
AD-Ai5i 289 ENTROPY PRODUCTION DURING FATIGUE AS A CRITERION FOR i/i
FAILURE A LOCAL THEO..(U) NEBRASKA UNIV LINCOLN COLL OF
ENGINEERING AND TECHNOLOGY P W WHALEY 5 DEC 84 TR-2

UNCLASSIFIED N88814-82-K-8884 F/G 28/11 NL

EmIIIIIIImml
smmmmhhmhhhml
mhhhhmmhhhhhhl
mmhhhhhhhhhhmlEIIIIIIImmuI
IIIIIIIIIIIIII



I L

1111 ' ' fl1.8

1.2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1963.A



* - - - - . . -oJ

CJ ONR Technical Report No.2 -

Final Report -

in Contract N00014-82-K-0804

U NR 229-046

ENTROPY PRODUCTION DURING FATIGUE AS A CRITERION FOR FAILURE

A Local Theory of Fracture in Engineering Materials
I

" "1

P.W. Whaley

College of Engineering and Technology

University of Nebraska-Lincoln

15 December 1984

Approved for Public release; distribution unlimited.

Reproduction in whole or in part is permitted for any

purpose of the United States Government.

Q'repared for:

MOFFICE OF NAVAL RESEARCH

e 800 N. Quincy St. M,1

~Arlington VA 22217

8.0

85 03 08 059-
- . . .



%ECU' .ITY CLASSIFICATION OF THIS PAGE (W?en Dct. E'nteed)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

ONR Technical Report No. 2 ;2

4. TITLE (and Subtitle) S TYPE OF REPORT & PERIOD COVERED

ENTROPY PRODUCTION DURING FATIGUE AS A CRITERION Final
FOR FAILURE 15 Aug 1982-31 Oct 1984
A Local Theory of Fracture in Engineering 6 PERFORMING ORG. REPORT NUMBER

Materials
7. AUTHOR(@) 8. CONTRACT OR GRANT NUMBER(e)

P. W. Whaley N00014-82K-0804

9, PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA 6 WORK UNIT NUMBERS

College of Engineering
University of Nebraska NR 229-046
Lincoln, Nebraska 68588

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

OFFICE OF NAVAL RESEARCH 15 Dec 1984
800 N. Quincy St. 13. NUMBER OF PAGES

Arlington, VA 22217 86
14. MONITORING AGENCY NA-,E & ADDRESS(II different from Controliing Office) 15. SECURITY CLASS. (of this report)

Uncl ass i fi ed

15a. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. Reproduction in whole.
or in part is permitted for any purpose of the United States Government.

17. DISTRIBUTION STATEMENT (of the abesact entered In Block 20, If different from Report)

1S. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neceeary and identilfy by block number)

Fatigue Crack Initiation Fatigue Theories
Fatigue Crack Nucleation Material Damping Measurements
Fatigue Damage Material Damping Theories
Fatigue Testing Fatigue Crack Growth

20. ABSTRACT (Continue on reveree side If neceseery and Identify by block number)

" "A mathematical model of fatigue crack nucleation initiation, and
propagation is described using irreversible thermodynamics to quantify the
damage caused by plastic straining. A mathematical model for local random
yielding is used to derive a local theory of fracture and fatigue crack
growth. The classical results of linear elastic fracture mechanics are
reproduced; necessary and sufficient conditions for crack extension, critical
stress and crack length, and sigmoidal shape of the crack qrowth curve.

F OPM

DD I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-LF-014-66014$SECURITY CLASSIFICATION OF

r
THIS PA&GE (Ien bet. Enteredr)



SI[CUITY CLAOIMFICATION OF THIS PAG9 (ibr Dwe Ented,)

........ However, this model is not limited to small-scale yielding, includes
treatment of loading history, and can be applied to crack growth retarda-
tion and closure as well as combined loading and spectrum loading.

SErCURITY CLASSIFICATION OF THIS PAGE(When DIS SnIOP, e)

-; ., " -" . ; . " .- . . . .. - .- . - -i.', - , '--... ".. . . . - . . Y " - - .-



e." W.

'TABLE OF CONTENTS

PAGE

LIST OF FIGURES ........................................... ii

NOMENCLATURE .............................................. iii

SUMMARY OF IMPORTANT RESULTS AND CONCLUS IONS ................. v

BACKGROUND AND LITERATURE SURVEY ......................... I

Irreversible Thermodynamics ........................ 3
Fracture Mechanics ................................. 6
Dislocation Theory ................................. 10
Plasticity Theory .................................. 12

A THEORY OF FRACTURE BASED ON LOCAL RANDOM YIELDING ........ 17

Stresses and Strains near a Crack Tip ................ 20

A Local Criterion for Crack Extension ................. 24
Fracture Toughness and Crack Blunting ................. 28

INTERNAL FRICTION BASED ON LOCAL RANDOM YIELDING ......... 31

Hysteresis Damping from Dynamic Plastic Strain .... 31

A Model for Fatigue Crack Nucleation ................. 36

CRACK GROWTH DURING CYCLIC LOADING ....................... 39

Growth of Small Cracks ............................ 42
Influence of Loading Order ........................ 44
Crack Growth With Mean Stress ..................... 48

DISCUSSION OF DAMAGE IN METALS ........................... 50

APPLICATIONS TO COMPOSITE MATERIALS ...................... 52

Damping in Fiber-reinforced Laminated Beams ......... 55
Fnergy Dissipation and Fatigue in
Thin Laminated Beams .............................. 58
Failure Modes in Thick Beams ...................... 65
Analysis of Fracture in Composites ................... 68

RECOMMENDATIONS AND CONCLUSIONS .......................... 71

REFERENCES ............................................... 76

DISTRIBUTION LIST ........................................ 83

6

i, '.-. ", .''. " . ." -. -- " .. ' -t~t~." * * i " . . . . .- ' ..- .'.. '. .. b- . '., .,, ? -- . ". "- -'



LIST OF FIGURES

F I(;URE PAGE

1. Spring-Mass-Friction Infinitesemal

Model for Local Random Yielding ....................... 18

2. Local Stress-Strain Relationship and

Strain Energy Density from Local Random Yielding for
High Strains Corresponding to Large Scale Yieldinq .... 21

3. Stresses and Strains by Local Random Yielding
near an Elliptical Hole in an Infinite Thin Sheet ..... 23

4. Critical Stress Versus Critical Crack Length for
Various Crack Sharpness During Local Random
Yielding .............................................. 26

5. Variation of Critical Crack Tip Bluntness With
Critical Crack Length ................................. 29

6. Definition of Loss Factor Defined by Dynamic Tangent
Modulus from Local Random Yielding Under Cyclic Load .. 32

a. Change in Probability Structure Due to Yielding
b. Definition of Loss Factor from Complex Modulus

7. Loss Factor as a Function of Frequency and Strain
Amplitude for Local Random Yielding in Aluminum ........ 35

a. Loss Factor as a Function of Frequency
b. Loss Factor as a Function of Strain Amplitude

8. Crack Nucleation Lifetime for Small Cracks
and Different Values of b/a ............................ 37

a. Parallel Dashpot (Common Stress) Representation
of Entropy Gain

b. Crack Nucleation Lifetime Based on Critical

Entropy Threshold for Various Crack Sharpness

9. Crack Growth Rate During Cyclic Loading Versus Stress

Intensity Amplitude for Different Fracture Toughness .... 43

10. Initiation of Growth of Small Cracks ..................... 45

I. Effect of Loading Variition on Crack Growth .............. 47

12. Crack Growth Rate Dependence On Mean Stress .............. 49

13. Stress-Strain relationships in Laminated Beams ......... 56

14. Laminate Damping Model Based on Local Random Yielding

Along with Data from G;ibson [721 ........................... 59

15. Fatigue Lifetime to 30 percent Stiffness Reduction for

Unidirectional and Cross-ply Laminated Reams ........... 64

16. Fatirlue Lifetime to 30 percent Stiffness Reduction for
Thick l{eams. ............................................ 67

i i i .

. . . .." <' . .. < ""4 -. " " ' . < . . . . .-. '- . - .- . " " " .- :. . -. -" _- .---... v.._. :. ."



NOMENCLATURE

ENGLISH:

a crack length

ac  critical crack length

bia crack tip bluntness parameter

b/alc critical crack tip bluntness parameter

c locus of ellipse and hyperbola in curvilinear

coordinates

D composite beam stiffness matrix

E Young's modulus

s dynamic storage modulus
S

Et  tangent modulus

f frequency

K c fracture toughness

K stress intensity factor
I

AKI  stress intensity amplitude

m exponent of stress intensity amplitude in Paris
crack growth equation

N cycles

Nf cycles to crack nucleation

P(c) random yielding probability distribution
function

S local entropy gain

slocal entropy rate

HI activation energyU

W local strain energy Iensity

[01 laminate stiffness matrix
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Greek:

strain

p plastic part of strainp

strain in curvilinear coordinates

Ac p plastic strain rangep

s dynamic strain amplitude

Y frequency exponent describing frequency
dependence of elastic loss factor

ri e elastic part of loss factor
e

reference elastic loss factor

rp plastic part of loss factor

ns total frequency-and amplitude-dependent loss
factor

0 critical remote stress
c

0max maximum stress on an elliptical hole

0 standard deviation of random yielding

r applied remote stress

0 dynamic stress amplitudes

phase between stress and strain from elasticloss factor

p P phase between stress and strain from plastic

loss factor

temperature

hyperbola parameter in curvilinear coordinates

ellipse parameter in curvilinear coordinates
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SUMMARY OF IMPORTANT RESULTS AND CONCII,1SINS

A local analysis of the crack growth problem is described

in this report. A microstructure model of sprinq-inass-friction

microelements is described such that the behavior of

dislocation populations is quantified by random yielding. The

probability distribution function describing the frictional

slip between microelements is used to define the local strain

energy density. Using a log-normal probability distribution

function for the yielding between microelements, a local

necessary and sufficient condition for unstable crack growth is

derived which is consistent with linear elastic fracture

mechanics. This is in contrast to the classical Griffith

criterion which is only a necessary condition. In addition,

the Griffith criterion holds for small scale yielding while the

local random yielding analysis applies to every deformation.

The familiar sigmoidal shape of the crack growth rate versus

stress intensity amplitude is produced, as well as the

increased crack growth rate of small cracks where plastic

deformation is significant. A threshold stress intensity

factor is defined theoretically, and the growth of small cracks

can be investigated directly. Also, crack growth dependence on

stress history is demonstrated, as well as crack growth under

mean stress. Since the local random yielding mathematical

model of crack growth reproduces the well known fracture and

crack growth relationships for metals, its credibility for

studies of crack closure and retardation, resonance, and

spectrum loading is validated. Its value as a mathematical

model of fatig,,e damage and fracture should be exploited.

v



The local random yielding model provides a relationship

between microstructure distributions and fracture mechanics.

