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ABSTRACT
r,'

...A speech analysis system based on a combination of physiological and

psychoacoustic results ,,has been developed. The system contains a

nonuniform Filter/Detector bank. A new relationship between

Filter/Detectors and the Short-Time Fourier Transform magnitude is

derived, and a generalized version of the Short-Time Fourier Transform

magnitude is used to implement the analysis system. The new relationship

is also applied to a discussion of channel vocoders, spectrograms, the

sliding Discrete Fourier Transform, average power spectrum estimation,

and nonuniform bandwidth analysis. Next, a new synthesis approach is

used to reconstruct signals from the magnitude data produced by the

nonuniform analysis. Apart from an overall sign factor, the

analysis/synthesis system achieves exact reconstruction in the absence of

data modification. The ability of the system to reconstruct signals from

modified data is also demonstrated. Suggestions for further research,

including data reduction and Atitomatic Speech Recognition applications,

are given. , , .J,
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Information exchange between human beings often takes place in the

form of audio communication, or talking and listening. This form of

- .communication is convenient and provides a rapid means of information

transfer. Audio communication between humans and computers is also

useful. Computer voice synthesis can replace warning lights and other

displays, and Automatic Speech Recognition (ASR) devices can act as

keyboard replacements.

,,-'-,, ,, ., .." ....-...-....-.-....-......-................ ,...............................,....".-.......,...-, .-
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Computer speech input/output has several advantages over other forms

of man-to-machine communication. Since audio communication devices

occupy minimal physical volume they can be used where large displays and

keyboards are unacceptable. Speech allows "hands-off" communication of

data as required for parcel sorting or wheelchair control. In addition,

speech can provide convenient access to computer information via the

telephone.

Humans have a speech recognition ability which is superior to that

of existing ASR machines. Disregarding effects such as visual cues and

contextual information, humans make speech recognition judgements based

on information from the auditory system. Therefore, if results from

perceptual and physiological studies of the auditory system are applied,

it may be possible to design improved ASR machines.

When applying auditory system results to the design of ASR machines

it is useful to understand what information, if any, is lost in the first

analysis stage (or "front-end") of the system. Inappropriate front-end

information loss can degrade overall ASR system performance. For

example, if a poorly designed front-end produces the same output in

response to two perceptually different input words, subsequent processing

stages must rely on contextual information rather than the analyzed

acoustic waveform to make a correct identification. It may therefore be

possible to improve system performance if such information loss is

avoided.

2
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The problem of front-end information loss can be discovered when a

synthesis technique is used to test the analyzed speech data for suitable

information content. Furthermore, analyzed data may be subjected to a

variety of transformations in order to reduce the data rate or

investigate various auditory processes. Effects of such transformations

may be examined by application of appropriate inverse transformations and

signal synthesis from the processed data.

1.2 HISTORICAL DEVELOPMENT OF THE PROBLEM

The Sound Spectrograph is a widely used tool for creating speech

spectrum displays, or spectrograms. A number of researchers have devised

machines for reconstructing speech from spectrograms (Flanagan [Ii),

thereby creating a speech analysis/synthesis system. The intelligible

monotone speech produced by such machines has been used in extensive

perceptual studies. The Sound Spectrograph itself provides an audio

analysis which is uniform with respect to frequency, and thus does not

model human perception. Development of an auditory spectrogram-like

representation is a current research goal (Carlson and Granstrom [2]).

3,4°
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In a related area, spectrogram-like representations can be generated

from the Short-Time Fourier Transform (STFT) magnitude (Rabiner and

Schafer [31). Since signals can be reconstructed from the STFT magnitude

(Altes 141; Nawab, Quatieri, and Lim [51, [61), a speech

analysis/synthesis system can be developed using STFT techniques. As

with spectrograms, however, this approach provides an analysis which is

uniform with respect to frequency. The STFT can be modified for

nonuniform analysis (Gambardella [7]; Youngberg and Boll [81), but the

corresponding synthesis techniques reported in the literature require

both magnitude and phase of the modified STFT to perform signal

reconstruction. Since available magnitude-only reconstruction techniques

(Nawab, Quatieri, and Lim [91) use autocorrelation functions rather than

performing reconstruction directly from spectral values, such techniques

cannot be modified for nonuniform analysis/synthesis. Furthermore,

available approaches do not generally achieve exact signal reconstruction

in the absence of data modification (Griffin and Lim [101). Exact

reconstruction is a desirable feature for algorithmic verification

purposes.

4



1.3 THE SCOPE OF THIS REPORT

This report presents a speech analysis/synthesis system based on

perception. Physiological and psychoacoustic results suggest that a

nonuniform bank of Filter/Detector (F/D) subsystems can be used in the

speech analysis system, as shown in Chapter 2. A new relationship

between F/D subsystems and the STFT magnitude (or, equivalently, the STFT

magnitude squared) is described, and a generalized version of the STFT

magnitude is used to implement the desired F/D bank. A new synthesis

approach capable of reconstructing signals from the generalized STFT

magnitude is described in Chapter 3. Examples of results produced by the

analysis/synthesis system are presented in Chapter 4. Apart from an

overall sign factor, the system achieves exact reconstruction in the

absence of data modification. The ability of the system to reconstruct

signals from modified data is also demonstrated. A summary is given in

Chapter 5, along with suggestions for further research. Appendix A

presents standard definitions for reference purposes. Prerequisite F/D

theory, which is used throughout the report, is presented in Appendix B.

Several approaches to computation of the generalized STFT magnitude are

described in Appendix C. Appendix D applies the new relationship between

F/D subsystems and the STFT magnitude to a discussion of channel

vocoders, spectrograms, the sliding Discrete Fourier Transform, average

power spectrum estimation, and nonuniform bandwidth analysis.

5



CHAPTER 2

SPEECH ANALYSIS SYSTEM

2. INTRODUCTION

In tnis chapter, a simplified model of the (monaural; human

peripheral auditorv, system is developed fror. z combination of

phy-siologicai and psychoacoustic data. Binauiral effects will not be

:iscussed, although such effects may be important for Aut-matiz Speech

Recognition applications in noisy environments (Lyon Lil ). 2.t generalized

-'e!o' of tne S'<r'-Ttme Fourier Trarsform magnittd- scuaree i- ised to

COL;v]ted, and siLmur s :.iC, rate -ssies ar- i Sc S eC,

4-L - - .2 C . t



2.2 A SIMPLIFIED AUDITORY MODEL BASED ON PHYSIOLOGICAL RESULTS

Fig. 2.1 is a diagram of the human peripheral auditory system

showing the outer, middle, and inner ear structures (Flanagan [I]). The

drawing is not to scale, and some structures are enlarged for

illustrative purposes. In the auditory system, sounds entering the outer

ear travel through the middle ear and generate pressures in the inner ear

fluids. The cochlea, a structure in the inner ear, contains the basilar

membrane which functions as a filter bank. Basilar membrane motion

causes hair cells in the organ of Corti to produce firings on the

auditory nerve, which contains approximately 30,000 fibers. A number of

researchers have studied firing patterns by inserting microelectrodes

into the auditory nerve fibers of anesthetized animals (Kiang [12];

Frishkopf 1131; Katsuki, Suga, and Kanno [141). Such studies indicate

that the peripheral auditory system can be roughly modeled as a

Filter/Detector (F/D) bank, and model parameters can be derived from

physiological data.

Fig. 2.2 presents a F/D subsystem of the type often used in auditory

models (eg., see Siebert [151). The input is analogous to pressure at

the eardrum, and the output simulates various firing pattern features

which will be described later in this section. For simplicity, the

effects of spontaneous nerve firing activity have been omitted from the

model. The F/D subsystem of Fig. 2.2 consists of a bandpass filter,

memoryless nonlinearity, and lowpass smoothing filter (see Section B.2

for a detailed description of the various F/D subsystem components). The

bandpass filter impulse response is a lowpass window function h(t)

modulated by a sinusoid of frequency Qc . The window function has

8
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X(t) ()

INPUT h(t-T)sin[Qc(t-2)] OUTPUT

Figure 2.2: F/D Subsystem for the Simplified Auditory Model

bandwidth 9h, yielding a bandpass filter bandwidth of 2S h . The window

function is of the form

h(t) = 8t2e-at, O<t

- 0, otherwise, (2.1)

where a and 8 are positive real constants. This window function, which

is derived from basilar membrane models (Flanagan [1j), will be discussed

further in Section 2.4.5. The window function of Equation 2.1 has been

chosen for convenience, and the theory presented in this chapter is

basically unchanged when other window functions are used instead. For

example, Bessel filters (Chu [161) can be used to obtain a better match

between bandpass filter characteristics and the neural frequency response

characteristics described by tuning curves (Kiang, Sachs, and Peake

[17]). A fixed delay, t, is included in the bandpass filter. The

memoryless nonlinearity is approximately modeled as a half wave square

law device (Siebert [18]), although some researchers have suggested use

of a half wave piecewise linear device (Schroeder [191). The smoothing

filter, which has impulse response hs(t), acts as an envelope detector at

high frequencies (jc>2rx4000 radians per second) but follows detdils of

the rectified waveform at low frequencies.

10
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Appropriate model parameters can be obtained from an examination of

physiological measurement techniques and the resulting physiological

lata. For example, the response of a nerve fiber to acoustic impulses, or

clicks, is often described by a poststimulus-time (PST) histogram. A

stimulus is repeated a large number of times, and the PST histogram

depicts the density of firings as a function of time following the

stimulus. Thus, a PST histogram indicates the likelihood that a

particular nerve will fire at a given time following the stimulus. Firing

patterns of individual nerves are not similar in appearance to a PST

histogram. it is assumed, however, that firings from a large population

of similar nerves could be combined to produce a deterministic pattern

approximating a PST histogram.

A PST histogram is shown in Fig. 2.3a for rarefaction clicks, and in

-i4 . 2.3b fr condensation clicks. The experimental animal was a cat,

Lc l- level was -70dB re 100 volt input to the condenser earphone,

a:I -I, rferve fiber was maximally responsive at a frequency of 1.67 KHz

. . * Fiz. 2.4 presents eighteen further examples of PST

-u3:-grams cr various characteristic frequencies from a single cat. The

.< level for Fig. Z.4 was -50dB. Note the loss of timing details for

i: ar ter ~Ftic frequencies.
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Figure 2.3: PST Histogram Data and Corresponding Model Results
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Figure 2.4: PST Histograms for Various Characteristic Frequencies
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When the input to the F/D subsystem of Fig. 2.2 is an impulse, model

parameters can be chosen so that the output mimics a PST histogram over a

limited range of intensities. As a specific e~ample, parameters are

chosen so that the PST histograms of Figs. 2.3a and 2.3b are simulated.

From Figs. 2.3a and 2.3b it can be seen that the delay is T=.0024 second

and the characteristic frequency is Qc 2 x16 70 radians per second. Since

the characteristic frequency is low enough so that timing details are

preserved, the smoothing filter has no effect and is eliminated by

choosing hs(t)' (t). Use of a=25 0(J sec - I ard 0=9xlO7 sec results in a

reasonable match to the data. The F/iD output, v(t), is shown in Fig.

2.3c for an input x(t)=--(t), and in Fig. 2.3d for an input x(t)=6(t).

Model parameters can be chosen to mimic many features of auditory

nerve patterns for clicks and steady sine waves over limited intensity

ranges (Siebert [151). Agreement over wider intensity ranges, and for

stimuli such as tone bursts and noise, can be obtained by inserting an

Automatic Gain Control (AGC) at the bandpass filter output. Recent

research (Smith and Zwislocki [201; Smith [21]; Harris and Dallos [221)

suggests use of a short-term adaptation function rather than an AGC. In

any case, such improvements will not be considered here.

The PST histogram envelope, which represents a short-term average

firing rate, is often a function of interest (Schroeder 119]). If the

lowpass smoothing filter bandwidth as is chosen such that 2ah<as< c-2at,

then the F/D subsystem impulse response mimics the PST histogram envelope

rather than the detailed PST histogram (see Section B.3.6). Under these

conaitions the F/D output is proportional to - - , ad Fig. .5 snows

tfll runc.tor sripertmpo3ed jn cue 3imulated -57 0.; Luri 2i ri;..

U

I-
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In general, it can be shown that the envelope of a half wave square

law device output is proportional to the envelope of a square law device

output (see section B.2.2). Thus, if the smoothing filter bandwidth is

chosen so that the output follows the PST histogram envelope, then the

half wave square law device can be replaced by a square law device. It

will be shown in Section 2.4 that the resulting F/D subsystem can be

implemented by a generalized form of the Short-Time Fourier Transform

(STFT) magnitude squared. Therefore, a STFT magnitude squared approach

can be used to roughly simulate PST histogram envelope functions at low

frequencies (sc<2x 4 000 radians per second), and PST histograms at high

frequencies. A simplified auditory model based on short-term average

firing rates is thus implemented using STFT techniques.

The model described in this section does not attempt to account for

all known aspects and limitations of the auditory system. The exact

manner in which signals are encoded by the auditory system is a current

research topic, and several theories have recently been developed (see

for example Sachs and Young [231, [241; Delgutte and Kiang [251).

Instead, the model demonstrates an approximate relationship between

certain physiological results and F/D or STFT magnitude analysis

techniques, and shows how standard analysis techniques must be modified

for auditory modeling purposes. Although the auditory model presented in

this section is crude, it will be shown in Chapter 3 that no important

information is lost by such an approach since signals can be synthesized

from the simplified auditory model outputs.

16
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2.3 A SIMPLIFIED AUDITORY MODEL INCORPORATING PERCEPTUAL RESULTS

Although auditory model parameters can be derived from physiological

data, there is no guarantee that the resulting model will simulate human

perception. Recall that physiological data is generally obtained from

experimental animals rather than humans. Furthermore, since available

data mainly concerns the peripheral auditory system, effects of higher

processing levels are not included in models based on such data alone.

In order to develop a speech analysis system, it is desirable to account

for at least some known aspects of human auditory perception.

Supplementary information is therefore required for the determination of

appropriate auditory model parameters.

The field of psychoacoustics provides an alternative means of

investigating the auditory syste.i. Listening experiments are performed

on live human subjects, and the results indicate functional behavior of

the complete auditory system. One useful psychoacoustic result is the

concept of a critical band. A critical band has been defined (Scharf

126]) as the bandwidth at which subjective responses change abruptly.

For example, assume that a listener is subjected to a bandlimited noise

stimulus. The bandwidth of the stimulus is varied but a constant sound

pressure level is maintained. As long as the bandwidth of the noise is

less than a critical band, perceived loudness of the noise remains

constant. When the bandwidth of the noise increases beyond a critical

band, perceived loudness of the noise begins to increase. Since similar

critical bands are encountered in a variety of different perceptual

experiments, critical bands are often used to describe the filtering

process assumed to take place within the auditory system.

17
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A model of the human auditory system based on perception can be

constructed by combining physiological and psychoacoustic results. The

structure of the model is determined from physiology, as discussed in

Section 2.2. Empirical critical bandwidth data from humans, rather than

physiological tuning curve or PST histogram data from animals, is then

used to determine the bandpass filter center frequencies and bandwidths.

Table 2.1 presents the necessary parameters for design of a critical

bandwidth filter bank (Scharf [261). Note that the critical bandwidth

can be expressed as a continuous function of center frequency by

interpolating the data of Table 2.1. Fifteen filters are chosen to

adequately cover the 200-3675 Hz frequency range. The filters have

nonuniform center frequency spacing, and bandwidth which increases with

center frequency. The filters are roughly constant bandwidth

(approximately 110 Hz) for frequencies below 700 Hz, and constant Q

(center frequency to bandwidth ratio of approximately 6.4) above 700 Hz.

Although recent estimates of auditory filter shape suggest use of

different values below 500 Hz (Moore and Glasberg [27]), the data of

Scharf will be used to design this speech analysis system.

K 1
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TABLE 2.1

CRITICAL BANDWIDTH FILTER BANK PARAMETERS

Filter Number (k) Center Frequency (Hz) Critical Bandwidth (Hz)

1 250 100

2 350 100

3 450 110

4 570 120

5 700 140

6 840 150

7 1000 160

8 1170 190

9 1370 210

10 1600 240

11 1850 280

12 2150 320

13 2500 380

414 2900 450

15 3400 550
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2.4 CRITICAL BANDWIDTH FILTER/DETECTOR BANK IMPLEMENTATION

This section describes implementation of a critical bandwidth

Filter/Detector (F/D) bank, which will be employed as part of the speech

analysis system. First, a new relationship between F/D subsystems and

the continuous-time Short-Time Fourier Transform (STFT) magnitude squared

is described. The new relationship demonstrates that a specific type of

F/D subsystem can be implemented via the STFT magnitude squared. Next,

the discrete-time case is described and then generalized to allow

implementation of a critical bandwidth F/D bank. Finally, the

specifications given in Sections 2.2 and 2.3 are used to design the

desired F/D bank via STFT techniques.

2.4.1 CONTINUOUS-TIME SHORT-TIME FOURIER TRANSFORM DEFINITION

The STFT is a widely used approach to time-dependent frequency

analysis. For the continuous-time case, the STFT evaluated at some fixed

frequency S2c is defined as (Flanagan [11):

Xt(Jc) Q fd x(T)h(t-T)e dt. (2.2)

20
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Note that if h(t)=l for all t, the STFT becomes the continuous-time

Fourier transform described in Appendix A. A block diagram for STFT

computation, which expresses the STFT in terms of linear filtering

operations, is shown in Fig. 2.6a. This interpretation indicates that

the STFT, viewed as a function of time at the fixed frequency Qc , is a

lowpass complex function bandlimited to the window function bandwidth.

An equivalent STFT definition is:

xt(Ju) = e fx(t-r )h(t )e dT (2.3)

The corresponding block diagram is shown in Fig. 2.6b. In this approach,

a complex modulation signal is used to downconvert the bandpass filter

output into a lowpass function.

j~ct
It follows from Equation 2.3 that the imaginary part of e Xt(joic)

is the output of a bandpass filter which has input x(t) and impulse

response h(t)sin(%ct). Thus, the STFT could be used to implement the

bandpass filter portion of the F/D subsystem shown in Fig. 2.2. This

approach, however, will not be pursued.

The methods for STFT computation shown in Fig. 2.6 employ a local

oscillator (Taub and Schilling [28]). Thus, the STFT is different from a

detection process which uses a F/D. It will be shown in Section 2.4.2

that the STFT magnitude squared, rather than the STFT, corresponds to a

detection process using a F/D.

4
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X~t x (t) t) xt (jQ e )

11t
e

(a) Modulator followed by Lowpass Filter

Jfct

x(t) - h(t)e t SIx(JC )

-j ct
e

(b) Bandpass Filter followed by Modulator

Figure 2.6: Linear Filtering Interpretation of the STFT
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2.4.2 CONTINUOUS-TIME F/D IMPLEMENTATION USING STFT MAGNITUDE SQUARED

F/D subsystems have long been used as a means of approximating the

STFT magnitude squared. Early work by Fano [29] described a relationship

between F/D subsystems and the STFT magnitude squared for special window

functions. Schroeder and Atal 1301 extended this work to include

-* arbitrary window functions, and the results are discussed by Flanagan [i

and Gambardella [7]. However, these authors did not characterize basic

F/D parameters such as lowpass smoothing filter bandwidth. Flanagan [11

discusses a relationship, valid only for certain signals under

restrictive conditions, which links the STFT magnitude with speech

spectrograms (see Section D.3). Flanagan also discusses a relationship

between long-term average F/D outputs and an averaged version of the STFT

magnitude squared.

