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NOMENCLATURE

crack length

critical crack length

crack tip bluntness parameter

critical crack tip bluntness parameter

locus of ellipse and hyperbola in curvilinear
coordinates

composite beam stiftness matrix
Young's modulus

dynamic storage modulus

tangent modulus

frequency

fracture toughness

stress intensity factor

stress intensity amplitude

exponent of stress intensity amplitude in Paris
crack growth equation

cycles

cycles to crack nucleation

random yielding probability distribution
function

local entropy gain

local entropy rate
activation energy

local strain energy density

laminate stiffness matrix
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L strain
"5 plastic part of strain
. £, strain in curvilinear coordinates

Aip plastic strain range

g dynamic strain amplitude

Y frequency exponent describing frequency
dependence of elastic loss factor

Mo elastic part of loss factor

Ny reference elastic loss factor

ﬂp plastic part of loss factor

Ng total frequency-and amplitude-dependent loss
factor

O critical remote stress

Smax maximum stress on an elliptical hole

% standard deviation of random yielding

o, applied remote stress

9 dynamic stress amplitude

Yo phase between stress and strain from elastic
loss factor

®p phasc between stress and strain from plastic
loss factor

# 9 temperature
8 v hyperbola parameter in curvilinear coordinates

ellipse parameter in curvilinear coordinates
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SUMMARY OF IMPORTANT RESULTS AND CONCLUSIONS

A local analysis of the crack growth problem is described
in this report. A microstructure model of spring-mass-friction
microelements is described such  that the behavior of
dislocation populations is quantified by random yielding. The
probability distribution function describing the frictional
slip between microelements is used to define the local strain
energy density. Using a log-normal probability distribution
function for the vyielding between microelements, a local
necessary and sufficient condition for unstable crack growth is
derived which 1is consistent with linear elastic fracture
mechanics. This is in contrast to the classical Griffith
criterion which is only a necessary condition. In addition,
the Griffith criterion holds for small scale yielding while the
local random yielding analysis applies to every deformation.
The familiar sigmoidal shape of the crack growth rate versus
stress intensity amplitude is produced, as well as the
increased crack growth rate of small cracks where plastic
deformation 1is significant, A threshold stress intensity
factor is defined theoretically, and the growth of small cracks
can be investigated directly. Also, crack growth dependence on
stress history is demonstrated, as well as crack growth under
mean stress. Since the local random yielding mathematical
model of crack growth reproduces the well known fracture and
crack growth relationships for metals, its credibility for
studies of c¢rack <closure and retardation, resonance, and
spectrum loading is validated. Its value as a mathematical

model of fatigue damage and fracture should be exploited.
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- The local random yielding model provides a relationship
- between microstructure distributions and fracture mechanics.
Since the local random yielding provides a quanitative estimate
of the plastic strain, it also supplies a theory of plasticity
for fracture mechanics. 1In addition, since plastic deformation
involves changes of the plastic strain energy density the
tV local random yielding modei can be expressed in terms of
.,

irreversible thermodynamics: plastic deformation is

ﬁl accompanied by an irreversible entropy gain which can be
{ defined in such a way as to reduce the second law of
} thermodynamics to an equality. The necessary and sufficient
{ condition for unstable crack growth corresponds to a constant
plastic work for a given material, which for isothermal
processes 1s also a constant irreversible entropy gain.

a‘ Therefore, the local random yielding model for local crack

growth provides a common link between irreversible

thermodynamics, microstructure theory, fracture mechanics, and
plasticity theory. On the basis of these observations, it is
postulated that the local irreversible entropy gain at crack

extension 1is a material constant which quantifies fatigue

damage and crack growth, This critical local irreversible

entropy gain is called the critical entropy threshold and

Ve o
L

represents the toughness of a material; that is, the amount of

-. irreversible damage a material can withstand before molecular
L

. bonds break.
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BACKGROUND AND LITERATURE SURVFEY

Fatique damage is a serious threat to structural
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durability. Structures designed for static strength

requirements can fail unexpectedly and catastrophically when

TV T T Y v e, ..

subjected to pneriodic loading. Although the precise mechanism

of strength degradation during fatigue is the subiect of

———

significant research efforts, substantial progress has been

! made in evaluating the effect of cyclic loading on structural
durability. Miner[l] was one of the first ones to quantify

fatigue when he summarized constant-amplitude fatiqgue data by

Ty T

the empirical relationship between the stress amplitude and
cycles required for failure. He hypothesized that under
b variable amplitude loading, the life fractions of the
individual amplitudes sum to unity. Although this hypothesis
is inaccurate since loading history is important, Miner sums
are still used in some applications.

1 Many other researchers have 1investigated the various
aspects of fatigue damage since Miner's work was published.
Manson[2] related the material mechanical properties to the
particular form of the S-N diagram with some success.

Conc.irrent with Manson's research, Coffin[3] investigated

Ty e

fatigue for wvarious strain levels of excitation and the
Manson-Coffin relationship was developed. Tavernelli and
Cnffin[4] described an analysis of fatique life for metals

under high amplitude cyclic excitation, providing acceptable

agreement to data. More recently, emphasis has shifted into
two areas: First, since no fracture would be expected without
cracking, fracture mechanics analysis fills an important role

in fatigue Llife prediction., Second, structures excited by
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cyclic loading sometimes respond in resonance which is strongly
influenced by the material damping. The relationship between
material damping and fatigue damage has become a very important
area of research.

Mason[5] was one of the earliest investigators to relate

damping data to the prediction of fatigue lifetime. His

. experimental apparatus was capable of generating very high

strain amplitudes, and he related measurements of internal

}
Fl friction to the fatigue lifetime in metals. This was a logical
t approach since Granato and Lucke[6] had already developed a

model for internal friction based on dislocation theory. This

investigation of the relationship between internal friction and

of "

fatigue related the energy dissipated during forced vibration

YT

to breaking of molecular bonds in dislocation migration leading
to crack formation, Feltner and Morrow[7] wused this
interpretation as the basis for a hypothesis that microplastic
hysteresis energy is a constant at fatigue failure. Although
they were able to achieve acceptable correlation with fatigue

data for steel by selecting parameters for the Manson-Coffin

s O I

E;i relationship, Martin([8] later showed that microplastic strain
:‘ energy dissipated is not constant at fatigue failure, but
E' suggested that it increases with fatigue lifetime in a
ii predictable manner.
;. The energy transfer due to material damping during fatigue
ﬁf and fracture is a fundamental irreversible thermodynamic
Lf process. Perhaps one reason why the previous energy
FA. relationships in fatigue have not met with general success 1is
that the theory of irreversible thermodynamics was absent from
the early analysis. In order to cvrovide a comprehensive
.
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analysis of the energy transfer during fatigue, the theory of
irreversible, non-equilibrium, nonlinear thermodynamics must be
addressed. The microplastic hysteresis energy is related to
dislocation theory, which is directly related to plasticity
theory, and both are related to fracture mechanics. The
remainder of this introductory section will be devoted to
surveying the 1literature in these four main areas related to
fatigue damage: (1) irreversible thermodynamics, (2) fracture

mechanics, (3) dislocation theory (4) plasticity theory.

Irreversible Thermodynamics

The area of irreversible thermodynamics 1is generally
recognized to be very important in the analysis of material
fatigue and fracture. 1In the case of fatigue, damage occurs as
a result of local accumulations of plastic strain energy.
Since plastic deformation is irreversible, it must Dbe
accompanied by some irreversible entropy gain. 1In the case of
fracture, linear elastic fracture mechanics is based on the
analysis of energy released as a crack extends. There have
been some recent advances of plasticity theory based on
irreversible thermodynamics which can be used to quantify the
memory of plastic deformation,

For any irreversible thermodynamic process, the theory of
classical thermodynamics (including the Gibbs and Helmholtz
equations) must be applied very carefully. One very important
limitation of classical thermodynamics is that equilibrium is
implied. By definition, irreversible processes are
non-equilibrium in nature, and it 1is necessary to define

smaller intervals of time where changes occur slowly enough so

-
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that each small interval can be approximated by equilibrium.
In a recent survey, Germain, et.al.[9] summarized two current
views of irreversible thermodynamics. One view, rational
thermodynamics, asserts that introduction of thermodynamic
concepts into moving, continuous media requires a complete
rethinking and reformulation of classical thermodynamics. A
second view holds to the approximate validity of classical
thermodynamics near equilibrium for processes which change
slowly. It is necessary to consider which thermodynamic
variables are well defined and useful in non-equilibrium,
irreversible thermodynamic processes, and which variables
should be redefined. Reference [9]) 1is a discussion of these
considerations and provides valuable insight for the
irreversible, non-equilibrium thermodynamic analysis of fatigue
and fracture.

The first and second laws of thermodynamics define the
energy balance and entropy function in classical
thermodynamics. The energy balance is generally based on the
energy equivalence of work and heat, while the entropy function
can be interpreted in a number of ways, depending on the
application. For closed reversible processes where the
beginning and end points are the same the net entropy gain is
zero. For open reversible processes where the beginning and
end points are not the same, the entropy gain is not zero but
is well defined by the second law of thermodynamics as a
function of the heat flux. In this case, the second law of
thermodynamics defines the permissible steady-state flow of
enerqgy. In the case of open irreversible processes, the

reversible entropy forms a lower bound and the second law of
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thermodynamics becomes a statement of accessibility. For

(93]
LS | ) AR

irreversible processes, the second law can be characterized in

terms of entropy as follows: the entropy function exists and
in the absence of internal constraints, the equilibrium state
is that state which maximizes the entropyl[l10). Irreversibility

is also sometimes quantified by the Caratheodory conjecture:

L e Y

in the vicinity of an equilibrium state of a system there exist
other states which cannot be reached quasistatically by

reversible and adiabatic processes|[10]), [11], [12). The

T

Clausius~-Duhem inequality defined in Reference [12] can be
reduced to an equality by introducing the irreversible entropy

as in References [13], [14] and [15].