Since the local random yielding provides a quanitative estimate

of the plastic strain, it also supplies a theory of plasticity

for fracture mechanics. In addition, since plastic deformation

involves changes of the plastic strain energy density the

local random yielding model can be expressed in terms of

irreversible thermodynamics: plastic deformation is

accompanied by an irreversible entropy gain which can be

defined in such a way as to reduce the second law of

thermodynamics to an equality. The necessary and sufficient

condition for unstable crack growth corresponds to a constant

plastic work for a given material, which for isothermal

processes is also a constant irreversible entropy gain.

Therefore, the local random yielding model for local crack

growth provides a common link between irreversible

thermodynamics, microstructure theory, fracture mechanics, and

plasticity theory. On the basis of these observations, it is

postulated that the local irreversible entropy gain at crack

extension is a material constant which quantifies fatigue

damage and crack growth. This critical local irreversible

entropy gain is called the critical entropy threshold and

represents the toughness of a material; that is, the amount of

irreversible damage a material can withstand before molecular

bonds break.

vi



BACKGROUND AND LITERATURE SURVEY

Fatigue damage is a serious threat to structural

durability. Structures designed for static strength

requirements can fail unexpectedly and catastrophically when

subjected to periodic loading. Although the precise mechanism

o' strength degradation during fatigue is the subject of

significant research efforts, substantial progress has been

made in evaluating the effect of cyclic loading on structural

durability. Miner[l] was one of the first ones to quantify

fatigue when he summarized constant-amplitude fatigue data by

the empirical relationship between the stress amplitude and

cycles required for failure. He hypothesized that under

variable amplitude loading, the life fractions of the

individual amplitudes sum to unity. Although this hypothesis

is inaccurate since loading history is important, Miner sums

are still used in some applications.

Many other researchers have investigated the various

aspects of fatigue damage since Miner's work was published.

Manson[2] related the material mechanical properties to the

particular form of the S-N diagram with some success.

Conc,;rrent with Manson's research, Coffin[31 investigated

fatigue for various strain levels of excitation and the

Manson-Coffin relationship was developed. Tavernelli and

Coffin[4] described an analysis of fatigue life for metals 0

under high amplitude cyclic excitation, providinq acceptable

agreement to data. More recently, emphasis has shifted into

two areas: First, since no fracture would be expected without

cracking, fracture mechanics analysis fills an important role

.n f tigur Life prorc'ion. Second. structures excited by

.. .. . . . " n , .. - .'i , , '
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cyclic loading sometimes respond in resonance which is strongly

influenced by the material damping. The relationship between

material damping and fatigue damage has become a very important

area of research.

Mason[51 was one of the earliest investigators to relate

damping data to the prediction of fatigue lifetime. His

experimental apparatus was capable of generating very high

strain amplitudes, and he related measurements of internal

friction to the fatigue lifetime in metals. This was a logical

approach since Granato and Lucke[6] had already developed a

model for internal friction based on dislocation theory. This

investigation of the relationship between internal friction and

fatigue related the energy dissipated during forced vibration

to breaking of molecular bonds in dislocation migration leading

to crack formation. Feltner and Morrow[7] used this

interpretation as the basis for a hypothesis that microplastic

hysteresis energy is a constant at fatigue failure. Although

they were able to achieve acceptable correlation with fatigue

data for steel by selecting parameters for the Manson-Coffin

relationship, Martin[81 later showed that microplastic strain

energy dissipated is not constant at fatigue failure, but

suggested that it increases with fatigue lifetime in a

predictable manner.

The energy transfer due to material damping during fatigue

and fracture is a fundamental irreversible thermodynamic

process. Perhaps one reason why the previous energy

relationships in fatigue have not met with general success is

that the theory of irreversible thermodynamics was absent from

the early analysis. In order to orovide a comprehensive
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analysis of the energy transfer during fatigue, the theory of

irreversible, non-equilibrium, nonlinear thermodynamics must be

addressed. The microplastic hysteresis energy is related to

dislocation theory, which is directly related to plasticity

theory, and both are related to fracture mechanics. The

remainder of this introductory section will be devoted to

surveying the literature in these four main areas related to

fatigue damage: (1) irreversible thermodynamics, (2) fracture

mechanics, (3) dislocation theory (4) plasticity theory.

Irreversible Thermodynamics

The area of irreversible thermodynamics is generally

recognized to be very important in the analysis of material

fatigue and fracture. In the case of fatigue, damage occurs as

a result of local accumulations of plastic strain energy.

Since plastic deformation is irreversible, it must be

accompanied by some irreversible entropy gain. In the case of

fracture, linear elastic fracture mechanics is based on the

analysis of energy released as a crack extends. There have

been some recent advances of plasticity theory based on

irreversible thermodynamics which can be used to quantify the

memory of plastic deformation.

For any irreversible thermodynamic process, the theory of

0 classical thermodynamics (including the Gibbs and Helmholtz

equations) must be applied very carefully. One very important

limitation of classical thermodynamics is that equilibrium is

implied. By definition, irreversible processes are

non-equilibrium in nature, and it is necessary to define

smaller intervals of time where chanqes occur slowly enough so

0I

" ...... ...
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that each small interval can be approximated by equilibrium.

In a recent survey, Germain, et.al.[9] summarized two current

views of irreversible thermodynamics. One view, rational

thermodynamics, asserts that introduction of thermodynamic

concepts into moving, continuous media requires a complete

rethinking and reformulation of classical thermodynamics. A

second view holds to the approximate validity of classical

thermodynamics near equilibrium for processes which change

slowly. It is necessary to consider which thermodynamic

variables are well defined and useful in non-equilibrium,

irreversible thermodynamic processes, and which variables

should be redefined. Reference [9] is a discussion of these

considerations and provides valuable insight for the

irreversible, non-equilibrium thermodynamic analysis of fatigue

and fracture.

The first and second laws of thermodynamics define the

energy balance and entropy function in classical

thermodynamics. The energy balance is generally based on the

energy equivalence of work and heat, while the entropy function

can be interpreted in a number of ways, depending on the

application. For closed reversible processes where the

beginning and end points are the same the net entropy gain is

zero. For open reversible processes where the beginning and

end points are not the same, the entropy gain is not zero but

is well defined by the second law of thermodynamics as a

function of the heat flux. In this case, the second law of

thermodynamics defines the permissible steady-state flow of

energy. In the case of open irreversible processes, the

reversible entropy forms a lower bound and the second law of

•*[

- -.- ' ?..% ~ A S.S...



5-

thermodynamics becomes a statement of accessibility. For

irreversible processes, the second law can be characterized in

terms of entropy as follows: the entropy function exists and

in the absence of internal constraints, the equilibrium state

is that state which maximizes the entropy[101. Irreversibility

is also sometimes quantified by the Caratheodory conjecture:

in the vicinity of an equilibrium state of a system there exist

other states which cannot be reached quasistatically by

reversible and adiabatic processes[10], [11], 1121. The

Clausius-Duhem inequality defined in Reference [12] can be

reduced to an equality by introducing the irreversible entropy

as in References [131, [141 and [151.

Considering the assumed energy equivalence of heat and

work implicit in the first law of thermodynamics, the

irreversible entropy term can be defined in different ways.

For example, in the case of viscoelasticity mechanical energy

is dissipated and so is lost in terms of available useful

energy. However, under steady-state vibration, the

viscoelastic solid continues to dissipate energy and undergoes

heating. As long as no permanent deformation occurs in the

material the heat gained by the solid in the temperature

increase is not an irreversible loss, since heat and work are

equivalent forms of energy. Granted, such low-grade heat is of

little practical value, but whether or not the process is

considered to be irreversible depends on the purpose of the

analysis and the definition of the entropy function.

It is widely accepted that the vast majority of dissipated

energy in vibrating solids is converted to heat and stored in
thetemperatreriefhsli.toghthsowgr

the temperature rise of the solid. Even though this low-grade "
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heat is lost in the sense that it can never be converted back

into useful work, it does no damage as long as the material

experiences no permanent deformation. For the purpose of

quantifying fatigue damage, only the entropy gain contributed

by the plastic deformation would be irreversible.

The methods of irreversible thermodynamics are fundamental

to the analysis of fracture. First, the energy release rate

during crack extension implicitly involves irreversible

thermodynamics [161. Second, the contribution of plastic

strain energy to the phenomenon of fracture is related to the

entropy gain [171. References [18] and [191 describe

thermodynamic relationships for creep damage and involve both

the theory of fracture mechanics and the analysis of plastic

strain. Burke and Cozzarelli[18] used a quantity called the

continuity which represents the reduced load-carrying area

during creep to define a damage state resulting from plastic

deformation. McCartney[191 applied a continuum energy balance

to creep, investigating linear and nonlinear fracture.

Irreversible thermodynamics is common in recent fracture

mechanics publications. For materials with high ductility

where small scale yielding does not apply, irreversible

thermodynamics is needed to investigate the plastic strain

energy near the crack tip. The literature concerning fracture

mechanics is discussed in the next section.

Fracture Mechanics

Fracture mechanics deals with stress-strain relations near

a crack tip in cracked solids in an effort to predict crack

growth and failure. This theory has its origin in the early
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werk of Griffith[16] who formulated a fracture criterion for

brittle materials. Using a stress analysis by Inglis[20], the

energy per unit thickness of an infinite plate before and after

the appearance of an infinitely thin elliptical crack was

defined by the relationship between the stress far away from

the crack and the stress at the crack tip. For brittle

materials the theory is a linear one involving the strain

energy release during fracture. Later Irwin[21] and Orowan[22]

extended this approach to more ductile materials where

plasticity effects can become significant.

Most current research is directed towards large scale

yielding where crack tip plasticity effects are significant so

that linear theory is overly conservative. It is necessary to

review the fundamental philosophy behind the theory of fracture

mechanics. Two main schools of thought dominate. First, the

energy release rate defined by Griffith[16] reduces the

fracture phenomenon to a global energy balance. Second, the

stress intensity factor is used to characterize the crack tip

stress in terms of the remote stress. For linear systems the

energy release rate and the stress intensity factor are

uniquely related and are equivalent. When plastic deformation

is significant, it is common to use the path-independent

contour integral defined by Rice[23] to investigate those

relationships. Again, for linear systems this J-integral of

Rice[23] is equivalent to the strain enerqy release rate

defined by Irwin[21]. For all fracture mechanics approaches,

the stress is considered to be singular at the crack tip for

linear systems[24], [25], 1261.