In tnis section, a new relationship between F/D subsystems and the

STFT magnitude squared is described. The new relationship is more

precise than those previously reported in the literature, and

demonstrates the equivalence between the STFT magnitude squared and a

specific type of F/D subsystem.

2
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2.4.2.1 PLAUSIBILITY ARGUMENT

A system for computing the STFT magnitude squared is shown in Fig.

2.7a. From this system and the modulation property of Fourier transforms

(described in Appendix A), it is easily seen that IXt(joc)1 2 is a lowpass

real function of time which is bandlimited to twice the window function

bandwidth.

An equivalent system for computing the STFT magnitude squared is

shown in Fig. 2.7b. In this figure, the output of each square law device

consists of a lowpass function and a high frequency bandpass function

(see Section B.3.1). The high frequency bandpass functions cancel out in

the adder, while the lowpass functions combine to form IXt(j'c)I2.

The fact that only lowpass functions are retained by the STFT

magnitude squared suggests that a similar result could be produced by the

F/D subsystem of Fig. 2.7c. Details of this F/D will be described in

Section 2.4.2.2. In Fig. 2.7c, the high frequency components at the

square law device output are eliminated by linear filtering rather than

cancellation. Thus, the STFT magnitude squared and F/D outputs will

generally be similar but not identical.

24
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2.4.2.2 PROOF OF FID AND STFT MAGNITUDE SQUARED EQUIVALENCE

The F/D subsystem shown in Fig. 2.7c consists of a Linear

Time-Invariant (LTI) bandpass filter, square law device with

multiplicative constant, and LTI smoothing filter. The impulse response

of the bandpass filter contains an arbitrary constant parameter 0. If

0- r/2 for example, the bandpass filter impulse response is h(t)sin(Qct).

Nomenclature for the signals in Fig. 2.7c follows that of the general F/D

theory presented in Appendix B.

Let the window function h(t) be the impulse response of an ideal

lowpass filter with bandwidth Qh:

h(t) = [sin(ilht)J/rt. (2.4)

The output of the bandpass filter in Fig. 2.7c is:

y(t) = x(t)*[h(c)cos(ct+O)J

=f x(-r)h(t-T)cos(&Ict-QcT+O)dT

f(t)cos(jct) + g(t)sin(ict), (2.5)

where

f(t) [x(t)cos(jjct-O )I*h(t) (2.6)

and

g(t) [x(t)sin(Qct-)J*h(t) (2.7)

"I2
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are lowpass functions. The square law device output is:

2w,(t) - [f2(t)+g 2(t)j

+ [cos(2Sct)1ff2(t)-g 2 (t)I + 2jsin(2Sct)1f(t)g(t). (2.8)

Since f(t) and g(t) are lowpass bandlimited to the frequency domain

region II<Qh. the function f2(t)+g 2(t) is lowpass bandlimited to

I lI<20h. The remaining components of Equation 2.8 are high frequency

bandpass signals limited to the region 2Qc-2h<1Qj<2Qc+2Sh. Let the

smoothing filter with impulse response hsl(t) be an ideal lowpass filter

having bandwidth i1sl:

hsl(t) - Isin(i1s 1 t)/wtj. (2.9)

Also, let 2nh sl<Mc-2h- It follows that 2ilh<Ac. The F/D output is

2v0 (t) - f2(t) + g2(t), (2.10)

which is positive even though the impulse response of the smoothing

filter is not positive for all t. Since the signals x(t) and h(t) are

real, it follows from Equations 2.6, 2.7, and 2.10 that

2v0(t) { i[x(t)cos(O-Qct)J*h(t)1 2 + {[x(t)sin(e-Qct)j*h(t)} 2

.( J(0ct)

-1I1x(t)e I*h(t)12

n Ixt(Jgc)1 2, (2.11)
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where Xt(JQ C ) is the STFT evaluated at a fixed frequency ac. Thus, when

ideal lowpass filter functions are used for h(t) and hs1 (t), the STFT

magnitude squared is exactly the same as the F/D subsystem output of Fig.

2.7c. The F/D subsystem of Fig. 2.7c can therefore be used to measure the

STFT magnitude squared, or the STFT magnitude squared can be used to

implement this F/D subsystem. STFT magnitude squared (and therefore STFT

magnitude) analysis of noise, impulse, sinusoid, and sinusoidal pair

signals follows directly from the examples of Section B.3. Note that the

parameter e does not appear in the final result and has no effect on the

F/D output.

When the window function h(t) is the impulse response of a

realizable non-ideal lowpass filter, the F/D subsystem of Fig. 2.7c is

not necessarily equivalent to the STFT magnitude squared (although

agreement is generally quite good). For non-ideal lowpass filter window

functions, the lowpass and high frequency bandpass components of Equation

2.8 overlap in the frequency domain and cannot be separated by any LTI

smoothing filter. Thus, although Equation 2.8 correctly describes the

smoothing filter input, Equation 2.10 becomes an approximate description

of the smoothing filter output. Under these conditions the F/D output is

approximately, but not exactly, the same as the STFT magnitude squared.

It should be noted that many other window function and smoothing

filter combinations exist which yield a F/D output identical to the STFT

magnitude squared. As a simple example, let the window function be an

impulse, h(t)-6(t). If the smoothing filter has impulse response

hs1 (t)6(t)/[2(cos e)2], cos 0*0, then both the F/D subsystem and STFT

magnitude squared produce the result x2(t).

28

.0 -.. ' .-.- ' . , . . " " " " ." " - - " • . -" . " " .' ' '. . " "" . - ." " ." ' ' " ' " " '" " .' -.- ..'



-~~ - Z -. T -. . . .

2.4.2.3 DISCUSSION

In Section 2.4.2.2 it was shown that the STFT magnitude squared can

be used to implement a F/D subsystem of the type shown in Fig. 2.7c. The

fixed STFT analysis frequency, ac, determines the center frequency of the

bandpass filter in the F/D subsystem. Let ih denote the one-sided main

lobe bandwidth (see Section B.2.1) of any lowpass window function h(t).

As long as the bandpass filter has a center frequency which is greater

than its bandwidth, ie. 2oh<Qc, a lowpass smoothing filter operation is

effectively implemented by the STFT magnitude squared computation. The

effective smoothing filter can be considered to have the same bandwidth

as the bandpass filter, ie. 2Qh . The window function thus determines the

bandwidth of both the bandpass filter and the lowpass smoothing filter.

There are many advantages to implementing a F/D via the STFT

magnitude squared. The STFT is widely used, so literature and computer

programs are readily available. Since the magnitude squared computation

automatically implements an effective smoothing filter, results may be

obtained more efficiently than if a direct F/D implementation is used.

Since there are no delay elements between the bandpass filter outputs and

the adder output of Fig. 2.7b, the effective smoothing filter implemented

by the STFT magnitude squared has zero delay regardless of the window

function used. When the STFT magnitude squared is used to implement a F/D

subsystem, difficulties normally associated with smoothing filter design

(as discussed in Section B.2.3) are eliminated and the output is

guaranteed to be positive at all times. This feature is desirable for

auditory modeling purposes since nerve firing rates are always positive.
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F/D implementation via the STFT magnitude squared has disadvantages

as well. The STFT magnitude squared does not generally produce results

identical to those produced by direct F/D subsystem implementations.

Design flexibility is limited since the F/D bandpass filter must be of a

specific type, the memoryless nonlinearity must be a square law device,

S- and the lowpass smoothing filter must have the same bandwidth as the

" bandpass filter. Despite these limitations, however, F/D subsystems

implemented via the STFT magnitude squared are appropriate for many

applications.
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2.4.3 DISCRETE-TIME F/D IMPLEMENTATION USING STFT MAGNITUDE SQUARED

For convenience, a discrete-time implementation of the speech

analysis system is desired. The "analog" continuous-time theory

presented in Section 2.4.2 must therefore be extended to the "digital"

discrete-time case. One procedure for transforming an analog filter

design to a digital filter design is known as the impulse invariant

method (Oppenheim and Schafer [311). In this procedure, the unit-sample

response of the digital filter is equally spaced samples of the impulse

response of the analog filter. For example, if h(t) is the impulse

response of an analog lowpass filter, then the unit-sample response of

the corresponding digital filter is:

h(n) {h(t)} I t-nT' (2.12)

where T is the sampling period. The continuous-time F/D subsystem of

Fig. 2.7c can be transformed, via the impulse invariant method, into the

discrete-time F/D subsystem of Fig. 2.8. The bandpass filter center

frecuency is wccQ ,T, and 0 is an arbitrary constant parameter.

Let the window function h(n) be the unit-sample response of an ideal

lowoass filter witr Daniwidth wh;

h(n) = [sin(wtn)]/Trn. (2. 13)
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Figure 2.9: Spectral Characteristics of Discrete-Time F/D Subsystem
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The Fourier transform of the window function, FT{h(n)}, is shown in Fig.

2.9a. Spectral regions occupied by the bandpass filter output 
are shown

in Fig. 2.9b. The bandpass filter output is:

y(n) - x(n)*[h(n)cos(wcn4 )]

- x(m)h(n-m)cos(wcn-wcm4O)

= f(n)cos(wcn) + g(n)sin(wcn), (2.14)

where

f(n) - [x(n)cos(wcn6 )]*h(n) (2.15)

and

g(n) - [x(n)sin(wcn-e)J*h(n). (2.16)

On the interval -j<W(w, f(n) and g(n) are loypass bandlimited to IwI4ih.

The square law device output is:

2wl(n) - [f2(n) + g2 (n)]

+ [cos(2wcn)][f
2 (n)_g 2 (n)] + 2(sin(2wcn)Jf(n)g(n). (2.17)

By the modulation property, the function f2(n)+g 2(n) is lopass

bandlimited (on the interval "w a<R) to the region IwI<2wh, as shown in

Fig. 2.9c. The remaining components of Equation 2.17 are high frequency

bandpass signals which may be eliminated by the smoothing filter. Let
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the smoothing filter with unit-sample response h,1 (n) be an ideal lowpass

filter having bandwidth wsl:

hs1 (n) = [sin(w5sn) J/wn. (2.18)

Also, let 20h<Wsj< 2 wc-2Wh and 2Mh<(s1< 2w-2 .c-2wh . It follows that

2wh~ac<w-2w h . The F/D output is:

2vo(n) f2(n) + g2(n). (2.19)

Since the signals x(n) and h(n) are real, it follows that

JWC
2vo(n) 1 IXn(e )12 (2.20)

JWc

where Xn(e ) is the discrete-time STFT evaluated at a fixed frequency

Wc1 and is defined as (Rabiner and Schafer (3]):

JW C -Jw ( n - m )

Xn(e ) x(n-m)h(m)e S (2.21)

The discrete-time STFT thus follows directly from application of the

impulse invariant transformation to the continuous-time STFT. Note that

the discrete-time STFT of Equation 2.21 corresponds to the

continuous-time STFT of Equation 2.3, and the discrete-time F/D result of

Equation 2.20 corresponds to the continuous-time result of Equation 2.11.

The discussion of Section 2.4.2.3 therefore applies to both the

discrete-time and continuous-time cases.
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A difference between the discrete-time and continuous-time

implementation occurs in the restriction on bandpass filter center

frequency relative to bandwidth. For the continuous-time case, it is

required that the bandpass filter have a center frequency which is

greater than its bandwidth, ie., 2Qh<Qc- This restriction also applies

to the discrete-time case, ie., 2w~h<hc* However, an additional

restriction must be applied in the discrete-tiie case because of the

periodic spectral characteristics shown in Fig. 2.9c. An upper limit must

be applied to the digital bandpass filter center frequency, resulting in

the restriction 2wh<wc< -2h" In other words, the digital bandpass

filter must have a center frequency which is greater than its bandwidth

but less than pi minus the bandwidth. The upper frequency limit is

discussed further in Section 2.4.5.

It can easily be shown that if Wc does not fall within the range

10Wh<LcKT-2w0h, then the STFT magnitude squared does not implement a F/D

subsystem. For example, if wc=O it follows from Equation 2.21 that the

STFT magnitude squared is equivalent to a lowpass filter with impulse

response h(n) followed by a square law device. Similarly, if wclT the

STFT magnitude squared is equivalent to a highpass filter with impulse

response (-1)nh(n) followed by a square law device. In all cases,

however, the STFT magnitude squared is a lowpass function with bandwidth

.0
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2.4.4 THE GENERALIZED SHORT-TIME FOURIER TRANSFORM (DISCRETE-TIME CASE)

It was shown in Section 2.4.2 that the STFT magnitude squared can be

used to implement a F/D subsystem in which the bandpass filter bandwidth

is fixed by choice of the window function. The simplified auditory

system model described in Sections 2.2 and 2.3, however, uses a bank of

F/D subsystems in which each bandpass filter has a different bandwidth.

Therefore, a generalized version of the STFT which allows a different

window function at each analysis frequency must be used to implement the

auditory model. Only the discrete-time case will be discussed.

Let the STFT be evaluated at K discrete arbitrarily spaced

frequencies wk, where k=1,2,...,K. A different window function hk(n) may

be used at each frequency. It follows from Equation 2.21 that the

Generalized Short-Time Fourier Transform (GSTFT) can be defined as

(Rabiner and Schafer [3]):

-Jwk -jwk(n-m)
Xn(e ) = x(n-m)hk(m)e . (2.22)

It is assumed that the signal x(n) and the set of window functions hk(n)

are real. Several approaches to GSTFT computation are discussed in

Appendix C.
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The GSTFT magnitude squared can be used to implement a bank of F/D

subsystems similar to the type shown in Fig. 2.8. The resulting bandpass

filters have impulse response hk(n)cos(wkn4Ok), where 6k is arbitrary.

The bandpass filter with center frequency wk has a bandwidth determined

by hk(n). As long as the bandpass filter has a center frequency which is

greater than its bandwidth (and less than pi minus the bandwidth), a

lowpass smoothing filter operation is effectively implemented by the

GSTFT magnitude squared computation. The bandpass and smoothing filters

can be considered to have the same bandwidth.

,.1



2.4.5 PERCEPTION-BASED SPEECH ANALYSIS SYSTEM IMPLEMENTATION

Since GSTFT magnitude squared results are proportional to the

desired F/D bank outputs, the GSTFT magnitude squared can be used to

implement the F/D bank specified in Sections 2.2 and 2.3. First, a bank

of fifteen continuous-time bandpass filters must be designed using the

critical bandwidth data of Table 2.1. Let each filter have impulse

response hk(t)sin( kt), where Sk is the center frequency, and hL.(t) is

the set of window functions defined by:

2 - kt

hk(t) = $kt e , O<t

= 0, otherwise, (2.23)

for k-1,2,...,15. The delay r, as shown in Fig. .2.2, will be neglected.

The Laplace zransforn (see Appendix A) of each window function is:

Li 3 = 4.2

The banapass fii:ers -an be designed to have uni:y gain : :eree

frequency 1)y zhosing 3k1k'. A gain :actor wf two -s lost in :mKrocess of :onvertlng :he lowpass window :nto a band7ass tilter. ffie

Laoiace :-rans'frm cf each ncrmalizea windcw :.nct!on Tan t2u-----------

is:

=" . • .o ,= . , -, = • . - . . - . - . = , • . . .". • .-"



Frequency domain characteristics of the windows are shown in Fig. 2.10.

Each window has a 3dB bandwidth of *509ak rad/sec, so each bandpass

filter has a 3dB bandwidth of 1.018ak rad/sec. Specific values for Uk

and ak can be obtained from Table 2.1. For example, a 1-2wx250 rad/sec,

and alf(2lrxlOO)/1.018 sec - 1 .

The impulse invariant method can now be applied to obtain a digital

implementation. Let T represent the digital system sampling period in

seconds. The window functions of Equation 2.23 are transformed as:

3 2 3 -k n T

hk n) = (ak) n T e , ln,

C !, otherwise, (2.26)

where an additional factor of T has been included to compensate for the

analoz to digical transformacior (Oppenheim. and Schafer 1311). The

w-4ndow functions of Equation 2.26, which have rational z-transforms (see

A;oe~ci:: A an' Secton C,2:, can be written in the form

y=i

.. '..

r 6 nu nn 1..
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Figure 2.10: Window Function Frequency Characteristics



r rr mug qW "-L- 'k

by choosing

i=1, Tk=3, Rk= 2 ,

3-akT 3 -2akT
qk(1)=(akT) e ,qk(2)-(ak T ) e ,

-akT -2akT -kT

pk(I)= 3 e , Pk(2)=-3e , and Pk( 3 )=e . (2.28)

Substitution of the Infinite-duration Impulse Response (IIR) window

function defined by Equation 2.27 into Equation 2.22 yields a recursive

formula for the GSTFT (Rabiner and Schafer [31):

Jwk 'pk jwk Rk -jwk(n-r)
Xn(e ) = Pk Xnj(e ) + I qk(r)x(n-r)e . (2.29)

p=i ri

Note that the recursive GSTFT is computationally efficient for small

values of Tk and Rk . An implementation suitable for real-time

applications is presented in Section C.2. Values for ak and Wk,

k=1,2,...,15, are obtained from Table 2.1 via the formulas

ak=(6 .17)(Critical Bandwidta in Hz) and wk=(2rT)(Center Frequency in Hz).

Each bandpass filter of the digital F/D bank implemented via the

GSTFT magnitude squared must meet two requirements. First, each filter

must have a center frequency which is greater than its bandwidth.

Second. each filter must have a center frequency less than pi minus the

4 -andwidtn. Since the analog filters of Table 2.1 meet the first

requirement, so do the zorresponding digital filters. The second

requirement depends upon the sampling period T. In terms of analog

"L :e- parameters, mne _-um of center frequency and critical bandwidth

4
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(both in Rz) must be less than 1/2T for each filter. The value T=.OOUI

second (ie., a 10 KHz sampling rate) is used to ensure that the second

requirement is met.

Fig. 2.11 shows the F/D bank response to an impulse input applied at

t-.0032 sec. The figure has linear amplitude and time scales. The graph

of each F/D subsystem output, or "channel," has been normalized to the

same peak value. Apart from a scale factor, the graphs of Fig. 2.11 are

comparable in shape and duration to PST histogram envelopes (refer to

Fig. 2.4). The impulse response of each F/D subsystem is proportional tc

[hk(t) ]2.