N T

Considering the assumed energy equivalence of heat and

oy v“ v

work implicit in the first law of thermodynamics, the

irreversible entropy term can be defined in different ways.
For example, in the case of viscoelasticity mechanical energy
is dissipated and so is lost in terms of available useful
enerqgy. However, under steady-state vibration, the
viscoelastic solid continues to dissipate energy and undergoes
heating. As long as no permanent deformation occurs in the
material the heat gained by the solid in the temperature
increase is not an irreversible loss, since heat and work are
equivalent forms of energy. Granted, such low-qrade heat is of

little practical value, bhut whether or not the process is

considered to be irreversible depends on the purpose of the
analysis and the definition of the entropy function.
It is widely accepted that the vast majority of dissipated

energy in vibrating solids is converted to heat and stored in

R SO

L

the temperature rise of the solid. FEven though this low-grade

oy
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heat is lost in the sense that it can never be converted back
into useful work, it does no damage as long as the material
experiences no permanent deformation. For the purpose of
quantifying fatigue damage, only the entropy gain contributed
by the plastic deformation would be irreversible,

The methods of irreversible thermodynamics are fundamental
to the analysis of fracture. First, the energy release rate
during crack extension implicitly involves irreversible
thermodynamics [16]. Second, the contribution of plastic
strain energy to the phenomenon of fracture is related to the
entropy gain [17]. References [18] and [19}] describe
thermodynamic relationships for creep damage and involve both
the theory of fracture mechanics and the analysis of plastic
strain. Burke and Cozzarellill8] used a quantity called the
continuity which represents the reduced load-carrying area
during creep to define a damage state resulting from plastic
deformation. McCartney[19] applied a continuum energy balance
to creep, investigating linear and nonlinear fracture.

Irreversible thermodynamics is common in recent fracture
mechanics publications. For materials with high ductility
where small scale vyielding does not apply, irreversible
thermodynamics is needed to investigate the plastic strain
energy near the crack tip. The literature concerning fracture

mechanics is discussed in the next section.

Fracture Mechanics

Fracture mechanics deals with stress-strain relations near
a crack tip in cracked solids in an effort to predict crack

rsrowth and failure. This theory has its origin in the early
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werk of Griffith{l6]) who formulated a fracture criterion for

brittle materials. Using a stress analysis by Inglis[20], the

energy per unit thickness of an infinite plate before and after
the appearance of an infinitely thin elliptical crack was
defined by the relationship between the stress far away from

the crack and the stress at the crack tip. For brittle

materials the theory is a linear one involving the strain
energy release during fracture. Later Irwin[2]1] and Orowan[22]
extended this approach to more ductile materials where
plasticity effects can become significant.

Most current research is directed towards large scale
vielding where crack tip plasticity effects are significant so
that linear theory is overly conservative, It is necessary to
review the fundamental philosophy behind the theory of fracture
mechanics. Two main schools of thought dominate. First, the
energy release rate defined by Griffith{16] reduces the
fracture phenomenon to a global energy balance. Second, the
stress intensity factor is used to characterize the crack tip
stress in terms of the remote stress. For linear systems the
energy release rate and the stress intensity factor are
uniquely related and are equivalent. When plastic deformation
is significant, it is common to use the path-independent
contour integral defined by Rice[23)] to investigate those
relationships. Again, for linear systems this J-integral of
Rice[23) is equivalent to the strain energy release rate
defined by Irwin(21]. For all fracture mechanics approaches,
the stress is considered to be singular at the crack tip for

linear systems[24], (25}, [26].
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Thermodynamics has been established as an inteqral part of
fracture mechanics and several papers have examined those ;
thermodynamic foundations [27], [28]. The global energy ?
balance represents a convenient mathematical tool for analysis
of the singular terms at the crack tip. Gurtin[27] showed that

provided the initial temperature 1is continuous at the crack

el i

tip, the Griffith fracture criterion is a necessary condition ]

pr

for crack initiation. Rice[28] related the elastic strain

energy release rate developed by Irwin to the rate of entropy

e B i oo

production at the crack tip. The difference between the Irwin
strain energy release rate and the Griffith surface traction
energy was defined as a thermodynamic force driving crack

extension. Using the first and second laws of thermodynamics, ’
the irreversible entropy (also called the entropy production) :
was shown to be proportional to the thermodynamic force. This i
entropy production can also be defined for irreversible :

thermodynamic processes in such a way as to reduce the

Clausius-Duhem inequality to equality; the entropy production
is zero when the process is reversible.
In a technical note Bodner, et.al.[29] suggested that a

similar relationship holds for the crack propagation

g relationship under cyclic loading. Izumi, et.al{30] attempted
E; to derive a plastic work relationship in the form of the Paris
L. crack growth law. Badaliance([31) defined crack propagation
rate in terms of the strain enerqgy density range, which is
related to the Paris crack growth law for linear elastic
q systems by the relationship between stress intensity factor and

strain energy release rate.
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When plastic deformation at a crack tip is significant
then linear elastic fracture mechanics does not apply.
Weertman[32] approached the case of large-scale yielding by
assuming that the material very close to a crack tip is
approximately elastic, and defining a true stress intensity
factor using the J-Integral. Batte, et.al.[33] provide a
discussion of various approaches to post-yield conditions,
outlining limitations of each of a variety of contour-integral
procedures. Chudnovskii, et.al.[34] have developed a number of
different path-independent contour integrals based on
irreversible thermodynamics which relate the entropy production
density to the stress singularity at a crack tip. Similarly,
Aoki, et.al.[35] approached elastic-plastic fracture problems
by the energy release rates associated with plastic deformation
near a crack tip. Path-independent contour integrals were used
to analyze the energy release rates associated with the
translation, rotation, self-similar expansion and distortion of
the fracture process region.

Weichert and Schonert[36] have made an important
contribution to the thermodynamics of <crack growth by
investigating the heat generated at the tip of a growing crack.
They report substantial temperature increase near a crack tip,
providing support for the common assumption that most of the
energy dissipated during crack growth is converted to heat.
Considering the equivalence of heat and work assured by the
first law of thermodynamics, their work raises question as to
the source of the irreversible entropy (entropy production, or
excess entropy). Perhaps a more precise form for the

irreversible entropy durina crack growth would be a function of
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the plastic deformation, rather than the more qgeneral
dissipation function which includes the effect of plastic as
well as elastic deformation.

It is clear that fracture mechanics involves principles of
irreversible thermodynamics.' The Griffith fracture criterion
and the path-independent contour integrals are enerqgy
relationships, as 1is the strain energy density function for
crack propagation, However, fracture mechanics 1Is based oun

empirical relationships prompting some researchers to examine

the micromechanical structure of materials in an attempt to
provide the theoretical basis for fracture. There have been
advances in dislocation theory providing qualitative insight
.- into the phenomena of fatigue and fracture, The next section

- will summarize some of the literature related to dislocation

theory.
b
b
[ Dislocation Theory
-
EE, While it is widely accepted that fracture cannot occur
: without cracking, the precise source of the crack nucleation is
; not well defined; a fundamental assumption of fracture
]
L‘ mechanics is that flaws are always present. Fracture mechanics

theories formulated on the basis of continuum mathematical

H}' models are based on homogeneous media, while dislocations are
Y known to exist on the microscopic level. Consequently, it is
.

¥ important to re-examine fundamental assumptions. In

thermodynamics, the scale of the analysis is very important
'@ since on a microscopic scale most solids are highly
heterogeneous due to dislocation distributions, and would

require a statistical thermodynamic analysis. However, for




most materials it is reasonable to assume that on a macroscopic
scale an equivalent homogeneous continuum model can be defined
[9]. The well developed principles of deterministic continuum
thermodynamics can then be applied using this equivalent
homogeneous model,

The quantitative relationship between micromechanics and
fracture mechanics is limited. Ghonem and Provan({37] have
described a probabilistic micromechanics theory of fatigue
crack nucleation, crack initiation, and crack propagation.
Crack motion is defined in terms of a Markovian stochastic
process defining the probability distribution of fatigue.
Three domains have been defined in this approach, in contrast
to the traditional microscopic and macroscopic views. A
microelement is defined as the basic unit of the material
system, corresponding roughly to the microscopic scale. The
mesodomain consists of an intermediate region considered to be
spatially homogeneous, but containing a statistically large
number of microelements. Finally, a macrodomain is defined as
the entire material system. A macroscopic scale would be
somewhere between a mesodomain and a macrodomain.
References[37] and ([38] are important since the analysis of
stochastic processes in micromechanics is addressed.

Thermodynamic relationships 1involving dislocations are
described in References [39], [40], [41], and [42]. Majumdar
and Burns[39) used the microscopic scale of dislocations in an
analysis of plasticity near a crack tip. They derived stress
intensity factors from dislocation distributions. Hirth,
et.al.(40] interpreted path-independent contour integrals as

virtual thermodynamic forces representing the variation of the

11
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free energy of a system with moving defects. Kelly and
Gillis[41] analyzed dislocation populations to derive plastic
strain rate, since plastic deformation arises from movement and
generation of dislocations. Finally, Khannanov{42] wused
irreversible thermodynamics to characterize plasticit, in creep
deformation.

Tanaka and Mura(43] calculated strain energy density using
a dislocation distribution giving the energy required for crack

initiation. A hysteresis 1loop was defined and a fatigue

relationship consistent with the Manson-Coffin equation was
derived. Good qualitative agreement to data was described, but
the generalization to fracture mechanics relationships was not #
provided. Although good agreement to experimental stress ]
intensity factors was reported, the micromechanics does not ]
permit generalization to fracture mechanics parameters at '
present.

The last area in this literature survey is the area of
plasticity theory. The plastic strain energy is directly

related to irreversible thermodynamics and is an important

L

.

consideration in fracture mechanics. Plastic strain has also 4

.-

been quantified by accumulations of dislocation pileups. i
Therefore, it is necessary to consider plasticity theory as it :

ft relates to irreversible thermodynamics, fracture mechanics, and

:; dislocation theory.

b

ff Plasticity Theory

; Plastic deformation is directly related to the

) irreversible thermodynamics since irreversible processes are

' always accompanied by a non-negative entropy production.

¢
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Likewise, plastic deformation is a fundamental part of the
theory of fracture mechanics since for most structural
materials the high local stresses near a crack tip have a
significant plastic contribution. Finally, plastic deformation
is an important part of the analysis of micromechanics since
mnovement of dislocation populations can be related to plastic
deformation(44].