Thermodynamics has been established as an integral part of

fracture mechanics and several papers have examined those

thermodynamic foundations [271, [281. The global energy

balance represents a convenient mathematical tool for analysis

of the singular terms at the crack tip. Gurtin[271 showed that

provided the initial temperature is continuous at the crack

tip, the Griffith fracture criterion is a necessary condition

for crack initiation. Rice[281 related the elastic strain

energy release rate developed by Irwin to the rate of entropy

production at the crack tip. The difference between the Irwin

strain energy release rate and the Griffith surface traction

energy was defined as a thermodynamic force driving crack

extension. Using the first and second laws of thermodynamics,

the irreversible entropy (also called the entropy production)

was shown to be proportional to the thermodynamic force. This

entropy production can also be defined for irreversible

thermodynamic processes in such a way as to reduce the

Clausius-Duhem inequality to equality; the entropy production

is zero when the process is reversible.

In a technical note Bodner, et.al.[29] suggested that a

similar relationship holds for the crack propagation

relationship under cyclic loading. Izumi, et.al[301 attempted

to derive a plastic work relationship in the form of the Paris

4 crack growth law. Badaliance[31] defined crack propagation

rate in terms of the strain energy density range, which is

related to the Paris crack growth law for linear elastic

systems by the relationship between stress intensity factor and

strain energy release rate.

4
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When plastic deformation at a crack tip is significant

then linear elastic fracture mechanics does not apply.

Weertman[32] approached the case of large-scale yielding by

assuming that the material very close to a crack tip is

approximately elastic, and defining a true stress intensity

factor using the J-Integral. Batte, et.al.[331 provide a

discussion of various approaches to post-yield conditions,

outlining limitations of each of a variety of contour-integral

procedures. Chudnovskii, et.al.[34] have developed a number of

different path-independent contour integrals based on

irreversible thermodynamics which relate the entropy production

density to the stress singularity at a crack tip. Similarly,

Aoki, et.al.[35] approached elastic-plastic fracture problems

by the energy release rates associated with plastic deformation

near a crack tip. Path-independent contour integrals were used

to analyze the energy release rates associated with the

translation, rotation, self-similar expansion and distortion of

the fracture process region.

Weichert and Schonert[36] have made an important

contribution to the thermodynamics of crack growth by

investigating the heat generated at the tip of a growing crack.

They report substantial temperature increase near a crack tip,

providing support for the common assumption that most of the

energy dissipated during crack growth is converted to heat.

Considering the equivalence of heat and work assured by the

f irst law of thermodynamics, their work raises question as to

the source of the irreversible entropy (entropy production, or

excess entropy). Perhaps a more precise form for the

irreversible entropy durinq crack orowth would be a function of

S
]
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the plastic deformation, rather than the more (eneral

dissipation function which includes the effect of plastic as

well as elastic deformation.

It is clear that fracture mechanics involves principles of

irreversible thermodynamics. The Griffith fracture criterion

and the path-independent contour integrals are energy

relationships, as is the strain energy density function for

crack propagation. However, fracture mechanics is based on

empirical relationships prompting some researchers to examine

the micromechanical structure of materials in an attempt to

provide the theoretical basis for fracture. There have been

advances in dislocation theory providing qualitative insight

into the phenomena of fatigue and fracture. The next section

will summarize some of the literature related to dislocation

theory.

Dislocation Theory

While it is widely accepted that fracture cannot occur

without crackinq, the precise source of the crack nucleation is

not well defined; a fundamental assumption of fracture

mechanics is that flaws are always present. Fracture mechanics

theories formulated on the basis of continuum mathematical

models are based on homogeneous media, while dislocations are

known to exist on the microscopic level. Consequently, it is

important to re-examine fundamental assumptions. In

thermodynamics, the scale of the analysis is very important

since on a microscopic scale most solids are highly

heterogeneous due to dislocation distributions, and would

require a statistical thermodynamic analysis. However, for

: " . " . . , .--.-. .". . . ,.<% . . • • < - - • ,- ' , .



most materials it is reasonable to assume that on a macroscopic

scale an equivalent homogeneous continuum model can be defined

[91. The well developed principles of deterministic continuum

thermodynamics can then be applied using this equivalent

homogeneous model.

The quantitative relationship between micromechanics and

fracture mechanics is limited. Ghonem and Provan[37] have

described a probabilistic micromechanics theory of fatigue

crack nucleation, crack initiation, and crack propagation.

Crack motion is defined in terms of a Markovian stochastic

process defining the probability distribution of fatigue.

Three domains have been defined in this approach, in contrast

to the traditional microscopic and macroscopic views. A

microelement is defined as the basic unit of the material

system, corresponding roughly to the microscopic scale. The

mesodomain consists of an intermediate region considered to be

spatially homogeneous, but containing a statistically large

number of microelements. Finally, a macrodomain is defined as

the entire material system. A macroscopic scale would be

somewhere between a mesodomain and a macrodomain.

References[37] and [381 are important since the analysis of

stochastic processes in micromechanics is addressed.

Thermodynamic relationships involving dislocations are

described in References [39], [40], [41], and [421. Majumdar

and Burns[39] used the microscopic scale of dislocations in an

analysis of plasticity near a crack tip. They derived stress

intensity factors from dislocation distributions. Hirth,

et.al.[401 interpreted path-independent contour integrals as

virtual thermodynamic forces representing the variation of the
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free energy of a system with moving defects. Kelly and

Gillis[41] analyzed dislocation populations to derive plastic

strain rate, since plastic deformation arises from movement and

generation of dislocations. Finally, Khannanov[421 used

irreversible thermodynamics to characterize plasticit; in creep

deformation.

Tanaka and Mural43l calculated strain energy density using

a dislocation distribution giving the energy required for crack

initiation. A hysteresis loop was defined and a fatigue

relationship consistent with the Manson-Coffin equation was

derived. Good qualitative agreement to data was described, but

the generalization to fracture mechanics relationships was not

provided. Although good agreement to experimental stress

intensity factors was reported, the micromechanics does not

permit generalization to fracture mechanics parameters at

present.

The last area in this li-terature survey is the area of

plasticity theory. The plastic strain energy is directly

related to irreversible thermodynamics and is an important

consideration in fracture mechanics. Plastic strain has also

been quantified by accumulations of dislocation pileups.

Therefore, it is necessary to consider plasticity theory as it

relates to irreversible thermodynamics, fracture mechanics, and

dislocation theory.

Plasticity Theory

Plastic deformation is directly related to the

irreversible thermodynamics since irreversible processes are

always accompanied by a non-negative entropy production.

4
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Likewise, plastic deformation is a fundamental part of the

theory of fracture mechanics since for most structural

materials the high local stresses near a crack tip have a

significant plastic contribution. Finally, plastic deformation

is an important part of the analysis of micromechanics since

movement of dislocation populations can be related to plastic

deformation[44].

Reference [451 describes variational principles in

plasticity and elasticity, defining unique properties of

plastic deformation which complicate the analysis. First,

plasticity is inherently a nonlinear theory. Second, while

elastic processes usually involve well-defined mathematical

functions, in many cases the plastic deformation is dependent

on the loading history. This means that stress is not a unique

function of strain, but also dependent on the memory of plastic

deformation. Finally, although stress is a function of strain

in elasticity theory, when plastic deformation is considered

strain rate must also be included, as in the flow theory of

plast city.

Although some metallurgists include the phenomenon of

anelasticity in the class of nonlinear processes, a simple

example from dynamic systems theory provides an alternative

interpretation. When a dynamic force is applied to a spring,

the resulting deformation will be in phase with the applied

load. When a linear dashpot is included in series with the

spring, the resulting deformation will lag the applied load.

This lag results in an instantaneous phase shift between force

and deformation which renders them non-proportional at that

instant. However, the orocess is linear, and the phenomenon of

.I:~
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anelasticity is an analogous phase shift between stress and

strain at low strain levels. This phase shift is a function of

the frequency of the applied load, and under sustained

steady-state loading results in dissipation of energy, qiving

rise to a heat flux. However, this anelasticity is linear and

does not involve plastic deformation.

One very simple physical model by Whiteman[46] views

plastic deformation as the random frictional slip between

microscopic yielding elements. This model can be used to

define a local quasi-static stress-strain relationship and a

hysteresis loop under cyclic loading. In most analytical

approaches, plastic deformation is assumed to occur when the

applied stress exceeds the yield stress. This yield stress is

usually defined by the permanent offset experienced from a

certain applied load, but the phenomenon of yield is not a

discrete occurrance. The traditional definition of a yield

surface, or plastic zone near a crack tip, assumes yield to be

a discrete process. Below the yield stress the response is

totally elastic, and above the yield stress the response is

suddenly plastic. The random yielding model by Whiteman[46]

mentioned above predicts a gradual increase in plastic

deformation with increased strain. Since this approach is

described in detail in the next section no further elaboration

* is warranted here, except to note that this simple local random

yielding model has a theoretical basis in dislocation theory

and provides valuable insight into fracture mechanics.

0 Valanis[47] has also derived a theory of plasticity

without defining yielding as a discrete process. In his

approach, the principles of irreversible thermodynamics are the
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basis for a theory of plasticity based on the concept of

intrinsic time. This intrinsic time is a function of the

plastic strain increment and is assumed to be a measure of

damage. Valanis[48] calls this theory of plasticity

endochronic, since the intrinsic time is used to predict

structural durability. This approac', provides o(oo(l agreement

to strength data, and can be used to define a hysteresis loop

and fatigue damage. The foundations in irreversible

thermodynamics lends a rigorous mathematical interpretation to

this approach.

Reference [141 describes another approach to plasticity

based on the principles of irreversible thermodynamics,

including a brief review of various theories of plasticity.

Although a discrete yield state is assumed, the second law of

thermodynamics is expressed by the rausius-Duhem inequality.

The relationship between the entropy state and heat flux is

stated in terms of an inequality relationship, where equality

corresponds to a reversible process. The inequality holds when

the process is reversible, but can be reduced to an equality

using the entropy production (irreversible entropy).

Plasticity is described using this irreversible entropy

contribution, and memory and combined work-hardening are

described.

One final plasticity analysis warrants discussion here

since it involves dislocation theory [49]. The plastic stress

field near the crack tip is modeled by dislocation pileups on

slip planes oriented along symmetric lines branching out from

the crack tio. These dislocations distributions are used in

the analysis of small-scale yielding, prediction of crack

LS
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opening displacements, and fatigue crack growth. The residual

plasticity of prior cycles is analyzed, and a theory of crack

closure is proposed.

It has been demonstrated that the analysis of fatigue and

fracture phenomena is interdisciplinary, involvinq numerous

related mechanisms. This report describes a fundamental

approach to structural durability which is consistent with the

principles of irreversible thermodynamics, fracture mechanics,

dislocation theory, and plastic deformation. A theoretical

basis for fatigue crack nucleation, initiation, and propagation

is proposed, as well as fatigue crack growth under periodic

loading. In the sections to follow, a local analysis of crack

tip stresses and strains is described. An alternate form of

the Griffith energy relationship is proposed in terms of strain

energy density at the crack tip. The classical singular form

of the linear stress is shown to hold for the strain, but the

local stress is always finite. A hysteresis model is described

which leads to crack growth identical in form to the Paris law.

