AD-A151 361  GENERATION AND TERNINRTION OF BINARY DECISIDN TREES FOR 171
NONPARAMETRIC MUL. . <U) HRSSRCHUSETTS INS OF TECH
CAMBRIDGE LRB FOR TNFORMATION AND D S GELFAND ET AL.
UNCLASSIFIED OCT 84 LIDS-P-1411 ARO-28988. 12-NA F/G 12714




““l .0 iz
= | [z

T
-

22 s e




-y

L SER g o o s s on o e o o

~

—

-

-

AD-A151 361

>—

« O.
O
(i)
L
—

‘ Yoda

A

:’ N

I

L

X

%

t

‘r

(]

-

e T« - =

DR
-

i
~

R A e A R M

ECLRITY

W TwTT YT e T W W e

TLASSIFICATICN OF TwiS PAGE When Dare Enters™

REPCRT DOCUMENTATION PAGE I

RE 4D INSTRUCTIONS
SEFORE CTMPLETING FORM

REDPTRT NUMAER

AR AL9YD . 3 N\H

2. GOVT ACCESSION NO 3-

$

AREC/IPIENT'S CATALCSG NUMBESR

N/ |

N |

4 T

LE ‘and Subtitie)

Gereranion
T

ard Terminat:ion >f 2in
Trees <o 1

Nonparametr:ic Multic

. 5. TyPE€ OF REPQAT & PERIOD ZOVERED

fechpieal

§ PERFCRMING ORG. REPCRY NUMBER
LIDS-P-1411

AU THORC(e)
s 3Selfan

5.X. Mitter

R PRl

3. CONTRACT OR GRANT NUMBER(®)

Grant DAAG29-84-X-0005

9. PERFORMING ORGANIZATION NAME AND aDORESS

M.L.7.
Laboratory
Zambridge,

Sor
Ma 22139

Information and Decision 3vstems

10. PRCGRAM SLEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

TYCHONTROLLING OFFICE NAME AND ADDRESS '2. REPORTY DATE
: < . . QOctober 1984
L 5. Army Research Office
. ) - 1 CF ?a
Pest Office Box 12211 } NUMBERO GES
Doa3oumrh Teigmatg Dol v A =TAqg 15
4 MONITORING AGENCY NAME & ADORESS((f difterent from Controlling Office) 1S. SECURITY TLASS. (of this report)

classified
1Sa. DEC-ASSI‘!CA TION: DCYNGRADING
SCHEDU

b

DHISTRIBUTION STATEMENT “of thie Repore)

«t

7 DISTRIBUTION STAT

EMENT ‘of the sdetract entered in Block 20,

1 ditferent frocn Report)

.
oA M
18 SUPPL_SMENMTARY NOTES
Ime view, opinions, and/cr findings contained in this report are
those of the author({s) and should not be construed as an officzal
JezartTent 2 the army position, pelicy, or decision, unlass so
eyt rh s e A e ST E Yol T ies! < 2o Ralc Bl te)

e —

in ABSTAAST oty

9 <EV WORQOS (Continue on reverse «aids 'f necessary and !dentity 5v block aumber)

A two-step pdrocedure Tor nonparametric multiclass classifier design 13
lestriped, A nulticlass recursive partitioning algorithm is given whizh
Jenerates 2 sincle binarv decision tree Zor classifying all classes. The
1270rrtim minimizes the Baves risk at each node. 3 tree termination algoritho
t» Jrven Which cptimallv terminates binarv Jdecision trees. The alcoritinm

relds “he unigue tree with fawest nodes wnich minimizes the 3ayes risk. Trae
enary 3t1on ind -“erminat:ion are pbased -n %2he training and zest samples, respectivp

* ax reverss sivfe f recwweary and ‘dentify by blocik number)