Reference [45] describes variational principles in
plasticity and elasticity, defining wunique properties of
plastic deformation which complicate the analysis. First,
plasticity is inherently a nonlinear theory. Second, while
elastic processes usually involve well-defined mathematical
functions, in many cases the plastic deformation is dependent
on the loading history. This means that stress is not a unique
function of strain, but also dependent on the memory of plastic
deformation. Finally, although stress is a function of strain
in elasticity theory, when plastic deformation is considered
strain rate must also be included, as in the flow theory of
plasticity.

Although some metallurgists include the phenomenon of
anelasticity in the class of nonlinear processes, a simple
example from dynamic systems theory provides an alternative
interpretation. When a dynamic force is applied to a spring,
the resulting deformation will be in phase with the applied
load, When a linear dashpot is included in series with the
spring, the resulting deformation will lag the applied load.
This lag results in an instantaneous phase shift between force

and deformation which renders them non-proportional at that

instant. However, the process is linear, and the phenomenon of
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anelasticity is an analogous phase shift between stress and
strain at low strain levels. This phase shift is a function of

the frequency of the applied load, and wunder sustained
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steady-state loading results in dissipation of energy, giving

rise to a heat flux. However, this anelasticity is linear and

.
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does not involve plastic deformation.

Lt
i

One very simple physical model by Whiteman[46] views

'

plastic deformation as the random frictional slip between
microscopic yielding elements. This model can be used to
define a local quasi-static stress-strain relationship and a

hysteresis loop under cyclic loading. In most analytical

. TR
ﬁ o

approaches, plastic deformation is assumed to occur when the

applied stress exceeds the yield stress., This yield stress is

|
[ ]

usually defined by the permanent offset experienced from a
certain applied load, but the phenomenon of yield is not a
discrete occurrance. The traditional definition of a yield
surface, or plastic zone near a crack tip, assumes yield to be
a discrete process. Below the yield stress the response is
totally elastic, and above the yield stress the response is
suddenly plastic. The random yielding model by Whiteman[46]
P mentioned above predicts a gradual increase in plastic
deformation with increased strain. Since this approach 1is

described in detail in the next section no further elaboration

'. is warranted here, except to note that this simple local random
!

f

d yielding model has a theoretical basis in dislocation theory
3 and provides valuable insight into fracture mechanics.

'. Valanis[47] has also derived a theory of plasticity
: withonut defining yielding as a discrete process. In his
:f. approach, the principles of irreversible thermodynamics are the
)

®
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basis for a theory of plasticity based on the concept of
intrinsic time. This intrinsic time is a function of the
plastic strain increment and is assumed to he a mcasure of
damage. Valanis[48) calls this theory of plasticity
endochronic, since the intrinsic time is used to predict
structural durability. This approach provides qgood agreement
to strength data, and can be used to define a hysteresis loop
and fatigue damage. The  foundations in irreversible
thermodynamics lends a rigorous mathematical interpretation to
this approach.

Reference [14} describes another approach to plasticity
based on the pfinciples of irreversible thermodynamics,
including a brief review of various theories of plasticity.
Although a discrete yield state is assumed, the second law of
thermodynamics is expressed by the f _ausius-Duhem inequality.
The relationship between the entropy state and heat flux Iis
stated in terms of an inequality relationship, where equality
corresponds to a reversible process. The inequality holds when
the process 1is reversible, but can be reduced to an equality
using the entropy production ({irreversible entropy).
Plasticity 1is described wusing this irreversible entropy
contribution, and memory and combined work-hardening are
described.

One final plasticity analysis warrants discussion here
since it involves dislocation theory [49]. The plastic stress
field near the crack tip is modeled by dislocation pileups on
slip planes oriented along symmetric lines branching out from
the crack tio. These dislocations distributions are used in

the analysis of small-scale yielding, prediction of crack
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opening displacements, and fatique crack growth. The residual
plasticity of prior cycles is analyzed, and a theonry of crack
closure is proposed.

It has been demonstrated that the analysis of fatigue and
fracture phenomena 1is interdisciplinary, involving numerous
related mechanisms. This report describes a fundamental
approach to structural durability which is consistent with the
principles of irreversible thermodynamics, fracture mechanics,
dislocation theory, and plastic deformation. A theoretical
basis for fatigue crack nucleation, initiation, and propagation
is proposed, as well as fatigue crack growth under periodic
loading. In the sections to follow, a local analysis of crack
tip stresses and strains is described. An alternate form of
the Griffith energy relationship is proposed in terms of strain
energy density at the crack tip. The classical singular form
of the linear stress is shown to hold for the strain, but the
local stress is always finite. A hysteresis model is described
which leads to crack growth identical in form to the Paris law.
Therefore, a theoretical basis for the largely empirical Paris
relationship 1is provided. Finally, a theoretical basis for

crack growth under combined loading includinag resonance 1is

demonstrated.




. I B ar g
'

I —— —
. . e
. - RN

—— ,,:—1[ b o o am o

‘

crizical crack size and crack growth rate arc Investigated.
The stress near the tip of a qgrowing crack is kxnown to Dbe
nrders of magnitude larger than the remokbte stress n many
cases. According to the theory of linear elastic fracture
mechanics, the stress at the tip of a sharp crack is
singulari{s0!. A more precise estimate of the stress magnitude
requires  some  consideration of crack blunting due to
plasticity, but qualitative understanding can be gained through
nreliminary analysis of the linear stress concentration factor.
For an infinite thin sheet containing an elliptical hole
subjected to a uniform remote stress, the maximum stress on the

edge of the hole is [50]:

1,

c = ¢ [1 + 2
r

a
max b

where b/a is the ratio of the ellipse minor and major axes and

represents a quanitative measure of crack sharpness. For a

circular hole, Omax = 3°r' As b/a apnroaches zero the crack
m:

hecomas infinitely sharp and o approaches infinity. The

max

mathematical nmodel for local random yielding 1s based on the

analysis by Whiteman 44! and lends insight into local yielding

at a crack tip due to such large stresgses. The basic element
of the model is a block with a linear sprint resting on a rough
surface, shown in Figure la. When load is applied to the

spring, the frictional force counteracts the anplied load and
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Fig. 1. Spring-Mass-Friction Infinitesemal Model for Local Random Yielding.
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F an elastic relationship exists until the maximum friction force

ti is exceeded. Higher forces result in unlimited displacement

j giving perfectly plastic deformation. Now consider a

‘ statistically significant ensemble of such elastic-perfectly
plastic elements interconnected as shown in Figure 1lb, with the

n yield points randomly distributed. The percentage of elements

- yielding at a particular applied strain is characterized by the

probability distribution function, P(e), in Figure lc. For
( small strains, very little yielding occurs and the response is
[ elastic. For high strains, yielding occurs and the response
includes plastic deformation. Whiteman[46] proposed a
( log-normal distribution for the plastic strain based on tangent

modulus data in aluminum, When the mean log strain is zero,

P ———

the mean plastic strain is unity. Thus, even though the total

strain may approach infinity consistent with fracture mechanics
theory, the plastic strain is finite and therefore the stress

is finite. Prager(51) has also used this model as the basis

; for elastic-plastic stress-strain relations, although he
apparently was not aware of the work by Whiteman. The
probability distribution function 1is integrated for positive

‘ strain values only since the log function is undefined for
negative arguments, and as the strain approaches zero, the log
strain approaches negative infinity. Then the mean log plastic

' strain 1is zero, corresponding to unity plastic strain.
Therefore, the stress is finite although the local strain may
approach infinity. The 1log variance is o,r which physically

{ represents the amount of scatter in the plastic strain at

fracture.
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Consider the local yielding due to an incremental strain
:5 de resulting in an incremental stress do. The elastic strain
originates from those elements which have never yielded:

€

de_ = de[l - [ P(n)dn]
e (o]

The plastic strain comes from those elements that have yielded:

- dgp = eP(¢g)de

g' Since the total strain is the sum of the elastic and plastic
contributions, it is possible to calculate the stress:

do = E(die + dep)

16' Whiteman[46] derived the following equation for the local
f' stress-strain relationship in the presence of random yielding

= based on these concepts:

> £
o = Ee[1-/P(n)dn] + E/nP(n)dn. (2)
(o} o

Eguation (2) represents the mean stress and is plotted in
Figure 2, along with the total strain energy. Figure 2 shows
that the local strain energy density reaches a peak at some
high strain level where the stress begins to decrease rapidly
because of plasticity. These relationships are to be analyzed
in more detail later, but the phenomenon of cracking 1is

described first.

Stresses and Strains Near A Crack Tip

} Inglis[20] solved for the stress-strain field near an
| elliptical hole. This stress analysis by Inglis formed the

o basis for Griffith's analysis of strain energy release rate.
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Fig. 2. Local Stress-Strain Relationship and Strain Energy Density from Local
Random Yielding for High Strains Corresponding to Large Scale Yielding.




Curvilinear conrdinates were used to define a family of

ellipses intersecting with a family of hyperbolas as shown in
Figure 3. The hyperbolas alwavs ‘ntersect the ellipses at right
angles providing a convenient way *“0o characterize stresses and
strains around an ellintical hole'52!', Using the displacement
field given in Reference[53!, “he displacement gradient at the

surface of the hole is:

J C (cosh2%4 + cosh2f% - cos2v)
E;lf = sinh2¢g 0 (3)
B E (cosh2¢ - cos2v)?

In equation (3), o, is the applied stress far away from the
hole, and 50 is the curvilinear coordinate defining the hole
surface. When £ approaches zero, the Griffith crack 1is
defined.

The maximum stress always occurs at the ends of the major
axes of the elliptical hole [521, so for purposes of this
analysis of crack tip stress and strain, v = 0. The strain
then increases as the distance to the hole 1is decreased,
consistent with linear elastic fracture mechanics; for elastic

deformation, crack tip stresses are singular according to the

inverse square root of the distance to the crack tip.
] Combining the stress function given by equation (2) with the
displacement gradient given by equation (3), the stress and

strain are plotted against distance from the crack tip in

L. Figure R, Although for the local random yielding model the
t strain is sinqular at the crack tip for an infinitely sharp
ﬁ:. crack, the stress 1is always finite. For blunt cracks
|

@ corresponding to large b/a, the crack tip strain and stress

gure 3.

e

.. decrease as shown in F
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A Local Criterion for Crack Extension

The Griffith criterion for crack growth is that the strain
energy release rate during crack extension bhalances the
decrease of surface traction [21]. Figure 2 includes a plot of
the local strain energy density and reveals a peak at high
strains. This peak corresponds to the maximum local strain
energy density without local unstable crack growth, since
higher strains cause a decrease of strain energy density, an
unstable condition. Therefore the local random yielding model
includes a criterion for local stébility. The maximum stable
strain is calculated by setting the derivative of the crack tip

strain energy density to zero:
éﬂ|
de' t

Note the distinction between equation (4) and the Griffith
Criterion. Equation (4) is a local condition resulting from
random yielding. The stability is characterized by taking the

second derivative:

2214 > 0, local minimum
— ¢ = 0, inflection point (5)
de? < 0, local maximum.

