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N ABSTRACT

.~ ..A speech analysis system based on a combination of physiological and
psychoacoustic results:,has been developed. The system contains a

b
ii nonuniform Filter/Detector bank. A new relationship between

L

|
r
L]

T ! Filter/Detectors and the Short-Time Fourier Transform magnitude 1{is

1! [NER 'l

derived, and a generalized version of the Short-Time Fourier Transform

v
magnitude is used to implement the analysis system. The new relationship
is also applied to a discussion of channel vocoders, spectrograms, the
sliding Discrete Fourier Transform, average power spectrum estimation,
and nonuniform bandwidth analysis. Next, a new synthesis approach is
g used to reconstruct signals from the magnitude data produced by the
nonuniform analysis. Apart from an overall sign factor, the
analysis/synthesis system achieves exact reconstruction in the absence of
data modification. The ability of the system to reconstruct signals from
modified data 18 also demonstrated. Suggestions for further research,
including data reduction and Adtomatic Speech Recognition applicationms,
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CHAPTER 1

INTRODUCTLON

MOTIVATION

Information exchange between human beings often takes place in the

form of audio communication, or talking and listening. This form of

communication is convenient and provides a rapld means of information

transfer,

useful.

Audio communication between humans and computers is also

Computer voice synthesis can replace warning lights and other

displays, and Automatic Speech Recognition (ASR) devices can act as

keyboard replacements.




Computer speech input/output has several advantages over other forms

of man—-to-machine communication. Since audio communication devices

occupy minimal physical volume they can be used where large displays and

keyboards are unacceptable. Speech allows “hands-off" communication of

data as required for parcel sorting or wheelchair control. In addition,

speech can provide convenient access to computer information via the

telephone,

Humans have a speech recognition ability which is superior to that

of existing ASR machines. Disregarding effects such as visual cues and

contextual information, humans make speech recognition judgements based

on information from the auditory system, Therefore, 1f results from

perceptual and physiological studies of the auditory system are applied,

it may be possible to design improved ASR machines.

When applying auditory system results to the design of ASR machines
it is useful to understand what information, if any, is lost in the first

analysis stage (or “"front-end”) of the system. Inappropriate front-end

information 1loss can degrade overall ASR system performance. For

example, if a poorly designed front-end produces the same output in

response to two perceptually different input words, subsequent processing

stages must rely on contextual information rather than the analyzed

acoustic waveform to make a correct identification. It may therefore be

possible to 1improve system performance 1f such information 1loss is

avoided.




The problem of front-end information loss can be discovered when a

synthesis technique is used to test the analyzed speech data for suitable
information content. Furthermore, analyzed data may be subjected to a
variety of transformations in order to reduce the data rate or

investigate various auditory processes. Effects of such transformations

may be examined by application of appropriate inverse transformations and

signal synthesis from the processed data.

1.2 HISTORICAL DEVELOPMENT OF THE PROBLEM

The Sound Spectrograph is a widely wused tool for creating speech
spectrum displays, or spectrograms, A number of researchers have devised
machines for reconstructing speech from spectrograms (Flanagan [1]),
thereby creating a speech analysis/synthesis system. The intelligible
monotone speech produced by such machines has been used in extensive
perceptual studies. The Sound Spectrograph itself provides an audio
analysis which is uniform with respect to frequency, and thus does not

model human perception. Development of an auditory spectrogram-like

representation is a current research goal (Carlson and Granstrom [2]).
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In a related area, spectrogram—-like representations can be generated

-
&

from the Short-Time Fourier Transform (STFT) magnitude (Rabiner and
Schafer [3]). Since signals can be reconstructed from the STFT magnitude
(Altes [4]; Nawab, Quatieri, and Lim [5], [6]), a speech

analysis/synthesis system can be developed using STFT techniques. As
with spectrograms, however, this approach provides an analysis which 1is
uniform with respect to frequency, The STFT can be modified for

nonuniform analysis (Gambardella [7]; Youngberg and Boll [8]), but the

corresponding synthesis techniques reported in the literature require
both magnitude and phase of the modified STFT to perform signal
" reconstruction, Since available magnitude-only reconstruction techniques g
(Nawab, Quatieri, and Lim [9]) use autocorrelation functions rather than ]

performing reconstruction directly from spectral values, such techniques

cannot be modified for nonuniform analysis/synthesis. Furthermore,

available approaches do not generally achieve exact signal reconstruction
in the absence of data modification (Griffin and Lim [10]). Exact
reconstruction 1s a desirable feature for algorithmic verification

¥ purposes.
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1.3 THE SCOPE OF THIS REPORT

This report presents a speech analysis/synthesis system based on
perception, Physiological and psychoacoustic results suggest that a
nonuniform bank of Filter/Detector (F/D) subsystems can be used in the
speech analysis system, as shown 1n Chapter 2. A new relationship
between F/D subsystems and the STFT magnitude (or, equivalently, the STFT
magnitude squared) is described, and a generalized version of the STFT
magnitude is used to implement the desired F/D bank. A new synthesis
approach capable of reconstructing signals from the generalized STFT
magnitude is described in Chapter 3. Examples of results produced by the
analysis/synthesis system are presented 1in Chapter 4, Apart from an
overall sign factor, the system achieves exact reconstruction in the
absence of data modification. The ability of the system to reconstruct
signals from modified data is also demonstrated. A summary 1is given in
Chapter 5, along with suggestions for further research., Appendix A
presents standard definitions for reference purposes. Prerequisite F/D
theory, which is used throughout the report, i1s presented in Appendix B,
Several approaches to computation of the generalized STFT magnitude are
described in Appendix C. Appendix D applies the new relationship between
F/D subsystems and the STFT magnitude to a discussion of channel
vocoders, spectrograms, the sliding Discrete Fourier Transform, average

power spectrum estimation, and nonuniform bandwidth analysis.
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- CHAPTER 2

) SPEECH ANALYSIS SYSTEM
2ot INTRODUITIOM

1
R 13 3 .
) In tnis chapter, a simplified model of the imonaural, human
- peripheral auditorv system 1s developed from ¢ combination of
3 phvsiological and psvchoacoustic data. Binaural effects will not be
- Ziscussed, although such effects may be important for Autdmati: Speech
f. Recogrnition applications in noisy environments (ivon ;il}). A generalized
4 varsion of tne Srare~Time Fourier Transform magnitud- scuared i: used to
o
tf Y ralro e Sigreal dmoolcn-ntaloonooT tine molel. SLot e R s L Le o aasi
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2,2 A SIMPLIFIED AUDITORY MODEL BASED ON PHYSIOLOGICAL RESULTS

Fig. 2.1 1s a diagram of the human peripheral auditory system
showing the outer, middle, and inner ear structures (Flanagan [1]). The
drawing 1is not to scale, and some structures are enlarged for
illustrative purposes. In the auditory system, sounds entering the outer
ear travel through the middle ear and generate pressures in the inner ear
fluids. The cochlea, a structure in the inner ear, contains the basilar
membrane which functions as a filter bank. Basilar membrane motion
causes hair cells 1in the organ of Corti to produce firings on the
auditory nerve, which contains approximately 30,000 fibers., A number of
researchers have studied firing patterns by 1inserting microelectrodes
into the auditory nerve fibers of anesthetized animals (Kiang [12];
Frishkopf [13]; Katsuki, Suga, and Kanno {14]). Such studies 1indicate
that the peripheral auditory system can be roughly modeled as a
Filter/Detector (F/D) bank, and model parameters can be derived from

physiological data.

Fig. 2.2 presents a F/D subsystem of the type often used in auditory
models (eg., see Silebert [15]). The input 1s analogous to pressure at
the eardrum, and the output simulates various firing pattern features
which will be described 1later in this section. For simplicity, the
effects of spontaneous nerve firing activity have been omitted from the
model, The F/D subsystem of Fig, 2.2 consists of a bandpass filter,
memoryless nonlinearity, and lowpass smoothing filter (see Section B.2
for a detailed description of the various F/D subsystem components). The
bandpass filter impulse response 1is a lowpass window function h(t)

modulated by a sinusoid of frequency Q.. The window function has
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x(t) v(t)
INPUT ——th(t-1)sin[R@. (t-1)] —-—-DF —a] ()2 -.-Jhs(t)——»OUTPUT

ARNE AP NS S PR

Figure 2.2: F/D Subsystem for the Simplified Auditory Model

',
)
-
a
.

bandwidth @y, ylelding a bandpass filter bandwidth of 2Q2y. The window

function is of the form
h(t) = gtle™@t, 0t
= (O, otherwise, (2.1)

where @ and B are positive real constants. This window function, which
i1s derived from basilar membrane models (Flanagan [l|), will be discussed
further in Section 2.4,5. The window function of Equation 2,1 has been
chosen for convenience, and the theory presented in this chapter 1is
basically unchanged when other window functions are used instead. For
example, Bessel filters (Chu [16]) can be used to obtain a better match
between bandpass filter characteristics and the neural frequency respoanse
characteristics described by tuning curves (Kiang, Sachs, and Peake
[17)). A fixed delay, 1, 1is 1included 1in the bandpass filter. The
memoryless nonlinearity is approximately modeled as a half wave square

law device (Siebert [18]), although some researchers have suggested use

of a half wave piecewise linear device (Schroeder [19}). The smoothing
. filter, which has impulse response hg(t), acts as an envelope detector at
high frequencies (Q.,”2nx4000 radians per second) but follows details of

the rectified waveform at low frequencies.
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Apprupriate model parameters can be obtained from an examination of

physiological measurement techniques and the resulting physiological
data. For example, the response of a nerve fiber to acoustic impulses, or
clicks, {s often described by a poststimulus—time (PST) histogram. A
stimulus is repeated a large noaumber of times, and the PST histogram
depicts the density of firings as a function of time following the
stimulus., Thus, a PST histogram indicates the likelihood that a

particular nerve will fire at a given time following the stimulus. Firing
patterns of individual nerves are not similar 1in appearance to a PST
nistogram. It is assumed, however, that firings from a large population
of similar nerves could be combined to produce a deterministic pattern

approximating a PST histogram,

A PST histogram is shown in Fig., 2.3a for rarefaction clicks, and in
“iz. 2.3b <£-r condensation clicks., The experimental animal was a cat,
the  ¢.icxk level was -70dB re 100 volt input to the condenser earphone,
and e nerve fiber was maximally responsive at a frequency of 1.67 KHz
CRXiang Uil Fiz., 2.4 opresents -eighteen further examples of PST

ni3zograms for varicus characteristic frequencies from a single cat. The

17« levei for Fig. Z.4 was -50dB. Note the loss of timing details for
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When the input to the F/D subsystem of Fig. 2.2 is an impulse, model
parameters can be chosen so that the output mimics a PST histogram over a
limited range of intensities. As a specific example, parameters 4are
chosen so that the PST histograms of Figs. 2.3a and 2.3b are simulaced.
From Figs. 2.3a and 2.3b it can be seen that the delay is 1=.0024 second
and the characteristic frequency is 2.,=2mx1670 radians per second. Since
the characteristic frequency is low enough so that timing details are
preserved, the smoothing filter has no effect and is eliminated by

choosing hg(t)=8§(t). Use of a=2500 sec”l and g=9x107 sec™? results in a

SunSRERRNE

reasonable match to the data. The F/D output, v(t), is shown in Fig.

2.3¢c for an input x(t)=—6(t), and in Fig. 2.3d for an input x(t)=8(t).

Model parameters can be chosen to wmimic many features of auditory *
nerve patterns for clicks and steady sine waves over limited intensity ]
ranges (Siebert [15]). Agreement over wider intensity ranges, and for
stimuli such as tone bursts and nolse, can be obtained by inserting an i
Automatic Gain Control (AGC) at the bandpass filter output. Recent

research (Smith and Zwislocki [20]); Smith [21]); Harris and Dallos [22])

suggests use of a short-term adaptation function rather than an AGC. In

any case, such improvements will not be considered here.

The PST histogram envelope, which represents a short-term average

firing rate, is often a function of interest (Schroeder [19]). If the .
lowpass smoothing filter bandwidth Qg is chosen such that 2Q,<Qgq<R.-20y,

then the F/D subsystem i{mpulse response mimics the PST histogram envelope

8 i
. , , L
b} rather than the detailed PST histogram (see Section B.3.5). Under these
& .
tf- conditions the F/D output is proportional zo 1= ==, and Fig. 1.5 shows K
= .
o this runccicn superimpnsed on tne simulated ST aistow sns of Filg. ., 0. :
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;ﬂf In general, it can be shown that the envelope of a half wave square
_“r
f; law device output is proportional to the envelope of a square law device
;: output (see section B,2.2), Thus, if the smoothing filter bandwidth is
'Ei chosen so that the output follows the PST histogram envelope, then the
g' half wave square law device can be replaced by a square law device. It
}f will be shown 1in Section 2.4 that the resulting F/D subsystem can be
3 implemented by a generalized form of the Short-Time Fourier Transform ‘
. (STFT) magnitude squared. Therefore, a STFT magnitude squared approach -
can be used to roughly simulate PST histogram envelope functions at low )
frequencies (Q.<2rx4000 radians per second), and PST histograms at high
;' frequencies, A simplified auditory model based on short-term average
- firing rates is thus implemented using STFT techniques.
The model described in this section does not attempt to account for
7 all known agspects and limitations of the auditory system. The exact
; manner in which signals are encoded by the auditory system is a current
research topic, and several theories have recently been developed (see
fg for example Sachs and Young [23], [24]; Delgutte and Kiang {25]).
ii Instead, the model demonstrates an approximate relationship between
SQ< certain physiological results and F/D or STFT magnitude analysis .
é; techniques, and shows how standard analysis techniques must be modified
i;: for auditory modeling purposes. Although the auditory model presented in )
g}: this section 1s crude, it will be shown in Chapter 3 that no important -
. information is lost by such an approach since signals can be synthesized
1;. from the simplified auditory model outputs,
= 16
C




2.3 A SIMPLIFIED AUDITORY MODEL INCORPORATING PERCEPTUAL RESULTS

Although auditory model parameters can be derived from physiological
data, there is no guarantee that the resulting model will simulate human
perception. Recall that physiological data is generally obtained from
experimental animals rather than humans. Furthermore, since available
data mainly concerns the peripheral auditory system, effects of higher
processing levels are not included in models based on such data alone.
In order to develop a speech analysis system, it is desirable to account
for at least some known aspects of human auditory perception.
Supplementary information is therefore required for the determination of

appropriate auditory model parameters.

The field of psychoacoustics provides an alternative means of
investigating the auditory systea. Listening experiments are performed
on live human subjects, and the results indicate functional behavior of
the complete auditory system. One useful psychoacoustic result is the
concept of a critical band. A critical band has been defined (Scharf
[26]) as the bandwidth at which subjective responses change abruptly.
For example, assume that a listener i3 subjected to a bandlimited noise
stimulus. The bandwidth of the stimulus is varied but a constant sound
pressure level is maintained. As long as the bandwidth of the noise is
less than a <critical band, perceived loudness of the noise remains
constant., When the bandwidth of the noise increases beyond a critical
band, perceived loudness of the noise begins to increase. Since similar
critical bands are encountered in a variety of different perceptual
experiments, critical bands are often used to describe the filtering

process assumed to take place within the auditory system.
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A model of the human auditory system based on perception can be
constructed by combining physiological and psychoacoustic results. The
structure of the model is determined from physiology, as discussed in
Section 2,2, Empirical critical bandwidth data from humans, rather than
physiological tuning curve or PST histogram data from animals, 1is then

used to determine the bandpass filter center frequencies and bandwidths.

Table 2.1 presents the necessary parameters for design of a critical
bandwidch filter bank (Scharf {26]). Note that cthe critical bandwidth
can be expressed as a continuous function of center frequency by
interpolating the data of Table 2.1. Fifteen filters are chosen to
adequately cover the 200-3675 Hz frequency range. The filters have
nonuniform center frequency spacing, and bandwidth which increases with
center frequency. The filters are roughly constant bandwidth
(approximately 110 Hz) for frequencies below 700 Hz, and constant Q
(center frequency to bandwidth ratio of approximately 6.4) above 700 Hz,
Although recent estimates of auditory filter shape suggest use of
different values below 500 Hz (Moore and Glasberg [27]), the data of

Scharf will be used to design this speech analysis system.




TABLE 2.1

CRITICAL BANDWIDTH FILTER BANK PARAMETERS

Filter Number (k)

Center Frequency (Hz)

Critical Bandwidth (Hz)

10

11

12

13

14

15

250

350

450

570

700

840

1000

1170

1370

1600

1850

2150

2500

2900

3400
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100

100

110

120

140

150

160

190

210

240

280

320

380

450

550

.
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2,4 CRITICAL BANDWIDTH FILTER/DETECTOR BANK IMPLEMENTATION

This section describes implementation of a critical bandwidth
Filter/Detector (F/D) bank, which will be employed as part of the speech
analysis system. First, a new relationship between F/D subsystems and
the continuous-time Short-Time Fourier Transform (STFT) magnitude squared ;
is described. The new relationship demonstrates that a specific type of

F/D subsystem can be implemented via the STFT magnitude squared. Next, .

the discrete-time case 1is described and then generalized to allow .
implementation of a critical bandwidth F/D bank. Finally, the
specifications given in Sections 2.2 and 2.3 are used to design the i

desired F/D bank via STFT techniques.

2.4.1 CONTINUOUS-TIME SHORT-TIME FOURIER TRANSFORM DEFINITION

The STFT 1is a widely used approach to time-dependent frequency - '

analysis. For the continuous-time case, the STFT evaluated at some fixed

frequency Q. is defined as (Flanagan [l]): R j

. \

400 -jQ CT ] i

X (30,) = [ x(1)h(t-1)e dt. (2.2) !
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Note that 1if h(c)=1 for all t, che STFT becomes the continuous—-time
Fourier transform described in Appendix A. A block diagram for STFT
computation, which expresses the STFT in terms of linear filtering
operations, 1is shown in Fig. 2.6a. This interpretation indicates that
the STFT, viewed as a function of time at the fixed frequency Q., 1s a

lowpass complex function bandlimited to the window function bandwidth.

An equivalent STFT definition is:

—12ct 4o 0T
X (JQ.) = e [ x(t=t)h(r)e dr (2.3)

~—00

—

The corresponding block diagram is shown in Fig. 2.6b. In this approach,

a complex modulation signal 1is used to downconvert the bandpass filter

v

MOSRTYa

DEen Tan o8
LT N M}

output into a lowpass function.

jfet
It follows from Equation 2.3 that the imaginary part of e Xe (39¢)

is the output of a bandpass filter which has input x(t) and impulse

response h(t)sin(Q.t). Thus, the STFT could be used to implement the

bandpass filter portion of the F/D subsystem shown in Fig. 2.2. This ]
]

approach, however, will not be pursued. b
The methods for STFT computation shown in Fig. 2.6 employ a local q

oscillator (Taub and Schilling [28]). Thus, the STFT is different from a

detection process which uses a F/D., It will be shown in Section 2,4,2

that the STFT magnitude squared, rather than the STFT, corresponds to a

detection process using a F/D.
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Figure 2.6: Linear Filtering Interpretation of the STFT
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2.,4.2 CONTINUOUS-TIME F/D IMPLEMENTATION USING STFT MAGNITUDE SQUARED

F/D subsystems have long been used as a means of approximating the
STFT magnitude squared. Early work by Fano [29] described a relationship
between F/D subsystems and the STFT magnitude squared for special window
functions. Schroeder and Atal [30] extended this work to include
.- arbitrary window functions, and the results are discussed by Flanagan [1]
and Gambardella [7]. However, these authors did not characterize basic
F/D parameters such as lowpass smoothing filter bandwidth. Flanagan [1]
discusses a relationship, valid only for certain signals under
restrictive conditions, which 1links the STFT magnitude with speech
spectrograms (see Section D.3). Flanagan also discusses a relationship
between long-term average F/D outputs and an averaged version of the STFT

magnitude squared.

