not be interpreted as representing the official policies, either expressed or iniplied, of the Naval Ochan Systems Center or the U.S. Government

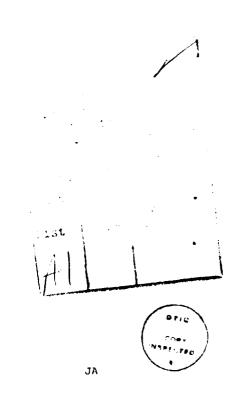
133

85 03 07 CR 262

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

F. M. PESTORIUS, CAPT, USN


R.M. HILLYER Technical Director

Commander

ADMINISTRATIVE INFORMATION

This task was performed for the Naval Accounting and Finance Center, NAFC 62, Washington, DC 20376 under program element OMM, subproject 0, (NOSC 805-CG58). Contract N00123-32-D-0089 Was carried out by WESTEC Services, Inc., Austin Peay Station, PO Box 28350, Memphis, TN 38128 under the direction of Robert P. Wees, Code 805, Naval Ocean Systems Center, San Diego, CA 92152-5000.

Released by C. A. Nelson, Head Technical Staff Under authority of H. D. Smith, Head Communications Department

TABLE OF CONTENTS

l

7

(

SECTION	TITLE	PAGE
1	PROJECT SUMMARY	1-1
1.1	Purpose	1-3
1.2	Background	1-3
1.3	Existing Methods and Procedures	1-9
1.4	System Deficiencies	1-10
1.5	Proposed Methods and Procedures	1-11
	for System Improvements	
1.5.1	General	1-11
1.5.2	IDAFMS Data Processing Subsyst	1-12
1.5.3	IDAFMS Telecommunications Subsystem	1-14
2	SYSTEM DESIGN	2-1
2.1	System Requirements	2-1
2.2	Data Processing Architecture	2-2
2.3	Telecommunications Architecture	2-3
2.4	Regional Network Design/Optimization	2-5
2.4.1	Assumptions of Network Environment	2-6
2.4.2	Performance Objectives	2-8
2.4.3	Design Methodology	2-9
2.4.4	Operational Methodology	2-10
3	CDA NETWORK DESCRIPTION	3-1
3.1	User Community	3-2
3.2	Functional Requirements	3-3
3.3	System Requirements	3-4

TABLE OF CONTENTS

ł

SECTION	TITLE	PAGE
4	INTRAREGIONAL NETWORKS (INTRANETS)	4-1
	DESCRIPTION	
4.1	Intraregional Networks	4-1
4.2	Region 2 Network Description	4-2
4.2.1	Region 2 User Community	4-2
4.3	Region 3 Network Description	4-7
4.3.1	Region 3 User Community	4-7
4.4	Region 4 Network Description	4-13
4.4.1	Region 4 User Community	4-13
4.5	Region 5 Network Description	4-18
4.5.1	Region 5 User Community	4-18
4.6	Region 6 Network Description	4-23
4.6.1	Region 6 User Community	4-23
4.7	Region 7 Network Description	4-28
4.7.1	Region 7 User Community	4-28
4.8	Region 8 Network Description	4-34
4.8.1	Region 8 User Community	4-34
4.9	Region 9 Network Description	4-39
4.9.1	Region 9 User Community	4-39
4.10	Region 10 Network Description	4-45
4.10.1	Region 10 User Community	4-45

ii

TABLE OF CONTENTS.

ŀ

C

6

6

a

•

Q

•

•

٥

SECTION	TITLE	PAGE
4.11	Region 11 Network Description	4-51
4.11.1	Region 11 User Community	4-51
4.12	Region 12 Network Description	4-57
4.12.1	Region 12 User Community	4-57
4.13	Region 13 Network Description	4-63
4.13.1	Region 13 User Community	4-63
4.14	Region 14 Network Description	4-68
4.14.1	Region 14 User Community	4-69
4.15	Region 4F Network Description	4-73
4.15.1	Region 4F User Community	4-73
4.16	Region 10F Network Description	4-80
4.16.1	Region 10F User Community	4-80

iii

LIST OF TABLES

đ

í

1

(

4

1

NUMBER	TITLE	PAGE
1.1	1DA Major Claimants and Sub-Claimants	1-7
1.2	IDA Region FIPC's	1-8
3.1	CDA Communications Equipment Config-	
	urations	3-9
3.2	Functional Requirement DCE Cost	3-10
4.2.1	FIPC Site Communications	
	Equipment Configurations	4-5
4.2.2	Growth Potential Network Cost	
	Summary, Region 2	4-6
4.3.1	FIPC Site Communications	
	Equipment Configurations	4-10
4.3.2	Growth Potential Network Cost	
	Summary, Region 3	4-12
4.4.1	FIPC Site Communications Equipment	
	Configurations	4-16
4.4.2	Growth Potential Network Cost	
	Summary, Region 4	4-17
4.5.1	FIPC Site Communications Equipment	
	Configurations	4-21
4.5.2	Growth Potential Network Cost	
	Summary, Region 5	4-22
4.6.1	FIPC Site Communications Equipment	
	Configurations	4-26
4.6.2	Growth Potential Network Cost	
	Summary, Region 6	4-27

iv

LIST OF TABLES

NUMBER	TITLE	PAGE
4.7.1	FIPC Site Communications Equipment	
	Configurations	4-31
4.7.2	Growth Potential Network Cost	
	Summary, Region 7	4-33
4.8.1	FIPC Site Communications Equipment Configurations	4-37
4.8.2	Growth Potential Network Cost	
	Summary, Region 8	4-38
4.9.1	FIPC Site Communications Equipment	
	Configurations	4-42
4.9.2	Growth Potential Network Cost	
	Summary, Region 9	4-44
4.10.1	FIPC Site Communications Equipment	
	Configurations	4-48
4.10.2	Growth Potential Network Cost	
	Summary, Region 10	4-50
4.11.1	FIPC Site Communications Equipment	
	Configurations	4-55
4.11.2	Growth Potential Network Cost	
	Summary, Region 11	4-56
4.12.1	FIPC Site Communications Equipment	
	Configurations	4-60
4.12.2	Growth Potential Network Cost	
	Summary, Region 12	4-62
4.13.1	FIPC Site Communications Equipment	
	Configurations	4-66

Ú

ſ

v

LIST OF TABLES

TITLE	PAGE
Growth Potential Network Cost	
Summary, Region 13	<u>4</u> -67
FIPC Site Communications Equipment	
Configurations	4-71
Growth Potential Network Cost	
Summary, Region 14	4-72
FIPC Site Communications Equipment	
Configurations	4-75
Growth Potential Network Cost	
Summary, Region 4F	4-79
FIPC Site Communications Equipment	
Configurations	4-83
Growth Potential Network Cost	
Summary, Region 10F	4-84
	Growth Potential Network Cost Summary, Region 13 FIPC Site Communications Equipment Configurations Growth Potential Network Cost Summary, Region 14 FIPC Site Communications Equipment Configurations Growth Potential Network Cost Summary, Region 4F FIPC Site Communications Equipment Configurations Growth Potential Network Cost

LIST OF FIGURES

3.1	IDAFIPS CDA Network	3-8
	APPENDICES	
A	Network Cost Summary	A-1
В	IDAFMS Regional Implementation	
	Schedule	B-1

vi

SECTION 1. PROJECT SUMMARY

ſ

Ľ

C

The Department of the Many (DON) has initiated a Financial Management Improvement Plan (FMIP) to improve the accuracy and timeliness of the Navy's financial data. The Comptroller of the Navy (NAVCOMPT), as part of this plan, has sponsored the Integrated Disbursing and Accounting Financial Information Processing Systems (IDAFIPS) project. IDAFIPS embraces four major subsystems developments. These subsystems are Integrated Disbursing and Accounting Financial Management System (IDAFMS), Financial Reporting System (FRS), Operating Forces (OPFORCES), and Claimant Accounting Module (CAM). IDAFMS is proposed as a standardized Navy-wide, field-level integrated disbursing and accounting processing system using a random access data base residing in stand-alone pro essors at a number of optimally located regional financial information processing sites. These processing sites will provide online interactive transactiondriven data processing support to their associated Financial Information Processing Centers (FIPC's) and to other Navy fund administering activities on a regional basis. The data processing sites are to be interconnected via telecommunications networks to expedite the exchange and reporting of financial data with field activities and between FIPC's and a Central Reporting Facility (CRF).

FRS is an existing financial information processing system which classifies, edits, balances, validates all disbursements/collections, material/labor expenditures, and accounting data adjustments/corrections within the Navy. The system is sponsored by NAVCOMPT. The FRS

provides the means for officially reporting funds expenditures and collections at the detail transaction level to Authorization Accounting Activities (AAA's). The FRS also provides the detail expenditure and collection data for processing by the Centralized Expenditure/Reimbursement Processing System (CERPS) and reporting at the departmental level as specified by NAVCOMPT.

0

OPFORCES is a proposed financial management system for performing fleet resource accounting while meeting the objectives of the Integrated Disbursing and Accounting (IDA) concept. OPFORCES envisions the use of the ADPE being procured under the IDAFMS Project to update many of the processes and accounting functions performed by fleet activities. The OPFORCES processing system would be operated by the Fleet Accounting and Disbursing Centers (FAADC's) as well as the Construction Battalion Center (CBC), Port Hueneme, to support all operating budget (OB) and operating target (OPTAR) holders following NAVCOMPT Financial Management of Resources (Operating Forces) NAVSO P-3013 procedures.

CAM is best described as the application process used by a claimant to summarize and report to higher authority the financial and accounting data submitted for each operating budget by an OB holder. (A "claimant," which can be a major claimant, subclaimant or an expense limitation holder, is a Navy activity with major budgetary authority, not only for itself but for other activities.) The CAM will also be designed to support the abbreviated requirements of the subclaimant in those cases wherein reporting

from the OB holder to the major claimant is expected via the expense limitation holder. A major claimant receives his obligation authority directly from the Chief of Naval Operations (CNO), while a subclaimant/expense limitation holder receives his obligation authority from a major claimant. The specific accounting functions performed by a CAM are included in NAVSO P-3014-1.

1.1 Purpose. The purpose of this document is to present a plan for the orderly development of the telecommunications subsystem in support of the IDAFIPS Project. This document represents a revision? update to the IDA Telecommunications Subsystem Project Plan (TSPP - January 1979) previously submitted by NAVCOMPT, and reflects extensive redesign/optimization of the telecommunications networks required to satisfy IDAFIPS requirements. It will be uplated as necessary to accommodate dynamic changes resulting from periodic project reviews and to reflect current policy.

<u>1.2 Background</u>. In 1972, the Secretary of the Naty (SECNAV) established the DON FMIP. Its stated purpose was to provide timely financial data to serve the needs of management and to correct deficiencies revealed in internal and external audits of the Navy Accounting System. The long-range objectives of the plan are the design and implementation of integrated financial management, programming/ budgeting, accounting and reporting systems. As part of this overall plan, an Integrated Financial Management System (IFMS) Project was established in 1972 and was initally chartered by the SECNAV to design, develop, and implement a Navy-wile

integrated accounting system and a procurement accounting and reporting system. The IDA objective was first funded as a project effort in FY 1974, at which time the IDA Project Branch was officially organized within NAVCOMPT and a work plan developed. Prior to this time, IDA concepts and objectives were being reviewed for the purpose of evaluating and testing selected aspects of the Navy's disbursing and accounting system. Subsequent to 1974, NAVCOMPT (as the IDA Project Sponsor) authorized the development of a number of IDA applications that covered a broad range of accounting requirements. These include IDA processes developed by the Chief of Naval Material (CHNAVMAT). Naval Facilities Engineering Command (NAVFACENGCOM), Naval Supply Systems Command (NAVSUPSYSCOM), Chief of Naval Education and Training (CNET), and Chief of Naval Reserve (CNAVRES), among others. Each of these developments has assisted in the progress towards the IDA objective. The publication of an Automated Data Systems (F) Development Plan for IDA in 1976, followed by an IDA General Design Manual in 1977, and a Detail Design Manual i eptember 1980 formalized the IDA concept as a system development project.

In mid-1979, the Naval Ocean Systems Center (NOSC) was tasked by NAVCOMPT to provide technical engineering services in developing and implementing the telecommunications network to support the IDA System on a Navy-wide basis. A User Requirements Data Base (UPDB) submission and an initial TSPP were the first products of this effort. Subsequent tasking to NOSC involved design optimization for each of the regional telecommunications networks listed

and the state of the second state of the secon

to satisfy this requirement is based on the concept of integrating disbursing and accounting functions to make disbursing a by-product of accounting operations and at the same time make maximum use of automatic data processing and data communications technology for information transfer. IDAFMS policy, objectives, and system design requirements have been established by NAVCOMPT in the IDA General Design Manual (1977) and Detail Design Manual (1980). Using these documents as the foundation for architectural development, NAVCOMPT ordered a detailed structured analysis and structured design of the financial processing software and directed the acquisition of a stand-alone processing capability via a negotiated procursment to implement the selected system. The system planning environment, assumptions, and constraints have been further outlined in the IDAFMS Systems Engineering Plan (SDP - September 1980). An IDAFMS Management Engineering Plan (MEP - May 1981) provides, in greater detail, those management actions required for attaining the IDAFMS objectives.

2.2 Data Processing Architecture. The IDAFMS data processing architecture exists to support a Navy-wide Financial Information Processing System (FIPS) and incorporates the following:

a. Regional Financial Information Processing Centers;

b. A Central Reporting Facility;

c. A stand-alone central processing system, sized to anyomodate the IDAEMS data processing requirements at each FIPC;

d. Interfaces to other systems, as applicable.

SECTION 2. SYSTEMS DESIGN

More than 1,600 Navy activities will participate in IDAFMS. The hierarchy of Navy financial management is such that different tiers in the management structure will have significantly different financial information requirements, both in the quantity and level of detail desired. The management structure includes Navy program, fiscal, operating, and functional managers at all levels. IDAFMS encompasses all appropriations and funds at and below the allotment/ operating budget level of the DON. The Marine Corps Headquarters and its field-level financial processes are excluded; however, an automated interface will be established with the USMC Finance Center to eliminate hardcopy documentation. Using modern teleprocessing techniques, the IDAFMS architecture must be capable of providing this management structure with data for:

a. Planning, programming, and budgeting of resources;

b. Effective control over all funds, property, and other assets for which the Navy is responsible; and

c. Timely, complete, reliable, and accurate financial reports for internal Navy management use and for external agencies and authorities having financial control responsibilities (i.e., Office of Management and Eudget, Congress, Treasury, Department of Defense, etc.).

2.1 System Requirements. The requirement for IDAFMS stems from a basic need to improve the timeliness, effectiveness, and accuracy of the Navy's financial management processes. The plan of action

(4) financial transaction processing will be updated daily thereby providing for efficient and faster reporting to higher levels; and

ſ

6

f

٢

d. The proposed system will eliminate the creation and transmission (primarily by mail) of voluminous documents required by the present disbursing and accounting system for financial data exchange. This will decrease +he large workload in the area of report collation and distribution and significantly reduce the time and mat..ial costs associated with these processes. Finally, the number of stations within the present facilities that transactions must pass through in the processing cycle will also be greatly reduced. information exchange in a cost-effective, efficient, and timely manner. The following improvements are anticipated:

a. The functional improvements (new capabilities) of the proposed telecommunications systems replace existing manual methods for information flow and provide for a near real-time inquiry for the status, update, and retrieval of financial data throughout the entire IDAFMS;

b. The proposed system capabilities will provide improvements in the availability of current financial information between the CRF and FIPC's, between FIPC's, and between the FIPC's and their FAA's. The system will provide (to the extent economically justifiable) reductions in the flow of hardcopy documents, listings, and reports. The telecommunications capability will give FAA's the ability to input transactions, access the data base directly for inquiry, and to generate hardcopy output locally;

c. The proposed system will provide the means to achieve a highly responsive, timely and efficient method for financial information flow within IDAFMS. For example:

- customer access into a unified data base will decrease the response time and processing time;
- (2) fund administrators will have the capability to input documents into the processing system as they are generated rather than being confined to a batch-processing mode;
- (3) fund administrators will have remote terminal inquiry capability to obtain real-time financial data, thus eliminating or greatly reducing the need for the U.S. Mail; and

use of automated data processing capabilities provides efficiencies in the overall payment process. Specifically, the following improvements are accomplished:

.....