Therefore, a theoretical basis for the largely empirical Paris

relationship is provided. Finally, a theoretical basis for

crack growth under combined loading including resonance is

demonstrated.

0 :: : --:i!i: : :::::::: ::. .: _ _! :: : - : :: J : , -- : : .
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Th st-ress near the tip of a arwi-j cr-ck is known t,) be

orders of magnitude larger than the ro-,ote stress in many

cases. According to the theory of linear elastic fracture

mechan ics, the stress at the tip of a sharp crack is

;ingu ar501. A more precise estimate of the stress magnitude

requ i r-s ,ionW cons iderat ion of crack blunt ing due to

plasticity, but qualitative understanding can be gained through

preliminary analysis of the linear stress concentration factor.

For an infinite thin sheet containing an elliptical hole

subjected to a uniform remote stress, the maximum stress on the

edge of the hole is [50]:

I + 2(a

max r b

where b/a is the ratio of the ellipse minor and major axes and

re oresents a quanitative measure of crack sharpness. For a

circular hole, u a 3u . As b/a a-nroaches zero the crackmax r

1)ecome:-, infinitely sharp and a approaches infinity. The
Iax

n.-: thmoti ca ;- )iodel for local random yield'inq is based on the

analjsis by Whi. teman.461 and '.ends insight i:ito local yielding

at j crack t-ig due to such large stresses. The basic element

of the model- is a block with a linear sprin- resting on a rough

surface, shown in Figure Ia. When load is applied to the

spring, the F-ictional force counteracts th I aplied load and

-. " •• . • - .'. - .-- - - • ...-. -. ... ".-' -" -. ..'. -. - -.'. . " . -
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an elastic relationship exists until the maximum friction force

is exceeded. Higher forces result in unlimited displacement

giving perfectly plastic deformation. Now consider a

statistically significant ensemble of such elastic-perfectly

plastic elements interconnected as shown in Figure lb, with the

yield points randomly distributed. The percentage of elements

yielding at a particular applied strain is characterized by the

probability distribution function, P(E), in Figure Ic. For

small strains, very little yielding occurs and the response is

elastic. For high strains, yielding occurs and the response

includes plastic deformation. Whiteman[46] proposed a

log-normal distribution for the plastic strain based on tangent

modulus data in aluminum. When the mean log strain is zero,

the mean plastic strain is unity. Thus, even though the total

strain may approach infinity consistent with fracture mechanics

theory, the plastic strain is finite and therefore the stress

is finite. Prager[51] has also used this model as the basis

for elastic-plastic stress-strain relations, although he

apparently was not aware of the work by Whiteman. The

probability distribution function is integrated for positive

strain values only since the log function is undefined for

negative arguments, and as the strain approaches zero, the log

strain approaches negative infinity. Then the mean log plastic

strain is zero, corresponding to unity plastic strain.

Therefore, the stress is finite although the local strain may

approach infinity. The log variance is 00, which physically

represents the amount of scatter in the plastic strain at

fracture.
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Consider the local yielding due to an incremental strain

de resulting in an incremental stress do. The elastic strain

originates from those elements which have never yielded:

C

d = dE[l - f P(n)dr]
e0

The plastic strain comes from those elements that have yielded:

dE: = P( O)de

p

Since the total strain is the sum of the elastic and plastic

contributions, it is possible to calculate the stress:

do = E(dSe + dep

Whiteman[46] derived the following equation for the local

stress-strain relationship in the presence of random yielding

based on these concepts:

0 E£[l-JP(n)dn] + EjnP(n)dn. (2)
0 0

Equation (2) represents the mean stress and is plotted in

Figure 2, along with the total strain energy. Figure 2 shows

that the local strain energy density reaches a peak at some

high strain level where the stress begins to decrease rapidly

because of plasticity. These relationships are to be analyzed

in more detail later, but the phenomenon of cracking is

described first.

Stresses and Strains Near A Crack Tip

Inglis[20] solved for the stress-strain field near an

elliptical hole. This stress analysis by Inglis formed the

basis for Griffith's analysis of strain energy release rate.

Ll ! , . i . * i .L . .i i i !.. . .. . . .. . . .
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Curvilinear coordinates were used to define a family of

ellipses intersecting with a fa!nily of hyperbolas as shown in

Figure 3. The hyperbolas always 'htersect the ellipses at right

angles providing a convenient way to characteriz9 stresses and

strains around an elliptical holer52. Us [n(: the displacement

field given in Reference[531, the displacement gradient at the

surface of the hole is:

u ' ihcc  (cosh2F. + cosh2F 0 - cos2v)

11 E (cosh2r, - cos2v) 2

In equation (3) , ar is the applied stress far away from the

hole, and - is the curvilinear coordinate defining the hole
0

surface. When 0 approaches zero, the Griffith crack is

defined.

The maximum stress always occurs at the ends of the major

axes of the elliptical hole [521, so for purposes of this

analysis of crack tip stress and strain, v = 0. The strain

then increases as the distance to the hole is decreased,

consistent with linear elastic fracture mechanics; for elastic

deformation, crack tip stresses are singular according to the

inverse square root of the distance to the crack tip.

Combining the stress function given by equation (2) with the

displacement gradient given by equation (3), the stress and

strain are plotted against distance from the crack tip in

0 Figure . Although for the local random yielding model the

strain is singular at the crack tip for an infinitely sharp

crack, the stress is always finite. For blunt cracks

0 corresponding to large b/a, the crack tip strain and stress

decrease as shown in Figure 3.
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A Local Criterion for Crack Extension

The Griffith criterion for crack growth is that the strain

energy release rate during crack extension balances the

decrease of surface traction [21]. Figure 2 includes a plot of

the local strain energy density and reveals a peak at high

strains. This peak corresponds to the maximum local strain

energy density without local unstable crack growth, since

higher strains cause a decrease of strain energy density, an

unstable condition. Therefore the local random yielding model

includes a criterion for local stability. The maximum stable

strain is calculated by setting the derivative of the crack tip

strain energy density to zero:

awF- It  = 0 (4)

Note the distinction between equation (4) and the Griffith

Criterion. Equation (4) is a local condition resulting from

random yielding. The stability is characterized by taking the

second derivative:

32W> 0, local minimum
-- It  = 0, inflection point (5)
at2  < 0, local maximum.

The condition that the derivative is zero and the second

derivative is negative therefore represents a necessary and

sufficient condition for local crack extension. This local

0 relationship supplements the Griffith criterion, which has been

demornstrated to be a necessary condition [131. Note that a

local crack growth does not necessarily imply global

0 catastrophic fracture.
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In Figure 4, the above necessary and sufficient conditions

are used to predict fracture as a function of crack length

compared with linear elastic fracture mechanics. Figure 4

includes different values for b/a, which represents the

sharpness of the crack. For small b/a, the crack is very

sharp, corresponding to a very brittle material. Recall that

for the Griffith crack b/a = 0, and the crack tip strain is

infinite. For large values of b/a, the crack is blunt because

of yielding at the crack tip. If the crack tip is sharp enough

the maximum strain energy density occurs away from the crack

tip, and the unstable crack will grow and the crack will blunt

until the minimum stable length is reached. If the crack tip

is blunt enough, the local maximum strain energy density is

never reached and that particular crack length and remote

stress are stable. Figure 4 shows the combinations of remote

stress and crack length where the maximum local strain energy

density occurs at the crack tip. Note that some particular

critical value of b/a provides consistent agreement with linear

elastic fracture mechanics, while others indicate more or less

crack tip plasticity.

The result summarized in Figures 3 and 4 is consistent

with the principles of irreversible thermodynamics. The

principle of maximum entropy production states that the stable

equilibrium condition is one for which the entropy production

is maximized[ll]. The entropy gain during quasi-static

fracture can be calculated from the plastic part of the strain:

S = f adcp/6 (6)
f 7
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The principle of maximum entropy production is therefore

equivalent to the above stability criterion for isothermal,

quasi-static fracture. The peak in the strain energy density

curve occurs at some high strain,%, which is constant for a

particular material. Furthermore, the entropy gain for the

quasi-static fracture under isothermal conditions is a

constant.

Reference[30] describes an energy balance during fatigue

crack growth. The assumption is offered that if a propagating

crack is stable, then the crack extension may be close to a

reversible one. This assumption appears at first to be

contradictory since crack growth is an irreversible

thermodynamic process and therefore must be accompanied by an

entropy gain, but when the relative values of the energy terms

are considered the contradiction is resolved. Certainly crack

extension is irreversible, but the primary energy transfer can

be approximated by the local energy release at the crack tip

and the corresponding decrease in strain energy of the

material. Reference[36] has verified that there is a high

concentration of energy transfer at a crack tip through

measurements of very high local temperatures at the crack tip.

The mathematical model for crack tip plasticity has been

demonstrated to provide results consistent with linear elastic

fracture mechanics. Figure 4 demonstrates that for some value

of b/a, the necessary and sufficient conditions for local crack

growth given by equations (4) and (5) agree with the fracture

toughness predicted by linear elastic fracture mechanics.

However, Figure 4 shows that h/a would be variable, since crack

b-unting due to pasticity at - .a re ids crack gIrowth.

6 duo- t . ., a .- .
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The next section quantifies the crack tip bluntness function

during quasi-static, isothermal fracture.

Fracture Toughness and Crack Blunting

The Griffith criterion was originally developed for

brittle materials and sharp cracks, giving erroneous results

for ductila materials and blunt cracks[21]. It is well-known

that crack tip plasticity has the effect of blunting the crack

and retarding crack growth[21] . This mathematical model for

local yielding can be utilized to quantify that blunting

relationship. Figure 4 has established that constant crack

bluntness, b/a, gives a curve which intersects the critical

stress curve at some crack length. Furthermore, Figure 4

demonstrates that as the remote stress increases and the

critical crack length decreases, the crack tip becomes sharper

since b/a decreases. It is therefore possible to solve for the

crack tip bluntness as a function of crack length which

corresponds to the fracture toughness shown in Figure 4.

Figure 5 is a plot of the critical value of crack tip

bluntness, b/alc required to make equations (4) and (5)

predict local unstable fracture in agreement with linear

elastic fracture mechanics for various different values of

fracture toughness. The functional relationship between

critical crack sharpness, critical crack length, and fracture

toughness based on Figure 5 is:

bI C (K 1.5 a 0 . 2 5  (7)

aC c
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Figure 5 provides qualitative insight into the mechanism

of crack extension. For sharp cracks, the crack tip yielding

is less stable and cracks are more likely to grow. For blunt

cracks, yielding at the crack tip is diminished since

aw
V->0

and the crack extension is stable. That is why large transient

overloads retard crack growth; there is a local increase in

crack tip plasticity causing the crack to be blunted and

increasing b/a. The influence of low-level cyclic loading

appears to be one of sharpening the crack: that is, decreasing

b/a until the crack tip is sharp enough for unstable crack

growth.

