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1. Objectives
We have now been active for several years in the area of distributed systems. It has become

apparent to us that this subarea of parallel programming or concurrent programming systems is

tractable: a precise theory for distributed, message passing computations may be developed;

important paradigms can be abstracted and applied in a number of practical situations and

reasoning techniques can be developed for (listributed programs which can also be effectively

employed in their developments.

We have been active in all these areas. Our goal is to make distributed programming,

conceptually as simple as sequential programming. The added )urden of distribution could be

handled if adequate general theories were available. We have had experience in developing

specific algorithms (deadlock detection, knot detection, shortest path etc.); theories specific to a

class of problems and reasoning techniques applicable to a class of properties of distributed

programs.

Our thrust of research in the past year has been to move from specific to general, by

abstracting the relevant concepts from specific problems and applying them to a general class.

Our outstanding contributions ht the past year are-.

* development of a general theory for studying computability issues in distributed
systems,

" a paradigm for development of very efficient stability detection algorithms,

" extension of our proof theory to encompass a wider variety of properties that can be
proven.

We have continued our, very successful, work on modeling and distributed siniulatiMn.

Our work has attracted considerable international attention. Professor K. NI. Chandy was

in'ited to deliver the keynote address at the ACM Principles of Distributed Computing

Conference, the premier conference for this area, in 1981; he was also invited to give talks at

M.I.T., Stanford, Cornell, University of California at Berkeley, University of Minnesota,
Pennsylvania State University, 111M Research at Yorktown Hleights, and Computer Society of

India. Professor J. Misra was made a member of the prestigious International Federation of

Information Processing Working Group (IFIP WG 2.3), member of the Editorial Board of the

Journal of the ACM; he delivered invited talks at the University of California at Berkeley,

University of California at Los Angeles, Cal Tech, University of Washington, IBM Research at

A.... ..... . .. ............• " " .- .- " " -' .- .'' '. .'" - . . . . " • .'-" " ' " .. ' . - '-"-.'.... .".. .- '."... ." ".. .-.. .'.. . . . . . . .-.. . . . .. .' , -''
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San Jose, Xerox Palo Alto llesearch Center and at several workshops.

We sketch the technical aspects of our recent work in the following pages.

2. Work in 83-84

2.1. A Computability Theory for Asynchronous Distributed Systems

Sequential systems had a well-developed theory, founded in logic and developed by Church,

Turing, and Godel and others 151, before any sequential program was ever executed on a

computer. Existence of important theoretical results, such as tire unsolvability of the halting

problem, guided programming practitioners. The situation is entirely different in distributed

systems; there is no well-founded theory of computability in distributed systems. Hence

considerable effort has been expended on solving problems which have later been shown to be

unsolvable; designing a distributed database commit protocol which is robust for process failures

is only one instance [3].

In recent years a number of results of the following forin have appeared in the literature:

there is no asynchronous distributed algorithm for solving problem P, where P is a specific

problem. For instance, it is now known that: it is impossible to elect a unique leader process

from among a set of identical processes [I; there is no symmetric algorithm for solving the dining

philosophers problem [61; it is impossible to implement a commit protocol for distributed

databases in the presence of even one faulty process [3j; there is no solution to the Byzantine

agreement problem in a fully ,synchronous system 12]; and no protocol exists for achieving

com-non knowledge in an asynchronous system [41. In each case, ad hoc techniques have been

used in proving these results. Absence of a common computability theory for distributed systems

has hindered progress in this area. This is only natiial, since the requisite concepts have not

been developed for the foundation of such a theory. We coomsra.t the situation with the well-

developed computability theory in sequential systems. The powerful notion of reducibility hs

been applied in sequential systems in showing several problems unsolvable: if problem A is

known to be unsolvable and problem A is reducible to problem B (i.e if probli'mn can be solved

then problem A can be solved), then problem B is unsolvable. Such an approach is attractive in

that an entirely new proof ol the unsolvability of I is now avoided. We have no notion of

problem reducibility in distributed systems and therefore each unsolvability proof is entirely new.

Secondly, there is no common, problem independent basis for showing that certain classes of

problems are unsolvable; there is no commonly acceptable halting problem for distributed

systems.
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We have recently developed a theory to help solve soome of (hese problems. The theory is

based on a precise definition of distributed computationas and a number of operators oi these

computations. The operators are projections -- study the computation of one or more process

from the entire system computation -- prefix -- one computation pr'cedes another -- union aud

intersection - union being defined only for computations which are prefixes of a common

computation -- and gluing -- merging of two computations. Gluing allows us to conclude

properties of distributed systems in the following manner: if Cf, C2 are system computations

then C = glue(C,C2) is also a system computation, where the glue operation is suitably defined.

If C is infeasible, viz. C allows more than one process to be in their one process to be in theirK ~critical sections simultaneously, or more tihan lender to be elected or a commit protocol to

commit to two different values, then we may conclude that either C1 or C2 is not a system

computation. We have applied this technique to prove a number of properties of any algorithm
for mutual exclusion, electing leaders etc. We have also constructed very simple proofs of the

impossibility of process failure detection, robust commit protocol, Byzantine agrCemeCIt in

asynchronous systems etc.

We have applied this theory to the study of knowledge anid commonl knowledge [4J. We

have derived very simple conditions for the number of tmessages required to establish or

disestablish certain knowledge levels. ['or instance, if A knows that I knows that C knows fact
I, where .I is some fact local to c, then at least 2 message tran~smiss ions will be required in the

system before c can falsify f. The bounds we have derived are tight; they can be used to prove

the impossibility of achieving certain knowledge levels, such as common knowledge, because such
computations can be shown to require an infinite number of messages.

There have been a large number of intuitive ideas and ad-hoc results in asynchronous

distributed systems. The goal of any unifying theory is to abstract a certain kernel and provide
rules for derivation of the different results. WVe believe that we are working towards an elegant

theory with a small kernel and a small set of rules.

2.2. A Paradigm for Developing Efficient Algorithms for Stable Property Detection
it is often required to detect whether a system state has achieved stability, i.e. it is not

going to change. Examples of such properties are termination, number of tokens equals zero

(assuming no process creates tokens), deadlock in a subset of processes etc. in fact nany

important distributed algorithms can be best described in which termination is implicit. Last

year, we developed an algorithm in "Distributed Snapshots: Determining Global States of

K Distributed Systemso by Chandy and Lamport, which allowed a process to take a snapshot or

g checkpoint of a distributed system during the evolution of its computation. This effectively

.'7.K
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solved all stability detection problems. However, we recently discovered that stability detection

does not require taking snapshots. There is a general paradigm for stability detection in which

processes are merely observed over overlapping intervals of execution and each process reports

presence or absence of activity over its interval. We show that if there is a single point common

to all intervals then the system is stable if every process is inactive over the entire length of its

interval.

This paradigm has led to the design of a new class of algorithms whik'h are simpler to

program and prove and which seem very efficient in their execution.

2.3. A Proof Theory Based on the Notion of Quiescence

Two general classes of properties in sequential or distributed systems are safety and

li. eness. In sequential programs safety properties are proven by postulating invariants and

liveness properties -- one of which is program termination -- are proven by showing that a certain

metric decreases in each step of program execution. The problem is much harder in distributed

programs. Previously, we had developed a proof theory for verification of safety properties only.

The difficulty with liveness i; that termination is not a natural property for processes in a

distributed system; normally, a distributed program -- such as an operating system -- never

terminates. During the last year, we inade some major progress in attacking the liveness

problem. We identified a new property, quiescence, for a process in a distrihuted system which

seems to be the natur;d generalization of termination in a sequential process. Roughly, a process

is quiescent if it will send no messages provided it receive-, no messages. This is the most that can

be derived from a process because a process by itself, cannot guarantee that it will receive no

inputs. A network is quiescent if all component proce:;ses are quiescent. We introduced a novel

technical idea which eliminated clhannels from quiescence consideration.

We have now developedI the proof theory where %c can (1) prove safety and liveness in a

uiified framework, (2) support hierarchical network structure, (3) develop modular process proofs
and (4) construct proofs which directly nIap itiformal proofs Into a formal proof in our logic. \e

are now experimenting with the applicability of these ideas- in various difficult distributed

algorithms.

2.4. Other Work

We have continued our work on distributed simulation. These ideas, first published in 79

and continuously being refined since then, have attracted wide international recognition.
Professor Misra presented a I day tutorial on D~istributed Computing at the IEEE Fourth

f, International Conference on Distributed Computing Sqystems in San Francisco, California on May

...
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18, 1984. This tutorial will probably appear ii' Coniputing Surveys.
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1. Goal

The goal of this paper is to discuss the area of dItribut.ed computing in
an informal manner. I shall not present tlory, algorithini or

experimental results. Instead, I shall restrict attention to the foll,., iig
questions:

* What is distributed computing?

* Why should one study distributed computing?

9 What are the fundamental questions in distributed computing?

The answers to these questions will be philosophical, rambling and
subjective; but I think the answers have some merit.

2. What is Distributed Computing?

2.1. A Distributed System

We have to present our discussion in terms of a model of a system. The
model chosen is not important in itself. We could have couched our
discuwSsion in terms of other models. We shall describe our miodel
infrormally and only to the level of detail necessary to make our algorithms
clear.

A distributed system 1) is defined by its set i' of component processes amd
set C of directed chaniels, i.e. 1) - (PC). Let there be N > 0 processes
in 1' andi let themi be indexed pi, l<i.N. A channel c in C, is directed
from a (single) component process pi to a (single) component process pj,
and the channel is defined by c = {Pi'pj). Each channel has an infinite

buffer. (Bounds on buffer sizes are discussed later.) A process pi can send
a niessage along one of its outgoing channels i whenever it wishes to.

('hanmiels are loss-free, error-free and deliver messages in the order sent.
The state of a challnel ( ]l ) is a quiteue of lessages; the queue represenits
tIhe messages sent by pi and not received by pj.

A process pi in 1) is specified iy a set of process states, an initial process
state and a set of allowable events. An event is (1) an autonomous state
transition, (2) a send or (3) a receive. An autonomous state transition at Pi
takes pi from a process state s to a p~rocess state s'; the autonomous state

transition event is defined by the pair (s,s'), an(l this event can occur at pi
only if pi is in process state s immediately before the event. An

autonomous state transition at pi does not change the state of any channel
or the state of any process besides Pi's.
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A send event at pi is the sending of a niessage by pi coupled with a

transition of P s state. It is defined by the states an(d s ands' before and

after the event, respectively. the message NI that is senL and the process p,

that it is sent to. This event cn occur at pi only if pi is ill state

immediately before the event. "l'hik event causes M to be inserted into the
queue representing tile state of channel (pipj)" The states of channels :
other than (pjpj) and processes other than p are not changed by the

occurrence of this event.

A receive event at p1 is the receipt of a message by pi coupled with a
state transition. It is defined by the states s and s' before and after the
event, respectively, the message M that is received and the process pj that
the message is received fromn. This event can occur at pi only if p, is in

state s immediately before the event and NI is at the head of the queue of
messages representing the state of channel (pj,Pi); this event causes the

deletitn of the message at the bead of this queue. The states of channels
other than (pjPi) and processes other than pi arv not changed by the

occurrence of this event.

An event may occur at a process at any time provided the states of

processes and channels are such that the event can occur. The process and

channel states may be such that one of inany events may occur; the

.election anion-g the potential events is non-deterministic.

2.2. A Distributed Computation

A process computation zi of a process pi is defined as a sequence of

allowable events <ejj,ei2, .. > at pi such that the state of pi before event
k > 1, is its state after the previous event ei,k-, a"d Pi's state before the

first event, tii, is its initial state. A process cinputation may be finite or

infinite, empty or non-empty, and is prefix-closed, i.e. if zi

<e 1 ....,ek,... > is a coniputation of pi then every initial subsequence

<ei- . .eik> of ?i is also a computationi (f p"

We define a systcui coniJutation using Iiimport's ideas of partially-
ordered events. A system computat ion Z is a set of component proce:ss
computations, , -- {ziJ lli<N}, such that the ch.nnel rule and partially-

ordered event rules (described below) are !satisfied.

Channel Rule

The k-th message received along a channel in Z is the k-th message sent
along the channel in Z, all k. l'orimally, let nji be the number of messages

received by pi from pi in zi. Let iln) be thw number of messages sent by pi

iiq

UI
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to Pi In iji >. nji, all ij. Furtherniore, the k-th niessagv sent by

1) to l1  in l is the k-th llessage receiv'd by P fromii in z1, I : i, aII
IJ. -

Partially Ordered Events Rule

The relation -> btetwv te events is a parti:l ordering of the events in

process computations where -> is defined as follows:

e -> e' if and only if

1. e and e' are events in the same process computation and e
occurs before e' in the computation or

2. e' is the receipt of a message and e the corresponding send of
that message or

3. there exists an event e* such that e-> e*-> e'.

Graphical Representations of a Computation

A set or events in a systeni computation may be represented by a
directed graph whose vertices represent events. There is an edge from (the
vertex representing) an event e to an event e' if and only if either (1) c and
e are events in the saine process computation anid e iimniediately precedes
e' iii that computation or (2) e represents the sending of a message and e'
the receiving of it. Figure 1 shows an event graph for a system with 2
processes. The vertical lines represent process computation and the
diagonal lines represent messages.

12

,l 2'l A!

e2 1

Figure 2-1: A Graph of a System Computation

Let zi  <ejj,ej2 .... > be a computation of pi and let Izil be the length of

. - ."---



zi . A point in prorss COMI)it0liOf 7 i is :111 lnt ''gr k, O<kcIzI. TIe
process compqutation z(k) up to point k iii is defined as the empty

sequence if k--O and as the sequt.1we <K, ... ,l A> ot ,i rwi:,e. A point h,
in system com mtation z, is :1 set K =- {kilk. is a point in z. 1_i.N}
such that 1zi(ki)l 1_iN } is a system computation. l"or example, in Figure
1, kI - 0, k., - 2} is not a point in the systen computation because

< >, <C.), e2>} is not a system computation since the channel rule is
violated - there is a receive event V.1.) in z,, for which there is no

corresponding send. We shall represent a system point {kilki N) by
the vector (kl..kN). Examples of system points in Figure 1 are
(1,2 ),(2.,2),(2, 1).

The fundamental difference between concurrent computation and
distributed computing is that a process in a distributed system can only
access information stored in its memory; processes do not share variables
or a clock. Time has no meaning in a (list ributed system; only causality
(i.e. the relation -> between events) hxs significance. 'lhe focus of much
of the research in distributed computing deals with the problem of limited
information: flow can a network of proce,,ses cooperate in achieving a
global taLk when each process has only partial information about the task.
Foir instance, how can the shortest path between two processe., ii a
network be determined when each process only has information about its
inmediate neigh bors?

The focus of research in the area of concurrent computations appears to
be different. The fundamental problem is not limited inforrnation out
speed. Synchronous sohtions to problems (short est path, detecting cycles
... ) in which multiple processors access coninon memory, are usually quite
different from distributed solutions, because even though the problems
share the same naime (for example, shortest path) the assumptions about
the underlying architect tire are so different that the problerns are indeed
different.

Confusion about the two goals, (1) problem-solving with limited
information and (2) maximiium speed should be dispelled before attacking a
problem. Thus, to solve the shortest path problem as quickly as possible
one would not use an architect 'ire with one processor at each vertex of the
graph. Then why study distributed computing?

Why Study Distributed Computing?

There are systems in which the timie required for processes to
communicate is significant compared to the time required for them to
coniptute (carry out baic operations).

*' . .



lxa hiples inclide S stvliis ili which ltr,,cessilig power is ge tgraphic;.illy
I I,lIribuIed. l'rietital 1i..rilititel sy eI,.in iiilud,, fat-Itry ait,,ma ii,
transportation control (inanaging the flow )f trains, car-traffic, i. a city,
airplanes. ) and co)imiiuicat it) systems controld. V ist bear in mind thait
problems dealing with such systems are very different from the problems of
Si)ter-Colllip t ing.