- Payment processing relies on a valid obligating or account payable record and posts instantaneously to that record;
- (2) Individual vouchers are not produced for the payments generated;
- (3) Cash management requirements and prompt pay are incorporated into the process;
- (4) Invoice validity edits are performed automatically using data entered to the system during the obligation stage;
- (5) The disbursing officer cashbook is mechanically maintained; and
- (6) Reporting interfaces between associate disbursing officers (ADO's) and central disbursing officers (CDO's) are automated.

1.5.3 IDAFMS Telecommunications Subsystem. The proposed telecommunications subsystem for the IDAFMS Project is planned as a hardware/software system capable of providing for accurate financial

modifies reporting media, changes storage methods, and builds in requirements for more timely and accurate processing. Specifically, the following improvements are accomplished:

- A full range of accounting validations and edits are included in the process; data is validated at the time of input whenever possible;
- (2) The system is structured on standard data elements;
- (3) The system is on-line for interactive and updated on a 24-hour basis for batch;
- (4) Single data capture techniques are employed, requiring successive entries to build on prior entries;
- (5) Data is entered from FAA's or other systems via electronic means;
- (6) Accounts payable are established at the time of receipt;
- (7) Payment certification becomes a part of the accounting process; and
- (8) Accrual accounting requirements are incorporated.

b. <u>Disbursing Process Improvements</u>. Under IDAFMS, the disbursing process is altered significantly. Generally, disbursing becomes the by-product of the accounting process and maximum use

e. Establish a single CDA for the development, implementation, and operation/maintenance of IDAFMS (NAVCOMPTSSA established May 1982); and

f. Establish, where feasible, mechanized interfaces between IDAFMS and other external systems.

ſ

1.5.2 IDAFMS Data Processing Subsystem. IDAFMS is essentially a resource-sharing automated financial information processing system based of the concept of using a regionalized random access data base accessible by remote terminal devices for online update of financial files. The data base will contain the information required to support the financial management requirements of all local FAA's serviced by the FIPC, support the FIPC itself, and be responsive to the information requirements of higher authorities (i.e., major claimants/headquarters). The FIPC, supported by its data processing center (DPC), is the hub of IDAFMS data processing operations and represents the greatest potential for overall system improvement. Implementation of automatic data processing for IDAFMS will result in the following system improvements:

a. Accounting Process Improvements. IDAFMS data processing will permit expansion in the scope of accounting processing,

1~12

f. High support costs in time and material associated with preparation of the hardcopy documentation, transmission and processing.

1.5 Proposed Methods and Procedures for System Improvements.

1

1.5.1 General. The IDAFMS objective is to obtain a Navy-wide integrated disbursing and accounting financial management system which will incorporate modern ADP and telecommunications technology to the maximum extent feasible. Under IDAFMS the accounting record will be used as the basis for all information in an integrated data base and all disbursements are produced as a by-product of accounting. The proposed methods for attaining this capability are to:

a. Reduce the number of AAA's and Disbursing Officers through a consolidation of functions into regional FIPC's;

b. Establish a CRF to be the central Navy point for interservice and interagency transaction accounting and to maintain the single central data bank for summarization/consolidation of disbursing/accounting information for all levels of Navy management;

c. Establish an automated integrated disbursing and accounting data base at the FIPC's using stand-alone processors;

d. Establish regional and CDA telecommunications networks to support online/interactive access to the integrated data bases at the FIPC's, and provide for automatic FIPC-to-FIPC/FIPC-to-CRF data exchange;

Mail, considerable efforts must be expended to control the movement of hardcopy documentation within and between the various activities.

1.4 System Deficiencies. The existing system (relative to information flow) is deficient in that it is not responsive to user's needs as a consequence of the physical and organizational separation of disbursing and accounting functions. This condition is aggravated by the failure to develop an efficient automated telecommunication processing system. Major resulting problems are:

1

ł

a. Fund holders are forced to perform memorandum accounting, which results in delays in the issuance of reports on current status of funds and outstanding documents;

b. Accounting activities fail to receive timely and complete information for reporting purposes;

c. The timing and sequencing of the flow of accounts payable documentation are adversely affected;

d. Disbursing and accounting systems are encumbered with an excessive amount of hardcopy documents in lieu of machine-readable materials;

e. Physical separation of functions and deviations in data base structures increases the necessity for numerous levels of reconciliations; and

 Fund Administering Activities (FAA's) - Activities (some 1,600 Navy-wide) who are OB holders and who are serviced by a regional FIPC (see Appendix C, IDA Detail Design Manual).

1.3 Existing Methods and Procedures. The existing disbursing and accounting systems have evolved over the years from a variety of developmental projects. These systems have, for the most part, been meeting the external reporting requirements imposed upon the Navy. However, the time between the disbursement of funds and the accounting for these transactions have precluded the financial system from being responsive to the information requirements of Navy management. In addition, associated support costs for these systems are tecoming a major factor. As a result, the disbursing and accounting processes are less than fully effective in meeting the objectives of providing timely and accurate financial information for operations and management control.

Current automatic data processing (ADP) capabilities vary widely within the Wavy's disbursing and accounting community. Approximately 90 percent of all Navy activities involved in processing financial transactions and related reports are automated to some degree. Where automation is used, however, it is primarily in the form of batch processing with reliance on manual inputs. Since the majority of the current financial information flow is via U.S.

1

Region	Major Claimant	FIPC/DPC
2	COMNAVSUPSYSCOM	NAV PUBLICATIONS AND FORMS CEN, Philadelphia
3	COMNAVSUPSYSCOM	NAV REGIONAL FINANCE CEN, Washington, DC
4	COMNAVSUPSYSCOM	NAV SUPPLY CEN, Norfolk
4F	CINCLANTFLT	FAADCLANT, Norfolk
5	COMNAVSUPSYSCOM	NAV SUPPLY CEN, Charleston
6	CINCLANTFLT	NAS Jacksonville
7	CNET	NETFIPC, ?ensacola
8	CNAVRES	NAVRESERVE SUPP OFF, New Orleans
9	NAVCOMPT	NAV REGIONAL FINANCE CEN, Great Lakes
10	COMNAVSUPSYSCOM	NAV SUPPLY CEN, San Diego
10 F	CINCPACFLT	FAADCPAC, San Diego
11	COMNAVFACENGCOM	CBC, Fort Hueneme
12	COMNAVSUPSYSCOM	NAV SUPPLY CEN, Oakland
13	COMNAVSUPSYSCOM	NAV SUPPLY CEN, Puget Sound
14	COMNAVSUPSYSCOM	NAV SUPPLY CEN, Pearl Harbor
USMC	COMDT, USMC	MARFINCEN, Kansas City
CRF	NAVCOMPT	NAFC Washington

Table 1.2. IDA REGION FIPC's

(

CNO	CNET
	- CNET
AVRES	- CO, NATTO
	- CNATRA
CINCLANTFLT	- CNET SUPPO
- CINCLANTFLT	
 COMNAVAIRLANT 	CHNAVPERS
- COMSUBLANT	
 COMNAVSURFLANT 	BUMED
- COMEASTLANT	
- COMTRALANT	COMNAVSECGRU
CINCPACFLT	COMNAVTELCOM
- CINCPACFLT	
- COMNAVAIRPAC	COMNAVINTCOM
- COMSUBPAC	
- COMNAVLOGPAC	OCEANAV
- COMTRAPAC	
- COMTHIRDFLT	DIRNAVLEGSVC*
- COMNAVSURFPAC	
	NCPC
CNM	
- CNM	COMNAVDAC

- CNM

0

0

- COMNAVELEXSYSCOM
- COMNAVSUPSYSCOM
- COMNAVAIRSYSCOM
- COMNAVSEASYSCOM
- COMNAVFACENGCOM
- DIRSSPO WASH DC

COMNAVDAC

ONR

DUSN

- DUSN
- CHINFO
- NAFC
- NAVAUDITSVC
- DOD

*Sub-Claimants shown indented. **Assigned CNO.

Table 1.1. IDA MAJOR CLAIMANTS AND SUB-CLAIMANTS*

In May of 1982, the Navy Comptroller Standard Systems Activity (NAVCOMPTSSA) was established to ac is the Central Design Activity (CDA) for the IDA hardware procurement and to effect a complete new design to automate Navy financial accounting systems and thereby produce a standardized financial processing software, IDAFMS.

n early 1983, the IDA hardware contract was awarded to System Development Corporation; and in late 1983 the Fleet Accounting and Disbursing Center, U.S. Atlantic Fleet (FAADCLANT) at Norfolk, VA, was selected as the prototype site for the IDAFMS implementation.

The following definitions are included here to aid the reader in understanding the Navy's financial community.

- <u>A Central Reporting Facility (CRF)</u> The activity charged with summary processing and reporting of financial data at the Navy departmental level.
- <u>Major Claimants</u> Offices, bureaus, and commands designed as administering offices and who receive a major claimant OB directly from the CNO (Table 1.1).
- Financial Information Processing Centers (FIPC's) Regional centers providing a full range of financial services to serviced activities (accounting, disbursing, collecting (Table 1.2)).

in the initial TSPP, overall planning of management actions related to telecommunications network development, and analyses of the methodology for implementing IDA teleprocessing in the Continental United States (CONUS) and Hawaii on an interregional basis.

Concurrent with the foregoing telecommunications network development actions, work related to IDA interactive processing and integrated data base development has been proceeding under several sponsors. These efforts in applying the IDA concept have been carried out under the NAVCOMPT IDA Project umbrella in the development of financial management systems for IDA phases IA, IIA, IIB, and 11BE.

In February 1980, NAVCOMPT decided that the IDA Financial Management System implemented by CNET on the UNIVAC 1100 computer system at Navy Regional Data Automation Center (NARDAC) Pensacola would serve as the basis for IDA Phase III integrated random access data base development. In an effort to further standardize IDA hardware, NAVCOMPT, in May 1980, initiated the development of a procurement which would invite commercial vendors to propose IDAFIPS hardware and the communications interface to government-designed/provided networks. 2.3 Telecommunications Architecture. IDAFMS telecommunications requirements are based upon the user community's needs for data transfer. The IDAFMS telecommunciations architecture is determined by the volume of data which must be transferred, the nature of the data (transmit/receive), system geography, system applications, and imposed economic and performance criteria. The architecture is based on the concept of establishing regional and CDA telecommunications networks to support online access to the IDAFMS data base at the regional processing centers, and to support functional/management communications (FIPC-FTPC, FIPC-CRF, CDA-FIPC) for data transfer throughout Continental United States and Hawaii. The regional networks are characterized as terminal-to-host oriented, while the CDA network is primarily host-to-host between the regional center: and the CDA. The CDA Network supports interregional query/response via interactive terminal-to-remote host operations to satisfy CRF and Major Claimant financial information requirements. The IDAFMS telecommunications architecture therefore involves extensive networking which in turn generates requirements for monitoring network performance as well as exercising centralized network control. These functions will be controlled at the CDA Network Control Center (NCC) in Memphis, TN.

24

IDAFMS is being designed therefore to operate in a teleprocessing environment with two levels of capabilities:

a. Regional networks connecting the individual FIPCs to their FAA's; and

b. A CDA network for command, control and internal support functions. The CDA also interconnects FIPC's (for the purpose of exchanging financial data or files between themselves) and the CRF (for reporting to higher authority).

The design of the telecommunications systems to provide these capabilities was based on a functional analysis which included a data collection effort, a requirements analysis, and establishment of desired performance parameters. The overall objective of the telecommunications systems design effort has been to provide IDAFMS activities with the maximum capabilities that could be economically justified. The basic parameter used in the design of IDAFMS networks was transaction volumes. After extrapolating peak hour regional traffic requirements, a probabilistic computer analysis (which incorporated desired system performance parameters, geographic factors, and cost estimates) was applied to determine the DTE/DCE required, circuit topology, and line speeds.

G

2.4 Regional Network Design/Optimization. The design methods and procedures followed to arrive at each of the optimum regional network configurations included the following:

- Determination of the IDA System requirements and constraints.
- Determination of the network design requirements.

1

C

ŧ

- Collection of data and establishment of parameter values.
- selection of a network analysis and optimization software package.
- Establishment of tradeoffs and constraints.
- Modeling a telecommunications network circuit using the available data and establishing parameters.
- Performing sensitivity testing on the circuit model to determine its flexibility and robustness.
- Establishment of a design as the recommended regional telecommunications network.

2.4.1 Assumptions of Network Environment. The intraregional system requirements were researched using the IDAFMS General and Detail Design Manuals and various telecommunications design publications. The system telecommunications requirements were, in most cases, very general. The system performance criteria were defined using the information available. Where specifications and criteria were not available, reasonable assumptions were made consistent with the neels and direction of NAVCOMPT. When the performance criteria were established, obtainable data were gathered.

ſ

Where necessary, representative values were assigned to network parameters. The significant assumptions used in the design effort are summarized as follows:

- <u>Communications Protocol</u>. Burroughs Poll/Select protocol parameters were used in the network analysis.
- <u>Terminal Capabilities</u>. Terminals were assumed to be synchronous, with full input/output buffers and internal screan regeneration capability (i.e., CRT screens <u>not</u> retransmitted for each transaction).
- <u>Addressable Printers</u>. Addressable printers were distributed as required by each FAA. All activities were assigned at least one online addressable printer to handle small output reports and responses to data base inquiries.

 <u>Host Service Time</u>. A one second mean processing (service) time was assumed for the IDAFMS host CPU. This was an assumed value as no specified value was obtainable from system descriptions.

- Operator Capabilities. It was assumed that during the "peak hour" period the terminal operator will function at peak efficiency. An average operator typing speed of 2 keystrokes/second was assumed for CRT keyboard operations.
- Operator Working Hours. Operator working hours at user activities were prescribed to be 0600-1800, local time, for purposes of entering data into the system and making inquiries. It was assumed that the IDA host CPU would be available for accepting such transactions throughout this time period within each region.

C

- Data Base Access. While restricted by nominal software and maintenance procedures, the data base would essentially remain online 24 hours a day and would be accessible to all qualified users. All transactions validated and accepted by the system will be incorporated into the system via online data base update.
- Line Conditioning. The IDAFMS equipment vendor has certified that the data communications equipment supplied will eliminate the need for conditioning. Inherent line costs associated with conditioning are therefore incorporated in cost of data communications equipment.

- Peak Traffic Volumes. The peak day interactive traffic volume for each activity was taken to be twice the average daily volume, as computed from the monthly volumes provided. The peak hour volume was established as 30 percent of the average day volume and occurring between 1000 and 1100 hours.
- Batch Traffic. The batch report output traffic to the remote batch terminal (RBT) printers was assumed to occur prior to normal working hours and after the daily data base update. These batch reports would be spooled at the printer site with hardcopy generated during normal working hours. Where possible RBT printers would be collocated with clustered activities who would then share outputs.

5

Line Speed. Selection of line speeds for IDAFMS telecommunications circuits is determined by an algorithm that considers workload, equipment costs, anticipated growth, and relative performance criteria. All IDAFMS circuits are modeled at 4,800 bps but, at installation time, which is usually 8-10 months away, line speeds may be modified to accommodate changes in the original plan. Since DCE for this project is government-furnished equipment purchased from an existing contract, an ample supply of DCE supporting line speeds of choice is readily available.

2.4.2 Performance Objectives. The performance of the regional networks is constrained by design criteria. Certain criteria were provided or assumed as objectives in the design development. These primary criteria are summarized as follows:

- Minimize Cost. Consider the cost variables in selection of lines, hardware, topology, et al., in order to minimize the overall network costs.
- Response Time. Provide mean and 99th percentile response times that are reasonable to expect from the system and still maintain the operator's attention. A mean response time of 4 seconds and a 99th percentile of 15 seconds were established as objectives.

5

F

(

Availability. The host computer system is expected to be available for certain user services at specific hours of the day. These times and services are: (a) 0000 to 0600 hours batch report outputs, (b) 0600 to 1800 hours - operator interactive use and report creation, and (c) 1800-2400 for overflow report creation and data base file maintenance. The data base, however, will remain online 24 hours a day to permit access by remote users from other time zones.