The relationship between crack blunting and critical crack

length includes two physical processes: first, the fracture

toughness is a material constant which characterizes the

ductility of the material. Second, the loading history affects

crack bluntness as the material remembers large transient

overloads. The constant C contained in equation (7) would be0

determined on the basis of fracture toughness data as shown in

Figure 5. The standard deviation of random plastic strain, cot

is the other parameter to be determined from data. Whiteman

[461 used tangent modulus data to model the random yielding as

log-normal. A new mathematical model for material damping can

also be used to determine 00 and forms the basis of the

analysis of fatigue and fracture during cyclic loading. This

new material damping model is described in the next section.
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INTERNArL FRICTION BASE )ON LOCAL RANDOM YIEL)ING
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during fatigue represents a retardation mechanism. A large

overload inhibits any further yielding until a subsequent

higher overload occurs or the crack tip becomes sharper as

fatigue damage accumulates to the critical irreversible entropy

level.

Figure 6a indicates the probability distribution function

of plastic strain including the maximum previous strain o and

some sinusoidal strain amplitude E When a cyclic load ofS

amplitude s Eo is applied, the hysteresis loop defined by

Whiteman [46] results, as ..ell as the loss factor of Reference

[55]. The storage modulus, which is the in-phase component of

the dynamic strain is:

Es s

Es = Ei - P(- s)dn/2 + n P(T2hs)dn /2E] (9)
-£s -Es

S S

When subsequent loads are applied, the previously yielded

elements are in compression, and energy is expended in

deforming back to the original position. This contribution to

the hysteresis energy is the irreversible entropy contribution,

since it is a function of microplastic deformation. Large

transient overload significantly increases the plastic zone,

putting the region near the crack tip into compression, and

retarding crack growth due to the energy required to overcome

the compressive strains.

The loss factor derived in Reference 154] is a critical

part of this analysis so is summarized here. The storage and

loss moduli can be used to express the dynamic stress-strain

relationship and are represented on the complex plane in Figure

6b, where larce -ansient loads may affect the tangent modulus

I
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because of y ie Id i ng [461. Therefore, the storage modulus under

large cyclic loads is:

0 Ls CS
o S gS

Es I P(n)dr1 [1 - nP(---)dn /2 + , P( -o)dI /2sL 10
2 2

s S

Typical loss factor data for aluminum along with values for a.

are presented in Figure 7b[551. Loss factor is related to the

storage modulus according to:

=[ + _ 2 - F 2(i

Excellent agreement to data is indicated by fitting just one

parameter, the variance of random yielding, o0

The parameter ne in equation (11) is the anelasticity term

representing internal friction at low strain levels. This

component is not related to the plastic strain and is not a

function of the strain level. Rather, it is a function of the

frequency and is physically related to the diffusion

process [561. Figure 7a is a plot of low-strain loss factor

versus frequency, and can be related to the activation energy

and temperature. From Figure 7a,

rL n (/f,)

* Now from Reference [6], the temperature and frequency

dependence are related by:

U : i/ . - 1// ,1 1 o [[/

0"w~reL,)r n the .:equ'tncv :,pn.,dence of the loss factor indicated

i .r ;r T  
S {,,ivallent to the, temperature dependence of

a C i V t*r 2 r l y

"---.. -.- --.- "-. -",
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A Model For Fatigue Crack Nucleation

The irreversible thermodynamic analysis of local failure

under cyclic loads is summarized in Figure 8. The critical

irreversible entrooy threshold of isothermal fracture given by

equation (6) is a constant at t',e peak strain energy which has

been demonstrated to be a nocessarv and sufficient condition

for crack extension, and consistent with the well-known

principle of maximum entropy production. In the case of

sinusoidal loading, the irreversible entropy density per cycle

is derived from elastic and plastic strain combined in parallel

as indicated in Figure 8:

2

ds - T E tns [(
dN 6 [A E s (12)

Then for cyclic loading the irreversible entropy rate is

integrated until the entropy exceeds the critical entropy

threshold, which is the same criterion for critical crack

length demonstrated in Figure 5.

Combining equations (6) and (12), the number of cycles

required for the local entropy gain to exceed the critical

entropy threshold is defined:

rEts 2 [AF / sNf Sf (13)
*t 5~ p s =

Figure 8 includes a plot of Fs against Nf and resembles the

well-known S-N diagram with two notable exceptions: First,

0 local strain level is indicated versus cycles to failure rather

than remote stress levels. Second, failure is defined as the

initiaition of growth of cracks on the order one micron

representinq a prediction of crack nucleation[54]. For very

• "'~ ~~~~~~~~~~ ~~~~~~~.".. ..-....... " . .. ...... -i' "' "" " L". . .. . ,
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small, sharp cracks, linear elastic fracture mechanics does not

apply, since the initial crack size can be arbitrarily small

and plastic deformation would dominate[50]. The critical

entropy threshold of local yielding provides a theoretical

prediction of local brea':age of molecular bonds giving the

sudden appearance of a !-icroscopic crack where no crack

previously existed.

The data indicated in Figure 8 were collected on initially

crack-free base-excited cantilever beams driven at resonance

while enclosed in a vacuum chamber [551. In this way, the

undesirable influence of dissipation due to viscous damping in

air was eliminated. The fatigue test was stopped when the

resonant frequency decreased by a small amount, usually about

one percent. After such a small decrease in resonant

frequency, a very small crack was just visible at the base of

the cantilever beam where the strain amplitude was maximum.

Crack bluntness of b/a = 10 - provides good agreement to the

experimental data and represents the formation of a crack in

previously unblemished specimens.

Thus far the mathematical model for local random yielding

has been demonstrated to be consistent with fracture mechanics

theory, including a function for crack tip blunting due to

plasticity. In addition, the mathematical model for local

random yielding forms the basis for a new model of hysteresis

da(m)inq. Agreement to loss factor data by selecting just one

*arameter is demonstrated. The model also provides a

prediction for the sudden appearance of a crack. In the next

section, subcritical crack growth rate under cyclic loading is

analyze.

0 " ' "" ' ' .? ' - -'-'- - . -? .? -" " . . - - . ." -'- . - ' .? .? -'' .? .



W '- V -

39

CRACK GROWTH DURING CYCLIC LOADING

In the theory of fracture mechanics, energy transfer

during local yielding at a crack tip has been characterized by

the stress intensity factor for linear elastic materials. The

stress intensity factor is a parameter which defines the local

increase in stress at a crack tip, and for linear systems is

directly and uniquely related to the strain energy release

rate. When there is significant plastic deformation at the .

crack tip, this relationship between stress intensity factor

and strain energy release rate is no longer valid. The

J-integral is usually used to investigate the effect of plastic

deformation, but with limited success since the plastic energy

release is not concentrated at the crack tip. An alternate

approach to crack growth is described here, where local

yielding at a crack tip is analyzed. The local random yielding

model can be used to keep track of the plastic deformation

history of every point near the crack tip.

The analysis of crack extension during cyclic loading has

been based on the stress intensity factor range in the theory

of fracture mechanics. However, the effect of mean stress is

still not adequately described, nor is the influence of

resonance or combined loading. In this research, the local

random yielding model of plasticity was used to derive a local

hysteresis relationship for crack nucleation based on

irreversible thermodynamics.

The local strain energy per unit volume at a crack tip can

be calculated using equations (1) - (3), including both elastic

and plastic contributions. Equations (4) and (5) represent

necessary and sufficient local contritions for a crack to grow
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under quasi-static conditions. The strain energy density is a

constant at local yielding as is the entropy defined by the

plastic part of the strain enerrv. For cyclic loading, there

is still some irreversible energy transfer quantified by the

plastic deformation. As a crack grows by some infinitesemal

amount, the strain energy density at the crack tip changes.

Rice [281 has quantified the ireversible energy release rate

as the difference between the Irwin energy release rate and the

elastic energy required to separate the crack surfaces. The

entropy production was defined by the product of this

difference and the crack growth rate. This is equivalent to

the rate of change of the local strain energy density, W, at

the crack tip where:

E

W = ade . (14)
0

For cyclic loading, the energy release per cycle of loading is:

aW 3a as (15)
a aN N

Equation (15) is based on the relationships postulated by

Bodner, et.al. in a technical note [291 and Sih and Moyer[571.

Since the plastic deformation also quantifies the local entropy

production, equation (15) is an entropy balance which says thatK plastic deformation is absorbed in the crack growth mechanism.

Equation (15) is equivalent to the second law of thermodynamics

as defined by Gurtin [271.

Now substituting equation (12) into equation (15), the

crack growth relationship is:

hi I
Li

&-NK -*...- - - .. ..* . . . .. . . . .. . ..-
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2

3a TEn sE [AE /F sPs (16)
3N 3W/ 9a

Equation (16) is a theoretical crack growth relationship which

can be calculated on the basis of two physical constants. The

variance of random yielding, a o is selected on the basis of

loss factor data collected in vacuum [55] or tangent modulus

data 146]. The crack sharpness, b/a, is determined from

fracture data as summarized in Figure 5.
2

Por the case of small plastic deformation, 3W/aa K I /E,

and equation (16) can be reduced to:
2

da nE [AE: /C

2 A K I

dN r2 a

r

where e is the strain level far away from the crack. When

the strain level is low enough, Aep approaches zero and the

existance of a threshold crack is indicated. Crack sharpness

is implicitly included in the local strain level, e , and

damping, ns" For intermediate loading, the loss factor and

plastic strain fraction can be approximated by powers of

sinusoidal strain level, and the crack growth per cycle can be

expressed by stress intensity factor raised to the power m.

Equation (7) quantifies the dependence of b/alc on Kc as

demonstrated in Figure 5, where Co = 1.0 x 10-6. For most

engineering applications the loading would be much less than

4 the critical level, and crack growth from subcritical loading

is needed. From Figure 5, with a = constant, it is clear
c

that:

.I.' ..- i

• - .. .. . .0- .
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b b
a a c [ac/a] 0 . (17)

Equation (17) is a mathematical model for the increasing

sharpness of cracks as load increases. When the stress is

equal to the critical stress, tqe critical crack sharpness

results. For low stress, the crack becomes blunt since b/a

increases. In the case of large transient overloads, ac

represents the maximum stress of the load history and equation

(17) quantities the crack blunting and resulting retardation of

crack growth. Equation (17) is a statement of stability

margin: for subcritical stresses, the lower the stress, the

blunter the crack tip, and the more stable the resulting crack

growth. The effect of the blunt crack for stresses below the

critical stress is to increase the slope of da/dN since crack

bluntness retards crack growth.