The condition that the derivative is zero and the second
derivative is negative therefore represents a necessary and
sufficient condition for local crack extension. This 1local
relationship supplements the Griffith criterion, which has been
demonstrated to be a necessary condition [13]. Note that a
local crack growth does not necessarily imply global

catastrophic fracture.
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In Figure 4, the above necessary and sufficient conditions
are used to predict fracture as a function of crack length
compared with linear elastic fracture mechanics. Figure 4
includes different values for b/a, which represents the
sharpness of the crack. For small b/a, the crack is very
sharp, corresponding to a very brittle material. Recall that
for the Griffith crack b/a = 0, and the crack tip strain 1is
infinite. For large values of b/a, the crack is blunt because

nof yielding at the crack tip. 1If the crack tip is sharp enough

the maximum strain energy density occurs away from the crack
tip, and the unstable crack will grow and the crack will blunt

until the minimum stable length is reached. 1If the crack tip

. .19

is blunt enough, the local maximum strain energy density 1is
never reached and that particular crack length and remote

stress are stable. Figure 4 shows the combinations of remote

. WD

stress and crack length where the maximum local strain energy

density occurs at the crack tip. Note that some particular

critical value of b/a provides consistent agreement with linear
elastic fracture mechanics, while others indicate more or less
crack tip plasticity.

The result summarized in Figures 3 and 4 is consistent
with the principles of irreversible thermodynamics. The
principle of maximum entropy production states that the stable

equilibrium condition is one for which the entropy production

E is maximized[11]. The entropy gain during quasi~-static

P fracture can be calculated from the plastic part of the strain:

E' S, = it de /6 (6)
Seg = o] p/

b
b 9
3
b
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The principle of maximum entropy production 1is therefore
equivalent to the above stability criterion for isothermal,
quasi-static fracture. The peak in the strain energy density
curve occurs at some high strain,:_, which is constant for a
particular material. Furthermore, the entropy gain for the
quasi-static fracture under isothermal conditions is a
constant.

Reference[30] describes an energy balance during fatigue
crack growth. The assumption is offered that if a propagating
crack 1s stable, then the crack extension may be close to a
reversible one. This assumption appears at first to be
contradictory since crack growth is an irreversible
thermodynamic process and therefore must be accompanied by an
entropy gain, but when the relative values of the energy terms
are considered the contradiction is resolved. Certainly crack
extension is irreversible, but the primary energy transfer can
be approximated by the local energy release at the crack tip
and the corresponding decrease 1in strain energy of the
material. Reference{36] has verified that there is a high
concentration of energy transfer at a <c¢rack tip through
measurements of very high local temperatures at the crack tip.

The mathematical model for crack tip plasticity has been
demonstrated to provide results consistent with linear elastic
fracture mechanics. Figure 4 demonstrates that for some value
of b/a, the necessary and sufficient conditions for local crack
growth given by equations (4) and (5) agree with the fracture
toughness predicted by linear elastic fracture mechanics.

However, Fiqure 4 shows that h/a would be variable, since crack

blunting due to plasticity at tha Li+ roetards crack qrowth.

27
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The next section quantifies the crack tip bluntness function

during quasi-static, isothermal fracture.

Fracture Toughness and Crack Blunting

The Griffith criterion was originally developed for
brittle materials and sharp cracks, giving erroneous results
for ductila materials and blunt cracks([21]. It is well-known
that crack tip plasticity has the effect of blunting the crack
and retarding crack growth(21l]. .This mathematical model for
local yielding can be utilized to quantify that blunting
relationship. Figure 4 has established that constant crack
bluntness, b/a, gives a curve which intersects the critical
stress curve at some crack length. Furthermore, Figure 4
demonstrates that as the remote stress increases and the

critical crack length decreases, the crack tip becomes sharper

since b/a decreases. It is therefore possible to solve for the
crack tip bluntness as a function of crack length which
corresponds to the fracture toughness shown in Figure 4.
Figure 5 is a plot of the critical value of crack tip
bluntness, b/alc, required to make equations (4) and (5)
predict 1local unstable fracture 1in agreement with linear
elastic fracture mechanics for various different values of
fracture toughness. The functional relationship between

critical crack sharpness, critical crack length, and fracture

toughness based on Figure 5 is:

_ 0.5 0,25
afc—cb (K.] a ' (7)
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Figure 5 provides qualitative insight into the mechanism
nf crack extension. For sharp cracks, the crack tip yielding
is less stable and cracks are more likely to grow. For blunt
cracks, yielding at the crack tip is diminished since

oW

— >0

de
and the crack extension is stable. That is why large transient
overloads retard crack growth; there is a local increase in
crack tip plasticity causing the crack to be blunted and
increasing b/a. The influence of low-level cyclic loading
appears to be one of sharpening the crack: that is, decreasing
b/a until the crack tip is sharp enough for unstable crack
growth.

The relationship between crack blunting and critical crack
length includes two physical processes: first, the fracture
toughness is a material constant which <characterizes the
ductility of the material. Second, the loading history affects

crack bluntness as the material remembers large transient

overloads. The constant C0 contained in equation (7) would be
3 determined on the basis of fracture toughness data as shown in
o Figure 5. The standard deviation of random plastic strain, o

is the other parameter to be determined from data. Whiteman

[46] used tangent modulus data to model the random yielding as

log-normal. A new mathematical model for material damping can
also be used to determine ¢, and forms the basis of the
analysis of fatigue and fracture during cyclic loading. This

new material damping model is described in the next section.
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INTERNATL FRICTION BASED ON LOCAL RANDOM YIELDING

PR 1! gV SN

: Tne mathematical model for loca’ random yielding has been -

P

arp

led to cyclic loading, res:’&’ny ‘n an equation for the
hysteresis Ionoo Zor high stvaing which includes a significant
nlastic contribuslonfas) Iin Reforence’ 547, the anelasticity

-

ain levels is i1ncluded witn Whiteman's analysis and

~f low str
narameters for  loua-normal plaz:iic strain distribution are
colected “or aluminum, For low strain amplitudes with nro
crasking raed g oveemant to fatigue  Jata  1s  presented by
e i oeal “atlure as "h2 exceeding of a critical

e ale entvany threshold of fraciure. In this section

< thears la oxtended to the cvack problem by considering

cars T oor e ghn v some large static strain.
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' Hysteresis Zamoins from Dynamic Plastic Strain
p

fonaidar leadin: up to some strain e, in Figure 6a. Those

Temantg which have ylelded mnnse a ¢ompressive stress on

iigeent elements anon unloading and no more yielding would

taxe olace unt i’ “, s subs—quently exceeded. This property of
the model defines the memory ¢ the nlastic deformation. The

arobanility structure is changed by the yielding and loading in

' comnression causes tensile yielding. The mean dynamic plastic
ctrair amnlitucde onder cycl < lnacding is therefore:
( “q
, L2 N+ e
DT Y o= e ToYD(__Tolgn, (8)
RS © 2 2
T -e
S

Since negative strains are not defined for the log-normal
digtributinn, no further yieldiam car occur in compression, no

maltor Siaw 0 ahaneeg, TRig gh(fr 0 ke eahahit ity structure
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during fatigue represents a retardation mechanism, A large
overload inhibits any further yielding until a subsequent
higher overload occurs or the crack tip becomes sharper as
fatique damage accumulates to the critical irreversible entropy
level.

Figure 6a indicates the prchability distribution function
of plastic strain includin¢g the maximum previous strain €y and
some sinusoidal strain amplitude es’ When a cyclic load of
amplitude €g = €, is applied, :he hysteresis loop defined by
Whiteman [46] results, as well as the loss factor of Reference
[55). The storage modulus, which is the in-phase component of

the dynamic strain is:

€
s €

Ec = EI1 - [ P(ZEs)dn/2 + [ n P(5Es)dn /2E]

&g ~€s

When subsequent loads are applied, the previously yielded
elements are in compression, and enerqgy 1is expended in
deforming back to the original position. This contribution to
the hysteresis energy is the irreversible entropy contribution,
since it is a function of microplastic deformation. Large
transient overload significantly increases the plastic zone,
putting the region near the crack tip into compression, and
retarding crack growth due to the energy required to overcome
the compressive strains.

The loss factor derived in Reference ([54]) is a critical
part of this analysis so is summarized here. The storage and
loss moduli can be used to express the dynamic stress-strain
relationship and are represented on the complex plane in Figure

6b, where larce *+ransient loads may affect the tangent modulus

(9)
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because of yielding [46]. Therefore, the storage modulus under

large cyclic loads 1is:

“u ts £s
. - R : n+ e o n+e¢ .
Bg = 1=, P(n)dnlll =, P(—=o)dn /2 + ;n P( 210)dn 2¢_1(10)
0 i -+
s s

Typical loss factor data for aluminum along with values for 9,
are presented in Figure 7b[35!. Loss factor is related to the

storage modulus according to:

Y = n 2 - 210.5
Mg (1 + ng Bl (11)

Excellent agreement %to data i1s indicated by fitting just one
parameter, the variance of random yielding, S

The parameter n, in equation (11) is the anelasticity term
representing internal friction at low strain levels. This
component 1s not related to the plastic strain and 1s not a
function of the strain level. Rather, it is a function of the
frequency  and is physically related to the diffusion
process {56]. Figure 7a 1is a plot of low-strain loss factor
versus frequency, and can be related to the activation energy

and temperature. From Figure 7a,
_ Y
r = t/f,
‘e no( /E)
Now from Reference [3%6], the temperature and frequency

dependence are related by:

U V%, = 1/2) = log fy/F )

)

1

i

heretore the troguency dependence of the loss factor indicated

1 Figure 7a is couivalent to the temperature dJdependence of

activation cnergy.