In tnis section, a new relationship between F/D subsystems and the
STFT magnitude squared is described. The new relationship is more ;
precise than those previously reported in the literature, and
demonstrates the equivalence between the STFT magnitude squared and a

|
!
|
specific type of F/D subsystem. 1
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2.4,2,1 PLAUSIBILITY ARGUMENT

A system for computing the STFT magnitude squared is shown in Fig,.
2.7a. From this system and the modulation property of Fourier transforms
(described in Appendix A), it is easily seen that IXt(ch)Iz is a lowpass
real function of time which 1s bandlimited to twice the window function

bandwidth.

An equivalent system for computing the STFT magnitude squared is
shown in Fig. 2.7b. In this figure, the output of each square law device
consists of a lowpass function and a high frequency bandpass function
(see Section B.3.1). The high frequency bandpass functions cancel out in

the adder, while the lowpass functions combine to form [X¢(jif¢)|2.

The fact that only lowpass functions are retained by the STFT
magnitude squared suggests that a similar result could be produced by the
F/D subsystem of Fig. 2.7c. Details of this F/D will be described in
Section 2.4.2,2, In Fig. 2.7c, the high frequency components at the
square law device output are eliminated by linear filtering rather than
cancellation. Thus, the STFT magnitude squared and F/D outputs will

generally be similar but not identical.
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2,4.2,2 PROOF OF F/D AND STFT MAGNITUDE SQUARED EQUIVALENCE

The F/D subsystem shown 1in Fig. 2.7c consists of a Linear
Time-Invariant (LTI) bandpass filter, square law device with
multiplicative constant, and LTI smoothing filter. The impulse response
of the bandpass filter contains an arbitrary constant parameter 6, If
8=-n/2 for example, the bandpass filter impulse response is h(t)sin(Q.t).
Nomenclature for the signals in Fig. 2.7c follows that of the general F/D

theory presented in Appendix B,

Let the window function h(t) be the 1impulse response of an ideal

lowpass filter with bandwidth Qy:
h(t) = [sin(@ut)])/mt. (2.4)

The output of the bandpass filter in Fig. 2.7c¢ is:

y(t) = x(t)*[h(c)cos(Q .t+0)]
4o

= [ x(1)h(t-T)cos(Q t=RT48)dr

= f(t)cos(Qct) + g(t)sin(Q.t),
- where
» £(t) = [x(t)cos(Rt=8)]*h(t)
¢
;: and
:
9 g(t) = [x(t)sin(R.t-8)]*h(t)
i'..
L4
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are lowpass functions. The square law device output is:
2wy (t) = [£2(t)+g2(t)]
+ [cos(2M.t) J£2(e)-g2(t)] + 2[sin(20.t))E(t)g(t). (2.8)

Since f(t) and g(t) are lowpass bandlimited to the frequency domain
region |2|<Qy, the function fz(t)+32(t) is lowpass bandlimited to
|9|<Xy. The remaining components of Equation 2,8 are high frequency
bandpass signals limited to the region 2.~2,<|9{<2.+2Q,. Let the
smoothing filter with impulse response hg;(t) be an ideal lowpass filter

having bandwidth Qg)]3

hsl(t) = [sin(ﬂslt)/wt]. (2.9)

Also, let R0 1<N~Mp. It follows that MN,<Q.. The F/D output is i

2vp(t) = £2(c) + g2(v), (2.10)

which 1s positive even though the impulse response of the smoothing
filter is not positive for all t. Since the signals x(t) and h(t) are

real, it follows from Equations 2.6, 2.7, and 2.10 that
2vp(e) = { [x(t)cos (@RI I*n(e)} 2 + { [x(t)sin(- t) |*h(t)}2

je-act)
= |[x(t)e I*h(t)|?

= 'xc(jnc)|2- (2.11)
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where Xp(J2.) 1s the STFT evaluated at a fixed frequency @.. Thus, when

ideal lowpass filter functions are used for h(t) and hg (t), the STFT
magnitude squared is exactly the same as the F/D subsystem output of Fig.
2.7c. The F/D subsystem of Fig. 2.7c can therefore be used to measure the
STFT magnitude squared, or the STFT magnitude squared can be used to
implement this F/D subsystem. STFT magnitude squared (and therefore STFT
magnitude) analysis of noise, impulse, sinusoid, and sinusoidal pair
signals follows directly from the examples of Section B.3. Note that the
parameter O does not appear in the final result and has no effect on the

F/D output.

When the window function h(t) is the impulse response of a
realizable non-ideal lowpass filter, the F/D subsystem of Fig. 2.7c 1is
not necessarily equivalent to the STFT magnitude squared (although
agreement 1s generally quite good). For non-ideal lowpass filter window
functions, the lowpass and high frequency bandpass components of Equation
2.8 overlap in the frequency domain and cannot be separated by any LTI
smoothing filter. Thus, although Equation 2.8 correctly describes the
smoothing filter input, Equation 2.10 becomes an approximate description

of the smoothing filter output. Under these conditions the F/D output is

!i. approximately, but not exactly, the same as the STFT magnitude squared.
;.

ff It should be noted that many other window function and smoothing
v

F‘ filter combinations exist which yield a F/D output identical to the STFT
Er, magnitude squared. As a simple example, let the window function be an
gi' impulse, h(t)=§(t). If the smoothing filter has 1impulse response
b. hg1(t)=5 (t)/[2(cos 6)2], cos 820, then both the F/D subsystem and STFT
Eﬁ magnitude squared produce the result x2(t).
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2.4.2.3 DISCUSSION

In Section 2.4.2.2 it was shown that the STFT magnitude squared can |

be used to implement a F/D subsystem of the type shown in Fig. 2.7c. The

fixed STFT analysis frequency, Q., determines the center frequency of the

bandpass filter in the F/D subsystem. Let Q) denote the one-sided main

LB A,

lobe bandwidth (see Section B.2.1) of any lowpass window function h(t).
As long as the bandpass filter has a center frequency which 1is greater
than its bandwidth, ie. 2,<., a lowpass smoothing filter operation is

effectively implemented by the STFT magnitude squared computation. The

S tein ts 0 TR L A s L4

effective smoothing filter can be considered to have the same bandwidth

i,

as the bandpass filter, ie. 2. The window function thus determines the

bandwidth of both the bandpass filter and the lowpass smoothing filter.

There are many advantages to implementing a F/D via the STFT i
magnitude squared. The STFT is widely used, so literature and computer J

programs are readily available. Since the magnitude squared computation

automatically implements an effective smoothing filter, results may be
obtained more efficiently than 1if a direct F/D implementation is used.
Since there are no delay elements between the bandpass filter outputs and

the adder output of Fig. 2.7b, the effective smoothing filter implemented

by the STFT magnitude squared has zero delay regardless of the window
function used. When the STFT magnitude squared is used to implement a F/D

subsystem, difficulties normally assoclated with smoothing filter design

: (as discussed in Section B.2.3) are eliminated and the output {is
. guaranteed to be positive at all times. This feature 1is desirable for
”i auditory modeling purposes since nerve firing rates are always positive.

o
2
Sent,
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F/D implementation via the STFT magnitude squared has disadvantages
as well, The STFT magnitude squared does not generally produce results
identical to those produced by direct F/D subsystem implementations.
Design flexibility is limited since the F/D bandpass filter must be of a
specific type, the memoryless nonlinearity must be a square law device,
and the lowpass smoothing filter must have the same bandwidth as the
bandpass filter, Despite these limitations, however, F/D subsystems
implemented via the STFT magnitude squared are appropriate for many

applications,
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2.4.,3 DISCRETE-TIME F/D IMPLEMENTATION USING STFT MAGNITUDE SQUARED

For convenience, a discrete-time implementation of the speech
analysis system 1s desired. The “analog” continuous-time theory
presented in Section 2.4.2 must therefore be extended to the "digital”
discrete-time case. One procedure for transforming an analog filter
design to a digital filter design is known as the impulse invariant
method (Oppenheim and Schafer [31]). In this procedure, the unit-sample
response of the digital filcer 1is equally spaced samples of the impulse
response of the analog filter. For example, if h(t) 1is the impulse
response of an analog lowpass filter, then the unit-sample response of

the correspouding digital filter is:

where T is the sampling period. The continuous-time F/D subsystem of
Fig. 2.7c can be traansformed, via the impulse invariant method, into the
discrete-time F/D subsystem of Fig. 2.8. The bandpass filter center

frecuency is w=.T. and 6 is an arbitrary constant parameter.

Let the window function h(n) be the unit-sample response of an ideal

{owpass filter witn pandwidth wp:

h(n) = {sin(wprn)]/mn. (2.13)




x(n) y(n) 2w (n)
INPUT —={ h(n)cos(wcn+0) 2( )2 hg1(n)

2v0(n)
OUTPUT

Jue 2

= 'xn(e )'

Figure 2.8: Discrete-Time F/D Subsystem

FT{ h(m) } A

[ .. '

-2n - Wh 0 wh L
\\"2ﬂ*wh

(a) Ideal Window Function Characteristic

—///Zﬂ
Zﬂ-mh

A
|FT{ y(n)} |
2wy Znh Znh th
i f—erq ey |
=2n ~2ntu. -n W we " W, w

(b) Spectral Regions Occupied by the Randpass Filter Output

)
|FT{ wy ()} |
o by, by, ’ 4wy

(c) Spectral Reglons Occupled by the Square Law Device Output

Figure 2.9: Spectral Characteristics of Discrete-Time F/D Subsystenm
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The Fourier transform of the window functionm, FT{h(n)}, is shown in Fig.
2.9a. Spectral regions occupied by the bandpass filter output are shown

in Fig. 2.9b. The bandpass filter output is:

y(n) = x(n)*[h(n)cos(wcntd )]

y  x(m)h(n-m)cos(w  n-w .0 )

mas—0

f(n)cos(won) + g(n)sin(wcn), (2.14)

where

f(n)

[x(n)cos(mcn-e)]*h(n) (2.15)

and

g(n) = [x(n)sin(w n-@)]*h(n). (2.16)

On the interval -mdu<r, £(n) and g(n) are lowpass bandlimited to o |G p.

The square law device output 1is:
2wy(n) = [£2(n) + g2(n)]
+ [cos(2uon) 1 [£2(n)-g2(n)] + 2(sin(Zcn)E(n)g(n).  (2.17)

By the modulation property, the function fz(n)+gz(n) is 1lowpass

bandlimited (on the interval -wdwdr) to the region |w|<2wp, as shown in

Fig. 2.9c. The remaining components of Equation 2.17 are high frequency

o

bandpass signals which may be eliminated by the smoothing filter. Let
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the smoothing filter with unit-sample response hg (n) be an ideal lowpass

filter having bandwidth wg:
hg1(n) = [sin(wgn)]}/vn. (2.18)

Also, let 2w ,Wwg)<Ww -2}, and WpWg}<2m-2w  ~2wp. It follows that

2, -2, The F/D output is:
2vo(n) = £2(n) + g2(n). (2.19)
Since the signals x(n) and h(n) are real, it follows that

j“’c
2vg(n) = [X(e |2, (2.20)

jmc .
where X,(e ) is the discrete-time STFT evaluated at a fixed frequency
we» and is defined as (Rabiner and Schafer (3]):

Jwe - =jw o(n-m)
Xp(e ) = ] x(n-m)h(m)e : . (2.21)

m=—oo

The discrete-time STFT thus follows directly from application of the
g impulse invariant transformation to the continuous-time STFT. Note that
E;E the discrete-time STFT of Equation 2,21 corresponds to the

continuous—time STFT of Equation 2.3, and the discrete~time F/D result of

Equation 2,20 corresponds to the continuous-time result of Equation 2.1l.

El The discussion of Section 2,4.2.3 therefore applies to both the

3 discrete-time and continuous-time cases.
3
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A difference between the discrete-time and continuous-time
implementation occurs 1in the restriction on bandpass filter center
frequency relative to bandwidth. For the continuous-time case, it is
required that the bandpass filter have a center frequency which 1is
greater than its bandwidth, ie., .. This restriction also applies
to the discrete-time case, ie., 2uwpWw.. However, an additional
restriction must be applied in the discrete-tine case because of the
periodic spectral characteristics shown in Fig. 2.9c. An upper limit must
be applied to the digital bandpass filter center frequency, resulting in
the restriction 22uwhpWc<T-2wp. In other words, the digital bandpass
filter must have a center frequency which is greater than 1ts bandwidth
but less than pi wminus the bandwidth., The upper frequency 1limit is

discussed further in Section 2.4.5.

It can easily be shown that if w. does not fall within the range
2whpwe<m-2wy, then the STFT magnitude squared does not implement a F/D
subsystem, For example, if w.=0 it follows from Equation 2.21 that the
STFT magnitude squared is equivalent to a lowpass filter with impulse
response h(n) followed by a square law device. Similarly, if wc =% the
STFT magnitude squared is equivalent to a highpass filter with impulse
response (-1)%h(n) followed by a square law device. In all cases,
however, the STFT magnitude squared is a lowpass function with bandwidth
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2.4.4 THE GENERALIZED SHORT-TIME FOURIER TRANSFORM (DISCRETE-TIME CASE)

It was shown in Section 2.4.2 that the STFT magnitude squared can be
used to implement a F/D subsystem in which the bandpass filter bandwidth
is fixed by choice of the window function, The simplified auditory
system model described in Sections 2,2 and 2.3, however, uses a bank of
F/D subsystems in which each bandpass filter has a different bandwidth.
Therefore, a generalized version of the STFT which allows a different
window function at each analysis frequency must be used to implement the

auditory model., Only the discrete-time case will be discussed.

Let the STFT be evaluated at K discrete arbitrarily spaced
frequencies wy, where k=1,2,...,K. A different window function h(n) may
be used at each frequency. It follows from Equation 2,21 that the
Generalized Short-Time Fourier Transform (GSTFT) can be defined as
(Rabiner and Schafer [3]):

Jug ® -jwk(n~m)
Xp(e ) = ] x(n-m)hg(m)e . (2.22)
m=-oo
It is assumed that the signal x(n) and the set of window functions hy(n)
are real. Several approaches to GSTFT computation are discussed in

Appendix C.
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The GSTFT magnitude squared can be wused to implement a bank of F/D

subsystems similar to the type shown in Fig. 2.8, The resulting bandpass
filters have impulse response hy(n)cos(wyn+8y), where 6, 1s arbitrary.
The bandpass filter with center frequency wy has a bandwidth determined
by hg(n). As long as the bandpass filter has a center frequency which is
greater than its bandwidth (and less than pi minus the bandwidth), a
lowpass smoothing filter operation 1is effectively implemented by the
GSTFT magnitude squared computation, The bandpass and smoothing filters

can be considered to have the same bandwidth.
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2,4.5 PERCEPTION-BASED SPEECH ANALYSIS SYSTEM IMPLEMENTATION

Since GSTFT magnitude squared results are proportional to the
desired F/D bank outputs, the GSTFT magnitude squared can be used to
implement the F/D bank specified in Sections 2.2 and 2.3. First, a bank
of fifteen continuous-time bandpass filters must be designed wusing the
critical bandwidth data of Table 2,l. Let each filter have impulse
response hp(t)sin(Qyt), where @y 1s the center frequency, and hy(t) is
the set of window functions defined by:

2 Kt
Byt e , 0<t

hk(t)

9, otherwise, (2.23)

for k=1,2,...,15. The delay 7, as shown in Fig. 2.2, will be neglected,

The Laplace transfori (see Appendix A} of each window function is:

! Q- \"'3 )
g S TAY . el

N

LTt = 28

The dandpass filizers can Dde desizned to have unity gain a:  enter
- N - s ? . e o . :

frequency Ny choosing 3=l 7 A gala IZactor 2L Two 18 108t 11 Ine
process of tonverting the lowpass window Into a  bandpass cfilter, The
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Frequency domain characteristics of the windows are shown in Fig. 2,10,
Each window has a 3dB bandwidth of .509ay rad/sec, so each bandpass
filter has a 3dB bandwidth of 1.018ay rad/sec. Specific values for Qi
and ay can be obtained from Table 2.l. For example, Q)=2wx250 rad/sec,

and a1=(21x100)/1.018 sec~!,

The impulse invariant method can now be applied to obtain a digital
implementation. Let T represent the digital system sampling period in
seconds. The window functions of Equation 2.23 are transformed as:

3 2 3 "aknT
ng(n) = (ag) nTe , lKn,

= {!, otherwise, {(2.26)

where an additional factor of T has been included to compensate for the
analog to digital transformation (Oppenheim and Schafer [31]). The

window funczions of Equation 2,26, which have rational z-transforms (see

appendiz A an. Section £.2), car be written in the form
i By

Ap.nt o= pghpn=e 2 geer)don-r 2,275
=1 r={
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Figure 2.10: Window Function Frequency Characteristics
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by choosing
i=] N ‘Yk=3, Rk=2,

3 ot 3 20T
q (1) =(ayT) e » Q(2)=(a,T) e .

-O.kT -ZakT -3akT
p(1)=3e , Pr(2)=-3e , and py(3)=e . (2.28)
Substitution of the Infinite-duration Impulse Response (IIR) window
function defined by Equation 2,27 into Equation 2.22 yields a recursive
formula for the GSTFT (Rabiner and Schafer [3])):

k Jwg Ry -jwg(n-r)

Jog
pk(wxw(e ) + ] q(r)x(n-r)e . (2.29)
r=1

Xole ) =

o€
p—

L

Note that the recursive GSTFT 1is computationally efficient for small
values of V¥, and Ry. An implementation suitable for real-time
applications 1is presented in Section C.2. Values for ay and wg,
k=1,2,400,15, are obtained from Table 2.1 via the formulas

ap=(6.17)(Critical Bandwidth in Hz) and wyp=(2nT)(Center Frequency in Hz).

Each bandpass filter of the digital F/D bank implemented via the
GSTFT magnitude squared must meet fwo requirements. First, each filter
must have a center frequency which 1s greater than 1its bandwidth,
Second, =ach filter must have a center frequency less than pl wminus the
~andwidth,. Since the analog filters of Table 2.! meet the first
requirement, so do the corresponding digital filters. The second
requirement depends upon the sampling period T. In terms of analog

I

iter parameters, :ne :um of center frequency and critical bandwidth
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(both in Hz) must be less than 1/2T for each filter. The value T=,000l

second (ie., a 10 KHz sampling rate) 1is used to ensure that the second

requirement is met.,

Fig. 2.11 shows the F/D bank response to an impulse input applied at
t=,0032 sec. The figure has linear amplitude and time scales. The graph
of each F/D subsystem output, or “"channel,” has been normalized to the
same peak value. Apart from a scale factor, the graphs of Fig. 2.1l are
comparable in shape and duration to PST histogram envelopes {rerer tc
Fig. 2.4). The impulse response of each F/D subsystem is proportional tc

When the F/D bank input is a sine wave, the output of each fro
subsystem is a constant. The graphs of Fig. 2.,1Z were obtained Irow
average steadv-state sinusoidal response measurements for each L
subsystem. and these graphs correspond well witn the critical pandwidt:n
filter pank vparameters given in Tabie I.i. Sincez tne T L pDank was no:

designec tc malch physioliogical tuning curves., tne grapns 2 Fige Zoio @

not possess the steep SKiIrts exnibited by TUnLNE curves. However, U if
possibie tu onitaim o petrter  wmaten  ©C Luniag lurve data o U@L
difrerent winaox functisn  ac  dlscussea LT buliadi Ceen
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- 2.5 SHORT-TIME ENERGY

Short-Time Energy (STE) is a quantity which will prove useful in
signal synthesis, as described in Chapter 3., For the discrete-time case,
STE is defined by (Rabiner and Schafer [3]):

En = m2=_mx2(m)h0<n-m), (2.30)
where ho(n) is the STE window function. Since the energy E; must be
non-negative for all real sequences x(n), including x(n)=8(n-ng) for any
integer ng, the STE window function must be non-negative; ie., ho(n)>0
for all n. Note that the set of GSTFT window functions hy(n),

k=1,2,...,K, need not be non—-negative in general.

