
7 AD-flifI 361 GENERATION AND TERMINATION 
OF BINARY DECISION TREES FOR i/i

NONPARANETRIC MUL--(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR INFORMATION AND D. S GELFRND ET AL.

UNCLASSIFIED OCT 84 LIDS-P-i4ii ARO-2e9Be 2Mi F.'G 12/1i



I"

fl I i [lIti ''.T
. ",.8



REPORT DOCUMENTATION PAGE BEFOR FSRT ORM
coF=F;; UMBER2. GOVT ACCE5SION NO.1 3. REC,PINS :A7AL:,G NUMBER

( 'eneration and Terminat_,on :)f Binary D-ecision jC j ik;
Trees for Nonnararetrc Multiclass Z:iass i cation'. PERFRMING ORG. REORT NMBER

____ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ ___ LIDS-P-1411
7. ^,JmOR~s)S. CONTRAC7 OR GRANT NUMBER(#)

S 3lfn Grant DAAG2 9- 84-K-0005

9. PERFORMING ORGANIZATION NAMAE AND ADDRESS 10. PROGRAM EL..EMENT.' PROJECT. TASK(
AREA & WORK UNIT NUMBERS

Labcrat )rv_ for :-nfzr-nation and Decisionr Svstems
*..9nmri:cie, MA 32'39

C:)-OIGOFMICE NAEANC DRS REPORT DATE
~)NRLLIN NAM ADDESSOctober 1984

cc S. ~Army Research Office NMBRO AS
?PC-t Office Box 122]15

4 M NITRIN AENC 1~ AM &AOOESSIIdifferent from, Controlling Office) IS. SECURITY CLASS. (of tlIe report)

4 n Unclassified
r"'e" 15e DECLASSIS:ICATION, %W~NGRAOING

SCHEDULE

!05 eJTO STATEMEN~T lot tio Report)

Aro~;e ~zr ublic release; distribution uniimited.

' )IS'rRIBuT:ON STATEMENT 101 :he .bat,.cf entered in, Block :0, It different from Report)

IA UPRPIhEMNARY NOTE3

1 ,e viw opinions, and/or f~ndings conza4tned in this report are
-_ t:ose ht:e aItnor~s) and ilo~ not lbe construed as an offic_-a.

4 D-,>arz~ent Dr O e r77,,.coz,4t'zn, oclicy, or decision, un_!-e.5 so

9 E"' BOROS (Cownue an fewer*efoe Of rOec*@srv and tde'rif, bv blocm niumber)

-LJ

8PS7 .9 _~qACT ,C'C vt1, Wr- e eM ilif Ff rrQOCe*-V amd Ideru~e by. bloeci Lnobewr)

A two-step procedure Dr nonpar-ametric multiciass classifier design. is
!es: -e.A muit_c lass recursive partitioning algoritlin is aiven whic-h
2ni;r~r',es :i sina. e btn'arv decision tree --Or classiffying all classes. The

* I ~ '~thrrimLn.imizes the Ba~;es risk it each node. A tree terminaticn ilgorithbn
'q1iefl? wrii: ch cot _-a );_, terinates b)inary decision trees. The alcoritm=

S:1 e .in,- ue tree with fewvest nodes whiz h ninimizes the Bayes risk. Tre
-~e it io--n ind ter-nlnat_,on .3re based on the rtrai ning and test samD les, respect 1-I .

v)IAMO 0~I4 EDvt" O F I 00 .3 15I OR%.OL.ETL -

S-S



OCTOBER 1984 LIDS-P-1411

GENERATION AND TERMINATION OF BINARY DECISION TREES

FOR NONPARAMETRIC MULTICLASS CLASSIFICATION

S. Gelfand

S.K. Mitter

Department of electrical Engineering and Computer Science

and

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, MA 02139

0

This research has been supported by the U.S. Army Research Office under

* Grant DAAG29-84-K-0005.