'
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A Model For Fatigue Crack Nucleation

The 1irreversible thermodynamic analysis of local failure
under cyclic loads is summarized in Figure 8. The critical
irreversible entropy threshold of isothermal fracture given by
equation (6) is a constant at the peak strain energy which has

been demonstrated to be a noecessaryv and sufficient condition

- for crack extension, and consistent with the well-known
principle of maximum entropy production. In the case of
sinusoidal loading, the irreversible entropy density per cycle

is derived from elastic and plastic strain combined in parallel

as indicated in Figure 8:

2

TE
tnses
9

a0
Zln

[Aep/es] (12)

Then for cyclic loading the irreversible entropy rate is
integrated until the entropy exceeds the critical entropy
threshold, which is the same criterion for critical crack
length demonstrated in Figure 5.

Combining equations (6) and (12), the number of cycles
required for the local entropy gain to exceed the critical

entropy threshold is defined:

Tk g 2 =

° TR ngeg [Aep/es]Nf Se (13)
ot

“

; Figure 8 includes a plot of £ against Nf and resembles the
s well-known S-N diagram with two notable exceptions: First,
L@ lncal strain level is indicated versus cycles to failure rather
é? than remote stress levels. Second, failure is defined as the
- initiation of growth of cracks on the order one micron
S representing a prediction of crack nucleation[54]. For very
L
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small, sharp cracks, linear elastic fracture mechanics does not
apply, since the 1initial crack size can be arbhitrarily small
and plastic deformation would dominate[50]. The critical
entropy threshold of local yielding provides a theoretical
prediction of local breaage of molecular bonds giving the
sudden appearance of a microscopic crack where no crack
previously existed.

The data indicated in Figure 38 were collected on initially
crack-free base-excited cantilever beams driven at resonance
while enclosed in a vacuum chamber [55]. In this way, the
undesirable influence of dissipation due to viscous damping in
air was eliminated. The fatigue test was stopped when the
resonant frequency decreased by a small amount, usually about
one percent. After such a small decrease in resonant
frequency, a very small crack was just visible at the base of
the cantilever beam where the strain amplitude was maximum.
Crack bluntness of b/a = 10—4 provides good agreement to the
experimental data and represents the formation of a crack in
previously unblemished specimens.

Thus far the mathematical model for local random yielding
has been demonstrated to be consistent with fracture mechanics
theory, including a function for crack tip blunting due to
plasticity. In addition, the mathematical model for local
random yielding forms the basis for a new model of hysteresis
damning. Agreement to loss factor data by selecting just one
narameter is demonstrated, The model also provides a
prediction for the sudden aprearance of a crack. In the next

section, subcritical crack growth rate under cyclic loading is

analyzed,
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CRACK GROWTH DURING CYCLIC LOADING

In the theory of fracture mechanics, energy transfer
during local yielding at a crack tip has been characterized by
the stress intensity factor for linear elastic materials. The
stress intensity factor is a parameter which defines the local
increase in stress at a crack tip, and for linear systems is
directly and uniquely related to the strain energy release
rate, When there is significant plastic deformation at the
crack tip, this relationship between stress intensity factor
and strain energy release rate 1is no longer valid. The
J-integral is usually used to investigate the effect of plastic
deformation, but with limited success since the plastic energy
release is not concentrated at the crack tip. An alternate
approach to crack growth is described here, where local
yielding at a crack tip is analyzed. The local random yielding
model can be used to keep track of the plastic deformation
history of every point near the crack tip.

The analysis of crack extension during cyclic loading has
been based on the stress intensity factor range in the theory
of fracture mechanics. However, the effect of mean stress 1is
still not adequately described, nor 1is the influence of
resonance or combined loading. In this research, the local
random yielding model of plasticity was used to derive a local
hysteresis relationship for crack nucleation based on
irreversible thermodynamics.

The local strain energy per unit volume at a crack tip can
be calculated using equations (1) - (3), including both elastic
and plastic contributions. Equations {4) and (5) represent

necessary and sufficient local conditions for a crack to grow

—
-
~
.

)

' . .
A UL WA hd ot

BN T




g o st AR . g et A Juntn et el bt Shaih Rt Safh dhdh A okt fhd
L Sar g Jea e aad ey S dcn . s ac DAME BAAC - LN A e as el i et Arnii A e A e — Il N ol o

under guasi-static conditions. The strain energy density is a

constant at local yielding as is the entropy defined by the

I ]

plastic part of the strain enernv. For cyclic loading, there

is still some irreversible energy transfer quantified by the

> ae

plastic deformation, As a crack grows by some infinitesemal

amount, the strain energy density at the crack tip changes.

2 A SERCRAS.

Rice [28] has quantified the irreversible energy release rate
| as the difference between the Irwin energy release rate and the
z elastic energy reqgquired to separate the crack surfaces. The
entropy production was defined by the product of this

difference and the crack growth rate. This is equivalent to

Aabaite S 0 NN a . s TR W

the rate of change of the local strain energy density, W, at

-

¢ !

b the crack tip where: :

> 4

: W = ] ode . (14) ‘

‘ 0

} o

- For cyclic loading, the energy release per cycle of loading is: h
oW da _ s :
%2 3N 0 0 W (15)

Equation (15) is based on the relationships postulated by

Rodner, et.al. in a technical note [29] and Sih and Moyer({57].

3. I R

Since the plastic deformation also quantifies the local entropy
production, equation (15) is an entropy balance which says that
the local irreversible entropy gain caused by accumulations of
plastic deformation is absorbed in the crack growth mechanism.

Equation (15) is equivalent to the second law of thermodynamics

IO RIS | RV Y SR R SSRY Y a

as defined by Gurtin [27].
Now substituting equation (12) into equation (15), the

crack growth relationship is:
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Equation (16) is a theoretical crack growth relationship which
can be calculated on the basis »f two physical constants. The
variance of random yielding, SN is selected on the basis of
loss factor data collected in vacuum [55] or tangent modulus
data [46]. The crack sharpness, b/a, is determined from

fracture data as summarized in Figure 5.

2

For the casc of small plastic deformation, 3wW/3a = KI /E,
and equation (16) can be reduced to:

d 2[ -

a nSeS Aap/es] m

—_ = = AKI

dN erza
where . is the strain level far away from the crack. When

the strain level is low enouqgh, Aep approaches zero and the
existance of a threshold crack is indicated. Crack sharpness
is implicitly included in the local strain level, €gr and
damping, g e For intermediate loading, the loss factor and
plastic strain fraction can be approximated by powers of
sinusoidal strain level, and the crack growth per cycle can be
expressed by stress intensity factor raised to the power m.
Fquation (7) quantifies the dependence of b/a|C on K_ as
demonstrated in Figure 5, where C_ = 1.0 x 10"%. For most
engineering applications the loading would be much less than
the critical level, and crack growth from subcritical loading

is needed. From Figure 5, with a_, = constant, it is clear

that:
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zle log/a}0e® (17)
Equation (17) is a mathematical model for the increasing
sharpness of cracks as load increases. When the stress is
equal to the critical stress, the critical crack sharpness
results. For low stress, the crack becomes blunt since b/a
increases. In the case of large transient overloads, 9
represents the maximum stress of the load history and equation
(17) quantifies the crack blunting and resulting retardation of
crack growth, Equation (17) is a statement of stability
marging for subcritical stresses, the lower the stress, the
blunter the crack tip, and the more stable the resulting crack

growth, The effect of the blunt crack for stresses below the

critical stress is to incrcase the slope of da/dN since crack

bluntness retards crack growth.

Figure 9 is a plot of crack growth rate as a function of
AK ¢ for various values of fracture toughness. Figure 9 is a
significant result of this research since it represents crack
growth in the presence of cyclic loading as a function of
fracture toughness on a theoretical basis. Figure 9 yields an

intermediate exponent of m = 4,87, comparing favorably with the

typical form of the Paris crack growth law.

Growth of small Cracks

P el

¥ Thus far a theoretical basis for crack propagation and

nucleation has been postulated. Figure 8 indicates the number

of cycles required to initiate growth of cracks on the order of

DRI ¥ vy s  BURINSRIRIRY . _§IRISIETRNey: | § GRS

one micron, and Figure 9 describes growth of large cracks. The

mechanism of growth of very small cracks involves significant
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plasticity and the crack bluntness can be modified accordingly.
The growth of such small cracks has a practical application in
turbine engines where very small cracks might escape
inspection, but subsecquently qgrow to critical size. The
comparison to linear fracture wmrechanics implies the crack
sharpness relationship indicated in equation 7. For very short
cracks, plasticity effects would not be negligible, and
deviation from linear theory would be expected.

Figure 10 is a plot of crack growth rate for various small
cracks. The logarithm of critical crack sharpness was modified
to vary quadratically with the logarithm of critical crack
length as shown in the insert of Figure 10. This assumption is
logical since the singular form of the crack tip strain changes
for very short cracks. The trends outlined in References [58],
[59], and [60] are substantially reproduced. Figure 10 shows
both an increased crack growth rate for small cracks, and the
existence of a threshold which 1is dependant on fracture
toughness. Equation (16) substantiates the theoretical basis
for a threshold, since the plastic strain fraction goes to zero
as applied load goes to zero. The significance of Figure 10 is
that very short cracks involve substantial plastic deformation

and therefore grow much faster than predicted by linear theory.