¥

Foim

[X*Jha) ’ [ 5 TE Nt AT
O 0%, MET3 coimom OF ' WOV 8515 0RSOLETE et A S3ITIED
CECLRITY L ASSIFITAT AN SF TH'S SAGE When Cats Entered)

Ve s e on oud

Ja a a s LW




R R T T B T A . i A i A dhe e L R S —_—
. ~ . L - Pt A G Sl i o SR S S

OCTOBER 1984 LIDS~-P-1411

a et MR At e mc el e

e Sl
a
—_a . -

GENERATION AND TERMINATION OF BINARY DECISION TREES

FOR NONPARAMETRIC MULTICLASS CLASSIFICATION

S. Gelfand i
c S.K. Mitter )
Department of rlectrical Engineering and Computer Science
. and
e
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
3
; o Cambridge, MA 02139
T
®
This research has been supported by the U.S. Army Research Office under
° Grant DAAG29-84-K-0005,.
[
* |
|
3 |
k A !
e T . e R _ o

A a s a



L e an o g
(2 ’

v

Abstract

A two-step procedure for nonparametric multiclass classifier design is
described. A multiclass recursive partitioning algorithm is given which
generates a single binary decision tree for classifying all classes., The
algoritbm minimizes the Bayes risk at each node, A tree termination
algorithm is given which optimally terminates binary decision trees. The
algorithm yields the unique tree with fewest nodes which minimizes the Bayes
risk. Tree generation and termination are based on the training and test

samples, respectively.
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I. Introduction

We state the aonparametric multiclass classification problem as
follows. M classes are characterized by unknown probability distribution
functions. A data sample containing labelled vectors from each of the M
classes is available., A classifier is designed based on the training sample
and evaluated with the test sample

Friedman [1] has recently iantroduced a1 2-class recursive partitioning
algorithm, motivated in part by the work o Anderson [2], Henderson and Fu
[3], and Meisel and Michalopoulos (4]. Friedman’s algorithm generates a
bindary decision tree by maximizing the Kolmogorov-Smirnov (K-S) distance
between marginal cumulative distritution functions at each node. In
practice, an estimate of the K-S distance based on a training sample is
maximized, Friedman suggests solving the M-class problem by solving M 2-
class problems. The resulting classifier has M binary decision trees.

In this note we give a multiclass recursive partitioning algorithm
which generates a single bpinary decision ti~ee for classifying all classes.
The algorithm mirimizes the 3ayes risk at each node. In practice an
estimate of the Bayes risk based on a training sample is minimized., We also
give a tree termination algorithm which optimally terminates binary decision
trees., The algorithm yields the unique tree with the fewest nodes which
minimizes the Bayes risk. In practice an estimate of the Bayes risk based
on a test sample is minimized,.

The research was originally done in 1981-82 [5]. The recent book of
Breiman et al [6] has elements in common with this paper but we believe the

approach presented here is different.




The note is organized as follows. In Section 2 we give binary decision
tree notation and cost structure for our problem. In Section 3 and 4 we

discuss tree generation and termination, respectively.

II. Notation

We shall be interested in classifiers which can be represented by
binary decision trees. For our purposes, a binary decision tree T is a
collection of nodes {Ni}i§1 with the structure shown in Fig. 2.1. The
levels of T are ordered monotonically as 0, 1,...,L-1 going from bottom to
top. The nodes of T are ordered monotonically as 1,2,....,K going from
bottom to top, and for each level from left to right. We shall find it
convenient to denote the subtree of T with root ncde N; and whose terminal
nodes are also terminal nodes of T as T(i) (see Fig. 2.1).