What are the Fundamental Problems of Distributed j
Computing?

The problems that I consider to be fundamental may well be different
from those that you consider fundamental. Identifying the essential issues
is a subjective process. Nevertheless, I believe that it is worth our while to
spend a great deal of time arguing about what is central, and what
peripheral, before we begin attacking a problem.

I believe that the problem of distributed computation is the problem of
partial information: many processes cooperating in achieving global ends
though each process has limited informtation. My biased view of
distributed comnputation leads nie to identify the following questions as

being fundamientl.

(1) low call a process deterinine the state of : distributed system that it
( lie process) is part or This is a natural question stcI|lining from our
viewpoilt that the problem of distributed coni aitition is the problem of
local-inforni.ition. A process has access to it Ictal, process state, i.e. it has
,)('31 ift rniat it,: how can it get global info rmation, i.e. the state of the
entire distril)it,( system? Special ca.ses of this question are practical
qtiesti)lls such aIs: "ilow can a process deteet %hether a distributed
ci|iputation has terminated? Ilow can a proc,'s determine whether it is
deadllowked? •

(2) lltw can one pirove properties of a dist rihutel system? Tis quest ,,n

is relat'd to the questio)n Oih w should a pricess he Specified?

A y 'rocess n:ay be specified by (a) sets (if slale al evenlts, (b) a piogr:iiii

o r (,) its input/oitput relation. There are advairtages to each approach.

(3) 1low cans lroceess (operat( in sharing resoitirevs in a fair manner?
Tii is i ald) a prl)vn oif local informiatiton. If all processevs liad inmme:diale

accve> to glo)bal dat a, there are simple soltions to tle iroblem of sharing.
ill,)w can sharing be achiev ed when n) process has all the relevant

i:ifrrmationa? That is a m1u(h nw re difficuilt question.

(4) low can process(s coe(rate to achieve a global task when some of

the processes may be faulty? This quest ilns leads to the Bvzanti me



tii

General's probleh'm and similar problvills.

The purpose of this paper is to start it disetvlsion, tlie object of which is

to pose the right questions. lhowecr, we sh:ll include one answer to show
that the answers niray be si tiple.

3. Determining Global States [Chandy and Lamport]

Observation 1

(k..kN) is a point in systein cotiputation Z if and only if for all i.j,

1..i,jN, the number of messages received by pj from pi il zj(kj) does not

exc ed the number of iiessages sent by pi to p, in zi(ki).

Observation 2

(kl..kN) is a point in system cofiputation Z if and only if for all ij,
!i,j_.N, there is no message sent by Pi to Pi after the ki-th event, in zi

which is received by pj after the k.-th evnt in zj.

States

The st.ite of a proccss pi at systen c('0uIJt tion Z is its state after the

last event on Z[jji in Z. The state of a channel (pi'Pj) is the sequelice of
messages sent by 1) to pj in Z for which there are no receives by pj fron pi

in Z. The global system state at Z is tie set. of states of Colipoleent

processes and channels.

The state of a system at point K in Z is the state at coniplitation
{ 1(~k ) i i_ _ ,N }

Algorithm to Determine Global State

The processes collectively define a point (ki..kN) . follows, For all i, pi
selects the ki-th event. To ensure that the ki selected correspond to a

sV st ciii point the princesses sndj signals to one another where signals are

special niessages which have no effect on the underlying computation.
Sign: 2,I will enswre that the ki mneet tle condition of observation 2.

Signal Sending Rule: pi sends a signal along each outgoing channel after

the ki-th vent at 11 and before the next (regular) message sent along the

channel, all i.

Signal Receiving Rule: ki must be such that the kj-th event occurs befor,,

the first receive by p along a channel following a signal received along that

channcl.

The Weiding and rceiving rules together ensure that no inessage sent by

........-... J.......
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1) to p after the ki-th event in T is received by 1), after the k -th evet. 

Zi (observation 2).

The sy,. em state at point K is record(d as follows. Each process p,

records its own process state after the ki-th event on pi and before the
ki+I-th event. Each process records the slate of all incoming channel.:
the state of a channel (pi,p) is the sequence of messages received by pj
after the ki-th event on it and before pj receivs a signal from p.

IP
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Preface

This monograph presents an entirely new approach to the problem of s.stem
simulation. System simulations are typically carried out in a sequential manner: a
single processor fetches one item from a data structure, carries out o1e .tiLI of
simuiation, (possibly) updates the data structure and iterates this process. -uch
simulations are practical only when the number of events being simulated is modest.

Recent advances in computer and communication systems have resulted in
demands for new tools for their analyses. Mathematical modelling techniq ues have .'o

far proved inadequate in dealing with these systems. Only simulation seems to },,; a
viable alternative. Unfortunately, simulation is proving to be inadequate, becaus,, (f
the sheer magnitude of the problem. For instance, a telephone switch generate.,
roughly around 100 messages in initiating and completing a local call made by a
subscriber. Large telephone switches can handle around 100 calls per second. Thus

simulation of a telephone switch for 15 minutes of real time requires the simulation of
nearly 10 million messages. Detailed simulation of a telephone switch, even for a 1.5
minute interval, will require several hours on a very large uinipr ocessor.

An alternative is to exploit the cost benefits of cheap micro/mini computers and
high bandwidth lines, by partitioning the simulation problem and executing the parts
in parallel. U nfortunately however, the typical simulation algorithm does not easily
partqion for parallel execution. An entirely new approach to simulation, for

multiprocessors, is required. This monograph presents such an approach.

The text is organized in 5 chapters. Chapter 1 motivates the need f,,r

distributed simulation; it gives a quick survey of the system simulation problem,
sequential simulation algorithm and its shortcomings. The scope of the monor;at1h

and a history of distributed simulation are also included in that chapter. (hapter 2
contains a detailed description or the sequential simulation scheme. It is shown %why

simulation scheme. This scheme is shown to result in deadlock. Several (lifferei(t

approaches for deadlock resolution are discussed in chapter 4. Chapter 5 contains a

summary and assessment of the entire field.

We believe that distributed simulation offers the inost promising approach Io

speeding up simulation. The basic theory has been developed; it remain.s to

experiment with various alternative heuristics.

-.This text is mainly oriented toward, (i) machine designers, particularly for th ,s,

K " * - --. -- -- - J, ~ ~ ~ . ~~



dlv.igniiig iultiprocessors for application programs an(1 (ii) application )rogra.'llvr

mid siolxjiat ion )ractitioners. The material is largely self-contained. iolit.

acquaintance with simulation and distributed systems is helf)ul though not ncI r..s'rr

lhesea:rchers in distributed software design will find this moniograph to bv us.ft.il ill
that.general area. The reader w'i come away with an appreciation for i) the n;ilur.
of the simulation problem reduced to its barest minimum and (ii) how to approach a

prol)hem for distributed solution.

I apologize for lack of concrete empirical results. Some results, dealin

particularly with queueing networks, exist )ut were fouind to be too prob~lem slo.ifiC
for inclusion in this monograph.

I
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1. An Overview of Simulation

This chapter motivates the need for distributed simulation. It gives a quick

survey of the simulation problem, shortcomings of sequential simulation methods and
an overview of distributed simulation. The scope of this monograph and the history
of distributed simulation are also included.

1.1. System Simulation Problem
We consider the problem of simulating physical systems, also called networks,

which consist of one or more physical processes. Each physical process operates
autonomoiisly except to interact with other physical processes in the system. The

inter:ilion is by ine~sayes. Contents of a message sent by a (physical) process

depeul upon the characteristics of the process (its initial state, its rules of operation)
and the messages that the process has received so tar.

We will describe tile problem and the terminology more precisely in the next
chajpter. We note that many real systems can be modelled in terms of processes and
mes..geS :Is described above. For example, a computer system is one in which tile
('P, disks, memory and job entry terminals may be thought of as processes; the

(CU may interact with a disk by sending it messages requesting or releasing disk
space; a job entry terminal may interact with the CIPU by sending it messages, which
are i fact jobs or tasks to be exccuted. Detailed examples are given in the next
chaifter.

Typical sleps in simulation consist of,

1. starting with a real system and understanding its characteristics,

2. building a model from the real system in which aspects relevant to
simulation are retained and irrelevant aspects are discarded,

3. constructing a simulation of the model which can be executed on a
coml1uter (simulations, other than computer programs will not be
considered here), and

4. analyzing simulation outputs to understand and predict the behavior of
the real system.

In addition, the model and the simulation must be verified and may be r,,fiml
during steps 12) and (3), perhaps iteratively, if they (o not ninet the expectatio,. hI
this monograph, we look at only one step - step (3) of the entire simulation provi.,c.

"



\VhI:t is ty)pically called a model in step (2) is actually our physical systeii; we ,how

how to go from a physical system to a computer prograin for simulation 4)f thil

system, which in this case, is distributed and hetice may be concurrently excecuted on

several machines. Ve will not consider the problem of constructing a physical sysiemi

description from the real system, nor do we consider how to analyze simiuilation
outputs to predict the behavior of the real system. Stated another way, we show how

to construct an asynchronous system (the simulator running on asynchronous

machines) from a synchronous system (the physical system, running in real time).
We will further restrict ourselves to discrete event simulations, we assuimie that events

- in our case, message exchanges - happen at discrete points in time.

Traditional Approach to System Simulation

Traditionally, discrete-event system simulations are done in a sequential

manner. A variable clock holds the time up to which the physical system has b,''m
simulated. A data structure, called the event-list, maintains sorne nessage

transmissions with their associate(d times of transmissions, which are scheduled in the

future. Each of these messages is guaranteed to be sent at the associated time in he

physical system, provided the sender receives no inessi ge before ti s :,.,,

transujission time. At each step, the message with the smallest associated future time
is reloved froi the, event-list, and the. transmis:sion of tili. co rrespondnling mess:gp, In

the physical system is simulated. Sending this message may, in turn, cau.le o hor
essages to b. sent in the future (which then are added to the event-list) or c a1.,,

previously schediuled messages to be cancelled (which are removd fromI lh,.

event-list). h'lhe clock is advanced to the time of the message transmission that %%:I
just simulated.

'Tiis firm of simulation is called event drivcn, becalse events (i.e. Ji,,.-lg.

trailUissions) in the physical system are simulated chronologically and the simulatin

clock is ad'atned after simulation of in event to the time of tihte next event. hl,.r, I.

another important simulation scheme, time driven simulation, in which the

,o-l ck advancies by one tick in every step :nlaid all events scheduled at that ti ' :it*,.

s'lilulaled. Ve will not discuss time driven simulation in this monograph. We w-ill.
furthermnure-, assume that all events are discrete, which is certainly true for any

svst emt whi ch can be modelle(l as a message passing system.

Drawbacks of Sequential Simulation

The nature of the event-list mechanism dictates a sequential simulation, sin,.i- il

:eah wyle of sill Ilation, only one iteii is remnoved from the event-list, its effvcts
silli dalt ~' and the event-list, possibly, updated. 'lhis is unfortunate., 1hocause tils

:1l,,orithim cannot be readily adapted to concurrent execution on a number ,,f

"procesrs, liice the event-list cannot be effectively )artitione(d for such (xecution'.

.We contend that a major bottleneck to the growth of widespread sinulation is Ili,
l sequventiality inherent in the event-list structure. Increasingly complex comtitr and

C- co)imin ic:lti(ma systems of the future will be intractable mathematically and thervf'r,

qI
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will have to resort to simulation for their performance evaluations. ( ,irr,.iit

siiiulhat ion techniques will prove to be inadequate for these systeis btIcause with

current technology only a modest number of events can be siru].ated. A radically

new approach to simulation must be taken which will utilize the power ait ,,,A
beinefi ts of .iall comIp)itt'rs and high bandwidth coiniunication lines.

1.2. Distributed Simulation
This Iionograph presents a radically different approach to sinulation. .h:vired

data objects such as the clock and the event-list are discarded. It fact, there are no
shared variables in our algorithm. We suggest an algorithm in which one inachil,.
may simulate a single physical process; messages in the physical system are siiniiilat ed
by nessag transmissions ainong tile machines. The synchronols nature of Ilh e

physical system is captured by encoding time as part of each message transi|itti.d
between machines. We show that machines may operate concurrently as long a'
their physical counterparts operate autonomously; the must wait f, r
message recieptions to simulate interactions of the corresponding physical pro(,.-.s.

[)istributed simulation offers many other advantages in addition to P,,.il~l,
speed-uip of the entire simulation process. It requires little additional |inin iry
coniparetd to seuiential siniulation. There is little global control exercis,,dI by :111V

machine. Simulation of a system can be adapted to the structure of the available
hardware; for itstante if only a ftw re.whines are ava1ia1h, for simulation, s,,vr:,l
physical processes may be simulated (sequentially) on one machine.

Several distributed simulation algorithms have appeared in the literature. Th,,y
all emuploy the same basic mechanism of encoding physical time as part of each
nIesspge. The basic scheme they use, may cause deadlock. Different distributed
simuilation algorithnis differ in tie way they resolve the deadlock issue. Several new
:ilgoriltis for distributed deadlock and termination detection have been discovered
i, t last few years. Combining these algorithuis with the basic distributed
siflhllait ion muchcha ilisn is expected to result in very efficient and practical simulation
schemes. Empirical investigations are currently under way to assess the perforniance
,f different stc-hemnes.

1.3. Scope Of This Monograph
This nionograph is a comprehensive survey of all known (to tile author)

dltributd simulation schemes. In order to make the monograph self-containivIl
basic notions of sequential simulation are introduced and explained in Chapter L2. A
proof that the sequential sitnulation algorithin works correctly is given in that
chapter; surprisingly, the author could not find such a proof in any simulation bo(,k.
Chapter 3 introduees a basic distributed simulation scheme and shows its partial
correctness. It is shown wiv the basic scheme may be inadequate, i.e., may result i1

.. . . . . .. . . . . . . . . . . . . .. ... . . .. . . ...



-la~ok. 1)iferntdad lock resolution schemes propo sedl in thte litterat nrt . rv

p~resenlt ed in chap~ter .1. A stiniiia~ry of eurrent remuIlts ,irid possible dIir-ed ion., for

rii ttire Investigat ions are ou tlined in chapter 5.

'[his monograph (toes not introduce a new simutlat ion laguag. vause
- dis ribuited simulations can be written tising sequential simulation lanuages for

simulating the physical processes and message commnunication litgiiag..-s r,

diemcribing interactions amiong comnponent machines. We also avoid a ii uber of

raditional issues in simulationi: pseudo- randomi niumber generation, " tat istic'al

an-alysis or the outputs etc. Methods developed in these areas for sequential) SinlIulaf ion, see [I1.1], still apply. Our goal in this monograph is to show how the b ody

of actual simulation can be distributed among a set of interacting machines.

1.4. History
Sequential simulation has a long history; Franit.a [151 provides a discussion of a

mnmber of prominent simulation languages and their relative merits. Amlonga the;

1ni.111 vSimii1la tion packages introduced recently, we miention lE-NICIS 151, SAMO0A [211
and MAY [2). D)EMOS is a discrete event modlling package imp~lemiented iii

SIMII A (N3] It prov ides ain extensive list of features for event scheduling, data

collect ion and report generation. SAMOA uses Ada [I) as the base langiiage. MaI;Is
based onl F'ORTR'IAN IV and p~rovidles the minimZ~fuml numbiler of con.-tructs nceded lo0

ca rryv out slimulation; these features have been usedl to buildI an extvinsive library t ir
(ILit -1 collect i( II out put analysis and report genleration. I'lle mminilit y of

M A Y makes it possible for it to he implemented eve outn personal contput ers.

