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I. SAMPLE PREPARATION

Solid solutions of A1203-Cr203 and Zr‘OZ-HfO2 were prepared
separately by mixing appropriate amounts of oxides in a ball mill and
reacted at 1350°C for 24 hours. Solutionized powders were then ball
milled for 43 hours and dried at 110°C. Specimens for conductivity
tests were hot pressed at 1600°C for one hour in BN coated graphite
dies under a pressure of 30 MN/mZ. After hot pressing, the samples
were then oxidized in air at 1350°C for 2 hours.

The compositions tested are listed in terms of X and Y in Table 1
where X is the m/o chromia in alumina and Y is the m/o hafnia in zirconia.
The dispersed phase volume fraction was kept constant at 15 v/o. In all

cases, full density was achieved.

II.  THERMAL CONDUCTIVITY MEASUREMENTS

The thermal conductivity of the 22 samples in the alumina containing
system were measured by a 'comparative method'. The thermal conductivity
is defined by

g = kA (dT/dx)
where q is the heat flux, A is thc specimen cross sectional area, T is
the temperature, x is the distance between two points in the sample, and
k is the thermal conductivity. A reference sample and an unknown sample
with the same cross-sectional area were placed in the Comparative Thermal
Conductivity Instrument. The thermal conductivity of the unknown sample
can be calculated by A]ZO3 - Cr,0, and ZrO2 - HfO2 were attrition milled

273
separately for four hours at 1000 RPM. These solid solutions were then
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mixed with a binder and ball milled for 6-8 hours. The material was
isostatically pressed at a nominal pressure of 124 MPa and sintered.
The bar specimens for bend strength measurements were sintered at 1550°C
for 30 minutes in air. The samples for indentation tests were sintered
at two different temperatures. The low chromia samples (0, 2, and 5 m/o)
were sintered at 1550°C for 30 minutes in air. The high chromia samples
were packed in powder of the same composition and sintered at 1650°C for
30 minutes in air. This was done to prevent chromia volatilization. The
bars were machined to nominal dimensions of 5 cm x 0.22 cm x 0.21 cm.
The samples for indentation tests were rough ground on 45-15 um diamond
imbedded wheels and polished using 6 um and 1 um diamond impregnated
lapping wheels. Twenty-four compositions of this system were tested
with chromia contents (X) varying from 0-30 mole percent and hafnia con-
tent (Y) varying from 0-30 mole percent.

A Tukon Microhardness Testing Machine was used for the micro-
hardness and indentation fracture toughness studies. A minimum of
5 indentations were made at each of 4 or more different loads for each
sample. The load was varied from 3 to 10 kg. A Vickers diamond indenter
(136”) was used in all studies.

Bend strength tests were performed on a closed-loop servo-hydraulic
test machine with a 5000 N load cell. A four-point bending jig was used
with a loading rate of 8.5 x 1074 mm/sec. using the equation

(2Tk/5x) = (8Tk/Ax)

unknown reference

and by measuring .T and .x for the unknown and reference material.
The equipment used for these measurements is a commercial unit

manufactured by Dynatech Corporation, model TCFCM Comparative Thermal

C e e a
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Conductivity Instrument. Measurements were made at 70, 250, and 400°C
for all specimens. A schematic diagram of this equipment (1) is shown
in Figure 1.

Twenty-two compositions in the system alumina-chromia-zirconia-
hafnia were studied. Specimens for these measurements were hot pressed
cylinders 3 cm in diameter and 2 ¢m in height. Both top and bottom

surfaces were rough ground on 15 um diamond imbedded wheels.

[TI. RESULTS

The results of the thermal conductivity measurements are shown in
Tabie 1 and Figures 2-5. These data indicated that the thermal conduc-
tivity decreases with increasing chromia. The effect of hafnia on the
thermal conductivity is negligible.