Figure 9 is a plot of crack growth rate as a function of

AKI for various values of fracture toughness. Figure 9 is a

significant result of this research since it represents crack

growth in the presence of cyclic loading as a function of

fracture toughness on a theoretical basis. Figure 9 yields an

intermediate exponent of m = 4.87, comparing favorably with the

typical form of the Paris crack growth law.

Growth of Small Cracks

Thus far a theoretical basis for crack propagation and

nucleation has been postulated. Figure 8 indicates the number

of cycles required to initiate growth of cracks on the order of

one micron, and Figure 9 describes growth of large cracks. The

mechanism of growth of very small cracks involves significant

- .'. " .. ... "• v,* " ."' " "" " " "*,,- <
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plasticity and the crack bluntness can be modified accordingly.

The growth of such small cracks has a practical application in

turbine engines where very small cracks inight escape

inspection, but subsequently grow to critical size. The

comparison to linear fracture rtechanics implies the crack

sharpness relationship indicated in equation 7. For very short

cracks, plasticity effects would not be negligible, and

deviation from linear theory would be expected.

Figure 10 is a plot of crack growth rate for various small

cracks. The logarithm of critical crack sharpness was modified

to vary quadratically with the logarithm of critical crack

length as shown in the insert of Figure 10. This assumption is

logical since the singular form of the crack tip strain changes

for very short cracks. The trends outlined in References [583,

[59], and [60] are substantially reproduced. Figure 10 shows

both an increased crack growth rate for small cracks, and the

existence of a threshold which is dependant on fracture

toughness. Equation (16) substantiates the theoretical basis

for a threshold, since the plastic strain fraction goes to zero

as applied load goes to zero. The significance of Figure 10 is

that very short cracks involve substantial plastic deformation

and therefore grow much faster than predicted by linear theory.

* Influence of Loading Order

The fracture criterion based on local random yielding

provides results consistent with well-known results in linear

elastic fracture mechanics. It is clear that crack blunting is

an important mechanism during crack growth since the growth of

blunt cracks is known to *e lower than that of sharp cracks.
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For the case of cyclic loading equation (16) can be easily

integrated to yield crack length versus cycles of loading.

However, it is necessary to consider the change of crack

sharpness with time during cyclic loading. The crack starts

out blunt according to equation (17) and sharpens to the

critical value expressed as equation (16) at failure. Since

the entropy function is a measure of irreversibility (damage),

the critical sharpness is postulated to occur when the local

entropy gain at the crack tip reaches the critical entropy

threshold:

b = -1 c 1 - (a /)0.5 s + [a /(O]0.5 (18)
a ac c C f C

For different order of loading, equation (18) could be applied

piecewise to generate crack sharpness as a function of time.

The memory of plastic deformation history expressed in

equation (18) provides a valuable tool for investigation of

variable loading and spectrum loading. Figure 11 is a plot of

crack length versus cycles of loading for two sets of three

identical average loading histories with diftetent levels in

different order. Figure 11 clearly shows that the order of

loading is very important to accurately predicting the useful

life of the structure. Figure II is significant since crack

growth dependence on loading history is demonstrated on a

theoretical basis. Figure II is an approximation, however,

since the plastic deformation history of the material ahead of

the crack will effect the crack growth rate. For brittle

materials where such plastic deformation history is a small

effect, this approximation would be expected to be quite good.

However, or more ductile materials, plastic deformation

.7'
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history of each point ahead of the crack would significantly

influence the crack growth.

Crack Growth With Mean Stress

Figure 12 shows the effect of mean stress on crack growth.

For hiqher mean stress, the overall level of yielding is higher

and the slope of the crack growth rate curve decreases. In the

case that the static load is much greater than the cyclic load,

the static fracture toughness would dominate. The general

trends summarized in Figure 12 are in substantial agreement

with the results given in References [61] and [62] with

increasing mean stress increasing the crack growth rate.

The influence of mean stress is commonly described in

terms of the R-ratio in fracture mechanics terminology. Figure

12 was prepared consistent with that terminology using the

combination of static and dynamic strain levels demonstrated in

the inset to Figure 12. However, since a local relationship

was used, the hysteresis loop was defined using Figure 6 where

the cyclic strain amplitude was different from the maximum

strain. Using the inset of Figure 12, Eo=Ec+Es , and resulting

R-ratio is defined to be:

E -E

c s
R -

:+~
c s

Reference '1631 describes dependence of crack growth on R-ratio

for low s;'-_ ess intensity factor. Figure 12 provides a

theoretical basis for the experimental results given in

Reference [631

0.
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DISCUSSION OF DAMAGE IN METALS

A local theory of fatigue and fracture for isotropic,

Z homogeneous engineering materials has been described. Static

fracture, crack growth under cyclic combined loading, and

loading history have all been expressed on a theoretical

foundation of irreversible thermodynamics. This approach could

be quite useful in the analysis of crack retardation and

closure, as well as spectrum loading. The theory is consistent

with well-known principles of linear elastic fracture

mechanics. The model predicts very high strain levels near the

tip of a yielding crack but finite stresses at the crack tip,

even for the infinitely sharp Griffith crack. Local necessary

and sufficient conditions for unstable crack growth have been

expressed in a local energy balance form analogous to the well

known Griffith criterion, given by equations (4) and (5).

This treatment of local crack-tip plasticity has the

potential for explaining diverse phenomena. Once yielding has

occurred the probability distribution function will change and

subsequent loadings will result in a modified stress-strain

relationship. Additional analysis is needed to investigate the

influence of plastic deformation history on fatigue life under

spectrum loading; the influence of different frequency of

loading is still unknown. Using the displacement field near

0 the crack tip, plastic strain history can be used to

investigate the phenomena of crack closure and retardation.

It is postulated that as a crack grows it is blunted.

This is consistent with the well known observation that crack

blunting retards crack growth making predictions based on

elastic theory conservative. Therefore the crack sharpness,

j . ° . ° ° . . -° • 2 .° , • . - . . .•
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b/a, is a very important variable during crack growth, and a

critical crack tip bluntness function has been determined. The

familiar sigmoidal shape of the da/dN versus AK curve has been

reproduced, giving results consistent with the well-known Paris

Law. The appearance of the stress-intensity threshold can be

demonstrated on a theoretical basis, as well as the infinite

slope of the da/dN curve at the fracture toughness. Since the

local random yielding model is not limited by small scale

yielding assumptions, it can be applied to any engineering

material. Since the use of composite materials has become so

widespread, there is considerable motivation for analysis of

fatigue and fracture of composites. In the next section,

preliminary analysis of fatigue and fracture of composite

materials is described.

4
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APPLICATIONS TO COMPOSITE MATERIALS

The engineering analysis of composite structures is

inherently more complex than for metals. While metals are

typically considered to be homogeneous, isotropic media,

composite materials are anisotropic and nonhomogeneous. In

addition, the mathematical definitions of differential stress,

strain, displacement, mass, and even volume has to be modified

depending on the type of composite structure under

analysis[641 There are different ways to embed fibers in a

matrix, and each approach results in different assumptions. In

general, the geometry of composite structures is quite complex,

and as a result the different ways composites can fail becomes

very complicated.

As damage occurs in any material, metal or composite, the

strength and stiffness characteristics are known to change.

The change in stiffness is a convenient definition of fatigue

damage since stiffness changes can be defined analytically and

can be measured by changes in the natural frequency. In

contrast with isotropic materials like metals, the anisotropy

of fiber reinforced composite materials introduces at least

three distinct failure modes for each lamina. When the

strength of the fibers is exceeded, the fibers would fail in

tension; cracks could also form within the laminate due to

stresses transverse to the fibers; finally, the bonding of the

rosin between lamina could fail giving delamination[65].

Although in isotropic materials failure can be characterized by

(I) crack nucleation or crack initiation, and (2) crack

propagation, the formation and growth of cracks in composite

materials is very complicated and does not necessarily

I?



constitute failure. In fact, many composites begin to form

fatigue cracks within the first few cycles of loading[651. The

different modes of failure during tension fatigue tests can be j
related to the stress amplitude; for high stresses there is a

high percentage of fiber failures[66]. For intermediate

stresses, the fiber breakage plays a less dominant role, and

matrix cracking leading to delamination is the common mode of

failure. For low stress levels, very few fibers fail, and some

cracks form in the matrix.

Highsmith and Reifsnider[67] have described the

relationship between reduced stiffness during fatigue and the

crack density using a finite difference solution of the six

stress components throughout a laminate. A digital computer

solution was required and only a few layers could be included

due to computer storage limitations. Tensor stiffness changes

were related to matrix cracking in an attempt to define working

engineering definitions of laminate damage. Stiffness

reduction can be a useful preliminary definition of damage in

composite materials, although there are numerous possible

definitions for damage[68].

The fundamental engineering definition of fatigue damage

in composite structures is similar to that in metals: strength

degradation resulting from repeated loadings. Changes in the

hysteresis loop and static stress-strain curves during fatigue

damage are very similar to the effects observable in

metals[69]. Stiffness reduction during fatigue results in

deflections under load which constitute failure in some

applications, while crack growth is used to quantify failure in

other cases. Delamination is one of the failure modes which

.. . . - . .. .. . . , , .. . .... . .. ..- ,. . .- .. .. - . ; ,
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depends on formation and growth of cracks, although the

fracture mechanics for that problem is considerably more

complex[701.

Although modulus shift can sometimes be used effectively

as a measure of damage, the definition of damage must relate to

changes in the structure of the material. Fong[68] lists five

discrete processes of fatigue research suggested by the

American Society for Testing and Materials leading to the

ultimate goal of predicting fatigue life from measurements of

damage: I. Measurement, 2. Data Analysis, 3. Nonlinear Modeling

4. Evolutionary and Thermodynamic Theory, 5. Codes and

Standards Development. The fourth process, thermodynamic

theory, is analyzed in this report.

The irreversible thermodynamic analysis of fiber

reinforced laminated beams is described, including the

anisotropic nature of composite materials. An Orthotropic

damping model is developed based on the fractional calculus

approach in the low amplitude portion of the analysis[711 , and

local random yielding after the approach by Whiteman[461 is

used in the high amplitude portion of the response. The

influence of shear deformation and rotary inertia in thick

beams is investigated, and fatigue damage is considered to

occur in composites as a result of irreversible deformation

providing a decrease in the laminate transverse stiffness,

measurable by a decrease in natural frequency. Although this

analysis was conducted under the definition of modulus shift

for fatigue damage, the local random yielding in an orthotropic

lainina is used as a mathematical description of local strength

degradation. In contrast with homogeneous, isotropic

6



4 55

materials, combined failure modes must be included. In-plane

shear damage is assumed to arise from shear within lamina,

fiber breakage is considered to result from strains along the

tiber axis, and matrix cracking is assumed to arise from

strains perpendicular to the fiber axis.