When the F/iD bank input is a sine wave, the output of eacn FIL

subsystem is a constant. The graphs of Fig. 2.12 were foaied fror.

average steady-state sinusoidal response measurements for each FL

subsystem. and these graphs correspond well witr the critical Dandwidt:.

filter Dank Darameters given in Table .i Sinc2 tn Dai was no-

designed to match physioiogical ztm.ng curves. toe iyrapnos of . .....

not Dossess the stee,. SKIrts er:),tec D tu c-veo riowcer t li

possibt to c:oo!i netter :t-tn t: tonlng irve aot, r,.5

difrerent wrndc, frirct1 or. w ndicussea -ct~ri .
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2.5 SHORT-TIME ENERGY

Short-Time Energy (STE) is a quantity which will prove useful in

signal synthesis, as described in Chapter 3. For the discrete-time case,

STE is defined by (Rabiner and Schafer [31):

En = x2(m)h0(n-m), (2.30)

where ho(n) is the STE window function. Since the energy En must be

non-negative for all real sequences x(n), including x(n)f6(n-n0) for any

integer no , the STE window function must be non-negative; ie., ho(n)0

for all n. Note that the set of GSTFT window functions hk(n),

k=1,2,...,K, need not be non-negative in general.

A block diagram of the STE computation is shown in Fig. 2.13. A

comparison of Figs. 2.8 and 2.13 reveals that the STFT (or GSTFT)

magnitude squared essentially computes the STE within a given frequency

band.

The STE can be computed recursively if h0 (n) has a rational

z-transform:

TO R0

En 1ip0(*)En- + riq0 (r)x
2 (n-r) (2.31)

For example, let
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32-einT

ho(n) -(a 0 T) n e Ir n

0, otherwise. (2.32)

Choosing cxo-8 27 results in a lowpass filter with a 3dB bandwidth of 67

Hz. The set of coefficients po and qO are defined by Equations 2.28 with

k-0.

Figure 2.13: Short-Time Energy Computation
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2.6 MINIMUM SAMPLING RATES

Although data reduction is not an essential part of an auditory

model, it is often desirable to reduce the amount of data from speech

analysis systems for practical purposes. A modest amount of data

reduction can be achieved by sampling the STE and F/D bank outputs. If

desired, the original outputs can be approximately recovered by passing

the samples through an appropriate smoothing filter. A smoothing filter

with positive impulse response (see Section B.2.3) can be used to ensure

that the upsampled smoothed data is always positive. This

downsampling/upsampling approach is also known as decimation and

interpolation (Rabiner and Schafer [31).

The output of each F/D subsystem is bandlimited to twice the window

function bandwidth for that subsystem, so each output must be sampled at

a rate which is greater than four times the corresponding window function

bandwidth. The STE must be sampled at a rate which is greater than twice

the STE window function bandwidth. Each output may, in general, be

sampled at a different rate.

47
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Since the F/D subsystems are implemented via the GSTFT magnitude

squared, the sampling rates for F/D subsystem outputs also apply to GSTFT

magnitude squared functions. Once the GSTFT magnitude squared has been

sampled, any invertible operation such as square root or logarithm can be

applied to the data. For non-negative numbers, knowledge of the square

root or logarithm of a number is the same as knowledge of the number

itself. It follows from the results of Sections B.3.6 and B.3.8 that

GSTFT magnitude (as opposed to magnitude squared) functions are not

bandlimited in general. The minimum sampling rate is therefore

determined by the magnitude squared functions, but is equally applicable

to magnitude or log magnitude functions, even though such functions may

not be bandlimited.

Note that the minimum sampling rate requirements were derived from

system theory considerations, and conditions for reconstruction of the

original signal from the GSTFT magnitude data are not considered in this

chapter (see Chapter 3). The minimum sampling rate arises when each

channel is examined independently, and a sampling rate is determined

which accurately preserves all available information in each channel.

When the complete analysis system is considered, however, channels may

overlap and contain redundant information. The overall sampling rate

required for signal reconstruction may therefore be less than the product

of the number of channels and the sampling rate per channel determined

from system theory considerations.

48
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2.7 CONCLUSION

In this chapter, it was shown that the peripheral auditory system

can be roughly modeled as a F/D bank. To obtain a speech analysis system

based on perception, a model structure determined by physiological data

from animals was combined with model parameters determined by perceptual

experiments performed on humans. It was shown, via a new relationship,

that a F/D subsystem of the desired type can be implemented using the

STFT magnitude squared. Further applications of this relationship are

described in Appendix D. A generalized version of the STFT magnitude

squared was used to implement the speech analysis system based on the

simplified auditory model, and a STE function was also computed. Minimum

sampling rates for the STE and F/D outputs have been specified.

49

- . . . . . . .. . .*b"..-* *.*. _



i,.1

W-

CHAPTER 3

SPEECH SYNTHESIS SYSTEM

3.1 INTRODUCTION

This chapter describes a speech synthesis system which reconstructs

a signal from spectral magnitude data, as provided by the analysis system

of Chapter 2. Apart from an overall sign factor, the synthesis system

can obtain exact signal reconstruction in the absence of data

modification. It will be shown in Chapter 4 that the system also

performs well given modified data. Only the discrete-time case will be

discussed.
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The overall speech analysis/synthesis system is depicted in Fig.

3.1. The signal x(n) is analyzed by a Filter/Detector (F/D) bank, which

is implemented via the Generalized Short-Time Fourier Transform (GSTFT)

magnitude squared as described in Chapter 2. An optional Short-Time

Energy (STE) constraint may also be computed. The GSTFT magnitude

squared and STE values are subjected to an analysis transformation A.

The analysis transformation may consist of lowpass filtering,

downsampling, logarithmic operations, or a variety of processes such as

principal components analysis (Chu (161). The analysis transformation

may also include a delay in each channel which allows the impulse

responses of Fig. 2.11 to attain their peak values simultaneously. Such

delays are useful for data display purposes. The resulting data is sent

through a transmission channel. At the channel output, received values

are subjected to a synthesis transformation S. The synthesis

transformation may consist of exponentiation, upsampling, lowpass

filtering, or other operations. It will be assumed that the synthesis

transformation attempts to reverse effects of the analysis

transformation. Thus, the synthesis transformation produces modified

data values which approximate the original values, ie.,

J 1k 2 Jwk 2 *

Xn(e )I WIXn(e )I and Enen . Finally, a sequence x(n) is

Jwk
reconstructed from the modified data. Let Xn(e ) denote the GSTFT and

En denote the STE of x(n). The sequence x(n) may be reconstructed by

Jwk 2 A

choosing values so that IXn(e )I and En match the available data
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Figure 3.1: Overall Speech Analysis/Synthesis System
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JWk 2 ~
JXn(e )I and En In this sense, the reconstructed signal x(n)

approximates the original signal x(n). The reconstruction process is

illustrated in Fig. 3.2. Note that the reconstruction process contains a

model of the analysis system. Signal generation is accomplished by a set

of equations which will be derived in Section 3.3.2.

I.
5
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IXn(e )I and En
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Figure 3.2: Reconstruction Process
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3.2 ANALYSIS/SYNTHESIS SYSTEM DESIGN GUIDELINES

Although a signal can theoretically be recovered from the unmodified

GSTFT magnitude squared (as will be shown in Section 3.3), several

guidelines must be applied to design a practical analysis/synthesis

system. These guidelines are a consequence of the F/D and GSTFT magnitude

squared equivalence described in Chapter 2.

3.2.1 SHORT-TIME ENERGY

Under certain conditions, unwanted out-of-band components may be

introduced by the reconstruction process if STE is not used. To

illustrate, let the F/D bank analyzer of Fig. 3.1 examine the 200-3675 Hz

frequency region. Information about other frequency components of x(n)

Jwk 2
is not transmitted through the channel. Assume lXn(e )I exactly

Juk 2
matches the data JXn(e )I . For reconstruction based on magnitude

information alone, nothing prevents the reconstructed signal x(n) from

having large components at low frequencies (below 200 Hz) or high

frequencies (above 3675 Hz). Such components could be eliminated by

bandpass filtering x(n), but the reconstruction process must then employ

a wide dynamic range to maintain a small signal with an arbitrarily large

offset.

Although there are many ways to eliminate out-of-band components

from the reconstructed signal, use of STE has proven most practical. As
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long as the original signal x(n) has been bandpass filtered to reject

components outside the F/D bank analysis range, the STE constraint

prevents out-of-band components from entering the reconstruction process.

In cases where little data modification is ir olved, the STE constraint

is unnecessary if some information about out-of-band components is

allowed through the transmission channel. This occurs when non-ideal

bandpass filters are used (refer to Fig. 2.12 for examples of appropriate

filter characteristics). Thus, it is possible to achieve exact signal

reconstruction without STE (see Anderson and Searle [321 for examples).

For most practical applications, however, use of STE is recommended.

3.2.2 BANDPASS FILTER CHARACTERISTICS

If the bandpass filter frequency-domain characteristics do not meet

certain overlap and shape requirements, then practical signal

reconstruction is impossible. For example, consider a bank consisting of

two F/D subsystems. Let the bandpass filters have non-overlapping

frequency characteristics as shown in Fig. 3.3a. Assume that a

sinusoidal tone burst in the 350-400 Hz frequency range is fed into the

F/D bank, and the tone burst is of sufficient duration that the F/D

outputs reach a steady-state value. In the steady-state condition, one

F/D output is a constant positive value while the other is essentially

zero (see Section B.3.7). The amplitude and frequency of the tone burst,

which are two independent parameters of interest, cannot be determined

from the single non-zero F/D output even if the filter characteristics
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* Figure 3.3: Bandpass Filter Characteristics
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are known. Steady-state F/D outputs will be identical for a variety of

input amplitudes and frequencies. It can only be determined that the

sinusoidal input frequency lies within a particular filter passband, and

the amplitude is indeterminite. In theory, exact signal reconstruction

can be achieved from unmodified F/D outputs if transient as well as

steady-state values are examined. However, slight modifications (such as

truncation error) are always present in actual systems, and practical

reconstruction cannot be achieved from F/D banks using non-overlapped

bandpass filters.

When overlapping bandpass filter characteristics are used, as shown

in Fig. 3.3b, amplitude and frequency of an input sinusoid can easily be

determined from the steady-state F/D outputs. For example, the frequency

can be obtained from a ratio of the F/D outputs. The amplitude can then

be determined from either bandpass filter characteristic. Thus, it is

not necessary to rely on transient or low-level components to achieve

reconstruction when overlapped filters are used. The need for overlapped

filters in speech analysis systems has also been noted by Klatt [331.

It should be noted that bandpass filter overlap is necessary, but

not sufficient, for a practical analysis/synthesis system. For example,

if the bandpass filters are overlapped but possess both constant passband

gain and steep skirts, then steady-state F/D outputs will be identical

for a range of tone burst frequencies. The speech analysis system based

on perception uses overlapped filters which do not have constant passband

gain (see Fig. 2.12). It will be demonstrated in Chapter 4 that such a

configuration performs well in a practical analysis/synthesis system.
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3.2.3 TRANSMISSION CHANNEL DATA RATE

Since the transmission channel data rate (see Fig. 3.1) must be

chosen in accordance with the bandpass filter characteristics, this rate

is affected by the filter overlap requirement. For example, assume that

the original signal is sampled at a 10 KHz rate, and a non-overlapped

bank of bandpass filters is used to cover the full 0-5 KHz frequency

range. Each F/D subsystem output must be sampled at a rate which is

twice the associated bandpass filter bandwidth (see Section 2.6), leading

to an overall data rate of 10 KHz (not including STE). When an

overlapped filter bank is used, the required minimum transmission channel

data rate is doubLed (ie., 20 KHz). Of course, if the full range of

possible frequencies is not covered by the F/D bank, then the required

transmission channel data rate is correspondingly less.

It should be noted that the transmission channel data rate discussed

in this section is based on system theory considerations, and does not

consider the possibility of efficient waveform encoding to achieve data

reduction. Data reduction is discussed in Section 5.3.

660

i'4

............................



3.3 GENERAL SYNTHESIS EQUATIONS

In this section, it is shown that (apart from an overall sign

factor) right-sided sequences can be exactly reconstructed from the GSTFT

magnitude squared. Left-sided sequences can similarly be reconstructed

when appropriate initial conditions are specified. The algorithms

presented in this section are theoretically capable of performing signal

reconstruction whether or not the practical guidelines of Section 3.2 are

followed. Thus, in order to obtain a practical analysis/synthesis system,

the guidelines of Section 3.2 are a prerequisite to application of the

reconstruction algorichms. Note that synthesis equations of a general

form are derived in this section. The procedure by which these equations

are applied to a specific case is described in Section 3.4.
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3.3.1 PLAUSIBILITY ARGUMENT

A simple approach described by Nawab, Quatieri, and Lim [34] can be

used to recover a sequence from its GSTFT magnitude squared. Although

this approach does not employ the reconstruction process depicted in Fig.

3.2, it serves to illustrate the issues involved in signal reconstruction

from magnitude and to motivate the practical approach presented in

Section 3.3.2. STE will not be used in this section.

Assume that two different F/D subsystems are implemented via the

GSTFT and each Finite-duration Impulse Response (FIR) window function

hk(n), k=l or 2, is nonzero only for N n4Mk-l. It follows from Equation

2.22 that the GSTFT magnitude squared can be written as:

jXn(e k)i2 = akx 2(n) + bk(n)x(n) + ck(n), (3.1)

where

ak= thk(O)12 , (3.2)

Mk-1

bk(n) 2hk(O)N x(n-m)hk(m)cos(wkm), (3.3)

m=1

and

Mk~l Jwk m 2
ck(n) .[ x(n-m)hk(m)e( • (3.4)

m I

Therefore,
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x(n) =(/2ak)-bk(n) k [bk(n)] _ 4ak[ck(n)-IXn(e )2]} (3.5)

Note that care must be taken to ensure the quantity under the square root

sign is always positive.

To illustrate the signal reconstruction process, assume x(n)=0 for

n<O. It follows that bk(O)=ck(O)O0, and

x(O) - + IXo(eJwk )I/hk(O). (3.6)

Thus the output from either F/D subsystem may be used to determine the

first reconstructed value within a sign factor. The positive value for

x(O) may be arbitrarily chosen, as choice of the negative value only

changes the reconstructed sequence by an overall sign factor. Given the

value of x(O), values of bk(l) and ck(l) can be computed. Note that

bk(n) and ck(n) are always computed using previously reconstructed signal

Jwk 2
values. Given !XI(e )I for two F/D subsystems appropriately spaced in

frequency, the value of x(1) can be determined using Equation 3.5. Each

of the two F/D subsystems yields two possible values for x(1), and the

ambiguity is resolved by choosing the solution which is consistent with

both F/D outputs. Given x(O) and x(I), the value for x(2) can be

determined, and so forth to reconstruct the entire sequence.

This simple reconstruction algorithm is subject to many practical

ditficulties. FirsL of all, the reconstructed sequence may not be

unique. Recall that the window functions hk(n), k=1 or 2, are nonzero for
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OXn<Mk-I (otherwise, uniqueness problems may be caused by "gaps" in the

window function, as described by Nawab [351). The reconstructed sequence

is unique, to within an overall sign factor, unless a sequence of zero

values having length {Nk-1}max or more is encountered in the data. A sign

ambiguity is introduced whenever such a sequence of zeros is encountered.

For example, Fig. 3.4 shows four possible reconstructed sequences which

can result when the two window functions are of length four or less.

Studies suggest that such effects may not be important for speech if the

analysis uses at least two F/D subsystems with impulse response duration

of 10 milliseconds or more (Warren and Wrightson [36]; Flanagan and

Guttman [37j). In any case, the multiple sign ambiguity problem can be

alleviated by use of Infinite-duration Impulse Response (IIR) windows.

Anottier problem with the simple algorithm is its inability to

perform reconstruction from modified data. Slight modifications such as

truncation error can cause the two F/D outputs to produce contradictory

resuits. For example, if data from one F/D indicates that x(1)=-2.uOO or

.919 while another F/D indicates x(1)=-2.002 or 2.832, then no consistent

solution for the value of x(1) exists. It may be desirable, however, to

use the value x(l)=-2.01 for futare computations, alt:hou -h tnis ;alue

must be chosen by some alaorithm which processes inconsistent results.

iuch i--consistent results can be treated in an )rranlzed marner <-v
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:rt ten. n I- to de:er;nine the onoice of an u) )pu -ato real

. D o



x~n) x(n)

2 2

* (a) (b)

x(n) x(n)

0 2 2 T 2

* I T
(d)

Figure 3.4: Four Reconstructed Sequence Possibilities
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Next, note that the simple algorithm reconstructs x(n) given

Jwk 2
Xn(e )i , ignoring information about x(n) -ontained in the future data

i"3k 2

IXm(e )I2 for m-n+l,...,n+Mk-1. This observation suggests that an

algorithm using non-causal processing, such as filtering with delay, may

achieve superior results. For example, consider the reconstruction

process of Fig. 3.2 which uses an error criterion. Assume that, once

reconstructed, the value of a point is held constant. The feedback

system of Fig. 3.2 reduces the error by changing only the value of x(n)

at one specific time n. If previous points were not reconstructed

exactly, the system attempts to compensate by changing the value of

x(n) accordingly. Such a change may lead to further cumulative error,

causing poor reconstruction. However, if previously reconstructed values

can be modified on the basis of new information, the error can be

distributed among a large number of points and reconstruction is

improved. This non-causal approach is especially useful for

reconstruction from modified spectra.

Note that since the simple reconstruction algorithm achieves exact

reconstruction from only two F/D channel outputs, an overall data rate

which is at least twice the sampling rate of x(n) can be used in the

transmission channel of Fig. 3.1. This result is the same as that derived

in Section 3.2.3. For data rates less than twice the sampling rate, exact

reconstruction cannot be achieved in general (see Theorem 2.3 of Nawab

[351).
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3.3.2 EQUATIONS FOR PRACTICAL SIGNAL RECONSTRUCTION

The simple reconstruction algorithm of Section 3.3.1 can be modified

to obtain the practical algorithm shown in Fig. 3.2. The required

modifications include use of an error criterion and non-causal

processing.

To develop a practical algorithm, the GSTFT is rewritten in a more

convenient form. For any integers X and y it follows from Equation 2.22

that:

Jwk -jwk(n-'y)

Xn-g(e ) = x(n-y)hk(y-i )e

A -jwk(n--m)

+ x(n-Y-m)hk(m)e (3.7)

m*y -1

where the summation over nay-t is defined as the summation from minus

infinity to y-t-1, plus the summation from y-t+l to infinity. Taking the

magnitude squared of Equation 3.7 yields:

A wk 2 A

kXnt(eax 2 (n-y) + bk(n)x(n-y) + ck(n), (3.8)

where

= [hk(y-) ]j2, (3.9)

bk(n) 2hk(Y-£) x(n-L-m)hk(m)costwk(m--'+.)], (3.10)

M*y -1

and
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SA JW km 2
Ck(n) = x(n-£-m)hk(m)e I (3.11)

m*'Y -X

The GSTFT magnitude squared at any time n-L can thus be expressed as a

quadratic function of the sequence at any time n-y. Note that ak, 1k(n),

and ck(n) are independent of x(n-y). However, if a value of x(n-y) and

its corresponding value of Xn£(e ) are known, then it is easily

verified trom Equations 3.7 and 3.10 that:

^ jw k(n-y) A Jwk A

bk(n) = 2hk(Y-Z)[Re{e Xn_£(e )} - x(n-y)hk('Y-X)I. (3.12)

Also, it follows from Equation 3.8 that:

A ^,, i 2 . .. .A

ck(n) = Xn-£(e )I akx 2 (n-y) - bk(n)x(n-y). <3.L3)

Equations 3.12 and 3.13 can often be computed more easily than Equations

3.10 and 3.11.