Influence of Lnading Order

The fracture criterion based on local random yielding
provides results consistent with well-known results in linear
elastic fracture mechanics. 1t is clear that crack blunting is
an important mechanism during crack growth since the growth of

5lun*t cracks is ¥nown to "He lower “han that of sharp cracks.
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For the case of cyclic loading equation (16) can be easily
integrated to yield crack length versus cycles of loading.
However, it 1is necessary to consider the change of crack
sharpness with time during cyclic loading. The crack starts
out blunt according to equation (17) and sharpens to the
critical value expressed as equation (16) at failure. Since
the entropy function is a measure of irreversibility (damage),
the critical sharpness 1is postulated to occur when the local
entropy gain at the crack tip reaches the critical entropy

threshold:

For different order of loading, equation (18) could be applied
piecewise to generate crack sharpness as a function of time.
The memory of plastic deformation history expressed in
equation (18) provides a valuable tool for investigation of
variable loading and spectrum loading. Figqure 11 is a plot of
crack length versus cycles of loading for two sets of three
identical average 1loading histories with difterent levels in
different order. Figure 11 clearly shows that the order of
loading is wvery important to accurately predicting the useful
life of the structure. Figure 11 is significant since crack
growth dependence on loading history is demonstrated on a
theoretical basis. Figure 11 1is an approximation, however,
since the plastic deformation history of the material ahead of
the crack will effect the crack growth rate. For brittle
materials where such plastic deformation history is a small
effect, this approximation would be expected to he quite good.

However, for more ductile materials, plastic deformation

(1= (0/0)051 3 + [og/0] 043 (18)
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history of each point ahead of the crack would significantly

influence the crack growth.

Crack Growth With Mean Stress

Figure 12 shows the effect of mean stress on crack growth.
For higher mean stress, the overall level of yielding is higher
and the slope of the crack growth rate curve decreases. In the
case that the static load is much greater than the cyclic load,
the static fracture toughness would dominate. The general
trends summarized in Figure 12 are in substantial agreement
with the results given in References [61] and [62]) with
increasing mean stress increasing the crack growth rate.

The influence of mean stress is commonly described in
terms of the R-ratio in fracture mechanics terminology. Figure
12 was prepared consistent with that terminology using the
combination of static and dynamic strain levels demonstrated in
the inset to Figure 12. However, since a local relationship
was used, the hysteresis loop was defined using Figure 6 where
the cyclic strain amplitude was different from the maximum
strain. Using the inset of Figure 12, € Ectegr and resulting

R-ratio is defined to be:

Reference [63] describes dependence of crack growth on R-ratio
for low stress intensity factor. Figure 12 provides a
theoretical basis for the experimental results given in

Reference [63].
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DISCUSSION OF DAMAGE IN METALS

A local theory of fatigue and fracture for isotropic,

homogeneous engineering materials has been described. Static

fracture, crack growth under cyclic combined loading, and

loading history have all been expressed on a theoretical

foundation of irreversible thermodynamics. This approach could

be quite useful in the analysis of crack retardation and

closure, as well as spectrum loading. The theory is consistent

with well-known Dprinciples of linear elastic fracture

mechanics. The model predicts very high strain levels near the

tip of a yielding crack but finite stresses at the crack tip,

even for the infinitely sharp Griffith crack. Local necessary

and sufficient conditions for unstable crack growth have been
expressed in a local energy balance form analogous to the well
known Griffith criterion, given by equations (4) and (5).

This treatment of local crack-tip plasticity has the

potential for explaining diverse phenomena. Once yielding has

occurred the probability distribution function will change and

subsequent 1loadings will result in a modified stress-strain

relationship. Additional analysis is needed to investigate the

influence of plastic deformation history on fatigue life under

spectrum loading; the influence of different frequency of

loading is still unknown, Using the displacement field near

the crack tip, plastic strain history can be used to

investigate the phenomena of crack closure and retardation.

It is postulated that as a crack grows it is blunted.

This is consistent with the well known observation that crack

blunting retards crack growth making predictions based on

elastic theory conservative. Therefore the crack sharpness,

TV W W W T
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b/a, is a very important variable during crack growth, and a
critical crack tip bluntness function has been determined. The

|
“ familiar sigmoidal shape of the da/dN versus AKI curve has been

: reproduced, giving results consistent with the well-known Paris

P L‘L"A'n'.'

Law. The appearance of the stress-intensity threshold can be
demonstrated on a theoretical basis, as well as the infinite

slope of the da/dN curve at the fracture toughness. Since the

PO, § TR

local random yielding model is not limited by small scale
yielding assumptions, it can be applied to any engineering a
material. Since the use of composite materials has become so )

widegspread, there is considerable motivation for analysis of

fatigue and fracture of composites. In the next section, i
preliminary analysis of fatigue and fracture of composite
materials is described. 1
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APPLICATIONS TO COMPOSITE MATERIALS

The engineering analysis of composite structures is
inherently more complex than for metals. While metals are
typically considered to be homogeneous, isotropic media,
composite materials are anisotropic and nonhomogeneous. In
addition, the mathematical definitions of differential stress,
strain, displacement, mass, and even volume has to be modified
depending on the type of composite structure under
analysis(64]. There are different ways to embed fibers in a
matrix, and each approach results in different assumptions. In
general, the geometry of composite structures is quite complex,
and as a result the different ways composites can fail becomes
very complicated.

As damage occurs in any material, metal or composite, the
strength and stiffness characteristics are known to change.
The change in stiffness is a convenient definition of fatigue
damage since stiffness changes can be defined analytically and
can be measured by changes in the natural frequency. In
contrast with isotropic materials like metals, the anisotropy
of fiber reinforced composite materials introduces at least
three distinct failure modes for each lamina. When the
strength of the fibers is exceeded, the fibers would fail in
tension; cracks could also form within the laminate due to
stresses transverse to the fibers; finally, the bonding of the
resin  between lamina could fail giving delamination(65].
Although in isotropic materials failure can be characterized by
(1) crack nucleation or crack initiation, and (2) crack
propagation, the formation and growth of cracks in composite

materials 1is very complicated and does not necessarily
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constitute failure. In fact, many composites begin to form

fatigque cracks within the first few cycles of loading(65]. The
different modes of failure during tension fatigue tests can be
related to the stress amplitude; for high stresses there is a
high percentage of fiber failures([66]. For intermediate
stresses, the fiber breakage plays a less dominant role, and
matrix cracking leading to delamination is the common mode of
failure. For low stress levels, very few fibers fail, and some
cracks form in the matrix.

Highsmith and Reifsnider([67] have described the
relationship between reduced stiffness during fatigue and the
crack density using a finite difference solution of the six
stress components throughout a laminate, A digital computer
solution was required and only a few layers could be included
due to computer storage limitations., Tensor stiffness changes
were related to matrix cracking in an attempt to define working
engineering definitions of laminate damage. Stiffness
reduction can be a useful preliminary definition of damage in
composite materials, although there are numerous possible
definitions for damage[68]).

The fundamental engineering definition of fatigue damage
in composite structures is similar to that in metals: strength
degradation resulting from repeated loadings. Changes in the
hysteresis loop and static stress-strain curves during fatigue
damage are very similar to the effects observable in
metals[69]. Stiffness reduction during fatigue results in
deflections wunder 1load which constitute failure in some
applications, while crack growth is used to quantify failure in

other cases. Delamination is one of the failure modes which
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depends on formation and growth of c¢racks, although the
tracture mechanics for that problem 1is considerably more
complex[70].

Although modulus shift can sometimes be used effectively

[PIVEIRIEY . ¥ VPR uN

as a measure of damage, the definition of damage must relate to

changes in the structure of the material. Fong[68] lists five

2

discrete processes of fatigque research suggested by the
American Society for Testing and Materials leading to the
ultimate goal of predicting fatigue life from measurements of

damage: 1. Measurement, 2. Data Analysis, 3. Nonlinear Modeling

& LLA“‘]‘A 2% &

4. Evolutionary and Thermodynamic Theory, 5. Codes and

Standards Development. The fourth process, thermodynamic

-

theory, is analyzed in this report.
The irreversible thermodynamic analysis of fiber
reinforced laminated beams is described, including the i

anlsotropic nature of composite materials. An Orthotropic

damping model is developed based on the fractional calculus

approach in the low amplitude portion of the analysis([71], and

local random yielding after the approach by Whiteman[46]) is

used in the high amplitude portion of the response. The

2 influence of shear deformation and rotary inertia in thick

q
f beams is investigated, and fatigue damage is considered to
:' occur in composites as a result of irreversible deformation ﬂ
[; providing a decrease in the laminate transverse stiffness, ;
F mecasurable by a decrease in natural frequency. Although this E
analysis was conducted under the definition of modulus shift ]
] for fatique damage, the local random yielding in an orthotropic

lamina is used as a mathematical description of local strength

- degyradation. In contrast with homogeneous, isotropic
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materials, combined failure modes must be included. In-plane >
shear damage is assumed to arise from shear within lamina,
fiber breakage is considered to result from strains along the
tiber axis, and matrix cracking is assumed to arise from
strains perpendicular to the fiber axis.
Damping In Fiber-Reinforced Laminated Beams

The analysis of fiber reinforced composite beams is based
on the lamination theory described by Jones[72] and
demonstrated in Figure 13. The stress—-strain relationship in
the fiber axis system is:

o1 Q11 Q12 0 €1

G2 = 1021 Q22 0 €2

T12 0 0 Q66 Yi2
This lamina stress-strain relationship for orthotropic
materials is then transfered to the beam axis system using the
well-known trigonometric transformation(72].

% Q11 Q12 013

o, (= [0z: Q22 Ous (19)

Txy 031 032 033
Then the moment-curvature relationship can be determined by
integrating through each layer of the laminate:

9x? Ix?
1 2 _ 303
= —3 k=iQij) ﬁzk_zk—l) 0 = [D] 0 (20)
0 0
L

T -
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A laminate damping model based on viscoelasticity and

random yielding is developed below which provides a theoretical
basis for the irreversible thermodynamics of composite beams.
Referring to Figure 6, the laminated beam dynamic moment
equation is modified using the complex modulus formulation and
an orthotropic damping model based on random yielding.
Frequency and strain amplitude dependent loss factor in the
tiber direction and perpendicular to the fiber direction are

defined by:

I
=
1
(25}

nife,w) + ngpl0e3 (21a)

1

—
!