We associate a binary decision tree and a classifier in the following
way. For each node NieT we have at most five decision parameters: kj, a;,

s ri, and ¢y. Suppose geﬂd is to be classified. The root node Ny is

io
where the decision process begins, At Ni the kitn component of a& will be
used for discrimination, If ak1 < a; the next decision will be made at

Nsi.' If a*i 2 a; the next decision will be made at Nri' If Ny is a
terminal node then a is labelled class Cy. It is easily seen that a binary
decision tree with these decision parameters can represent a classifier
which partitions md into d-dimensional intervals, The algorithms we shall

discuss generate binary decision trees as partitioning proceeds,

*a< is the k“P coordinate of a.
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Let Hj be the hypothesis that the vector under consideration belongs to

the Jth ciass, j=1,...,M. We denote be Lj the misclassification cost for Hj

and nj the prior probability of HJ. The Bayes risk (of misclassification)

M

1S then given by Zijﬂj(l - Pr{decide Hj'Hj})°
j=1

iII. Tree Generation

In this se:tion generation of binary decision trees is discussed. An
algorithm 1s given which generates a single binary decision tree for
classifyinz all classes, The algorithm minimizes the Bayes risk at each
node, Ia practice an estimate of the Bayes risk based on a training sample
15 minixized.

We first review Friedman’s 2-class algorithm. Friedman’s algorithm is
based on a result of Stoller's [5] concerning univariate nonparametric
classification (d=1)., We assume Iymq = Iym,.

3tvller solves the following problem: find a* which minimizes the

Bayes risk based on the classifier

ala decide H1 or Hy

ala decide Hy or Hy

Let Fl(c), Fz(a) be the cumulative distribution funetions (ec.d.f.’'s) for Hy,

H, respectively, and let
D(a) = |F (a) = F,(a)] (3.1)

Stoller shows that
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a. = arg max D(a) (3.2)

(D(a®) is the Kolmogorov-Smirnov distance between F; and Fj). This
procedure can be applied recursively until all intervals in the classifier
meet a termination criterion, A terminal interval I is then assigned the

class label

¢* = arg max Pr{ael|d,} (3.3)
3=1,2 3

Friedman extends Stoller's algorithm to the multivariate case (d)2) by
solving the following problem: find x* and a‘ which minimize the Bayes risk

of the classifier

a (a decide Hl or Hz

a > a decide H2 or H1

Let Fl.k(a)' Fz’k(a) be the marginal c¢.d.f.’'s on coordinate k for Hy.Hy

respectively, and let

D (a) = |Fy (&) ~F, (a)] (3.4)

In view of (3.2) we have

.
a (k) = arg max Dk(a)

Y P > . P : o e . P S . T
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k" = arg mgx Dk(a‘(k)) (3.5)

. P
a =a (k)

As with the univariate case, Friedman’s procedure can be applied recursively
until all (d-dimensional) intervals in the c¢lassifier meet a termination
criterion, A terminal interval is then assigned class label

¢’ = arg max Pr{aeI|H

} (3.6
3=1,2 3

To apply Friedman’s algorithm to the nonparametric classification

problem we must estimate Fj,k(a) and Pr[geIlHJ}. Let gy js.ee,8g
th

S

52.1“°"92,n2 be the training sam~le vectors where 84,1 is the i“" vector

from the jth class. Suppose we have arranged the sample such that ag i ¢
k

a§'2 £ ean aj.nj . We estimate Fj,k(“) by
K
0 a < aJ'1
~ % k
= 4
Fj,k(a) ‘/nj a1 {acl @y 141
k
1 a)a
- j'nj

and Pr[geI[HJ} by the fraction of training sample vectors in class j which
land in I.

Note that Friedman’s algorithm generates a binary decision tree as
partitioning proceeds by appropriately identifying the decision parameters

of Section 2,
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Friedman extends his algorithm to the M-class case by generating M
binary decision trees, where the jth tree discriminates between the jth
class and all the other classes taken as a group., We next propose an
extension which has the advantage of generating a single binary decision
tree for classifying all classes. At the same time we relax the constraint
that all the Ljnj's are equal.