2.4.3 Design Methodology. The next step was to model circuits using network parameters and various line speeds and the analysis software package. These models provided the circuit traffic volume and terminal quantity limitations that would most likely simulate networks that would fulfill the performance criteria. The model circuits were then tested for sensitivity to determine the circuits reactions to variations in message parameter disbributions, terminal quantities, and traffic volumes. The network that complied with design requirements at least cost was selected as the regional network.

2-9

8**.**

2.4.4 Operational Methodology. In order to minimize the cost of the network in its operational environment, the IDAFMS regional networks will be fully supported by the NCC in Memphis, TN. This centralized command and control concept is made possible by a telecommunications architecture at the systems level and the employment of state-of-the-art communications equipment (see Section 3). Using concepts developed on the ARPANET (and soon to be incorporated into the Defense Data Network), the Memphis NCC will be able to monitor, control, fault isolate, reconfigure and administer corrective action to all regional networks. This operational methodology has been selected to overcome two drawbacks of regionally supported networks:

a. The high cost of redundant personnel.

.

1

0

b. The unavailability of skilled technicians in many local areas.

The IDAFMS networks will require no dedicated support personnel at the field level.

SECTION 3. CDA NETWORK DESCRIPTION

r

The CDA Network will maintain a communications connection between FIPC's, CRF, major claimants, the CDA, and interfacing systems. The CDA Network will provide the virtual channel over which command and control, diagnostic monitoring, centralized software distribution, and accounting/ disbursing information will flow. The design of the CDA Network was constrained by technical, functional, and performance requirements which included traffic loading, hostto-host interfacing, and network control functions. The user community of the CDA Network will have the need for host-to-host transaction processing. To expedite the transfer of information and data flow from one host to another, the CDA Network provides the communication paths between geographically disparate FIPC's. The CDA Network, in an effort to accommodate for the differences in time zones as a functional requirement, will operate on Greenwich Mean Time (GMT). A network control center has been established to promote the control and maximize the availability of the CDA Network. It will be the responsibility of the NCC to monitor, maintain, and troubleshoot any problems that may occur using the latest diagonistic equipment available to isolate problems and effect corrective action.

Centralized command and control will insure the maximum availability of diagnostic services as well as provide 24 hour host-tohost communications.

3.2 Functional Requirements. IDAFIPS is composed of 15 Financial Information Processing Centers and the Central Reporting Facility Office in Washington, D.C.

0

Each FIPC has an assigned DPC, at which the local computer suite, regional data base and ADPE peripherials reside. Each FIPC will provide automated data processing support of the accounting and disbursing functions of the command activities for which it is responsible. As commitments, obligations, and disbursements are made, data base information must be transported through the CDA Network so that, at each management level, the requisite data for accurate decision making and auditing exists. At each level, reports are necessary both for internal and external audit and examinations of the commitment, obligation, and disbursement of funds insures their legal accuracy and also insures that the intent of the funding authorization is correct. It must be pointed out that access to the system will be 24 hours per day. Time differentials (or time-zone differences) are a consideration in the operation of each computer site. (CDA Network time will be recorded in GMT.) This is a point that must be considered for the proper transfer of files and the scheduling of data base availability.

3~3

3.1 User Community. To the maximum extent possible, transaction processing will be accomplished within the individual user's community on their local host. The CDA Network, however, will be used for host-to-host transactions. Whenever a valid transaction is processed for an activity accounted for by another, it is characterized as a "transaction for others "(TFO)." Disbursement Notification Records (DNR's) are generated during each processing cycle for all TFO's and are transmitted daily. The DNR provides an audit trail of the transaction and the basic data needed to access, reconcile, or liquidate the obligation. When an FIPC processes a TFO, data is passed through the CDA Network to the responsible FIPC (via data exchange (DX)) for inclusion with the FIPC's DNR data base. Accessibility of information obtained through inquiries and from hard-copy reports generated by the system will be current and readily available to remote users via the CDA Network. The time allowed for responses from a terminal inquiry through the CDA Network will vary, depending on the level at which data elements are being portrayed (document number, job order data, cost accounts, budget classification code, functional category) and the complexity of the multi-host data base search routines.

7

3.3 System Requirements. The CDA Network System control procedures must, of course, interface with the practices instituted at the individual FIPC's/DPC's. The CDA will establish a telecommunications NCC whose function will be to insure the maximum availability of the FIPC and CDA network components. The quality monitoring of the network, rapid fault isolation, and the supervision and expending of maintenance actions will be the primary tasks of the NCC.

المعادية والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمحاد المراجع والمحاد المحاد المحاد المحاد الم

The equipment used to monitor data flow on dedicated lines will be the Spectron D-901 Datascope monitor. The Spectron Datascope Model D-901 is a multi-microprocessor based test instrument for passive or interactive monitoring and troubleshooting of data communications channels. It combines the capability of a powerful programmable interactive data analyzer and emulator with that of a large capacity, flexible data storage and retrieval device to provide all of the tools necessary to troubleshoot even the most complex data network. Under operator or program control, the D-901 datascope is able to:

*Monitor and analyze data speeds up to 56 Kbps.

•Initiate and terminate recording of data and selected control signals at speeds up to 56 Kbps.

*Recognize and store complex data patterns.

*Perform bit level testing.

*Store selected data sequences.

*Output a user-selected response to a specific incoming sequence.

*Store and edit user programs.

*Display or freeze the data stream on the integral 9-inch CRT.

*Count events and measure the time interval between counts.

*Generate and check any 16-bit polynomial CRC.

Functions as a master (central) unit to one or more remote.D-901's permitting control of all functions from a central site.

In conjunction with the D-901 datascope, the NCC is equipped with Spectron Electronic Matrix Switch Model 2000. The Matrix switch will be used to perform electronic matrix switching,

digital/analog patching, transmit status alarms, and monitor digital and analog signal levels. Additionally, the switch incorporates network diagnostic capabilities and provides remote network control. A single Matrix 2000 unit supports up to 240 communications ports. Interfaces supported include EIA RS232C, voice-frequency, current-loop, and V.35. The Matrix 2000 offers both individual and multi-switch options, allowing both remote control and data passage between co-located switches. Using the network control option, the Matrix 2000 may be geographically distributed and linked to form a complete switching network supporting in excess of 240,000 ports. Password-protected switch control may take place from any point along the network, thereby affording maximum configuration flexibility. Control of a single site or an entire network is performed using a standard asynchronous ASCII terminal (system control console) at speeds to 9,600 bps. Real-time networking activity and diagnostic information are displayed on the system control console or optionally on the system logging printer (also a standard asynchronous ASCII device).

그 옷고 있는 옷고 옷 도움 도움도 다구 도둑

In conjunction with the Matrix-switching equipment used for data communications configuration is the Communications Management System (CMS) which provides centralized network control and monitoring. This includes the gathering of statistical measurements of network performance, reporting of abnormal conditions (when preset thresholds are exceeded), and the reporting of any untoward conditions to the NCC. The monitoring of any mix of terminals, asynchronous or bi-synchronous, can be accommodated.

FIPC STITE COMMUNICATIONS LOUIPMENT CONFIGURATIONS

FIPC Region 3, Washington, D.C. Site Area Code 202, Tel Co Exchanges No. 433

				CIRCUITS	ITS		MODEMS		TERMINALS	ALS	в.тня
NO.	010	NODE	1425	AREA	TEL CO	TYPE	017	MP	CRT'B	. HT4	
1	62285	HAVOBSY	WASHINGTON, D.C.	202	254	ЧΜ	-		1	-	
	00019	MUBUM	WASHINGTON, D.C.	202	254		-1		2		
	62908	NAVWPRENGSUPPACT	WASHINGTON, D.C.	202	413		1		-	-	
	63165	NARDAC	WASHINGTON, D.C.	202	433		1		1	-	
	00168	NNTNAUMEDCEN	BUTHESDA, MD	202	545		-			-	
	00788	NAVCOMMU WASH	CHELTENHAM, MD	202	545				I	1	
	00032	JTCRUIEMISPROJOFF		202	692						
	68306	NAVRESHERCOM REG6	WASHINGTON, D.C.	202	692		1		-	-	
	66715	CUMNAVCRUITCOM	WASHINGTON, D.C.	2012	696 0				-1		
• 2	0000	COMNAVTELCOM	WASHINGTON, D.C.	202	282	ЧP			7	~	
4	64549	COMNAVDAC	WASHINGTON, D.C.	202	413		1		-	1	
- 1	68481	NAVBCSTSVC	WASHINGTON, D.C.	202	411		-		1	1	
0	68323	COMNAVI,EGSVCCOM	WASHINGTON, D.C.	202	433		1		-		
	00023	COMMAVSUBSYSCOM	WASHINGTON, D.C.	202	692		-		1	-	
	00015	MODINI VAMOD	ALEXANDRIA, VA	202	695				-	-	
	11000	(11)	WASHINGTON, D.C.	202	695		~		-	-	
	00011	CND	WASHINGTON, P.C.	202	695		-		-	-	
	00023	COMNAVSUBSYSCOM	W.SHINGTON, D.C.	202	695		1		-	-	
	96321	исрс	WASHINGTON, D.C.	202	696		-		-	-	
~	79092	NAVSECSTA	WASHINGTON, D.C.	202	433	dd	2		٢	2	
4	00168	NATNAVMADCEN	BETHESDA, MD	202	545	44	2		Ĺ	2	

TANLE 4.3.1

D

The second second

たいではないないですがあった。

a mater standarter for

The costing of this network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.3.2.

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed. per day based on anticipated IDA involvement. Those subscribers who are not headquarters commands in their own right consist of accounting activities utilizing standard NAVSO P-3006 (Shore Activities) accounting procedures, while the headquarters commands will be required to adhere to NAVSO P-3006 and NAVSO P-3014 (departmental level) accounting procedures. Terminal requirements will vary according to transaction volumes and range from a single CRT terminal and printer terminals to installations involving multiple CRT's and printer terminals. ' complete listing of IDA Region 3 subscribers is contained in Table 4.3.1. The listing includes all online and dial-up subscribers plus those activities that are considered as low volume users whose daily transaction volumes do not warrant such service at this time.

The number of terminals identified for each activity listed in Table 4.3.1 represents the initial requirements for Region 3. The growth potential network is shown in Table 4.3.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Four dial-up ports will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc. There are dial-up ports available to handle the needs of the low volume users.

4.3 Region 3 Network Description. The Navy Regional Finance Center (NAVREGFINCEN), Washington, located in Crystal Mall (Building 3), Arlington, VA, will function as the FIPC for Region 3 for Field Level activities. Region 3 encompasses selected fund administering activities established in Virginia, Maryland, and Washington, DC. The FIFC will provide data processing support for Region 3 and serve as the communications control point for the network. The major claimant for Region 3 is Commander, Navy Supply Systems Command (COMNAVSUPSYSCOM), for IDAFMS processing. The network shown in Table 4.3.1 is for the Region 3 IDAFMS telecommunication network which will support the IDA Phase III implementation.

The circuits listed in Table 4.3.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time the networks have not been redesigned to incorporate these changes.

<u>4.3.1 Region 3 User Community</u>. Within IDAFMS, there are 47 different commands/activities/ offices scheduled to participate as remote online/dial-up subscribers to the Region 3 Field Level network. The geographical relationship for the online subscribers is depicted in Table 4.3.1. The individual subscribers to the IDAFMS Region 3 Telecommunications Network represent several different mission areas and levels of command, and their associated disbursing and accounting workloads vary, accordingly. Subscriber transaction workloads will therefore vary from a few dozen to several thousand

1

GROWTH POTENTIAL NETWORK COST SUMMARY

REGION 2

		DTE		D	CE
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	65	29	2	31	8
Cost- Nonrecurring	x	x	x	x	\$2,500
Recurring Annual	\$28,080	\$33,060	\$32,760	\$67,332	\$18,156

2

f

7

.

1

(

TABLE 4.2.2

4-6

٠.

FIPC STTE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

C

C

e

G

Ò

FIPC Region 2, Philadelphia Site Area Code 215, Tel Co Exchanges No. 697

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

3

1

terminal and printer terminal to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 2 telecommunications network subscribers is contained in Table 4.2.1. The listing includes all online and dialup subscribers plus activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

1

1

C

0

1

The number of terminals identified for each activity listed in Table 4.2.1 represents the initial requirements for Region 2. The growth potential network is shown in Table 4.2.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Two dial-up ports will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions may be sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of the Region 2 telecommunications network is divided into two basic areas: circuit (line and drop) and Data Communications Equipment (DCE). Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are ite-ized by component and are presented in Table 4.2.2.

4.2 Region 2 Network Description. The Naval Publications and Forms Center (NAVPUBFORMCEN) located in Philadelphia, PA, will function as the FIPC for Region 2. Region 2 encompasses selected fund administering activities established in Pennsylvania, New Jersey, and designated activities in the New York City area. The FIPC will provide data processing as well as the communications control point for the Region 2 network. The major claimant for the Region 2 FIPC is the Commander, Naval Supply Systems Command (COMNAVSUPSYSCOM). The network in Table 4.2.1 is for the Region 2 IDAFMS *:lecommunications network which will support the IDA Phase III implementation.

 \mathbf{O}

The circuits listed in the Table 4.2.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time the networks have not been redesigned to incorporate these changes.

4.2.1 Region 2 User Community. There are presently 30 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 2 network. The geographical relationship of the online subscribers is depicted in Table 4.2.1. The individual subscriber: within Region 2 may differ either by mission or by transaction workload. Communications requirements for activities will vary from a few dozen transactions per day to several thousand per day based on their IDAFMS involvement. Terminal installations, therefore, could range from a single on-line CRT

SECTION 4. INTRAREGIONAL NETWORKS (INTRANETS) DESCRIPTION

T

ſ

۴.

C

<u>4.1 Intranet</u>. To expedite the transfer of local information and data flow within each FIPC region, the responsible FIPC will be required to provide accounting, disbursing, and collection services to a number of individual operating activities in a given geographical area via an intraregional network (INTRANET). The INTRANET will provide the communications paths for data input and data inquiry functions as well as the links necessary for the distribution of financial and management information (reports, TFO's, etc.) which must be disseminated to other FIPC's through the CDA network. The requirements description for each of the 15 regional FIPC's is presented in Sections 4.2 through 4.16.

	DCE	
	MODEMS	LINES
Quantities	26	13
Costs=		
Non		
Recurring	х	\$6,500.00
Recurring		
Monthly	\$91,104.00	\$212,020.80

l

6

ŀ

ſ

C

Ö

. .