A block diagram of the STE computation 1is shown in Fig. 2.13. A
comparison of Figs. 2.8 and 2.13 reveals that the STFT (or GSTFT)
magnitude squared essentially computes the STE within a given frequency

band.

The STE can be computed recursively if hg(n) has a rational

z-transform:
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q For example, let
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-
hg(n) = (agT) ne

OnT
, 1<n,

= (), otherwise.

Choosing a(=827
Hz,

k=0,

A R S AC RO it i SRl A il aon ik et bt Sre n -0 e ma e b

(2.32)

results in a lowpass filter with a 3dB bandwidth of 67

The set of coefficients py and qg are defined by Equations 2,28 with

x(n) =————a] ( )2

Figure 2.13:
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MINIMUM SAMPLING RATES

Although data reduction i8 not an essential part of an auditory
model, it is often desirable to reduce the amount of data from speech

analysis systems for practical purposes. A modest amount of data

reduction can be achieved by sampling the STE and F/D bank outputs. If

desired, the original outputs can be approximately recovered by passing
the samples through an appropriate smoothing filter. A smoothing filter
with positive impulse response (see Section B,2.3) can be used to ensure
that the upsampled smoothed data 1is always positive, This
downsampling/upsampling approach is also known as decimation

interpolation (Rabiner and Schafer [3]).

The output of each F/D subsystem is bandlimited to twice the window
function bandwidth for that subsystem, so each output must be sampled at
a rate which is greater than four times the corresponding window function
bandwidth. The STE must be sampled at a rate which is greater than twice
the STE window function bandwidth, Each output may, in general, be

sampled at a different rate.
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Since the F/D subsystems are implemented via the GSTFT magnitude
squared, the sampling rates for F/D subsystem outputs also apply to GSTFT
magnitude squared functions, Once the GSTFT magnitude squared has been
sampled, any invertible operation such as square root or logarithm can be
applied to the data. For non—-negative numbers, knowledge of the square
root or logarithm of a number is the same as knowledge of the number
itself. It follows from the results of Sections B.3.6 and B.3.8 that
GSTFT magnitude (as opposed to magnitude squared) functions are not
bandlimited in general, The minimum sampling rate 1s therefore
determined by the magnitude squared functions, but is equally applicable
to magnitude or log magnitude functions, even though such functions may

not be bandlimited.

Note that the minimum sampling rate requirements were derived from
system theory considerations, and conditions for reconstruction of the
original signal from the GSTFT magnitude data are not considered in this
chapter (see Chapter 3). The mipnimum sampling rate arises when each
channel is examined independently, and a sampling rate 1is determined
which accurately preserves all available information 1in each channel.
When the complete analysis system 1is considered, however, channels may
overlap and contain redundant information. The overall sampling rate
required for signal reconstruction may therefore be less than the product
of the number of channels and the sampling rate per channel determined

from system theory considerations.
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2.7 CONCLUSION

In this chapter, it was shown that the peripheral auditory system
can be roughly modeled as a F/D bank. To obtain a speech analysis system
based on perception, a model structure determined by physiological data
from animals was combined with model parameters determined by perceptual
experiments performed on humans. It was shown, via a new relationship,
that a F/D subsystem of the desired type can be implemented using the
STFT magnitude squared. Further applications of this relationship are
described in Appendix D. A generalized version of the STFT magnitude
squared was used to implement the speech analysis system based on the
simplified auditory model, and a STE function was also computed. Minimum

sampling rates for the STE and F/D outputs have been specified.
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CHAPTER 3

SPEECH SYNTHESIS SYSTEM

3.1 INTRODUCTION

Pl

This chapter describes a speech synthesis system which reconstructs

'
aw's

(4

5 . a signal from spectral magnitude data, as provided by the analysis system

of Chapter 2. Apart from an overall sign factor, the synthesis system

a
v e

can obtain exact signal reconstruction in the absence of data

a,a

r's

- modification. It will be shown 1in Chapter 4 that the system also
! performs well given modified data. Only the discrete-time case will be
- discussed,

K-
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The overall speech analysis/synthesis system is depicted 1in Fig.
3.1. The signal x(n) is analyzed by a Filter/Detector (F/D) bank, which
is implemented via the Generalized Short-Time Fourier Transform (GSTFT)
magnitude squared as described in Chapter 2, An optional Short-Time

Energy (STE) constraint may also be computed. The GSTFT magnitude

squared and STE values are subjected to an analysis transformation A.

_f? The analysis transformation may consist of lowpass filtering,
downsampling, logarithmic operations, or a variety of processes such as
principal components analysis (Chu {16]). The analysis transformation
may also 1include a delay in each channel which allows the impulse
responses of Fig. 2.1l to attain their peak values simultaneously. Such
delays are useful for data display purposes. The resulting data 1s sent
through a transmission channel. At the channel output, received values
are subjected to a synthesis transformation S. The synthesis

Ve transformation may consist of exponentiation, wupsampling, lowpass
filtering, or other operations. It will be assumed that the synthesis
transformation attempts to reverse effects of the analysis
transformation. Thus, the synthesis transformation produces modified

data values which approximate the original values, ie.,

~  Jex 2 Jwg 2 ~ -
= IXo(e )| 2|Xy(e )| and EzE;. Finally, a sequence x(n) is .
o A Jwg .
- reconstructed from the modified data. Let Xp(e ) denote the GSTFT and
. ~ -~ ~
E, denote the STE of x(n). The sequence x(n) may be reconstructed by
- -~ jwk 2 -
ol choosing values so that |Xp(e )| and E; match the available data
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Overall Speech Analysis/Synthesis System
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]xn(e )| and E, In this sense, the reconstructed signal x(n)

LI

approximates the original signal x(n). The reconstruction process 1s
illustrated in Fig. 3.2. Note that the reconstruction process contains a

hi model of the analysis system., Signal generation is accomplished by a set

on I Beine St

of equations which will be derived in Section 3.3.2.
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~ Jug 2 ~
|Xp(e )| and Ep |
(DATA)

Figure 3.2: Reconstruction Process
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T 3.2 ANALYSIS/SYNTHESIS SYSTEM DESIGN GUIDELINES

57' Although a signal can theoretically be recovered from the unmodified

L &

A GSTFT magnitude squared (as will be shown in Section 3.3), several
guidelines must be applied to design a practical analysis/synthesis
system. These guidelines are a consequence of the F/D and GSTFT magnitude

!
squared equivalence described in Chapter 2,

. 3.2.1 SHORT-TIME ENERGY

i Under certain conditions, unwanted out-of-band components may be

L

introduced by the reconstruction process if STE is not used. To
.i: illustrate, let the F/D bank analyzer of Fig. 3.1 examine the 200-3675 Hz

frequency region, Information about other frequency components of x(n)

A jwk
is not transmitted through the channel. Assume |Xp(e )| exactly

. ~  Jwg
matches the data |X,(e )| « For reconstruction based on magnitude

~

information alone, nothing prevents the reconstructed signal x(n) from

having large components at low frequencies (below 200 Hz) or high

Q; frequencies (above 3675 Hz). Such components could be eliminated by

o bandpass filtering x(n), but the reconstruction process wmust then employ -
s a wide dynamic range to maintain a small signal with an arbitrarily large

o

{l offset,

y Although there are many ways to eliminate out-of-band components

F from the reconstructed signal, use of STE has proven most practical, as

o 56




M

long as the original signal x(n) has been bandpass filtered to reject

components outside the F/D bank analysis range, the STE constraint
prevents out-of-band components from entering the reconstruction process.
In cases where little data modification is ir olved, the STE constraint
is unnecessary 1if some information about out-of-band components is
allowed through the transmission channel, This occurs when non-ideal
bandpass filters are used (refer to Fig. 2.12 for examples of appropriate
filter characteristics). Thus, it 1s possible to achieve exact signal
reconstruction without STE (see Anderson and Searle [32] for examples).

For most practical applications, however, use of STE is recommended.

3.2.2 BANDPASS FILTER CHARACTERISTICS

If the bandpass filter frequency-domain characteristics do not meet
certain overlap and shape requirements, then practical signal
reconstruction is impossible. For example, consider a bank consisting of
two F/D subsystems. Let the bandpass filters have non-overlapping
frequency characteristics as shown in Fig. 3.3a,. Assume that a
sinusoidal tone burst in the 350-400 Hz frequency range is fed into the
F/D bank, and the tone burst is of sufficient duration that the F/D
outputs reach a steady-state value. In the steady-state condition, one
F/D output is a constant positive value while the other {1s essentially
zero (see Section B.3.7). The amplitude and frequency of the tone burst,
which are two 1independent parameters of interest, cannot be determined

from the single non-zero F/D output even if the filter characteristics
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(b) Overlapping Filters

.' Figure 3.3: Bandpass Filter Characteristics




are known. Steady-state F/D outputs will be identical for a variety of
input amplitudes and frequencies. It can only be determined that the
sinusoidal input frequency lies within a particular filter passband, and
the amplitude is indeterminite. In theory, exact signal reconstruction
can be achieved from unmodified F/D outputs if transient as well as
steady-state values are examined. However, slight modifications (such as
truncation error) are always present 1in actual systems, and practical
reconstruction cannot be achieved from F/D banks using non-overlapped

bandpass filters.

When overlapping bandpass filter characteristics are used, as shown
in Fig. 3.3b, amplitude and frequency of an input sinusoid can easily be
determined from the steady-state F/D outputs. For example, the frequency
can be obtained from a ratio of the F/D outputs. The amplitude can then
be determined from either bandpass filter characteristic, Thus, it is
not necessary to rely on transient or low-level components to achieve
reconstruction when overlapped filters are used. The need for overlapped

filters in speech analysis systems has also been noted by Klatt [33].

It should be noted that bandpass filter overlap is necessary, but
not sufficient, for a practical analysis/synthesis system. For example,
if the bandpass filters are overlapped but possess both constant passband
gain and steep skirts, then steady-state F/D outputs will be identical
for a range of tone burst frequencies. The speech analysis system based
on perception uses overlapped filters which do not have constant passband
gain (see Fig. 2.12). It will be demonstrated in Chapter 4 that such a

configuration performs well in a practical analysis/synthesis system.
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3.2.3 TRANSHMISSION CHANNEL DATA RATE

Since the transmission channel data rate (see Fig., 3.1) must be
chosen in accordance with the bandpass filter characteristics, this rate
is affected by the filter overlap requirement. For example, assume that
the original signal is sampled at a 10 KHz rate, and a non-overlapped
bank of bandpass filters is used to cover the full 0-5 KHz frequency
range. Each F/D subsystem output must be sampled at a rate which 1s
twice the associated bandpass filter bandwidth (see Section 2.6), leading
to an overall data rate of 10 KHz (not including STE), When an
overlapped filter bank is used, the required minimum transmission channel
data rate 1is doubled (ie., 20 KHz). Of course, 1if the full range of
possible frequencies is not covered by the F/D bank, then the required

transmission channel data rate is correspondingly less.

It should be noted that the transmission channel data rate discussed
in this section is based on system theory considerations, and does not
consider the possibility of efficient waveform encoding to achieve data

reduction. Data reduction is discussed in Section 5.3.
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3.3 GENERAL SYNTHESIS EQUATIONS

In this section, it is shown that (apart from an overall sign
factor) right-sided sequences can be exactly reconstructed from the GSTFT
magnitude squared. Left-sided sequences can similarly be reconstructed
when appropriate initial conditions are specified. The algorithms
presented in this section are theoretically capable of performing signal
reconstruction whether or not the practical guidelines of Section 3,2 are

- followed. Thus, in order to obtain a practical analysis/synthesis system,
the guldelines of Section 3.2 are a prerequisite to application of the
reconstruction algorichms. Note that synthesis equations of a general

forum are derived in this section. The procedure by which these equations

are applied to a specific case is described in Section 3.4,
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3.3.1 PLAUSIBILITY ARGUMENT

A simple approach described by Nawab, Quatieri, and Lim [34] can be
used to recover a sequence from its GSTFT magnitude squared. Although
this approach does not employ the reconstruction process depicted in Fig.
3.2, it serves to illustrate the issues involved in signal reconstruction
from magnitude and to motivate the practical approach presented in

Section 3.3.2. STE will not be used in this section.

Assume that two different F/D subsystems are implemented via the
GSTFT and each Finite-duration Impulse Response (FIR) window function

hy(n), k=1 or 2, is nonzero only for 0<n<Mp-l. It follows from Equation

2.22 that the GSTFT magnitude squared can be written as:

Jug 2 9
|X,(e” )] = agx“(n) + b(m)x(n) + ¢,(n), (3.1)
where
ap = 10 (0)]2, (3.2)
My -1
bi(n) = 2h, (0) li x(n-m)hy (m)cos (wym), (3.3)
m=]
and
ngl Jwgm o
ck(n) = | ) x(n-m)hy(m)e | . (3.4)
m=]
Therefore,
62
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2 Jue 2
x(n) = (1/2a){ -by(n) 1/ (be(n)]™ = dalep(n)=|X (e )| 1} (3.5)
Note that care must be taken to ensure the quantity under the square root

sign 1s always positive.

To illustrate the signal reconstruction process, assume x(n)=0 for

n<0. It follows that byi(0)=c}(0)=0, and

Juwk
x(0) = + |Xgle )|/ (0). (3.6)

Thus the output from either F/D subsystem may be used to determine the
first reconstructed value within a sign factor. The positive value for
x(0) may be arbitrarily chosen, as choice of the negative value only
changes the reconstructed sequence by an overall sign factor, Given the
value of x(0), values of bg(l) aad cg(l) can be computed. Note that

b(n) and ci(n) are always computed using previously reconstructed signal

Jog

values. Given [Xj(e )| for two F/D subsystems appropriately spaced in
frequency, the value of x(l) can be determined using Equation 3.5. Each
of the two F/D subsystems yields two possible values for x(l1), and the
ambiguity 1is resolved by choosing the solution which is consistent with
both F/D outputs. Given x(0) and x(l), the value for x(2) can be

determined, and so forth to reconstruct the entire sequence.

This simple reconstruction algorithm 1is subject to many practical
ditficulties. First of all, the reconstructed sequence may not be

unique. Recall that the window functions hy(n), k=l or 2, are nonzero for
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X < My =1 (otherwise, uniqueness problems may be caused »y “gaps” in the
window function, as described by Nawab [35)). The reconstructed sequence
1s wunique, to within an overall sign factor, unless a sequence of zero
values having length {Mk'l}max or more is encountered in the data. A sign
ambiguity is introduced whenever such a sequence of zeros is encountered.
For example, Fig. 3.4 shows four possible reconstructed sequences which
can result when the two window functions are of length four or less.
Studies suggest that such effects may not be important for speech if the
analysis uses at least two F/D subsystems with impulse response duration
of 11U milliseconds or more (Warren and Wrightson !36]; Flanagan and
Guttman {37)). In any case, the multiple si1gn ambiguity problem can be

alleviated by use of Infinite-duration Impulse Response (IIR) windows,

Another problem with the simple algorithm is its inability to
perform reconstruction from modified daca. Slight wodifications such as
truncation error can cause the two F/D outputs to produce contradictory
results. For example, if data from one F/D indicates =zhat x(1)=-2.u00 or
.919 while another F/D indicates x(1)=-2,002 or 2,832, then no consistent
solution for the valune of x(1) exists. It may be desirable, however, to
use the value x(1)=-2.70{ for furture computations, althoush tnis value
must be chosen by some alsorithm which processes inconsistent results.
such  i-ncoasistent results can be treated in an  »rzanized marner nv
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Figure 3.4: Four Reconstructed Sequence Possibilities
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Next, note that the simple algorithm reconstructs x(n) given

Jog 2
[X,(e )| , ignoring information about x(n) .ontained in the future data

Jo 2
|Xp{e )| for m=nt+l,...,n#M-1. This observation suggests that an

algorithm using non-causal processing, such as filtering with delay, may
achieve superior results, For example, consider the reconstruction
process of Fig., 3.2 which uses an error criterion. Assume that, once

reconstructed, the value of a point is held constant., The feedback

-

system of Fig. 3.2 reduces the error by changing only the value of x(n)
at one specific time n. If previous points were not reconstructed

exactly, the system attempts to compensate by changing the value of

~

x(n) accordingly. Such a change may lead to further cumulative error,
causing poor reconstruction, However, if previously reconstructed values
can be modified on the basis of new information, the error can be
distributed among a large number of points and reconstruction is
improved, This non-causal approach 18 especially useful for

reconstruction frow modified spectra.

Note that since the simple reconstruction algorithm achieves exact
reconstruction from only two F/D channel outputs, an overall data rate
which is at least twice the sampling rate of x(n) can be used in the
transmission channel of Fig. 3.1. This result is the same as that derived
in Section 3.2.3. For data rates less than twice the sampling rate, exact
reconstruction cannot be achieved in general (see Theorem 2.3 of Nawab

[35]).
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3.3.2 EQUATIONS FOR PRACTICAL SIGNAL RECONSTRUCTION

The simple reconstruction algorithm of Section 3.3.1 can be modified
to obtain the practical algorithm shown 1in Fig. 3.2. The required
modifications include use of an error criterion and non-causal

processing,

To develop a practical algorithm, the GSTFT is rewritten in a more
convenient form. For any integers { and y it follows from Equation 2.22
that:

- Jwi - =jwi(n—y)
Xg-g (e ) = x(n-y)hg(y-L)e

- -jwy(n-2-m)
+ ¥ x(n-t-m)hy(m)e , (3.7)
Yy -4
where the summation over mty-{ 1is defined as the summation from minus

infinity to y-¢-1, plus the summaticn from y—£+l to infinity. Taking the

magnitude squared of Equation 3.7 yields:

- jmk 2 A oA -~ PN -
|Xp-g (e )| = agx2(n=y) + bg(n)x(n=y) + c(n), (3.8)
where
ag = [h(y=2))2, (3.9)
be(n) = 2h (y-4) ! x(n-2-m)hy(m)cos{w(my+L)], (3.10)
oy ~L

and
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- _ w2
ck(n) = | 2 x(n—l-m)hk(m)e | . (3.11)
Yy ~£

The GSTFT magnitude squared at any time n-{ can thus be expressed as a

~ a

quadratic function of the sequence at any time n-y. Note that ap, by (n),

- ~ Y

and ¢ (n) are independent of x(n~y). However, if a value of x(n-y) and

-~ jwk
its corresponding value of Xp.y(e ) are known, then it is easily .

verified trom Equations 3.7 and 3.10 that:

- wr(n=y) - Jwi -
b(n) = 2h (y-2)(Refe Xp—gCe )} = x(o=y)h(y=2)]. (3.12)

Also, it follows from Equation 3.8 that:

~ - ka ' PN ~ a
ek(n) = (Xpg(e )| = agxZ(n=y) - be(n)x(n=y). (3.13)

Equations 3.12 and 3,13 can often be computed more easily than Equations

3,10 and 3.11.

Using a similar approach for STE, it follows from Eguation 2,30
that: -

- A A |

Ep-g = aoxz(n—y) + coln), (3ald)

where

. ann
.




Y

coln) = ¥ ho(m)x2(n-2-m). (3.16)

my £
Therefore,
coln) = Ejp ~ agx2(n=y) (3.17)

For convenience, a weighted mean squared error criterion is chosen.

The error is defined as:

~

~ 2
e(n) = J {(Eg~g = En-g) Wo(2)

2

e 8

-0

K~ ek 2~ Jog 22
+k21l|xn.z(e ) = |Xp—gCe D] 1 w0}, (3.18)

where wm(z), 2=0,1,es.,K, and -o<i<w, is a weighting function. The
weighting function specifies which data values contribute to the error at
time n. Although weighting functions which vary with time or signal
level can be used, such functions will not be considered here. When the
weighting function 1is constant for all values of £, the error |{is

e(n)=e ¢ty a1 Where €,.,,7 is a constant total error independent of n. Any

~

reconstructed sequence x(n) which minimizes eyora) 1S an “optimum”
solution in the mean squared error sense, In order to achieve reasonable

results with less computation, a "local” sub-optimum error criterion may

be preferable to the "global” optimum error criterion. A local error
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criterion can be obtained by choosing a weighting function which is
narrow in the £ dimension. Even when a sub-optimum error criterion is
chosen, error minimization may require solution of an infinite number of
simultaneous nonlinear equations if the window functions are infinitely
long. It is not generally possible to solve such a set of equations with

a finite amount of computation.