Using a similar approach for STE, it follows from E. uatL1n 2.30

that:

n-. = a*x2(n-y) + c0 (n), *.-

where

a n.,

*". .



c 0 (n) = h0(m)x
2 (n-1 -m). (3.16)

miy-x

Therefore,

co(n) f En-£ - 0 x2 (n') (3.17)

For convenience, a weighted mean squared error criterion is chosen.

The error is defined as:

A 2

e(n) = {(En_£ - En-) W0 (z)

K - Jwk 2 - jwk 2 2
+ kl)[IX n - (e )I - tX£(e )I I Wk(l)}, (3.18)

k~l[

where Wm(Z), m=0,1,...,K, and -9,(OO, is a weighting function. The

weighting function specifies which data values contribute to the error at

time n. Although weighting functions which vary with time or signal

level can be used, such functions will not be considered here. When the

weighting function is constant for all values of £, the error is

E(n)=etotal where Ctotal is a constant total error independent of n. Any

reconstructed sequence x(n) which minimizes Ctotal is an "optimum"

solution in the mean squared error sense. In order to achieve reasonable

results with less computation, a "local" sub-optimum error criterion may

be preferable to the "global" optimum error criterion. A local error

6
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criterion can be obtained by choosing a weighting function which is

narrow in the X dimension. Even when a sub-optimum error criterion is

chosen, error minimization may require solution of an infinite number of

simultaneous nonlinear equations if the window functions are infinitely

long. It is not generally possible to solve such a set of equations with

a finite amount of computation.

A practical sub-optimum approach to signal reconstruction, which

avoids the problem of solving simultaneous nonlinear equations, can be

obtained by holding all synthesized values constant with the exception of

x(n-y). An appropriate value of x(n-y) can then be determined by

substituting Equations 3.8 and 3.14 into 3.18 and setting

3r(n)/ax(n-y)=o. Under these conditions, e(n) is reduced by choosing

x(n-y) as a root of:

u3x
3 (n-y) + u2x

2 (n-y) + ulx(n-y) + u0 = 0, (3.19)

where

a= K (a)2W()

2 [(ao) 2Wo(j) + (a) 2 Wk(-1, (3.20)
k=1

00 Ka a
u2 = 3 t k akbk(n)Wk(k), (3.21)
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00 A A

u= 2 _ ao[co(n) - En_ £ ] WO(X)

= K - 2 A J k2
+ {[bk(n)] + 2ak[ck(n) - IXn-Y (e )I J}Wk(£), (3.22)

X=- k=l

and

S K A J(k 2

U0 = I bk(n)lck(n) - IX-(e )I JWk(L). (3.23)
£=- k=l

Values for the reconstructed sequence can be generated by solving

Equation 3.19 for the roots of a cubic expression. The real root which

yields the smallest value of e(n) is chosen as the sequence value. Since

cubics have one, two, or three distinct real roots, a real sequence value

can always be found which satisfies the error criterion. Furthermore, a

closed-form solution exists for computing the roots (CRC Standard

Mathematical Tables 138j). In the actual implementation, double-precision

computer arithmetic was used to obtain an accurate solution of the cubic

expression. Such accuracy, however, is not required elsewhere in the

reconstruction algorithm.
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3.4 SPEECH SYNTHESIS PROCEDURE

Equations of Section 3.3.2 can be used to reconstruct speech signals

from data produced by the analysis system of Chapter 2. Although the

equations may be applied in many different ways, only one approach will

be described in detail. This approach has been used to generate a number

of examples, which are presented in Chapter 4.

j Wk

From Equations 2.22 and 2.27 it follows that Xn(e ) contains

information about x(n-y) for y~i, where i=l for the present application.

jwk
For practical purposes, however, it is assumed that Xn(e ) contains

significant information about x(n-y) only for the finite set of values

i<y(ymax, where Ymax is some arbitrary integer. Therefore, if the values

of x(n-y) for 'Y'y max are changed during the reconstruction process,

jwk
then the values of Xn_£(e ) for O"<Ymax-i must also be changed

accordingly. The value ymax=20 , which results in a 2 millisecond

synthesis window, will be used throughout. Note that this value is not

critical. Small values (Tymax=3 ) can be used to rapidly obtain exact

reconstruction from uninodified spectral data, while large values

commensurate with the maximum effective window length (Ymax=10 0 ) may

improve the quality of reconstruction from modified data.

To completely specify the reconstruction error criterion, an

appropriate weighting function Wm(2), m=0,1,...,K, and - £A, must be

chosen. The F/ID outputs are bandlimited functions which do not generally

change rapidly. Therefore, the weighting function can be chosen narrow
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in the I dimension. A weighting function which is wide in the X

dimension may be advantageous for reconstruction from highly modified

data, but causes an increase in computation time and implementation

complexity. Since the bandpass filters have normalized gains as

described in Section 2.4.5, and are roughly of equal importance for

speech intelligibility (Beranek [391), the F/D weighting coefficients are

equal. Let Wk(W)= for £=0 and k=l,...,K, and Wk(L)0 otherwise. With

this choice of F/D weighting coefficients, an empirically determined

energy weight W0 (k)=.03 for X=O, W 0(9)=O otherwise, is appropriate. The

energy weight is small because energy values are often large, and also

because the energy function is intended as a constraint and not as an

information-bearing element. The resulting error expression is:

n n)2 K ^ Jwk 2 jwk 2 2

e(n) (E n -EdW + I [IXn(e )I -IXn(e )I 1 (3.24)
k=l

where WO=.03 and K=15. The error given by Equation 3.24 is used for all

reconstruction examples of Chapter 4 (see Anderson and Searle [321 for

examples using a different weighting function). The total error can be

computed as:

Ctotal = e t(n). (3.25)

For comparison purposes, it is useful to define a total error which is

normalized with respect to the original signal:

00 K J wk ) 4 1Ctotal~norm total/I [(En )2 Wo + K IXn(e )I }. (3.26)

n- k=I
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The total normalized error does not change with input signal level, and

provides a form of error-to-signal ratio (Griffin, Deadrick, and Lim

[401).

The synthesis procedure will now be described in detail. For

convenience, assume x(n)=0 for n<0. The reconstructed sequence x(n),

Jwk A

estimated GSTFT Xn(e ), and estimated STE En are initially set to zero

for all n. The synthesis procedure begins at any time n<i, where i-1 for

the present application. The index n is incremented one point at a time,

and each newly reconstructed point is used to update previously

reconstructed values.

The first reconstruction step advances the time index, and updates

estimated GSTFT and STE values based on available reconstructed sequence

values. Previously calculated GSTFT and STE values which are unaffected

by any changes in x(n-y), iyymax, are used as initial conditions for

the update. Equations 2.29, 2.31, and the present values of x(n-y) for

y~i are used to generate GSTFT and STE estimates up to time n.

The present estimated value of x(n-i), which was set to zero during

initialization, is likely to be in error. An improved estimate for

x(n-i) is obtained by a procedure which will be described shortly.

Improving the estimate for x(n-i) provides a reconstructed sequence

value. Using this improved value, new values for previously

reconstructed points can also be determined.
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Due to the shape of the window functions, which have small initial

values as shown in Fig. 2.11, many refinements are necessary in the

estimates of x(n-y) for small y. To make refinements, all points other

than one specified point are held constant, and the specified point is

allowed to vary in a fashion which reduces the error. Thus, adjustments-4

-:.

to x(n-y) for large y must not be made until the more recently

reconstructed points are thoroughly corrected. Estimated values of the

reconstructed points must therefore be refined in a certain order. To

develop the examples shown in Chapter 4, the following order of

refinement in values of x(n-y) was used:

-=1,2,1,2,1,2,1,2,1,2,

1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,

etc.,

I .... ymax, (3.27)

where ymaxi2 0 . After this procedure has been performed to reconstruct

one new point x(n-i) and adjust values of previously reconstructed points

through x(n-ymax), the time index is incremented, GSTFT and STE estimates

are updated based on the new P 4uence values, and the procedure is

repeated to reconstruct the entire sequence.
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To refine the estimate of any point x(n-y), Equations 3.12, 3.13,

and 3.17 are used with 9=0 to obtain bk(n), ck(n), and c0 (n). Note that

a0 and ak are pre-computed constants which do not depend on the data.

The contribution of the present sequence estimate x(n-y) is now

A jwk

subtracted from the present GSTFT estimates Xn(e ) and STE estimate

En by using Equations 3.7 and 3.14. Next, u 0 , ul, and u2 are computed

from Equations 3.21, 3.22, and 3.23. Note that u3 can be pre-computed,

as shown in Equation 3.20. Equation 3.19 is solved, resulting in up to

three new candidate estimates for x(n-y). The first candidate is

evaluated by adding its contribution to the GSTFT and STE estimates

using Equations 3.7 and 3.14. The resulting error is evaluated using

Equation 3.24. A similar procedure is applied to each remai ing

candidate, the one producing minimum error is chosen as the new estimated

value for x(n-y), and the corresponding GSTFT and STE estimates are

retained. Note that, for a fixed time n, the error is reduced with each

application of this procedure.
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Note that the algorithm described in this section can be applied to

reconstruction of right-sided sequences or other types of sequences for

which appropriate initial conditions have been specified. If necessary,

however, initial conditions may be generated by repeated application of

the reconstruction equations for some fixed time n. Once the initial

conditions have been established, n is incremented and the sequence is

reconstructed.

Finally, it is worth noting that reconstruction can be performed

directly from sampled data. For example, assume that only every other

time-domain sample is available from the analysis. The synthesis can be

advanced two time steps, rather than one step at a time, and smoothing

accomplished by an order of refinement different than that described by

Equation 3.27. Alternatively, a weighting function Wm(t) which is

nonzero only for X=O and X=2 can be used in a modified version of the

reconstruction algorithm. Although these approaches produce results

comparable to those produced by simply smoothing the sampled data prior

to reconstruction, they require considerably more computation time and

are therefore less practical.
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3.5 CONCLUSION

In this chapter, general guidelines for practical analysis/synthesis

systems have been established. These guidelines indicate that STE (or

some other constraint) must be used to prevent out-of-band components

from dominating the reconstructed signal. The analysis must use an

overlapped bandpass filter bank in which the filters do not possess both

constant passband gain and steep skirts. The speech analysis/synthesis

system based on perception meets these requirements.

In general, a transmission channel data rate which is twice the

original sampling rate must be used to achieve exact signal

reconstruction. However, if the F/D bank does not cover the full range

of possible frequencies, then a lower rate can be used. Under these

conditions, only signals within the range of the F/D bank can be

reconstructed. Thus, unlike other systems which require an increase in

transmission channel bandwidth when the sampling rate is increased, this

system produces results which are independent of the original signal

sampling rate.

The new signal reconstruction algorithm described in this chapter is

presently the only one known which is capable of performing

reconstruction from data produced by a critical bandwidth F/D bank. The

algorithm is an extension of an algorithm described by Nawab, et al [341.

The extension introduces a weighted mean squared error criterion and

non-causal processing to achieve practical results. The new algorithm is
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applicable to systems using both IIR and FIR analysis filters, and exact

reconstruction can be obtained in the absence of data modification. In

the absence of substantial data modification, reconstruction can be

accomplished in very little time by choosing a small value for Ymax. The

algorithm can incorporate measurements of different types (such as

Short-Time Energy), reconstruction can be accomplished from a limited

range of frequencies, and contributions to error can be weighted

according to frequency band if desired.

The new algorithm uses a sub-optimum reconstruction approach with a

sub-optimum error criterion, and does not generally minimize the total

error Etotal. However, it may not be possible to determine the optimum

solution with a finite amount of computation when infinite-length window

functions are involved. When the special case of an analysis using

uniformly spaced constant-bandwidth FIR filters spanning the full

frequency range is considered, other techniques are available which

attempt to minimize total error (eg., Griffin and Lim [10]; Musicus

[41]). The error criterion for the constant-bandwidth case, however, is

not perception-based. Although the new algorithm presented in this

chapter does not necessarily minimize Ctotal, the error value e(n) is

reduced with each refinement of the estimated sequence values. Note that

the error criterion can be either local or global, but a local criterion

is used to simplify the algorithm and reduce computation time.
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II

CHAPTER 4

EXAMPLES

4.1 INTRODUCTION

In this chapter, operation of the speech analysis/synthesis system

based on perception is demonstrated. Examples of tone bursts, tone pair

bursts, synthetic vowels, and natural speech signals are analyzed,

subjected to a short-time spectral modification, and synthesized,

Although the analysis/synthesis system is actually implemented using a

discrete-time approach, the examples are presented as continuous-time

functions.
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4.2 TONE BURST

Fig. 4.1 presents a 1 KHz tone burst of 32 millisecond duration.

Since the tone burst is essentially a bandlimited signal, no

pre-filtering was applied to suppress components outside the 200-3675 Hz

frequency range. The tone burst was analyzed by the speech analysis

system described in Sections 2.4.5 and 2.5. The resulting

Filter/Detector (F/D) outputs, which are computed via the Generalized

Short-Time Fourier Transform (GSTFT) magnitude squared, are shown in Fig.

4.2. The symbol "E" denotes Short-Time Energy (STE), and channel numbers

correspond to the filter numbers of Table 2.1. The amplitude scale of

Fig. 4.2 is logarithmic. A logarithmic scale is used in order to reveal

features which might otherwise be obscured, and to approximate perceived

loudness effects (Siebert [15]). After an initial transient, all F/D

outputs reach a steady-state value, and a final transient occurs at the

end of the tone burst. The highest value is attained in Channel 7 since

this channel has a center frequency of I KHz. From Fig. 2.12 it follows

that the steady-state level of Channel I is -55dB and Channel 15 is -43dB

re Channel 7. Fig. 4.2 can be re-plotted to show log amplitude as a

function of frequency with time as a parameter. Such a three-dimensional

(3D) running spectrum plot is presented in Fig. 4.3.

The reconstruction algorithm described in Section 3.4 was applied to

the data of Fig. 4.3, and the resulting signal is shown in Fig. 4.4. The

reconstructed signal of Fig. 4.4 is indistinguishable from the original

signal of Fig. 4.1, and is generally accurate to four significant

digits. Thus, the GSTFT magnitude is a complete means of signal

representation (apart from an arbitrary overall sign factor).
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Figure 4.1: Original Signal (1000 Hz)
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Figure 4.3: 3D Plot of Unmodified Data
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Figure 4.4: Reconstruction from Unmodified Data
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The reconstructed signal was analyzed, and the resulting values were

compared to the values of Fig. 4.3 in accordance with Equation 3.24. The

resulting error is shown in Fig. 4.5. This plot is normalized to the

peak error value of 4.9x10 9 . The area under the graph of Fig. 4.5

corresponds to the total error, ctotal" Note that the error plot of Fig.

4.5 is a function of data values raised to the fourth power. Thus,

reducing the tone burst amplitude by a factor of two reduces the error

plot by a factor of sixteen. In order to obtain an error measure which is

independent of signal level, the total normalized error is computed in

accordance with Equation 3.26. For this reconstruction example,

Etotal,norm m 1.QX1O-*

Next, a short-time spectral modification was employed in which

sixteen time-domain samples in each channel were averaged, and each

sample was replaced with the average value. The resulting modified data

is shown in Fig. 4.6. This modification, which is employed for

demonstration purposes, can be described in terms of Fig. 3.1. Since

sixteen channels are used and the data rate of each channel has been

reduced by a factor of sixteen, the transmission channel data rate of

Fig. 3.1 is the same as the sampling rate of the original signal. Thus,

in general, exact reconstruction from this modified data is impossible.

The analysis transformation A uses a "boxcar" lowpass filter (ie., a

filter with a constant amplitude, finite length unit-sample response)

followed by downsampling in each channel. The corresponding synthesis

transformation S uses upsampling followed by a boxcar lowpass filter in

each channel. Thus, the data of Fig. 4.3 is the input to A, and the data

of Fig. 4.6 is the output from S.

87



AD-Al5i 320 SPEECH ANALYSIS/SYNTHESIS BASED ON PERCEPTION(U) 2/3
MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB
J C ANDERSON 05 NOV 84 TR-707 ESD-TR-84-048

UNCLASSIFIE 1962885-C-0002F/G1712 NL

I .muumurnrnmo
E~hEEEEmumh



V-96-SC8VGN~iS Ao flY]Nifl IVNOfIN

9,111 11

ofr



,_tt

4.9x109  r v g I I I i l l I g i l - 1 1 1 1 1 1 I I I I Ir- - -

0 ~ l a I

.0032 .0352 t, sec.
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The short-time spectral modification used to obtain Fig. 4.6 is of

the type commonly employed in Automatic Speech Recognizer front-ends

(Section 5.4), channel vocoders (Section D.2), and power spectrum

estimation techniques (Section D.5) for data reduction purposes, although

such applications typically average together a far greater number of

samples. This simple data modification technique will be used Co

demonstrate many aspects of the reconstruction algorithm.

The reconstruction algorithm was applied to the data of Fig. 4.6,

and the signal of Fig. 4.7 was obtained. The reconstruction is roughly a

tone burst of correct amplitude, frequency, and duration. Since the

modified data of Fig. 4.6 differs most from the unmodified data of Fig.

4.3 at the beginning and end of the burst, the reconstruction bears least

resemblance to the original signal at the beginning and end of the burst.

In order to verify the algorithm operation, the reconstructed signal

of Fig. 4.7 was analyzed, producing the 3D plot of Fig. 4.8. Comparison

of Figs. 4.3, 4.6, and 4.8 demonstrates the ability of the algorithm to

reconstruct a real-valued signal having short-time spectral

characteristics which match the given data. Since the plots are on a

logarithmic scale, low level differences may appear exaggerated.