M

nale,w) + ngpl) 0.5 (21b)

s2

In equations (21), ES1 and Egp are normalized storage modulii
resulting from random plastic strain in the 1 and 2 directions,
respectively and P is the probability distribution function for
plastic strain as in equation (9). The probability
distribution function of the random plastic strain is assumed

to follow the log-normal relationship, and equations (21) are

to be combined with equation (19) and (20) yielding complex
modulii for the laminate according to:
*

Q11 = Qpi(cosnj+jsinny) (22a)
’ le* = le(COSn2+jSinn2) (22b)
-‘_- Q21* = Q21(C08n1+jsinnl) (22(:)
;. Q2% = 0p,(cosny+jsinn,) (22d)
l Qge* = Qggl(COSny,+jsinng,) (22e)
b
-
b,
r Then the energy dissipated in each lamina comes from three
®
i— stresses which result from the single strain in a laminated
[ beam in bending with negligible transverse shear deformation:
b
.
@
[
r.;-
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Oor oy, and Ixy‘ Although there will be two loss factors in
the beam axis system, transverse strains are negligible for
thin beams and energy dissipated within the beam will be
dominated by the bending deformation[73]. For each point 1in
the beam the ratio of the energy dissipated per cycle to the
energy stored per cycle for strain in the x and y directions
are:
* *
ne = 1Dy 1/|D1y | (23a)
* * * * ,
ny = Im{D21 + D3, ]/[D21 + D3 (23b)

Figure 14 is a plot of loss factor, Nyt versus strain level for
unidirectional longitudinal and transverse orientation and
cross-ply beams, along with data from Gibson[74]. Qualitative
agreement with previous results is demonstrated[75]" [76].
This orthotropic damping model has the advantage that the
cffect of fiber orientation is inherently included, as are
frequency, strain-amplitude, and temperature dependence of loss
factor. The general theory of irreversible energy dissipation
in a laminated beam 1is described in the next section, in

preparation for derivation of a mathematical model for fatigue.

Ener Dissipation And Fatigue In Thin Laminated Reams
tnergy L Pe And rattigue In

The orthotropic damping model for fiber reinforced
composite materials forms the basis for analysis of reversible
and irreversible energy trausfer. Fatigue damage is assumed to
result from irreversible enerqgy transfer resulting from plastic

deformation within the laminated beamnm. There are three

ditferent mechanisms of damage in thin bHeams which are to be
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modeled here. First, loads in the fiber direction could damage
the fibers. Second, loads perpendicular to the fiber direction
could damage the matrix. Finally, shear loads within layers
could cause damage from in-plane shear. Delamination failure
cannot be explained using thin beam theory since interlaminar
stresses are ignored. These three common forms of failure in
composites are modeled mathematically by the local isothermal
entropy thresholds of failure defined below (see equation 6):
“f

S = ] o€ P (g )de
£l 011111

60

€1 €1
= Q J fe 2[1-] P (n)dn]l+e [ n P (n)dniP (e )de (24a)
1 1 1
0

1 1 1

“f €

2 2 €2
= Q [ fe [1-] P (n)dnl+e [ n P (n)dniP (e )de (24b)

210 2 02 20 2 2 2 2

s =/ 1 Yy P (y )dy
£3 0 12 12 2 12 12

Y;z
= 0 J iy [l-j P (n)dn]+y1

6b0 12 0 2 20

2 12 12

Equations (24) represent the result of tensile and shear tests
on a single layer yielding a mathematical model for fatigue
damage in laminates. For fatigue damage due to cyclic loading,
the irreversible part of the energy dissipated per cycle 1is

measured by the entropy gain per cycle. Fatigue damage is

modeled by the entropy rate, ca.culated from the plastic part

Y12
} n Pz(dn)]P (y )dy (24c¢)

- wm o mm— e .‘J

a amsmmmm. = 2.1 2 o smm s 2 a_a A csemmm e . .

G % e a_ . ..

CEMBmca w _ w.x R ® Cammm . .

. a_a_
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of the loss factor. For a particular laminated beam, the

entropy rates from random plastic straining under sinusoidal

excitation in each layer are:

* 2

dsl/dt]k = nIm[Q” ]€1 (Epl/E) (253)
* 2

dS,/dti, = nIm[Qy) e, (epz/e) (25b)
2

dS3/dt:k = nIm[Q31*]‘Y12 (€p3/€) (25c)

Bquations (24) and (25) represent an energy-based analysi; of
damage, and can readily be extended to the case of crack growth
in composites as has already been demonstrated for metals.
Steif[77] has 1investigated stiffness reduction due to fiber
breakage, which also contributes to transverse-ply matrix
cracking. His approach was energy-based as well, considering
the strain energy density change when a fib.v breaks. In this
way, the necessary analysis of the state of internal damage is
reflected in the external measure of stiffness reduction. Such
a measurement has potential applications in fracture mechanics
where compliance is related to fracture mechanics parameters.

Equations (24) and (25) can be combined to predict the number
of cycles to specified stiffness reduction by combined fiber
breakage, matrix cracking, and 1in-plane shear. The layer
corresponding to maximum entropy rate will be loading history
dependent, progressing through the laminate as each layer
fails. This concept of damage is therefore a realistic one,
because damage in a single layer does not necessarily
represent overall failure. Rather, damage in a single layer
represents a weakening of the structure which could then be
used to define a new maximum entropy rate providing a

methodology for predicting not only the lifetime but also the
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mode and location of failure. Multiple failure modes are
therefore explicitly included in this model, i
I The modulus shift in a beam is calculated by omitting the

narticular failed stiffness component from the laminate

stiffness calculation. That 1s, when the maximum entropy gain
in the fiber direction defined by equations (25a) exceeds the
critical fiber entropy threshold in the kth layer as defined by )
equations (24a), then E, is set to zero. When the maximum
entropy gain perpendicular to the fiber direction defined by
equation (25b) exceeds the matrix critical entropy threshold of
the kth layer as defined by equation (24b), then E, 1s set to
zero, Finally, when the maximum entropy rate for shear between l
lamina defined by equation (25c) exceeds the in-plane shear

critical entropy threshold of the kth layer defined by equation

(24c), then Ggg is set to zero. Each time a lamina failure is

el L NS A A B il K R

defined, a new beam moment eguation can be calculated, omitting
the failed lamina stiffness from that layer and defining a new

beam stiffness. In this way, the reduction in stiffness can be

o s e tat.

used to quantify fatigue damage; a conservative estimate of

damage is assumed since residual stiffness would certainly

. —— e e

r’ occur and is not included in this analysis.

3 This definition of damage 1is <convenient since the )
@ measurement of damage is based on external measurements of :
p

¢ I

stiftness reduction while the damage mechanism reflects changes

in the internal structure of the material. Schapery (78]

I SR AR

described linear viscoelastic constitutive equations with

r damage in terms of hereditary integrals which are strikingly
[ similar to the entropy threshold definition of damage used
3
. hera, Namaqge was described in terms of strain and stress
q {

et et e . CRE
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tensors for finite strain using the Gibbs free energy function

for elastic materials. The entropy gain was one of the terms

in the Gibbs free energy function. The critical entropy

threshold of local failure defined here is attractive both

because of the intuitively pleasing physical interpretation and

e B

the apparent universal applicability. Note that the approach
th

M-

described here is loading history dependent, since when the k

PO AP P

lamina fails in a particular mode, the remaining stiffness
elements experience higher loads resulting in increased damage ?
accumulation and subsequent failure.

Figure 15 is a plot of lifetime to 30 percent stiffness
reduction for a laminated unidirectional beam for 0 and 90
degree orientation of the fibers, and for a cross-ply laminate.

Figure 15 was generated by successively calculating the maximum

entropy rate, and then deleting the corresponding stiffness
element of that lamina from the analysis, keeping track of mode

and location of each failure until the modulus shifted as

Ei specified. Additional laboratory data are required to conclude
the accuracy of the predictions of failure modes, but the

results summarized in Figure 15 are in substantial agreement

b 4i2uae e ey s et ave

cracking in the transverse layers starting near the beam

J with previous results [79]. For the unidirectional beam, the
j primary failure mode is fiber breakage for longitudinal fibers

and matrix cracking for transverse fibers. The failure starts
f‘ at the outside surface of the beam where the strain amplitude 3
{ .
{ is a maximum and progresses toward the center of the beam. For :
! :
f the cross-ply beam, the primary failure mode was matrix )
}. !
f y

surface and working inward. There was also a secondary failure

mode of fiber breakage in the longitudinal layers caused by the
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in-plane transverse stress and shear stress. This is as
expected for the simple cantilever unidirectional and cross-ply
beams since the location of maximum strain is known. None of
these calculations indicated primary failure from in-plane
shear deformation.

This analysis of damage shows realistic predictions for
fatigue lifetime in thin beams, A practical application must
include structures with many layers, involving thicker beams
where shear deformation could be significant. These shear
stresses could cause delamination, which is the subject of the

next section.

Failure Modes In Thick Beams

When the thickness is not small compared to the length of
a beam, then out-of-plane shear stresses may not be negligible.
The influence of shear deformation must therefore be
investigated along with the various possible failure modes.
These interlaminar stresses are believed to be responsible for
delamination failures in fiber reinforced composite materials
[72]. Such thick structures are practical when numerous layers
exist in a composite structure. When a beam is thick compared
to the length, then shear deformation and rotary inertia may
have a significant effect. Although the transverse normal
stress, dy’ is assumed to be small compared to the bending and
shear stresses, the normal strain may not be small and in fact
may significantly affect delamination[80]. Moments 1in the
beam are influrnced by the shear deformation. Curvature along

the y-axis is assumed to be negligible so that bending stresses

arise only from azy/axz. Likewise, the interlaminar shear
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strain Yz arises from shear forces in the beam as demonstrated
in Figure 13, Equations (19)-(25) must be supplemented by an
additional entropy rate term resulting from the out-of-plane
shear strain, sz and the normal strain €. The influence of
transverse strain and shear loads are included in the entropy

rate terms given below.

- 2
Sy4 = ﬂIm[Q31|k153 (A€p4/€3)
- 2
Sg = nIm[Q“5|k]Y23?(Aep5/Y23)
86 = “Im[QSS!k]Y13~(A€p6/YI3)

The loss factor for the shear strain Yyz is assumed to be equal
Lo n,, since resin properties dominate for shear deformation.
Figure 16 1is a plot of lifetime to 30 percent stiffness
reduction in thick crossply beams.