Consider the following problem: find the k.. a‘. o' and a* which

minimize the Bayes risk based on the classifier

k L

a {(a decide H s or H =
m n

*
k ) * decide H_ = H s
a > ec n® or By
Let
Rm,n,k(a) = min{lmnm(l-rm‘k(a)) + lnnnFn'k(a).

inn(l—Fn'k(a)) + lmanm,k(a)}

+ L.
JZm.n 33 (3.7)

Then it can easily be shown that
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a (m,n,k) arg min Rm,n.k(a)

x* (m,n) apg min Rm n‘M(a'(m.n.k))

»

(m.,n‘) (a‘(m,n.k‘(m.n)))

= arﬁ.%ln Rm.n.k'(m.n)
k' = k‘(m..n‘)
ot = u‘(m.,n‘.k.) (3.8)
Furthermore, if 237y = ... = Lymy the minimiratioms over Ru.n c(a) reduce

to maximizations over

Pa.n.k(® = IFy (@) - F

o, (@] (3.9

If we now replace the double maximization (3.5) in Friedman’s algorithm with
the triple minimization (3.8) we get the proposed multiclass recursive

partitioning algorithm. Of course (3.6) should be replaced by

L
¢ = arg max Ljn

Priael|H } (3.10)
3=l,...M 93 !

Otherwise the algorithms are the same. In particular the multiclass
algorithm generates a single binary decision tree as partitioning proceeds
by appropriately identifying the decision parameters of Section 2. Note

L L
that m and n are not decision parameters.

IV. Tree Termination
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In this section termination of binary decision trees is discussed. An
algorithm is given for optimally terminating a binary decision tree, The
algorithm yields the unique tree with fewest nodes which minimizes the Bayes
risk. In practice an estimate of the Bayes risk based on a test sample is
minimized.

Suppose we generate a Dbinary decision tree with the multiclass
recursive partitioning algorithm of Section 3. Partitioning can proceed
until terminal nodes only contain training sample vectors from a single
c.ass, In this case the entire training sample 1is correctly classified.
But if class distributions overlap the optimal Bayes rule should not
correctly classify the entire training sample, Thus we are led to examine
termination of binary decision trees,

Friedman introduces a termination parameter k = minimum number of
training sample vectors in a terminal node. The value of k is determined by
m:.nimizing the Bayes risk. In practice an estimate of the Bayes risk based
on a test sample is minimized. In the sequel we will refer to the binary
decision tree with terminal nodes only containing training sample vectors
from a single class as the "full®” tree, What Friedman'’s method amounts to
is minimizing the Bayes risk over a subset of the subtrees of the full tree
with the same root node. At this point the following question arises: is
there a computationally efficient method of minimizing the Bayes risk over
all subtrees of the full tree with the same root node? The answer is yes as
we shall now show.

We first state a certain combinatorial problem, Suppose we have a

binary decision tree and with each node of the tree we associate a cost. We
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define the cost of each subtree as the sum of the costs of its terminal
nodes. The problem is to find the subtree with the same root node as the
original tree which maximizes cost. More precisely, let To = (Ni}Klbe a
] _

binary decision tree with L levels and Ki nodes at level i as described in

Section 1, g; the cost associated with node Ni, and 5(T) the cost of subtree

T. Then
4
= 3 ¢
G(T) } 1,(Tg, 4.1)
=1
where
1 Ni is a terminal node of T
1.(7) =
) else
\

Now let S oDe the set of subtrees of To with the same root nocde NK' The

problem can then be stated as:

max G(T) = Max

max X li(T)gi (4.2)
Te3 TeS

I N R

i=1

Next consider the following simple algorithm. Going from first to last
level and for each level from left to right, if deleting descendents of
current node does not decrease cost, delete descendents and go to next node,

etc. In view of (4.1) the algorithm becomes:

. - W . m A a_arm e s lma el e - -
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For 1 =1,..., L-1 do:

—

Ty €T

—

For j =K +1,..., Ki do:

i-1

> Y.
If g; 2 G(T (§):

i L_ Ti(J) é-{Nj}

Define T° = T;_;. We claim that T solves (4.2).