Reconstruction error is plotted in Fig. 4.9. The peak error value

of 9.7x1016  and the total normalized error value of 6.8x10- 3 are many

orders of magnitude greater than values for the previous example. Since

significant error occurs only at the beginning and end of the tone burst,

the total normalized error decreases with increasing tone burst duration

for this example.
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Figure 4.7: Reconstruction fromx Modified Data
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Figure 4.9: Error (1000 Hz, Modified Data)
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It will be shown, via several examples, that the reconstruction

algorithm of Section 3.4 performs well in the presence of short-time

spectral modifications. Although no attempt will be made to optimize the

algorithm for any particular modification, it is possible to reduce

reconstruction error by doing so. For example, error may be reduced by

choosing an error weighting function which extends over several periods

i of the modification. This approach, however, significantly increases

computation time and implementation complexity, and will not be

considered here. Note that the largest error peak of Fig. 4.9 can be

reduced by simply setting the reconstructed sequence values to zero prior

to t=.0032 sec. This can be done based on the fact that STE and all F/D

channels are zero prior to this time. The reconstruction algorithm

produced nonzero values in Fig. 4.7 because the modified data changed

abruptly rather than in a bandlimited fashion. Since the model of the

analysis system contained in the reconstruction process (see Fig. 3.2)

produces only bandlimited functions, and the modified data does not agree

with the model, a spike occurs in the error whenever a discontinuity

occurs in the data. This effect can be seen by comparing Figs. 4.6, 4.8,

and 4.9. In order to reduce error spike amplitudes, a smoother

short-time spectral modification must be chosen. For example,

considering each channel separately, when the value at each discontinuity

in Fig. 4.6 is replaced by an average of the surrounding steady-state

values, the maximum error value is reduced nearly 20%. This error

reduction was accomplished without setting any values to zero prior to

t-.0032 sec. Since the resulting surface is somewhat smoother, the

reconstruction algorithm produces a signal having a short-time spectrum
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which better matches the smoothed data. However, the fact that

reconstruction error is reduced does not generally indicate that a signal

reconstructed from smoothed modified data will bear closer resemblance to

the original signal. Thus, such smoothing will not be employed as an aid

to reconstruction from modified data. For demonstration purposes, the

algorithm described in Section 3.4 will be applied directly in all

examples.
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4.3 TONE PAIR BURSTS

A 450 and 2500 Hz tone pair burst is shown in Fig. 4.10. From Fig.

2.12 it can be seen that the filters having center frequencies at 450 and

2500 Hz overlap at the -40dB level. Thus, since the signals are widely

separated in frequency, the analysis of Fig. 4.11 does not reveal any

interaction between the two component sinusoids. Each F/D output reaches

a steady-state value (see Section B.3.7). A short-time spectral

modification was applied by averaging sixteen samples in each channel,

and each sample was replaced with the average value as shown in Fig.

4.12. The reconstruction algorithm was applied to the modified data, and

the result is shown in Fig. 4.13. The reconstructed signal was then

analyzed, and the results are shown in Fig. 4.14. Corresponding error is

plotted in Fig. 4.15, and is comparable to the single tone burst case

shown in Fig. 4.9, although the peak error value of 1.2x101 6  is

considerably less due to a reduction in average input signal level. The

total normalized error value of 8.4xi0- 3 is comparable to that of the

single tone burst case since both signals are of the same duration. As

in the single tone burst data modification example, total normalized

error is a function of tone pair burst duration for this example.

A 1000 and 1600 Hz tone pair burst is shown in Fig. 4.16. Since the

filters at the corresponding center frequencies overlap at the -18dB

level, some interaction between the spectral components is visible in the

analysis of Fig. 4.17. Each F/D output consists of a constant and a beat

frequency component (see Section B.3.8). When the short-time spectral

modification is applied, the beat frequency component is eliminated as

shown in Fig. 4.18. Thus, the surface of Fig. 4.18 represents
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Figure 4.10: Original Signal (450 &2500 Hz)
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inconsistent information. On one hand, the data indicates presence of two

sine waves because two spectral peaks are visible. On the other hand, if

two sine waves are present then beat frequencies should (,zcur, but none

are visible in the data of Fig. 4.18. Thus, given the inconsistent data

of Fig. 4.18, a reasonable signal reconstruction approach might be to

first choose two sinusoidal components as indicated by the spectral

peaks. A low-level periodic waveform having amplitude and frequency

determined in accordance with an error criterion could then be added to

the two sinusoids, thereby reducing the beat frequencies in order to

approximate the data of Fig. 4.18. This was exactly the result obtained

upon application of the reconstruction algorithm to the data of Fig.

4.18, as shown in the reconstruction of Fig. 4.19. Analysis of the

reconstructed signal is shown in Fig. 4.20, and it can be seen that the

reconstruction algorithm inserts a third sinusoidal component to

compensate for the inconsistent data of Fig. 4.18. The plot of Fig. 4.21

reveals a 530 Hz oscillation in the error. Since there are few

discontinuities in the data of Fig. 4.18, there are few spikes in the

error plot of Fig. 4.21. Since the area under this error plot during the

steady-state portion of the tone pair burst is greater than the area

under the error transients at the beginning and end of the burst, the

total normalized error does not depend strongly on tone pair burst

duration. The total normalized error value of 3.1x10- 2 is nearly four

times that of the previous tone pair burst example, and the peak error

value of 2.4x10' 6 is twice that of the previous example.

106

6 "



X( t)
509000

0

-50,000

.0032 .0352 t, sec.

Figure 4.19: Reconstruction from Modified Data

107



4E

- 0.0384

I~~~~~~~ "t'b I/// i // /

6 ~ ~ ~ ~ ~ ~ ~ 00 of, 3 ~87 811111

KPFCJUENC'I

Figure4.20:3D Plo of AalyedRecontuto

0.0F

1083

***.001. ..



Ctotal,norm 3.1x10 2

C(t)

2.4x i01 6  , , , , , , , , , ,

A&AAAAAAAAAAAAAAJl
I I I I I I I I I I I I I I I I I

.0032 .0352 t, sec.

Figure 4.21: Error (1000 & 1600 Hz)

1 flY

. . . . .. ... .. . . . . -



Finally, a 1000 and 1170 Hz tone pair burst is shown in Fig. 4.22.

Since filters at the corresponding center frequencies overlap at the -3dB

level, spectral components are not resolved in the frequency domain

characteristics of Fig. 4.23, although beat frequencies are apparent in

the time dimension. Short-time spectral modification severely distorts

these beat frequencies, and inserts large discontinuities as shown in

Fig. 4.24. A poor quality reconstruction is obtained, as shown in Fig.

.4.25. The analyzed reconstruction is shown in Fig. 4.26, and the

corresponding error in Fig. 4.27. The peak error value of 4.6x1016 and

total normalized error value of 5.6x0 -2 are the largest of any examples

thus far. Again, since the area under the error plot during the

steady-state portion of the tone pair burst is greater than the area

under the error transients at the beginning and end of the burst, the

total normalized error does not depend strongly on tone pair burst

duration.
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Figure 4.24: 3D Plot of Modified Data
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4.4 SYNTHETIC VOWELS

Synthetic vowels provide a controlled speech-like signal for testing

and demonstration purposes. Such vowels can be conveniently generated

via an acoustic tube vocal tract model (Rabiner and Schafer [31). An

example, the synthetic vowel /E/ as in "bet," is shown in Fig. 4.28.

Vowel sounds are often characterized in terms of their spectral peaks, or

formants (Peterson and Barney [42]). This vowel has a first formant

frequency Fl of 530 Hz. The second and third formants are F2f1840 and

F3=2480 Hz. Formant bandwidths are 40 Hz for F1, 60 Hz for F2, and 100

Hz for F3. The pitch frequency is FOf125 Hz, so a male speaker is

simulated. The pitch is visible in the time dimension and formant peaks

are visible in the frequency dimension of Fig. 4.29. Note that F1 has a

far higher level than F2 or F3, and thus is the most important feature

for reconstruction spectral matching purposes.

As in previous examples, the data was modified by averaging sixteen

time-domain samples in each channel, and replacing each sample with the

average value as shown in Fig. 4.30. The reconstruction algorithm was

applied to the modified data, and the results are shown in Fig. 4.31.

The reconstructed signal was then analyzed, and the result is shown in

Fig. 4.32. A comparison of Figs. 4.32 and 4.30 reveals that Fl of the

analyzed reconstructed signal provides a good match to the modified

spectrum. This observation is supported by the corresponding error shown

in Fig. 4.33. The peak error value of 2.0x1016 is comparable to that of

the tone pair burst examples since similar average signal levels are

used. The total normalized error value of 4.3xi0 - 2 is also comparable to

previous examples, and does not depend strongly on signal duration.
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A similar synthetic vowel, /AE/ as in "bat," is shown in Fig. 4.34.

This vowel has formant frequencies FI=660, F2-1720, and F3-2410 Hz.

Formant bandwidths and pitch are the same as for the previous example.

The analyzed signal is shown in Fig. 4.35. The data was modified as shown

in Fig. 4.36. In this example, the short-time spectral modification

produces large discontinuities in Fl as compared to the previous example.

The reconstruction algorithm was applied to the modified data, and

results are shown in Fig. 4.37. The reconstructed signal was analyzed as

shown in Fig. 4.38. A comparison of Figs. 4.38 and 4.36 reveals a

relatively poor match between Fl of the analyzed reconstructed signal and

the modified spectrum, due to the reconstruction algorithm's inability to

model discontinuities. The discontinuities also cause large spikes in the

corresponding error of Fig. 4.39. Although the peak error value of

2.0xlO 16 is the same as the previous example, the total normalized error

value of 8.4x10- 2 is twice that of the previous example.
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4.5 NATURAL SPEECH SIGNALS

Fig. 4.40 presents a time-domain plot of the sentence "Their hot

protein can pace on our breakdowns" as spoken by a male subject. This

signal has been pre-filtered to suppress components outside the 200-3675

Hz frequency range. The signal of Fig. 4.40 was analyzed, and Fig. 4.41

is a plot of the resulting F/D outputs. In order to reduce the figure

size, one of every eight F/D output samples (in the time domain) was used

to create the 3D plot of Fig. 4.42. Many features of the speech signal,

such as vowel structures, can be seen in the analysis of Fig. 4.42.

Interpretation of this type of speech display is discussed by Searle

[43], [44]. The reconstruction algorithm was applied to the

non-downsampled data of Fig. 4.41, and the result is shown in Fig. 4.43.

Except for an overall sign factor, the reconstruction of Fig. 4.43 is

indistinguishable from the original signal of Fig. 4.40.

For demonstration purposes, a short phrase "their hot," shown in

Fig. 4.44, was obtained from the sentence of Fig. 4.40. The short phrase

was analyzed, and a portion of the results are shown in the 3D plot of

Fig. 4.45. The reconstruction algorithm was applied to the unmodified

F/D outputs, and the signal of Fig. 4.46 was obtained. The reconstructed

signal of Fig. 4.46 is indistinguishable from the original signal of Fig.

4.44, and has the same overall polarity.
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The F/D outputs were then modified by averaging sixteen time-domain

samples together in each channel, and replacing the samples with average

values. A portion of the modified data is shown in the 3D plot of Fig.

4.47, and the resulting reconstruction is shown in Fig. 4.48. Note that

the correct pitch has been retained, and the reconstructed signal appears

somewhat noisy. The analyzed reconstruction is shown in Fig. 4.49, and

the corresponding error in Fig. 4.50. Since the average signal level is

less than in previous examples, the peak error value of 7.4x10 15 is also

less. The total normalized error value of 7.4x10- 2 , however, is

comparable to that of previous examples. The total normalized error does

not depend strongly on signal duration for the examples given in this

section.
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Next, a short-time spectral modification was considered in which the

data was not so severely distorted. This modification averaged

time-domain samples together in each channel and replaced the samples

with average values, but fewer samples were averaged in the high

frequency channels. To ensure that all channels were modified to some

extent, two samples were averaged together in each of the high frequency

channels. More samples were averaged in lower frequency channels

according to their bandwidth. Specifically, 7 samples were averaged in

the energy channel, 6 samples in Channels #1-2, 5 in #3-4, 4 in #5-7, 3

in #8-10, and 2 in #11-15. Note that this modification is different from

the modification used in all previous examples, where the same number of

samples was averaged regardless of filter bandwidth. This short-time

spectral modification corresponds more closely to a simple decimation and

interpolation of the F/D and STE outputs, as discussed in Section 2.6. A

portion of the slightly modified data is shown in Fig. 4.51, and the

resulting reconstruction is shown in Fig. 4.52. The reconstructed signal

is similar to the original, although differences are clearly visible.

The reconstructed speech sounds quite similar to the original signal, but

the two signals are audibly distinguishable. The analyzed reconstruction

is shown in Fig. 4.53, and the corresponding error in Fig. 4.54. The peak

error value of 1.7x10 15 and the total normalized error value of 9.3x10- 3

are far less than values obtained for the previous example.
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Finally, a short-time spectral modification was considered in which

the data was highly distorted. The F/D outputs were modified by

averaging many samples together in each channel, and replacing the

samples with average values. Specifically, 74 samples were averaged in

the energy channel, 50 samples in Channels #1-2, 45 in #3, 41 in #4, 35

in #5, 33 in #6, 31 in #7, 26 in #8, 23 in #9, 20 in #10, 17 in #11, 15

in #12, 13 in #13, 11 in #14, and 9 in #15. The number of samples

averaged in each channel corresponds to the minimum sampling rate for the

channel based on 3dB bandwidths, ie., 5000 divided by the critical

bandwidth (see Section 2.6). Since values are averaged, however, the

resulting data is highly modified and unsuitable for signal recovery

purposes. The resulting transmission channel data rate of 7276 samples

per second is less than the original signal sampling rate of 10,000

- samples per second. Therefore, this spectral distortion is more severe

than any considered in previous examples. A portion of the highly

modified data is shown in Fig. 4.55, and the resulting reconstruction is

shown in Fig. 4.56. The averaging process destroys periodic pitch

information, and the reconstructed signal appears quite noisy. The

overall envelope of the reconstructed waveform, however, is similar to

the original waveform envelope. The waveform reconstructed from highly

modified data sounds like very noisy speech. Analysis of the

reconstructed signal is shown in Fig. 4.57, and the corresponding error

in Fig. 4.58. Although the peak error value of 6.9x10 1 5  is comparable

with the value obtained in the modified data example of Fig. 4.50, the

total normalized error value of 1.2x10 -1 is greater since the area under

the plot of Fig. 4.58 is greater than the area under the plot of Fig.

4.50.
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Figure 4.56: Reconstruction from Highly Modified Data
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4.6 CONCLUSION

Operation of a speech analysis/synthesis system based on perception

-. has been demonstrated via several examples. The system achieves exact

reconstruction (to within an overall sign factor) in the absence of data

modificaton, and the ability of the system to reconstruct speech from

modified data has also been demonstrated. Note that the data modification

technique of this chapter, ie. averaging, was used solely for

demonstration purposes and is not recommended for data reduction.

Recommended data reduction techniques will be discussed in Section 5.3.
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CHAPTER 5

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 SUMMARY

This report has presented a speech analysis/synthesis system based

on perception. A nonuniform Filter/Detector (F/D) bank and optional

Short-Time Energy constraint formed the analysis system. F/D bank

characteristics were determined from a combination of physiological and

psychoacoustic results. A new relationship demonstrated that the F/D

bank could be implemented by the Generalized Short-Time Fourier Transform

(GSTFT) magnitude, and a digital implementation suitable for real-time I
analysis was given. For speech synthesis, a new approach capable of
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reconstructing signals from the GSTFT magnitude was used. The speech

analysis/synthesis system achieved exact reconstruction in the absence of

data modification. The ability of the synthesis system to reconstruct

speech from modified data was also demonstrated.

5.2 REAL-TIME SYNTHESIS

Although the analysis system described in Chapter 2 and Appendix C

is suitable for real-time operation using existing technology, the

synthesis system of Chapter 3 generally is not. Further improvements in

the synthesis algorithm, however, may produce a real-time

analysis/synthesis system based on perception. For example, the triangle

and Schwartz inequalities (Churchill, Brown, and Verhey [45]) can be

applied to the recursive GSTFT of Equation 2.29, resulting in an

expression which directly relates reconstructed sequence values with the

GSTFT magnitude. It may be possible to perform crude real-time synthesis

from such results. Alternatively, it may be possible to use a synthesis

approach similar to that employed by channel vocoders (Section D.2).
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5.3 DATA REDUCTION

Although data reduction is not an essential part of an auditory

system model, it may be useful in many applications. When little data

reduction is required, the standard downsampling/upsampling approach of

Section 2.6 is applicable. When a high' degree of data reduction is

required, more sophisticated approaches may be used. For example, it is

clear from Figs. 4.41 and 4.42 that an efficient encoding can be

accomplished by matching the STE and F/D output time-domain waveforms

with a few well-chosen prototype wave shapes. Such an encoding can be

performed automatically by a principal components approach (Chu [161).

Effectively, the principal components analysis applied to the temporal

domain performs a type of pitch extraction. A principal components

synthesis, followed by signal reconstruction from the resulting modified

data, produces a signal which sounds quite similar to channel vocoded

speech (see Section D.2). Speech can be obtained via this approach using

transmission channel data rates on the order of 10,O0O bits per second

(not samples per second). Further research in this area may prove

beneficial to the design of channel vocoders based on properties of the

human auditory system (Gold and Tierney [46]).
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5.4 AUTOMATIC SPEECH RECOGNITION MACHINE DESIGN

When an Automatic Speech Recognition (ASR) machine fails to

correctly identify a spoken input word, the failure may be due to

inadequacies in the first processing stage, or "front-end." Note that

front-end inadequacies can cause unavoidable errors in subsequent stages.

Since the new algorithm described in Chapter 3 is the only known means of

reconstructing speech from critical bandwidth F/D outputs, it provides a

new tool for ASR machine front-end design. Front-end inadequacies can

now be discovered when a synthesis technique is used to test the analyzed

speech data for suitable information content.

The need for a synthesis system in ASR machine front-end testing can

be illustrated by a few simple examples. A bank of bandpass filters

having constant passband gain and minimum passband overlap is often used

in ASR front-ends (Schafer, Rabiner, and Herrrqann [471; Rubinstein and

Silverman [48]; Dautrich, Rabiner, and Martin [491, 1501). If the

filters are carefully designed, it is possible to reconstruct the input

signal by simply adding the non-detected filter outputs together. When

the filters are followed by detectors, however, practical reconstruction

of signals from the resulting F/D bank outputs is impossible. For

instance, tones of widely different frequencies produce identical

steady-state F/D outputs (see Section 3.2.2), and reconstruction of such

signals is impossible. Since humans have excellent frequency resolution

ability, it is clear that this type of F/D bank cannot be used to perform

many waveform discrimination tasks easily performed by humans. For
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examples relevant to the task of speech recognition, consider the

synthetic vowels /E/ and /AE/ depicted in Figs. 5.1, 5.2, and 5.3. In

order to achieve control over each individual spectral component, these

vowels were created by adding sine waves rather than using an acoustic

tube vocal tract model as in Section 4.4. Assume that a critical

bandwidth F/D bank having constant passband gain and minimum passband

overlap is designed by interpolating the data of Table 2.1. When the F/D

bank is used to analyze the synthetic vowels of Fig. 5.1, it follows from

Sections 3.2.2, B.3.7, and B.3.8 that the two vowels yield identical

steady-state outputs. Thus, it is impossible for an ASR machine equipped

with such a front-end to distinguish between these steady-state sounds. A

similar result holds for several other vowel pairs including the lOW!

sound in "bought" and the /U/ sound in "foot," as well as the /UH/ sound

in "but" and the /ER/ sound in "bird." The importance of this effect with

regard to specific speech recognition vocabularies is a topic for further

research, and a speech synthesis system similar to that described in

Chapter 3 can be applied to test the results. Of course, such problems

are avoided altogether when the speech analysis system of Chapter 2 is

used.