For h/2 = 0, the thin beam results for a cross-ply
laminate given in Figure 15 are reproduced with the dominant
failure mode being matrix cracking. Secondary failure modes
are fiber breakage in longitudinal layers and delamination in
transverse layers., For h/g = 0.20, the influence of shear
deformation is apparent, and the time to 30 percent stiffness
reduction is reduced somewhat. For h/g¢ = 0.60 the primary
failure mode is delamination from transverse shear, with fiber
breakage and matrix cracking as secondary mechanisms. Althnugh
Pagano and Pipes[81] hypothesized that delamination is caused
by transverse normal stresses, this analysis suggests that the
transverse shear strains are the dominant damaging loads;
fatigue damage can still progress 1in the remaining load
carrying elements and secondary failures can occur in the same
layer.

Although laboratory data is required to substantiate the
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detailed predictions of multiple combined failure modes, the
significance of thesce results is that complicated multiple
failure mechanisms are simplified to stiffness reduction. This
is a practical definition of damage, 1indicating when a
composite structure is no longer able to function as designed.
In fact, it may not be desirable to substantiate each failure
during fatigue testing. For fiber reinforced composite
materials such data collection and processing would be
excessively expensive. Rather, relatively simple lifetime to
fixed modulus shift tests could substantiate the irreversible
thermodynamics theory for certain standard orientations. A
fully validated theory could be of considerable value to the
designer who 1is interested in choosing orientations and
thicknesses to satisfy some particular design requirement.

This analysis has been based on the simplified assumption
that the <critical entropy threshold 1is a definition for
failure. Irreversible thermodynamics should be included in a
comprehensive fracture mechanics analysis of composite

materials.

Analysis Of Fracture In Composites

Linear elastic fracture mechanics can be very effective in
tracking crack growth in brittle materials. For ductile
materials, linear elastic fracture mechanics can still be
applied whenever the crack length is large compared to the zone
size of significant plastic deformation, When there 1s
considerabie yielding due to plastic deformation, linear
2lastic fracture mechanics does not apply. It has been

demonstrated that the local random yielding model of plasticity
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predicts crack growth and fracture relationships consistent :
with linear elastic fracture mechanics without theoretical ;
limitations as to amount of yielding. However, these theories q
were developed for homogeneous, isotropic materials; composite ;
materials are inherently nonhomogeneous and anisotropic. ;
For composites, the analysis of crack growth, fracture, ?
and fatigue damage must address the nonhomogeneous, anisotropic :
property, as well as fiber orientation, ply geometry, resin ;
volume percent, etc. In the case of metals, the specimen i
geometry mnust be selected to cover the loading ranges of
interest involving substantial testing. For composite
materials the many different possible combinations of important q
parameters would require impractical test programs. That is -
why accurate mathematical models for fatique and fracture in

composites would be a significant advance.

Wul[82] has investigated the linear elastic fracture
mechanics of unidirectional glass reinforced epoxy resin with a
crack parallel to the fiber direction. He concluded that the
critical stress intensity factor does not vary significantly

with crack length., Gaggar and Broutman[83] have investigated

the fracture mechanics of random glass fiber epoxy composites.

They concluded that the stress-intensity factor from linear

N rr'r"-vT P

clastic fracture mechanics is suitable to characterize the

A
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:
K
"
{
»
e
R

5 fracture of random fiber composites. This is logical since

1

& random short fiber composites can frequently be approximated as ﬁ

E homogenous, isotropic materials. E

[‘ Since linear elastic fracture mechanics applies best to i

; materials which do not yield substantially, linear theory E

E: should accurately describe fracture »f composites. However, i
' !.
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the specimen thickness directly influences the crack-tip state
»f stress which in turn influences the yielding. Before linear
clastic fracture mechanics can be routinely applied to
composite materials, it is necessary to identify limitations of
thickness and load. Harris and Morris[84] have investigated
the fracture of thick, laminated graphite/epoxy composites.
They conducted a predominantly experimental research program of
various cross—-ply and angle-ply laminates of various
thicknesses, using center-cracked tension, compact tension, and
three point bend specimen configurations. Fracture toughness
was calculated using a finite element stress analysis, and
damaye development at a crack tip was investigated using
enhanced X-ray radiography and the laminate deply technique.
For [0/145/90]ns and [0/90]nS laminates, the fracture toughness
decreased with increasing thickness, while for [0/t451ns
laminates the fracture toughness increased with increasing
thickness. Fracture toughness of laminated Graphite/Epoxy
composites is dependent on thickness,

The principles of lincar elastic fracture mechanics have
been successfully applied to composite materials in predicting
crack initiation and propagation and fracture. It should also
be  possible to formulate crack growth and fracture of
composites based on the local random yielding model, which has
been demonstrated to be consistent with the fundamental
principles of fracture mechanics. However, in a general
laminated plate or beam the combined state of stress within the
laminate is required, and mixed mode fracture would be
expected. Mixed mode fracture could be analyzed as 1in

reforence [85],
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- RECOMMENDATIONS AND CONCLUSIONS i
i A local criterion for crack extension has been presented, %
] providing comprehensive results consistent with linear elastic %
fracture mechanics. Using the original stress analysis by }
- Inglis[20], the displacement field around an elliptical hole in :
I an infinite thin sheet was differentiated, 1leading to a #
P nonlinear strain function. This strain function is singular at R
\
Ei the crack tip, consistent with the principles of linear elastic
b fracture mechanics. However, the local random yielding model a
£ for the microstructure at the crack tip results in a finite :
|

local stress., The magnitude of this local random stress
depends on the sharpness of the crack; stress is high for sharp o
cracks, lower for blunt cracks. This crack sharpness function

was found to be log-linear in the critical crack length, and a

e “'!L‘. > - .

relationship between the critical stress and critical crack
length can be defined.

In the case of cyclic loading, local random yielding was _
used to derive a mathematical model for internal friction i

providing a basis for irreversible thermodynamic analysis of 5

crack growth. A local necessary and sufficient condition for E

crack extension was derived from the strain energy density
function near the crack tip. It has been demonstrated that the

local plastic strain energy density at the crack tip is a

constant at failure. 1In the case of isothermal processes, the

irreversible entropy gain at fracture is therefore a constant,

'
K
b
v
v
=
y

lending credibility to the hypothesis that the local critical

entropy threshold of fracture is a material constant. In the

case of cyclic loading, the local entropy rate is combined with

the strain energy release rate to give a theoretical crack
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gqrowth curve consistent with the familiar Paris law. In
addition, the existence of a thresnhold stress intensity factor
is demonstrated, and qgrowth of small cracks is defined.

For very small cracks, the time to reach the critical
entropy threshold is dependant on the crack sharpness, and as
crack 1length approaches zero the theoretical basis for crack
nucleation has been described. The local random yielding model
is not limited by assumptions of small-scale yielding, so
virtually any engineering material and any crack size can be
analyzed. The fact that the local random yielding model
reproduces a myriad of well-known results from linear elastic
fracture mechanics provides convincing support for the validity
of the critical entropy threshold of local fracture.

In addition to the satisfying intuitive nature of the
critical entropy threshold of fracture due to irreversible
plastic deformation, a number of related theories are unified
by this local analysis of crack growth. First, local random
yielding is a mathematical model for plastic flow with a strong
theoretical basis in dislocation theory. It is commonly
accepted that plastic deformation arises due to dislocation
motion, and the local random yielding model supplies the
relationship between dislocation theory and plasticity theory.
7t has been demonstrated that 1local random vyielding 1is
consistent with fracture mechanics. Irreversible
thermodynamics has been abplied to the local random yielding
model, so a wunified theory of local fracture including
irreversible thermodynamics, plasticity theory, fracture
mechanics, and dislocation theory is offered for scrutiny by

the scilentific community.
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Having reproduced results which are already widely
availlable 1is only of academic interest, However, the problems
of crack retardation, closure, loading history, and spectrum
loading continue to be subjects of research effort. Since the
entropy gain is history dependent, the dependence on loading
history is readily available from the local random vyielding
model, As crack growth is initiated, the material ahead of the
crack experiences varying plastic deformation history giving a
loading history dependent crack growth curve.

The process of crack retardation due to transient
overloads is an observed phenomenon without a rigorous
theoretical basis as yet. The local random yielding model of
plastic deformation is offered as such a theoretical basis for
retardation. The accumulation of variable entropy gain due to
plastic deformation ahead of the crack tip is likely to be an
important mechanism during crack retardation since transient
osverloads increase the residual compressive stress within the
plastic zone. Also, transient overloads drive the crack tip
into plasticly deformed material increasing the bluntness and
subsequently decreasing the local stress level at the crack
tip. Although time and budget constraints have precluded this
analysis in the present research, local random yielding
1s useful for such an analysis of retardation,

Finally, resonance, spectrum loading, and combined loading
can be readily evaluated using the local random yielding model
through appropriate definition of the entropy rate. The local
random yielding model is capable of providing such analysis.
Before 1nitiatinag such a comprehensive research program, it

wouid He necessary to deveirone suitable laboratovy experviments
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so  that data developement could proceed concurrent with the
thenretical analysis,

Since the local random yielding model for fracture is not
constrained to any particular material, cfforts should bhe
initiated to evaluate its suitability for a variety of
engineering materials. Only three parameters are required
which would he selected on the hasis o7 experimental data. The
variance of the log-normal local random yielding can be
selected either from internal friction data at high strain
amplitudes or tangent modulus. The critical crack sharpness
function is based on standard fracture toughness static tests.
Finally, the frequency dependence of the internal friction
would be determined from loss factor at low strain amplitudes.
Additional work would be needed to verify tha: these three
constants are sufficient to define any particular engineering
material.

One e¢xtremely appealing aspect of the 1local random
yielding model 1is 1ts universal application. Virtually any
engineering problem involving large-scale yielding where a
displacement gradient can be defined is a candidate for the
local random yielding model. One such candidate is the problem
of moving asperities traversing at high speeds over the surface
2t a marine seal ring. Reference[86] describes such an
application, where heat checking from cyclic asperity
»xcitation might indicate a thermodynamic analysis, and where

rack growth would initiate below the surface. Although not

“1cally addressed in this rescarch, the temperature

o 06 the local random yielding model can also be

St It is possible that the local random
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: yielding approach could result in simplified mathematics since 7

a displacement gradient is sufficient to provide the

i stress-strain field, with no limitations concerning plastic
deformation. Therefore, the local random yielding approach
would not be limited to hrittle failure. The preliminary

I analysis of laminated beams indicates that the local random

, ylelding can be successfully applied to anisotropic materials

as well. -]
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