The data in Figure 2 (70°C) can be extrapolated back to 0% chromia.
Assuming that the 10 m/o hafnia has little effect on the thermal conduc-
tivity, the value for pure zirconia in a pure alumina matrix would be
0.038 Ca]/cmZDCsec. Claussen et al. (2) reported a thermal conductivity
value for A1203-15v/02r02 of 0.018 Ca]/cmz”Csec at 70°C. The thermal
conductivity values at 70°C can be normalized by multiplying by a factor

of 18/38. The normalized data is shown in Figure 6. The normalized data

indicate that the thermal conductivity of samples containing over approxi-

mately 15/vo chromia is below that of stabilized zirconia.
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Table 1. Thermal Conductivity Data (Cal/cm °C sec)
Sample No.
X-Y 70°C 250°C 400°C
0-100 0.0338 0.0219 0.0156
0-0 0.0273 0.0177 0.0137
2-10 0.0378 0.0240 0.0182
2-20 0.0332 0.0180 0.0132
2-30 0.0348 0.0179 0.0120
2-50 0.0292 0.0197 0.0147
5-20 0.0274 0.0174 0.0133
5-30 0.0277 0.0164 0.0121
5-50 0.0274 0.0165 0.0127
10-10 0.0165 0.0125 0.0108
10-20 0.0241 0.0170 0.0138
10-30 0.0229 0.0144 0.0108
10-50 0.0233 0.0152 0.0118
20-10 0.0153 0.0105 0.0082
20-20 0.0179 0.0121 0.0094
20-30 0.0188 0.0137 0.0111
20-50 0.0191 0.0138 0.0110
30-10 0.0168 0.0122 0.0099
30-20 0.0156 0.0113 0.0093
30-30 0.0178 0.0139 0.0118
30-50 0.0177 0.0139 0.0119
Cocothe o chromi n dluming
Y = the m’o hatnia in zirconia
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most of this decrease can be attributed to thermal

Microstructural examination shows that the particle size did not

change as a result of the ageing treatment.

chock.

Hence, it appears

that microstructural stability has been enhanced by chromia

additions. Further studies are needed however to substaniate

this condition.

CONCLUSIONS

1. The decrease in bend strength with increasing chromia content

can be attributed to porosity.

2. The critical particle size decreases with increasing hafnia

content,

3. The fracture toughness generally increases with increasing

hafria content.

4. The fracture toughness generally increases with increasing

chromia content,

toughening in this material under these conditions.
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Microcrack nucleation occurs when the tetragonal-to-
monoclinic phase transformation causes the nucleation of
microcracks in the material surrounding a particle. The
nucleation of microcracks can occur as a sample is being cooled
(spontaneous microcracking) or under an applied stress. 1In
either event energy is converted to surface energy, not crack
propagation, and the fracture toughness is increased.
Transformation toughening by microcrack nucleation can only occur
if monoclinic particles are present in the microstructure.

The amount of tetragonal phase present in the microstructure
of each composition was compared with the fracture toughness of
the material. These results are shown in Figure 13. These
results appear to indicate that the percent tetragonal phase
present in the material does not have much if any effect on the
fracture toughness of the material. The slope of the best fit
through these points is -.012 with an intercept of 5.129 and a
correlation coefficient of -.271. The conclusion that can be
made from this data is that stress induced transformation
toughening is not the only mechanism and probably not the
controlling mechanism for toughening in this material for an

average particle size of slightly less than 1 um.

AGEING - Samples containing 2 m/o chromia and 20 m/o hafnia
were heat treated for 602 hrs at 850, 1000, and 1150°C. After
heat treating, the samples were removed from the furnace directly
to room temperature. The samples were indented to measure the
fracture toughness. Preliminary results show a decrease in the

fracture toughness of approximately 20%. The authors feel that

@, ...




this trend is not evident and at this time cannot explain these

results. Figure 12 shows the relationship between the percent
tetragonal phase and the hafnia content. The percent of
tetragonal phase decreases with increasing hafnia content.
Increasing hafnia additions to 2r0, will decrease the critical
particle size for the tetragonal-to-monoclinic phase
transformation (7). 1If the particle size distribution is the
same for all the compositions then the percentage of retained
tetragonal phase will decrease with increasing hafnia content

agreeing with our results. Preliminary investigations show that

the particle size distribution is the same for the low chromia ?
and high chromia samples even though the sintering temperatures ]
were different. f
Seve;al toughening mechanisms in these and similar materials :

4

have been studied, all of which may or may not contribute to the
fracture toughness of the alumina-chromia/zirconia-hafnia system.