In addition to testing front-ends, the synthesis approach can be

used to test effects of subsequent processing stages. Such tests can

reveal loss of information relevant to recognition of a given vocabulary.

Note that loss of irrelevant information may be useful for data reduction

purposes. Such loss is acceptable so long as the nature of the loss is
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understood and the results can be tested. Testing is accomplished via

synthesis from the modified data, as demonstrated in Chapter 4. For

example, to achieve data reduction an additional narrow lowpass filter is

often placed at each F/D output or, equivalently, a narrow lowpass

smoothing filter is used in the detector. The short-time spectral

modification examples of Sections 4.4 and 4.5 indicate that a great deal

of information is lost when speech is processed by such a system. The

information loss, however, may or may not be important for a specific

speech recognition vocabulary. Again, this is a topic for further

research. Note that approaches to data reduction other than narrow

lowpass filtering can be used which do not sacrifice intelligibility of

the reconstructed speech (Section 5.3). Such approaches are therefore

suitable for a wider variety of vocabularies.

The preceding observations are consistent with experimental results

reported in the literature. For example, a recent study (Dautrich, et al

[491, (501) has shown that a word recognizer based on Linear Predictive

Coding (LPC) techniques performed better than a particular 13-channel

critical band F/D bank design. In this study the lowpass smoothing

filter cutoff frequencies were chosen so that each F/D output could be

sampled at a 67 Hz rate regardless of the bandpass filter bandwidth, and

the digital bandpass filters had constant passband gain and minimum

passband overlap. In an earlier study (White and Neely [511), LPC was

compared with a 20-channel overlapped F/D bank (1/3 octave analog filters

were used to cover the 100-10,000 Hz range) using a 100 Hz sampling rate
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on each channel, and similar scores were produced by both the F/D and LPC

approaches. Finally, a study using mel-frequency cepstrum coefficients,

which are similar to processed critical band F/D bank outputs, achieved

superior performance compared to LPC (Davis and Mermelstein [52]).

The comparison of speech recognizers using different front-ends is a

difficult task. On one hand, if a high quality speech signal can be

reconstructed from F/D bank front-end outputs, then any speech recognizer

-rrors must be attributed to the recognition algorithms rather than

front-end inadequacies. Since a high quality signal cannot generally be

reconstructed from data produced by LPC front-ends (the signal may not

fit the model assumed by LPC analysis/synthesis), the F/D bank approach

can potentially outperform the LPC approach. On the other hand, the LPC

approach may be more convenient since it achieves a high degree of data

reduction. Therefore, an important topic for future research is a

comparison of speech recognizers using LPC with those using F/D bank

front-ends followed by data reduction approachs which do not sacrifice

speech intelligibility.

O
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APPENDIX A
I.

DEFINITIONS

This appendix presents standard definitions for reference purposes

(for further information, see Oppenheim and Willsky 153j). In the

continuous-time case, the time variable is "t" and the frequency variable

is 11." In the discrete-time case, the time variable is "n" and the

frequency variable is "w."
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The continuous-time Fourier transform of a signal x(t) is defined

as:

FTjx(t)} X(JQ)

f x(t)-S d.(A.1)

The continuous-time inverse Fourier transform is:

X(t) =(1/20f X(jil)ej" tdR. (A.2)

The modulation property of continuous-time Fourier transforms is given

by:

FTfx(t)y(t)) (1/2w)!X(jn)*Y(jS2))

The discrete-time Fourier transform of a signal x(n) is defined as:

FTJ x(n)} X(ejw)

= x(n)ein (A.4)

The di~qcrete-time inverse Fourier transform is:

x(n) = (/2r )X(eiw)eiwndw. (A.5)
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The modulation property of discrete-time Fourier transforms is given by:

FTjx(n)y(n)} (l/21r)[X(eju')*Y(eiw)J

=(1/27r)f H X(ej' )Y(ejw-jX)dX. (A.6)
__T

The z-transformn of a discrete-time signal x(n) is defined as:

X(z) = x()z-n, (A.7)
n=-

where z is a complex variable.

The Laplace transform of a continuous-time signal x(t), specified

for t0O, is:

LTjx(t)} f x(t)e-stdt, (A.8)
0

where s is a complex variable.
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APPENDIX B

F ILTER/DETECTOR THEORY

B.1 INTRODUCTION

This appendix presents details of Filter/Detector (F/D) theory,

which is used throughout the main body of the report. First, each

component of a continuous-time F/D subsystem is defined. Responses of

several commonly used continuous-time F/i) subsystems are then examined.

Derivations are performed in the continuous-time domain so that results

may be conveniently compared with the given references. Similar results

can be derived for corresponding discrete-time cases if the sampl 4ng rate

is adequate to prevent significant aliasing error.
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*B.2 CONTINUOUS-TIME FILTER/DETECTOR COMPONENT DESCRIPTION

A F/D subsystem consists of a bandpass filter followed by a

detector, as shown in Fig. B.I. The detector is comprised of a

memoryless nonlinearity and a lowpass smoothing filter.

8.2.1 BANDPASS FILTER DESIGN

A simple design procedure for Linear Time-Invariant (LTI) bandpass

filters involves modulating the impulse response of a prototype lowpass

filter. Let the prototype lowpass filter impulse response be denoted by

h(t). The function h(t) is also known as a window function because it

sometimes serves as a time domain "window" through which signals are

viewed. As a specific example of the design procedure, let h(t) be the

impulse response of an ideal LTI lowpass filter,

h(t) = [sin(iht)]/rt. (B.1)

The window function's Fourier transform FT{h(t)} is shown in Fig. B.2a.

In the frequency domain, the window function has bandwidth Sh and unity

gain. From the modulation property of Fourier transforms (see Appendix

A), the function h(t)sin(Rct) is the impulse response of a bandpass

filter. Frequency domain magnitude characteristics of the bandpass

filter are shown in Fig. B.2b. When Olh<slc the bandpass filter

designed in this manner has center frequency Oct bandwidth 2Qh, and a

gain of one-half.
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DETECTOR
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I

x(t) BANDPASS (t) I MEMORYLESS w(t) SMOOTHING av(t)
INPUT I FILTER I NONLINEARITY FILTER -- OUTPUT

II

i "Figure B.I: General Filter/Detector Subsystem

FT{ h(t)j

h h

(a) Ideal Window Function Characteristic

"FT h(t)sin(Qct)} I

2+Q h 2Qh- - I
.5

-Qc 0 Qc Q+

(b) Corresponding Bandpass Filter Characteristic

Figure B.2: Bandpass Filter Design Example
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Although many bandpass filter design procedures exist, only the

approach which modulates a prototype lowpass filter will be discussed.

It is shown in Section 2.4 that this particular design technique is used

in Short-Time Fourier Transform analysis. The technique is also useful

in auditory system modeling, as shown in Section 2.2.

In practical applications a window function other than the impulse

response of an ideal lowpass filter is used. When h(t) is the impulse

response of a non-ideal lowpass filter, Qh is chosen such that frequency

components in the region ISIP)h are negligible. In Sections 2.4.2.3 and

D.4, this bandwidth is referred to as the one-sided main lobe bandwidth.

B.2.2 MEMORYLESS NONLINEARITIES

A device is memoryless if its output at any given time depends only

upon the input at that time. For example, let the input to a device be

y(t) and the output be w(t). The device is memoryless if w(t) at some

time to depends only upon y(t0 ).

Let the waveform a(t) be the output of a device in response to any

input waveform a(t), and a(t) be the response to b(t). The device is

nonlinear in the system theory sense if the input cla(t)+c 2b(t) does not

yield an output cla(t)+c 2a(t), where cl and c2 are constants.

An example of a device which is both memoryless and nonlinear is the

square law device described by the input-output relationship:

wi(t) y2(t). (B.2)
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Another memoryless nonlinearity is the full wave piecewise linear device

described by the input-output relationship:

w2(t) - ly(t)l. (B.3)

The half wave piecewise linear device is a memoryless nonlinearity

described by the input-output relationship:

w3(t) - [y(t)/21 + [ly(t)1/2J. (B.4)

The half wave piecewise linear device can be followed by a square law

device to implement a half wave square law device with input-output

relationship:

w4 (t) [y2(t) + y(t)ly(t)Ij/2. (B.5)

In addition to those described above, other devices such as exponential

and square root are often useful.

The F/D of Fig. B.1 will accomplish demodulation so long as the

memoryless nonlinearity does not possess an input-output relationship

with odd function symmetry (Taub and Schilling [281). Devices with odd

function symmetry produce signals with equal positive and negative

excursions which may lead to a smoothing filter output of zero. Note

that the half wave square law device of Equation B.5 consists of an even

function y2(t)/2 and an odd function y(t)ly(t)1/2. Since y(t) is a

narrowband signal, contributions from the odd function can be eliminated

by the smoothing filter. Thus, a smoothed version of the square law

device output wl(t) differs only by a factor of two from a smoothed

version of the half wave square law device output w4(t).
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B.2.3 SMOOTHING FILTERS

The smoothing filter can be implemented as a LTI lowpass filter with

bandwidth s" The smoothing filter impulse response hs(t) is not I

necessarily the same as the window function h(t).

In many applications it is desirable to use a F/D whose output is

always positive. For example, a F/D using a square law device may be

used to measure average power spectra (Flanagan [1)), and a F/D with a

half wave square law device can be used to model auditory nerve firing

patterns (Siebert [18]). Since negative power spectra and negative

firing rates are meaningless, a positive F/D output is required. Also,

the F/D is often followed by a square root device (Sondhi, Schmidt, and

Rabiner [54]) or a logarithmic amplifier (Searle [43]). A positive F/D

output is clearly required in such cases. Unless otherwise stated, a

positive F/D output will be assumed.

The requirement for positive F/D output may place a restriction on

the smoothing filter design. Assume the memoryless nonlinearity output

is always positive. From the F/D subsystem shown in Fig. B.1, it follows

that the smoothing filter must produce a positive output v(t) in response

to a positive input w(t). Since any LTI filter with positive impulse

response will produce a positive output given a positive input, the

restrictions Ow(t) and Ohs(t) are sufficient to ensure that 0rv(t) for

all t. Although these restrictions are not always necessary (a

counter-example is given in Section 2.4.2.2) they are practical design

guidelines which conveniently guarantee a positive F/D output.
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In certain cases it is easily shown that a smoothing filter with

positive impulse response is necessary, as well as sufficient, to

guarantee a positive F/D output. For example, assume the bandpass filter

has no spectral zeros and the memoryless nonlinearity is a full wave

piecewise linear device. Choosing x(t) so that the product of its

Fourier transform and the bandpass filter transfer function are unity

leads to an impulse at the bandpass filter output, y(t)=6(t). An impulse

also appears at the smoothing filter input, w(t)=6(t). Since the

resulting subsystem output v(t) must be positive, the smoothing filter

must have a positive impulse response.

An ideal smoothing filter is a LTI filter having positive impulse

response and constant magnitude across its lowpass bandwidth. Although

the ideal smoothing filter is a useful concept, it can be shown that such

a filter does not exist (Siebert [551). When hs(t)>O, IFTjhs(t)})

evaluated at the frequency 2=0 is strictly greater than IFT{hs(t)}

evaluated at any other frequency 9*0.

Despite the absence of an ideal smoothing filter, a variety of

practical smoothing filter designs are possible. For example,

hs(t) - [sin 2 (ast/2)J/(rt)2  (B.6)

has a Fourier transform which is zero for II>fs .  Another design is the

causal filter
Id

hs(t) - t2e " t, O<t

= 0, otherwise, (B.7)
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where a and $ are positive real constants. This filter is discussed

further Chapter 2. Channel vocoders sometimes use Bessel filters which

have a small negative overshoot in the impulse response (Sondhi, et al

[54]). To maintain an overall positive impulse response, a small positive

offset must be added to the Bessel filter impulse response. When a

finite duration impulse response is required, a function such as the

Hamming window may be used to truncate the impulse responses of Equations

B.6 or B.7 (Rabiner and Gold [56]). Alternatively, since a Hamming window

is the impulse response of a lowpass filter and is always positive, it

may be directly used as a smoothing filter.
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B.3 CONTINUOUS-TIME FILTER/DETECTOR RESPONSES

In this section, responses of several F/D subsystems to a variety of

signals are examined in detail. Three commonly used continuous-time F/D

subsystems which differ in memoryless nonlinearity type and smoothing

filter bandwidth are shown in Fig. B.3. Smoothing filter bandwidths for

the square law, full wave piecewise linear, and half wave piecewise

linear detectors are Rsl, Sls2, and 3, respectively. For convenience,

all three LTI smoothing filters are assumed to have the ideal

characteristics of unity gain, zero delay, and positive output given a

positive input.

Fig. B.3a depicts a F/D subsystem using a square law device in the

detector. A square root device is present so that output levels are the

same order of magnitude as those given by detectors using full wave or

half wave piecewise linear devices. If the F/D outputs are followed by a

logarithmic amplifier, as is often the case in practice, then power law

devices at the output have little effect on the final result.

Fig. B.3b depicts a detector using a full wave piecewise linear

device, which is drawn as a square law device followed by a square root

device. The half wave piecewise linear device of Fig. B.3c is represented

by a diode symbol.

% I
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(a) Square Law Device

INPUT htsn2t)-).h 5 ()OUTPUT

(b) Half Wave Piecewise Linear Device

Figure 8~.3: Commonly Used Filter/Detector Subsystems
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B.3,1 SQUARE LAW DETECTOR RESPONSE TO ARBITRARY INPUTS

For any arbitrary input signal x(t), the spectrum of y(t) is

bandlimited to the region Qc-h<jfllQc4h as shown in Fig. B.4a. Note

that the graphs of Fig. B.4 do not represent the exact Fourier transform

of any particular signal, but indicate regions where non-negligible

spectral components may exist. From the modulation property of Fourier

• transforms (see Appendix A), it follows that the spectrum of wl(t)

Sonsists of low and high frequency regions as shown in Fig. B.4b. If the

smoothing filter bandwidth is chosen so that 2h<Ssj< 2S1c-2Sh, then no low

frequency information is lost but all high frequency components are

eliminated from vo(t).

B.3.2 FULL AND HALF WAVE PIECEWISE LINEAR DETECTOR RESPONSES TO

ARBITRARY INPUTS

In this section, it is shown that the full wave piecewise linear

detector output w2(t)=jy(t)I can be expanded in terms of even powers of

y(t). The spectrum of ly(t)l can therefore be determined from the

spectrum of y(t) by repeated application of the modulation property. The

result is a new Fourier transform operation which, given the spectrum of

a signal, determines the spectrum of the absolute value of the signal. It

follows from Equation B.4 that a similar result may be applied to the

half wave piecewise linear detector.
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I FTJ y(t)1 I

(a) Spectral Regions Occupied by the Bandpass Filter output

IFTjwi(t)jj

c -h h ~ c

(b) Spectral Regions Occupied by the Square Law Device Output

*Figure B.4: Square Law Detector Response to Arbitrary Inputs
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The input-output characteristic of a full wave piecewise linear

device is given by:

w2(t) - ly(t)I. (B.8)

Since the device is memoryless, time dependence of the signals is

unimportant and the time parameter may be suppressed. Equation B.8 can

thus be written as:

w= lyl. (B.9)

Assume the device input amplitude is limited to some arbitrary

finite range -R<-yR. Using the Fourier series expansion for a triangle

wave, which is identical to the input-output characteristic over the

specified range,

w= (R/2) - (4R/7r2) I (2n-0-2 cos[(2n-1)7ny/RI. (B.10)

The cosine function can be expanded via a power series f or any y:

cos[(2n-I)iry/RI l (-1)m[(2n-l)iry/RJ 2m/(2m)!. (B.11)

Substitution of Equation B.11 into B.10 yields:

W2 ay2 (B. 12)

where

am = (4R/7r2 )[K-1)m(IT/R) 2m/(2m)!J[ (2n-1)2m-2j. (B.13)
n-I
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The full wave piecewise linear device output w2 (t) can thus be expressed

in terms of even powers of its input y(t). Note, however, that the

coefficients am have infinite values.

If the number of terms in the series expansion is limited,

*. m=1,2,...,M, an appropriate set of finite values for am can be obtained

from truncated versions of the Fourier series of Equation B.1O and the

power series of Equation B.11. The Fourier series converges rapidly, and

relatively few terms are required to obtain results within a specified

accuracy. Each of the cosine terms in the truncated Fourier series is in

turn expanded by the slowly converging power series. The cosine

expansions must contain enough terms so that error given by truncation of

the original Fourier series is not significantly increased. A large

value of M is thus required to obtain a reasonably accurate

approximation. Any constant term in the resulting expansion should be

eliminated so that the approximation produces zero output in response to

zero input.

Appropriate coefficient values can also be computed using a minimum

mean squared error (MMSE) criterion. The mean squared approximation

error is given by:

=f R[ M

EM f [jyj - ) amy2mj2dy. (B.14)
-R m=l

To obtain the value of any particular coefficient ai which minimizes the

error for i-1,2,...,M:
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aeM/aai - 0

R M

R-4f 2my - . amy2 m)y2idy. (B.15)
0 rn-I

The solution is given by

I/(i+l) -m~ 
a mR2m - 1/(m+i+.5), (B.16)

rn-I

which generates M equations in M unknowns and thereby specifies am for

m=I,2,... ,M.

As an example, let R-1 and M-7. Solving Equation B.16 yields:

w2 (t) 1.6746y2(t) - .078942y4 (t) - .28032y6 (t) - .72214y8 (t)

+ .024750ylO(t) - .0013560yl2 (t) - .0088671y14 (t), (B.17)

which is the MMSE approximation for w2(t)fIy(t)l on the interval

-I4y(t)4I when seven terms are used. Evaluation of Equation B.17 with

y(t)-l yields w2(t)=.608, which is a poor approximation. Repeating the

procedure with M=10 yields:

w2(t) 5.8239y 2(t) - 34.0175y 4(t) + 108.3705y 6(t) - 156.0335y8 (t)

+ 74.8383yl0 (t) - 16.8961y 1 2(t) + 115.5607y'4(t)

- 127.7208y'6(t) + 7.3678y'8(t) + 23.7314y20 (t). (B.18)

Evaluation of Equation B.18 with y(t)I yields w2(t)=l.025, which is a

better approximation.
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Note that a large number of terms must be used in order to obtain

reasonable results. Thus, to determine the spectrum of ly(t)l from the

spectrum of y(t), the modulation property of Fourier transforms must be

applied many times. Since the coefficients must be accurate to many

significant digits and a high degree of precision must be maintained in

all computations, this approach is mainly of theoretical interest and has

limited practical value.