Th'le ideva of (list rilmut ed simulation was first proposed by Chantdy liti 97 iin a

series of lectutres at. the University of W~aterloo; these idleas were later refiiie'l mid'
ptililslieml by C handy and] *\isra [7] and Chan(Iy, I lointes and Ni ka m. 'li ',
obshervedl tlit the lbasic scheme of time encod inig may lead to d''ail b k anid t hy
pr('lo-,ed schiemes for deadlock avoidance. Independently R~. E. Bry ant [6) (Iiscove're'l
the basic 'Ifintul1u ion Scheme. Peacock, Wong and Manning [ and25 olmbdies 1171
pro posed niech Iiimns for avoiding deadlock lby periodic use of probe rim-'.am qes
Eimipirical \E irk by P emic( ck, Wong and Manining ha3S ',fow~n 1,11at the nII(tho ulIS

inleva ble: the tim oneeded] for simulationi of a class of (Iueueing nhwoks st eaddiy

dlecre'ases when the number of processors available for simulation increases.
E-mpirical investigations by Seethalakshmi [28] and Quinlivan [261J showed that the
met hod is also efficient for acyclic physical systems and that performiance (-art be
substant ially implroved if there are miany buffer spaces between miachiinc.s for

buffering ileIS,11es.

('handy mid 111 isra 19] have subsequently suiggestedl a scheme for deadlock

detect n it :111id reove(ry. Re y noldls 1271 sti- gested iisimri common memoii iry at ii-~

neighbIo rs to av'oid (deadlock . A not able departutire frrim these schemecs is the owme
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I
)ropt)se,l by JteffersoIn and Sowizr:al 1181. They suggest, that ar na('iii s'il l(I w i!t h,,

receive inessages for a certh:i leriod of time; if it rec('eivs 10 Im,.SagCs efs lirom s,,ni,,
diinchn il that period, it :.ssi mevs that there will be no furlther inessawes from iif:

Illachillt'. and(1 it then Contlintes simulaL ion Ii ilid r this assimpt i)n . IlII (::. :a

insioae is rt'c'iv ed fromi 5111., machine, 'hich violates this machine'., pre% I(,u,
a:s.sliription , it roills back to its previous state and sen(s "antimessagses v:janll'ellg ill.

illessares it Illay have sent i inder the false :Lssunption. [i'pirical i vestigration ,f Ihl'

beh avi or of this algorithm is continuing.

Itezi'in and hubert [3] propose an app~ro aclh sinilar to Jefferson's. li th,. I r

approach. each process in the simulator maintains a local time and all overall ghi d.a

line is imi ained by :a central process. Christoplier et. al. 12 J pro,,,,e
precoinuting; minii inim wait time along all paths in :I network (,() thal , del :i

rinformation mav be proplagat ed rapidly among non-neigh boring processes. I ra( i ;,I
-,inulat iitt results, employin ; fllmany prI 'essorS., h v't w, ,en r,.irl,.I in 123,29).

PI )tcv Ku ni:r 120} has combined somtle rvcent work in dval Iwk and lermlji:ttai,

*iP- ,ht cit ion ['221 with the basic simulation scheme. Ihe has lvlold a)lgorithtmi, whiih

are uiure hierarchically structu red. lis sehtme has lparainet,-rs to cotr, th liv in ,,.r

S,4 overhead messages. Behaviors of these algorithms oi a wide ,'kiss ,f ur:itii<'al

stimilat ion problems are currently being investigated.

I
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Chapter 2
Sequential Simulations of Systems
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2. Sequential Simulations of Systems

!
Tvhis chapter introduces the problem of system simulation. A precise definiti,,r

of simulation is given. The sequential simulation algorithin using the ,vent list

structure is presented and proved. It is shown why the sequential simulation scliie -

cannot be readily adapted for parallel execution.

2.1. Physical Systems
Ve consider physical systems, also called networks, consisting of a fioito

number of ph ysical processes (abbreviated as pp's). Each pp represents somle

('oiponent of the real system to be simulated. For instance, in a computer s'.steit,

the C'lU, each disk, each memory bank and each job entry terminal may be thought
of as a pp. A pp usually interacts with other pp's from time to time. In tradition:
simulation terminology, etenls happen at a pp, mid the occurrence of an event at one

pp may cause other events to happen at various other pp's. We will use a slightly
different terminology in this monograph which makes our description of the
simulation algorithms considerably simpler.

Events that are local to a pp, i.e., those which do not dirvctly affem ow
:~behaviors of other pp's directly may be simulated locally as part of the simulation ,4

the pp. Alny evelt that causes events to happen at olher pp's may be modelled by
Ir:nsiit ting a message whose reception causes the desired event to happen. X",,r
insl:I'nce, if event e at pp 1 causes event e., to happen at pp 2, we can model these

event dependencies by (1) pp I sending a message to pp 2 and (2) pl) 2 causing event

e., to happlii locally, at a proper time after the receipt of the message. Event I., may

camiSt' .n event e.3 to h:ppen at pp 3, in which case it must also be ftlodell-d as a

mness:ige transmission between pp 2 and pp 3. An event at a pp which causes v'(l tS
Ito h:ppn at several other pp's must be modelled as several message trnsmil'v-iris
anmong ai nmber of pp's.

We next give an example which clarifies the relationship between events and

ilesages. The reader is urged to study this example because it shows exphitit
message tr:nImsmissions between pp's which were not in the original description of tile
p~rob)lIem.

i "

. . . . .
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Example 2-1 (Car Wash)

The following exaiple is a variation of one appearing in A ca. ':ir ,i
SN'steii consists of :,Ii atten(lant and two car washes, abl)breviated CWVI and ('\2.
Cars arrive at random times at the attendant. The attenlant directs cars to ('Vl ,r
('%N'2 according to the followinig rule: if both car washes are busy, i.e. washing ir

iny arriving car is queued at the attendant; if exactly one car wash is idle, the car ;at
the head of the queue, if any, is sent to that idle car wash; if both car wa.she, are i l,-..
tli- car at the head f the queue, if any, is sent to CW. CVI spends 8 inu te., and

C _. 210 mii ttes in washint4 a car. G iven soime distribution of rar arriv: k, it i>
-" • rrte(piirio co'IIp)ite (he average anliotint. of time a car splinds at tOli car %%aii

iltlditng the wkshing tinie) and the average length 4,1 the ,lueu t hat I i~ u p

the attendant. We will not compute the above statistics; we will sipil)y show w
WI'tlti '11V' o f A' velnts and 11Vssagc transmissions in two different views of the car wavli

jI)r(0d vn i.

'lhe scheimatic diagrimi of the flow of cars is given below.

crs-cars leave

~Figure 2-1: Schematics of Car Flow

Imitijally hot ii '\V I and CW2 are i(Ile. Assu mi* that Li ,ears, C I t h r,,ngh ('Ii,
* arrive, at. the at teiidaimt at times 3,8,9,1.t1,1 (,22. An event in thmis system is (.ith,, r aL c.ar

.:li~j :mt sore po~int, i.e., at. the :at ,ndaimt, (:WI ,or (W., ,,r a car heavin, he ,ar

w:i-li,. \\ ' assitile thIi:m( thme driving timte fri u the at Ieiidant to ( W V! or ( XV 2 is z,.r',
:\1,,,).o whemi a ca.r arrive~s a t ('.\W I or CWX'2, it starts gttling; servic imiiilati.ly. h.
cat rnd logical s(ueiice of events is given in Table 2-1.

An event e,. dIepends directly on an eve~nt e1 , if

I. ni,el both happen at the same process and 1 n happens before e., or

.. i a l t atpen t at rii', t 3lr ,9' 4 i622 : ev is one of Ile causes of ,.,, i.. if ea

1. had not h:ppenat, te, c. il prh not s arde hapen,.

41
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Event c is dependent on event e', if e depen. s directly one', or vIelIp.n, ito

. e', which depends directly on e'. Two events are independent if thy are ho,

dependent on each olher. It follows then that independent (vents can be simulatd III
parallel, while dependent events must be simulated in sequence.

,Eve t Number Time Event

1 3 Cl arrivs at tile au,.
'2 3 C1 arrives at CW 1
3 8 C2 arrives at the attendawi
"1 C2 arrives at (OV2
5 0 C3 arrives at the attendant
6 II C1 leaves car wash
7 11 C3 arrives at CWI
S 1-1 C-1 arrives at the attendant
9 16 ('5 rarrives at the attendant
10 18 (C2 leaves car wash
11 18 C arrives at CV2
t2 19 C3 l(eaves car walsh

313 19 C5 arrives at CWI
1-1 22 C6 arrives at the attendant
15 27 C5 leaves car wash
16 27 C6 arrives at C(V I
17 28 CI leaves ear wash
18 35 CG leaves car ,wash

Table 2-1: A Sequence of Events in the Car Wash

D ; ependencies among events is shown in the directed graph of Figure 2-2; an
edge from event e, to event e.- denotes that event e, depends directly on ev,,lt v

therefore e, must be simulated before e.

2 6 7 12 13 15 6 18

-3 5 9-- 14

4 10 1 17

F"' Figure 2-2: Schematics of Events in A Car Wash

* Two independent events, suich as event 8 (C-1 arrives at the attendant) andl

- ::~~~~~~~~~~~~~~. . . . .. ... _. ..... ._..-.......-..:,-.-....".,...:--,-,,-..-..,
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event 12 (C3 leaves car wash) are independent and hence call be siul:li,.,

simultaneously.

We now present. the car wash viewed as a message pa.ssing system. The car
wash system has 5 processes: the source, which generat-s cars at the pres(ribd

tmc,, the attendant, C\V , CW2 and the sink (exit). The schematic diagramn if,
message communications among these processes is given in Figure 2-3.

>orce at n

Figure 2-3: Schematics of Message-Flow in the Car Wash System

Note that we have possible message flow paths from CWl and CW2 to the
atteqdant. This is because the attendant must know when a car wash becomes idle

(hi his particular problem, the attendant can kee l) track of tie times at which he

sent the last cars to CWI and CW2, and since the washing times are fixed, he cal
deduce the times at which CXVI and CW2 will next )ecome idle. This means that tihe

attendant is simulating CWI and CW2. In general it will not be possible nor i
preferable to do so). The attendant expects messages from CWI and CW2 each timte
they become idle. A complete list of messages for this example is shown in Table 2-2

with corresponding event numbers from Table 2-1. Each message has a sender, a

receiver and message content. In our case, the content is either a car number or the
status (idle) of a car wash.

4 This example shows how to model event interactions by message transimsions.

lit particular, if an event at one pp causes events to happen at several other pp's, we
will have to model such event depen(encies by several rissage trasumissionms.

Secondly, the chronological order of simulations of events in sequential simulation

(described laler) guarantees that every event simulation precedes the simulation or

events that depend upon it. Our approach in distributed simulation will dispensv

[..



Message Event Time Sender Message Content
Number Number Receiver

1 0 (_1 %V I attendlant i Ic
2 0 CV2 attetidlat idle

3 1 3 source atten(iant, (11
4 2 3 attendant Cwt (I
5 3 Is source attendant (,'2

1 8 attenfliant C',V2 (12
1 50sour(,( atteCn(I ant (3

8 6 11 CXVI sink C I
o - I I CXVI attefl(laft. i(Ile
10 IIatteniidant, CV I 1:
I I . sou rce atten&dant (AI
12 0 Ili source :ittewlflant C5
13 10 is (AV2 'linkU.
14 Ii-18W2 attendlant idfle
15 11 Is atte1l~lt w~ (,2(
II6 12 10 (AV I sink (':117 - 19 (XV I attendlant. idIle
Is 13 1o attendaint XVI (,5
10 II 22 sour(,(, attendant 0'i

K '20 15 27 (AVI sink (-"5
21 - 27 CX tt~ditiuIl'i
22 1ti 27 attenit CVI(.
23 17 2S (AV 2 sink C

21 - 28 CW2 attenIcn
25 18 35 (.1wI sink (

-35 (AXVI '.ttendlant le

iTal 2-2: A Setiqience of %Iessage Transinissioas in the ('ar W~ash Systen,

wit chironologivnl siluta hit ions of events.

4 j In satinniwiary, a pp) may sen (I miessages to a 0(1 receive linv".iges froi n o( her ppj's

.aItI fisc ret e tiies . lessnfg trw ismiissioit dIelys tre zv*ro, i.., ainy Inessage. snt :it 11,1ilv
is receivedI by fiv He it ended recipient at L. (I teri I that we aire dIescribilng a phyvsical

Svst till, [lot I It( ('0miput1er systent ii wh ich t he sitnu latuin is to run.) If it is neceksa rN
to 11141 let delays in Ohw reali worlol systenm (viz. (Inrinlg titne fronti attendanit to a% car

4 wnsh in the last examnple), then either the seniler of a mnessage ioil s for soniv li heI I e~~lforv sendling t h t nvssaige or thle recipilent or a nws;teS:g i(Iiles for soi n i ue a iic
receiving tile message: ainot her possibility is to mnodel thle conitnu nicatii n iied iuni :v,1 ~ ~: pro cess, incorpora rn hedly

T 1here :ire two ci mnit iow., wh ich iare niet by every physicail systemiIi i girnl: abl1e:

I reIaMliziibi lily andI predirlitbilitq, whieh arv d esvri Iwt(l iwxt. WVe will :Lsinw thA 1),,01I

.1



these coniditions holdI for all p~hysical systems we conisider.

Realizability

A* rinessizqe senit by ta pp (it tirne I nay depend( aty iipon the irtessay~e.4 it haus

received ap to and Minldiig t. Realizability says merely that a pI) canniot gries.- allY

iiiessage it will receive iii the fuiture.

Note that we admuit the possibility of a miessage that is received at t, affectinig a
iiiessagre that is setit at t. Ant examiple of a pp1 ini which this inistantanieous cautse.-effet.

is seten is givenl belowv.

Example 2W-2 (Instantaneous Message Transmission)

Consider a pp1 which acts ais a mierge p)oint for several pp)'s. Scemnatically, such1

a pp j, A, is showit it% I'iguire 2A4.

A Queue

Figure 2-4: A MegeLoiit ppl

Mttssaies ari iv iig i nt A, eithIier fromt the toj) or fromu the bottomi are ntnai:uil
*sent to the queuie oni the right. Therefore a miessage senit by At at t depeid(s tip n

meissages received at t. It mnay be argiiedl that l~p A can niot he p)hysically conistriict e.

H owever A miight rejiresviit a real world Pntity where the interval betweent recepi I' il

ai ( t r. io~ii of )I( a me~ssage is smuall eiiough to be igniored altoget her 'i the-
Modelling p)roce-ss; in fact pp1 At maiy niot event exist iti the real world syst cli and is

e reatcd, (lirinig iii~leilitig, to siiplify (Iescrip)itin or the real system. Stich i'rge
po-inits are- ofteni used iii (jueeiig network de-scrip~tionis of systems.
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Predictability
Suppose the physical system has cycles, i.e. it has a set of processes P,., .!,

where PP0 sends messages to PPIi+ (and perhaps to other pp's) and receives iness:ag-

from )Pi1 (and perhaps other pp's)'. Suppose that the message, if any, sent by 1)pi
at s.ine time t depends upon what PPi receives at t, for all i; then we have a circtlar
definition where the message received by every pp at t is a function of itself. Such

.| definitions lead to orace conditions = in physical realizations. In order to avoid such
situations, we require that in every cycle and for every 1, there is a pp whose outputs
(messages it sends) along the edge of the cycle, can be determined beyond I, - up to

I I+E, for some fired E, E>O - given the set of input messages to it up to 1.

We next consider some typical simulation exam)les and show that they satisfy
*the realizability and predictability conditions.