C

¢

•

Total nonrecurring DCE Cost Est = \$6,560.00 Total Annual Recurring Cost Est = \$303,124.80

TABLE 3.2 FUNCTIONAL REQUIREMENT DOE COST

CDA COMMUNICATIONS IQUIPMENT CONFIGURATIONS

Ĺ

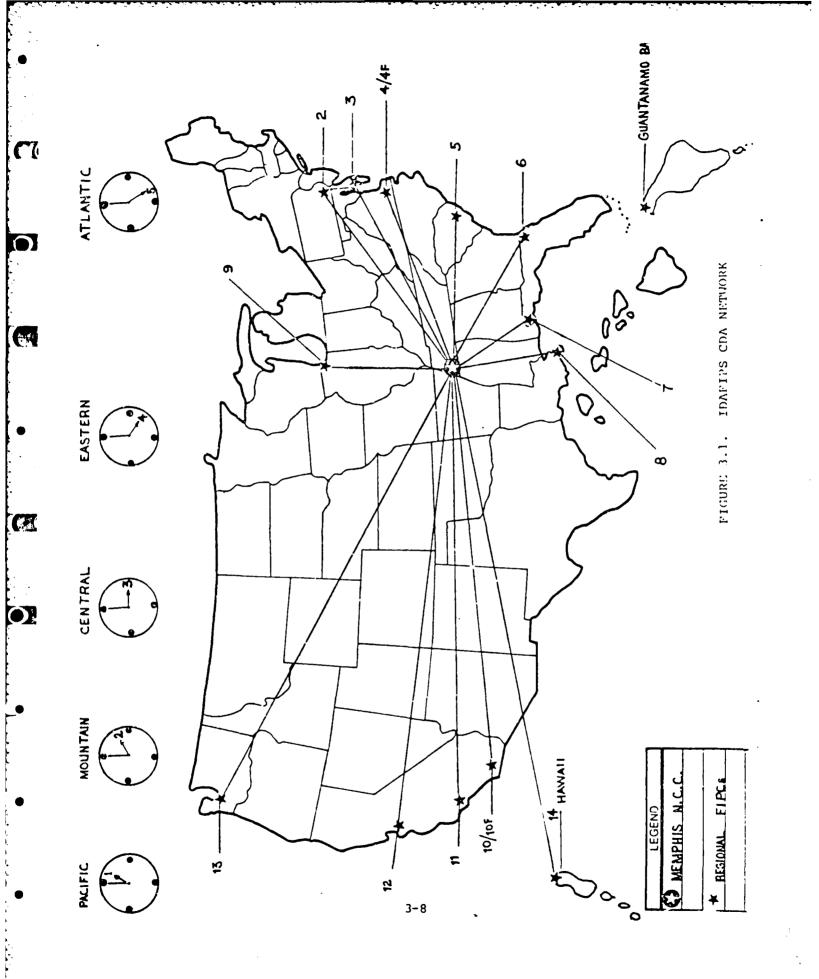
ſ

ł

¢

(

1


CDA, Memphis, TN Site Area Code 901, Tel Co Exchange No. 382

	LOC. AREA TEL CO LOC. DODE EXCIL TYPE OTY MASTER	CLANT NORFOLK, VA 804 444 PP 1 NORFOLK, VA 804 444 74	CPAC SAN DILEO, CA 619 235 PF 1 SAN DI EGO, CA 619 235 PF 1	PENSACOLA, FL 904 452 PP 1	C JACKSONVILLE, FA 904 772 PP 1	ESUPPOFC - NEW ORLEANS, LA 504 948 PP 1	EGEINCEN GREAT LAKES, IL 312 688 PP 1	EGFINCEN WASHINGTON, DC 202 697 PP 1	PORT INTENEME, CA 805 982 PP 1	UBFORMCEN PHILADELPHILA, PA 215 697 PP 1	OAKLAND, CA 415 466 PP 1	CIARLESTON, SC 803 743 PP	PUCET SOUND, WA 206 478 PP 1	PEARL HMBOR, III 808 474 PP 1
	AREA CODE	804 804	619 619	904	904	504	312	202	805	215	415	803	206	808
	102.	NORFOLK, VA NORFOLK, VA	SAN DILIGO, CA SAN DI EGO, CA	PENSACOLA, FL	JACKSONVIILE, FA	NEW ORLEANS, LA	GREAT LAKES, IL	WASHINGTON, DC	PORT INJENEME, CA	PHILADELPHIA, PA	OAKLAND, CA	GIARLESTON, SC	MOLET SOUND, WA	PEAR, HAUNOR, HI
CIRCUITS	NODE	FAADCI ANT NSC	FAADCPAC NSC	CNET	RAADC	NAVRESUPPOFC	NAVREGEI NCEN	NAVRECFINCEN	CINC	NAVPUBHORNCHN	NSC	NSC	NSC	NSC
	01C	60951 00169	68638 00244	63566	63188	68518	60956	00179	62583	00288	002.28	00612	00406	00/.04
	RECICN	4F 4F	10F 10	7	ى	ω		e	11	7	12	ß	13	14
	원	I	7	e	4	S	•	٢	8	6	10	11	12	13

TANK 3.1

जिल्लामा के प्राप्त के प्राप्ति के प्राप्त कि प्राप्ति के प्राप्ति के प्राप्ति के प्राप्ति के प्राप्ति के प्राप जिल्लामा के प्राप्त के प

Olalup

The modems used to support the INTERNETS and CDA Network are the Racel-Milgo Omni series. These completely soft (i.e. programmable) microprocessor-based modems are addressed and strapped via commands from the NCC CMS operator console. A dedicated processor in each modem continually tests and compares the electrical conditions on the circuit against preset threshold values. When conditions fail outside acceptable tolerances, the CMS generates an automatic alarm at the NCC CMS operator console.

The IDAFIPS CDA Network (and associated regional FIPC's) are shown in Figure 3.1. CDA network equipment configurations and cost profiles are provided in Tables 3.1 and 3.2.

(

FIPC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

C

5

G

Ó

¢

FIPC Region, 3, Washington, D.C. (Continued)

	RBT's									
TERMINALS	s. H.Ld		2	S	24	2	5	2	I	
TERM	CRT'B		٢	15	7	٢	7	ę	Q	~ ~ ~
	MASTER	-								
MODEMS	QTY		7	2	5	2	7	7	2	
	TYPE	۲. ۲	Ч	ЪЪ	dd	44	Ч	તત	dd	đΨ
	EXCH	w 952 962 962 945 945 945 945 945 945 945 945 945 945	545	267	697	697	697	697	697	697 433 433
CIRCUITS	CODE	703 106 107 107 107 106 108 108 108 108 108 108 108 108 108 108	202	301	202	202	202	202	202	202 202 202
	100.	ALEXANDRIA, VA WASHINGTON, D.C. ALEXANDRIA, VA ALEXANDRIA, VA FALLS CHURCH, VA ALEXANDRIA, VA ANUAPOLIS, MD FORT MEADE, MD LAUKEL, MD MASHINGTON, D.C. WASHINGTON, D.C.	BETHESDA, MD	ANNAPOLIS, MD	WASHINGTON, D.C.	WASHTNETON, D.C. WASHTNETON, D.C. WASHTNETON, D.C.				
	NODE	NAVINVSERVHQ NISC NIFSSA COMNAVINTCOM COMNAVINTCOM NAVNUSSVCAP FLTINTELLSUPPACT USNA NFOIO NAVPRO CINAVPERS CINAVPERS	NATNAVMEDCEN	V#131	HAVREGEINCEN	NAVREGEINCEN	NAVAEGE INCEN	NAVREGETNCEN	NAVREGEINCEN	MAVPECETNCEN NAVSECSTA COMPAVDIST
	510	63285 63420 63420 63420 63420 61563 61963 62950 62950 62950 62950	00168	00161	00179	60179	96179	67100	00179	00171 20092 00171
	NO.	ۍ 4-	ی 11-	٢	8	6.	10	11	12	[]

TABLE 4.3.1

GROWTH POTENTIAL NETWORK COST SUMMARY

REGION	3
VEOTO'	2

- - --

1

e

6

C

C

		DTE	DC	CE	
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	110	53	x	\$5	13
Cost- Nonrecurring	x	x	x	x	\$6,000
Recurring Annual	\$47,520	\$60,420	х	\$119,460	\$31,560

TABLE 4.3.2

4.4 Region 4 Network Description. The Naval Supply Center (NSC) located in Norfolk, VA, will function as the FIPC for Region 4. Region 4 encompasses selected fund administering activities established in Virginia (except the Washington, DC area), West Virginia and North Carolina. The FIPC will provide data processing support for Region 4 and serve as the communications control point for the network. The major claimant for Region 4 is the Commander, Naval Supply Systems Command (COMNAVSUPSYSCOM). The network in Table 4.4.1 shows the Region 4 IDAFMS telecommunications network which will support the IDA Phase III implementation.

f

The circuits listed in Table 4.4.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

4.4.1 Region 4 User Community. There are presently 49 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 4 network. The geographical relationship of the online subscribers is depicted in Table 4.4.1. The individual subscribers to the IDA Region 4 telecommunications network consist of accounting activities utilizing standard NAVSO P-3006 (Shore Activities) accounting procedures, and communications requirements are based upon the application of these procedures. Subscriber communications requirements are based upon the application of these procedures. Subscriber communication requirements will vary from a few dozen transactions per day to several thousand

transactions per day based on anticipated IDAFMS involvement. Terminal requirements, therefore, could range from a single online CRT terminal and printer terminal to justallation of multiple CRT's and printer terminals. A complete listing of IDA Region 4 telecommunications network subscribers is contained in Table 4.4.1. The listing includes all online and dialup subscribers plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

1

E

C

The number of terminals identified for each activity listed in Table 4.4.1 represents the initial requirements for Region 4. The growth potential network is shown in Table 4.4.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Six dial-up ports will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of the Region 4 network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by component and are presented in Table 4.4.2.

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

ľ

ſ

E

C

FIFC SITE COMMUNICATIONS FOULPMENT CONFIGURATIONS

ŗ

ł

•

G

FIFC Region 4, NSC Norfolk Site Area Code 804, Tel Ca Exchange Na. 444

	RBT's								-					-			-								-	
TERMINALS	PTR'S	7	2	7			-	-	2	~		-	-	-	-	۴۹	-	-	~	-	-	-	-	-	-	_
TERM	<u>CRT's</u> 8	æ	1	1			~	7	Ś	-	-	2	۰ ۲	2	-	~	-	-	-	-	~	-	-	-	-	~1
s	MASTER				-					-								-								
MODEMS	OTY 2	2	~	2				-		-		-	-	-	_	-	-	-		-	-	-	-	-	-	-
	TYPE	dd	ЧĄ	44	H					ÂĦ					Ψ			ЧМ								
U115	151, CO - EXCH - 444	444	444	444	865	255	555	861	398	422	444	777	848	ななな	451	451	451	1. 1. 1.	1 11 1	414	1917	444	244	5.66	4.7.5	441
CIRCUITS	CODE B04	804	508	804	80%	508 202	804	804	708.	70R	508	501S	804	708	ń16	616	414	5018	804	508	808	5013	803	616	202	508
	LOC. NORFOLK, VA.	NURFOLK, VA.	NORFOLK, VA.	NORFOLK, VA.	FORTSMOUTH, VA.	PORISMOUTH, VA. PORISMOUTH, VA.	NURLULK, VA.	PORISMOUTH, VA.	PORISHOUTH, VA.	NORFOLK, VA.	NORFOLK, VA.	NORFOLK, VA.	NURPORK, VA.	NORFULK, VA.	CAMP LI LEUNE, NC.	CAMP FEJERNE, NC.	CAMP L'EJEUNE, NC.	NORFOLK, VA.	YORKTOWN, VA.	NORFOLK, VA.	NEWFORT NEWS, VA.	YORKIGUN, VA.	NORFORK, VA.	BUXTON, NC.	VIRGINIA, HEACH	NUKLULK, VA.
	NODE	NSC	NSC	NSC	NAVSECDET	INACISHIPPAC NAVHSETSCOLHL	COMOPTEVFOR	SATHSANS	NAVELEXSYSENGCEN	NAVADALNCOM	NAVED LKASUPPCENLANT	NAVCAMSLANT	NAVREGMEDCEN	NAKIJAC	NAVRECIDENCEN	NAVREGHEDGEN	NAVREGMEDCEN	NAVELDPATCNSI.	KAVULAPSIA	NAVOFTHALSUPPTRACT	SUPSHIPS	NAVUEAPSTA	NAVENVERHE INCE	NAVEACAPTIAL	FEE COMBATERAC ENLANE	NAVSEC
	0189	68100	00189	00184	55155	16966	57023	62678	08559	64 376	63225	70272	66818	63089	63410	68093	F 611R4	841149	60100	51714	62743	05.100	114 144	12042	18,500	14773
	- NO.	2	ſ	4	Ş		4	-1	.6	ę					1			30								

!

TABLE 4.4.1

GROWTH POTENTIAL NETWORK COST SUMMARY

REGION 4

m

0

Â.

Ò

		DTE		De	CE
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	71	33	4	35	8
Cost- Nonrecurring	x	x	x	x	\$ 2,750
Recurring Annual	\$30,672	\$37,620	\$65,520	\$76,020	\$24,864

TABLE 4.4.2

4.5 Region 5 Network Description. The Naval Supply Center (NSC) located in Charleston, SC, will function as the FIPC for Region 5. Region 5 encompasses selected fund administering activities established in South Carolina and Georgia. The FIPC will provide data processing support for Region 5 and serve as the communications control point for the network. The major claimant for Region 5 is the Commander, Naval Supply Systems Command (COMNAVSUPSYSCOM). The network in Table 4.5.1 is for the Region 5 IDAFMS telecommunications network which will support the IDA Phase III implementation.

ſ

T.

 \boldsymbol{C}

The circuits listed in Table 4.5.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

4.5.1 Region 5 User Community. There are presently 22 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 5 network. The geographical relationship of the online subscribers is depicted in Table 4.5.1. The individual subscribers to the Region 5 telecommunications network consist of accounting activities utilizing standard NAVSO P-3006 (Shore Activities) accounting procedures, and communications requirements are based upon the application of these procedures. Subscriber communication requirements will vary from a few dozen transactions per day to several thousand transactions per day based on anticipated IDA involvement. Terminal requirements, therefore, could range from a single online CRT terminal and printer

terminal to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 5 telecommunications network subscribers is contained in Table 4.5.1. The listing includes all cnline and dial-up subscribers plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

じんてんていてんてんてん てんてんてい

1

The number of terminals identified for each activity listed in Table 4.5.1 represents the initial requirements for Region 5. The growth potential network is shown in Table 4.5.1. These circuits will be utilized for interactive CRT traffic in conjunction with line printer traffic. Two dial-up ports will be utilized to accommodate the needs of activities not connected to circuits.

The DTE in circuits consists of CRT terminals and printer terminals. The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of the Region 5 network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.5.2.

The region has been assigned RBT printers by the "Intraregion Network Design Reasessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

(7

 \mathbf{O}

A

 \mathbf{O}

FIPC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

ł

-Ì

í

ĺ

ĺ

FIPC Region 5, Charleston Site Area Code 803, Tel Co Exchang, Nu. 743

	RBT'S														
TERMINALS	PTR'8	7	-	-	-	2	-	· _	-	-	-	-	-	-	-
TERM	CRT's	Ś		-	-	1	-	-	-	-	-	~	-	7	2
	MASTER					1		-							
MODEMS	017	-	-	_	-	-	-	-	-	-	-	-	-	-	-
i K	TYPE	ЧМ				đĦ		Чн							
CIRCUITS	EXCH	141	141	743	14.1	141	743	671	549	142	143	74 J	5.55	141	143
CIRC ARFA	CODE	803	803	803	E (1)	608	603	216	707	716	803	803	1 0 R	803	803
	1.00.1	CHARLESTON, S.C.	CHARLESTON, S.C.	CHARLESTON, S.C.	CHARLESTON, S.C.	CHARLESTOR, S.C.	CHARLESTON, S.C.	ETNEST AND. CA.	ALHERS, CA.	MACON, UA.	CHARLESTOR, S.C.	CHARLESTON, S.C.	BFAUPTO, S.C.	CHARL STON, S.C.	UNALESTOR S.C.
	NUDE	NSC	NAVSTA	COMMENEWARCOM	FLEMI NEWARTKAGEN	NSC	AINSHIP	NAVSUBULPPBASE	NAVSUPCORPSCH	NAVLKUTTAREA J	PEASUPPAUL	NAVRECDENCEN	NACKEGDENCEN	NAVREQUED FR	NAVELEXSYSERUCEN
	<u>urc</u>	00612	61165	11073	62603	00612	62673	117.7	6.741	6 1424	6.338	66659	11284	6.HU344	65-16
	NO.	-				2		ſ			4	- 2	1		

TABLE 4.5.1

Ē

õ

Ľ

Ď

2

D

- 1 D

Ð

B

•

GROWTH POTENTIAL NETWORK COST SUMMARY

Ale day a factor rates that the factor of

÷

۰.

REGION 5

		DTE	DC	2E		
	CRT's	PRINTERS	RBT's	MODEMS	LINES	•
Quantities	26	16	x	17	3	
Cost- Nonrecurring	x	x	x	x	\$ 2,750	•
Recurring Annual	\$11,232	\$18,240	x	\$36,924	\$17,616	

TABLE 4.5.2

<u>4.6 Region 6 Network Description</u>. The Regional Accounting and Disbursing Center (RAADC) located at the Naval Air Station (NAS), Jacksonville, FL, will function as the FIPC for Region 6. Region 6 encompasses selected fund administering activities established in Florida. The FIPC will provide data processing support for Region 6 and serve as the communications control point for the network. The major claimant for Region 6 is the Commander in Chief, U.S. Atlantic Fleet (CINCLANTFLT). The network in Table 4.6.1 is for the Region 6 IDAFMS telecommunications network which will support the IDA Phase III implementation.