Dampin In Fiber-Reinforced Laminated Beams

The analysis of fiber reinforced composite beams is based

on the lamination theory described by Jones[72] and

demonstrated in Figure 13. The stress-strain relationship in

the fiber axis system is:

01 Q11 Q12 0 F

2 = 21 Q22 0 fE2

F0 0 6 3x
This lamina stress-strain relationship for orthotropic

materials is then transfered to the beam axis system using the

well-known trigonometric transformation[721.

1 Q12 51
-" ZI Qzz Qz (19)

y y
Sxy) 3 xy

Then the moment-curvature relationship can be determined by

integrating through each layer of the laminate:

32y a3x x
(0.*)(z~z1) ax [ ax

N

0 (Q (z ) 0 [D] (20)
3 k=l k

4 xy
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A laminate damping model based on viscoelasticity and

random yielding is developed below which provides a theoretical

basis for the irreversible thermodynamics of composite beams.

Referring to Figure 6, the laminated beam dynamic moment

equation is modified using the complex modulus formulation and

an orthotropic damping model based on random yielding.

Frequency and strain amplitude dependent loss factor in the

fiber direction and perpendicular to the fiber direction are

defined by:

2
T1 1 (s,W) = i - s n0 11

0 .5  (21a)
2

n2(EW) = [ - E 2 + n02] 0 . 5  (21b)

In equations (21), Esl and Es2 are normalized storage modulii

resulting from random plastic strain in the 1 and 2 directions,

respectively and P is the probability distribution function for

plastic strain as in equation (9). The probability

distribution function of the random plastic strain is assumed

to follow the log-normal relationship, and equations (21) are

to be combined with equation (19) and (20) yielding complex

inodulii for the laminate according to:

Qii = Qll(cosnl+jsinnl) (22a)

Q12* = Q 1 2 (cosn 2+jsinn 2 ) (22b)

021* = Q 2 1 (cosnl+jsinnl) (22c)

* Q 2 2* = Q 2 2 (cosn 2 +jsinn 2 ) (22d)

Q66" = Q 6 6 (cosn 2 +jsinn 2 ) (22e)

Then the energy dissipated in each lamina comes from three

stresses which result from the sincle strain in a laminated

beam in bending with negli,,ible transverse shear deformation:

--.- - - -
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0x, Oy, and xy" Although there will be two loss factors in

the beam axis system, transverse strains are negligible for

thin beams and energy dissipated within the beam will be

dominated by the bending deformation[73]. For each point in

the beam the ratio of the energy dissipated per cycle to the

energy stored per cycle for strain in the x and y directions

are:

IX I [D11  I/ID1 1  I (23a)
m

ny = 'm[D21 + D 3 1 I]/D 2 1  + D3 *': (23b)

Figure 14 is a plot of loss factor, nx, versus strain level for

unidirectional longitudinal and transverse orientation and

cross-ply beams, along with data from Gibson[741. Qualitative

agreement with previous results is demonstrated[751, [761.

This orthotropic damping model has the advantage that the

effect of fiber orientation is inherently included, as are

frequency, strain-amplitude, and temperature dependence of loss

factor. The general theory of irreversible energy dissipation

in a laminated beam is described in the next section, in

preparation for derivation of a mathematical model for fatigue.

Energy Dissipation And Fatigue In Thin Laminated Beams

The orthotropic damping model for fiber reinforced

omposite materials forhs the basis for analysis of reversible

and irreversible energy traisfer. Fatigue damage is assumed to

result from irreversible energy transfer resulting from plastic

deformation within the laminated beam. There are three

dilferent mechanisms :[f danage in thi- beams which are to be
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modeled here. First, loads in the fiber direction could damage

the fibers. Second, loads perpendicular to the fiber direction

could damage the matrix. Finally, shear loads within layers

could cause damage from in-plane shear. Delamination failure

cannot be explained using thin beam theory since interlaminar

stresses are ignored. These three common forms of failure in

composites are modeled mathematically by the local isothermal

entropy thresholds of failure defined below (see equation 6):

f

S = a : P (E )dE:
fl 0 1 1 1 1I

f 1

Os 2 [i-] P (n)dn]+E F n P (n)dnjP (E )dE (24a)
1i 1i 1 1 1 1

0 0 0

f

S = j a P (e )dE
f2 0 222 2 2

f 2 E 2  E 2
= Q J 2e [1-J P 2(n)dn]+s J2 f i P (n)dnjP ( 2)dE (24b)

21o 2 02 2 2 2 20 0 0

Yf
S=J T 

" Y P (y )dY
f 0 12 12 2 12 12

-- Yf 2 [1 (d Y n P (d)]P )dy (24c)

66 12 0 2 12 n 2 2 12 12

Equations (24) represent the result of tensile and shear tests

on a single layer yielding a mathematical model for fatigue

damage in laminates. For fatigue damage due to cyclic loading,

the irreversible part of the energy dissipated per cycle is

meisured by the entropy gain per cycle. Fatigue damage is

moeled by the entropy rate, calculated from the plastic part

4
* . . . - * .. * --* .
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of the loss factor. For a particular laminated beam, the

entropy rates from random plastic straining under 3inusoidal

excitation in each layer are:
* 2

dS,/dtlk = im[Ql 1 ]E (Epl/) (25a)

* 2dS2 /dtik = Im[Q 2 1 ] e2 (Ep2/E) (25b)

2
dS3/dt!k = TIm[Q 3 1*]y1 2  (Cp3/c) (25c)

Iquations (24) and (25) represent an energy-based analysis of

damage, and can readily be extended to the case of crack growth

in composites as has already been demonstrated for metals.

Steif[77] has investigated stiffness reduction due to fiber

breakage, which also contributes to transverse-ply matrix

cracking. His approach was energy-based as well, considering

the strain energy density change when a fib,- breaks. In this

way, the necessary analysis of the state of internal damage is

reflected in the external measure of stiffness reduction. Such

a measurement has potential applications in fracture mechanics

where compliance is related to fracture mechanics parameters.

Equations (24) and (25) can be combined to predict the number

of cycles to specified stiffness reduction by combined fiber

breakage, matrix cracking, and in-plane shear. The layer

corresponding to maximum entropy rate will be loading history

dependent, progressing through the laminate as each layer

fails. This concept of damage is therefore a realistic one,

because damage in a single layer does not necessarily

represent overall failure. Rather, damage in a single layer

represents a weakening of the structure which could then be

used to define a new maximum entropy rate providing a

methodology for predicting not only the lifetime but also the
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mode and location of failure. Multiple failure modes are

therefore explicitly included in this model.

The modulus shift in a beam is calculated by omitting the

particular failed stiffness component from the laminate

stiffness calculation. That is, when the maximum entropy gain

in the fiber direction defined by equations (25a) exceeds the

critical fiber entropy threshold in the kth layer as defined by

equations (24a) , then El is set to zero. When the maximum

entropy gain perpendicular to the fiber direction defined by

equation (25b) exceeds the matrix critical entropy threshold of

the kth layer as defined by equation (24b) , then E2 is set to

zero. Finally, when the maximum entropy rate for shear between

lamina defined by equation (25c) exceeds the in-plane shear

critical entropy threshold of the kth layer defined by equation

(24c) , then (166 is set to zero. Each time a lamina failure is

defined, a new beam moment equation can be calculated, omitting

the failed lamina stiffness from that layer and defining a new

beam stiffness. In this way, the reduction in stiffness can be

used to quantify fatigue damage; a conservative estimate of

damage is assumed since residual stiffness would certainly

4 occur and is not included in this analysis.

This definition of damage is convenient since the

neasurement of damage is based on external measurements of

S tsLiftness reduction while the damage mechanism reflects changes

L1 the internal structure of the material. Schapery[78]

described linear viscoelastic constitutive equations with

damage in terms of hereditary integrals which are strikingly

:-;irilar to the entropy threshold definition of damage used

h r. aDamje was described in terms of strain and stress
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tunsors for finite strain using the Gibbs free energy function

for elastic materials. The entropy gain was one of the terms

in the Gibbs free energy function. The critical entropy

threshold of local failure defined here is attractive both

because of the intuitively pleasing physical interpretation and

the apparent universal applicability. Note that the approach

described here is loading history dependent, since when the kth

lamina fails in a particular mode, the remaining stiffness

elements experience higher loads resulting in increased damage

accumulation and subsequent failure.

Figure 15 is a plot of lifetime to 30 percent stiffness

reduction for a laminated unidirectional beam for 0 and 90

degree orientation of the fibers, and for a cross-ply laminate.

Figure 15 was generated by successively calculating the maximum

entropy rate, and then deleting the corresponding stiffness

element of that lamina from the analysis, keeping track of mode

and location of each failure until the modulus shifted as

specified. Additional laboratory data are required to conclude

the accuracy of the predictions of failure modes, but the

results summarized in Figure 15 are in substantial agreement

with previous results [79]. For the unidirectional beam, the

primary failure mode is fiber breakage for longitudinal fibers

and matrix cracking for transverse fibers. The failure starts

at the outside surface of the beam where the strain amplitude

is a maximum and progresses toward the center of the beam. For

the cross-ply beam, the primary failure mode was matrix

cracking in the transverse layers starting near the beam

surface and working inward. There was also a secondary failure

mode ot fiber breakage in the longitudinal layers caused by the

i .
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in-plane transverse stress and shear stress. This is as

uxpected for the simple cantilever unidirectional and cross-ply

beams since the location of maximum strain is known. None of

these calculations indicated primary failure from in-plane

shear deformation.

This analysis of damage shows realistic predictions for

fatigue lifetime in thin beams. A practical application must

include structures with many layers, involving thicker beams

where shear deformation could be significant. These shear

stresses could cause delamination, which is the subject of the

next section.

Failure Modes In Thick Beams

When the thickness is not small compared to the length of

a beam, then out-of-plane shear stresses may not be negligible.

The influence of shear deformation must therefore be

investigated along with the various possible failure modes.

These interlaminar stresses are believed to be responsible for

delamination failures in fiber reinforced composite materials

[721. Such thick structures are practical when numerous layers

exist in a composite structure. When a beam is thick compared

to the length, then shear deformation and rotary inertia may

have a significant effect. Although the transverse normal

stress, o y is assumed to be small compared to the bending andy'

shear stresses, the normal strain may not be small and in fact

may significantly affect delamination[801. Moments in the

beam are influc-nced by the shear deformation. Curvature along

the y-axis is assumed to be negligible so that bending stresses

~rte iny ro ~2 2arise only from a2y/ax2. Likewise, the interlaminar shear

. . -.
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strain y arises from shear forces in the beam as demonstrated

in Figure 13. Equations (19)-(25) must be supplemented by an

additional entropy rate term resulting from the out-of-plane

shear strain, Yxz and the normal strain E z  The influence of

transverse strain and shear loads are included in the entropy

rate terms given below.