Example 2-3 (Car Wash - Realizability and Predictability)
We consider the car wash problem introduced in Example 2-1. Each pp'

output at time t depends only upon the messages it has received up to t. Of
particular interest is the behavior of the attendant. If it receives an "idle" .ines.afg e
from either of the car washes at time t, and the queue is not empty at t, then it sti(ls
a message at t. Therefore tile realizability condition is satisfied. The
predictability condition is satisfied because each cycle contains one of CWI or (\W'21,
and given the input to CWI (CW2) up to t, we can predict the output from it up to
t+8 (t+ 10).

Example 2-4 (Assembly Line)

An assembly line consists of a series of n work stations. Jobs enter the
:issen/bly line at work station 1; when a job has been serviced at work station i it
I)roce(ls to work station (i+I), i~l,2,...,n-I; a job leaves the system after being
serviced at work stal ion n. Service times at (lifferent work stations are rand(, -in

variables. There are queues at stations where the jobs awaiting to be serviced by a
statIilo 1Nay be queued. A work station takes one jot) from its input queue wlen it iN ,
frn e, services that jot) ad then sends it to the queue of the following work slatiu(,.

All work stations service the jobs in a First-Come-First-Served (I'CFS) basi. It is
desired to find the expected number of jobs in the qeIiCUC of each work station and th e
expected waiting time for jobs at each work station.

Specifically, consider an assembly line consisting of 3 work stations, A, B and
C, which services -1 jobs identified as 1,2,3,.1. Schematically, the assembly lint, is
shown below.

3 The times at which the source generates jobs and the service time of each work

i .AI arithnetic in pp subscripts is modulo n.

£- I I . .. . . . . ... "". ., . . . . . . . . o . . . " ° o . - °



A > B C

source sink

S lfl

Figure 2-5: Schematic Diagram of the Example Absembly Line

Jos1 2 3 4

work station

Job Generation Source 5 7 30 32
Times

A 4 10 1 5

Service B 12 15 2 7

Times
C 2 3 1 4

Table 2-3: Job Generation 'riics ,,,(I Servicing Timnes

station for each job is given in Table 2-3.

The source (call it work station 0), the sink (call it work station .1) and ,'each
work station is a lpp. Pp i sends messages to pj) (i+1), in,,...,. The sojrc., snif,
nltssges (which represeit jobs) to work station I at times 5, 7, 30 and 32. It ao j.4 j> Itj arrives at a work station at time t., then its service at this work station beg,11ins
either inimedintIely (at t) if the work station is then idle or it begins immedi tely after
lie departure ,f tile (j-l)st job from the work station. Let A he the time of arrival-oi*1rksain letP.b), job j :it some ork station, i be the departure time of job j fr ,,i thi. %.,,rk-lation, ad let S. be the service time required for jot) j at this work statio nu. 'i'hen

SwM have.

1). - niax(A..jl)jt) + Sp J=I ,2...

1 1'sing the service times and generation times of jobs given in the previous table, wet.
can construct the departuire times from work stations, i.e., times at w hich nw'sage.
are sent, as in the following table.

Each work station's output at time t depends only upon the jobs it has reeived
tui)  to t, an d therefore the realizability condition is !;atisied. "i'hol

'E
%t '1.2 - " ,'



e ssae 1 2 3 4
pp

Source 5 7 30 32

3A 9 19 31 37

8 21 38 38 45

.1C 23 39 40 49
C:Table 2-4: rinic. at whiich, PPs Sendi Nessages

predictability condition is trivially satisfied since there is no Cycle inl thle pvi
systeml.

Example 2-5 (A Computer Network) - d2pImtagine a conimter installation that consists of a C ~I and 11 pif, ral

Inroessors, l)rt an aI)rpoc2. Jobs enter the CMU, spend sonie timne there and( thlin*1branch to oil( of thle periphleral processors with somte griven p)robability. ( JIon

comipletion of processing at the l)eril)heral p)rocessor, thle job) mmay leave the systim or
relt irn to the (1 T withI somne irolabilitv . Thel( schvinat ic d iagrain (or ithe*(ste Il

shown Figu-tre 2-6.

It

t C a Proc2

1-ct

1-

* ~Figure 2-0: Sd iemuat ic lDiagrain of Job Flow inl a (Xinpter Systemi WhlichI
H as a CMU and T'wo P eriphleral P~rocessors

a: mlean timie between arrival of job)s fromn tile mitsidle sour-ev, a1
randomn variable.

.1 t~: mean thine silent by a jot) at tile (! ,a randomn variable
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I. e: n t nie speut by a job at the peripheral processor I (pro, ). :1

random variable,

mean time spent by a job at lie peripheril processor 2 ( pr()e2 a

random variable

0" probability of a job going to procI

3: probability of a job exiting the system

"M I, .l: merge points

1111I, ribranch pointsI !"
This system has pp's for the source, the sink, mrge points NI and N.. hr:,ich

points B1 an( I ,, the (I )T, procl, and proc2. Each message r-prcsents the tr:i -f, r
.of a job front one pp to another. Tle reali:z:bility property holds, becawis ) ipp
ba ses its beha'i,)r on anticipat ion of the futlure. Probbilistic deeisiorts at I . IH.,
('aiise no difficulty because tie inputs to , up to time t determine their aitjlii

tip to time t (though the outp)Iits may be different at different limes (IwI(,i Ow

pr(,babilistic niiltire). We can realistically assu me that each processor spnd ini-

zero time in processing a job. Fhiere,)re t he system ihso Iin:, lie.
predict ability property.

This concludes our discussion of modelling r,:il world systems by pit \'ica
systlms, i.e., a systeni consisting of message )assing processes and. operatin" in r,: l

time. From now on, we will assume that this on|dlling has been perforintl and that
we ;re la ,1ling with physic:al systems with realizability and l)redictability prlpert ie,

Now we define t he uteaning of simulation, precisel', for such physical systems.

1 2.2. What is Simulation
We wish to build a simtlator or a logical system, consisting of logical

processes (abbreviated lp), to simulate a physical system. Ve will use "sinultion"
in a rather strict sense: we say that a logical system correctly simulates a physi,':l

system if it is possible for the logical system to predict the exact. sequence of i,,s.ag
transmissions in the physical system. That is, if tI ....... ti.. are the times at whit'h
the ie-saes ml,m..... mi... are transmit ted in file physical systeu an,

St -... e<ti..., then the logical system should be able to output the seqtienc
f:: , . :  < (t 'm ),lt'-',n".) .. (t , > .

* We observe the following facts from the definition or simuilation just st at oqj.

1. The logical system must be able to delermine the exact chroiol()gic:il

sequence in which message transmissions take place in the p)hysiCal

077
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systemn: t herefore it is not. aceel)t ble- to p red jet ( t, i) aind t hen ( t iii'),

whe-re C <KtL

'I.l ltwItica :Isy stelin tinay niot aictwi lly jIrlnt I-lie' seui ite, < ..( t1, :ii)...>

A"l]I flit iis dlesiredl is that it should be possible to dot s ' fro in the I' .giea

('lverlv i, 1dlysio.-J sysl cu is ai simu latli of Itself. We wish to co nitrtl tt 1(ir1jc I-m 'v%.,teills whiichI ult:1N' not o'rit e :it tlit- satne s1)vd~ aks Olte l)hiysi(aIL sysivi.f (A )u .t r g
it) coiistruct, a t gical( .N -fte out of amc u rmciie hr te.t

p~r(tvsrs :riid coiniitiiiic.-itiuit liniks (if any) :ire arlbitrnry. lit othier word,,. ev %% 1 it,

dulicate the twhivibr o f :i synch rotiotis physical systemn usng :isviichrit 1, -Ai

It should 1( be observedI thait Nye can do the tv plii fiinct itns of :a -liItl:t i II

- nayz dt . )r(Iic(t pt'rfrince or ful tire behatvior, geiierate repo)(rt. 4-1c. - ,I u1sing- the ltit systemn. We do ntot address these issues lit tis uulori tgr :ipl
mlerely observ, 01h:11, since it Is possible it) ireaite the sequrence o f pvscdIII,. :q_-
I ri iiiis, itns InI (lie- logical svstenI, ll.11 linteractions carlt be recolist ruchtd midW

Example 2-0 (Message Transmission in the Assembly Line
E xam ple) I-l n f11x iII - h tl e :h v1 ,ltA siiliiliat loll of thle asstinblvlt fLaiIl - lttidbbeIirt c

f()1 )%S wIII me V-: wilkp.ne. ETis seyquence is devrived rroinu Tab~le 2-1. In !t 1

(.1sonree.\ ), (31,souI e,3), (1,AJ1rc,AI ), (3~~( 2(,A ,I ,), (3,1 ,ink)

1 2.3. The Sequential Simulation Algorithm
Two niitjor tint a objets u~sedl by the seqIitentutii ,iiwilatiotn alaoritlint art-.

Hoek: anlt eve;!1' I L. Their iieanitigs aire giveni below.

Hlock is :l rt'al-valkttd varialie. It gives thle timne 1ll) to \%IIcli Owi
CorreslIl rIidiigr l)ltySICal systemi ha:s htell siiuiiltl,.

.3c caf-is:is aI set of t u pie-. 4 the forin (t.jq, i ), where tj is sonic tilin.t
cl c ;i l li S :1 lW ~ ; "(. ( f ,ilw 1:1,t3 3ditil -S l-



igthe ae-i'dy inas of th me sende of insi re !ives ofarckherm
nesysbenthe ei'itelu reont blite(ie ycok n t hn

%~~ he pheia r.te~ If a "rense ne

-fici ~i te Sll mesae incals itw futie asle, rit ived in jol

Nirlir nesage, ht-cores~odin eentlit etr wil e tht (o is) woline il tte

E ampl 2- (A Si cu natlephotsia Semquential timeusagio ofz theS~Oi i.

A ~ ~ i be c ncelledi the seni o ine receivesnp 24 a meagel i t t aie fct rorned~ci
COrIis mt n in e weenalyalCtries ii the eventlist are shownlh iii ac I

slupie. '[eeisrf tile ),lllto he re~nd toi the Smi llest tie hys i el sy t whf a I
the! rv tirct li c pcii job list 2h clisgraned o hccar 1We assme, at Ar ahd iiioii i

hat Theore s npe ntry wth tchesalest valr I o to iasipiedie t T send~~
it i p2 to B t rt it ii 9 smalled c ei e IOl no~S i-noe issed )et w.e ) andi N; Bel Im

sin i Lito Sen joi ) Ii in is ats o tis fact Wied ittrecane pve hs rescii I, or tsoh iie

C Simultins- of' IlSilanci EvCU et sreivdnJos

Itv silide ot~e t ati~oi vac eatr tiap nei sinlll ti~l the physhs i rn ii al. ( siii)I i~e..n at thet a ili c er iuii theqe htsic zeal s iilliilhe ati t iinesiflue tlccsiisi~ 1/141Yic

coi rtn i i :i ii e aide I(i rle nar, al entries in the evenl t fi A arj)e:tcl I I' * I

3 so Id 'lcire i nl ton pp ntr ti wher p t is an e al a (lock t i c heulme o :I%

offv ie. (lcit, ivilist i h i s o pp Aatetme to ocr . n'ci W e a iuss :Lg orte frin lC pp .

tha tre is a. liIi hentryii, s tile H snans ivi e to r td t-o p pet A. al' r i

niiIpe v tis wt tilet tC ilo e t s (icis~ wo . i
iniainagrti sbse i hsfc.N'5sae n rv hsrsd,-o
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these message transmissions are simulated sequentially in arbitrary order, a possile
simulation may result in pp 13 sending m' to pp A. As the reader will see later, this
problem does not arise in distributed simulation. However sequential
simulation requires an ordering of simultaneous events and different orderings may
lead, to different simulations. Certain sequential simulation languages, suc.h as
GPSS [15), provide the user with facilities for defining these orderings.

In proving theorem 1, below, which forms the basis for sequential simulation,n1 we will skirt the issue: we will assume that, simultaneous events are independet,
i.e., if (t,m) and (t,m') are both in the event list and t is the smallest time component,
then both these message transmissions will take place in the physical system.
Therefore these message transmissions may be simulated in either order.

The Simulation AlgorithmI9 The theorem stated below forms the basis of the sequential simulation
algorithm.

'Theorem 1: Let (t,m) be an entry in the event-list such that t<t',
0 for every other entry (t',i') in the event-list. Then the message i is

transmitted at time t in the physical system and no message is trans;mitted
between the current clock value and t.

Proof: If message in is not transmitted at t, it must be because son
other message is transmitted earlier than t (and after clock value) which*1 causes the sender of m to cancel transmission of in. Consider the first
message m' to be transmitted after the current clock value; it must be
transmitted at t' where clock < t' < t. The sender of m' could not have
received any message between clock and t', because such a message would

*be the first message. (t',m') must be an entry in the event-list, because the

S;?ender of i' sends its message, without receiving any other message after
the ci:rrent clock value and before t'. t' < t contradicts our choice of
( t .m). lhnce the theorem.

The simu lation algorithm, given below, works :as follows. In each step, Ill
imessage with the smallest associated time is removed from the event-list, its effects

: are simulated causing possible additions to and deletions from the event-list, an 111 l
clock is advanced to the time associated with this message transmission. 'Tljis
alIgorithim is given in a ),e'udo-program inin g notation below.

* Algorithm for Sequential System Simulation

.1 I
'"I

.......
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I
'" lIhitiali:e::

clock 0; event-list =(tpm1 )l message mI will be sent at t. unless

the sender of ml receives a message
before ti; one such entry exists for

each pp as the sender}.

p " Iterate::

while termination criterion Is not met do

remove any (tm) from the event-list where t is the smallest
time component;

simulate the effect of transmitting m at time t;
(This may cause changes in the event-list.
Note however that any addition (tp.m')
to the event-list vil have t' > t and,
any deletion (t',m') will have t)t

clock := t

endwhile

The correctness of this algorithm should be obvious from our pre. ioils
discuissions. Note that the sequential simulation algorithm is capable of lpro(-iitig
the scquence of message transmissions in the physical system; it simply prints (t.ua).
%when it removes (t,mn) from the event-list. Frthermore, this algorithm can l., III
g.neral, choose to simitulate more than one tuple in any step, because as wve
nti varlivr, n,,'n,' f the tltphs 'xcept the one chosen by the algorithm may o('V.ur in
Ihe plysical systlem.

Exanple 2-8 (A Sequence of Snapshots in the Simulation of the
"- Assembly Line)

We consider the assembly line example and show a partial sequen,, of of.v !-

lists and clock values.

clock event-list message with smallest
associate( time

0 <(5,source,A, 1), (5,sou roe,A, 1)

a <(7,source,A,2), (7,source,A,2)
• ] o,;\B, 1),

.I

• .. . , . . .. . . .... .. .. • . .. . . . - . ..
- ) .;3 .? . , . ) .-
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7 <(30,source,A,3), (9,A,B, 1)3 (OA,, 1),(oo,B,-,-),

(oo,C,-,-)>

1 <(30,source,A,3) (19,A,B,2): (09,A,13,2),
i "!(2 1, B,CQ1),

(oo,c,-,-)>

Notes on Parallel Execution
It should be obvious that, in general, we cannot do much better than processing

one tuple from the event-list at a time. In order to process more than one tuple, s:aY
at once both (t,m) and (t',m'), we must be sure that these two events are
independent, i.e., that execution of one will not in any way affect the execution of t0h'

* other. This requtires us to know more about the cause-erfect relationship among
rinss~iges. We consider these issues in the next chapter in developing a basic seli e

* for distributed simulation, the subject with which this monograph is concrne((.

IJ
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3. Distributed Simulation: The Basic
Scheme

In this chapter, we intro(uce a mo(el of (listribute(l computation and we qh,,w
how a simulation may be carrie(l out by a set of communicating processes. We imil
our discussion here to a basic scheme, one which can result in deadlock. lor,,
sophisticated schemes which resolve deadlock are (lisclisse(l in the next chapter.