0

Abstract

A two-step procedure for nonparametric multiclass classifier design is

described. A multiclass recursive partitioning algorithm is given which

generates a single binary decision tree for classifying all classes. The

algorithm minimizes the Bayes risk at each node. A tree termination

algorithm is given which optimally terminates binary decision trees. The

algorithm yields the unique tree with fewest nodes which minimizes the Bayes

risk. Tree generation and termination are based on the training and test

samples, respectively.
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I. Introduction

We state the nonparametric multiclass classification problem as

follows. M classes are characterized by unknown probability distribution

functions. A data sample containing labelled vectors from each of the M

classes is available. A classifier is designed based on the training sample

and evaluated with the test sample

Friedman E1] has recently introduced i 2-class recursive partitioning

algorithm, motivated in part by the work o' Anderson [2], Henderson and Fu

[3]. and Meisel and Michalopoulos (4]. Friedman's algorithm generates a

bindary decision tree by maximizing the Kolmogorov-Smirnov (K-S) distance

between marginal cumulative distribution functions at each node. In

practice, an estimate of the K-S distance based on a training sample is

maximized. Friedman suggests solving the M-class problem by solving M 2-

class problems. The resulting classifier has M binary decision trees.

In this note we give a multiclass recursive partitioning algorithm

which generates a single binary decision t;ee for classifying all classes.

The algorithm minimizes the Bayes risk at each node. In practice an

estimate of the Bayes risk based on a training sample is minimized. We also

* give a tree termination algorithm which optimally terminates binary decision

trees. The algorithm yields the unique tree with the fewest nodes which

minimizes the Bayes risk. In practice an estimate of the Bayes risk based

* on a test sample is minimized.

The research was originally done in 1981-82 [51. The recent book of

Breiman et al [6] has elements in common with this paper but we believe the

approach presented here is different.
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The note is organized as follows. In Section 2 we give binary decision

tree notation and cost structure for our problem. In Section 3 and 4 we

discuss tree generation and termination, respectively.

II. Notation

We shall be interested in classifiers which can be represented by

binary decision trees. For our purposes, a binary decision tree T is a

collection of nodes (Ni i= with the structure shown in Fig. 2.1. The

levels of T are ordered monotonically as 0, 1....L-l going from bottom to

top. The nodes of T are ordered monotonically as 1,2,...,K going from

bottom to top, and for each level from left to right. We shall find it

convenient to denote the subtree of T with root ncde N, and whose terminal

nodes are also terminal nodes of T as T(i) (see Fig. 2.1).

We associate a binary decision tree and a classifier in the following

way. For each node NiST we have at most five decision parameters: ki , al,

si, rip and ci. Suppose cLad is to be classified. The root node NK is

where the decision process begins. At Ni the ki component of a will be

used for discrimination. If aki < ai the next decision will be made at

Nsi .* If aki > a the next decision will be made at Nri. If Ni is a

terminal node then a is labelled class ci. It is easily seen that a binary

decision tree with these decision parameters can represent a classifier

which partitions [d into d-dimensional intervals. The algorithms we shall

discuss generate binary decision trees as partitioning proceeds.

* "aK is the k= coordinate of a.

S
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Let H be the hypothesis that the vector under consideration belongs to

the jth class, J=1,...,M. We denote be Z the misclassification cost for H

and nj the prior probability of Hi. The Bayes risk (of misclassification)
M

is then given by [2 r(1 - Pr[decide H jH1 ).
j=1

I. Tree Generation

In this se-tion generation of binary decision trees is discussed. An

algorithm is given which generates a single binary decision tree for

classifinj all classes. The algorithm minimizes the Bayes risk at each

node. In practice an estimate of the Bayes risk based on a training sample

is minixized.

We first review Friedman's 2-class algorithm. Friedman's algorithm is

based on a result of Stoller's [5) concerning univariate nonparametric

classification (d=1). We assume 2
1 ni ='-2"

3toller solves the following problem: find a which minimizes the

Bayes risk based on the classifier

a<a* decide H1 or H2

* adecide H2 or H1

Let Fl(a), F2 (a) be the cumulative distribution functions (c.d.f.'s) for Hi.

*2 respectively, and let

D(a = IF1 (a) F2 c )( (3.1)

Stoller shows that



a =arg max D(a) (3.2)

(D(a ) is the Kolmogorov-Smirnov distance between F1 and F2 ). Th.Ls

procedure can be applied recursively until all intervals in the classifier

meet a termination criterion. A terminal interval I is then assigned the

class label

c= arg max Pr{aellH (3.3)J=1,2

Friedman extends Stoller's algorithm to the multivariate case (d>2) by

solving the following problem: find k* and a* which minimize the Bayes risk

of the classifier

Sk(a decide H or H2

1 2•

a k >a decide H2 or H1

Let Flk(a), F2 ,k(a) be the marginal c.d.f.'s on coordinate k for HloH 2

respectively, and let

Dk(a) = IF 1,k(a) - F2,k(a) l (3.4)