Amcng these, stress induced transformation toughening, toughening

by microcrack nucleation, and toughening by crack/particle

interaction are three mechanisms that are of great interest.

¥ ..

Stress induced transformation toughening can only occur if

tetragonal particles are present in the microstructure. When a -

material containing tetragonal phase particles is under an g

applied stress, these particles may transform to the monoclinic :
Y

phase. This transformation and the volume expansion associated
with it exerts a compressive stress around the crack tip. This

compressive stress will inhibit crack extension and increase the

el iaa ad

fracture toughness.
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transformation temperature and increasing the chemical driving

force for the tetragonal-to-monoclinic phase transformation. The

results presented here tend to agree with this theory.

Results from an earlier study (Figures 9 and 10) do not show

i similar trends. Here samples were hot pressed and the average
2ro, particle size was about 5 um. This is approximately 5-10
times the critical particle size for the tetragonal-to-monoclinic
phase transformation. The average 2r0, particle size of the
sintered materials in our present work is slightly less than 1
um. The hot pressed fracture toughness data is presented here

\ only to show that comparable fracture toughness values can be
attained in sintered materials by reducing the particle size by a

factor of 5 to a size at or below the critical particle size.

TOUGHENING MECHANISMS - In an attempt to determine the
toughening mechanism in these materials the amount of tetragonal
i phase was determined by using X-ray diffraction with the
necessary corrections as reported by Porter and Heuer (8). The
amount of tetragonal phase can be estimated by measuring the peak
\ heights of the (111) tetragonal peak and the (111) monoclinic
peak and using the equation,
+ 1,603(117)

%Tet = (111),/((111) )

T M
The data obtained is shown in Fiqures 11 and 12, The percentage
of retained tetragonal phase decreases with increasing chromia
content., Ignoring nucleation and growth phenomena one would

expect the percentage of retained tetragonal phase to increase

with an increase in the modulus of the material (9). However,

19
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all compositions.

FRACTURE TOUGHNESS - The results of the fracture toughness tests
are shown in Figures 7 and 8. The effect of chromia on the fracture
toughness are shown in Figure 7. With constant hafnia content, the
fracture toughness increases with increasing chromia content. This
could in part be due to an expected increase in the modulus of elasticity
of the material. The effect of chromia shown here may even be under-
estimated by these results. A modulus of elasticity value must be used
to calculate the fracture toughness using the equation above. The
modulus of elasticity was not measured in this study and was assumed
constant for our calculations. The data reported by Rossi and Lawrence (5)
suggests that a peak occurs in the modulus of elasticity versus chromia
content curve between 5 and 15 v/o chrimia. However, their data is
limited and not well enough defined to correct for modulus of elasticity
changes. In addition, if increasing the chromia content increases the
modulus of elasticity, not only are these trends underestimated but
also the fracture toughness values calculated should be conservative
as well.

The effect of hafnia content on the fracture toughness is
shown in Figure 8. Withoug chromia, the fracture toughness
decreases with increasing hafnia content. At present, no
explanation is offered for these results. For all other chromia
contents, an opposite effect is seen. With constant chromia
content, the fracture toughness increases with increasing hafnia
content. It is well known (6,7) that hafnia additions to ZrO2

increases the potential for toughening by increasing the

18

PRS0 W RSP

el el




Chie “Bilhe Bt vin -SSR Satie e detee VRIS Jaet . hd AR RS e Y A A St Jhie i < it s e a s A AN e S8 Y e S A b s 8 L P et 2 i M Sl B
- " N - = ~ . N - - - - - . - - N - . - -

general trend of these results show that the average bend
strength decreases with chromia content. This behavior can be
explained by the data presented in Figure 2 which shows that the
density of the bars also decreases with chromia content. From
the prelimina;y data, it appears that the bend strength
degradation can be attributed to porosity and that compositional
effects are greatly overshadowed by this effect. The data shown
in Figure 3 further supports this. The bend strength versus
porosity data suggests that, for these bars, the bend strength is
dependent on density and is independent of composition. Further
evidence of high porosity is shown in Figure 4. This
photomicrograph was taken on the fracture surface of a bar
containing 20 m/o chromia. There is no evidence of any
transgranular cracking and many areas that are not sintered. The
fracture surface of a bar containing no chromia is shown in
Figure 5. 1In this sample there is much more transgranular
cracking, much less porosity, and a higher bend strength. Figure
6 shows the maximum bend strength data versus composition.