A practical sub-optimum approach to signal recoastruction, which
avoids the problem of solving simultaneous nonlinear equations, can be

obtained by holding all synthesized values constant with the exception of

~ Y

x(n-y). An appropriate value of x(n-y) can then be determined by

substituting Equations 3.8 and 3.14 into 3.18 and setting

~

3e (n)/3x(n-y )=0, Under these conditions, e(n) 1s reduced by choosing

~

x(n-y) as a root of:

u3x3(n=y) + wyx?(a~y) + uyx(a=y) + yy = 0, (3.19)
where
° - K-
uj = 22) [(ag)Zwg(e) + kzl(ak)Zwk(z)l, (3.20)
I)
=3 ap by (n)W (L), (3.21)
g = 3L L APk
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© Kk - 2 0 ~ Jog 2
+ 22 k)—:l{[bk(n)] + Zak[ck(n) = Ixn_z(e )I J}wk(l), (3.22)

and

K ~ A ~ Jug 2
kZlbk(n)[ck(n) - |Xpg (e )| Iw(r). (3.23)

o
0= L

Values for the reconstructed sequence can be generated by solving
Equation 3,19 for the roots of a cubic expression. The real root which
yields the smallest value of e (n) is chosen as the sequence value. Since
cubics have one, two, or three distinct real roots, a real sequence value
can always be found which satisfies the error criterion. Furthermore, a
closed-form solution exists for computing the roots (CRC Standard
Mathematical Tables [38]). In the actual implementation, double-precision
computer arithmetic was used to obtain an accurate solution of the cubic
expression, Such accuracy, however, is not required elsewhere 1in the

reconstruction algorithm,
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3.4 SPEECH SYNTHESIS PROCEDURE

Equations of Section 3.3.2 can be used to reconstruct speech signals
from data produced by the analysis system of Chapter 2. Although the
equations may be applied in many different ways, only one approach will
be described in detail. This approach has been used to generate a number
of examples, which are presented in Chapter 4.

Jwg
From Equations 2.22 and 2.27 it follows that X,(e ) contains

information about x(n-y) for y»i, where i=1 for the present application,

Jwk
For practical purposes, however, it is assumed that X,(e ) contains

o
{.‘ significant information about x(n—-y) only for the finite set of values
1KYy qay» wWhere Y., is some arbitrary integer. Therefore, 1f the values

b -

of x(n~y) for iKy<ypyx are changed during the reconstruction process,

- Jwi
then the values of Xn_z(e ) for (K&<ypax~l must also be changed

accordingly. The value yYpax=20, which results in a 2 millisecond
synthesis window, will be used throughout, Note that this value is not

critical. Small values (Ypax=3) can be used to rapidly obtain exact

. reconstruction from unmnodified spectral data, while large values -
:.E commensurate with the maximum effective window length (ypax=100) may .
;.I improve the quality of reconstruction from modified data. -
‘ To completely specify the reconstruction error criterion, an

appropriate weighting function Wyp(2), m=0,1,...,K, and —=<g<>, must be

chosen., The F/D outputs are bandlimited functions which do not generally
L change rapidly. Theretore, the weighting function can be chosen narrow
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in the &2 dimension. A weighting function which is wide in the &
dimension may be advantageous for reconstruction from highly modified
data, but causes an increase 1in computation time and implementation
complexity. Since the bandpass filters have normalized gains as

described 1in Section 2.4.5, and are roughly of equal importance for
speech intelligibility (Beranek [39]), the F/D weighting coefficients are
equal. Let W (2)=1 for £=0 and k=l,...,K, and W (2)=0 otherwise. With
this choice of F/D weighting coefficients, an empirically determined
energy weight w0(2)=.03 for £=0, W0(2)=0 otherwise, is appropriate. The
energy weight is small because energy values are often large, and also
because the energy function is intended as a constraint and not as an

information-bearing element. The resulting error expression is:

-

~ 2 K~ Jug 2~ Jwg 2
e(n) = (E, = Ey) Wy +k2_1[|xn(e Moo= Xge D)), (3.24)

where Wg=.03 and K=15. The error given by Equation 3.24 is used for all
reconstruction examples of Chapter 4 (see Anderson and Searle [32] for
examples using a different weighting function). The total error can be

computed as:

€rotal = L e(n). (3.25)
n=-w

For comparison purposes, it is useful to define a total error which is
normalized with respect to the original signal:

oo ju)

K k_ 4
€ total,norm ~ stocal/{nz_m[(En)zwo + kgllxn(e )1} (3.26)
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initialization, 1is 1likely to be in error. An improved estimate for
x(n-1) is obtained by a procedure which will be described shortly,
: Improving the estimate for x(n-i) provides a reconstructed sequence
; value. Using this improved value, new values for previously
'! reconstructed points can also be determined.
o 74
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The total normalized error does

provides a form of error-to-signal ratio (Griffin
[40]).
The synthesis procedure will now be described in detail,
convenience, assume x{(n)=0 for n<0,
- jwk ~

estimated GSTFT X (e ), and estimated STE E, are
for all n.
the present application.
each newly is used

and reconstructed point

reconstructed values.

The first reconstruction step advances the time

estimated GSTFT and STE values based on available

DR A S A D S RN e Rad B X Bt e e Bt gt e’ S ATE 40X 2Fh pea |

, Deadrick,

not change with input signal level, and

and Lim

For

~

The reconstructed sequence x(n),

initially set to zero

index, and

The synthesis procedure begins at any time n{i, where i=l for
The index n is incremented one point at a time,

to update previously

updates

reconstructed sequence

initial conditions for

values. Previously calculated GSTFT and STE values which are unaffected
by any changes in x(n—y), i<y<ypaxs are used as

the update. Equations 2.29, 2.31, and the present values of x(n-y) for
Y>1 are used to generate GSTFT and STE estimates up to

-

time n.

The present estimated value of x(n-i), which was set to zero during

e P L

Sce a.x




Due to the shape of the window functions, which have small initial

values as shown in Fig, 2,11, many refinements are necessary in the

a

estimates of x(n~y) for small y. To make refinements, all points other
than one specified point are held constant, and the specified point is

allowed to vary in a fashion which reduces the error. Thus, adjustments

~

to x(n-y) for large Yy must not be made until the more recently
reconstructed points are thoroughly corrected. Estimated values of the
reconstructed points must therefore be refined in a certain order. To

develop the examples shown 1in Chapter 4, the following order of

~

refinement in values of x(n—y) was used:

y =1,2,1,2,1,2,1,2,1,2,
1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,
etc.,
lyeees7olyeees7ylyeee,7,lh000,7,1,000,7,

l,...,8,1,...,9,1,...,IO,ECC.,I,...,me, (3.27)

where ypgax=20. After this procedure has been performed to reconstruct

Y

one new point x(n-i) and adjust values of previously recomstructed points

-~

through x(n=ygax)» the time index is incremented, GSTFT and STE estimates
are updated based on the new ¢ juence values, and the procedure is

repeated to reconstruct the entire sequence,
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To refine the estimate of any point x(n-y), Equations 3,12, 3,13,

- ~

and 3,17 are used with £=0 to obtain by(n), ¢ (n), and cg{n). Note that

~ Y

ag and ay are pre—computed constants which do not depend on the data.

A

The contribution of the present sequence estimate x(n-y) 1s now

~ jwk
subtracted from the present GSTFT estimates X (e ) and STE estimate

-~

E, by using Equations 3.7 and 3.14, Next, ug, uj, and u; are computed
from Equations 3.21, 3.22, and 3,23, Note that uj can be pre-computed,

as shown in Equation 3.20., Equation 3,19 is solved, resulting in up to

a

three new candidate estimates for x(n-y). The first candidate is
evaluated by adding 1its contribution to the GSTFT and STE estimates
using Equations 3.7 and 3.14. The resulting error is evaluated using
Equation 3,24, A similar procedure 1is applied to each remai ing

candidate, the one producing minimum error is chosen as the new estimated

~

value for x(n—-y), and the corresponding GSTFT and STE estimates are
retained. Note that, for a fixed time n, the error is reduced with each

application of this procedure,
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Note that the algorithm described in this section can be applied to
reconstruction of right-sided sequences or other types of sequences for
which appropriate initial conditions have been specified. If necessary,
however, initial conditions may be generated by repeated application of
the reconstruction equations for some fixed time n. Quce the initial
conditions have been established, n is incremented and the sequence is

reconstructed.

Finally, it is worth noting that reconstruction can be performed
directly from sampled data. For example, assume that only every other
time—-domain sample is available from the analysis. The synthesis can be
advanced two time steps, rather than one step at a time, and smoothing
accomplished by an order of refinement different than that described by
Equation 3.27. Alternatively, a weighting function Wp(£) which 1is
nonzero only for £=0 and £=2 can be used in a modified version of the
reconstruction algorithm, Although these approaches produce results
comparable to those produced by simply smoothing the sampled data prior
to reconstruction, they require considerably more computation time and

are therefore less practical.
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3.5 CONCLUSION

In this chapter, general guidelines for practical analysis/synthesis
systems have been established. These guidelines 1indicate that STE (or
some other constraint) must be wused to prevent out-of-band components
from dominating the reconstructed signal. The analysis must use an
overlapped bandpass filter bank in which the filters do not possess both
constant passband gain and steep skirts. The speech analysis/synthesis

system based on perception meets these requirements,

In general, a transmission channel data rate which 1is twice the
original sampling rate must be used to achieve exact signal
reconstruction. However, if the F/D bank does not cover the full range
of possible frequencies, then a lower rate can be wused, Under these
conditions, only signals within the range of the F/D bank can be
reconstructed. Thus, unlike other systems which require an increase 1in
transmission channel bandwidth when the sampling rate is increased, this
system produces results which are independent of the original signal

sampling rate,

The new signal reconstruction algorithm described in this chapter is
presently the only one known which is capable of performing
reconstruction from data produced by a critical bandwidth F/D bank, The
algorithm is an extension of an algorithm described by Nawab, et al {34].
The extension introduces a weighted mean squared error criterion and

non—-causal processing to achieve practical results. The new algorithm is
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applicable to systems using both IIR and FIR analysis filters, and exact
reconstruction can be obtained in the absence of data modification, In
the absence of substantial data modification, reconstruction can be
accomplished in very little time by choosing a small value for ypyyx. The
algorithm can incorporate measurements of different types (such as
Short-Time Energy), reconstruction can be accomplished from a limited
range of frequencies, and contributions to error can be weighted

according to frequency band if desired.

The new algorithm uses a sub-optimum reconstruction approach with a
sub-optimum error criterion, and does not generally minimize the total
error €¢otale However, it may not be possible to determine the optimum
solution with a finite amount of computation when infinite-length window

functions are involved. When the special case of an analysis wusing

uniformly spaced constant-bandwidth FIR filters spanning the full

frequency range 1s considered, other techniques are available which
attempt to minimize total error (eg., Griffin and Lim [10}; Musicus
[41])). The error criterion for the constant-bandwidth case, however, is
not perception~based. Although the new algorithm presented in this
chapter does not necessarily minimize €¢org], the error value e(n) is
reduced with each refinement of the estimated sequence values. Note that
the error criterion can be either local or global, but a 1local criterion

is used to simplify the algorithm and reduce computation time.,
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CHAPTER 4
EXAMPLES
4,1 INTRODUCTION
In this chapter, operation of the speech analysis/synthesis system ﬁ

based on perception is demonstrated. Examples of tone bursts, tone pair
bursts, synthetic vowels, and natural speech signals are analyzed,
subjected to a short-time spectral modification, and synthesized.

Although the analysis/synthesis system is actually implemented using a

discrete-time approach, the examples are presented as continuous—time

functions,
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4,2 TONE BURST

Fig. 4.1 presents a 1 KHz tone burst of 32 millisecond duration.
Since the tone burst 1is essentially a bandlimited signal, no
pre—-filtering was applied to suppress components outside the 200-3675 Hz
frequency range. The tone burst was analyzed by the speech analysis
system described in Sections 2.4.5 and 2.5. The resulting
Filter/Detector (F/D) outputs, which are computed via the Generalized
Short-Time Fourier Transform (GSTFT) magnitude squared, are shown in Fig.
4.2, The symbol "E" denotes Short-Time Energy (STE), and channel numbers
correspond to the filter numbers of Table 2.1, The amplitude scale of
Fig. 4.2 is logarithmic, A logarithmic scale is used in order to reveal
features which might otherwise be obscured, and to approximate perceived
loudness effects (Siebert [15]). After an initial transient, all F/D
outputs reach a steady-state value, and a final transient occurs at the
end of the tone burst. The highest value is attained in Channel 7 since
this channel has a center frequency of 1 KHz. From Fig. 2.12 it follows
that the steady~state level of Channel 1 is -55dB and Channel 15 is -43dB
re Channel 7. Fig. 4.2 can be re-plotted to show log amplitude as a
function of frequency with time as a parameter. Such a three-dimensional

(3D) running spectrum plot is presented in Fig., 4.3.

The reconstruction algorithm described in Section 3.4 was applied to
the data of Fig. 4.3, and the resulting signal is shown in Fig. 4.4, The
reconstructed signal of Fig. 4.4 is indistinguishable from the original
signal of Fig. 4.1, and is generally accurate to four significant
digits. Thugs, the GSTFT magnitude 1is a complete means of signal
representation (apart from an arbitrary overall sign factor).
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The reconstructed signal was analyzed, and the resulting values were
compared to the values of Fig. 4.3 in accordance with Equation 3.24, The

resulting error 1is shown 1in Fig. 4.5. This plot 1s normalized to the

peak error value of 4.9x109. The area under the graph of Fig. 4.5
corresponds to the total error, €¢,ca1+ Note that the error plot of Fig.
'i 4,5 18 a function of data values raised to the fourth power. Thus,
[’;‘ reducing the tone burst amplitude by a factor of two reduces the error
plot by a factor of sixteen. In order to obtain an error measure which is
ﬁ' ) . independent of signal level, the total normalized error is computed in
accordance with Equation 3.26, For this reconstruction example,

€ total,norm 1.0x1079.

) i ".,,».

v
Y B

Next, a short-time spectral modification was employed in which

p—y v
Lo,

sixteen time-domain samples in each channel were averaged, and each

sample was replaced with the average value. The resulting modified data
is shown 1in Fig. 4.6, This modification, which 1s employed for
demonstration purposes, can be described in terms of Fig. 3.l. Since

gsixteen channels are used and the data rate of each channel has been

= reduced by a factor of sixteen, the transmission channel data rate of
f‘ Fig. 3.1 1s the same as the sampling rate of the original signal. Thus,
-

l‘ in general, exact reconstruction from this modified data 1is impossible,
=

5} The analysis transformation A uses a “boxcar" lowpass filter (ie., a
r; filter with a constant amplitude, finite length unit-sample response)
" followed by downsampling in each channel. The corresponding synthesis
o

- transformation S uses upsampling followed by a boxcar lowpass filter in
|-

" each channel. Thus, the data of Fig. 4.3 is the input to A, and the data
‘ of Fig. 4.6 1s the output from S,

o
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The short-time spectral modification used to obtain Fig. 4.6 1is of
the type commonly employed in Automatic Speech Recognizer front-ends
(Section 5.4), channel vocoders (Section D,2), and power spectrum
estimation techniques (Section D.5) for data reduction purposes, although
such applications typically average together a far greater number of
samples. This simple data wmodification technique will be used to

demonstrate many aspects of the reconstruction algorithm.

The reconstruction algorithm was applied to the data of Fig. 4.6,
and the signal of Fig. 4.7 was obtained., The reconstruction is roughly a
tone burst of correct amplitude, frequency, and duration. Since the
modified data of Fig. 4.6 differs most from the unmodified data of Fig.

4.3 at the beginning and end of the burst, the reconstruction bears least

resemblance to the original signal at the beginning and end of the burst.

In order to verify the algorithm operation, the recoanstructed signal
of Fig. 4.7 was analyzed, producing the 3D plot of Fig. 4.8. Comparison
of Figs. 4.3, 4.6, and 4.8 demonstrates the ability of the algorithm to
reconstruct a real-valued signal having short-time spectral
characteristics which match the given data. Since the plots are on a

logarithmic scale, low level differences may appear exaggerated. -

Reconstruction error 1is plotted in Fig. 4.9. The peak error value
of 9.7x10!6 and the total normalized error value of 6.8x10™3 are many
orders of magnitude greater than values for the previous example. Since
significant error occurs only at the beginning and end of the tone burst,
the total normalized error decreases with increasing tone burst duration

for this example.
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It will be shown, via several examples, that the reconstruction
algorithm of Section 3.4 performs well 1in the presence of short-time
spectral modifications. Although no attempt will be made to optimize the
algorithm for any particular modification, it is possible to reduce
reconstruction error by doing so. For example, error may be reduced by
% choosing an error weighting function which extends over several periods
of the modification. This approach, however, significantly increases
computation time and 1implementation complexity, and will not be .
considered here. Note that the largest error peak of Fig., 4.9 can be
- reduced by simply setting the reconstructed sequence values to zero prior
to t=.,0032 sec. This can be done based on the fact that STE and all F/D
channels are zero prior to this time. The reconstruction algorithm
produced nonzero values in Fig. 4.7 because the modified data changed
abruptly rather than in a bandlimited fashion., Since the model of the
analysis system contained in the reconstruction process (see Fig. 3.,2)
produces only bandlimited functions, and the wmodified data does not agree
with the model, a splke occurs in the error whenever a discontinuity
occurs in the data., This effect can be seen by comparing Figs. 4.6, 4.8,
and 4.9, In order to reduce error spike amplitudes, a smoother
’ short-time spectral modification must be chosen. For example,
considering each channel separately, when the value at each discontinuity
:} in Fig. 4.6 1is replaced by an average of the surrounding steady-state
r!. values, the maximum error value 1is reduced nearly 20%Z. This error

reduction was accomplished without setting any values to zero prior to

t=,0032 sec. Since the resulting surface i8 somewhat smoother, the

L reconstruction algorithm produces a signal having a short-time spectrum
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which better matches the smoothed data. However, the fact that

reconstruction error is reduced does not generally indicate that a signal
reconstructed from smoothed modified data will bear closer resemblance to
the original signal. Thus, such smoothing will not be employed as an aid
to reconstruction from modified data. For demonstration purposes, the
algorithm described in Section 3.4 will be applied directly in all

examples.
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4.3 TONE PAIR BURSTS

A 450 and 2500 Hz tone pair burst 1is shown in Fig. 4.10. From Fig.
2.12 it can be seen that the filters having center frequencies at 450 and
2500 Hz overlap at the -40dB level, Thus, since the signals are widely
separated in frequency, the analysis of Fig. 4.11 does not reveal any
interaction between the two component sinusoids. Each F/D output reaches
a steady-state value (see Section B.3,7). A short-time spectral
modification was applied by averaging sixteen samples in each channel,
and each sample was replaced with the average value as shown 1in Fig. -
4,12, The reconstruction algorithm was applied to the modified data, and
the result 1s shown in Fig. 4.13. The reconstructed signal was then
analyzed, and the results are shown in Fig. 4.14., Corresponding error 1is
plotted in Fig. 4.15, and is comparable to the single tone burst case
shown 1n Fig. 4.9, although the peak error value of 1.2x1016 1s
considerably less due to a reduction in average input signal level. The
total normalized error value of 8,4x1073 is comparable to that of the
single tone burst case since both signals are of the same duration. As
in the single tone burst data modification example, total normalized

error is a function of tone pair burst duration for this example.