9

B.3.3 RELATIONSHIP BETWEEN FULL WAVE AND HALF WAVE PIECEWISE LINEAR

DETECTORS FOR ARBITRARY INPUTS

Under certain conditions, outputs from F/D subsystems using either

full wave or half wave piecewise linear devices are the same (within a

scale factor) for any arbitrary input signal. From Equations B.3 and B.4

it follows that:

w3(t) = [y(t)/21 + [w2(t)/2]. (B.19)

The spectrum of y(t) lies in the region Sc-Qh<1S11<Qc-flh as shown

Fig. B.4a. If the smoothing filter bandwidth is chosen so that

O0s3<Rcih, then the bandpass component y(t)/2 is eliminated. Setting

Qs22s3 then results in F/D outputs v2(t) and v3(t) which differ by a

factor of two:

v2(t) - 2v3 (t). (B.20)
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B.3.4 RELATIONSHIP BETWEEN SQUARE LAW AND FULL WAVE PIECEWISE LINEAR

DETECTORS FOR ARBITRARY INPUTS

The square law detector shown in Fig. B.3a lowpass filters the

waveform wl(t) and takes the square root of the result to obtain output

vl(t). The full wave piecewise linear detector of Fig. B.3b takes the

square root of w1 (t) and lowpass filters the result to obtain output

v2 (t)° Since lowpass filter and square root operations are not

interchangable, the outputs v1 (t) and v2 (t) are not equal in general. It

will be shown, however, that given certain restrictions these two outputs

are similar for a variety of different input waveforms x(t). Note that

while v2 (t) is a bandlimited signal, vl(t) is not necessarily

bandlimited. Therefore, a large smoothing filter bandwidth 9s2 may be

required in order that v2 (t)=vl(t).
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B.3.5 NOISE RESPONSE

Let the input to each F/D subsystem of Fig. B.3, x(t), be a white

Gaussian noise process with variance Sx(w)-4A. If the window function

h(t) is the impulse response of a unity gain ideal LTI lowpass filter

with cutoff frequency Qh, the bandpass filter output y(t) will be a

bandlimited Gaussian noise process with power spectral density

SyS) Sx(Z)lFTih(t)sin(ct)} 12

- A, sc-Qh<I I<Qc-h

=0, otherwise. (B.21)

Note that the spectral height of Sy(Q) equals the input variance reduced

by a factor of four, as shown in Fig. B.5a. Power spectral densities for

noise processes at the output of each memoryless nonlinearity are shown

in Figs. B.5b, c, and d (Davenport and Root (571; Papoulis [581).

Given certain restrictions, comparable F/D noise responses can be

obtained over a specified range of frequencies. To avoid loss of low

frequency information while eliminating high frequency components, let

Sh<RslSs2<2Qc-2Qh for the square law and full wave piecewise linear

detectors while 2h<qs3<Sc-Qh for the half wave piecewise linear

detector. Under these restrictions, the full wave and half wave

piecewise linear detector outputs will differ only by a scale factor.

Note that the minimum smoothing filter bandwidth, 24 in all cases, is

twice the bandwidth normally used for detection of Amplitude Modulation

(AM) signals (Siebert [55]). The wide bandwidth is required because the
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-29

2h 2 h

A-11 - c -2Mh 2Mh S1c 22c  a

(a) Bandpass Filter Output Power Spectrum

SwI(Q)

Impulse Area 8 (Ai2h)2/7
4Ak2h/r

2Ak h/w 2A2Q /it

c -c h hc c

(b) Square Law Device Output Power Spectrum

Impulse Area 8ASh/T

A/it

A/ 27r A/2t

2D c -Q c "2~ Zlh sic 2SIc Sj

(c) Full Wave Piecewise Linear Device Output Power Spectrum

Sw3(Q)

Impulse Area l2A1h/n

A/4

A/4r4. -

-2Qc -Q c 2 h  0 2SI h  Qc 2 sic

(d) Half Wave Piecewise Linear Device Output Power Spectrum

Figure B.5: Filter/Detector Noise Response
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2
input signal is not generally AM in nature, and has neither the carrier

nor the symmetry inherent in AM signals.

Given the stated restrictions, noise responses of F/D subsystems

using square law and full wave piecewise linear devices are similar in

many ways. From Figs. B.5b and B.5c it is apparent that the noise

processes wl(t) and w2 (t), and therefore vo(t) and v2 (t), have comparable

power spectral density shapes. However, total area under the square law

device power spectral density curve is proportional to the square of the

input variance, while the area under the curve for the full wave

piecewise linear device is directly proportional to the input variance.

Due to the square root device shown in Fig B.3a, the zero frequency

component of vl(t) is proportional to the input variance. The zero

frequency component of v2(t) is also proportional to the input variance.

Thus, in applications where a F/D subsystem is used to measure noise

process characteristics, the zero frequency component of the F/D output

is often the only quantity of interest (see Sections D.2 and D.5 for

such applications).
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B.3.6 IMPULSE RESPONSE

Consider the F/D subsystem of Fig. B.3a which uses a square law

device. If the input is an impulse, x(t)-6(t), then

wi(t) " h 2 (t)[l - cos(2ct)]/2. (B.22)

Frequency regions occupied by FT{wl(t)} are shown in Fig. B.6a. If

2Qh<Qs[<2c-2Qh then

vo(t) - h2 (t)/2 (8.23)

and

v1(t) = Ih(t)j/f7. (B.24)

The function Ih(t)l may or may not be bandlimited. For convenience,

assume that FT{ Ih(t)I} is for all practical purposes lowpass bandlimited

to some frequency 2IhI .  For example, if the window function is always

positive, then h(t)1ih(t)I and Ih(t)I is bandlimited to 2 IhIQh •  When

Ih(t)l is bandlimited, vl(t) as given by Equation B.24 can be compared

with the bandlimited functions v2 (t) and v3 (t).
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JFT{ w,(t)}

4c h  4 h

-2s c  --t2 -M 0 2Qh  S c  2 2

(a) Regions Occupied by the Spectrum of Wl(t)

IF, 2(t)}

SI h 1 l

(b) Regions Occupied by the Spectrum of w2(t)

iF'{ w3 (t)} I

2111h i -?Q h 2 s h 2 ih l

-2Zc -Szc h ' hi lc " ' c

(c) Regions Occupied by the Spectrum of w3(t)

t'igure 3.6: F/) Imputse Response Frequency Domain Characteristics
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Now cons-der the F/D subsystem of Fig. B.3b which uses a rull wavc

niecewisc linear device. If the input is an impulse then, by Fourie?

series expansloi. 'Spiegel [591),

w2(t) "h(t)tjsin(S2ct)I

- h(t) 1V(2/ n + (4/) [cos(2ntct)/(1-4n2 ): (B.25)
n= 1

Frequency regions occupied by FTlw 2 (t)>' are shown in Fig. B.6b. If the

lowpass smooth in v filter has cutoff frequency s such that

11 S c then the F/D output is:

v t ! 2 h(t) /7 (B.26)

FinalLy, consider the F/D subsysten of Fig. B.3c whi.,r. uses a half

wa.e plcewise linear device. If the input is at, impulse, then

K /

,:, = ,., , , I v(t ,

tre,;, :],' re T' , ris , pi r ,.'.DeC b i"T, W ,r . *. ' - s hjwTv I' b' . ,.oc. * et [he
w ~ ~~ art n, , iwi

)w;, , I :] ,t ' s 'T o'_ 1l v[ -1t frequenc% w, , i l r,- ,-arv-.-

.- --" Iire tal' wave piecewise linear dete,-t,)r output Is the.

,.., t . t' t~e " wav piecetcse tlnear detector output
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Under the stated restrictions and assumptions, the impulse responses of

all three F/D subsystems differ only by a scale factor.

The results of this section can be applied to determine the impulse

response of a F/D subsystem using a half wave square law device, as used

in Chapter 2. It follows from Equations B.2, B.3, B.5, and the modulation

property that

FT{w 4 (t)} = [FT{wl(t)} 1/2 + [FT{y(t)j*FTjw 2 (t)}/4w. (B.29)

Spectral regions occupied by LFT{w 1 (t)}/2 are shown in Fig. B.6a. The

lowest frequency spectral region occupied by [FT{y(t)}*FTjw 2 (t)}i/4r is

Sc-2 hj-2h<Qc+Q hj-Kh, as can be seen by convolving Figs. B.4a and

B.6b. Thus if a smoothing filter with bandwidth Qs4 is chosen such that

2h0s41c-Qjhj-Qh and 2h~s4<Zc-2Rh, the half wave square law F/D

output is h2 (t)/4.

%, I
4 it
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B.3.7 SINUSOIDAL RESPONSE

Let the input to each F/D subsystem, x(t), be a sinusoidal waveform.

Because the bandpass filter is LTI, the filter output y(t) is also

sinusoidal. The waveform will be changed in amplitude and phase if the

bandpass filter is non-ideal. Assume

y(t) = Alsin(Qlt), (B.30)

where 2c--S h<Q1<.c_+Qh • Then

wl(t) - (Aj)2(j-cos2Qlt)/2. (B.31)

For O< s1 <2c-2lh,

vo(t) = (AI) 2/2 (B.32)

and

v1 (t) = AI/fl. (B.33)

From the Fourier series expansion of Equation B.25, it follows that

w2(t) = IAiI{(2/7r) + (4/w) I [cos(2ngjt)]/(1-4n 2)} (B.34)

n=l

and, for O<s2<2Qc-Zh,

v2(t) 21Ajj/Tr. (B.35)

Similarly,

(B.36)

w3(t) - (AjsirIt)/2 + 1AII{ (1/1) + (2/u) )j [cos(2nm2lt)I/(1-4n2 )}.
n-1
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Thus, for U<.s3 <Kc ".h,

v3(t) = A11!n. (B.37)

Under the stated restrictions and assumptions, the sinusoidal responses

of all three F/D subsystems differ only by a scale factor.

B.3.8 SLNUSOIDAL PAIR RESPONSE

.et x(t) be a sinusoidal pair. Because the bandpass filter is LTI,

v(t) is also a sinusoidal pair. Assume

.(t) = A [cos(. 1 t) - cos(So 2 t)] (B.38)

where ch<,2< c h and 2< l. Thus

(B.39)

wl(t) = (A2)
2 [I - cosi 1-a2 )t - cos( 1-+42 )t + (cos2' 1 t+cos2 2t)/2t .

Let 2. h , s r h Then

vri(t) = (A2) 2 [I - cos(. 1 'l-2)t ( .4O

and

V I t = /,Tj A2sin[G - 2))t1211 B. 1

The waveform v1(t) of Equation B.41 is not strictly bandlimited.

However, an effective bandwidth se may be chosen such that, for practical

purposes, frequency components of v (t) in the region 'ye are

negligtble. Since
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(8.42)

sin[ (, - 2t/21 (2/"n + (4/T) [V s2- 2 nJ/14 2 )1
n=1

t he average power level of the component at a frequency of '(" 1 -112 ) Is

-40dB relative to the z ero frequency component. Since 6(s~l-d22)<12h, an

effective bandwidth choice of ' e='Zh is reasonable.

Equation B.38 can bej rewritten as:

y(t) =-2IA 2sin (.2 1----4 ) ]sin[ (s2 1 +$ 9)t/21 . (B.43)

Tb us
(B.44)

w,(t) =2',A~sin[(.1-, 2 )t/2j1' hT ( )+(4 /Ti [cos(i21+ 2 )ntj/(1-4n-)

if 2e ~then

v2)(t) = 4/nT)iA 2 sin[ ( . 2)~'t/211 (B.45)

Similar ly,

w 3 (t) A\2cos( IIt) - cs(. 2t)/2

(B.46)

* ~ ~ ~ ~ , 2 s in i. C!. t21 (2/TT )+( 4,;T 1 cs.i-)iIi -4n 2 ).
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B.4. CONCLUSION

In this appendix, F/D subsystem components have been described and

three common F/D subsystems have been investigated in detail. For

arbitrary input signals, the response of a F/D using a square law device

is easily determined. Responses of detectors using full and half wave

piecewise linear devices are not easily determined in general. It has

been shown that, under certain conditions, the outputs of detectors using

full and half wave piecewise linear devices differ only by a scale

factor. It was also shown that a F/D subsystem using a square law

detector can be turned into a F/D subsystem using a full wave piecewise

linear device by interchanging square root and lowpass filter operations

(see Fig. B.3). Thus, the outputs of these subsystems are not the same

in general. Under certain restrictive conditions, however, the

subsystems have similar responses to noise, impulse, sinusoid, and

sinusoidal pair inputs. These results will be used in Section D.3 to

relate spectrograms with the spectrogram-like representations generated

from Short-Time Fourier Transform magnitude.
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APPENDIX C

GENERALIZED SHORT-TIME FOURIER TRANSFORM COMPUTATION

C.1 GSTFT ANALYSIS USING FIR WINDOWS

Assume that each window function is the Finite-duration Impulse

Response (FIR) of a lowpass filter. Let the set of window functions

hk(n) be zero outside the range 0N rMk-1. Note that each window function

may have a different duration Mk. Window functions can be defined by an

equation, as for a Hamming window, or values may simply be defined on a

point by point basis.
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When a FIR window is used, the GSTFT magnitude squared is given by:

Juk Mk-I

IXn(e )12 I [ x(n-m)hk(m)cos(wkm)]2

m=O

+ [ x(n-m)hk(m)sin(wkm)]2, (C.)

m=l

where k=I,2,...,K. One of the set of K F/D subsystems is shown in Fig.

C.I. In this figure, unit delays are denoted by z-1  and amplifier

symbols (triangles) indicate multiplication by a constant. The F/D of

Fig. C.1 is a discrete-time version of Fig. 2.7b with the filters drawn

in detail to show their FIR structure.

The F/D implementation shown in Fig. C.1 (or 2.7b) is of special

interest when the data, x(n), has been quantized to one bit. Such a

situation arises when speech data has been encoded using linear Delta

Modulation (Steele [601). In this case the bandpass filters can be

implemented without use of multiplication; ie., multiplication by zero or

one is trivial. Such a structure is therefore suitable for real-time

speech analysis systems implemented with microcomputers (Anderson [61]).

Note that the same computational efficiency is not achieved by the system

of Fig. 2.7a where the data is modulated prior to filtering.
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C.2 GSTFT ANALYSIS USING IIR WINDOWS

Assume that each window function is the Infinite-duration Impulse

Response (IIR) of a lowpass filter. Let the set of window functions

hk(n) be zero for n<i, where i is an arbitrary integer constant. For

n) i,

• y k Rk
hk(n) == Pk(, )hk(n- ) + ) qk(r)6(n-r) (C.2)

ir i

where the set of coefficients Pk and qk are real constants with qk(i)*O.

From Equation C.2 it can be seen that the window functions are

right-sided sequences (Oppenheim and Schafer [31]) with first nonzero

value hk(i)fqk(i). This choice for relative time alignment of the window

functions, although arbitrary, serves to simplify the synthesis equations

of Chapter 3.

Each fIR window function described by Equation C.2 has a rational

z-transform (see Appendix A):

Rk

r1 qk(r)zr (C.3)

Hk(z) = k

1 - IPk()z - *

The window function spectral zeros can be determined by factoring a

polynomial involving the set of qk coefficients, and poles are similarly

obtained from the Pk coefficients.
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Since a FIR filter has zeros but no poles in its system function,

the IIR window function includes the FIR analysis window as a special

case. To eliminate the poles, let pk(6 )=0 for all values of k and .

For convenience let i=0 and Rk=Mk-l. Equation C.2 then becomes

hk(n) = qk(r)6(n-r), (C.4)

from which it follows that

hk(n) - qk(n), OrnMk-I

0, otherwise. (C.5)

The FIR window discussed in Section C.1 is thus a special case of the IIR

window function defined by Equation C.2.

The recursive formula for the GSTFT, which results when the IIR

window is substituted into the defining equation for the GSTFT (see

Equation 2.29) is given by:

Jwk ik Jwk Rk -Jwk(n-r)

Xn(e ) ,pk (*)Xn -,(e ) + r qk(r)x(n-r)e . (C.6)

11,-i r

The recursion of Equation C.6 can be implemented using a variety of

filter configurations (Oppenheim and Schafer 1311; Rabiner and Gold

[56]). For example, a "direct form two" implementation can be obtained

by defining an auxiliary sequence Lk(n), where

4!
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-iwkl 'Tk
Lk(n) =x(n)e + pk(1P)Lk(n-i). (C.7)

The GSTFT is then computed by

iwk Rk
xn(e I qk(r)Lk(n-r). (C.8)

r i
r

The required sine and cosine sequences can also be computed

recursively, if desired, since

cos wk (cos wk)[cos wk(n-I)J (sin wk) [sin wk(n-l)] (0.9)

and

sin wkl (sin wk)[cos Lwk(n1 + (cos wk)[sin wk(n-I)]. (0.10)

It should be noted that the sine and cosine sequences computed via the

recursion may become less accurate with increasing n. This problem can

be overcome by periodically resetting the recursion variables to their

correct values. Correct values for the reset operation may be obtained

[."

from a similar, but lower frequency, recursion (Gold and Rader [62]).

Fig. 0.2 depicts a F/D subsystem using a direct form two filter

implementation and recursive sine and cosine generation. Parameters for

this subsystem are i=1, Tki3, and Rk- 2 . Note that the F/D of Fig. C.2 is

Sa discrete-time version of Fig. 2.7a with the filters drawn in detail to

show their IR structure. This implementation is suitable for real-time

speech analysis systems, and may be used in the system described in

Chapter 2.
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APPENDIX D

APPLICATIONS

D.1 INTRODUCTION

Filter/Detector (F/D) subsystems are used in a variety of speech

analysis and synthesis systems. By varying the bandpass filter

characteristics, memoryless nonlinearity type, and smoothing filter

cutoff frequency, relationships between several speech processing

techniques can be examined.

In this appendix, the new relationship between Short-Time Fourier

Transform (STFT) magnitude squared and F/D subsystems, as derived in

Chapter 2, is used to describe channel vocoder operation. The

relationship is also used to explain similarities between spectrograms
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and the spectrogram-like representations generated from STFT magnitude,

give a new F/D interpretation to the FFT magnitude, demonstrate the

equivalence between the discrete-time Welch method of power spectral

estimation and results produced by continuous-time power spectral

estimation methods, and to examine several approaches to variable

bandwidth analysis. Digital (discrete-time) as well as analog

(continuous-time) systems will be discussed.

D.2 CHANNEL VOCODERS

Channel vocoders are analysis/synthesis systems which model a speech

signal as being either voiced (having a periodic pitch) or unvoiced

(noise-like). The analyzer typically includes a voiced/unvoiced (V/UV)

decision subsystem, a pitch extractor to determine the fundamental

frequency of voiced signals, and a F/D bank. The synthesizer contains a

pitch generator, noise source, V/UV selector switch, modulators, and

bandpass filters.

A channel vocoder analyzer described by Rabiner and Gold [561 uses

sixteen bandpass filters with nonuniform center frequency spacing to

analyze the .3-3 KHz frequency range. The bandwidth for the lowest

frequency filter is 125 Hz while a bandwidth of 400 Hz is used for the

highest frequency filter. The smoothing filter bandwidth is 25 Hz, and

is the same for all channels regardless of the bandpass filter

characteristics. Thus, the F/D bank measures only quasi-stationary

aspects of the speech signal such as input signal variance (see Section

B.3.5).
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Since the smoothing filter has narrow bandwidth, F/D outputs are

similar for a variety of different memoryless nonlinearities. Half wave

and full wave piecewise linear devices are most often used in analog

channel vocoders as they are easily implemented with diodes. A square

law device is often used in digital channel vocoders. The increased

dynamic range requirements are ofrset by the fact that the square law

device produces bandlimited signals which can be represented digitally

with little aliasing. In certain digital channel vocoder applications the

square law device yields superior results compared to the full wave

linear device (Sondhi, et al [54]).