The circuits listed in Table 4.6.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

4.6.1 Region 6 User Community. There are presently 25 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 6 network. The geographical relationship of the online subscribers is depicted in Table 4.6.1. The individual subscribers to the IDA Region 6 telecommunications network consist of accounting activities utilizing standard NAVSO P-3006 (Shore Activities) accounting procedures, and communications requirements are based upon the application of these procedures. Subscriber communication requirements will vary from a few dozen transactions per day based on anticipated IDA involvement. Terminal requirements, therefore, could range from a single online CPT

terminal and printer terminal to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 6 telecommunications network subscribers is contained in Table 4.6.1. The listing includes all online and dialup subscribers.

The number of terminals identified for each activity listed in Table 4.6.1 represents the initial requirements for Region 6. The growth potential network is shown in Table 4.6.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Two dial-up ports will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of the Region 6 network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.6.2.

1

GROWTH POTENTIAL NETWORK COST SUMMARY

REGION 8

		DTE	DCE							
Quantities Cost- Nonrecurring	CRT's	PRINTERS	RBT's	MODEMS	LINES					
Quantities	60	28	4	29	6					
	x	x	x	x	\$ 3,250					
Recurring Annual	\$25,920	\$31,920	\$65,520	52,988	\$56,652					

TABLE 4.8.2

FIPC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

FIPC Region 8, New Orleans Site Area Code 504, Tel Co Exchange No. 948

	RETT 3								-	-							-							
TERMINALS	PTH'S		7	·-	~	-		2		4	-	-	-	-			7	-	_		-	-	-	-
TEKM	<u>CH1' 8</u>	, r	-	-	~	-		ю	-	~	-	••••	-	7	~	-	4	-	-	~	-	2	-1	~
S L	MASTER			-					-		-													
BODE NO	<u>017</u>	•	~	-	-	-	-		-	~-	-	-	-	-	-		-	-	-	-	-	-	-	-
	TYPE	2	4.1	ų					Ĩ		۹Ŀ							ž						
TEL CO	EXCII		948	266	101	266	266	160	441	511	645	445	657	154	166	4.4	474	948	エジプ	876	14-12	876	1.11	141
AREA TEL	CODE		504	1	· · ·	<u>د اخ</u>	214	517	512	617	[]]	31.5	2112	2112	301	705	¢05	204	705,	504	202	504	505	7(14,
	LANC. MEN ONE KANS TA		NEW ORLEANS, LA.	CRAND PRAIMIE, TX.	DALLAS, TX.	CRAND PRAIMLE, TX.	CHAND FRAIRIE, TX.	CHAND PRAINIE, IX.	HAIBORD, PA.	WENERGIN, MA.	ME CLEMENS, ML.	MI ULEMENS, MI.	CLINVING, IL.	CLENNING, IL.	CAPTIOL HIS, MD.	MARTELLA. C.A.	MARTERA, GA.	NEW ORLEARS, LA.	NEW COLLANS, LA.	NEW ONLIANS, LA.	NIW OKLEANS, LA.	NUC ORLIARS, IA.	NUW OALFARS, LA.	N.W. WRITANS, IA.
	NODE MANDESCREDUCE	NAVE 3301 FOF F	NAVRESSUPPOFF	RESKEADUMD ELL	RECRUITING AR7	NAVPRO	PSD	NAS DALLAS	NAS WILLOW (.KO	NAS SO GEYMOLT	NAF MT CLEMEND	PSD	P50	NAS CLENVIEW	NAF WASHINGTON	PSD	NAS ATLARIA	(NAVRES	NAVRESREAD MD	RAVEL CLERCEN	924	LEAVERS NSA 5	NAVSUPPACT	NAS
	010	010.00	68518	68159	61417	61245	1 204 3	\$1700	00158	10100	0074	11.115	52112	011210	09166	15155		00077	P.H 111/	121 84	4 51-12	100172	00,05	101,041
	NO.	-	~,	-					4	4-	~ - 37							¢						

TABLE 4.8.1

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

based on anticipated IDAFMS involvement. Terminal requirements, therefore, could range from a single online CRT terminal and printer terminal to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 8 telecommunications network subscribers is contained in Table 4.8.1. The listing includes all online and dial-up subscribers plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

بليسا بسابية والمستعين والمارية والمسارية والمسارية والمسارية والمسارية والمسارية والمسارية والمسارية والمسارية

D

The number of terminals identified for each activity listed in Table 4.8.1 represents the initial requirements for Region 8. The growth potential network is shown in Table 4.8.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Two dial-up ports will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of this network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.8.2.

4.8 Region 8 Network Description. The Naval Reserve Support Office (NAVRESSUPPOFC) located in New Orleans, LA, will function as the FIPC for Region 8. Region 8 encompasses selected fund administering activities established in Louisiana, Texas, Georgia, Massachusetts, Pennsylvania, Michigan, Illinois, and Washington, DC. The FIPC will provide data processing support for the Region 8 FIPC and serve as the communications control point for the network. The major claimant for Region 8 FIPC is the Chief of Naval Reserve (CNAVRES). The network in Table 4.8.1 is for the Region 8 IDAFMS telecommunications network which will support the IDA Phase III implementation.

a a sa sa sa sun é u é a é a é acé ané amé

E.

The circuits listed in Table 4.8.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

<u>4.8.1 Region 8 User Community</u>. There are presently 28 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 8 network. The geographical relationship of the online subscribers is depicted in Table 4.8.1. The individual subscribers to the IDA Region 8 telecommunications network consist of accounting activities utilizing standard NAVSO P-3006 (Shore Activities) accounting procedures, and communications requirements are based upon the application of these procedures. Subscriber communication requirements will vary from a few dozen transactions per day to several thousand transactions per day

GROWTH POTENTIAL NETWORK COST SUMMARY

REGION 7

		DTE		DC	CE
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	112	62	8	64	13
Cost- Nonrecurring	x	x	x	x	\$ 7,000
Recurring Annual	\$48,384	\$70,680	\$131,040	\$139,008	\$83,023

ſ

7

Î

.

1

ŧ

TABLE 4.7.2

FIFC STTE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

7

ſ

Ć

FIPC Region 7, Pensacula (Continued)

NO.	olo.	NOTE	. Dori	AREA CODE	TEL CO EXCH	TYPE	QTY	MASTER	CRT'S	s. A.Ld	RBT's
Q	(1E 011)	NAS MEMORIES	MILLINGTON, TN.	106	812		-		4	· č	-
	20004	NAVREGMEDGEN	MULINCTON, IN.	106	718		-		2	-	
7	43324	PERSUPPRET (ADO)	MFRIDIAN, MS.	601	679	Å		-	-	-	-
	61115	NAS CHASE FIELD	BEEVILLE, TX.	512	55		-		4	2	
	52754	NALTC:	MERIDIAN, MS.	109	679		-		-	1	
	63043	HAS	MERIDIAN, MS.	601	679		-		2	-	-
	00062	CNE1	PERSACOLA, FL.	706	452		-		-	-	
30	11111	NAVCOASTSYSCEN	PANAMA CLIY, FL.	205	111	ų	-	-	-	~	
	64544	MIISA	PENSACOLA, FL.	206	472		-		-	-	
	04 to 3.A	NAVXDIVINGUNIT	PANAMA CLEY, FL.	404	717		-		-	-	
	65142	NARDAU	PENSACOLA, FL.	4:14	472		-		-	_	
	06104	NAV SCOLD LVFRSAL	FANAMA CUTY, HL.	206	517		-		-	-	
	80700	NAVAEROSTRECMEDUEN	PENSACOLA, FL.	706	452		-		4	-	
5	68609	PERSUPPACE NAS	FLEENCOLA, FL.	706	755	HI.	-	_	7	-	
	65441	NAVREGDENCEN	PENSACCEA, PL.	706	24.7		-		-	-	
	46346	CRFTS	PENSACOLA, FL.	7()6	455		-		~		
	A1270	NAVAEROSPHEDIN	FLASACOLA, FL.	904	111		-		7		
10	44564	DATATAN	PENSALOLA, FL.	706	452	Ч	7		٥	2	
II.	44589	NELFTPC	PERSACOLA, FI.	506	262	44	7		1	~	
21	68366	NETFLEC	PENSACOLA, FL.	7()6	757	ය. 1	7		~	7	
5	44544	DATE AN	PENSAGOLA, FL.	404	74,7	11	~1		1	7	

TABLE 4.1.4

.

ومتعكسته كالمارية والمراكبة والمقاربة المتارية المراكبة والمراكبة المراكبة المراكبة المراكبة المراكبة

FIFT STTE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

ſ

1

€

C

FIPC Kegton 7, Pensacola Site Area Code 904, Tel Co Exchange No. 452

	RBT's										-						-				-		-	-								
TERMINALS	s, H.L.d				-	-	-		-	-	7	-	_	-		5	-	-	-	-	7	_	۰۰	7	-	-	-			- .	-	
TERM	CRT's	-		-	-	-	7	-	-	-	¢	-	-	-	-	4	7	-		_	¢	-	4	4	-	-	-	-	-	-	_	
5	MASTER	-						-				-						-					-			-						
MODEMS	01.Y	1	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-		-	-	-	~	-	-	-	
	TYPE	ЧР						ų				Å						٩ŀ					-IN			.IN						
JITS	EXCII	646	070	874	646	646	6-tb	425	4:4	4.25	646	965	6HB	402	HR4	414	697	111	61.6	61.6	61.6	263	629	544	1,1,2	718	7/H	312	212		ч/.	-
CIRCUITS	CODE	305	ΥM	305	5015	ζŪĮ	ζΩξ	704	505	707	5,01	toc	601	bti l	109	715	104	215	215	215	212	215	506	101	51)4,	106	104	105	1115	106.	106	1.7.1.1.1.1.1
	1.00.	ORLANDO, FL.	OKLANDO, FL.	OKLANDO, FL.	ORLANDO, FL.	OXLANDO, HL.	OKLANDO, FL.	PENSACOLA, FL.	UKLANDO, FL.	PENSACOLA, FL.	ORLANDO, PL.	GELTPORT, MS	BAY ST. LOUIS, MS.	CULEPTORT, MS.	BAY SF. LOUIS, MS.	CORPUS CHEISTI, TX.	PASCACOULA, MS.	CORPUS CHRISTI, IX.	CORPUS CHRISTI, TX.	CORPUS CHRISTI, TX.	CORPUS CHRISTI, 1X.	KINGSVILLE, IX.	MILLON, H.	SALESBORY, MD.	PUASAUDIA, HL.	MILLENCION, IN.	MILLINGFOR, IN	MULINGION, IN	MILLECTOR, IN		MELLINGON, IN	
	NODE	SERVSCOLCMD	NAVCRULTRACOM NTC	NAVRESLAB (DET)	PERSUPPACT (ADO)	NAVAEGMEDCEN	NAV I KRUEQI'MI'C'EN	NEC	NAVNUPURSCOL NIC	Chef has	NAVIRNOCEN	NAVROME	NAVOCEANO (ADO)	PERSUPPORT (Abo)	NAVOCEANRESDEVACT	NAVREGMEDGEN	SUPSHIPS	CNATKA	CNAFRA	PI KSULPACT (ADO)	NAS NAS	NAS	AAS WHELENGELLED	NAVOL ANO	NAN	(OUV) I DVLAGTAL	(NITCHTKA	1*VKU	PURSUPPAUL (ADO)	NAVRESSED OF	5ALD	
	ulc	16964	65430	62190	646U6	65442	41114	1808.0	06174	00007	82664	6 4 100	00/065	7415 7	54583	00285	64279	63110	61110	6.4612	00.216	60241	Pur, na	6.2 300	207.00	1.2.0.3.7	11111	11-15-2	11-12-1	8.6 8.1	1.403.0	
	NO.	-						C ł				~ 4-3	1					t,					Ś			÷						

and a second of the second second of the second second second second second second second second second second

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

-Chi

(2)

 \mathbf{O}

terminal to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 7 telecommunications network subscribers is contained in Table 4.7.1. The listing includes all online and dial-up subscribers plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

5

The number of terminals iden.ified for each activity listed in Table 4.7.1 represents the initial requirements for Region 7. The growth potential network is shown in Table 4.7.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Four dial-up ports will accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of the Region 7 network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.7.2.

<u>4.7 Region 7 Network Description</u>. The Naval Education and Training Financial Information Processing Center (NETFIPC) in Pensacola, FL, will function as the FIPC for Region 7. Region 7 encompasses selected fund administering activities established in Florida, Texas, Tennessee, and Mississippi. The FIPC will provide data processing support for Region 7 and serve as the communications control point for the network. The major claimant for the Region 7 FIPC is the Commander, Naval Education and Training (CNET). The network shown in Table 4.7.1 is for the Region 7 IDAFMS telecommunications ~etwork which will support the IDA Phase III implementation.

ſ

The circuits listed in Table 4.7.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

4.7.1 Region 7 User Community. There are presently 55 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 7 network. The geographical relationship of the online subscribers is depicted in Table 4.7.1. The individual subscribers to the IDA Region 7 telecommunications network consist of accounting activities utilizing standard NAVSO P-3006 (Shore Activities) accounting procedures, and communications requirements are based upon the application of these procedures. Subscriber communication requirements will vary from a few dozen transactions per day to several thousand transactions per day based on anticipated IDA involvement. Terminal requirements, therefore, could range from a single online CRT terminal and printer

GROWTH POTENTIAL NETWORK COST SUMMAPY

हरू राज

यून्य कल्लाय कल

REGION 6

		DTE			DCE
	CRT's	PPINTERS	RBT's	MODEMS	LINES
Quantities	75	29	4	30	10
Cost- Nonrecurri	x ng	х	x	x	\$4,750
Recurring Annual	\$32,400	\$33,060	\$65,520	\$65,160	\$19,344

٢

1

R

 $\left(\right)$

- المالين.

TABLE 4.6.2

FIPC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

(

1

1

FIPC Region 6, Jacksonville Site Area Code 904, fel Co Exchange No. 772

	RBT .				•					-	1
TERMINALS	P.I.R. 8	2	~	2	7	2	~~~~	<u>0</u>		~	
TERM	CRT'B	æ	٢	æ	8	1	99999	9 -	N	\$	
<u>IS</u>	MASTER						-	-	-	-	
MODEMS	QTY	7	2	2	2	2	~~~~				
	TYPE	ЪЪ	dd	44	đđ	ЪЪ	°. M	AM	4 W	đ	-iw
CIRCUITS	EXCI	772	772	272	272	112	246 246 771	296 494 296 296	772 277 277 277 277	778 772 772	246
CIRCI	CODE	904	904	904	904	904	904 904 904	305 305 305	9 0 9 0 9 0 9 0 4 0 0 0 4 0 0 0 4 0	904 904 904	904
	LUC.	JACKSONVILLE, FL	MAYPORT, FL MAYPORT, FL MAYPORT, FL JACKSONVILLE, FL	KEY WEST, FL Cafe Kenhedy, FL Key West, FL Key West, FL	JACKSONVILLE, FL JACKSONVILLE, FL JACKSONVILLE, FL JACKSONVILLE, FL JACKSONVILLE, FL	CECIL L'IELDS, FL JACKSONVILLE, FL JACKSONVILLE, FL	MAYPORT, FL				
	SUON	KAADC	RAADC	NAVREGMEDCEN	NAS	NAS	NAVSTA SUPSHIP FLTRACEN NAVFUELDEP	NAS NAVORDTESTU NAVCOMMU NAVCOMMU	NAVREGMEDCEN RAANC NAVRESREDCOM NANU NANU	NAS PERSUPPACT NAVRECIDENCEN	NAVSTA
	<u>uic</u>	63188	63188	68085	90207	03207	60201 62670 10151 62566	00213 62841 63425 00267	68085 63188 6835 68358 63099 63099	60200 68585 68444	(0709
	NO.	-	2	~	•	5	ۍ 4-26	~	ω	6	10

TABLE 4.6.1

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have been addressed.

4-25

ſ

<u>4.9 Region 9 Network Description</u>. The Naval Regional Finance Center (NAVREGFINCEN) located in Great Lakes, IL, will function as the FIPC for Region 9. Region 9 encompasses selected fund administering activities established in 12 midwestern and northeastern states. The FIPC will provide data processing support for Region 9 and serve as the communications control point for the network. The major claimant for the Region 9 FIPC is the Comptroller of the Navy (NAVCOMPT). The network shown in Table 4.9.1 is for the Region 9 IDAFMS telecommunications network which will support the IDA Phase III implementation.