A 1000 and 1600 Hz tone pair burst is shown in Fig, 4.16. Since the

filters at the corresponding center frequencies overlap at the -18dB

level, some interaction between the spectral components is visible in the
analysis of Fig. 4.17. Each F/D output consists of a constant and a beat
frequency component (see Section B.3.8). When the short-time spectral
modification is applied, the beat frequency component is eliminated as

shown 1in Fig. 4.18., Thus, the surface of Fig. 4.18 represents
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inconsistent information. On one hand, the data indicates presence of two
sine waves because two spectral peaks are visible., On the other hand, if
two sine waves are present then beat frequencles should cccur, but none
are visible in the data of Fig. 4.18, Thus, given the inconsistent data
of Fig. 4.18, a reasonable signal reconstruction approach might be to
first choose two sinusoidal components as indicated by the spectral
peaks, A low-level periodic waveform having amplitude and frequency
determined in accordance with an error criterion could then be added to
the two sinusoids, thereby reducing the beat frequencies 1in order to
approximate the data of Fig. 4.18. This was exactly the result obtained
upon application of the reconstruction algorithm to the data of Fig.
4,18, as shown in the reconstruction of Fig. 4.19. Analysis of the
reconstructed signal is shown in Fig. 4.20, and it can be seen that the
reconstruction algorithm 1inserts a third sinusoidal component to

compensate for the inconsistent data of Fig. 4.18., The plot of Fig. 4.2l
reveals a 530 Hz oscillation in the error. Since there are few
discontinuities 1in the data of Fig. 4.18, there are few spikes in the
error plot of Fig. 4.21. Since the area under this error plot during the
steady-state portion of the tone pair burst 1s greater than the area
under the error transients at the beginning and end of the burst, the
total normalized error does not depend strongly on tone pair burst
duration. The total normalized error value of 3.1x10™2 1is nearly four
times that of the previous tone pair burst example, and the peak error

value of 2.4x1016 is twice that of the previous example.
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Finally, a 1000 and 1170 Hz tone pair burst is shown in Fig. 4.22,
Since filters at the corresponding center frequencies overlap at the -3dB
level, spectral components are not resolved in the frequency domain
characteristics of Fig. 4.23, although beat frequencies are apparent in
the time dimension. Short-time spectral modification severely distorts
these beat frequencies, and inserts large discontinuities as shown in
Fig. 4.24, A poor quality reconstruction is obtained, as shown in Fig.
4,25, The analyzed reconstruction 1is shown in Fig. 4.26, and the
corresponding error in Fig. 4.27. The peak error value of 4,6x1016 and
total normalized error value of 5.6x10"2 are the largest of any examples
thus far, Again, since the area under the error plot during the
steady-state portion of the tone pair burst 1is greater than the area
under the error transients at the beginning and end of the burst, the
total normalized error does not depend strongly on tone pair burst

duration.
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4.4 SYNTHETIC VOWELS

Synthetic vowels provide a controlled speech-like signal for testing
and demonstration purposes. Such vowels can be conveniently generated
via an acoustic tube vocal tract model (Rabiner and Schafer [3]). An
example, the synthetic vowel /E/ as 1in “bet,” is shown in Fig. 4.28.
Vowel sounds are often characterized in terms of their spectral peaks, or
formants (Peterson and Barney [42]). This vowel has a first formant
frequency Fl of 530 Hz, The second and third formants are F2=1840 and
F3=2480 Hz. Formant bandwidths are 40 Hz for Fl, 60 Hz for F2, and 100
Hz for F3, The pitch frequency is FO=125 Hz, so a male speaker is
simulated. The pitch is visible in the time dimension and formant peaks
are visible in the frequency dimension of Fig. 4.29. Note that Fl has a
far higher level than F2 or F3, and thus is the most important feature

for reconstruction spectral matching purposes.

As in previous examples, the data was modified by averaging sixteen
time-domain samples in each channel, and replacing each sample with the
average value as shown 1n Fig. 4.30. The reconstruction algorithm was
applied to the modified data, and the results are shown in Fig. 4.31.
The reconstructed signal was then analyzed, and the result is shown in
Fig. 4.32. A comparison of Figs. 4.32 and 4,30 reveals that Fl of the
analyzed reconstructed signal provides a good match to the modified
spectrum. This observation is supported by the corresponding error shown
in Fig. 4.33. The peak error value of 2,0x1016 ig comparable to that of
the tone pair burst examples since similar average signal levels are
used, The total normalized error value of 4.3x1072 is also comparable to

previous examples, and does not depend strongly on signal duration.

117

NN B A NAAATULRT.  PABDONGT | IR



w.
,
s
h
A
p.
.
3
.
1
i (/3/ 1emop) Teudis Teuidyip :g8z°y 21314
d
9
) *o9s ‘3 sz co*
w L 1 L v T T n OOO.OmI
ﬁ I —
) oo
_ n n
” RN L 1 I — 0
. 1 L 4 000°0S

(3)x

.

DTS A TN LTT




T R TP —— ey

E . 0.0944

w0928
Y. S

QA

@At

B o

Q.04

- 0oBzY

@.031¢

TN
W

[}
0.7

A 4t

{4
. /
Y
At € M.
- ALOA0 S

4
Qe A8
A

S e

S AW

- AN

- Q.04 0

—- 0.0

- A.0496

= z - 0.0480

V.046,4

= - Q.44

A A A A A A A EPIAGLIT T3]

| S A P T - R 2B R N A R T B LS

e T S A T

Figure 4.29: 3D Plot of Unmodified Data

119

LA Sk, *ail ek anh syl Al &

. "0 "X _ 4 _F ¢ T



- 0.0944
~ 00928
= 0.0912

~ QUHYE.
.06

- AQ8E4

- ©.0848
Rl AR
- At

£ Q000

- Q.0
JaRa( T

R
G T

VO A0

Vit ol

LUk

= e
[N
NSRS
IRt
et

ERLE R

. Figure 4.30: 3D Plot of Modified Data

LSt Sl Yok B N0 S0 A4S Bus Sbe 89 Sas das- e AL -ano—al i el o

A




— — ey v - \ - N -
. .1.4..1.&!..~...,......J B A M PACAFE IR P A e s & .

L B S e "R i )

: (/3/ 12Mop) BlBQ PRTJTPOW WOIJ UOTIDNIISUOIdY :[g*H dIn31g .

y *das ‘3 ¢z so°*

- T - T T T ‘ ] 000°06- .

1
121

T
1

o 1 1 n 1 i 000°0¢
(N)x




e e s e e ——— =1 ¥ Tt . e e~ e < e

_ m .
. 8 .
s § 7§ ¥ ¢
. S 3§ 5§
[ LTS S 3 & ,.
R A 3
\\\.g\\\\\ S g B K @_ W & W mw. - I r .A
\\,,_ a\\ ,; V\V‘.\\&\ u\e W. & ’ W
8 ;\\v\\\\ ,!?f /4 \\\V‘ “&/ - 5 n
LN . 2. DN/ - o } e
L W A R
. 2% s NN -
' \ T2 , X 2 E &
e % “r %VN\.;; 4 . = s
. S \\\ 3 o< = °
L g ¥ za o
. e .
) S
A ]
, o ~
-~ "J u
m M
=D
-z . o
e o
Tl o
_ — [
= a
- - a
, -z .
<
/3 *e
T o~
~ o
2 /\l‘ 4‘
: : ‘
w ~
]
&0
Ll
-~




(/3/ 1°mop) 3033y :gg-k An3Td

*oas ‘1 A

co°*

S

_,.__15,_:}%__._ ._,,s.___t,:{:_._._, ) é, 4._, tinfingl _‘_ﬂ_d I ___ﬁ,t_,_*_g

-

s 0Txgey = BIOUTTEION,

e bttt et

701%0°Z
(3)3

o
o~
~—




SASAS D SR A A SN, RS s At JaN i R T SRR Rei A i B A et~ A 8 2 S i e R Al - At it e < R S R e e B Bl ad A e ond M Ak ed o m ]

A similar synthetic vowel, /AE/ as in "bat,” is shown in Fig. 4.34.
This vowel has formant frequencies F1=660, F2=1720, and F3=2410 Hz,.
Formant bandwidths and pitch are the same as for the previous example.

The analyzed sigaal is shown in Fig. 4.,35. The data was modified as shown

in Fig. 4.36, In this example, the short-time spectral modification

produces large discontinuities in Fl as compared to the previous example. .

The reconstruction algorithm was applied to the modified data, and

s A X K _F A EERA S NS _Ams 4 SR

results are shown in Fig. 4.37. The reconstructed signal was analyzed as

shown 1in Fig. 4.38, A comparison of Figs., 4.38 and 4.36 reveals a

1
|
1

relatively poor match between Fl of the analyzed reconstructed signal and

b

the modified spectrum, due to the reconstruction algorithm's inability to

model discontinuities. The discontinuities also cause large spikes in the

L g s st

corresponding error of Fig. 4.39, Although the peak error value of

2.0x1010 is the same as the previous example, the total normalized error

value of 8.4x1072 is twice that of the previous example.
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4,5 NATURAL SPEECH SIGNALS

Fig. 4.40 presents a time-~domain plot of the sentence "Their hot
protein can pace on our breakdowns” as spoken by a male subject. This
signal has been pre-filtered to suppress components outside the 200-3675
Hz frequency range, The signal of Fig. 4.40 was analyzed, and Fig. 4.41
is a plot of the resulting F/D ocutputs. In order to reduce the figure
size, one of every eight F/D output samples (in the time domain) was used

to create the 3D plot of Fig. 4.42, Many features of the speech signal,

such as vowel structures, can be seen in the analysis of Fig. 4.42.

Interpretation of this type of speech display is discussed by Searle

A

[43], [44]. The reconstruction algorithm was applied to the

non-downsampled data of Fig. 4.41, and the result is shown in Fig. 4.43.

Except for an overall sign factor, the reconstruction of Fig. 4.43 is

indistinguishable from the original signal of Fig. 4.40.

For demonstration purposes, a short phrase “their hot,” shown in
Fig. 4.44, was obtained from the sentence of Fig. 4.40. The short phrase
was analyzed, and a portion of the results are shown in the 3D plot of
Fig. 4.45. The reconstruction algorithm was applied to the unmodified
F/D outputs, and the signal of Fig. 4.46 was obtained. The reconstructed
signal of Fig. 4.46 is indistinguishable from the original signal of Fig.

4,44, and has the same overall polarity.
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The F/D outputs were then modified by averaging sixteen time-domain

samples together in each channel, and replacing the samples with average
values, A portion of the modified data is shown in the 3D plot of Fig.
4,47, and the resulting reconstruction is shown in Fig. 4.48. Note that
the correct pitch has been retained, and the reconstructed signal appears
somewhat noisy. The analyzed reconstruction is shown in Fig. 4.49, and
the corresponding error in Fig. 4.50. Since the average signal level is
less than in previous examples, the peak error value of 7.4x101% is also
less, The total normalized error value of 7.4x10'2, however, 1is
comparable to that of previous examples. The total normalized error does
not depend strongly on signal duration for the examples given 1in this

section.

149

L A T A 3 ey W_T Y T
RRY | SAAAABES. W

A

- .'J.L"A."-' ot




ETRTA TR T IR TLTARL I TRV TV TN TR v

I

m“ 12131415 THIBMAG.UTT:1

III//II//I/I
456289

REQUEN

Pigure 4.47: 3D Plot of Modified Data

150

* PR TV TSI TR U T W "v‘l—-—v—ivvv]

o ERE.

MRS

-

:

.' -'.*

> ol "A .r ‘-.)‘Jn“

L ]
]

.
s 1 LT
ixlalala

J

.
ST S -

CATCRN I S A S
Ll‘.h A‘J.};.‘.A _L\lh"\:\:"_hh

S




R WR e Wy A e e,

b AJbni T A M Mt e e Jhayeo st diase hgbe. ghatdhar s i At hai Ao dhaih Sat S it s ™ ol * Ll lha Calii et A™ oA S el A == S ™ i ol

x(t)

— 30,000

[ -30,000

«05

Figure 4.48:

..'_"‘.‘ R ..'.-l.;_-_ - . DR - . - N .. A.-.-...t.‘n.'
JPRE I N I NP PRI L A P P T P PR IS T R R I P

3

t, sec,

Reconstruction from Modified Data

151

. R
P Y

s

O WP N AN




w g mm w
§ £ 3 .
S8 5§y, 3
Mg, S S E > .
LT r— mu ﬂ J
| I = .
= .
O (oM . u_
" ’ \ 9 4 Q\Q J— T 9§ ¢ - o
: C , XA ] Cs 3]
i \ ) V\\ N - s b
1;\,;\\\\\\ Y ) x. HW >, .
" N> » <& S
&%&W ﬁ NS 2
h :\\,\\X ) ” - Z Ut
/NE °
/7U M
~o0) =
R
/2 e
N, ¥

Figure 4.49
N

i A




s 8 € &
DR I}

€ total,norm * 7.4x1072

e(t)

7.4x1015

S

1
.
RPRRIPR | W

o Wy,

.05 3
t, sec.

Figure 4.50: Error (Modified Data)




o W, WU o W WU g e - TN W e Ty v 1Y L Btk Sl S A ] o PRIV Ty nd " T
St ) A - L R R IS At A Lt A At e e S e S el 4 [\alin Sdiaf e~ ditliat ey Jn AR R e danae |

Next, a short-time spectral modification was considered in which the
data was not 8o severely distorted. This modification averaged
time-domain samples together 1in each channel and replaced the samples
with average values, but fewer samples were averaged in the high
frequency channels. To ensure that all channels were modified to some
extent, two samples were averaged together in each of the high frequency
channels. More samples were averaged in lower frequency channels
according to their bandwidth. Specifically, 7 samples were averaged in -
the energy channel, 6 samples in Channels #1-2, 5 in #3-4, 4 in #5-7, 3
in #8-10, and 2 in #11-15., Note that this modification is different from
the modification used in all previous examples, where the same number of
samples was averaged regardless of filter bandwidth. This short-time
spectral modification corresponds more closely to a simple decimation and
interpolation of the F/D and STE outputs, as discussed in Section 2.6. A
portion of the slightly modified data 1is shown in Fig. 4.51, and the

resulting reconstruction is shown in Fig. 4.52. The reconstructed signal

is similar to the original, although differences are clearly visible.
The reconstructed speech sounds quite similar to the original signal, but
the two signals are audibly distinguishable. The analyzed reconstruction
is shown in Fig. 4.53, and the corresponding error in Fig. 4.54. The peak
error value of 1.7x10!2 and the total normalized error value of 9.3x1073

are far less than values obtained for the previous example.
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Finally, a short-time spectral modification was considered in which
the data was highly distorted. The F/D outputs were modified by
averaging many samples together 1in each channel, and replacing the
samples with average values. Specifically, 74 samples were averaged in
the energy channel, 50 samples in Channels #1-2, 45 in #3, 41 in #4, 35
in #5, 33 in #6, 31 in #7, 26 in #8, 23 in #9, 20 in #10, 17 in #11, 15
in #12, 13 in #13, 11 in #14, and 9 in #15., The number of samples
averaged in each channel corresponds to the minimum sampling rate for the
channel based on 3dB bandwidths, ie., 5000 divided by the critical
bandwidth (see Section 2.,6). Since values are averaged, however, the
resulting data 1is highly modified and unsuitable for signal recovery
purposes. The resulting transmission channel data rate of 7276 samples
per second 1s less than the original signal sampling rate of 10,000
samples per second. Therefore, this spectral distortion is more severe
than any coasidered 1in previous examples. A portion of the highly
modified data is shown in Fig. 4.55, and the resulting reconstruction is
shown 1n Fig. 4.56. The averaging process destroys periodic pitch
information, and the reconstructed signal appears quite noisy. The
overall envelope of the reconstructed waveform, however, is similar to
the original waveform envelope. The waveform reconstructed from highly
modified data sounds 1like very noisy speech, Analysis of the
reconstructed signal 18 shown 1in Fig. 4.57, and the corresponding error
in Fig. 4.58. Although the peak error value of 6.9x1019 1is comparable
with the value obtained in the modified data example of Fig. 4.50, the
total normalized error value of l.2x10-l is greater since the area under
the plot of Fig. 4.58 is greater than the area under the plot of Fig.

4,50,
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3D Plot of Analyzed Reconstruction (Highly Modified Data)

D> (T _ we, 2
; / ‘ ‘ A > é;. W\\\ 7 ”
IMN
s
f
-, ® .., B d W




e(t)

6.9x1013

l

€ total,norm

= l.2x1071

l 1
i
{
.
by
S
b
m
B
;
: 5
]
|
i
|
i

TetTTTTTT™M

Lo

.05

Figure 4.58:

163

Error (Highly Modified Data)

«3
t, sec.

S .
)

| NS

T 1

LN R4
P airas sy oy

DB P




et ls” SARFdr SR oAl M el Suin™ e * R ol S & SUIR St it~ Aadi Sl S i iR e i S A b I e i S S

4.6 CONCLUSION

Operation of a speech analysis/synthesis system based on perception
has been demonstrated via several examples. The system achieves exact
reconstruction (to within an overall sign factor) in the absence of data
modificaton, and the ability of the system to reconstruct speech from
modified data has also been demonstrated. Note that the data modification
technique of this chapter, ie. averaging, was used solely for
demonstration purposes and is not recommended for data reduction,

Recommended data reduction techniques will be discussed in Section 5.3,
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CHAPTER 5

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 SUMMARY

This report has presented a speech analysis/synthesis system based
on perception, A nonuniform Filter/Detector (F/D) bank and optional
Short-Time Energy constraint formed the analysis system. F/D bank
characteristics were determined from a combination of physiological and
psychoacoustic results. A new relationship demonstrated that the F/D
bank could be implemented by the Generalized Short-Time Fourier Transform
(GSTFT) magnitude, and a digital implementation suitable for real-time

analysis was given. For speech synthesis, a new approach capable of
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reconstructing signals from the GSTFT magnitude was used. The speech
analysis/synthesis system achieved exact reconstruction in the absence of
data modification. The ability of the synthesis system to recoanstruct

speech from modified data was also demonstrated.

5.2 REAL-TIME SYNTHESIS

Although the analysis system described in Chapter 2 and Appendix C
is suitable for real-time operation using existing technology, the
synthesis system of Chapter 3 generally is not, Further improvements in
the synthesis algorithm, however, may produce a real-time
analysis/synthesis system based on perception. For example, the triangle
and Schwartz inequalities (Churchill, Brown, and Verhey [45]) can be
applied ¢to the recursive GSTFT of Equation 2.29, resulting 1in an
expression which directly relates reconstructed sequence values with the
GSTFT magnitude, It may be possible to perform crude real-time synthesis
from such results, Alternatively, it may be possible to use a synthesis

approach similar to that employed by channel vocoders {(Section D.2).
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5.3 DATA REDUCTION

Although data reduction is not an essential part of an auditory

system model, it may be useful in many applications. When liccle data

reduction 1is required, the standard downsampling/upsampling approach of

Section 2.6 1is applicable. When a high’' degree of data reduction 1is

required, more sophisticated approaches may be used. For example, it is

clear from Figs. 4.41 and 4.42 that an efficient encoding can be

accomplished by matching the STE and F/D output time-domain waveforms
with a few well-chosen prototype wave shapes., Such an encodiag can be
performed automatically by a principal components approach (Chu [16]).
Effectively, the principal components analysis applied to the temporal
domain performs a type of pitch extraction. A principal components
synthesis, followed by signal reconstruction from the resulting modified
data, produces a signal which sounds quite similar to channel vocoded
speech (see Section D.2). Speech can be obtained via this approach using
transmission channel data rates on the order of 10,000 bits per second
(not samples per second). Further research 1in this area may prove
beneficial to the design of channel vocoders based on properties of the

human auditory system (Gold and Tierney [46]).