Again, the compositional effects on the bend strength are
probably not seen due to porosity effects. But this data does
suggest that bend strength values of approximately 500-600 MPa
can be attained for low chromia containing material. These
values can probably be improved with increasing chromia and
higher densities. There also appears to be little effect of the
hafnia content on the average or maximum bend strength.
Preliminary results show that the grain size of the matrix and

the dispersed phase particle size was approximately the same for
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yield a straight line with a slope given by:
slope = constant (E/H)1/2/KIC.
By rearranging, the fracture toughness,
K;. = constant (E/H)1/2/slope,
can be calculated.

The hardness (H) is determined from the a2 versus P curve
where a is 1/2 the diagonal of the indentation. From Hucke's
work (2), this hardness, Ho' is independent of load and is the
hardness at large loads. The equation used to calculate this
value was:

Hy = k/s'
where k is a dimensionless constant for a Vickers diamond
indenter (136°) and is equal to 4636. The slope, s', is
determined from the a2 versus P curve. The value of the constant
in the first equation is of little significance since a standard
was used for all of the calculations.

To determine K the value of the elastic modulus, E, must

Ic
be determined. A value of 41,340 MPa was used (3) and assumed

constant for these calculations,

2 3/2

Plots of a“ versus P and c¢ versus P curves were

constructed for all indentation test data generated. The degree

of linear fit was excellent (r2 = .99) for all the a2 versus P
curves, The linear fit was good (for most tests e > .96) for
the c3/2 versus P curves.

RESULTS AND DISCUSSION
BEND STRENGTH - The results of the four point bending tests

for the 24 different compositions are shown in Figure 1. The
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The load versus crosshead displacement curves were plotted to

measure the load at fracture.

DATA ANALYSIS
BEND STRENGTH - Bend strength values were calculated using
the formula (2)
o, = (6Pa/bd’)

where P = load/2, a = distance from the center of a load pin to

the center of the nearest support pin, b = specimen width, and d
= specimen height. Both the average bend strength and maximum
bend strength values are included in this report. The average 3
bend strength values represent the average of at least 4 ?

different tests. 1

FRACTURE TOUGHNESS - Indentation testing has become a viable

technique for establishing relative fracture toughness data and,

in some special cases, absolute fracture toughness values. The
technique of using an indenter to produce cracks at the corners
of an indentation was used to measure the relative fracture

toughness of alumina-chromia/zirconia-hafnia specimens. The

equation used to calculate these materials properties was

developed by Anstis et al. (1), which relates a material-

independent constant to the fracture toughness, hardness, elastic

modulus, crack size, and the applied load. A c3/2 versus P plot
using the eguation:

constant = ’KIC(H/E)1/2)/(P/C3/2)

-, 33

where ¢ is the crack length, and P is the applied load, should
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ABSTRACT

Strength and fracture toughness have been studied at room
temperatures for the (Al,0, + XCr,0,5) + 15v/0 (2rO, + YH{O,)
systems for Cr203 contents ranging from 0-30 mole percent in
A1203 and Hfo2 contents ranging from 0-30 mole percent in Zr0,.
Preliminary results indicate that bend strength is more strongly
influenced by processing defects than composition. It was found
that fracture toughness increased with increasing Cr,04 and HfO2
additions. Further work is required to elucidate the mechanisms

of toughening and the effect of composition and particle size.

INTRODUCTION

In an effort to optimize the mechanical and physical
properties of candidate ceramic materials for elevated.
temperature structural components a research program has been
initiated to study the effects of composition and processing on
such properties in the A1203/Zr02 system. Matrix composition has
been varied by Cr,0, additions while the transforming particle
composition has been varied by HfO2 additions. The eventual goal
of this project is to decrease the thermal conductivity and
improve the thermal stability of the microstructure without

sacrificing strength and toughness.