3.1. A Model of Asynchronous Distributed Computation
A distributed system consi.ts of a finite nuiiber of processes :1iid (irerted

cdyes connecting some pairs of )rocesses. To (listinguish these I)rocvss,.s fr',,n
0 physial processes, we call them logical processes or Ip . Each lp is a seq(Iiential

process that executes both its sequential co(e and two special conmands: recire anid
.erld. [it a send command, an Ip names an outgoing edge and a message that is to be
sent along that edge. The execution of the send comrnan(l results in the uwss:i(re
being deposited oin the nam)ed ou tgoing e(ge; the sen(ler then proceeds with Ohw
execution of its code. FEach message takes an arbitrary but, finite tine to reach its
de-tinatrion. Messages, sent. along tn edge, are delivered in the seqlilelnce in which why
are sent. It% a receive 10111111i(, til Ip inanies one (or illore inconing, edges from any
one of which it wishes to receive a message. An Ip wishinjg to receive uiay havv Ito
wait.iuntil a message arrives along one of the edges that it is waiting for. Note that
our kommunication protocol is extremely simple and can he implemented rea(lily (it1
1.ma1y existing machine archilectures.

A set of Ip's 1) is deadlocked at some point in the computation if (1) every ip in
1) is either waiting to receive or is terminated, (2) at least one 1p in 1) is waiting to

* receive, (31 if IPi is in 1) ani is waiting to receive from lp, then lpj is also in 1). anl
I1 there is n) messaige in transit from )pj to Ipi.

It follows then that none of the Ip's in 1) will carry out any further (olmulati n
-as they will remain waiting for each other.

3.2. Basic Scheme for Distributed Simulation
To simulate any given )hysical system, we constrct a (listribtttvl loyical

systen as follows. We will associate one I) per pp; Ii)i will simulate the actions of
F" pi)i. There is an edye froni to lpj, if lpi can sen(l fiessages to I1)j Mcssates,.t atg

Ip's will be transmitted along the e(Iges connecting Iitem.

. ---.-:-.-- - -- - ..- - ... .. .-
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..n I) can suillll:lte (Ihe actions of a pp up to tihe t if the 1p knows all Isvs:g,,,s
that the corresponding pp receives till to time t. This is because, from Ote
reali:ubility property, no future essage (message received by the pp after 11irn, ()can affect the pp's behavior at t. We note further that an lp inny be able to siuiula:t,

a pI even beyond time t by knowing its input messages up to time t, as shown in [ht
folloving example.

Example 3-1 (An lp May Predict the Future)
Consider a typical non-preemptive First Come First Servo (l'FCFS) swrver wli,.h

spends exactly 10 units of time servicing each job. Assunmi that a job arrive. it tiii.
t when this server is idle. From this information about input inssagos Up l t i,t. 1,
we can predict the behavior of the server up to time I + 10: it will produv, tit)
output between times t and t + 10, but it will output a message at C + 10: seil11g
the job that has been serviced to its next destination.

From these observations, we can construct an algorithm for distril).teI
simulation. We note that the times at which pp's send messages must be ,t'eoided
into the message that the Ip's send. Thus if messaye tIn is sent by ppi to pp. at lime
t. message (t,m) will be sent by lPi to lpj at some point during simulation and vire
versa.

We make a chronology requirement: if an lp sends a sequence of inues".:g.s
<... ti.mi),(ti+ ,mI l).. > to another Ip, then ti < ti+1 .. The idiplie:ation of tIhi.
requirement is, if lpi receives (t,m) front Ipj, then it knows all tnessages t hat I1
receives fronti p 1 up to and including time t, because any future message will li't% :a
higher t-coinponeit.

S)iefine the edge clock value of an edge to be the t-component of the I:st
message received along that edge; the edge clock value is 0 if no message has beent
received along that edge. Clearly, every lpi knows all messages received by. the
corresponding ppl iip to time T i = rain {tJ, where tj's are the edge clock values of

Jall incoming edges to that Ip and the minimum is taken over all these inconing dg s.
lpi can thus safely simulate ppi up to Ti, i.e., it can deduce every messaie, h:l Int p
sends up to little Ti. Also, Ipi may also he able to deduce l)?i s ruessgar;Irvui ii.ills
beyond T. will send messages, correspoindiug to all the ii, us .' if
can deduce for PPi" The basic simulation algorithm followed by 11 is skelche(d nct.

Algorithm A

B~asic distribu ted siniulation algorithin to be followed by lp i.
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Iniliali:e:: T, 0 (All messages received by pp, up to T,. are now known to Ip.}

while simulation completion criterion is not, met do

(simulate pp, up to T, by doing the following}::

for each outgoing edge. compute the sequence of messages
((t 1,m1 ),(t 2 .m 2 ) ... r where tl(t 2 .. (t, and. pp, sends
mj at time t, along this edge;

send each message in sequence along the appropriate edge;

(NOTE: all messages sent by pp, up to T, can be deduced

by Ip, and sent; also some messages to be sent beyond
Ti may be predicted by 1pi and sent. Only new messages
that have not been sent before, are sent. Also note that
some or all of these message sequences may be empty.}

(receive messages and update T, until T, changes value}

ST 1 ' := TI;
I

while Ti =T, do

wait to receive messages along all incoming edges;

* 1 upon receipt of a message, update Ipi's internal state and
recompute TI. the minimum over all incoming edge clock values

I endwhile;

endwhile

Not : Those lp's which have no incoming edges, will be called source lp's. Each
" source 1p also follows this algorithm except that it simply sends messages until

(.lte saitsiiltion completion criterion is met. A sink 1p simply receives messages
S I and otherwise does not affct the simulation.

SExample 3-2 (Distributed Simulation of the Assembly Line)
Let us review the assembly line example (Example 2-.1). In the following, we

have one Ip each, for the source, the sink, work station A, work station 11 and %,,rku station C.

We reproduce Table 2-3 here, which shows the job generation and l)r,cessiig" I times.

,!

. . .. I - . .. . "-I . . . • • * , • .-, ." " .' . . " . " . , " ,
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Jos1 2 3 4

work station ________________

Job Generation Source 5 7 30 32
Times

A 4 10 1 5

Service B 12 15 2 7
Times

C 2 3 1 4

Job Generation Times and Servicing Times

The following diagram shows the messages sent by each Ip; an arrow fror, (t.i)

to ( Cua) uiins that sending of (t,m) )rece(hes sending of (t',m ).

Source: (5,Source,AI) (7,Source,A,2) - (30,Source,A,3) --- (32,Soiirc'..\,I-)

A : (.,A,13,I) - ( 19,A,11,2) -- (3 ,A,13,3) -. (37,A,13,.)

B : (21.B,C,I) -. (36,B,C,2) -. (38,1,C,3) -+ (15,F3,C,.,)

C : (23,C,Sink,l) (30,C,Sink,2) -- (40,C,Sink,3) (.19,C,Sink,.)

Note in this example that the source can sendi its messages to A without w1iting

for any input; A can send the i-th message to B only after receiving the i-th message

from the source, etc. Two messages on different Ip's between which there is no

sequence of arrows, are independent and hence may be transmitted simultaneously in

the simulator. For instance, (32,SourceA,.t), (31,A,B,3), (36,B,C,2), (23,C,Sink,I) ran
possibly be transmitted simultaneously. The five lp's form a pipeline through which
each job p1).ses. If the speeds of the ip's are approximately equal aad th.

transmission (el.ays between Ip's are approxinmately equal then the pipeline should
work at full efficiency; one job is input and one job is output per cycle after an initial

delay or 3 cycles.

This is about the simplest simulation example one can think of. Ve study a

harder example, next.

S%
SI
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Example 3-3 (A Primitive Computer System)

Proc 2

Figure 3-1: A Primitive Computer System

We have )oI 11) each corresponding to the source, the CPU, Prod , Proc2, NIt

arid the sink, For this example, assume that jobs arrive at the CPU fromi the
source every 5 time units starting at time 3, that jobs spend I unit at the CPU, that
jobs alternately go to Procl and Proc2 from B, and that a job spends 5 units at
Procl, IS units at Proc2, and no time at B or M'. We showv the sequence of messakge.
Wnd their dependencies; below. (To simplify the diagram, we have not shown the
arrows between messages at a pp.)

so~urce: (3,S4' u reCP (., 1)(8,Saurce,C PU,2)( 13,Source,CPU,3)( 18,Sou rce, CPU,4 )(23, Source,CP U, 5)

CPU 4-,U1 (94CP B'2 (4CUB3 (1,P,,4, 4 ,B,,
II (-I, [ 1 ro 1) (9,13.pro2,2) (14, ,Procl,3) (19,BPrc2,4) (2-1,F3,Prcl,5)

Prod (9,Proci Ml) (19,Procl,M,3) (20,Procl, S5)

Proc2: (27,ro2t 2) (I15,Proc2,N .t)

M (9,M,Sink-1) (19,M.Sink,3) 27,M,Siuk,2) ('29,M,Sink,5)4

4Note the behavior of the ip correspondIing to NM. Assiinie that it first e~ie

(27,Proe2.Nl2) from the 11) corresponding to Proc2. This couild be entirely possible It,
for instance, the lp correspondJing to Proc2 w~ere considleraly faster than the oile

corrosponding to P~rod1. Then the 1p for M can only infe-r that it won'treee:iv

other message from the ip corresponding to Proc2 with time component smnaller tliinn

77 '717
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27. Ilowever, it cannot assert anything about messages from I'roel; it can tIM,.
simulate pp Nl only up to time 0. Suppose next it receives (1151roc2,M,I); it I,(

still wait. The next input is, say, (OProcl,Mj). Then the ip corresponding to M can

assert that it knows all inputs that M receives up to time 9 and hence prdict all f
.M's putputs, at least up to 0 and therefore, it can output (0,M,Sink,I), since ik,
spend no time at Nt. The rest of the outputs of M are easy to see. Finally note that,

I cannot output (45,M,Sink,-1) at the very end, because it (oes not know if it will
receive a message with a t-component lower than .45, from the Ip corresponding t,
Proe . An extra message must be sent from Proc I to M, with t-component ex(.c, ,ling
.15, to "flush-out" this message. We will discuss this issue later.

3.3. Partial Correctness of the Basic Distributed Simulation Scheme
Correctness of a distributed simulation algorithm consists of two parts: (l) if a

message mi is transmitted in the physical system At time t, then (t,ni) is transiiiitted
in the simulator andi, (2) if (t,m) is transmitted in the simulator, then message ti was
transmitted at time t in the physical system. 'hese statements are not quite true in
the basic (list ributed simulation scheme just presentted. As we observed in the last
ex:i mple , job .1 is sent at time .15 from NI to the sink in the I)hysical systen, althoug-h
he corresln0liilng Imessag e is itever slit it ihe simulator. lierefore, we ca prove1

"Illy one part of the correctness condition staLd above: whatever is transimitted Ill
(he sitiulator actually happens in the physical system. We will postpone disc|ission of
the converse statement- if message m is transmitted at time t in the physical system,
Olen (ti) is transmitted in the simulator - to the next chapter.

Define a simulation to be correct at some point, (1) if message m is seit at tiinif
t aloi - edge e in the physical system and t is less than or equal to the edge clock
valu, of edge e, at this point in simuhtion, then (t,m) has been sent ( along edge 3-
t i the simulat ion, and (2) if It,m) h:as been sent in the simulation, then message m i,
slnt at time t in the physical system.

We note that in a sinmilation which is correct at some point, every ip must have
received a correct input sequence along every incoming edge, i.e., every message on
this edge that has been transmitted in the physical system up to this edge cl,,'k
v:alue, has been received :iong this edge in the simulation and vice versa. We will
assume that every lp correctly simulates the corresponding pp, i.e., if an (p reccives
correct input sequences along all incoming edges, then it sends correct oulpati
sequences along all outgoing edges. Clearly a simulation is correct if and only if every
Ip has sent correct output sequences along every outgoing edge. I'he following
theorem follows, by applying induction on the number of messages transmitted in the
simulation.

Theorem 1: Simulation is correct at every point.

. Proof: Simulation is obviously correct, from definition, when n,)
message has been transmitted in the simulation. Assume that a simulation

V
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is correct up to some point. Ilie next message in the simulation is sent by
some lp. Since simulation is correct prior to this message transmission, l1,
has received correct input sequences so far. From our assumption that 1p1,
correctly simulates ppi, the output sequences of lpi, including the la.st

message sent, are correct. Every other Ip has sent correct sequCences so far,
" from the inductive hypothesis. Hence the simulation is correct following the
last message transmission.

In a similar manner, we can derive the following result.

K Theorem 2: All messages sent by one lp to another are
chronological in their time components.

3.4. Features of the Basic Distributed Simulation Scheme

The Problem of Deadlock
Theorem I tells us only that whatever is transmitted in the simlaor

corresponds to a message in the physical system. As we have noted earlier, not all
messages in the physical system do get transmitted in the simulator using the Li.ic

sinui:,ti ion scheme. In fact, the next example shows a system in which no message
gets transmitted to a subsystem in the simulator.

Example 3-4 (A Deadlocked Subsystem in a Distributed
Simulation)

N

Proc2

Figure 3-2: A Distributed Simulation That Does Not Progress

Consider a physical system in which the source sends messages to a branch
point B, B routes the messages to Procl or Proc2 from where, after some finite tiniu,
each message is sent to a merge point M, after which it enters a network N (set,
Figure .3-2). Consider the case where 13 sends every message to Procl. 'lhen in 11hv

* similation, the ip corresponding to M will never receive a niessage from Proc2. Ih enc-,
the edge clock value for the edge (Proc2,M) will remain at 0 and the If) for MI %%ill

.,
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iever send a message. The subsystem N will thus never rece ve a meshago. |f the

simulation continues, certain parts of the system, viz. source and procl will kv,p -mi

advancing their clocks; however neither IM nor any 1p within N will advance its ,lok.

We can claim that the clock for no Ip in N can progress beyond t=O.

\\N e show another example in which the deadlock arises due to a circular
pattern of waiting among the Ip's.

.3 Example 3-5 (Cyclic Waiting in a Distributed Simulation)

] source 2

Figure 3-3: A Distributed Simulation That Deadlocks

(onsider a network of 3 processes and a source, shown schematically above.

The number on each edge is the edge clock value, i.e., the last message sent from x 1,,
V alid received by y had a t-component of 20 and so on. Suppose that none of x,y,z
will now send a message unless they receive a message, i.e., they can predict tli

future messages.

, A global observer can see that z will not send a message unless x first selds a

nmessage to y. hence x need not wait for z; it can process the next message from the
source. However none of the Ip's correspo(ding to x,y,z have this global knowledge;
they only have local knowledge of the behavior of each individual pp. Therefore x

cannot proceed unless it receives from z, z cannot proceed unless it receives from y
.- rind y cannot proceed unless it receives from x, leading to a deadlock.

Simulation Snapshot
Ili a sequential simulation, it is possible to assert that the simulator has

completed simulation up to the time given by the clock: every pp must have b,-,
simiilatedt up to this point in time. We cannot make a similar statement for

distributed simulation, because each lp may have simulated the corresponding pp to a
different point in time. For instance, in the example of the primitive coimputer
system (Example 3-3), we can assert at the end that the Ip's have simulated tie
corresponding pp's as follows: (Source • 23), (CPU : 23), (B 1 2.1), (1)roe • 211,

4 (Proc2 :10), (M: 20).
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We define T i, the clock value of lpi, to be the point in time up to which pp' has
been simulated by lpi. Thus lpi has received messages along all incoming edges up to
at least Ti and has sent messages at least up to Ti along every outgoing edge (i.e., all
future messages it will send will have t-components exceeding T). T i is th_
maximum value satisfying the above conditions. Define T, the clock value of the
similator, to be the minimum of all lp clock values. We can assert that at any Iint
in simulation, the )hysical system has been simulated up to the simulator's e'l,,,'k
value, even though some individual Ip's may have simulated the vorresponding pli's

far beyond T.