The circuits listed in Table 4.9.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

E

G

4.9.1 Region 9 User Community. There are presently 55 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 9 network. The geographical relationship of the online subscribers is depicted in Table 4.9.1. The individual subscribers to the IDA Region 9 telecommunications network consist of accounting activities utilizing standard NAVSO P-3006 (Shore Activities) accounting procedures, and communications requirements are based upon the application of these procedures. Subscriber communication requirements will vary from a few dozen

transactions per day to several thousand transactions per day based on anticipated IDA involvement. Terminal requirements, therefore, could range from a single online CRT terminal and printer terminal to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 9 telecommunications network subscribers is contained in Table 4.9.1. The listing includes all online and dial-up subscribers plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

1

E

The number of terminals identified for each activity listed in Table 4.9.1 represents the initial requirements for Region 9. The growth potential network is shown in Table 4.9.1. These circuits will be utilized for interractive CRT traffic in conjunction with printer traffic. One dial-up port will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of this network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.9.2.

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

ſ

1

1

4-41

FIPC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

.

. •

•...

(7)

5

O.

FIPC REGION 9, GREAT LAKES SITE AREA CODE 312, TEL CO EXCHANE NO. 688

4-42

TABLE 4.9.1

FIFC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

F

•

þ

Č

FIPC REGION 9, GREAT LAKES (CONTINUED)

	RBT's				
TERMINALS	8. 81d		n	0	
TERM	CRT's		6	5	
S	MASTER	1		-	-
HODEMS	OTY		2		
	TYPE	۵. ۲	ЪЪ	4.W	۵. ۲
JITS 	EXCH	2 2 2 4 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2	688	688 688 688 888	688 688 6888 6888 6888 6888
CIRCUITS	CODE	317 8114 8114 9514 9514 312	312	312 312 312 312	312 312 312 312 312
	LOC.	INDIANAPOLIS, IN CRANE, IN STUPCEON BAY, WI COLUMBUS, OH OLATHE, KS COLUMBUS, OH NO. CHLCAGO, IL	NO. CHICAGO, IL	NO. CHICAGO, IL NO. CHICAGO, IL NO. CHICAGO, IL NO. CHICAGO, IL NO. CHICAGO, IL	NO. CHICAGO, IL NO. CHICAGO, IL NO. CHICAGO, IL NO. CHICAGO, IL NO. CHICAGO, IL NO. CHICAGO, IL
	NODE	NAVAVCEN NAVWPNSUPP SUPSCR NAVRECAREA4 NAVRECAREA4 NAVRESREAD28 NAVRESREAD28 NAVTRHCEN	NAVREGFINCNTR	NAVREGFINCNTR RECTRNCMD NAVDENREDINST NAVREGDENCEN	SERSCOLCMD NAVRECAREA5 PERSUPPACT NAVREGREDCEN NAVRESRLAD13
	UIC	00163 00164 62990 62914 68332 68332 62940 00210	60956	60956 0763 A 65786 68326	0580A 62915 68598 68092 68330
	NO.	ν	ę	r 4-43	œ

.

`_*•

. ••

•

TABLE 4.9.1

GROWTH POTENTIAL NETWORK COST SUMMARY

REGION 9

C

6

G

1

4

		DTE			DCE
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	82	53	1	54	8
Cost- Nonrecurri	X ng	х	x	x	\$7,750
Recurring Annual	\$35,424	\$60,420	\$16,380	\$117,288	\$100,05€

TABLE 4.9.2

<u>4.10 Region 10 Network Description</u>. The Naval Supply Center (NSC) located in San Diego, CA, has been established as the FIPC for Region 10. Region 10 encompasses selected fund administering activities established in southern California. The Region 10 FIPC has been serving for some time as a test bed facility for IDA, Phase II development. A test bed pilot facility and a "mini" telecommunications network was established as part of IDA, Phase IIA, and has been expanded to accommodate further testing of Phase IIB.

1

IDA Region 10 encompasses selected fund administering activities located in Southern California (California south of 36th parallel, except Pt. Mugu/Port Hueneme), Arizona, and New Mexico. The FIPC will provide data processing support for Region 10 and serve as the communications control point for the network. The major claimant for the Region 10 FIPC is the Commander, Naval Supply Systems Command (COMNAVSUPSYSCOM). The network shown in Table 4.10.1 is for the Region 10 IDAFMS telecommunications network which will support the IDA Phase III implementation.

The circuits listed in Table 4.10.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

<u>4.10.1 Region 10 User Community</u>. There are presently 48 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the IDA Region 10 Network.

The geographical relationship of the online subscribers is depicted in Table 4.10.1. The individual subscribers to the IDA Region 10 telecommunications network may differ either by mission or by transaction workload. Communications requirements will vary from a few dozen transactions per day to several thousand transactions per day based on anticipated IDA involvement. Terminal installations, therefore, could range from a single online CRT terminal and printer terminal to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 10 Telecommunications Network subscribers is contained in Table 4.10.1. The listing includes all online and dial-up subscriber plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

5

The number of terminals identified for each activity listed in Table 4.10.1 represents the initial requirements for Region 10. The growth potential network is shown in Table 4.10.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Five dial-up ports will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of this network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.10.2.

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

FIRE SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

. . . .

FIPC Kepton 10, San Diego Site Area Unde 714, Tel Co Exchange No. 235

	RBT's				-	1		-	
TERMINALS	S. H.L.	2	7			4	~-	>	
TERM	CRT's	20	1	- 3 -	- ~ -	12		>	
2	MASTER			-			-	-	-
MODEMS	OTY	2	~			~1			
	TYPE	નન	તા	ž		Ч	Â	Ň	ž
JITS	EXCH	235	<i>ć£7</i>	235 235 437	43) 437 437	f (7	577 577 577 577	R29 827 827 827 827 827 827 827 827 827 827	13 547 13 547 13 547 13 547 11 847 13 847 13 847 13 649 19 649 19 629 19 629
CIRCUITS ABEA	CODE	614	614	619 619 619	619 619 619	619	619 619	505 505 619 919 919 919	215 215 215 215 215 215 215 219 219 219
	i.oc.	SAN DIRCO, CA.	SAN DIEGO, CA.	SAN DIEGO, CA. SAN DIEGO, CA. CORONADO, CA.	СОКОМАРО, СА. СОКОМАРО, СА. СОКОМАРО, СА.	SAN DIFCO, CA.	SAN DIFGU, CA. SAK DIFGU, CA. SAN DIFGU, CA. SAN DIFGU, CA.	WHLTESMOWK, KM. Al Bughkourb, NM. SAS DIEGO, CA. SAN DIEGO, CA. SAN DIEGO, CA. SAN DIEGO, CA.	SAN PEDRO, CA. SAN PEDRO, CA. SAN PEDRO, CA. SAN PEDRO, CA. BURBANY, CA. PASADEAN, CA. PASADEAN, CA. PASADEAN, CA.
	NODE	NSC	NSC	NAVLOFRASUPPCE NSC Navweaservpac	NARDAC NARU NAVPHIBSCOL	NAVRECIME 19 . E.N	NTC PERSUPPACTNTC Navreger Ten Naveleksysence	NAVORDEAC NAVRIVSEVALEAC ELICOMBATDIKSS ELICOMBATDIKSS ELICOMBATIKACE NAVULEKSKANDU,E SUPSKUPS	NAV REG PROCO NAVRIGERCIN SUPHIES MAVSUPTAT JAVERO JAVERO OGERO NAVERO NAVERO
	nic	00244	10244	6 J01 5 00244 6 J0 J7	68046 09246 63018	90089	00247 68552 68956 65582	61762 62654 63152 6466 6466 72734	00103 6247 62470 6411 64111 6412 6427 6427 6427 6427 6427 6427 6427
	NO.	-	2			- -	∽ 48	٥	~

-

.

۰**۰**,

· ·

.

FIPC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

۰.

•

• '

FIPC Region 10, San Diego (Continued)

	•		
	RBT's	-	
TERMINALS	CHT'S PTR'S	>	
TERM	CRT's	3	
S	OTY MASTER		
MODEM	OTY		
	TYFE		
UITS	TEL CO EXCII	619 235 619 939 213 593 213 420	4.10.1
CIRC	AREA CODE	619 619 213 213	TABLE 4.10.1
	100.	SAN DIEGO, CA. RIPCECREST, CA. LONG BEACH, CA. LONG BEACH, CA.	
	NODE	SERVSCOLCM NAVKEAPCEN NAVPRO NAVRECHEDCEN	
	510	0581A 61530 63287 63287	
	NO.	۲.	

4-49

-

.

·. _-.

•

•

.

.

GROWTH POTENTIAL NETWORK COST SUMMARY

- - - -,

19, 19, 19,

REGION 10

. . . .

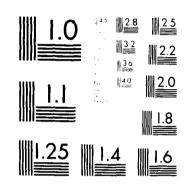
		DTE		D	CE
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	71	39	6	38	7
Cost- Nonrecurring	x	x	x	x	\$5,000
Recurring Annual	\$30,672	\$44,460	\$98.280	\$82,536	\$38,460

TABLE 4.10.2

4-50 -

. - محمودهم 4.11 Region 11 Network Description. The Naval Construction Battalion Center (CBC) located in Port Hueneme, CA, will function as the FIPC for Region 11. Region 11 encompasces selected fund administering activities in California and Hawaii plus FACENGCOM (e.g., Engineering Field Divisions and Construction Battalion Centers) and other activities throughout CONUS and Hawaii. The FIPC will provide data processing support for Region 11 and serve as the communications control point for the network. The major claimant for the Region 11 FIPC is the Commander, Naval Facilities Engineering Command (COMNAVFACENGCOM). The network shown in Table 4.11.1 is for the Region 11 IDAFMS telecommunications network which will support the IDA Phase III implementation.

The circuits listed in Table 4.11.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.


<u>4.11.1 Region 11 User Community</u>. There are presently 22 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 11 network. The geographical relationship of the online subscribers is depicted in Table 4.11.1. The individual subscribers to the IDA Region 11 Telecommunications Network represent a variety of mission areas and IDA transaction workloads. The Region 11 subscribers include both "fleet" accounting activities and "shore" accounting activities. This differentiation is based upon the use of different accounting procedures (MAVSO-3013

vs NAVSO-3006) by the mobile construction battalions (operating forces) and shore installations respectively. The telecommunications network development encompasses both the "3013" and "3006" designated activities. User communications requirements will vary from a few dozen transactions per day to several thousand transactions per day based on anticipated IDA involvement. Terminal requirements, therefore, could range from a single online CRT terminal and printer terminal to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 11 Telecommunications Network subscribers is contained in Table 4.11.1. The listing includes all online and dial-up subscribers plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

The number of terminals identified for each activity listed in Table 4.11.1 represents the initial requirements for Region 11. The growth potential network is shown in Table 4.11.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Two dial-up ports will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

AD-A151 42	2 IN INF	FEGRATE FORMATI IPHIS T 9123-83	D DISE ON PRO	BURSIN	G AND NG SYS ET AL	ACCOU	ITING I NESTER	FINANC C SERV SC-CR-	IAL ICES 1 262	INC	2/3	2.
UNCLASSIFI	ED NO	123-83	-D-088	39					F7G 1	17/2	NL	·
									END HUMED			
									DTIC			
	_	-										

ł

C

¢

G

C

MICROCOPY RESOLUTION TEST CHART NATIONAL REPORT OF STANDARDS (See A The costing of this network is "lvided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.11.2.

Fleet resource accounting (operating forces) will be accomplished at three FIPC's: Region 4F - FAADCLANT, Norfolk, VA; Region 10F - FAADCPAC, San Diego, CA; Region 11 - FACSO, Pt. Hueneme, CA. Accounting for the operating forces (ships and staffs, aircraft squadions and staffs, mobile construction battalions and staffs, oceanographic units) will be in accordance with NAVSO P-3013-1, -2 procedures. FAADCLANT AND FAADCPAC utilize a Fleet Resource Accounting Module (FRAM) for centralized accounting and reporting of O&MN appropriation expenditure under NAVSO P-3013-1, -2 procedures. FACSO, Pt. Hueneme provides similar support for Navy Mobile construction battalions who must also use operating force fund administration procedures. Pending inclusion of such procedures in IDAFMS, a means will be provided to permit the "3013" operating forces (based ashore) to access the fleet resource data base files via the IDAFMS telecommunications networks at the three aforementioned regions for file update/query/retrieval. FPAM processing will be accomplished by the IDAFMS data processing capabilities. The inclusion of "3013" activities in the initial IDAFMS telecommunications design will preclude the requirement for a similar effort subsequent to development of an acceptable IDAFMS/FRAM interface.

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

C

C

FIPC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

•

C

5

¢

C

Q

ļ

•

FIPC Region 11, Port Nucueme Site Area Code 805, fel Co Exchange No. 982

		115	•	MODEMS				
1.00.	AREA CODE	REA TEL CO DDE EXCH	TYPE	OTY	MP	CHT'S	8,814	NBT's
UXNARD, CA.	805	982	1. 1.	~1		1	2	
UXNARD. CA.	CU8	786	ЧН	-	-	-	-	
DXNARD, CA.	508	182		-		-	-	
UXN*KD, CA.	805	796		-		-	-	
UNHARD, CA.	508	982		-		t	7	
BREMERION, WA.	706	748	4H	-	-	-	-	
DAKLAND, CA.	415	464		-		-	-	
SOSAN FRAN, CA.	415	811		-		~	2	-
GULFPORT, MS.	104	۶ų۶	μ	-	-	7	-	
CHARLES FUN. SC.	8113	143		-		~	-	
OXHARD, CA.	tua	786		-		-	-	
KANSAS CIT', MO.	818	374		-		-		
CULFPORT, MS.	601	865		-		-	-	
NORPOLK, VA.	708	444	Ŧ	-	-	-	-	
NO. KINGSTON, RI.	105	247		-		-	-	
PRILADELERIA, PA.	215	405				•	-	-
NORPOLK, VA	P()4	444		-		-		-
WASHINGTON, D.C.	707	545		-		74	-	

۱

•

TABLE 4.11.1

GROWTH POTENTIAL NETWORK COST SUMMARY

7

1

ſ

C

REGION 11

	DTE			DCE	
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	40	21	3	23	5
Cost- Nonrecurring	x	x	x	x	\$ 4,000
Recurring Annual	\$17,280	\$23,940	\$49,140	\$49,956	\$103,512

TABLE 4.11.2

<u>4.12 Region 12 Network Description</u>. The Naval Supply Center (NSC) located in Oakland, CA, will function as the FIPC for Region 12. Region 12 encompasses selected fund administering activities established in north California and Nevada. The FIPC will provide data processing support for Region 12 and serve as the communications control point for the network. The major claimant for the Region 12 FIPC is the Commander, Naval Supply Systems Command (COMNAVSUPSYSCOM). The network shown in Table 4.12.1 is for the Region 12 IDAFMS telecommunications network which will support the IDA Phase III implementation.

r

.

The circuits listed in Table 4.12.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

4.12.1 Region 12 User Community. There are presently 39 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 12 network. The geographical relationship of the online subscribers is depicted in Table 4.12.1. The individual subscribers to the IDA Region 12 telecommunications network consist of accounting activities utilizing standard NAVSO P-3006 (Shore Activities) accounting procedures, and communications requirements are based upon the application of these procedures. Subscriber communication requirements will vary from a few dozen transactions per day to several thousand transactions per day

based on anticipated IDA involvement. Terminal requirements, therefore, could range from a single online CRT terminal and printer terminal to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 12 Telecommunications Network subscribers is contained in Table 4.12.1 The listing includes all online and dial-up subscribers plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

The number of terminals identified for each activity listed in Table 4.12.1 represents the initial requirements for Region 12. The growth potential network is shown in Table 4.12.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Two dial-up ports will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

C

.

The costing of this network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.12.2.