MATERIALS AND EXPERIMENTAL PROCEDURE

The system A1203 - XCr,0, + 15v/0 (Zro2 - YHfOZ) was tested

to determine the fracture toughness and strength by microhardness

indentation tests and four-point bend tests. Solid solutions of
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indicate that the grain growth of the dispersed phase is a diffusional

process.
The microstructures shown in Figure 5 show that the presence of

HfO2 does not appear to affect the microstructural development. These

specimens were sintered at 1650°C for .5, 2, and 5 hours. Mullite grains

in the sintered specimens appeared to be elongated and the dispersed

phase is located at intergranular sites. The particle size as a function

of percent tetragonal phase is shown in Figure 6. The amount of tetragonal

phase increases with decreasing particle size.

Figure 7 shows the variation of KIC with particle size for several

Ny ")

hafnia contents. The fracture toughness increased with increasing hafnia
content for a constant particle size. All three curves in Figure 7 showed

a maximum indicating the critical particle size of the dispersed phase.

AT

Therefore, the control of the particle size in a given matrix seems to

be an important factor for fracture toughness improvement.

PRSI EET, PO

CONCLUSIONS

1. Hafnia additions in zirconia inhibited the growth of the dispersed i
phase. ]

2. The fracture toughness was increased by the addition of HfOZ. ]

3. The critical particle size of ZrOZ/HfO2 dispersions in mullite was j

approximately 0.4 microns.
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Bulk densities were measured using Archimedes' principle using
water as the media. Phase identification was done by s-ray diffraction
and by microstructural examination of the polished and thermally etched
surface. Fracture toughness values for some of the specimens were
measured by the microindentation method. Five indentations were made
at each of five different load levels. The amount of tetragonal phase
for each specimen was obtained by measuring the (111) tetragonal peak

and the (111) monoclinic peak.

RESULTS AND DISCUSSION

Figrue 1 shows the bulk densities of sintered specimens. The

specimens sintered at 1500°C did not densify (75-82% theoretical density).

Specimens sintered at temperatures above 1600°C for a period longer than

one hour reached 95% theoretical density. As shown in Figure 1, the

presence of HfO2 in the dispersed phase seems to retard the densification

of the composites.

A1l specimens sintered at 1550°C and 1600°C contained ZrSiO4. The

zircon phase disappeared at 1650°C. Therefore, all specimens for further

.tudies were sintered at 1650°C.

srain growth data at 1650°C are shown in Figure 2. The grain

rowth rate was affected by the presence of hafnia in the dispersed phase.

“hanjes in the dispersed phase particle size for specimens sintered at

1750 C are given in Figure 3. The particle size decreased slightly with

Hf), additions. Figure 4 is a plot od d3—do3 versus sintering time at

4

1650 for specimens containing 0 and 20 m/o Hf02. The straight lines
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( ABSTRACT

Mullite with dispersions of solid solutions of ZrOZ/HfO2 was

'i studied. With the addition of hafnia to zirconia, the fracture toughness
was increased and the growth rate of the dispersed phase was slightly
suppressed. A "critical particle size" was found to be approximately

0.4 um.

viljv'-v.v. MR

MATERTALS AND EXPERIMENTAL PROCEDURE

Four compositions in the mullite-zirconia-hafnia system were
studied. The volume fraction of dispersed phase was kept constant
at 15 v/o. The hafnia content in ZrOZ/HfO2 solid solution was varied
from 0-20 m/o (0, 5, 10, and 20 m/o0).

Aqueous solutions of aluminum nitrate, zirconium oxychloride,

hafnium oxychloride, and tetraethoxysilane were used as starting
materials. Appropriate amounts of solution were mixed and ethanol was
added to the mixtures to prevent separation of the ethoxysilane from the
aqueous solution. Mixed solutions were stirred for 30 min. and NH4OH
was slowly added to the mixtures. When the pH value reached 5.5 a stiff

gel formed. The gel was filtered, dried at 100°C, and calcined at 450 C

for one hour. The calcined powders were amorphous to x-rays. The
i powders were ground in an agate jar mill with agate balls for 7 hours.
The ground powders were isostatically pressed at 135 MPa and sintered

;' at 1550, 1600, and 1650°C for 30 min., one, two, and five hours.
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