-

5.4 AUTOMATIC SPEECH RECOGNITION MACHINE DESIGN

When an Automatic Speech Recognition (ASR) machine fails to
correctly identify a spoken input word, the failure may be due to
inadequacies in the first processing stage, or “front-end.” Note that
front-end inadequacies can cause unavoidable errors in subsequent stages.
Since the new algorithm described in Chapter 3 is the only known means of
reconstructing speech from critical bandwidth F/D outputs, it provides a
new toel for ASR machine front-end design. Front-end inadequacies can
now be discovered when a synthesis technique is used to test the analyzed

speech data for suitable information content.

The need for a synthesis system in ASR machine front-end testing can
be illustrated by a few simple examples, A bank of bandpass filters
having constant passband gain and minimum passband overlap is often used
in ASR front-ends (Schafer, Rabiner, and Herrmann [47]; Rubinstein and
Silverman [48]; Dautrich, Rabiner, and Martin (49], [50]). If the
filters are carefully designed, it 1is possible to reconstruct the input
signal by simply adding the non-detected filter outputs together. When
the filters are followed by detectors, however, practical reconstruction
of signals from the resulting F/D bank outputs 1is impossible. For
instance, tones of widely different frequencies produce identical
steady-state F/D outputs (see Section 3.2.2), and reconstruction of such
signals 1s 1impossible. Since humans have excellent frequency resolution
ability, it is clear that this type of F/D bank cannot be used to perform

many waveform discrimination tasks easily performed by humans. For
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examples relevant to the task of speech recognition, consider the

synthetic vowels /E/ and /AE/ depicted in Figs. 5.1, 5.2, and 5.3. In
order to achieve control over each individual spectral component, these
vowels were created by adding sine waves rather than using an acoustic
tube vocal tract model as in Section 4.4. Assume that a critical
bandwidth F/D bank having constant passband gain and minimum passband
overlap is designed by interpolating the data of Table 2.1. When the F/D
bank is used to analyze the synthetic vowels of Fig. 5.1, it follows from
Sections 3.2.2, B.3.7, and B.3.8 that the two vowels yield identical
steady-state outputs. Thus, it is impossible for an ASR machine equipped
with such a front-end to distinguish between these steady-state sounds. A
similar result holds for several other vowel pairs including the /OW/

sound in “"bought” and the /U/ sound in "foot,” as well as the /UH/ sound
in "but” and the /ER/ sound in "bird."” The importance of this effect with
regard to specific speech recognition vocabularies is a topic for further
research, and a speech synthesis system similar to that described in
Chapter 3 can be applied to test the results, Of course, such problems

are avoided altogether when the speech analysis system of Chapter 2 is

used.,

In addition to testing front-ends, the synthesis approach can be
used to test effects of subsequent processing stages., Such tests can
reveal loss of information relevant to recognition of a given vocabulary.
Note that loss of irrelevant information may be useful for data reduction

purposes. Such loss is acceptable so long as the nature of the loss 1is
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; understood and the results can be tested. Testing is accomplished via
synthesis from the modified data, as demonstrated in Chapter 4. For
example, to achieve data reduction an additional narrow lowpass filter is
often placed at each F/D output or, equivalently, a narrow lowpass
smoothing filter 1is wused in the detector., The short-time spectral
modification examples of Sections 4.4 and 4.5 indicate that a great deal

of information 1s lost when speech is processed by such a system. The

information loss, however, may or may not be important for a specific
speech recognition vocabulary. Again, this 1is a topic for further

research, Note that approaches to data reduction other than narrow

B | DRI

lowpass filtering can be wused which do not sacrifice intelligibility of
the reconstructed speech (Section 5.3). Such approaches are therefore

suitable for a wider variety of vocabularies.

The preceding observations are consistent with experimental results
reported in the literature. For example, a recent study (Dautrich, et al
[(49]), [50]) has shown that a word recognizer based on Linear Predictive
Coding (LPC) techniques performed better than a particular 13—chaannel
critical band F/D bank design. In this study the lowpass smoothing
filter cutoff frequencies were chosen so that each F/D output could be
sampled at a 67 Hz rate regardless of the bandpass filter bandwidth, and

the digital bandpass filters had constant passband gain and minimum

passband overlap. In an earlier study (White and Neely [51]), LPC was
compared with a 20-channel overlapped F/D bank (1/3 octave analog filters

were used to cover the 100-10,000 Hz range) using a 100 Hz sampling rate

o
n
1
-1
g
1
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on each channel, and similar scores were produced by both the F/D and LPC
approaches, Finally, a study using mel-frequency cepstrum coefficients,
which are similar to processed critical band F/D bank outputs, achieved

superior performance compared to LPC (Davis and Mermelstein [52]).

The comparison of speech recognizers using different front-ends is a
difficult task. On one hand, if a high quality speech signal can be
recoastructed from F/D bank front-end outputs, then any speech recognizer
arrors must be attributed to the recognition algorithms rather than
front~-end inadequacies. Since a high quality signal cannot generally be
reconstructed from data produced by LPC front-ends (the signal may not
fit the model assumed by LPC analysis/synthesis), the F/D bank approach
can potentially outperform the LPC approach, On the other hand, the LPC
approach may be more convenient since it achieves a high degree of data
reduction. Therefore, an important topic for future research is a
comparison of speech recognizers wusing LPC with those using F/D bank
front-ends followed by data reduction approachs which do not sacrifice

speech intelligibility,
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APPENDIX A

DEFINITIONS

This appendix presents standard definitions for reference purposes
(for further 1information, see Oppenheim and Willsky ({53}). In the

continuous—-time case, the time variable is "t"” and the frequency variable

is "R.” In the discrete-~time case, the time variable is "n" and the

frequency variable is "w."
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The continuous—time Fourier transform of a signal x(t) is defined

as: !

x(jQ)

FT{ x(t)}

3 memm . s

4o
[ x()e ¥tqe, (A.1)

The continuous—-time inverse Fourier transforwm is:

.
R R e M A

oo .
x(t) = (1/2m)f  x(ja)edtaq. (A.2)

e A 5 o

The modulation property of continuous—time Fourier transforms is given

by:

FT{ x(t)y(e)} = (1/2r ) [X(3Q)*Y(j0))
4o
= (1/2n )f_mx(j)‘)Y(jQ—jA)d)\. (A.3)

The discrete-time Fourier transform of a signal x(n) is defined as:

FT{x(n)} = X(edw) .
= ) x(n)e Jun, (A.4) .
n=-w

The discrete-time inverse Fourier transform is:

{
f

+n .
x(n) = (1/21)]  X(ed®)ed®fdy, (A.5)
-
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The modulation property of discrete-time Fourier transforms is given by:

(1/2n)[X(ed®)*¥(edw))

FT{x(n)y(n)}

+n . s
(1/2n)f  x(e3)y(edw=IA)dxr, (A.6)
-n

ek W

The z-transform of a discrete-time signal x(n) is defined as:

- oo

X(z) = | x(n)z™", (A.7)

n=-oo

| R

e

where z is a complex variable.

AW

The Laplace transform of a continuous-time signal x(t), specified

ot

for t>0, is:

R IR

LT x(e)} = jzx(c)e'SCdc, (A.8)

where s is a complex variable,
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APPENDIX B

FILTER/DETECTOR THEORY

B.1 INTRODUCTION

This appendix presents details of Filter/Detector (F/D) theory,
which is used throughout the main body of the report. First, each
component of a continuous-time F/D subsystem is defined. Responses of
several commonly used continuous-time F/D subsystems are then examined.

Derivations are performed in the continuous-time domain so that results

may be conveniently compared with the given references. Similar results

- can be derived for corresponding discrete-time cases if the sampling rate

i1s adequate to prevent significant aliasing error.
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B.2 CONTINUOUS-TIME FILTER/DETECTOR COMPONENT DESCRIPTION

A F/D subsystem consists of a bandpass filter followed by a
detector, as shown 1in Fig. B.l. The detector 1is comprised of a

memoryless nonlinearity and a lowpass smoothing filter.

B.2.1 BANDPASS FILTER DESIGN

A simple design procedure for Linear Time-Invariant (LTI) bandpass
filters involves modulating the impulse response of a prototype lowpass
filter. Let the prototype lowpass filter impulse response be denoted by
h(t). The function h(t) is also known as a window function because it
sometimes serves as a time domain “window” through which signals are
viewed. As a specific example of the design procedure, let h(t) be the

impulse response of an ideal LTI lowpass filter,
h(t) = [sin(Qnt)]/nt. (B.1)

The window function's Fourier transform FT{h(t)} is shown in Fig. B.2a.
In the frequency domain, the window function has bandwidth Q@ and unity
gain, From the modulation property of Fourier transforms (see Appendix
A), the function h(t)sin(Q.t) 1is the impulse response of a bandpass
filter. Frequency domain magnitude characteristics of the bandpass
filter are shown in Fig. B.2b. When 041,<Q, the bandpass filter
designed in this manner has center frequency Q., bandwidth 2Q,, and a

gain of one-half,
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Figure B.2: Bandpass Filter Design Example
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Although many bandpass filter design procedures exist, only the

approach which modulates a prototype lowpass filter will be discussed.
It is shown in Section 2,4 that this particular design technique 1s used
in Short-Time Fourier Transform analysis. The technique 1is also useful

in auditory system modeling, as shown in Section 2,2,

In practical applications a window function other than the impulse
response of an ideal lowpass filter is used. When h(t) is the impulse
response of a non-ideal lowpass filter, Qp is chosen such that frequency
components in the region [@|Xp are negligible. 1In Sections 2.4.2.3 and

Hgl D.4, this bandwidth is referred to as the one-sided main 1lobe bandwidth.

B.2.2 MEMORYLESS NONLINEARITIES

A device is memoryless if its output at any given time depends only
upon the input at that time. For example, let the input to a device be
y(t) and the output be w(t). The device is memoryless if w(t) at some

time t( depends only upon y(tg)e.

Let the waveform a(t) be the output of a device in response to any -

input waveform a(t), and B(t) be the response to b(t). The device is

'-:1: .
j;: nonlinear in the system theory sense if the input cja(t)+cyb(t) does not .
L

gt

I yield an output cja(t)+coB(t), where c} and cy are constants.

[

An example of a device which is both memoryless and nonlinear is the

NG

. square law device described by the input-output relationship:

e w(©) = y2(o). (B.2)
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Another memoryless nonlinearity is the full wave pilecewise linear device

described by the input-output relationship:
wa(t) = |y(e)]|. (B.3)

The half wave plecewise 1linear device is a memoryless nonlinearity

described by the input-output relationship:
wy(t) = [y(e)/2] + [|y(e)]/2]. (B.4)

The half wave plecewise linear device can be followed by a square law

\ device to implement a half wave square law device with input-output
h
E relationship:
wi(t) = [y2(e) + y(o)|y(e)|}/2. (B.5)
y
In addition to those described above, other devices such as exponential
and square root are often useful.
i The F/D of Fig., B.l will accomplish demodulation so long as the

memoryless nonlinearity does not possess an input-output relationship
with odd function symmetry (Taub and Schilling [28]). Devices with odd
function symmetry produce signals with equal positive and negative
excursions which may lead to a smoothing filter output of zero. Note
that the half wave square law device of Equation B.5 consists of an even
function y2(t)/2 and an odd function y(t)|y(t)|/2. Since y(t) 1is a
narrowband signal, contributions from the odd function can be eliminated
by the smoothing filter. Thus, a smoothed version of the square law
device output wj(t) differs only by a factor of two from a smoothed

version of the half wave square law device output w4(t).
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B.2.3 SMOOTHING FILTERS

J

The smoothing filter can be implemented as a LTI lowpass filter with

bandwidth Qg. The smoothing filter impulse response hs(t) is not

necessarily the same as the window function h(t).

In many applications it is desirable to use a F/D whose output is .

always positive, For example, a F/D using a square law device may be

used to measure average power spectra (Flanagan [1]), and a F/D with a o

v v

half wave square law device can be used to model auditory nerve firing

«

-

patterns (Siebert [18]). Since negative power spectra and negative
firing rates are meaningless, a positive F/D output is required. Also,
the F/D is often followed by a square root device (Sondhi, Schmidt, and
Rabiner [54]) or a logarithmic amplifier (Searle [43]). A positive F/D

output is clearly required 1in such cases. Unless otherwise stated, a

il Ko i i

positive F/D output will be assumed.

s 4y

The requirement for positive F/D output may place a restriction on
the smoothing filter design. Assume the memoryless nonlinearity output
is always positive. From the F/D subsystem shown in Fig. B.l, it follows
that the smoothing filter must produce a positive output v(t) in response
to a positive input w(t). Since any LTI filter with positive impulse
response will produce a positive output given a positive input, the

restrictions Xw(t) and Xhg(t) are sufficient to ensure that O<v(t) for

all ¢, Although these restrictions are not always necessary (a

. counter-example is given in Section 2,4.2.2) they are practical design

guidelines which conveniently guarantee a positive F/D output. q
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In certain cases it 1s easily shown that a smoothing filter with
positive impulse response 1s necessary, as well as sufficient, to
guarantee a positive F/D output, For example, assume the bandpass filter
has no spectral zeros and the memoryless nonlinearity is a full wave

plecewise linear device, Choosing x(t) so that the product of its

ol oo ¥ W EV R TV Sl e G PPN P

Fourier transform and the bandpass filter transfer function are unity

leads to an impulse at the bandpass filter output, y(t)=8(t). An impulse
. also appears at the smoothing filter 1input, w(t)=§(t). Since the

resulting subsystem output v(t) must be positive, the smoothing filter

R Y wen

must have a positive impulse response.

An ideal smoothing filter 1is a LTI filter having positive impulse
response and constant magnitude across its lowpass bandwidth, Although
the ideal smoothing filter is a useful concept, it can be shown that such
a filter does not exist (Siebert [55]). When hg(t)»0, |FT{hg(t)}| i
evaluated at the frequency 2=0 1s strictly greater than |FT{hg(t)}|

evaluated at any other frequency Q#0.

Despite the absence of an ideal smoothing filter, a variety of

practical smoothing filter designs are possible. For example,

_ hg(t) = [s1n2(Qgt/2)]/(nt)?2 (B.6)
;1 has a Fourier transform which is zero for |2|>Qgs Another design is the
> causal filter
;!
hg(t) = Bt2e™™t, o< N
?1
Y
b = (0, otherwise, (B.7)
4
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. where a and B are positive real constants. This filter 1s discussed
further Chapter 2. Channel vocoders sometimes use Bessel filters which
have a small negative overshoot 1in the impulse response (Sondhi, et al
[54]). To maintain an overall positive impulse response, a small positive
offset must be added to the Bessel filter impulse response, When a i
finite duration impulse response is required, a function such as the ‘
Hamming window may be used to truncate the impulse responses of Equations
B.6 or B,7 (Rabiner and Gold [56]). Alternatively, since a Hamming window
is the impulse response of a lowpass filter and is always positive, it

- may be directly used as a smoothing filter,
E
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B.3 CONTINUOUS-TIME FILTER/DETECTOR RESPONSES

In this section, responses of several F/D subsystems to a variety of
signals are examined in detail. Three commonly used continuous-time F/D
subsystems which differ in memoryless nonlinearity type and smoothing
filter bandwidth are shown in Fig. B.3, Smoothing filter bandwidths for
the square law, full wave piecewise linear, and half wave plecewise
linear detectors are Qg), {ig2, and 43, respectively. For convenience,
all three LTI smoothing filters are assumed to have the 1ideal
characteristics of unity gain, zero delay, and positive output given a

positive 1input,

Fig. B.3a depicts a F/D subsystem using a square law device 1in the
detector, A square root device 1s present so that output levels are the
same order of magnitude as those given by detectors using full wave or
half wave plecewise linear devices. If the F/D outputs are followed by a
logarithmic amplifier, as is often the case in practice, then power law

devices at the output have little effect on the final result.

Fig. B.3b depicts a detector using a full wave piecewise linear
device, which is drawn as a square law device followed by a square root
device., The half wave piecewise linear device of Fig. B.3c is represented

by a diode symbol.
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x(t) y(t) wy (€) vo(t) vy (1)
INPUT h(t)sin(Qct) —( )? hg1(t) / OUTPUT ,

v
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(a) Square Law Device

o i A

x(t) y(t) —wp (£) W, () vy(t) )
3 INPUT ——h(t)sia(@ ) —=1( )2 v U +{hgo(t) OUTPUT
(b) Full Wave Piecewise Linear Device
f- x(t) y(t) wy(t) v4(t)
: INPUT ——h(t)sin(Qt) Dt ~lh 4(t) » OUTPYUT -

T Figure B.3: Commonly Used Filter/Detector Subsystems
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(c) Half Wave Piecewise Linear Device
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B.3.1 SQUARE LAW DETECTOR RESPONSE TO ARBITRARY INPUTS

For any arbitrary input signal x(t), the spectrum of y(t) is
bandlimited to the region Qc-ﬂh<|9|<ﬂc+ﬂh as shown 1in Fig. B.4a. Note
that the graphs of Fig. B.4 do not represent the exact Fourier transform
of any particular signal, but indicate regions where non-negligible
spectral components may exist. From the modulation property of Fourier

. transforms (see Appendix A), 1t follows that the spectrum of wj(t)
~ronsists of low and high frequency regions as shown in Fig. B.4b., If the
smoothing filter bandwidth is chosen so that 20,<41<20,-2Q;, then no low
frequency information 1is 1lost but all high frequency components are

eliminated from vg(t).

B.3.2 FULL AND HALF WAVE PIECEWISE LINEAR DETECTOR RESPONSES TO

ARBITRARY INPUTS

In this section, it is shown that the full wave plecewise linear
detector output wp(t)=|y(t)| can be expanded in terms of even powers of

y(t). The spectrum of |y(t)| can therefore be determined from the

r- , spectrum of y(t) by repeated application of the modulation property. The
. result is a new Fourier transform operation which, given the spectrum of
4 a signal, determines the spectrum of the absolute value of the signal. It
- follows from Equation B.4 that a similar result may be applied to the

half wave piecewise linear detector,
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Figure B.4: Square Law Detector Response to Arbitrary Inputs
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The input-output characteristic of a full wave pilecewise linear

device is given by:
walt) = |y(e)]. (B.8)

Since the device 1s memoryless, time dependence of the signals Iis
unimportant and the time parameter may be suppressed. Equation B.8 can

thus be written as:
wy = |yl (B.9)

Assume the device 1input amplitude {is limited to some arbitrary
finite range -R<y<R. Using the Fourier series expansion for a triangle
wave, which 1s 1identical to the input—output characteristic over the

specified range,

wy = (R/2) - (4R/n2) Zl(Zn--l)_2 cos[(2n-1)ny/R]. (B.10)
n=

baad A Bl o M St W AF 2 NNt it § T R O T G T W T e N W L LTI R T TR T T T TR T e+ e ST ML MU NN LW o W S W W s Wl W7d

s

-
L i
= The cosine function can be expanded via a power series for any y: |
o cos[(2n-1)ny/R] = ) (~1)B[(2n-1)ny/R]20/(2m)!, (B.11) '
,-‘ m=0 :
4
- Substitution of Equation B.ll into B.1l0 yields:
o
9
R, )
b
- wp = | apy?m® (B.12)
‘ m=1

. i
P~.'. >
- where )
. ) :
, ap = ~(4R/12)[(~1)®(x /R)2™/(2m)! ][ )I(Zn-l)zm‘zl. (B.13) !
- n=
o |
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The full wave plecewise linear device output wz(t) can thus be expressed
in terms of even powers of its input y(t). Note, however, that the

coefficients ap have infinite values,

If the number of terms 1in the serles expansion 1is limited,
m=1,2,...,M, an appropriate set of finite values for a, can be obtained
from truncated versions of the Fourier series of Equation B.1l0 and the
power series of Equation B.,l1l. The Fourier series converges rapidly, and
relatively few terms are required to obtain results within a specified
accuracy., Each of the cosine terms in the truncated Fourier series 1is in
turn expanded by the slowly converging power series. The cosine
expansions must contain enough terms so that error given by truncation of
the original Fourier series is not significantly increased. A large
value of M 1is thus required to obtain a reasonably accurate
approximation, Any constant term in the resulting expansion should be
eliminated so that the approximation produces zero output in response to

zero input.