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

5

FIPC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

ļ

Í

I

ł

FIPC RECION 12, ONDAND SITE AREA CODE 415, TEL CO EXCUMAE NO. 466

and the second second

FIPC SITE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

;

(CUNTINUED)
, ONGAND
12,
RECTON
FIEC

TERMINALS	PTR'S RBT'S		1	-	-	1	1	7	1 1	1	1	1	2	2	2	2	2	2 1		2 1	
TERM	CRT'8	1	1	1	-	-	2	1	7		-	-	Ś	٢	٢	٢	٢	39	- 0	N 67	
	MP MASTER	1									F								1		
MODEMS	QTY	-	1	1	-	-	1	-1		-	1	1	-	2	2	2	2	2		• ~	
	TYPE	ŝ									ŝ			dd	Ър	dd	dd	dd	Î		
CIRCUITS	TUL CO EXCH	765	765	765	765	765	765	765	765	765	765	786	869	466	466	466	406	869	466	619 639	.12.1
CIRC	AREA CODE	415	415	415	415	415	415	415	415	415	415	101	415	415	415	415	415	415	415	415	TANE 4.12.1
	1,00.	SAN FRANCISCO, CA	SAN FRANCISCO, CA	SAN FRANCISCI, UN	SAN FRANTISCU, CA	EN HURLISD, CA	SAN FROMISCO, CA	SW HAWTERD, CA	SAN FRANCISCU, CA	SAN FRANCISCO, CA	SAN FRAFTIERD, CA	PD63ME, CA	ALAPLIN, CA	ONGAND, CA	CANTAND, CA	UNIMD, CA	(INKLAND), CA	ALAMPIA, UA	CIVID AND, CA	CANDARD, CA	
	AUON	NEWITICATIVAN	LUK LUK LUK	ISA SWI HAN	ano	NEWRODENN	STHEFTES	NAVIEZZAMD 20	HALL WAS ASY	OVALINI VAN	NAMERAL INVERSE 8	INERVERTIMAN	N.C	NGC.	NGC .	NGC .	254	SAN	187	NAVEL MEDCEN	
	010	62639	60028	65607	68507	66409	62798	68308	63697	63058	62918	57053	00236	00229	87700	R2200	97700	91700	00228	68097	
	NO.		•	-	-				-		3 2	4	-61	6	10	11	12	61	14		

; ;

Þ

4

GROWTH POTENTIAL NETWORK COST SUMMARY

<u>م کا م کا ا</u>

-, -, F-

<u>ب</u>ړ.

REGION 12

		DTE			DCE	
	CRT's	PRINTERS	RBT's	MODEMS	LINES	•
Quantities	111	50	7	52	14	
Cost- Nonrecurring	X	х	x	x	\$7,500	
Recurring Annual	\$47,952	\$57,000	\$114,660	\$112,944	\$49,416	

TABLE 4.12.2

4.13 Region 13 Network Description. The Naval Supply Center (NSC) located in Bremerton, WA (Puget Sound), will function as the FIPC for Region 13. Region 13 encompasses selected fund administering activities established in Washington, Oregon, Idaho, and Alaska. The FIPC will provide data processing support for Region 13 and serve as the communications control point for the network. The major claimant for the Region 13 FIPC is the Commander, Navy Supply Systems Command (COMNAVSUPSYSCOM). The network shown in Table 4.13.1 is for the Region 13 IDAFMS telecommuniations the support the IDA Phase III implementat .

المرابية المستحد المستحد فستحدثها المناحد المناحين والرجانية النفار والمرابع المرابع فالمتحد والمراجع والمرابع

The circuits listed in Table 4.13.1 are the rest of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

4.13.1 Region 13 User Community. There are presently 26 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 13 network. The geographical relationship of the online subscribers is depicted in Table 4.13.1. The individual subscribers to the IDA Region 13 telecommunications network consist of accounting activities utilizing standard UAVSO P-3006 (Shore Activities) accounting procedures and communications requirements are based upon the application of these procedures. Subscriber communication requirements will vary from a few dozen transactions per day to several thousard transactions per

day based on anticipated IDA involvement. Terminal requirements, therefore, could range from a single online CRT terminal and printer terminals to installation of multiple CRT's and printer terminals. A complete listing of IDA Region 13 telecommunications network subscribers is contained in Table 4.13.1. The listing includes all online and dial-up subscribers plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

The number of terminals identified for each activity listed in Table 4.13.1 represents the initial requirements for Region 13. The growth potential network is shown in Table 4.13.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. One dial-up port will be utilized to accommodate the needs of activities not connected to circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of this network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.13.2.

FUC SUE OWNERDATES BUILDED OFFICIES

FIN Region 4F, Borfolk (continued)

				CIRCUITS				MODA	S	T	TERMINALS	S
					NR.N.	111. 00			GI			
	02	<u>uic</u>	HEALE	100.	COPE		TYPE	710	OTY MASTER	Cixt's	TKT'S FTR'S	RBT's
	28	00129	SARASE	GRATCH, CT	203	4.19	υÐ	1	-	9	2	I
		62789	SALINE	GB/RR, CT	203			-		Ţ	1	
	29	61726	NEWEWEWEW	CRATEN, CT	203	449	٩Ŀ		1	I	1	
		00750	LIVE USADI.	GRADAL, CT	203	449		-		7	٦	
		0.1.0	STAL ST	GBARAT, CT	203	4.19		-		٦	7	
		C7100	3 IEASE	GRAPH, CT	203	4:19				~1	7	
		68316	SUBSTREED	GRAPH, CI	203	449		Ι		ľ	I	
	30***	57075	NAVAL	ARGENTIA, CAVADA	209	227	dd	1	I	l	7	
			FACILITY									
18												

TABLE 4.15.1

- These circuits are assumed to be in-house lines with minimal associated line costs. These circuits include 14 CKT's/4 PTR's, for Operational Forces (OPFORCES) and 6 CKT's/3 PTR's for the Financial Reporting System (FRS). The remainder belong to INMAS.
- Q.L. ** This circuit also requires a point-to-point connection between FIRC and QMSIANT to complete satellite link. additional redens are also required for this link.

*** Dialup.

FIRE SURE CAMPANICATIONS HUPPERT CONFIGURATIONS

FIRC Region 4P, Norfolk (continued)

•

	<u>v</u>					
S	RBT 's	1	-1	-		1
TURMINALS	PIR 'S	~ 7			0-1	— — — —
	CRT 's	40-	7 4 7	- 7 7	401	- 0 4 0
ļ	MP MASTER	. - 1	Г	1	1	I
NDDEMS	λώ	~ ~ ~				
	TYPE	ξ	đ	Ţ	đ	£
	TEL 00	425 425 425	JTTE JTTE JTTE	755 755 755	824 697 755	921 921 921 921
	ARIA CODI:	804 804	aliteins aliteins aliteins	215 215 215	212 215 215	207 207 207 207
Clicuits	<u>Ivc.</u>	VIRUNIA BEACH, VA VIRUNIA BEACH, VA VIRUNIA BEACH, VA	GUPTANIND RAY, GJBA GUMITAGAD BAY, GJBA GUMTANAD BAY, GJBA	МИГА., РА МИГА., РА МИГА., РА	NY, BRYXLYN, NY Mula., Pa Mula., Pa	BRANSWICK, ME BRANSWICK, ME BRANSWICK, ME BRANSWICK, ME
	NODE	NAS-OCEANA NAS-OCEANA NAS-OCEANA	havsta Navsta Nas	PERSJPPACT NAVSTA NAVSTA	NAVSTA CONLAVBAS CCTYO	SAN SAN SAN SAN
	UIC	16109 16109	60514 60514 00306	68629 61189 61189	61174 00175 68504	60087 60087 60087 60087
	Q.	23	24**	25	92 4-77	27
					4-//	•

•

.`

÷.

TARLE 4.15.1

Ē

FIEC SUPE DARFINICATIONS EXPLORED CONFIGURATIONS

ł

ļ

ļ

1

FIR Region 4F, Norfelk (continued)

TERMINALS	PTR'S RDT'S	- -		1 1 1	1 1 1		1
C	CRT's	4 7 4		*~~	501	7 - 7	S
10	MP NASTER	٦	7	Т	-	Г	l
SPERICICIA	CUY				1 7 1		l
	TYPE	Œ	CT W	CT.V	₽ ₽	đĩ	dd
	TEL, CO ITXCI	464 464 444	444 444 444 444	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	444 444 444	414 444 414	444
	ANUA	804 804 804	804 804 804 804	804 804 504	804 804 94	804 804 804	804
TS		AN VA	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	VA VA VA	AN VA	va va va	~ ^Y
CIRCUTS	12.	NORFOLK, NJETULK, NOPPULK,	NDIADIK, NORPOLK, NGIADIK, NOIUDIK,	NORFULK, NORFULK, NORFULK,	NORFULK, NORFULK, NORFULK,	NORFOLK, NORFOLK, NORFOL	NORFUIK, VA
	NDE	NAVITH BASE NAVITH BASE HIGG PARTOLK	NAS CUESAVAL RLANT A ELERGUPPACT NSS	NAVSTA NIKWAGRU NAS	CONTRALANT NAS CONNAVBASE	CINCLANTELT N OCEANSIFLANT N OOESIHLANT 1	LANTELTHED SJPPACT
	UIC	61414 61414 68730	C0188 57012 68547 00188	62689 63007 00183	57021 00188 61463	00060 53825 57016	57095
	ହା	17	18	6 <u>1</u> 4 -	ខ្ព 76	21	22

TABLE 4.15.1

FIRC SITE CAMPINICATIONS EQUIPARATI CONFIGURATIONS

7

]

é,

ľ

FIRC Region 4F, Norfolk Site Area Cole 804, Tel Co Exchange No. 444

S	RBT's																
TERMINALS	PTR's	7	7	7	5	7	7	5	7	7	7	2	2	1	1	l	I
H	CIT's	8	8	8	8	8	8	в	8	8	8	8	8	в	8	٢	٢
	NP MASTER	I	1	l	1	I	l	1	1	1	I	٦	I	1	٦	l	 1
NODFNIS	۲.	l	1	T	7	٦	I	1	Ч	l	1	Ţ	1	1	l	l	1
	TYPE	dd	ЪР	dd	Чſ	dd	dd	ЪР	Ьb	dd	ЬP	ġď	dd	ūđ	հր	dd	สม
	TEL, Q	444	444	444	444	444	444	444	444	444	444	444	444	444	444	444	444
	ARLA CODE	804	804	804	804	804	804	804	804	804	804	804	804	804	804	8.)4	804
CIECULTS	<u>17%.</u>	NOREDLK, VA	NORFULK, VA	NOREDLK, VA	NORFOLK, VA	NORFOLK, VA	NORFULK, VA	NOPEDLK, VA	NORFULK, VA	NORFULK, VA	NORFOLK, VA	NOPEULK, VA	NORFULK, VA	NORFOLK, VA	NOFFOLK, VA	NUREDLK, VA	NORPULK, VA
	NOTE	FAADCLANT	FANICLANT	TNA EXAM	FAADCI ANT	FAADCI AN'F	FAADCLANT	FAAIXELANT	FAADCLANT	FAADCLANT	FAADULANF	FANCI ATT	FAADCI ANT	FAMICIANT	FAADCI ANT	TW EXWA	FAMDEL AND
	UIC	é0951	60951	60951	60951	60951	60951	60951	60951	60951	60951	60951	60951	60951	60951	60951	60951
	ହା	1*	; ,	3*	4 *	* ℃	* 5 - 75	7*	* 3	*6	10*	11+	12*	13*	14*	15*	16•

TAULE 4.15.1

۰.

printer terminal to installation of multiple CRT's and addressable printer terminals. A complete listing of IDA Region 4F telecommunications network subscribers is contained in Table 4.15.1. The listing includes all online and dial-up subscribers.

Л

The number of terminals identified for each activity listed in Table 4.15.1 represents the requirements for Region 4F. These circuits will be utilized for interactive CRT traffic in conjunction with addressable printer terminal traffic. Dialup ports will be utilized to accommodate the needs of activities not connected to leased circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquir; transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Addressable printers will handle inquiries, output reports, listings, etc.

The costing of this network is divided into two basic areas: circuit costs (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are presented in Table 4.15.2.

The region has been assigned five RBT printers. Nightly, these units will receive preformatted, host-driven output reports which they will store on disk. Reports will be printed offline during the day when operators are available.

4.15 Region 4F Network Description. FAADCLANT, located in the Naval Operating Base, Norfolk, VA, will function as the FIPC for Region 4F. Region 4F encompasses selected FAA's established in Virginia, Connecticut, Massachusetts, and at several North American activities. The FIPC will provide data processing support for Region 4F and serve as the communications control point for the network. The major claimant for the Region 4F FIPC is the Commander in Chief, Atlantic Fleet (CINCLANTFLT). The network in Table 4.15.1 is for the Region 4F IDAFMS telecommunications network which will support the IDA Phase III implementation.

The circuits listed in Table 4.15.1 are the result of the network designs completed during the winter of 1983. The terminal counts have been updated to reflect most recent status. Thus, the networks have been designed to incorporate this data. The circuit diagrams are therefore indicative of what will be installed upon implementation.

<u>4.15.1 Region 4F User Community</u>. There are presently 29 different commands/activities/offices scheduled to participate as remote online/dialup subscribers to the Region 4F network. The geographical relationship of the online subscribers is depicted in Table 4.15.1. Subscriber communications will vary from a few dozen transactions per day to several thousand transactions per day based on anticipated IDA involvement. Terminal requirements, therefore, could range from a single online CRT terminal and addressable

GROWTH POTENTIAL NETWORK COST SUMMARY

•

Region	14
--------	----

		DTE		DCE	
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	25	12	2	13	3
Cost- Nonrecurring	x	x	x	x	\$1,750
Recurring Annual	\$10,800	\$13,680	\$32,760	\$28,236	\$5,536

TABLE 4.14.2

ſ

FIRC SITE COMMUNICATIONS EQUILIMENT CONFIGURATIONS

ſ

G

Ô

ſ

ł

.

I

FIRC Region 14, NSC Pearl Harbor

		RBT's									I	1	
TTERMINALS		PTR'6	2	l	-	I	1	1			1	3	
TTERM		CKT'B	9	Ч	٦	T	1	٦	1	I	۰.	8	
S		MASTER	1				1						
MODEMS		6	1	٦	1	T	1	-		Ţ	I	2	
		TYPE	ЧW				đy					dd	
CIRCUTIS	TEL OO	EXCI	471	471	471	471	471	471	471	471	471	471	
CIRC	AREA	BOD	808	808	808	808	808	808	808	808	808	808	TABLE 4.14.1
		100.	rFARL HARBOR, HI	PEARL HARDOR, HI	FEARL HAREOR, HI	PEARL IRREOR, HI	FFARL HARBOR, HI	PEARL HARDR, HI	OALU, HI	OMIU, HI	PEARL HARBOR, HI	BARBERS FOINT, HI	
		NODE	NSC	NAVSJBTRACENPAC	NAVRECMEDCLINIC	PERSUPPACT (ADO)		AVSTA	ASTPAC		ថ	NAS	
			00604	63154	68098	68604	62676	62813	00350	68297	68604	00334	
	9		1				2					m	

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed. Terminal requirements, therefore, could range from a single online CRT terminal and printer terminals to installation of multiple CRT's and printer terminals. A complete listing of LDA Region 14 telecommunications network subscribers is contained in Table 4.14.1. The listing includes all online and dial-up subscribers plus those activities that are considered as low volume users whose daily transactions do not warrant teleprocessing services at this time.

Th. number of terminals identified for each activity listed in Table 4.14.1 represents the initial requirements for Region 14. The growth potential network is shown in Table 4.14.1. These circuits will be utilized for interactive CRT traffic in conjunction with printer terminal traffic. Four dial-up ports will be utilized to accommodate the needs of the activities not connected to circuits.

12.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Printer terminals will handle interactive responses and output reports, listings, etc.

The costing of this network is divided into two basic areas: circuit (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are itemized by circuit and are presented in Table 4.14.2.

4-69

 $\sum_{i=1}^{n}$

4.14 Region 14 Network Description. The Naval Supply Center (NSC) located in Pearl Harbor, HI, will function as the FIPC for Region 14. Region 14 encompasses selected fund administering activities established in Havaii. The FIPC will provide data processing support for Region 14 and serve as the communications control point for the network. The major claimant for the Region 14 FIPC is the Commander, Naval Supply Systems Command (COMNAVSUPSYSCOM). The network in Table 4.14.1 is for the Region 14 IDAFMS telecommunications network which will support the IDA Phase III implementation.