Encapsulation of Physical Processes by Logical Processes
The radical (le[)arture in the proposed scheme from sequential sitnu latiO,,

however, is the lack of any global control. (We will show deadlock resolution without
global control in the next chapter.) Since a pp is simulated entirely by one Ip,
various different simulations of a pp can be attempted by substituting different 1p's
for it. Furthermore, the correctness of simulation can be checked one 11) at a tinie
- the proof of correctness is naturally partitioned among lp's, i.e., we show that each
1t) correctly ,inuiilate, the behavior of the corresponding pp. We have shown that if
each lp behaves correctly, the ensemble as a whole behaves correctly. This
(lservati n will lead to major simplifications in designing co)m)lex simulations. in
fac t, distributed simulations can be implemented using existing sequential
imulations; instead of reporting to a central event-list mnager, an l) sends messages

and otherwise the core of the simulation remains unchanged.
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4. Distributed Simulation: Deadlock
m IResolution
I

We have seen in the last chapter that the basic distributed simulation .schelrIe

may lead to deadlock even in acyclic networks. In this chapter, we pre. ent s.vral
different approaches to resolution of deadlock. We comment on some of the two(t

viable approaches for deadlock resolution.

4.1. Overview of Deadlock Resolution
In all the examples we have seen so far, the simulator clock value (recall that

Jthe simulator clock value is the minimum of all ip clock values) remains at some fiial
value T forever. If T is smaller than the point up to which we need to run he

simulation, we have to apply some other scheme to advance the simulation.
Simulations stop (other than by conscious choice) when some Ip has more than oAe
input edge, it can be determined (by an external observer) that it will reeoive no
more input messages along some particular edge and the l) cannot proceed further in

its simulation unless it receives this information. For instance, in the examl)le of the
primitive computer system (l'xample 3-3), the lp corresponding to M cannot proceed
anyv further unless it is told that Procl will never send it a message. Another
example is Elxample 3-5, where process x must be told that it will never receive any

inpur along zx until x first sends a message. The first scheme we describe, using null
tnesAges [71, is effectively an implementation of this idea. we will also discuss sonic
other schemes which avoid deadlock by using different kinds of overhead messages.

4.2. Deadlock Resolution Using NULL Messages
We postulate a new kind of message to be used in the simulator. (t,nuPl) seit.

by lpi to lpj means that Ppi sends no message to ppj between the current edge (+' )k
vale of the edge front Ip to Ip3 , and t; therefore any future message from lpi to IIj
will have a t-comp(onellt exceeding t. Clearly null messages have no couiterpart, ini

the physical system. A null message is used to announce absence of messages.
Absence of messages in a physical system at tine t is recognized by no message leiiig
transmitted at that time. Unfortunately, the basic scheme of the last chapter cannot
guarantee absence of messages to an ip without sending it an actual (no(n-'ull)
message having a higher t-component value.

* We nowv propose modifications to the basic algorithmt (f chaptor 3 t;)

incorporate null messages. Let us first review the basic distributed .inulation sche-me

4
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5 of the last chapter. T i denotes the clock value of lpi. Whenever an ll1i receives a

message, it properly updates Ti, and if T i changes in value, then lpi advances the

simulation of ppi up to Ti. At this point, lPi predicts for each outgoing edge, a

sequence of messages that the ppi would have sent. Thus lpi typically generat,.s

<(t,n ml),(tj2)...> for transmission to lp, for every j to which it has outgoing
edges. Some of these sequences may be empty, in which case no message is sent to

the corresponding lp. Suppose that Ipi can further predict that after transmission or

this message sequence ppi will not send any more messages to ppj, until time ti.
Then, in the new proposed scheme, lpi sends (tp~null) to ipj after sending the genuim

message sequence. Since lpi knows the state of the corresponding pp up to time T I, it

: can predict all messages (that are to be sent) and absence of messages, at least up to

T i. Therefore, every outgoing edge will have a last message on it with tite

component equal to or greater than Ti. Note that only the last message sent along

an edge may be a null message, in any iteration.

Reception of a null mtessage is treated in the same manner as the reception of

any other message: it. Causes the Ip to update its internal state including the clock

value and (possibly) send messages.

i SUtppose it is required to simulate the physieal system up to some time z. '[hen

cvry source iust send messages until the t-component of the last message eflil:Is z;
* if no n11-,11l1 ,mvss:ie exists with this property then finally (z,null) should be scat

Example 4-1

( m.ider the ph. 'idal system shown schematically in Figure 4-1, below.

* 1 unit

2 units Y

>s-, e I 4 unitssourcX
- Z M2 B 2

0

Figure 4-1: A Physical System with Loop

We will study the progress of one possible simulation run or this piysical srteii.

The source sends out jobs which are processed at X for 2 time uiits. Jobs are roit,.,d
alternately to Y and Z from B l. Y processes a jot) for I unit and Z for -1 ,ulls.

0
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Lvery job loops through the system twice, i.e., the first time a jo) arrives at B, it is
sent back to .M1 and on the second arrival at B, it is sent to the sink.

Table .1-1 shows a succession of message transfers, where each horizontal row is

a titue slice and each column corresponds to a single activity of one of the process(e.

. 1 ('oneurrency is apparent because there are several activities happening at one time
slice, i.e., in one row.

41.3. Correctness of the Simulation Algorithm
The partial correctness results of the last chapter still apply. ''lie aily

difference now is the presence of null messages. We define the simulatiom t, I

correct at some point, if it is correct according to the definition of chapter 3 al't1r
Iignoring null messages.

Theorem 1: Simulation is correct at every point

Proof: The proof is almost identical to the previous proof and hence
omitted here.

'The next theorem shows the power of adding null messages: we show that, we have a
deadlock-free sNstem which can simulate a physical system up to time z.

Theoreim 2: Assume that every source process sends messages until
the t-component of a message equals z. Then every 1p will simulate tlhv
'orresponling pp, at least up to z.

Proof: Consider the point where the simulation terminates, ie.,
where all messages that have been sent have been received and no Ip has1any' outstanding inessage to send. The following observation is critical: for
every lp (except a source Ip) there exists an incoming edge to that 1p whose

1 'edge ('lock value is less than or equal to the edge clock value of every
4 !outgoing edge from that lp. This observation follows because: (1) an Ip

that has received messages at least up to t along every input edge must
have sent messages (t',r'), t' > t, along every outgoing edge, and (2) ever%
nmessage that has been sent has been received when simulation terminates.
No)te that (1) could not he asserted in the basic scheme because an 11) ied
not send out messages with higher t-component values than the inl)ut
inssages.

NVe now claim that the edge clock value for every edge is at least z. If
not, consider an edge e1 for some 11, whose edge clock value is tl, with t1
< z. According to the above observation, there exists an edge e,, which is
an incoming edge to this Ip, such that e.'s edge clock value is t.), where t,,

t 1. Continuing in this manner, we can construct a sequence of edgs,

...... .....el,.. such that for all i, el1 is a predecessor edge of e, and ti-+ <

ad we have, t < z. Since the physical network is finite, we will
eventually either (i) get to a source Ip, or (ii) we will have a cycle of edges.

It the first case, since every source I) senids uIessages until tie t-coiimiivlit

-. - _. -_... ... . ... . . . . ' . -I - . . . . - . .- • • . .
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of the last message sent is z, we can not have edge clock value of any
outgoing edge of a source lp smaller than z. In the second case, all edge

J clock values in the cycle are equal to t, and t, < z. From the
predictability property (chapter 2), for this cycle and this t, there exists a
pp, say ppj, whose outputs can be determined beyond t,, given its inputs
Iup to t1. Hence lpj has some messages to send, which contradicts our
assumption that the simulation has terminated. Therefore the edge clock
value of every edge is at least z and hence the simulation clock value is at
least z.

j We have implicitly used the fact that for any finite z, only a finite
number of messages may be transmitted in the logical system. This is
derived from the predictability property, in which the parameter E, E > 0,
is a fixed quantity. A more rigorous proof of this boundedle-&s
property may be found in [7].

Discussion
It is interesting to note that the simulator .never deadlocks: if the phy-ic:al

svstem deadlocks, the simulator continues computation by transmitting null i,.ssagt-I with increasing t-values. This correctly simulates the corresponding lhy.i.:l
situation, in that while time progresses, no messages are transmitted in the physical
system. I 'Itimttely, the simulator will terminate with every clock value at least :t3z. The simplicity of this schme is one of its most atlracl.ive points,. It requires simill
(Tding changes in existing dI istributed simulations to send out nll r),.is:ige.

"" ' Ftriirimore, the requiremnent or b( m nded buffers between two Iip's is ant r,.:11lV
necessary. The same results hold if there are only a finite number of l)uffir

s I) a c, s between every lpi and Ip, and I1,i has to wait to send if all buffer spaces areI curr/ntly full. The proof that there is no deadlock in this situation is essentially
coutaianed in I7].

Enipirical studies [281 show that this schenme is quite efficient for acyclic
networks. Xcv .r:l factors seent to affect the efficiency:

j (1) Degree of Branching in the Network

Consider a network with one source and one sink. The number of distiinct
paths between the source and the sink is a (rough) measure of the aiounmt of
braaching in the network. Null messages Iend to get created at branchc. and the
may proliferate at all successive branches (if not subsumed). So one would expect
that the fewer the number of branches, the better the performance. Empirical
studies f28J seem to confirm this. Theoretically optimum efficiency is achieved for a
thndem network (the assembly line example of chapter 2, Example 2-4), and excellent
results are obtained for low-branching type networks. In general, acyclic
networks exhibit reasonably good performance levels. Note that the metric (if
interest in performance calcUilations, is the urntlaround time, i.e. the anioutit of t1,.

4
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it takes to complete the simulation, rather than processor utilization, i.e. (ie fratio1

of time the processors are utilized. [n fact, one would expect the processors I,) be

lightly utilized. The other parameter of interest, line bandwidth, has not received

adequate attention.

I
- Experiments were carried out by Peacock, Wong and Manning [2-1,25" oil

networks of various topologies. Their conclusions: "for some topologies of queuc-ing

networks models, this approach results in a speedup in the total time to comphte' a

given simulation. However, for other topologies, especially those with loops, the

speed-up may not be significant.0 They also investigated several different ways of

partitioning the physical network so that more than one pp may be implemented on

one lp.

(2) Time-Out Mechanisms to Prevent Null Message
Transmission

A slight modification may save a considerable number of message transnissiois.
A null message (t,m) has no effect if it is followed by another message (t',1'), V>1.
Therefore it may be efficient to delay transmissions of null messages in the hope that
future messages received by an lp would make it unnecessary to transmit them at all.
Cearly the amount of time, r, that an 1p waits before transmitting a null message is

of importance. If r - 0, we have the algorithm as stated in this chapter. If r = 00,
null messages are never transmitted and then we have the basic algorithm of chapter

3. which may lead to deadlock. Other values of r are of potential interest, 6111 l10
empirical studies have been performed to substantiate our claims.

(3) Amount of Buffering on Edges

The nunmber of buffer spaces on edges seem to have substantial effects on
perfrinuance [26,28J. When the number of buffer spaces was reduced to 0, senders

had 'to wait until the receivers were ready to receive, and a considerable ammount of
time seemed to be spent in waiting. The number of buffer spaces was then increa.ed

and the following rule was used to annihilate null messages: any message put ill the

buffer after a null message (and therefore with a higher t-component) annihilat.s any
null mess:ige ahead of it still in the buffer. The annihilation rule is somewhat similar
to tile tillle-out mechanism. It was found that in the simulation of a certain class or
queueing networks the performance improved rapidly until the number of buffer
spaces oi an edge approached 10, increased less rapidly until about 20, and remaind
essentially unchanged thereafter. These numbers however cannot be applied directly

*i for other problems; we expect these numbers to depend on the type of problem and
the speeds of processors and lines.

We discuss various issues related to empirical investigations in the next chapter.

I
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4.4. Demand Driven Null Message Transmission
Another variation with null message transmissions is not to transmit a tll

message until asked to do so. In this scheme, an lpi may receive an inquiry from
another lp. where there is an edge from lpi to Ipj. lp. sends an inquiry to find olit

wheu lI)i will send it the next message. If lpi has a genuine message to send or a ill
messige, which will advance the edge clock value, it will do so in response t) th.'

inquiry. If it cannot send any such message, lpi must itself be waiting for one or
more of its incoming edge clock values to advance and hence it propagates thi,
inquiry backward along those edges. The inquiry may be propagated along a

sequence of edges. lpi must remember to respond to the inquiry as soon as it call, i.e.,
as soon as its own clock value advances. An lp may receive several inquiries before
responding to any of them. In this case, it will propagate at most one, wait for the,
reply and then reply to the others.

A particularly interesting part of this scheme is the detection of deadlock. 1I1 :
situation as in Example 3-5, an inquiry initiated by x is propagated backward awd
arrives at x. lp x can then detect deadlock. Resolution of deadlock requires finilinf
the Ip which has the smallest edge clock value t along sonic input edge, ignoring tlh,
set of deadlocked edges. This Ip can then assert that it will receive no more inlp)uIt, Lij)

to t, along the deadlocked edge. Therefore it continues simulation assuming that it
has received (t,null) along the deadlocked edge. In this example, x is the only lrc,'..
having edges outside the deadlocked set. Therefore x simply stops waiting to receive
from z and advances its clock based on input from the source alone.

The claim that the inquiry propagation mechanism does indeed detect deadlwk
and that at most one inquiry by an lp is outstanding at any time, is n it t irly
trivitil to prove; see [10,111 for discussions of a similar problem and its proof. .\

reasonable heuristic for an Ip to initiate an inquiry may be based on time-outs.

4.5. Rollback and Recovery
A scheme suggested by Jefferson and Sowizral [181 allows an lp to proceed witi

its computation, with the belief that it will receive no further inj)ut along :am
incoming edge if it has not received any during a certain time period. Suppose that
lpi changes its state from s to s' and sends out messages MI,M 2,..., as a result of this

belief. Suppose that in the future, a message is received along an edge which
contradicts this assumption. Then the state of the Ip must be rolled back to s; in
addition, states of other Ip's which may have received MI,M.,... must also be rolled
back. It is proposed to use a stack in which some of the recent states of an Ip may iw,
retained; the bottom of the stack is a guaranteed correct state at soime point, mi11
hence there will be no further rollback beyond that state. OAntimessages NIM"'"....
are sent to cancel the effects of the corresponding messages and roll back the statvs of
the Ip's which previously received

I/
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If processor speeds, speed of simulating a pp by an Ip, line delays, etc. c.n be
accurately predicted, this method may turn out to be quite practical. Ill such caises,

one would expect to have few rollbacks. However it seems that, in general, large
amounts of nemory woull be required to stack the states and a large nuiImber of
antinessages will have to be transmitted whenever a rollback is required.

4.0. Circulating Marker for Deadlock Detection and Recovery
A suggestion has been made in [01 to let the basic simulation scheme deadlock,

detect deadlock and recover from it. Deadlock is infrequent, as has been suggested F
by Quinlivan 1261 from a number of empirical studies on queueing network.s.
Therefore one would expect this to be a viable alternative if deadlock detection can
be implemented efficiently. Dev Kumar [201 has used a recent deadlock detection
scheme [221 to implement such an algorithm. We now discuss his method and several
of its variations.

Consider a marker that continuously circulates in a network. It follows a cycle
of edges such (hat it traverses every edge of the network sometime during a cycle
- such a cycle exists if the network is strongly connected; new edges may be added to
the network to make it strongly connected. The marker is merely a special type of
message. It initially starts at some lp. If an lp receives the marker, its obligation is
to send the marker (along its designated route) within a finite time of being idle (i.e.,
not having anything more to send). We let the marker carry some information for
deadlock detection, as described below.