Appropriate coefficient values can also be computed using a minimum
mean squared error (MMSE) criterion. The mean squared approximation

error is given by:
M
+R X
ey =/ [yl =) apy?™)2ay. (B.14)
-R m=]

To obtain the value of any particular coefficlient aj which minimizes the

error for 1=1,2,...,M:
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demfdag = 0

R M
= -4 (y =) agy?™y2idgy, (B.15)
0 m=1
The solution is given by

M
1/(1+1) = ElamRzm'l/(m+1+-5). (B.16)
m-

which generates M equations in M unknowns and thereby specifies ay for

m=l,2,...,M.

As an example, let R=1 and M=7, Solving Equation B.l6 yields:

n

wp(t) = 1.6746y2(t) - .078942y%4(t) ~ .28032y0(t) - .72214y8(¢)

.024750y10(t) ~ .0013560y12(t) - .0088671yl4(¢), (B.17)

+

which 1is the MMSE approximation for wp(t)=|y(t)| on the interval
-IKy(t)X1 when seven terms are used, Evaluation of Equation B.17 with
y(t)=] yields wp(t)z.608, which is a poor approximation. Repeating the

procedure with M=10 yields:

5.8239y2(t) - 34.0175y4(t) + 108.3705y5(t) - 156.0335y8(t)

W

wa(t)

+ 74.8383y10(t) - 16.8961y12(t) + 115.5607yl4(t)

127.7208y16(t) + 7.3678y18(t) + 23.7314y20(¢), (B.18)

Evaluation of Equation B.18 with y(t)=l yields wp(t)21.025, which 1is a

better approximation.

199




Note that a large number of terms must be used in order to obtain
reasonable results. Thus, to determine the spectrum of |y(t)| from the
spectrum of y(t), the modulation property of Fourier transforms must be
applied many times. Since the coefficients must be accurate to many
significant digits and a high degree of precision must be maintained in
[~ all computations, this approach is mainly of theoretical interest and has

limited practical value, .

B.3.3 RELATIONSHIP BETWEEN FULL WAVE AND HALF WAVE PIECEWISE LINEAR

DETECTORS FOR ARBITRARY INPUTS

Under certain conditions, outputs from F/D subsystems using either
full wave or half wave piecewise 1linear devices are the same (within a

scale factor) for any arbitrary input signal. From Equations B.3 and B.4

_‘4‘\,‘,."."

it follows that:
wi(t) = [y(e)/2] + [wy(t)/2]. (B.19)

The spectrum of y(t) 1lies in the region Q.=p<|2|<R#2, as shown

Fig. B.4a. If the smoothing filter bandwidth is chosen 8o that

0§ g3&Q c<h, then the bandpass component y(t)/2 is eliminated. Setting

1g2%lg3 then results in F/D outputs vy(t) and v3(t) which differ by a

[ B v r 1
S e o M
. LRSS AR

factor of two:

’_ va(t) = 2v3(t). (B.20)
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B.3.4 RELATIONSHIP BETWEEN SQUARE LAW AND FULL WAVE PIECEWISE LINEAR

DETECTORS FOR ARBITRARY INPUTS

The square law detector shown in Fig. B.3a lowpass filters the
waveform wj(t) and takes the square root of the result to obtain output
vi(t). The full wave piecewise linear detector of Fig, B.3b takes the
square root of wj(t) and lowpass filters the result to obtain output
valt). Since 1lowpass filter and square root operations are not
interchangable, the outputs vj(t) and vy(t) are not equal in general. It
will be shown, however, that given certain restrictions these two outputs
are similar for a variety of different input waveforms x(t). Note that
while vo(t) 1is a bandlimited signal, v (t) is not necessarily
bandlimited. Therefore, a large smoothing filter bandwidth Qg9 may be

required in order that vy(t)zv(t).
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B.3.5 NOISE RESPONSE

Let the 1input to each F/D subsystem of Fig. B.3, x(t), be a white

Gaussian noise process with variance $,(Q)=4A. If the window function
h(t) 1is the impulse response of a unity gain ideal LTI lowpass filter
with cutoff frequency Qp, the bandpass filter output y(t) will be a

bandlimited Gaussian noise process with power spectral density
Sy(2) = S, |FT{ h(t)sin@ L)} |2
= A, 2.90p<[2 QM
=), otherwise, (B.21)

Note that the spectral height of Sy(Q) equals the input variance reduced
by a factor of four, as shown in Fig. B.5a. Power spectral densities for
nolse processes at the output of each memoryless nonlinearity are shown

in Figs. B.5b, ¢, and d (Davenport and Root [57]; Papoulis [58]).

Given certain restrictions, comparable F/D noise responses can be
obtained over a specified range of frequencies. To avoid loss of low
frequency information while eliminating high frequency components, let
NhQg1,8g2< X =M, for the square law and full wave piecewise linear
detectors while 2p<g3Q . for the half wave piecewise linear
detector. Under these restrictions, the full wave and half wave
piecewise linear detector outputs will differ only by a scale factor,
Note that the minimum smoothing filter bandwidth, 23y in all cases, is
twice the bandwidth normally used for detection of Amplitude Modulation

(AM) signals (Siebert [55])e The wide bandwidth is required because the
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(d) Half Wave Plecewise Linear Device Output Power Spectrum

Figure B.5: Filter/Detector Noise Response
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input signal is not generally AM in nature, and has neither the carrier

nor the symmetry inherent in AM signals.

Given the stated restrictions, noise responses of F/D subsystems
using square law and full wave plecewise linear devices are similar in
many ways. From Figs. B.5b and B.5c it 1s apparent that the noise
processes wi(t) and wy(t), and therefore vg(t) and vy(t), have comparable
power spectral density shapes. However, total area under the square law
device power spectral density curve is proportional to the square of the
input variance, while the area under the curve for the full wave
plecewise linear device 1is directly proportional to the input variance.
Due to the square root device shown in Fig B.3a, the zero frequency
component of vi(t) 1is proportional to the input variance. The zero
frequency component of vz(t) is also proportional to the input variance.
Thus, in applications where a F/D subsystem 1s used to measure noise
process characteristics, the zero frequency component of the F/D output
is often the only quantity of interest (see Sections D,2 and D.5 for

such applications),




B.3.6 IMPULSE RESPONSE

Consider the F/D subsystem of Fig. B.3a which uses a square law

device. If the input 1s an impulse, x(t)=§(t), then
wi(t) = h2(e)[1 - cos(2.t)]/2. (B.22)

Frequency regions occupied by FT{w;(t)} are shown in Fig. B.6a., If

. N Ng1<N-ANy then

vo(t) = h2(t)/2 (B.23)

vi(t) = |h(e)| /2. (B.24)

The function |h(t)| may or may not be bandlimited. For convenience,
assume that FT{ |h(t)|} 1is for all practical purposes lowpass bandlimited
to some frequency Q|h|. For example, 1if the window function is always
positive, then h(t)=|h(t)| and |h(t)| is bandlimited to Q|n|=Rpe  When
|h(t)| is bandlimited, vj(t) as given by Equation B,24 can be compared

with the bandlimited functions vp(t) and v3(t).
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Figure B.h: F/D lmpulse Response Frequency Domain Characteristics




Now cons:der the /D subsystem of Fig. B.3b which uses a rtul! wavc
plecewlsc iinear devices If the input is an impuise then, by Fouriev

series expansioci .Spiegel {59}]),

wy(t) = |[h(t)}||sin(@ct)]

= |h(e)]i(2/n) + (4/1) lecos(Zmlct)]/(l-AnZ)} (B.25)
n=

Frequency regions occupied by FTiwy(t); are shown in Fig. B.Ab. If the
lowpass smoothiny filter has cutoff frequency .4z sSuch that

wiip %og2 2ic™i i, then the F/D output is:
v:(t) = 2'n{t). /v {Be26)

Finaliv, consider the F/D subsystem of Fig. B.3c whi:rn uses a half

wave plecewise linear device. 1If the input is ar impulse, then

wolmaom vt o byt S22
= ' “‘§.y‘/‘..,\: P
x
- o : + o poos i U mansd Bell
=
Yregaency regions accupeed by FTowastio are shown 10 Fig, Berc, ret the
Towpass smoorhioy tiiter  have cutsfr o frequency .oy, where  Lgase.Tog and

vl ol o« Tone nalr wave plecewise linear detectinr outpul is thern

?}r BRAYS 24 :

fara. nrotne rall wave plecewise linear detector output.
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Under the stated restrictions and assumptions, the impulse responses of

all three F/D subsystems differ only by a scale factor.

The results of this section can be applied to determine the impulse
response of a F/D subsystem using a half wave square law device, as used
in Chapter 2., It follows from Equations B.2, B.3, B.5, and the modulation

property that
FT{wy ()} = [FT{w)(t)} 1/2 + [FT{ y(t)} *FT{wy(e)} ]/4n. (B.29) ,

Spectral regions occupied by [FT{wl(t)}J/Z are shown in Fig. B.6a. The
lowest frequency spectral region occupied by [FT{y(t)}*FT{wz(t)}]/4n is
Qcﬂl|h|ﬁ2h<|Q|<ﬂc+Q|h|+ﬂh, as can be seen by convolving Figs. B.4a and k
B.6b. Thus if a smoothing filter with bandwidth Qg4 is chosen such that

0pNg4 QR ||y and NpQg<AN~Ny, the half wave square law F/D

w1

output is h2(t)/4. .
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B.3.7 SINUSOIDAL RESPONSE

o e e e -

Let the input to each F/D subsystem, x(t), be a sinusoidal waveform.

T TV

Because the bandpass filter 1is LTI, the filter output y(t) is also

sinusoidal. The waveform will be changed in amplitude and phase 1if the .

bandpass filter is non~ideal. Assume
y(t) = Apsin(Qt), (B.30)

where Qc"ﬂh@ IQC“‘Qh. Then

PN

wi(t) = (A2(1-cos2 t)/2. (B.31) E

For 0<Qg1<N -y, ’
vo(t) = (A))2/2 (B.32) ;

and i
)

vi(t) = |A| W7, (B.33) '

From the Fourier series expansion of Equation B,.25, it follows that

. wolt) = [Ay|{(2/7) + (4/n) Ellcos(Zmlt)l/(l-AnZ)} (B.34)

N n=

5 and, for 0<Rgp<2 .-,

T va(t) = 2|Ay|/n. (B.35)

‘

.

}i Similarly,

- (8.36)

. ®

F. wy(t) = (Aysin@t)/2 + |Ay|{(1/n) + (2/ﬂ)nél[cos(Znﬂlt)]/(l-4n2)},
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Thus, for Uligi<ic™ih,
valt) = 1A [/, (B.37)

Under the stated restrictions and assumptions, the sinusoidal responses

of all three F/D subsystems differ only by a scale factor.

B.3.8 SINUSUIDAL PAIR RESPONSE

LLet x(t) be a sinusoidal palr. Because the bandpass filter is LTI,

v(t) is also a sinusoidal pair. Assume
v(it) = Arlcos(ijt) = cos(sipt)] (B.38)

where . c_‘“h<"‘ ] s 2<JZ chin and i 2<.\2 1° Thus
(B.39)

wi(t) = (Ap)2(1 - cos(uy=ig)t - cos (st Hip)t + (cosiijt+cosiyt)/2}.

N

Let 2.4%.g1%2:"2iy. Then

v, (t) = (A9)7[1 = cos(ujmig)t] (B.40)

and

vi(e) /T!Azsin[(dlﬁnz)t/2I|. (B.41)

The waveform vj(t) of Equation B.41 is not strictly bandlimited.
However, an effective bandwidth it may be chosen such that, for practical

purposes, frequency components of vl(t) in the repion Tt are

negligihle. Since
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(Bo42)

w

Isin{ (s =20)e/2]) =+ (2/n) + (4/n) } [cos(uy=ip)nt]/(1-4n2)},
n=1

e

the average power level of the component at a frequency of 6(Q)-i3) is
-4UdB relative to the zero frequency component. Since 6(u]=p)<120y, an

effective bandwidth choice of @i o=121, is reasonable.
Fquation 8,38 can be rewritten as:
v(t) = —QAzsin{(‘.Z l—:a:)c/2]sin[(sz I'HZ?_)t/ZI. (B.43)

Thus
(Bab4)

o

walt) = 21Aysinl(iy=ip)e/2011(2/n)+(4/n) | [cosGijHioint}/(1-4n2)},
a=1

[ 2eGign<2i =2l then
volt) = (4/n)iAysinlGuy=iple/2]]. (Bo45)
Similarly,

wilt) = Aplcos(egt) - cos(2yt)]/2

(BJ46)
a
T N ey g I3 L i . ‘ 2
FocAnsini L= ) 240 (274 (8 ) lcosCathiadnt ]/ (L-dnc) -,
1=1
et and Laigy 2 s liwl s, then
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B.4. CONCLUSION

In this appendix, F/D subsystem components have been described and
three common F/D subsystems have been investigated in detail. For

arbitrary input signals, the response of a F/D using a square law device

- is easily determined. Responses of detectors using full and half wave
piecewise linear devices are not easily determined in general. It has
- been shown that, under certain conditions, the outputs of detectors using
full and half wave piecewise linear devices differ only by a scale
factor. It was also shown that a F/D subsystem using a square law
detector can be turned into a F/D subsystem using a full wave piecewise
- linear device by interchanging square root and lowpass filter operations

(see Fig. B.3). Thus, the outputs of these subsystems are not the same

in general, Under certain restrictive conditions, however, the

subsystems have similar responses to noise, impulse, sinusold, and
sinusoidal pair inputs. These results will be used in Section D.3 to
relate spectrograms with the spectrogram-like representations generated

from Short-Time Fourier Transform magnitude.
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APPENDIX C

GENERALIZED SHORT-TIME FOURIER TRANSFORM COMPUTATION

C.l GSTFT ANALYSIS USING FIR WINDOWS

Assume that each window function is the Finite-duration Impulse
Response (FIR) of a lowpass filter., Let the set of window functions

hg(n) be zero outside the range KM ~l. Note that each window function
may have a different duration My. Window functions can be defined by an
equation, as for a Hamming window, or values may simply be defined on a

point by point basis.
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When a FIR window is used, the GSTFT magnitude squared is given by:

Jwk M-l
|Xp(e )2 =} x(n-m)hy(m)cos(wym)]? :
m=0 )
My -1
+ | kz x(n-m)hk(m)sin(mkm)lz, (C.l1) i
m=] < ]
where k=1,2,...,K. One of the set of K F/D subsystems is shown in Fig. -

C.l. In this figure, unit delays are denoted by z7!  and amplifier
symbols (triangles) indicate wmultiplication by a constant. The F/D of
Fig. C.l is a discrete-time version of Fig, 2.,7b with the filters drawn

in detail to show their FIR structure.

The F/D implementation shown in Fig. C.l (or 2.7b) is of special
interest when the data, x(n), has been quantized to one bit. Such a
situation arises when speech data has been encoded using 1linear Delta
Modulation (Steele {60]). In this case the bandpass filters can be
implemented without use of multiplication; ie., multiplication by zero or
one 1is trivial, Such a structure is therefore suitable for real-time
speech analysis systems implemented with microcomputers (Anderson [61]).
Note that the same computational efficiency is not achieved by the system

of Fig. 2.7a where the data is modulated prior to filtering.
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C.2 GSTFT ANALYSIS USING IIR WINDOWS

Assume that each window function is the Infinite-duration Impulse
Response (IIR) of a lowpass filter, let the set of window functions

hg(n) be zero for n<i, where 1 is an arbitrary integer constant, For

,E“ n>i, X

;- Yk Rk

F hi(n) = lek(w Yhp(n=p) + Eiqk(r)d(n-r) (C.2) .
= r= | 4

where the set of coefficients py and qi are real constants with qp(1)#0.

From Equation C.2 it can be seen that the window functions are

right-sided sequences (Oppenheim and Schafer [31]) with first nonzero
value h(1)=qp(i). This choice for relative time alignment of the window
functions, although arbitrary, serves to simplify the synthesis equations

of Chapter 3,

Each IIR window function described by Equation C.2 has a rational

z-transform (see Appendix A):

Rk
L, k(2"
r=i

Hi(z) = Y
1= lek(w)z“P

(C.3)

Tp—_
Vo

The window function spectral zeros can be determined by factoring a

;x? polynomial involving the set of qy coefficients, and poles are similarly
f;- obtained from the py coefficients.

o
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Since a FIR filter has zeros but no poles in its system function,

b..
. .
W
N

the IIR window function includes the FIR analysis window as a special

case. To eliminate the poles, let py(y)=0 for all values of k and vy.

P P S W S

For convenience let i=0 and Ry=Mi-l. Equation C.2 then becomes

My -1 :
hg(n) = kquk(r)é(n-r), (C.4)
rs
- from which it follows that i

hk(n) = qk(n), 0Kt My -1

= (0, otherwise. (C.5)

ST b T

The FIR window discussed in Section C.l is thus a special case of the IIR

window function defined by Equation C.2.

The recursive formula for the GSTFT, which results when the IIR

! r'r'“
LA N

window 1s substituted 1into the defining equation for the GSTFT (see

Equation 2.,29) is given by:

G
*

g
]

=

1

-

. Jo Yk ko R ~Juy(n-r)

- Xple ) =} PrW)Xpy (e ) + Y q(r)x(n-r)e . (C.6)

’_’ p=1 r=1

r 1
{' The recursion of Equation C.6 can be implemented using a variety of

" od
;! filcer configurations (Oppenheim and Schafer [31]; Rabiner and Gold !
S ¢

{56]). For example, a "direct form two" implementation can be obtained !

by defining an auxiliary sequence Ly(n), where
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Lg(n) = x(n)e + \p}:lpk(W)Lk(n-i). (C.7)

The GSTFT is then computed by

Jug Rk
Xp(e ) = Ziqk(r)Lk(n—r). (c.8)
r=

The required sine and cosine sequences can also be computed

recursively, if desired, since

cos win = (cos wy)[cos wp(n=1)] - (sin wy)[sin wy(n-1)] (c.9)
and

sin wpn = (sin wy)lcos wi(n=1)] + (cos wy)lsin wy(n-1)]. (C.10)

It should be noted that the sine and cosine sequences computed via the
recursion may become less accurate with increasing n. This problem can
be overcome by periodically resetting the recursion variables to their
correct values, Correct values for the reset operation may be obtained

from a similar, but lower frequency, recursion (Gold and Rader [62]),

Fig. C.,2 depicts a F/D subsystem using a direct form two filter
implementation and recursive sine and cosine generation. Parameters for
this subsystem are i=1, ¥, =3, and Ry=2. Note that the F/D of Fig. C.2 is
a discrete-time version of Fig. 2.7a with the filters drawn in detail to
show their IIR structure, This implementation 13 suitable for real-time
speech analysis systems, and may be used in the system described in

Chapter 2.
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APPENDIX D

APPLICATIONS

D.1 INTRODUCTION

Filter/Detector (F/D) subsystems

analysis and synthesis systems.

characteristics, memoryless
cutoff frequency, relationships

techniques can be examined,

By varying
nonlinearity

between

are used 1in a variety of speech

the bandpass filter

type, and smoothing filter

several speech processing

In this appendix, the new relationship between Short-Time Fourier
Transform (STFT) magnitude squared and F/D subsystems, as derived in
Chapter 2, 1s used to describe channel vocoder operation. The

relationship is also used

221

to explain similarities
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between spectrograms

N AT R |

v v v o e
WRIRPNARD . SN



A ke~ Al i "t U S RN o "l St SRRl Sad ot Ball Sk Sdh St sl ang . |

and the spectrogram—-like representations generated from STFT magnitude,
give a new F/D interpretation to the FFT magnitude, demonstrate the
equivalence between the discrete-time Welch method of power spectral
estimation and results produced by continuous-time power spectral
estimation methods, and to examine several approaches to variable
bandwidth analysis. Digital (discrete-time) as well as analog

(continuous—time) systems will be discussed.