ſ

(

The circuits listed in Table 4.14.1 are the result of the network designs completed during the summer of 1981. Since then, the traffic workloads and terminal counts have been revised and activities have been deleted and added. At this time, the networks have not been redesigned to incorporate these changes.

4.14.1 Region 14 User Community. There are presently 30 different commands/activities/offices scheduled to participate as remote online/dial-up subscribers to the Region 14 network. The geographical relationship of the online subscribers is depicted in Table 4.14.1. The individual subscribers to the IDA Region 14 telecommunications network consist of accounting activities utilizing standard NAVSO P-3006 (Shore Activities) accounting procedures and communications requirements are based upon the application of these procedures. Subscriber communication requirements will vary from a few dozen transactions per day to several thousand transactions per day based on anticipated IDA involvement.

GROWTH POTENTIAL NETWORK COST SUMMARY

Region 13

÷.

1

5

Ĩ

•

C

Ć

		DTE		DC	E
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	49	26	5	28	5
Cost- Nonrecurring	x	x	x	x	\$4,000
Recurring Annual	\$21,168	\$29,640	\$81,900	\$60,816	\$124,1

TABLE 4.13.2

FIRE STE COMMUNICATIONS FOULIMENT CONFIGURATIONS

ŀ

k

ľ

l

C

.

•

ŧ

FIIC Region 13, NSC Puget Sound Site Area Code 206, Tel Co Exchange No. 257

	RBT's	I	I		I	
I'TERMINALS	PTR'S	7			0	~ ~
ITERM	CRT'B	8		2919210	9 1 7	ーて
Q¥	MASTER	~	-		I	I
MODEMS	E	2				1 1
	TYPE	dd	£	₽ ¥	ЧW	ЧW
UITS TET CO	EXCI	257	257 257 396 396 257 257	527 888 527 526 527 663 663 663 663	478 478 478	478 478
CIRCUITS	CODE	206	206 206 206 206 206 206	206 503 208 208 415 206 215 206 215	206 206 206	206 206
		WHINBY ISNARS, WA	WHRYISNAS, WA WHUGYISNAS, WA KYPT TPSTA, VA WIDBYISNAS, WA BRUMERRIXY, WA WHOBYISNAS, WA WHODYISRAS, WA	SEATTLE, WA ENPIRE, CP SEATTLE, WA IIMNO FALLS, ID SEATTLE, WA FOINTREYES, CA PACIFICECH, WA FOINTREYES, CA FATTLE, WA	BREMEKTAN, WA BLEMERTON, WA BREMERTON, WA	BREMERTINI, WA BREMERTIN, IZA
	NODE	NAS	NAVHOSP NAS NAVUNDERSEAWAR HIRYC TRJ REFAC NARU NARU NARU NATISLAD	CONCHIRTEEN FAVFAC CONS (ID) HAVRESREDCOMRE FAVATINU NAVSUPPACT NAVSUPPACT NAVSUPPACT NAVFAC NAS NAS SUISHIPS	NAVRECMEICEN TRITRAFAC NAVSUBBASE	ISA PICET SOUND BREMERTAN, NSC PICET SOUND BREMERTAN,
	UIC	00620	68097 00620 00253 41942 68423 68423 68423 68433 68433	00256 57055 68328 65198 00225 57099 57099 60462 60462 62799	68095 68437 68436	6861 3 00406
	NO.	1	8	M 4 CC	4	Ś

TABLE 4.13.1

The region has been assigned RBT printers by the "Intraregion Network Design Reassessment, July 1981." Inasmuch as the geographic location for each RBT printer has not been determined, line speed requirements and circuit attachments have not been addressed.

E

GROWTH POTENTIAL NETWORK COST SUMMARY

•

.

and the strend and the strend strend in the strend st

14

Ń

ľ

(

REGION 4F

		DTE		DCE	
	CRT's	PRINTERS	s <u>' Tgq</u>	MODEMS	LINES
Quantities	205	72	5	89	31
Cost- Nonrecurring	x	x	x	x	\$8,000
Recurring Annual	\$88,560	\$82,020	\$81,900	\$193,308	\$120,373

TABLE 4.15.2

4.16 Region 10F Network Description. FAADCPAC located in San Diego, CA, will function as the FIPC for Region 10F. Region 10F encompasses selected FAA's established in southern California and Hawaii. The FIPC will provide data processing support for Region 10F and serve as the communications control point for the network. The major claimant for the Region 10F FIPC is the Commander in Chief, U.S. Pacific Fleet (CINCPACFLT). The network in Table 4.16.1 is for the Region 10F IDAFMS telecommunications network which will support the IDA Phase III implementation.

ſ

The circuits listed in Table 4.16.1 are the result of the network designs completed during the spring of 1984. The terminal counts have been updated to reflect most recent status. Thus, the networks have been designed to incorporate this data. The circuit diagrams are therefore indicative of what will be installed upon implementation.

4.16.1 Region 10F User Community. There are presently 18 different commands/activities/offices scheduled to participate as remote online/dialup subscribers to the Region 10F network. The geographical relationship of the online subscribers is depicted in Table 4.16.1. Subscriber communications will vary from a few dozen transactions per day to several thousand transactions per day based on anticipated IDA involvement. Terminal requirements, therefore, could range from a single online CRT terminal and addressable printer terminal to installation of multiple CRT's and addressable printer terminals. A complete listing of IDA Region 10F

telecommunications network subscribers is contained in Table 4.16.1. The listing includes all online and dialup subscribers.

The number of terminals identified for each activity listed in Table 4.16.1 represents the requirements for Region 10F. These circuits will be utilized for interactive CRT traffic in conjunction with addressable printer terminal traffic. Dialup ports will be utilized to accommodate the needs of activities not connected to leased circuits.

The CRT terminals provide the interactive link between host computer and operator, enabling the operator to initiate data entry and inquiry transactions. Responses to data inquiry transactions are sent to a printing device or the CRT, at the operator's discretion. Addressable printers will handle inquiries output reports, listings, etc.

The costing of this network is divided into two basic areas: circuit costs (line and drop) and DCE. Each area is costed for nonrecurring and monthly recurring costs. The prices for the network are presented in Table 4.16.2.

6.

 \mathbf{O}

The region has been assigned three RBT printers. Nightly, these units will receive preformatted, host-driven oupput reports which they will store on disk. Reports will be printed offline during the day when operators are available.

FIRE SERF COMPUNICATIONS EQUIPMENT CONFIGURATIONS

C

ſ

e

F

Q

FITC REDON TOF, FANXFAC, SAN DIEGO SUTE AREA CODE 619, TEL CO EXCLANCE NO. 235

	RDT'S							-				-
TERMINALS	PRT'S R	2	c.)	m	ñ	2	2	5	11			
TER	cm's	8	7	٢	٢	9	9	8	n u	- n	112	
	AP MASTER	1	I	J	-1	J	J	1	l	1	1	I
MODEMS	λίο	T	I	1	I	Π	1	1				
	TYPE	dd	ЪР	Ч	dd	ЬЬ	dd	dd	đN	JI.	đ	ę.
	TEL, 00 EXCI	235	235	235	235	235	235	271	271 271	235 235	339 696 221	437 437 437 437 437 437 437
	AREA CODE	619	619	619	619	619	619	619	619 619	619 619	619 619 619	619 619 619 619 619 619
	100.	SAN DIEGO, CA	SAN DIEDO, CA	SM DIEGO, CA	SM DIEGO, CA	SAN DIEGO, CA	SM DIEGO, CA	SAN DIEGO, CA	SAN DIEGO, CA SAN DIEGO, CA	SAN DIEGO, CA SAN DIEGO, CA	el centro, ca San dihiso, ca San dihiso, ca	CURVIND, CA CURVIND, CA CURVIND, CA CURVIND, CA CURVIND, CA CURVIND, CA CURVIND, CA CURVIND, CA
CIRCUITS	NODE	FANDCPAC	FAADCPAC	FAADCPAC	FAALKIPAC	FAADCPAC	FANCEAC	NAS-MI RWAR	NAS-MI RAMAR NAS-MI RAMAR	NAVPASE NAVSTA	NAF LJ. CENTRO PERSIPPACT NAVSJBPASE	ANTHITASE Nas Notati Island Nas Notati Island Uns Notati Island Nas Notati Island Nas Notati Island Nas Notati Island Nas Notati Island
	UIC	68683	68683	68638	68688	68688	68683	60239	60259 60259	00242 00245	60042 68553 63406	62021 00246 00246 00246 00246 00246 00246
	o,	1*	5 *	*	4•	2#	•9	7	ω	6	10	1
								4-82	2			

TAR.F. 4.16.1

÷

FIRC SURE COMMUNICATIONS EQUIPMENT CONFIGURATIONS

ſ

ſ

C

ł

(

FIRC RESION 10F, FAADCPAC, SAN DIEBO SUTE AREA CODE 619, TEL, CO EXCLANGE NO. 235

		CIRCUITS				DOM	MODINS		TE	TERMINNLS	
				ARUEA	TEL 00			Æ			
<u>0</u>	nic	NDE	100.	1000	EXCI	TYPE	Š	MASTER	CRT'S	PRT'S	RBT'S
12	00246	CINE ISI HUSON SVN	CORNENDO, CA	619	437	ЧЪ	I	I	1	I	
	00246	UNS NORTH IS! AND	CORONATIO, CA	619	437		-1		L	-	
	00246	NAS NORTH ISLAND	CORNERIO, CA	619	437		-		٦		
	00246	UNISI HUNUN SAN	CORNIND, CA	619	437		1		I		
	00246	UNA ISI HINUN ANI	CORDIADO, CA	619	437		٦		I		
13	68625	PERSUPPACT	SAN PEDRO, CA	213	547	Ψ	1	I	1	Г	
	68311	NAVST.A	SAN PEDRO, CA	213	547		1		e	F	I
14**	57087	COMPLIE RUFELT	PEARL HARBOR, HI	808	474	dd	~	1	1	1	
15**	00020	CITCPACELT	PEARL HARDOR, HI	808	474	dd	1	1	1	l	
16**	57020	COMSTIBPAC	PEARL HARDR, HI	808	474	ЪЬ	1	1	I	ľ	
17**	57004	COMMAVLOGPAC	FEARL HARBOR, HI	1 808	474	dď	T	1	1	l	
18**	68003	01%	SAN DIEGO, CA	619	225	dd	1	l	I	1	
19**	57025	COMNAVAL RPAC	SAN DIEGO, CA	619	437	ЬЬ	I	T	1	I	
20**	53824	COMJAVSURFTAC	SAN DIEGO, CA	619	437	dd	I	l	ı	I	
*These c equipme	circuits are or configur	"These circuits are assumed to be in-house lines with minimal associated line costs. Circuits 1-3 equipment configurations for the Financial Recording Section (FPC). Circuite 4-6 belows to IDEMS	lines with minir Recording System	malassood maration	ciated li	ine crists. He 4-6 hel		Circuits 1–3 indicate	indica	te	

4-83

equipment configurations for the Financial Reporting System (FRS). Circuits 4-6 belonj to IDAFNS.

** Dialup

TABLE 4.16.1

GROWTH POTENTIAL NETWORK COST SUMMARY

REGION 10F

E. C

6

E

9

G

 \bigcirc

4

		DTE		DCE	
	CRT's	PRINTERS	RBT's	MODEMS	LINES
Quantities	85	37	3	55	20
Cost- Nonrecurring	x	x	x	x	\$4,000
Recurring- Annual	\$36,720	\$42,180	\$49,140	\$119,460	\$81,116

TABLE 4.16.2

APPENDIX A

E

Ø

1

C

 \mathbf{C}

NETWORK COST SUMMARY

A-1

NUTRIORIC COST SUMMARY

TATA THINK HUILING STAND

TATA LEMINE ATEM RULINE DAVE

C

6

G

	Ē	Ē		teri eri eri eri eri eri eri eri	THE CARE	Riff Count Revenues August	ļ		Notice _ Line _ Reviewing Arrest	Line trat	the Car beginstrated
S MULINE	\$3	۶	~	\$28, mm	0740'(ES	\$ 12.740	=	¢	\$67, 112	518 I 44	(NY, '15
RUCION 3	011	\$	¥	21.520	\$40° 4 Xu	¥	ŝ	2	5119.460	(m) 115	.A. NID
A WOLFAR	ľ	2	•	510.672	\$17,620	545, 520	ž	£	0,0,418	524, MA	52, 750
S MULTINE S	L	ž	ar.	\$11,212	518, 240	×	2	-	5 14, 924	, SI 7, AIA	a. 7.0
S MULTIN 6	ž	£	•	512, 4M	0740 [°] LLS	\$65. 520	£	5	545, 140	PP1 '415	54, 750
KRIEN 7	112	3	æ	54R, JA4	S70, 600	09071635	2	2	81 M, MB	HO THE	C1X, 1X
B NOTH	5	Æ	•	525, 920	026,162	565, 520	٤	÷	54.7 , ar is	554,452	21.25
A NOTON	8	3	-	\$15.424	S40, 420	516. Inn	7	œ	117,280	8100°0,8	67, 740
RUCCEN 10	ľ	£	÷	\$10,01\$	\$44,460	1941, XHD	£	•	542.5 14	5 M. 440	\$\$.cm
TT NOTORI	\$	~	-	11, 28n	523,940	001.002	"	۴	543,956	615'LUIS	54, ron
RELIGN 12	Ξ	8	~	\$47,952	010°'155	114,660	\$	1	5112,944	544,416	17,400
CLINDIDEX	Ş	26	~	521,168	\$27.640	ULW, 182	£	٠	A11, 148	5124,140	1 .000
ABUICH 14	\$	13	~	0.08°0*\$	0697115	\$12,760	=	•	¥7,858	31.56	6.7.15
AB-NO-CR	é	22	~	JRR, 540	542,020	0005 [°] 185	£	R	See 1, 1943	5117,446	s?, \$m
RELOW TOP	£	"	-	514, 720	542, 180	549, 14n	÷	8	099°,0115	561, 116	54, (111)
COM NUTRING	Ŧ	\$	~	211, 115	515, CHD	UP1.1(S	£	£	Pol., 104	120'2145	8 , 50
TT.	627.1	ġ	\$	52 JU, 846	\$661.420	net i tes	ų,	51	NAL , 420, 144	(91°(80°15	0110-7115

· These are all escable printer tendnals.

•• Line create are inset on 1980 Lariffe with the exception of Region 4F and 10P, which are been on Carteri Lariff. Other regions will be uplated R-12 stands before legiterentiation according to legiterentation actebute in Agrentic 0.

A-2

j.

"A

APPENDIX B

9

D

-22

f

IDAFMS REGIONAL

IMPLEMENTATION SCHEDULE

B-1

REGION	FIPC LOCATION	HARDWARE DELIVERY DATE	ONLINE PRODUCTION
	ID	AFIIS	
4F	FAADCLANT Norfolk, Va	15 Jan 85	31 Mar 85
10F	FAADCPAC San Diego, Ca	15 Apr 85	1 Jul 85
7	CNET Pensacola, Fl ,	15 Sep 85	1 Dec 85
G	RAADC Jacksonville, Fl	15 Oct 85	1 Jan 86
8	NAVRESUPPOFC New Orleans, La	15 Nov 85	l Fe b 86
9	NAVREGFINCEN Great Lakes, Il	15 Jan 86	1 Apr 86
3	NAVREGFINCEN Washington, D.C.	15 Feb 86	1 May 86
11	CBC Pt. Hueneme, Ca	15 Mar 86	1 Jun 86
4	NSC Norfolk, Va	15 Apr 86	1 Jul 86
10	NSC San Diego, Ca	15 Sep 86	1 Dec 86
2	NAVPUBFORMCEN Philadelphia, Pa	15 Oct 86	l Jan 87
12	NSC Oakland, Ca	15 Dec 86	1 Mar 87
5	NSC Charleston, SC	15 Jan 87	1 Apr 87
13	NSC Puget Sound, Wa	15 Mar 87	1 Jun 87
14	NSC Pearl Harbor, Hi	15 Apr 87	l Jul 87

2

B - 2

END

FILMED

4-85

DTIC