Each Ip will have a one-bit flag to show whether the ip has received or Snt a
imessage since the last visit of the marker. We say that an Ip is while if it has neither
receiyed nor sent a message since the last visit of the marker to that lp; the 11) is
black otherwise. Initially all lp's are black. The marker declares deadlock wh,.n it
rindts that the la.t N lp's that it has visited were all white (when the marker arrived
at the Ip), where N is the number of Ip's in the network. This result holds if
messages between two Ip's, including the marker, are received in the order sent; wi-
1221 for a precise description and proof of this result.

We can use this scheme to detect and recover from deadlock. The marker, in
addition to keeping the number of white Ip's it has seen since it last saw a black Ip,
carries the minimum of "next-event-times" for the white ip's it visits: each whit, Ip
can report the time of the next event, assuming it receives no further messages, to the
marker and the marker merely keeps track of the smallest of these, and the
corresponding Ip. When the marker detects deadlock, it knows the next event time
and the Ip at which this next event occurs. Therefore, it can restart that Ip.
Alternately, a central process may broadcast (send messages to all lp's) to advance
thvir clocks to the next event time in the system.

4
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The overhead messages in this case, are for marker transmissions. If deadlocks
are infrequent, the marker may be made to move slowly (and therefore the deadlock
may be detected quite some time after its occurrence) and hence the proportion of
overhead messages to genuine messages will be low.

4.7. Circulating Marker for Deadlock Avoidance
The marker scheme of the last section can also be used for deadlock avoidance.

The idea is to let the marker carry messages. If lPi is sending the marker to Ipj, it
may send a message (t,null), advancing that edge's clock value as much as possible.

If lpi cannot advance the clock value of the edge to lpj, it still must send the marker,
without a message, in finite time. The marker carries no further information. Using
essentially the same arguments as in theorem 2 of this chapter, the system can be
shown to be dead lock-free.

Overhead messages are for marker transmission; however, unlike null messages
there is no proliferation of such messages. Another way to view this 7chenie is to

L consider the marker as a circulating packet which carries only null messages (or is
empty) and delivers the messages to their destinations. The number of null rnessage
transfers is bounded by the marker's rate of traversal. By suitably adjusting the
speed of the marker, i.e., the length of time for which an Ip holds the marker before
sending it, we can expect to reduce the number of overhead messages and still avoid
long delays by the lp's.

Dev Kumar is currently investigating the performance of these schenimes an(l
several variations of these, including the use of multiple markers.

O
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Chapter 5
Summary and Conclusion
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5. Summary and Conclusion

In this chapter we summarize the discussions about distributed simulation, its
status, problems and future research directions. We hope to have demonstrated th:11
distributed simulation may be applied in every situation where sequential discrete
event simulation can be applied. Our examples have been predominantly froim the

area of computer systems, since a queueing network description of a computer is a

physical system in our method. However, our physical systems encompass a large
variety of real world applications; the only difference from sequential simulation
modelling is to think in terms of pp's and messages rather than entities and events.

We have presented the methods of distributed simulation, but we have not
shown how these may be implemented on existing or future machines. Ve- firs not

that simulation of a pp by an lp can be realized in any simulation language -

particularly suitable ones are SIMULA [131, CSI' [1, 1 , MAY [2], AA). [1,
I)EMOS [15, SAMOA 1211. All these languages provide enough abstractioln
miechanisns to describe the behaviors of elementary components and nessage
communications among them. IH nee, we contend that distributed siluati
requires nothing more thant a language for creating sequential processes :amn
specifying thwir comiminications.

Impleenntation of distributed simulation therefore reduces to implemnntali,,n
of a,inessage-commnunicating set of processes on some architecture. The logical
system should then be partitioned among various processors in such a manner that

the message traffic amiong various parts is as low as possible. MeS,,age A
communication may be accomplished either through a common memory (ness:u gs
are deposited in a common memory by the sender and removed by the receiver) or by
other interaction mechanisms among processors. The important criterion is how
loosely coupled the processors are. If two processors are tightly coupled, i.e., the
logical processes on these processors exchange a large number of messages, thein the
processors must also exchange at least that many messages and therefore the mne.sage

traffic will be heavy. If processors are loosely coupled, they can operate
autonomously, i.e. without communicating with other processors, for longer periods or
time. It is also easier to avoid deadlock among a set of logical processes if they art,
simulated on one processor.

We have not yet explored the possibility of deadlock detection by a global
processor which continuously observes message transmissions through the common
memory. Unlike the manager of the event-list in the sequential simulation of Chaptr
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2, this global processor remains completely passive, i.e., in the background, until it
detects deadlock. The global processor can resolve deadlock in an elegant manner: it
transmits a null message ( by depositing it in the proper memory location ) which

advances the edge clock value of an appropriate edge, such as zx in lxample 3-5.
This, technique seems to be a viable alternative when simulation is attempted on
multiple processors sharing a common memory.

Static partitioning of the physical network among a fixed number of proc,., ,rs t

requires preprocessing prior to simulation. Preprocessing is useful for Inaliy oilier
reasons. In the circulating marker algorithm, preprocessing is needed to deterniie i
(static) cyclic path for the marker. Preprocessing could also be used to partition t le
lp's such that the amount of branching is reduced and cycles are mostly contained
within one processor. Preprocessing can determine other simulation )arameters such
as when to time-out, sizes of buffers on edges, etc. This is ain area that has feien
extensively studied for sequential simulations. It needs to be studied again for
distributed simulation since the problems are somewhat different in nature.

We have sketched several variations of the basic scheme for deadltwk
resolution. There is little evidence yet of the superiority of any one scheme. Th,.
large number of heuristics suggests that some comnbination may be :ppropriate f,,r
particular problem domains. For instance, if we use a set of uniform pri,,',r."
among which message communication is expected to be regular, we can vx(' t thiat
deadlock will rarely arise and therefore (a slowly) circulating marker scheme W(, li
be preferable. The circulating marker schenie also seems to be attractive in that it

can be us'ed (hopefully without much overhead) in mte general ca:Lses. A. o ie
marker can be used to collect statistical information about the simulation itself anild
hence the simulation parameters, such as time-outs, can be dynamically changed.

We have not discussed specific architectures that can support simulat iiM.
There is not enough experience with distributed simulation to know (1) w1her.
distributed simulation spends most of its time, and (2) whether any architectural
imp~rovemenlt wou be unifornily useful for all problems. At pr'','nt. :any,

architecture that supports (static) creation of processes and communications 'Illn
them %%oulhl he appropriate.

The circu latin g marker scheme seems attractive for hardware imphlerzi(tetatIi, n.
A hardware marker, analogous to the token in a token-ring, could cycle anmong tlhe
processes. Processes send genuine messages as before. Our requirement that messages,
including the marker, be delivered in sequence sent, along an edge, can be met as
follows: when the marker is sent from lpi to lp1 , it is given the t-component of the last
nIessage sent by lPi to 1p1; when the marker arrives at 1P, it stays there tintil ipj has
received :a messa.,e with a t-component equal to or higher than the 4,,e thatl O
marker has. Otherwise the marker algorithm operates as before. Advantangr, (f a

"hardware m:arker is that the simnulation will spend no linie in overlald /I.(.l ts c



transmissions. The simplicity of the marker traversal schemte makes it fe:sibh t,,
implement it in hardware.

We next discuss some of the glaringly open problems in distributed silnulation.
The most important current problem is empirical investigations of v:iri.lis

heuristics on a wide variety of problems to establish, (1) which heuristics work weql
for which problem-. and on which machine architectures, (2) how to partition th,.
physical system among a fixed set of processors, and (3) how to set simulatil

parameters such as time outs and buffer sizes, etc. Some of the diffic(ulties ill
empirical studies are listed below. First, it is useful to have a distributed architectlre
on which measurement capabilities exist, for implementation of the distriluted
simulation algorithm. The advantage of such a scheme is that processor and line
speeds are realistic and that the implementation is quite straightforward. Atit her
possibility is to first use a sequential simulator to simulate a distributed architecture
and then implement the simulation algorithm on this (simulated) distrilted
architecture. One advantage is that the architecture can be continuously varied and
its effect on simulation studied. This is the approach that is currently being taken at
the University of Texas at Austin. MAY [2], a sequential process simulation :anuan,'
is being used to describe the distributed architecture and the distributed siniiulatioln
algorithm. MAY is itself a simulation tool and hence its statistics-gathiriiig
mechanisms are used to collect and analyze the behaviors of various (list ributed
simulation schemes.

A major disadvantage of this 2-tier approach is the actual CPU time required
to run experiments. Not only does each experiment take longer, but the ease with
which the parameters of the experiments can be changed has encouragedl us to
attempt many more experiments. A multiprocessor architecture, perhaps with a
common memory, would provide an ideal simulation environment.

Traditional simnulat io, issues have not been addressed in this monogr:ph: what
data to collect, how to collect it in a distributed manner, how to repeat exlwrimnl',,t,
for statistical validity (a new experiment may be started even before an older one- is
completely over), etc. We feel that it is premature to adltss th,.,e issues with, iit a

firm understanding and res,,lution of the most basic issues.

" .. .. .- I.,. . -- ". - .
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PROCESSOR QUEUEING DISCIPLINES IN DISTRIBUTED SYSTEMS

Elizabeth Williams t

Computer Systems Group, C-8
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Abstract - A distributed program consists of processes, many tigated the standard queueing disciplines - fstcome-first.
of which can execute concurrently on different processors in a serve, round-robin-fixed.quantum, preemptive priority, and
distributed system of processors. When several processes nonpreemptive priority - in a distributed environment. The
from the same or different distributed programs have been study shows that the response time metric can differ by 50%
assigned to a processor in a distributed system, the processor with different choices of queueing disciplines for three prob-
must select the next process to run. The following two ques- lems.
tions am investigated: What is an appropriate method for Another important que-tion is under what conditions
selecting the next process to run? Under what conditions are am substantial gains in performance achieved by an
substantial gains in performance achieved by an appropriate appropriate method of selection. Communication delays are a
method of selection? Standard processor queueing discip- factor; thus a graph of the response time metric was plotted
lines, such as first-come-first-serve and round-robin-fixed- as communication delays varied for each of the three prob
quantum, are studied. The results for four classes of queue- lems. Trends are observed in these graphs. A rationale for
ing disciplines tested on three problems are presented. These the trends is given based on several factors.
problems were run on a testbed, consisting of a compiler and The queueing disciplines were studied with three prob.
simulator used to run distributed programs on user-specified e quccing dicipln were die re e prob-

archtectres.lems that differ functionally and have different behavioralarchiectures. characteristics. The partial differential equation solver is
1, IntrodutIon based on an iterative grid technique that is similar to those

used in multidimensional applications such as weather predic-
When a problem has large computational demands and tion, structural mechanics, hydrodynamics, heat transport,

* there is a network of processors available, a programmer can and radiation transport. The centralized monitor has the
utilize the computational power of many processors. The pro- typical tree structure of hierarchically designed applications.
grammer divides a problem so that pieces of the problem can The producer-consumer pairs represent a multiprogramming
be computed in parallel. It is common to see processors con- environment in the distributed system and each pair is
nected by local area networks. To effectively run a distri- representative of a large class of problems. The different
buted program on a local area network as well as other inter- behavioral cbaracteristic% are described in Section 5.
connection networks, a good queueing discipline must take
into account that its processor and other processors have In Section 2 a model of the distributed architecture and
pieces of the same program. the distributed language are described. The metric for com-

paring the perforwance of the different queueing diiciplines
When several processes from the same or different distri- and a description of the testbed are given in Section 3. In

buted programs have been assigned to a processor in a distri- Section 4 we give a heurostic for assigning priorities for the
buted system, an important design question is how a proces- priority dependeu' queueing disciplines Section 5 describes
sor selects the next process to run. This problem has not the litributed programs and arthitectures on which each
been considered in a distributed environment. An interesting problem executes The results are given in Section 8. .-c-
question arises: lir w do the processes at other processors and tion 7 deicribes the impact of queueing disciplines In
communication delays in the system impact the selection of Appendix A a more detailed descripiion of the simulator io
the next process to run! As a beginninx study we have inves- given.

tThai reekch us dose at the Dopsrtmest of Compitem Sciesce", Usiversity

of Texs at Asotia, Aust*s, Texas 71712. arpsmet address ewtam| 2. Model of Distributed Computing

.1. Distributed Architecture

The distributed architecture is characterized by the
number of processors, the speed of each processor, the queue-

Permission to copy without fee all or pan of this material is granted ing discipline at each processor, and the lines that connect
provided that the copies are not made or distributed for direct the processors. The lines may have different capacities,
commercial advantage, the ACM copyright notice and the title of the lengths, and error rates. The processors have no shared
publication and its date appear, and notice is given that copying is by memory and they communicate only by messages. We
permission of the Association for Computing Machinery To copy assume that any processor can communicate with any other
otherwise, or to republish, requires a fee and/or specific permission processor by routing messages through intermediate
* 1984 ACM 0-89791-141-5/84/008/0113 $00.75
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procesors over fixed paths. These assumptions are made to isolate the effects of the
chos:e of queueiug disipline from other system variables

s.2. Distributed Languae

A program in the distributed language consists of S. Testbed and Metric
processes that communicate and share data by using mes- The metric for comparing various queueing disciphnes is
sages. The language is similar to CSP, which is described in defined as follows. All the processes of a distribted program
[21. The language uses synchronous (blocking) communica- are assumed to start at time zero. Each process, terminates
tion primitives; the sending process cannot proceed until the at some time, t(i). The metric is the sum over N processes of
receiving process is ready to receive the message. The two the termination times t(i) divided by N, and is termed the
message passing constructs are the 1/O statements, average of the process termination times (APTT). APTT
SEND(l/O variable) and RECEIVE(I/O variable). For each reflects both the instruction processing requirements of
corresponding pair, SEND(I/O variable) and RECEIVE(I/O processes and the message delays Total time, defined as the
variable), that is executed, there are two nonblocking mes- maximum t(i), is not always a good metric for comparing
sages sent at the protocol level that implements the language, queueing disciplines, because when message delays are ver)
In this language there is a static number of processes. small, total time is comparable for all queueing disciplines.