The speech analysis/synthesis system based on perception, described

in Chapters 2 and 3, can be viewed as a channel vocoder which does not

require pitch extraction. The data rate for such a system, however, is

much higher than that normally associated with channel vocoders. The

data rate can be reduced by placing additional lowpass filters at each

F/D output. However, it is clear from the results of Fig. 4.56 that high

quality speech cannot be reconstructed from such lowpass filtered F/D

outputs alone, and additional information is required. One method for

obtaining such information, which corresponds to a form of pitch

extraction, is described in Section 5.3. Note that, contrary to comments

by Rabiner and Gold [56], a channel vocoder analyzer does not preserve

6'
the Short-Time Fourier Transform (STFT) magnitude, but instead preserves

a lowpass filtered version of a generalized form of the STFT magnitude.
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D.3 SPECTROGRAMS

The Sound Spectrograph machine [631 employs a measurement system

which is similar to the F/D of Fig. B.3b. The machine uses a diode

rectifier to implement the full wave piecewise linear device. Two types

of analysis can be performed. A wideband analysis uses a bank of

bandpass filters each having an effective 300 Hz bandwidth, while a

narrowband analysis uses 50 Hz bandwidth filters. Filter center

frequencies are 20 Hz apart (Flanagan [1]) and the frequency range .05-7

KHz is analyzed. Each lowpass smoothing filter has an effective

bandwidth of several hundred Hertz, and is sufficiently wide to pass any

envelope frequencies which may be present at the output of a wideband

filter due to beating of adjacent harmonic pitch components.

It was shown in Section B.3.4 that since lowpass filters and square

root devices are not interchangable, outputs of the F/D subsystems

depicted in Figs. B.3a and B.3b are not the same in general. However,

parameters for spectrogram generation are such that similar results may

be produced by both F/D subsystems for a variety of input signals, as

shown in Section B.3. Furthermore, since the STFT magnitude can be used

to implement the F/D of Fig. B.3a, the STFT magnitude can also be used to

roughly simulate Sound Spectrograph machine operation (Oppenheim [64];

Wood and Oppenheim [65]; Rabiner and Schafer [31). Note that, contrary

to results given by Flanagan [11, the correct F/D approximation to STFT

magnitude is shown in Fig. B.3a and the F/D of Fig. B.3b is applicable

only under the restrictive conditions discussed in Section B.3.
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D.4 SLIDING DFT IMPLEMENTATION OF THE STFT

In this section, it will be shown that the STFT can be computed by

performing the Discrete Fourier Transform (DFT) on segments of a long

data sequence. The DFT approach is attractive since it can be

efficiently implemented via the Fast Fourier Transform (FFT) algorithm.

The DFT is given by (Oppenheim and Schafer [31]):

jwk M-1 -jwk m

Y(e x(m)h'(m)e (D.1)
M0

where

wk=2W k/M (D.2)

and k=O,1,2,...,M-1. Note that the analysis frequencies are uniformly

spaced. The DFT window function h'(m) is finite length, and is zero

outside the range Om01-1.

A sliding DFT analysis is defined by:

jwk C -jwkm

Yn(e ) = x(n+m-M+1)h'(m)e . (D.3)

Although the summation limits have infinite range, terms in the summation

are nonzero only on the interval N mnM-l due to the finite length DFT

window function h'(m).

From Equation D.3 it can be seen that the sliding DFT segments the

data sequence x(n) into sections of length M and performs a DFT on
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jwk
each segment. For example, YMI(e ) is the DFT of the first M signal

points x(O), x(1), ..., x(M-1). Other definitions of the sliding DFT

(Oppenheim [641) use a time index such that the sliding DFT value at n=O

is the DFT of the first M signal points. Many variations are possible,

but the resulting differences are unimportant and the definition of

Equation D.3 is chosen for convenience.

The sliding DFT need not be computed for every time n. Often, to

decrease computation time and data storage requirements, only samples of

the sliding DFT are desired. In this case, it becomes the hopped DFT

discussed by Rabiner and Gold [56).

To relate the sliding DFT to the STFT, define a new window function

h(m) to be a time-reversed and delayed version of h'(m); ie.,

h'(m)=h(M-1-m) (D.4)

for all m. Since many window functions used in conjunction with the DFT

are symmetrical, the time-reversed and delayed window is often the same

as the original window. By substitution into Equation D.3:

J*k 0 -Jk m

Yn(e ) = x(n+m-M+1)h(M-1-m)e

~-iwk(M-1l-m)
x(n-m)h(m)e

e Xn(e ), (D.5)
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where Xn(e ) is the discrete-time STFT (a special case of the

Generalized STFT) evaluated at a fixed frequency wk, as given by Equation

2.21. This result leads to the following procedure for computing the

STFT via the sliding DFT:

1. Form a time-reversed and delayed version of the STFT window

function, h(n), and call it h'(n).

2. Pre-multiply a data segment by h'(n).

3. Perform a DFT on the windowed segment by using the FFT algorithm.

4. Post-multiply the results by a time-varying complex exponential.

The complex exponential post-multiplication step converts sliding

DFT outputs, which are bandpass functions, into lowpass STFT results. If

only magnitudes are computed, then step #4 is unnecessary since:

Jwk Jwk

IYn(e )I = IXn(e )I. (D.6)

From Equation D.6 it is evident that a F/D interpretation can be

placed on the sliding DFT magnitude as well as on the STFT magnitude.

Since it is common practice to investigate the spectrum of a signal by

examining the DFT magnitude of a signal segment, the F/D interpretation

can be used to obtain insight into spectral behavior as a function of

time. Although it is well known that the sliding DFT can be used to

implement a filter bank (Rabiner and Gold (561), the nature of the

detection process brought about by the magnitude operation has not been

adequately discussed in the literature. Therefore, a complete example is

given in the remainder of this section.
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For convenience, the Hamming window (Oppenheim and Schafer 1311)

will be used both as a window function and also for lowpass filtering

purposes. The Hamming window of length M, normalized for unity gain in

the frequency domain, is:

h'(n) = [.54 - .46cos(2n/M-1)]/(.54M), OKnKM-1,

= 0, otherwise. (D.7)

The one-sided main lobe bandwidth of a Hamming window of length M is

wh,=4w /M.

As a specific example, assume that a continuous-time signal is

sampled at a 10 KHz rate and a 12.8 millisecond (128-point) segment is

selected for analysis. Let the data segment be denoted by x(n), 04n4127.

An example sequence is shown in Fig. D.I.

Using a 128-point Hamming window, the DFT magnitude squared is

computed. The DFT is given by Equation D.1, and frequency spacings are

given by Equation D.2, where k=0,1,...,64. Since x(n) is real, it is not

necessary to compute values for k-65,...,127. The DFT magnitude squared

for the sequence of Fig. D.1 is shown in Fig. D.2.

A bank of discrete-time F/D subsystems of the type shown in Fig. 2.8

is now implemented, and the output of the F/D bank is sampled at a

specific time. Since the Hamming window is symmetric, the DFT window

function h'(n) is the same as the STFT window function h(n). Thus, in
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x(n)
I I I I-....-1--*.... I'....*'***'** I I I i I ! I1

0 1

- 1 I I I I I I I

0 10 100 n+

Figure D.1: Example Sequence
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C..0-

.01

1:1 -A-

0 10 60

Filter Number, k

Figure D.2: DFT Magnitude Squared

2 30)



Fig. 2.8, h(n) is a 128-point Hamming window, wc-wk, and 6 is arbitrarily

chosen as zero. Since the lowpass smoothing filter must have the same

bandwidth as the bandpass filter, a 63-point Hamming window is used f or

hs1 (n). The smoothing filter, therefore, introduces a 32-sample delay.

For convenience, define x(n)=O for n<O and 0>127. Let the output of each

F/I) subsystem be denoted by 2vk(n). To approximate the DFT results,

2vk(l5 8) is computed:

62 127
2 vk(158) = 2 1 x(158-i-m)h(m)cos(wkm) 12hsl(i). (D.8)

iO 0 =

The results are plotted in Fig. D.3, and are comparable to those of Fig.
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2vk( 158)

.06-

.01 -

0 10 60

Filter Number, k

Figure D.3: F/D Bank Output Sample
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D.5 AVERAGE POWER SPECTRUM ESTIMATION

In certain applications, reconstruction of high quality speech

signals directly from spectral magnitude data is of interest. As

demonstrated in Chapter 4, a high degree of time-domain detail in the

data is essential for such applications. In many other applications,

however, exact signal reconstruction is not required and the time-domain

detail can be eliminated by averaging the spectral magnitudes.

For example, since one noise sequence may sound the same as many

others, retention of information for exact signal reconstruction is

unnecessary. For data reduction purposes it is more efficient to

characterize the random process which originally created the data.

Synthesis is then accomplished by generating a new data sequence from a

random process which has the same characterization as the original data

sequence. Since a random process is often described in terms of its

power spectral density, average spectral magnitudes are useful for

estimating random process characteristics. This approach is generally

employed by the channel vocoders described in Section D.2.
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The continuous-time F/D subsystem of Fig. B.3a, without the square

root device, can be used to measure the average power spectrum of speech

(Dunn and White [66]). The speech signal is decomposed into a number of

frequency bands by a bank of bandpass filters. The mean squared power in

each band is computed by placing a square law device and smoothing filter

at the bandpass filter outputs. The smoothing filter time constant may

range from 125 milliseconds for short-time measurements to more than a

minute for long-time analysis. A long-time analysis can also be obtained

by averaging many short-time measurements.

Digital techniques can also be used for power spectrum estimation.

For example, a popular technique known as the Welch method can be

described in terms of a digital F/D bank. The Welch spectrum estimate, as

discussed by Oppenheim and Schafer [31], is computed by sampling the

sliding DFT in a manner equivalent to hopping with no overlap. This is

done in an attempt to ensure statistical independence of the

measurements, and yields an undersampled representation. Hopping with

overlap has also been discussed in the literature (Welch [671), but will

not be considered here. Magnitude squared samples are averaged for each

frequency, and weighted by a constant which depends on the window

function. The Welch spectrum estimate is therefore equivalent to

sampling F/D bank outputs and averaging the samples in each channel to

determine the power spectral density of the input noise process. The

Welch method thus obtains a long-time measurement by averaging short-time

measurements.
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In precise terms, the Welch spectrum estimate is given by:

jwk P JwkBxx,(e )--(1/PQ) = ~MIe )2(D.9)

P=
1

where

M-I
Q = [h'(m)j2 , (D.10)

m=O

Jwk
h'(m) is the DFT window function, Yn(e ) is the sliding DFT given by

Equation D.3, and the data sequence is x(n), ONnMP-I. It can be seen

from Equation D.6 that the STFT can also be used to compute the Welch

spectrum estimate, as long as the STFT window function is finite length

and the window time-reversal and delay are taken into account.

235

-. ,



D.6 NONUNIFORM BANDWIDTH ANALYSIS

Although a critical bandwidth filter bank is useful for

perception-based speech analysis, such filter banks are not always

readily available in the form of existing electronic equipment or

computer programs. The most common type of digital filter bank consists

of many narrow bandpass filters which are uniformly spaced in frequency,

all filters having the same bandwidth. These filter banks are often

implemented by the sliding DFT, since the sliding DFT can be efficiently

computed via the FFT algorithm (see Section D.4). Such filter banks must

be modified for perception-based analysis, allowing the filters to have a

bandwidth which varies with center frequency. Modifications generally

involve combining the outputs of several narrowband filters in order to

simulate a single filter of broader bandwidth. Although such

modifications can be used in dealing with Linear Time-Invariant (LTI)

systems, effects of the nonlinear detection process which follows the

filter bank must also be taken into account.

This section presents several approaches to variable bandwidth

analysis which can be implemented by modifying narrowband filter banks.

Unfortunately, if these approaches achieve the desired result at all,

they do not approach the computational efficiency of the Generalized

Short-Time Fourier Transform (see Appendix C). Nonetheless, since the

approaches presented in this section are commonly used in practice, it is

worthwhile to investigate the problems associated with each method.
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7d
D.6.1 SUMMATION OF FILTER/DETECTOR OUTPUTS

The sliding DFT is often used to implement a bank of many narrow

bandpass filters (Rabiner and Gold [561). The DFT magnitude can thus be

interpreted as a time sample of a narrowband F/D bank output. The

narrowband analysis may be broadened as required by adding together two

or more F/D outputs, where the filters are adjacent in frequency.

Although this approach broadens the steady state sinusoidal response, it

will be shown that all outputs have the same form of impulse response.

Since it is desirable to have shorter impulse response duration on the

high-frequency wide-bandwidth F/D subsystem, as shown in Fig. 2.11,

usefulness of this approach is diminished.

To demonstrate, let wa and wb be two analysis frequencies of

interest. Define a broadened F/D output as:

iwa w
ZI(n) - IYn(e )12 + IYn(eb)12 (D.II)

The two sliding DFT components thus implement a pair of narrowband F/D

subsystems which are added together to form a broadened F/D. When the

input is an impulse, x(n)-6(n), the broadened F/D output is Zl(n)=2h2(n).

The broadened F/D output thus has the same form of impulse response as

either of the two original narrowband F/D subsystems.
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Adding together F/D outputs to decrease frequency resolution fails

to give a corresponding improvement in time resolution. Important

temporal information may be lost due to this "smearing" effect. It can

easily be shown that the same result holds whether the F/D subsystems are

implemented via the sliding DFT or implemented directly by using

individual bandpass filters, memoryless nonlinearities, and lowpass

smoothing filters.

2
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D.6.2 SUMMATION OF FILTER OUTPUTS PRIOR TO DETECTION

Filter broadening is commonly accomplished by adding together the

outputs of several adjacent (in frequency) filters prior to the detection

process. Although the desired filter broadening is achieved, it will be

shown that undesirable components may appear in the impulse response of

the resulting F/D subsystem.

Consider the impulse response of the directly implemented F/D shown

in Fig. D.4a. When x(n)=6(n) the output is:

Z2 (n) = 2h2 (n)[I + cos(Wawb)nJ. (D.12)

Note the presence of a high level beat frequency component.

Beat frequencies are also present when the sliding DFT is modified

by adding adjacent complex results. Define a broadened F/D output as:

Jwa jwb
Z3 (n) = IYn(e ) + Yn(e )12 (D.13)

Jwa Jb Ja J'b
= Yn(e  )12 + lYn (e  )12 + 2Re{Yn(e )[Yn (e  )]*1,

where the asterisk denotes complex conjugation. The block diagram for

this subsystem is shown in Fig. D.4b. It is easily seen that the

bandpass filters have the desired broadened characteristics.
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INPUT h(n)cos(wa + JSIcj....- r-OTU

(a) Direct Implementation

INPUT rU

(b) Sliding DFT Implementation

0 Figure D.4: Summation of Filter Outputs Prior to Detection
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To investigate the dynamic characteristics of the subsystem shown in

Fig. D.4b, let x(n)=6(n). The output then becomes:

Z3 (n) = 2h2 (n)1 + cos[(wa-wb)(n-M+1)J}. (D.14)

The impulse response of the new broadened F/D subsystem thus contains an

undesirable beat frequency term.

The beat frequency in the sliding DFT becomes more pronounced (ie.,

more beat cycles are evident in the F/D impulse response) when wa-wb is

large. The effect is minimized if two adjacent filters are added. For

addition of two adjacent filters, it follows from Equation D.2 that:

Z3(n) = 2h2 (n){1 + cos[2n(n+1)/MI}. (D.15)

As a specific example consider a 128-point sliding DFT using a

Hamming window; ie., M=128 and

h'(n) = .54 - .46cos[2nn/(M-1)], (On4M-1

= 0, otherwise. (D.16)

Since the Hamming window is symmetric it follows from Equation D.4 that

h'(n)=h(n). The impulse response of an original F/D subsystem, h2 (n), is

shown in Fig. D.5a. The impulse response of the broadened F/D, as given

by Equation D.15, is shown in Fig. D.5b. In this example of a broadened

F/D subsystem, a single impulse input results in two peaks at the output,

which is generally an undesirable result.
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h2 ( )

0

O 12-7

(a) original F/Dn-

Z3(n)

O 12-1

(b) Broadened F/D n

Figure D.5: F/D Impulse Responses
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As noted by Rabiner and Gold [561, the equivalence between

multiplication in the time domain and convolution in the frequency domain

implies that windowing can be accomplished by a complex weighted

summation of many adjacent (in frequency) values of the sliding DFT. A

carefully chosen combination of weights can be used to modify the

original analysis window, and can reduce or eliminate beat frequency

effects. Thus, although it is possible to broaden filters by this

approach, computational efficiency is sacrificed.

D.6.3 SUMMATION OF STFT COMPONENTS PRIOR TO MAGNITUDE

STFT results are lowpass functions, and are unlike the bandpass

results produced by the sliding DFT. Thus, no beat frequencies will

occur when adjacent (in frequency) complex STFT results are added and the

magnitude squared is computed. Let the broadened STFT analysis be given

by:

Jwa Jw b
Z4 (n) = JXn(e ) + Xn(e )j2, (D.17)

where wa and wb are two STFT frequencies of interest. The subsystem block

diagram is shown in Fig. D.6. When the input is an impulse at time m,

x(n)= (n-m), the output is:

Z4 (n) = 211 + cos(w1)avb)m1h2(n-m). (D.18)

Thus the subsystem has a time-varying impulse response, which is clearly

an undesirable result.
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- ~ ~ ~ ~ ~ cswn + - --- * ..~~w - -- wr

x ( f) + csCn) OUPU

INPUT OTU

sin(wal) + sin(wbn)

Figure D.6: Summation of STFT Components Prior to Magnitude
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D.7 CONCLUSION

In this appendix, the new relationship between STFT magnitude

squared and F/D subsystems was used to describe the characteristics of

several speech analysis and synthesis systems. The relationship provides

a common basis for understanding the operation of many systems, and can

be used to indicate similarities and differences between various systems.
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A speech analysin system based on a combination of physiological and psychoacoustic results has been developed. The
system contains a nonuniform Filter/Detector bank. A new relationship between Filter/Detectors and the Short-Time
Fourier Transform magnitude is derived, and a generalized version of the Short-Time Fourier Transform magnitude is
used to implement the analysis system. The new relationship is also applied £o0a discussion of channel voceders, spectro-
grams, the sliding Discrete Fourier Transform, average power spectrum estimation, and nonuniform bandwidth analy-
sis. Next, a new synthesis approach is used to reconstruct signals from the magnitude data produced by the nonuniform
analysis. Apart from an overall sign factor. the analysis/synthesis system achieves exact reconstruction in the absence of
data modification. The ability of the system to reconstruct signals from modified data is also demonstrated. Suggestions
for further research, including data reduction and Automatic Speech Recognition applications, are given.
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