In view of (3.2) we have

a() arg max D (a)
a k
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arg mix Dk(a (k)) (3.5)

C =Q (k)

As with the univariate case, Friedman's procedure can be applied recursively

until all (d-dimensional) intervals in the classifier meet a termination

criterion. A terminal interval is then assigned class label

c = arg max PraIIH 1 (3.6)
J=1,2

To apply Friedman's algorithm to the nonparametric classification

problem we must estimate F ,k(a) and PrfaslIHj). Let

11-,a ..... -22,n2 be the training sarile vectors where oj i is the ith vector

from the j th class. Suppose we have arranged the sample such that ak

a32~ "k, We estimate Fj (a) by2 i/ja :n;

0a < aj,

Fj.(a) = in a < a < a

0 
>a J,nj

and ?raaIIHjH by the fraction of training sample vectors in class j which

land in 1.

Note that Friedman's algorithm generates a binary decision tree as

partitioning proceeds by appropriately identifying the decision parameters

of Section 2.
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Friedman extends his algorithm to the M-class case by generating M

binary decision trees, where the ith tree discriminates between the jth

class and all the other classes taken as a group. We next propose an

extension which has the advantage of generating a single binary decision

tree for classifying all classes. At the same time we relax the constraint

that all the Zin-'s are equal.

Consider the following problem: find the k, a*, m and n which

minimize the Bayes risk based on the classifier

k

Q < decide H or H
m n

k
a >a decide H or H

Let

R (a) = min(Z n (l-F (a)) + Z it F (a),
m n,k m m ink n nn,k

Zn(l-Fn,k (a)) + ZmF ()m,k )

+Ira Zjnj(3.7)

j~,n n

Then it can easily be shown that



I" a (mn,) = arg min Rmk(a)

k(m,n) = ag min Rm, n,k(*(m,n~k))

a
(in' n*) = ar , mn Rm~n~k(nn)(a(nn~k(mn)))

( = a*(mn*l )

a = *(mn*,k*) (3.8)

* Furthermore, if Z1, 1 = .. = ZMrM the miniminatzons over Rmnn(a) reduce

to maximizations over

Dfm.nk() = IF mk(a) - F nk(W)l (3.9)

If we now replace the double maximization (3.5) in Friedman's algoritha. with

the triple minimization (3.8) we get the proposed multiclass recursive

partitioning algorithm. Of course (3.6) should be replaced by

c= arg max Z . Pr(azIIH. (3.10)
j=l .... M J

Otherwise the algorithms are the same. In particular the multiclass

algorithm generates a single binary decision tree as partitioning proceeds

by appropriately identifying the decision parameters of Section 2. Note
* S

that m* and n are not decision parameters.

rV. Tree Termination
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In this section termination of binary decision trees is discussed. An

algorithm is given for optimally terminating a binary decision tree. The

algorithm yields the unique tree with fewest nodes which minimizes the Bayes

risk. In practice an estimate of the Bayes risk based on a test sample is

mrinimized.

Suppose we generate a binary decision tree with the multiclass

recursive partitioning algorithm of Section 3. Partitioning can proceed

until terminal nodes only contain training sample vectors from a single

c .ass. In this case the entire training sample is correctly classified.

But if class distributions overlap the optimal Bayes rule should not

correctly classify the entire training sample. Thus we are led to examine

termination of binary decision trees.

Friedman introduces a termination parameter k = minimum number of

training sample vectors in a terminal node. The value of k is determined by

m.nimizing the Bayes risk. In practice an estimate of the Bayes risk based

on a test sample is minimized. In the sequel we will refer to the binary

decision tree with terminal nodes only containing training sample vectors

from a single class as the "full* tree. What Friedman's method amounts to

is minimizing the Bayes risk over a subset of the subtrees of the full tree

with the same root node. At this point the following question arises: is

there a computationally efficient method of minimizing the Bayes risk over

all subtrees of the full tree with the same root node? The answer is yes as

we shall now show.