D.2 CHANNEL VOCODERS

Channel vocoders are analysis/synthesis systems which model a speech

signal as belng either voiced (having a periodic pitch) or unvoiced

(noise~-like). The analyzer typically includes a voiced/unvoiced (V/UV)
decision subsystem, a pitch extractor to determine the fundamental
frequency of voiced signals, and a F/D bank. The synthesizer contains a
pitch generator, noise source, V/UV selector switch, modulators, and

bandpass filters.

A channel vocoder analyzer described by Rabiner and Gold [56] uses
sixteen bandpass filters with nonuniform center frequency spacing to

analyze the .3-3 KHz frequency range. The bandwidth for the lowest

r

frequency filter is 125 Hz while a bandwidth of 400 Hz is used for the
highest frequency filter, The smoothing filter bandwidth is 25 Hz, and
is the same for all channels regardless of the bandpass filter

characteristics. Thus, the F/D bank measures only quasi-stationary
aspects of the speech signal such as input signal variance (see Section

. B.3.5).
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Since the smoothing filter has narrow bandwidth, F/D outputs are

similar for a variety of different memoryless nonlinearities. Half wave
and full wave piecewise linear devices are most often used in analog
channel vocoders as they are easily implemented with diodes. A square
law device 1is often used in digital channel vocoders. The increased
dynamic range requirements are oftset by the fact that the square law
device produces bandlimited signals which can be represented digitally
with licttle aliasing. In certain digital channel vocoder applications the
square law device yields superior results compared to the full wave

linear device (Sondhi, et al {54]).

The speech analysis/synthesis system based on perception, described
in Chapters 2 and 3, can be viewed as a channel vocoder which does not
require pitch extraction. The data rate for such a system, however, is
much higher than that normally associated with channel vocoders. The
data rate can be reduced by placing additional lowpass filters at each
F/D output., However, it is clear from the results of Fig. 4.56 that high
quality speech cannot be reconstructed from such lowpass filtered F/D
outputs alone, and additional information is required. One method for
obtaining such information, which corresponds to a form of pitch
extraction, is described in Section 5.3. Note that, contrary to comments
by Rabiner and Gold [56], a channel vocoder analyzer does not preserve
the Short-Time Fourier Transform (STFT) magnitude, but 1{instead preserves

a lowpass filtered version of a generalized form of the STFT magnitude.
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D.3 SPECTROGRAMS

The Sound Spectrograph machine [63] employs a measurement system
which 1is similar to the F/D of Fig. B.3b. The machine uses a diode
rectifier to implement the full wave piecewise linear device. Two types
of analysis can be performed. A wideband analysis uses a bank of
bandpass filters each having an effective 300 Hz bandwidth, while a
narrowband analysis uses 50 Hz bandwidth filters., Filter center
frequencies are 20 Hz apart (Flanagan [l]) and the frequency range .05-7
KHz 1is analyzed. Each lowpass smoothing filter has an effective
bandwidth of several hundred Hertz, and is sufficiently wide to pass any
envelope frequencies which may be present at the output of a wideband

filter due to beating of adjacent harmonic pitch components.

It was shown in Section B.3.4 that since lowpass filters and square
root devices are not interchangable, outputs of the F/D subsystems
depicted in Figs. B.3a and B,3b are not the same in general, However,
parameters for spectrogram generation are such that similar results may
be produced by both F/D subsystems for a variety of input signals, as
shown in Section B.3, Furthermore, since the STFT magnitude can be used
to implement the F/D of Fig. B.3a, the STFT magnitude can also be used to
roughly simulate Sound Spectrograph machine operation (Oppenheim [64];
Wood and Oppenheim [65]; Rabiner and Schafer [3]). Note that, contrary
to results given by Flanagan [1], the correct F/D approximation to STFT
magnitude is shown in Fig. B.3a and the F/D of Fig. B.3b 1is applicable

only under the restrictive conditions discussed 1in Section B.3.
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D.4 SLIDING DFT IMPLEMENTATION OF THE STFT

In this section, it will be shown that the STFT can be computed by
performing the Discrete Fourier Transform (DFT) on segments of a long
data sequence. The DFT approach is attractive since it can be

efficiently implemented via the Fast Fourier Transform (FFT) algorithm.

The DFT is given by (Oppenheim and Schafer [31]):

juk M-1 —-jwim
Y(e ) = ) x(m)h'(m)e (D.1)
n=0
where
wk=21r k/M (D.2)

and k=0,1,2,...,M~1, Note that the analysis frequencies are uniformly
spaced. The DFT window function h'(m) is finite length, and 1is =zero

outside the range XmM-1,
A sliding DFT analysis is defined by:

Jwx @ —jwym
Ya(e ) = 2 x(n+m-M+1)h'(m)e R (D.3)
m=-w
Although the summation limits have infinite range, terms in the summation

are nonzero only on the interval OKmKM-1 due to the finite length DFT

window function h'(m).

From Equation D.3 it can be seen that the sliding DFT segments the

data sequence x{(n) 1into sections of length M and performs a DFT on
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Jwx
each segment., For example, YM—l(e ) is the DFT of the first M signal

points x(0), x(1), ..., x(M-1), Other definitions of the sliding DFT

(Oppenheim [64]) use a time index such that the sliding DFT value at n=0

is the DFT of the first M signal points. Many variations are possible,
but the resulting differences are unimportant and the definition of

Equation D.3 is chosen for convenience.

The sliding DFT need not be computed for every time n. Often, to
decrease computation time and data storage requirements, only samples of
the sliding DFT are desired, In this case, it becomes the hopped DFT

discussed by Rabiner and Gold [56].

To relate the sliding DFT to the STFT, define a new window function

h(m) to be a time-reversed and delayed version of h'(m); ie.,
h'(m)=h(M-1-m) (D.4)

for all m. Since many window functions used in conjunction with the DFT
are symmetrical, the time-reversed and delayed window is often the same

as the original window. By substitution into Equation D.3:

jwk “Jugm

Yole ) =, x(ntm-M+1)h(M-1-m)e

mn=-ow

® ‘jwk(M—l-m)
= x(n-m)h(m)e
m=-e

okt Ju
- e (e ), (D.5)
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Jwk
where X,(e ) 1is the discrete~-time STFT (a special case of the

Generalized STFT) evaluated at a fixed frequency wy, as given by Equation
2,21, This result leads to the following procedure for computing the

STFT via the sliding DFT:

l. Form a time-reversed and delayed version of the STFT window
function, h(n), and call it h'(n).

2. Pre-multiply a data segment by h'(n).

3. Perform a DFT on the windowed segment by using the FFT algorithm,

4, Post-multiply the results by a time-varying complex exponential,

The complex exponential post-multiplication step converts sliding
DFT outputs, which are bandpass functions, into lowpass STFT results., If
only magnitudes are computed, then step #4 is unnecessary since:
Juk Jok
1Ygte | = |Xg¢e” D). (D.6)
From Equation D.6 it is evident that a F/D interpretation can be
placed on the sliding DFT magnitude as well as on the STFT magnitude.

Since it is common practice to investigate the spectrum of a signal by

examining the DFT magnitude of a signal segment, the F/D interpretation

can be used to obtain insight into spectral behavior as a function of
time, Although it 1s well known that the sliding DFT can be used to
implement a filter bank (Rabiner and Gold (56])), the nature of the

detection process brought about by the magnitude operation has not been

adequately discussed in the literature., Therefore, a complete example is

given in the remainder of this section,
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For convenience, the Hamming window (Oppenheim and Schafer [31])
will be used both as a window function and also for lowpass filtering
purposes. The Hamming window of length M, normalized for unity gain in

the frequency domain, is:
h'(n) = [.54 - .46cos(2nn/M-1)]/(.54M), OK<KM-1, ]
= 0, otherwise. (D.7)

The one-sided main lobe bandwidth of a Hamming window of length M is

whl=4ﬂ /Mo

e dbinls

As a specific example, assume that a continuous-time signal is

sampled at a 10 KHz rate and a 12.8 millisecond (128-point) segment is

Y Ye4 WIS

selected for analysis, Let the data segment be denoted by x(n), 0<n<127, a

An example sequence is shown in Fig. D.l.

Using a 128-point Hamming window, the DFT magnitude squared is
computed, The DFT is given by Equation D.l, and frequency spacings are
given by Equation D.2, where k=0,1,...,64, Since x(n) is real, it is not

necessary to compute values for k=65,...,127. The DFT magnitude squared

AT RR | R

for the sequence of Fig. D.l1 is shown in Fig. D.2. >

A bank of discrete-time F/D subsystems of the type shown in Fig. 2.8
is now implemented, and the output of the F/D bank is sampled at a Lo
specific time. Since the Hamming window 1is symmetric, the DFT window

function h'(n) is the same as the STFT window function h(n). Thus, in

P S S A TN
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x(n)

0 10 100 n* 1

Figure D.1: Example Sequence
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Fig. 2.8, h(n) is a 128-point Hamming window, we=wyk, and 6 is arbitrarily
chosen as zero. Since the lowpass smoothing filter must have the same
bandwidth as the bandpass filter, a 63-point Hamming window is wused for
hgi(n).  The smoothing filter, therefore, introduces a 32-sample delay.
For convenience, define x(n)=0 for n<0 and n>127. Let the output of each
F/D subsystem be denoted by 2vi(n). To approximate the DFT results,
2v) (158) is computed:

62 127

2vp(158) = 2 P [} x(158-1-m)h(m)cos(wym)]2hg (1). (D.8)
i=0 m=0

The results are plotted in Fig. D.3, and are comparable to those of Fig.

De2e
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Figure D.3: F/D Bank Output Sample
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D.5 AVERAGE POWER SPECTRUM ESTIMATION

In certain applications, reconstruction of high quality speech
signals directly from spectral magnitude data 1is of interest. As
demonstrated in Chapter 4, a high degree of time-domain detail 1in the
data is essential for such applications, In many other applications,
however, exact signal reconstruction is not required and the time-domain

detail can be eliminated by averaging the spectral magnitudes,

For example, since one noise sequence may sound the same as many
others, retention of information for exact signal reconstruction is
unnecessarye. For data reduction purposes it is more efficient to
characterize the random process which originally created the data,
Synthesis is then accomplished by generating a new data sequence from a
random process which has the same characterization as the original data
sequence. Since a random process 1s often described in terms of its
power spectral density, average spectral magnitudes are useful for
estimating random process characteristics., This approach 1is generally

employed by the channel vocoders described in Section D.2,
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The continuous-time F/D subsystem of Fig. B.3a, without the square
root device, can be used to measure the average power spectrum of speech
(Dunn and White [66])). The speech signal is decomposed into a number of
frequency bands by a bank of bandpass filters., The mean squared power in

each band is computed by placing a square law device and smoothing filter

at the bandpass filter outputs. The smoothing filter time constant may
range from 125 milliseconds for short-time measurements to more than a

minute for long-time analysis. A long-time analysis can also be obtained

by averaging many short-time measurements.

Digital techniques can also be used for power spectrum estimation,

For example, a popular technique known as the Welch method can be

S M ¥ = m e - ——— > Y ® @

described in terms of a digital F/D bank. The Welch spectrum estimate, as
discussed by Oppenheim and Schafer [31), 1is computed by sampling the
sliding DFT in a manner equivalent to hopping with no overlap. This is

done 1in an attempt to ensure statistical independence of the

measurements, and yields an undersampled representation, Hopping with
overlap has also been discussed in the literature (Welch [67])), but will
not be considered here. Magnitude squared samples are averaged for each
frequency, and weighted by a constant which depends on the window :
function. The Welch spectrum estimate 1is therefore equivalent to

sampling F/D bank outputs and averaging the samples in each channel to :
determine the power spectral density of the input nolse process. The

Welch method thus obtains a long-time measurement by averaging short-time

measurements,
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In precise terms, the Welch spectrum estimate is given by:

Jwi P jwg

Byx(e ) = (1/PQ) 21 |Ypu-1Ce |2 (D.9)

p=
where

M-1

Q=) [h'(m]2, (D.10)
m=0

Jwk

h'(m) is the DFT window function, Yy(e ) is the sliding DFT given by
Equation D.3, and the data sequence is x(n), OKn<MP-1, It can be seen
from Equation D,6 that the STFT can also be used to compute the Welch

spectrum estimate, as long as the STFT window function is finite length

and the window time-reversal and delay are taken into account.




D.6 NONUNIFORM BANDWIDTH ANALYSIS

Although a critical bandwidth filter bank 1s wuseful for
perception-based speech analysis, such filter banks are not always
readily available 1in the form of existing electronic equipment or
computer programs. The most common type of digital filter bank consists
of many narrow bandpass filters which are uniformly spaced in frequency,
all filters having the same bandwidth. These filter banks are often
implemented by the sliding DFT, since the sliding DFT can be efficiently
computed via the FFT algorithm (see Section D.4). Such filter banks must
be modified for perception-based analysis, allowing the filters to have a
bandwidth which varies with center frequency. Modifications generally
involve combining the outputs of several narrowband filters in order to
simulate a single filter of broader bandwidth, Although such
modifications can be used in dealing with Linear Time-Invariant (LTI)
systems, effects of the nonlinear detection process which follows the

filter bank must also be taken into account.

This section presents several approaches to variable bandwidth
analysis which can be implemented by modifying narrowband filter banks.
Unfortunately, if these approaches achieve the desired result at all,
they do not approach the computational efficiency of the Generalized
Short-Time Fourier Transform (see Appendix C). Nonetheless, since the
approaches presented in this section are commonly used in practice, it is

worthwhile to investigate the problems associated with each method.
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D.6.1 SUMMATION OF FILTER/DETECTOR OUTPUTS

The sliding DFT is often used to implement a bank of many narrow
bandpass filters (Rabiner and Gold [56]}). The DFT magnitude can thus be
interpreted as a time sample of a narrowband F/D bank output. The
narrowband analysis may be broadened as required by adding togethef two
or more F/D outputs, where the filters are adjacent 1in frequency.
Although this approach broadens the steady state sinusoidal response, it
will be shown that all outputs have the same fora of impulse response.
Since it is desirable to have shorter impulse response duration on the
high~frequency wide~bandwidth F/D subsystems, as shown 1in Fig. 2.11,

usefulness of this approach is diminished.

To demonstrate, let wy, and wp be two analysis frequencies of

interest. Define a broadened F/D output as:

Jw Jup
Z1(n) = [Yae |2+ |Yy(e D2 (D.11)

The two sliding DFT components thus implement a pair of narrowband F/D
subsystems which are added together to form a broadened F/D. When the
input i{s an impulse, x(n)=5(n), the broadened F/D output is zl(n)-2h2(n)-
The broadened F/D output thus has the same form of impulse response as

either of the two original narrowband F/D subsystems.
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e, Adding together F/D outputs to decrease frequency resolution fails

to give a corresponding improvement in time resolution. Important
temporal information may be lost due to this "smearing” effect. It can
easily be shown that the same result holds whether the F/D subsystems are
implemented via the sliding DFT or {implemented directly by wusing

individual bandpass filters, memoryless nonlinearities, and lowpass

smoothing filters,




D.6.2 SUMMATION OF FILTER OUTPUTS PRIOR TO DETECTION

Filter broadening 1s commonly accomplished by adding together the

outputs of several adjacent (in frequency) filters prior to the detection

process, Although the desired filter broadening is achieved, it will be

PIN W BRSO W)

*i shown that undesirable components may appear in the impulse response of

the resulting F/D subsystem.

,
P G WO W W)

Consider the impulse response of the directly implemented F/D shown

in Fig. D.4a. When x(n)=§(n) the output is:

z5(n) = 2h2(a)[1 + cos(wawp)nl. (D.12) ]

Tar o
- .o . ‘L ‘.

[ ]

alNLA

Note the presence of a high level beat frequency component, i

St

Beat frequencies are also present when the sliding DFT is modified J

Cant v A 08
’
PR

-

by adding adjacent complex results. Define a broadened F/D output as:

AN Lo

jwa jwp
|Ya(e ) + Yy(e |2 (D.13)

Z3(n)

lllenncimines

jw

Juga J jwa jwb
lY,(e )2 + |Yg(e

b
)2 + 2Re{Yy(e  ¥p(e Y},

where the asterisk denotes complex conjugation. The block diagram for

this subsystem 1is shown in Fig. D.4b, It 1s easily seen that the

bandpass filters have the desired broadened characteristics,
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) 2(n)
INPUT xln | h(n)cos(wyn) 2( )2 hs(n)L———POUTPUT

h(n)cos(wyn) |

(a) Direct Implementation

h(n){coslwa(n-M+l)}+C081wb(ﬂ'M+l)Jﬂ"'( )2

x(n) Z3(n)
INPUT —¢ + OQUTPUT

h(n){sinfw,(n=M+1) [+sinfwy (n=p+1) J }=1( )2

(b) Sliding DFT Implementation .
g
}. Figure D.4: Summation of Filter Outputs Prior to Detection
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o
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To investigate the dynamic characteristics of the subsystem shown in

Fig. D.4b, let x(n)=§(n). The output then becomes:
z3(n) = 202(n){1 + cos[(wawp)(n-M+1)]}. (D.14)

The impulse response of the new broadened F/D subsystem thus contains an

undesirable beat frequency term,

The beat frequency in the sliding DFT becomes more pronounced (ie.,
more beat cycles are evident in the F/D impulse response) when wy-wy is
large. The effect is minimized if two adjacent filters are added. For

addition of two adjacent filters, it follows from Equation D.2 that:
z3(n) = 2h2(n){1 + cos[2n (n+1)/M]}. (D.15)

As a specific example consider a 128-point sliding DFT wusing a

Hamming window; ie., M=128 and

h'(n) «54 = J4bcos[2rn/(M-1)], OKn<M-1

0, otherwise, (D.16)

Since the Hamming window is symmetric it follows from Equation D.4 that

h'(n)=h(n). The impulse response of an original F/D subsystem, h2(n), is
shown in Fig. D.5a. The impulse response of the broadened F/D, as given
by Equation D.15, is shown in Fig. D.5b. In this example of a broadened
F/D subsystem, a single impulse input results in two peaks at the output,

which is generally an undesirable result,
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Figure D.5: F/D Impulse Responses
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As noted by Rabiner and Gold [56], the equivalence between
multiplication in the time domain and convolution in the frequency domain
implies that windowing can be accomplished by a complex weighted
summation of many adjacent (in frequency) values of the sliding DFT. A
carefully chosen combination of weights can be used to modify the
original analysis window, and can reduce or eliminate beat frequency
effects. Thus, although it is possible to broaden filters by this

approach, computational efficiency 1s sacrificed,

D.6.3 SUMMATION OF STFT COMPONENTS PRIOR TO MAGNITUDE

STFT results are lowpass functions, and are unlike the bandpass
results produced by the sliding DFT. Thus, no beat frequencies will
occur when adjacent (in frequency) complex STFT results are added and the
magnitude squared is computed. Let the broadened STFT analysis be given
by:

Jwa Jjwp
Z4(n) = |X(e ) + X (e )2, (D.17)

where w, and wy are two STFT frequencies of interest. The subsystem block
diagram 1is shown in Fig., D.6, When the input is an impulse at time m,

x(n)=f (n-m), the output is:
24(n) = 2[1 + cos(wvp)mlhZ(n-m). (D.18)

Thus the subsystem has a time-varying impulse response, which is clearly

an undesirable result,
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Figure D.6: Summation of STFT Components Prior to Magnitude
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D.7 CONCLUSION

In this appendix, the new relationship between STFT magnitude

squared and F/D subsystems was used to describe the characteristics of

several speech analysis and synthesis systems, The relationship provides

a common basis for understanding the operation of many systems, and can

be used to indicate similarities and differences between various systems.
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