Theorem: G(T') 2 G(T) for all TeS.
Furthermore, if G(T*) = G(T) for some TeS, T#T', then T' has fewer nodes
than T.

Proof: See Appendix.

Finally, we show that the problem of minimizing the Bayes risk over all
subtrees of the full tree with the same root node has form (4,2), Let T, be
the full tree and

g. = 2 n_ Pr{aeN,|H } i=1,...,K 4.3)
i ey cy = il ey

where cy is the class label of Ni if Ni becomes a terminal node, i.e.,

¢, = arg max {n (4.4)

D, .
Loy, w3374

where pij is the fraction of training sample vectors in class j which land

PRI

A
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in Ni‘ Then by direct computation the Bayes risk of TeS is given by

M K M
R(T) = } i, - } 1,(Dg, = 2 2y, = G(D) (4.5)
=1 t=1 j=1 |

Hence, minimizing R(T) is equivalent to maximizing G(T). 1In practice an

estimate of R(T) based on a test sample is mininized. In this case

g = i = a4y i=1,....K (4.6)

where i is the fraction of test sample vectors in class j which land in

Ni.

APPENDIX

Proof of Theorem Section IV: Let S; be th: set of subtrees of T, with
the same root node NK and which only have ncdes missing from levels i-
1,...,0 (or equivalently, every terminal node on levels i,...,L-1 is also a
terminal node of T,)., We shall say that T; is optimal over S; if the
theorem holds with T' and S replaced by Ti and Si' respectively. We show
that T; is optimal over S; for i =1,.,.,L-1. Since T. = TL—I and S = Sy .4
the theorem follows. We proceed by induction. T1 is clearly optimal over
Sl. We assume Ti is optimal over Si and want to show that Ti41 1s optimal
over S;,q. Let TeS;,; and T # T,,q. There are four cases to consider,

Suppose there exists a terminal node N-eTl+1 which is a nonterminal

J
node of T and Nj is on some level ¢ i. Construct T'eS;,y from T by

. " s A Py £ . g3 s N I Y P T - o a . &

S
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terminating T at N Since N; 1is a terminal node of T;,; it is also 2

J* J
terminal node of Ti and it follows from (4.1) and the optimality of Ti that
g5 € G(T(3)) so that G(T') £ G(T), and since T’ has fewer nodes than T, T
cannot be optimal over Sy.4.

Next, suppose there exists a terminal node NJsT which is a nonterminal
node of T,,q and Nj
augmenting T with T;,;(3) at Nj. Since T;,q(J) = Ty(j) it follows from

is on some level ¢ i. Contruct T'eS;,y from T by

(4.1) and the optimality of T; that G(T'(J)) < gy so that G(T') < G(T), and
consequently T cannot be optimal over Si+1'

Next, suppose there exists a terminal node NjeTi+1 vhich 1s a

ronterminal node of T and Nj is on level 1i+1., If T(J) = T;(J) construct

T'eS;4q from T by terminating T at Nj. Since g3 < G(T (3)) = G(T(J)) it
follows from (4.1) that G(T') < G(T), and since T’ has fewer nodes than T, T
cannot be optimal over S;.y. If T(J) # T;(J) construet T'eS;,q from T by
replacing T(J) with Ti(j). At this point we essentially are in one of the
preceding cases (with T; 4 replaced by T').

Finally, suppose there exists a terminal node NjeT which is a

nonterminal node of T,.; and Nj is on level i+l. Construct T'eS;,y from T

oy augmenting T with T;,4(J) at N Since T;,4{(J) = Ti(J) we have g; >

J'.
GIT,(J)) = G(Ty,1(J)) = G(T'(J)) and it follows from (4.1) that G(T) >

G(T’), and consequently T cannot be optimal over Si+1' QED

A A a4 oA
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