We first state a certain combinatorial problem. Suppose we have a

binary decision tree and with each node of the tree we associate a cost. We



define the cost of each subtree as the sum of the costs of its terminal

nodes. The problem is to find the subtree with the same root node as the

original tree which maximizes cost. More precisely, let T0 = (NiJK be a0 J=l

binary decision tree with L levels and Ki nodes at level i as described in

Section 1, gi the cost associated with node Ni , and I(T) the cost of subtree

T. Then

4-61 K

G(T) = 1 (T)g f4.1)
i i I

1=1

where

1 N. ts a terminal node of T
(1TI

else

01ow let S :e the set of subtrees of To with the same root node N,<. The

problem can then be stated as:

K

max G(T) = Max 1 (T)g (4.2)
TS TeS .

0

!Iext consider the following simple algorithm. Going from first to last

level and for each level from left to right, if deleting descendents of

current node does nor decrease cost, delete descendents and go to next node,

etc. In view of (4.1) the algorithm becomes:
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For i 1..., L-l do:

T i  

-T 
i

For j = Ki 1  
+1 ... .Ki do:

If g G(T

L L LT (j) (N

Define T* = TL_ 1 . We claim that T* solves (4.2).

Theorem: G(T') > G(T) for all TeS.

Furthermore, if G(T*) = G(T) for some TeS, T#T, then T* has fewer nodes

than T.

Proof: See Appendix.

Finally, we show that the problem of minimizing the Bayes risk over all

subtrees of the full tree with the same root node has form (4.2). Let To be

the full tree and

gi Z Zci iPr faNi IH i i=1,...,K 
(4.3)

where c, is the class label of Ni if Ni becomes a terminal node, i.e.,

=arg max Zjpi (4.4)ci J=1 , .. ,M

where pij is the fraction of training sample vectors in class j which land

r I'. J " " . .. ... .-' --
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in -.'1 Then by direct computation the Bayes risk of T6S is given by

M K M

1AT kffI g= G( (4,5)

j=1 i=1 j=1

Hence, minimizing R(T) is equivalent to maximizing G(T). In practice an

estimate of R(T) based on a test sample is mininized. In this case

g =  Ci= I ..... iK (4.6)

where qij is the fraction of test sample vectors in class j which land in

N•

APPENDIX

Proof of Theorem Section IV: Let Si be the set of subtrees of To with

the same root node NK and which only have ncdes Missing from levels i-

1,...,0 (or equivalently, every terminal node on levels i....L-1 is also a

terminal node of TO). We shall say that Ti is optimal over Si if the

theorem holds with T* and S replaced by Ti and Si , respectively. We show

that Ti is optimal over Si for i = 1 ,L-1 Since T* TL,1 and S

the theorem follows. We proceed by induction. T1 is clearly optimal over

SI  We assume Ti is optimal over Si and want to show that Ti+j is optimal

over S Let T&Si ! and T A Ti+ I . There are four cases to consider.

Suppose there exists a terminal node NjeT+, which is a nonterminal

node of T and Nj is on some level < i. Construct T'eSi+i from T by
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terminating T at N. Since N. is a terminal node of Ti+ 1 it is also a

terminal node of Ti and it follows from (4.1) and the optimality of Ti that

gj G(T(j)) so that G(T') < G(T) and since T' has fewer nodes than T, T

cannot be optimal over Si+1 .

Next, suppose there exists a terminal node NjaT which is a nonterminal

node of Ti+i and N. is on some level < i. Contruct T'eSi+ 1 from T by

augmenting T with Ti+l(J) at Nj. Since Ti+(J) = Ti(j) it follows from

(4.1) and the optimality of Ti that G(T'(j)) < gj so that G(T') < G(T), and

consequently T cannot be optimal over Si+, .

Next, suppose there exists a terminal node NjeTi 1 which is a

nonterminal node of T and N. is on level i+1. if T(j) = Ti(j) construct

T'eS,+ 1 from T by terminating T at N . Since gj G(Ti(J)) = G(T(j)) it

follows from (4.1) that G(T') < G(T), and since T' has fewer nodes than T. T

cannot be optimal over Si+1 . If T(j) # Ti(j) construct T'eSi+ 1 from T by

replacing T(J) with Ti(J). At this point we essentially are in one of the

preceding cases (with Tij replaced by T').

Finally, suppose there exists a terminal node NjeT which is a

nonterminal node of T4+1 and N. is on level i+1. Construct T'cSi+i from T

by augmenting T with Ti+1 (J) at N. Since Ti+l(J) = TiQ) we have gj >

G(Ti(j)) = G(Ti+I(j)) = G(T'(j)) and it follows from (4.1) that G(T) >

G(T'), and consequently T cannot be optimal over Si+1 . QED
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