2
S4  = TIm[Q 3. kl t 3 (AEp4 /E 3 )

2
S5 = Im[Q451k]Y23 (AEp 5/Y 2 3 )

2
S 6  = TrIm[Q551k] y1 3  (Arp 6 /YI 3 )

The loss factor for the shear strain yxz is assumed to be equal

to P21 since resin properties dominate for shear deformation.

Figure 16 is a plot of lifetime to 30 percent stiffness

reduction in thick crossply beams.

For h/9. = 0, the thin beam results for a cross-ply

laminate given in Figure 15 are reproduced with the dominant

failure mode being matrix cracking. Secondary failure modes

are fiber breakage in longitudinal layers and delamination in

transverse layers. For h/X = 0.20, the influence of shear

deformation is apparent, and the time to 30 percent stiffness

reduction is reduced somewhat. For h/z = 0.60 the primary

failure mode is delamination from transverse shear, with fiber

breakage and matrix cracking as secondary mechanisms. Although

Pagano and Pipes[81] hypothesized that delamination is caused

by transverse normal stresses, this analysis suggests that the

transverse shear strains are the dominant damaging loads;

fatigue damage can still progress in the remaining load

carrying elements and secondary failures can occur in the same

layer.

Although laboratory data is required to substantiate the
0[
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detailed predictions of multiple combined failure modes, the

significance of these results is that complicated multiple

failure mechanisms are simplified to stiffness reduction. This

is a practical definition of damage, indicating when a

composite structure is no longer able to function as designed.

In fact, it may not be desirable to substantiate each failure

during fatigue testing. For fiber reinforced composite

materials such data collection and processing would be

excessively expensive. Rather, relatively simple lifetime to

fixed modulus shift tests could substantiate the irreversible

thermodynamics theory for certain standard orientations. A

fully validated theory could be of considerable value to the

designer who is interested in choosing orientations and

thicknesses to satisfy some particular design requirement.

This analysis has been based on the simplified assumption

that the critical entropy threshold is a definition for

failure. Irreversible thermodynamics should be included in a

comprehensive fracture mechanics analysis of composite

materials.

Analysis Of Fracture In Composites

Linear elastic fracture mechanics can be very effective in

tracking crack growth in brittle materials. For ductile

materials, linear elastic fracture mechanics can still be

applied whenever the crack length is large compared to the zone

size of significant plastic deformation. When there is

considerable yielding due to plastic deformation, linear

elastic fracture mechanics !oes not apply. It has been

demonstrated that the local random yielding model of plasticity
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predicts crack growth and fracture relationships consistent

with linear elastic fracture mechanics without theoretical

limitations as to amount of yielding. However, these theories

were developed for homogeneous, isotropic materials; composite

materials are inherently nonhomogeneous and anisotropic.

For composites, the analysis of crack growth, fracture,

and fatigue damage must address the nonhomogeneous, anisotropic

property, as well as fiber orientation, ply geometry, resin

volume percent, etc. In the case of metals, the specimen

geometry must be selected to cover the loading ranges of

interest involving substantial testing. For composite

materials the many different possible combinations of important

parameters would require impractical test programs. That is

why accurate mathematical models for fatigue and fracture in

composites would be a significant advance.

Wu[821 has investigated the linear elastic fracture

mechanics of unidirectional glass reinforced epoxy resin with a

crack parallel to the fiber direction. He concluded that the

critical stress intensity factor does not vary significantly

with crack length. Gaggar and Broutman[83j have investigated

the fracture mechanics of random glass fiber epoxy composites.

They concluded that the stress-intensity factor from linear

elastic fracture mechanics is suitable to characterize the

fracture of random fiber composites. This is logical since

random short fiber composites can frequently be approximated as

homogenous, isotropic materials.

Since linear elastic fracture mechanics applies best to

materials which do not yield substantially, linear theory

should accurately describe fracture of composites. However,
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the specimen thickness directly influences the crack-tip state

'f stress which in turn influences the yielding. Before linear

elastic fracture mechanics can be routinely applied to

composite materials, it is necessary to identify limitations of

thickness and load. Harris and Morris[841 have investigated

the fracture of thick, laminated graphite/epoxy composites.

They conducted a predominantly experimental research program of

various cross-ply and angle-ply laminates of various

thicknesses, using center-cracked tension, compact tension, and

three point bend specimen configurations. Fracture toughness

was calculated using a finite element stress analysis, and

damage development at a crack tip was investigated using

enhanced X-ray radiography and the laminate deply technique.

For [0/t45/90]ns and [0/90]n s laminates, the fracture toughness

decreased with increasing thickness, while for [0/±451ns

laminates the fracture toughness increased with increasing

thiickness. Fracture toughness of laminated Graphite/Epoxy

composites is dependent on thickness.

The principles of linear elastic fracture mechanics have

been successfully applied to composite materials in predicting

crack initiation and propagation and fracture. It should also

be possible to formulate crack growth and fracture of

composites based on the local random yielding model, which has

been demonstrated to be consistent with the fundamental

principles of fracture mechanics. However, in a general

laminated plate or beam the combined state of stress within the

laminate is required, and mixed mode fracture would be

expected. Mixed mode fracture could be analyzed as in

Reference []

6 . " " . .••" " " - • " " ' > . i >< -'. " " " "



71
RECOMMENDATIONS AND CONCLUSIONS

A local criterion for crack extension has been presented,

providing comprehensive results consistent with linear elastic

fracture mechanics. Using the original stress analysis by

Inglis[20] , the displacement field around an elliptical hole in

an infinite thin sheet was differentiated, leading to a

nonlinear strain function. This strain function is singular at

the crack tip, consistent with the principles of linear elastic

fracture mechanics. However, the local random yielding model

for the microstructure at the crack tip results in a finite

local stress. The magnitude of this local random stress

depends on the sharpness of the crack; stress is high for sharp

cracks, lower for blunt cracks. This crack sharpness function

was found to be log-linear in the critical crack length, and a

relationship between the critical stress and critical crack

length can be defined.

In the case of cyclic loading, local random yielding was

used to derive a mathematical model for internal friction

providing a basis for irreversible thermodynamic analysis of

crack growth. A local necessary and sufficient condition for

crack extension was derived from the strain energy density

function near the crack tip. It has been demonstrated that the

local plastic strain energy density at the crack tip is a

constant at failure. In the case of isothermal processes, the

irreversible entropy gain at fracture is therefore a constant,

lending credibility to the hypothesis that the local critical

entropy threshold of fracture is a material constant. In the

case of cyclic loading, the local entropy rate is combined with

the st-ain energy release rate to give a theoretical crack

S
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rjrowth curve consistent with the familiar Paris law. In

dddition, the existence of a threshold stress intensity factor

is demonstrated, and qrowth of small cracks is defined.

For very small cracks, the time to reach the critical

entropy threshold is dependant on the crack sharpness, and as

crack length approaches zero the theoretical basis for crack

nucleation has been described. The local random yielding model

is not limited by assumptions of small-scale yielding, so

virtually any engineering material and any crack size can be

analyzed. The fact that the local random yielding model

reproduces a myriad of well-known results from linear elastic

fracture mechanics provides convincing support for the validity

of the critical entropy threshold of local fracture.

In addition to the satisfying intuitive nature of the

critical entropy threshold of fracture due to irreversible

plastic deformation, a number of related theories are unified

by this local analysis of crack growth. First, local random

yielding is a mathematical ynodel for plastic flow with a strong

theoretical basis in dislocation theory. It is commonly

accepted that plastic deformation arises due to dislocation

* motion, and the local random yielding model supplies the

relationship between dislocation theory and plasticity theory.

Tt has been demonstrated that local random yielding is

consistent with fracture mechanics. Irreversible

thermodynamics has been applied to the local random yielding

model , so a unified theory of local fracture including

irreversible thermodynamics, plasticity theory, fracture

mechanics, and dislocation theory is offered for scrutiny by

the scientific community.

0J
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Having reproduced results which are already widely

available is only of academic interest. However, the problems

of crack retardation, closure, loading history, and spectrum

loading continue to be subjects of research effort. Since the

entropy gain is history dependent, the dependence on loading

history is readily available from the local random yielding

model. As crack growth is initiated, the material ahead of the

crack experiences varying plastic deformation history giving a

loading history dependent crack growth curve.

The process of crack retardation due to transient

overloads is an observed phenomenon without a rigorous

theoretical basis as yet. The local random yielding model of

plastic deformation is offered as such a theoretical basis for

retardation. The accumulation of variable entropy gain due to

plastic deformation ahead of the crack tip is likely to be an

important mechanism during crack retardation since transient

'verloads increase the residual compressive stress within the

plastic zone. Also, transient overloads drive the crack tip

into plasticly deformed material increasing the bluntness and

subsequently decreasing the local stress level at the crack

tip. Although time and budget constraints have precluded this

analysis in the present research, local random yielding

is useful for such an analysis of retardation.

Finally, resonance, soectrum loading, and combined loading

can be readily evaluated using the local random yielding model

through appropriate definition of the entropy rate. The local

random yielding model is capable of providing such analysis.

Before initiativ:r such a comprehensive research program, it

WOU b" no1 zessa- t, ,eve[ I e I atable l raboratory experiments
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so that data doe opement could po-eed concurrent with the

theoretical analysis.

Since the local random yielding model for fracture is not

constrained to any particular material, efforts should !e

initiated to evaluate its suitability for a variety of

engineering materials. Only three parameters are required

which would be selected on the basis o'- experimental data. The

variance of the log-normal local random yielding can be

selected either from internal friction data at high strain

amplitudes or tangent modulus. The critical crack sharpness

tunction is based on standard fracture toughness static tests.

Finally, the frequency dependence of the internal friction

would be determined from loss factor at low strain amplitudes.

Additional work would be needed to verify that: these three

constants are sufficient to define any particular engineering

material.

One extremely appealing aspect of the local random

yielding model is its universal application. Virtually any

engineering problem involving large-scale yielding where a

displacement gradient can be defined is a candidate for the

local random yielding model. One such candidate is the problem

of moving asperities traversing at high speeds over the surface

of a marine seal ring. Reference[861 describes such an

* application, where heat checking from cyclic asperity

xc tatio~n might indicate a thermodynamic analysis, and where

r ,k gr,,)wth would initiate below the surface. Although not

' Ical[y addressed in this research, the temperature

,,. the local random yielding model can also be

it is possible that the local randomL.
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yielding approach could result in simplified mathematics since

FA displacement gradient is sufficient to provide the

stress-strain field, with no limitations concerning plastic

deformation. Therefore, the local random yielding approach

would not be limited to brittle failure. The preliminary

analysis of laminated beams indicates that the local random

yielding can be successfully applied to anisotropic materials

as well.

F-
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