EDynamic creation of processes is simulated by a process The testbed runs distributed programs coded in the dii-
beginning execution only after some other process sends it a tributed language mentioned above, which is similar to CSP.
message. In addition to the distributed program, the testbed also

requires a specification of the distributed architecture. The

3.3. Teemlnolog' testbed consists of a ccmpiler, interpreter, and simulator.
We define virtual line time for a message between two The compiler produces pseudo-instructions for the hypotheti-

processors connected directly by a line as the product of the cal processors in the distributed system. The interpreter exe-
actual time to move the message over the line and a constant cutes the pseudo-instructions. The simulator manages the
derived from line reliability and the overhead of lower level interpreter, processor queues, and port queues and executes
protocols. The actual time to move the message over the line protocol routines. The simulator is based on the work

is the usual function of message length in message units presented in 141 and was validated extensively using commer-
(packets), number of bits per message unit, line capacity, and cial analytical and simulation packages 13,51. A more
line length. Virtual line time does not include the time a detailed description of the simulator is Liven in Appendix A.
message waits to use the communication subnet. Virtual line
time for a message between two processors is the sum of the

virtual line times for the lines on the route. Currently in local The queueing disciplines tested were first-come-first-

area networks, lower level protocols executing in the proces- serve (FCFS). round-robin-fixed-quantum (RRFQ),

sors usually reduce the physical line capacity by at least a nonpreemptive-priority (NIT), and preemptive-priority 11,p)

factor of 10 for any message [1]. Viziual line time reflects this 14). The two priority disciplines NP and PP must assign
effective line capacity. priorities to the processes. In a IP discipline if an expected

message arrives for a blocked process of higher priority, the
The message delay of a process for a synchronous com- blocked process preempts the currently running process. In

munication as in CSP is a function of virtual line time, the following discussion we motivate and give a heuristic for
queueing at the port queues on the route in a store and for- assigning priorities.

ward network, and the processing, waiting, and queueing
time of the corresponding process at its processor. Message Suppose that there are three processes on a processor
delays can he very large compared to a process's p ready to executi and that only one of these processes, pross
dieayswcan processi. I. must ever communicate across a line with another process

on a different processor. Processes 2 and 3 communicate with
In the testbed I unit of time can be thought of as I each other and process I. A good discipline will first let pro-

ps. For local area networks where processors are 1 km apart, cess I execute and block for communication across the line.
transmission rates of 10 Mbit/s are common. For a packet of While proces" I is blocked, processes 2 and 3 are eoruied

258 bits it takes approximately 29 Its to send a packet over IHopefully, a message will arrive for process I and wake it up
the line. With the factor of 10 or more for lower level so that it is ready to execute before proeeses 2 andI 3 block
protocols, 300 time units is a reasonable number for virtual A poor discipline will always execute processes 2 and 3 before
line time in this model of a local area network. process I Thus, all processes are blocked until a mess-m-

An important performance factor to consider is the tra- arrives for process I the processor is idle for a longer period
deoff of processing time versus communication delay. To do of time waiting on a message. The good discipline reduces
a study on this tradeoff we must vary either processing or the idle periods of the processor and thus, decreases the time
communication time. Since each process of a program has a when the processor finishes exerltng all processes. The good
fixed amount of processing, we have chosen to vary the com- discipline must also determine which of process 2 or process 3
munication time to study this tradeoff. Even though virtual to execute firt. A good selection depends on the characteri.-
line time varies beyond what may seem reasonable for our tics of these processes.
model, Twe stress that it is the ratio of processing time to com- Generally we have observed that scheduling a singlemunitaGnerall dele havt obere thatll schanulin an singleo s
munication delay that is actually changing and the ratio is a processor in a distributed architecture must be analyzed con.
more meaningful factor to consider. sidering both the single processor (total component) and the

For each problem in this paper, we assume all the pro- distributed environment (global component). Our heuristic
censors have the same speed, all lines are identical, and a for assigning priorities is given as follows:
message unit is 258 bits. We also assume that on any simula- 0 Processes that communicate across a line are assigned
lion run all processor have the same queueing discipline high priority ihighe st priority wheyj message delays are
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large since the global component is more important). Figure I shows the structure of the problem that runs
wait (a on two processors. The two processors are connected by a

S A Process on which several other proesses m i t ( line with virtual line time for a message unit set at 592 time

bottleneck process) is assigned high priority (highest
priority when message delays are small since the local units. In previous work we found that the assignment idi-
opriontywenmssore moran) acated in Figure 1 is best for this architecture 151.

Any other processes are assigned lower priorities t) All processes are comparable; there is no bottleneck pro-
SAnproite proceseam asinedlwe- r pSrioties [4 cess because each process is logically equivalent and com-
approximate shortest-remaining-t ime-first (SRTF) [4). putes an equal number of rows. Since each process must exe-

Thus a good priority discipline should generally give highest cute one time per Gauss-Seidel step over the same size

priority to those processes communicating across a line in subgrid, there is no need to assign priorities to approximate

order to minimize the processor idle periods and thus to SRTF. The two processes that communicate over the line are

finish executing all processes at the processor sooner. The given highest priority. For Pg and NPPK, processes 3 nd 4
discipline should be preemptive so that messages over the line were assigned highest priority at 1.0; the others were assigned
can be received by the corresponding process as quickly s lower priority at 2.0. For PPp, processes 3 and 4 were

possible. Choosing priorities using this heuristic is demon- assigned lowest priority at 2.0 and the others were assigned

strated in the problems in the next section. highest priority at 1.0 PF'g performed the best of the discip-

A priority discipline with priorities assigned as described lines tested.
above is denoted by PPg for preemptive priority and NPPg
for nonpreemptive priority. A preemptive priority discipline 5.2. Centrallsed Monitor

with priorities assigned in such a way as not to follow the The centralized monitor consists of a resource process

heuristic given above is denoted by PPp; processes that com- and three groups; each group consists of a requester process

municate across lines and bottleneck processes are assigned and its three user processes. Each user process executes some

lowest priority, and all the other processes are assigned given amount of time and then makes a request to use the
highest priority. We have found that PPg usually does better resource through its requester process. The requester process

than FCFS, RRFQ, PPp, and NPPg; PPp does the poorest. passes the user request on to the resource process. This is

repeated 20 times before a user terminates. The processing
times per iteration were chosen so that (i there is a small,

The problems tested are a partial differential equation medium, and large processing user process at each processor
solver (PDE), a centralized monitor (MONITOR), and a sys- and (2) the sum of the processing time of the users at each
tem of five producer-consumer pairs (PC's). For each prob- processor is approximately the same at each processor. An

lea we present a brief deseription of the program and a important property of these processes is that a user process

figure that represents the distributed program, architecture, can compute to termination even when no other user process

assignment of processes to processors, and priorities for both has executed. However, a user process must share the

PPg and NPPg. Each process is represented by a circle with resource and a requester process with other user processes.

the process number in the circle; the total instruction pro. Figure 2 shows the structure of the centralized monitor

cessing time requirement per process is given below each cir- that runs on four processors. Processor 4 is connected
cle. The priority for a process is given above each circle. The directly to processors 1, 2, and 3. Each line has a virtual line

number and average size in message units of messages sent at time of 58 time units for a message unit. In previous work we

the program level between two communicating processes is found that the assignmet indicated in Figure 2 is best for
given above each line as the ordered pair (number,size). this architecture [5).
Values for communication and processing time are obtained
by running the program on the testbed with any assignment The requester processes are 10, 11, and 12. A requester

and architecture; for these programs these quantities are process has high priority because it is a bottleneck and also
independent of the architecture and assignment. Circles because it communicates over a line. The user processes - I

enclsedin bo mea tht te eclosd pocesesare through 0 - at each processor are not identical because of

are denica an th vitua lin tie fr amesageuni is assigned priority using the average processing time between
are idia adtween pirtua linroese timhfat mssag omunicte is/0 statements to estimate CPUl bursts and thus to approxi-

the amebeteenpais o prcesss tat ustcomuniate mate SRTF. For P~g and NPPg, requester processes 10, 11,
over a line. and 12 get priority 1.0; user proceses , 4, and 7 get priority

5.1. Partial Differential Equation 2.0; user processes 2, 5, aud R get priority 3.0, user processes
3, 8, and 0 get priority 4.0. For PPp, processes 10, I1, and

We solve ILaplace's partial differential equation on a grid 12 get priority 2.0, while all user processes I - 9 get priority

with the onter edges of the grid given as boundary condi- 1.0. SRTF is an important component of the priority discip-

tions. The iterative method used is Gauss-Seidel. The grid is line because a user process with a small burst time can finish

partitioned into subgrids where each subgrid is some number earlier than the others and thus decrease APTT. Resource

of contiguous rows. Each subgrid is solved by a process in process 13 has priority I for each priority discipline. It is the

the same way a sequential program would solve the entire only process on its processor; thus the choice is arbitrary ror
grid A grid value is computed as the average of its four adja- each priority discipline. PPg perormed the best of the dis-

cent neithbors; thus, to compute a row of values, the two cipline. tested.

adjacent rows are required. Hence, a process must request plines tested.

the two rows contiguous to its subgrid from its two neighbor-
ing processes. An important property of these processes is 6.3. Producer-Consumer Pairs

that they must remain closely synchronized. No process can There are five producer-consumer pairs. Figure 3 shows

compute very far ahead because it requires rows that cannot the structurt of the problem that runs on two processors.

be computed unless the other processes execute. The two processors are connected by a line with virtual line
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time for a message unit set at 346 time units. Processes I to can incur when waiting on a message to the remaining pro-
5 are producers; processes 0 to 10 are consumers. Each pair - ceasing to be done at its processor until all processes are
(1,B) (2,7) and (3,8) - has one-third the processing require- blocked. For a send or receive statement, the delay D(j) for
ment of each pair - (4,9) and (5,10). Each producer sends 40 I/O variable j is the time that the process is in & wait state
messages to its corresponding consumer. An important pro- for the 1/0 variable j. It is at most the sum of the virtual
perty of this problem is that each producer-consumer pair line time to the corresponding processor, the virtual line time
can execute to termination independently of the other pairs. from the corresponding processor, queueing time at the

One pair of processes communicates over the line and appropriate port queues, and the processing, waiting, and

both are given highest priority. There are no bottleneck queueing time of the corresponding process at its processor.
processes in this example. The two pairs with the large pro- Whleu a process communicates with its corresponding process

ceasing requirements should get lower priority to approximate on the same proctsor, the delay does not include any virtual

SRTF. Priorities for PPg are assigned as follows: processes 3 line time or port queueing time.

and 8 get priority 1.0; processes 1, 6, 2, and 7 g-t priority 2.0; A function is described that measures the processing
processes 4, 9, 5, and 10 get priority 3.0. For PPp, processes that can be overlapped when a procesN waits for a message.
3 and 8 get priority 2.0; the other processes get priority 1.0. Busytime(k,s,t) is the amount of processing time remaining at
Since each pair can terminate independently of the other time t until all processes are blocked at processor k, which is
pairs, one process waiting on a line cannot cause all the scheduled by discipline s. It is a function of the problem, the
processes on that processor to block as can happen in the burst times between communication statements in processes,
other two problems. For this problem PPg performed the the processor's queueing discipline, and incoming messages
best of the disciplines tested, from other processors. We are interested in this function

only at those times when a process enters a wait state.
6. Results Suppose a process enters a wait state at time w for 1/0

The results for each program and its architecture are variable j on processor k. If busytime(k,s,w) >_ D(j), then
given in Table 1. Of the disciplines tested, PPg is the best there is no idle period for the processor for this communica-
while PPp is the poorest. RRFQ always does better than tion. A good global discipline should always try to maintain
FCFS; this is probably due to its preemptive characteristic, this inequality for each message over a line at all processors
The noupreemptive priority discipline, NPPg, is poorer than to avoid idle periods. If busytime(k,s,w) < D(j), then an idle
RRFQ for both the PDE and MONITOR problems. The per- period will result from this communication. Note that an idle
centage increase in APT? from PPg to PPp as computed by period can not happen when two processes on the same pro-
(max APTT - win APTT) / (min APTT) is 32% for PDE, cessor are ready to communicate with each other; one process
49% for MONITOR, and 57% for PC's. or the other can execute. Idle periods for a processor can

We have also experimented with varying the virtual line only result from a communication across a line. Thus, for
time and thus the message delays. The same assignment of each communication across a line, the ratio
processes to processors was maintained. The graph for each D(j)/busytime(ksw) is defined when a process enters a wait
problem is given in Figures 4 - 8. These graphs show some state at time w.
conditions under which the choice of queueing discipline has For the preemptive priority discipline, PPg, the average
an impact. It of these ratios at a processor can give us a measure of how

busy a processor is for a problem. R < I implies that on the
7. Impact of Processor Queuelng Disciplines average a processor is not idle. However, processor idle

The graphs for each problem show different trends. The periods cannot be avoided when communication delays are
graph for the PDE shows that at small virtual line times, the very large compared to the largest amount of processing
choice of queueing discipline has no impact. The graph for available at a processor under any qucueing discipline.
the MONITOR -bows that at large virtual line times, the If R<<I then for any communication the processor was
choice has no impact. The graph for the PC's shows that the usually busy when a process was waiting on a message. If
choice has an impact for all the virtual line times tested. In R>>I then for any communication the processor became
order to explain some of the trends in the graphs generated idle most of the time while a process was waiting on a mea-

* by this experiment, a rationale was developed. It is used to sage. We have assumed ?bat for any discipline there is a
explain the trends in the graph where virtual line time and local and global component. It seems reasonable that (I)
thus message delays vary. The rationale is a partial solution, when R< <], local scheduling is a more important com-

ponent since the processor is infrequently idle and (2) when
7.1. Rationale R>>l, global scheduling is a more important component

The rationale is based on two as-,anptions. (1) A good since global scheduling is responsible for minimizing the idle
heuristic for minimizing APTT is to minimize the idle time at periods.
each processor. (2) There are two components of a discipline, R was estimated but not computed; thus the following
the local and global components, and they vary in their con- analysis is qualitative. At each processor, R changes as vir-
tribution to the scheduling of a processor. tual line time is varied. There are many factors to consider

For a simplistic rationale one can say two things. (1) but generally we can say that when virtual line time increases
When virtual line time is very small, the local component of for all lines, each D(j) increases while each busylime(k,pp,w)
the discipline is more important. (2) As virtual line time does not increase, where pp is the discipline PPg. D(j)
increases, the global component of the discipline becomes increases because of the larger virtual line time.
more important. However, this is not enough. The process- Busytime(k,pp,w) cannot increase because incoming messages
inS time must be considered. arrive later. Thus, R at each processor increases as virtual

A more careful rationale compares the delay a process line time increases for all lines.
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R has been defined for a single processor. We can For the PDE, each process is logically comparable and
extend the idea of how the size of R relates to global and each process works on the same size subgrid. For R i<<],
local components of scheduling at a single processor to the the order in which processes are executed is not very impor-
entire set of processors since R increases for all processors as taut; thus there is little difference in the queueing disciplines
virtual line time increases for all lines, We define a measure and d is small. For R*> >1, all processes at a processor
R* for the entire set of processors as the average of all R. block because they are closely synchronized and cannot

The graphs in Figures 4 - 6 plot APTT versus virtual proceed until the process, waiting on a message across the

line time. For the PDE and centralized monitor when virtual line, receives the necessary row. In Figure I for processor 2,

line time varies over a reasonable range of values, we have this is process 4. Process 4 computes the points in the middle

estimated that R' varies from much smaller to much larger of its subgrid and then communicates with its neighbor pro-

than 1. For the producer-consumer pairs program, R" could cess 5 on the same processor. At this point (1) process 4 is

not be forced to vary because of the disconnected communi- ready to begin the next iteration step and communicate with

cation structure. Each producer-consumer pair assigned to its neighbor process 3 on the other processor again and (2)

the same processor can execute until termination. Thus at a process 5 and in turn its neighbor 6 are ready to run. d is the
difference due to executing process 4 first or last. d dependsprocessor k, busytime(k,pp,w) is very large when the one pro-

cess that must communicate over the line enters a wait state on whether or not the disciplines overlap waits and process-
at time w. There are always two producer-consumer pairs to ing. For PDE, d is large.
execute until their termination. For the MONITOR, the three requester processes and

To analyze the trends in these graphs, we look at d, the resource process are bottleneck processes. The user

which is defined as the difference of the maximum APTT and processes have different processing bursts. For R'<<I, the

the minimum APTT at a given virtual line time. The choice of discipline has an impact and d is large. For

minimum APTT should correspond to a good discipline, R*>>I, the user processes are all blocked most of the time

APTTg, while th- maximum APTT should correspond to a waiting on the resource to get and process their requests.

poor discipline, APTTp. Thus, d should give us a bound on When a message arrives for a user process U, only U is
bow queueing disciplines can i.npact APTT. If d is small, the unblocked since all the user processes are independent. Uchoice of queueing discipline has no impact because all dis- executes and sends a message to the requester without interr-

ciplines produce approximately the same metric value. If d is uption. Since only one process at a time is on the CPU queue,

large, the choice has an impact on performance because the the queueing discipline never has to make a choice; thus d is

good discipline and poor discipline produce metric values small.

that are not close. For the PC's, the choice of discipline has an impact over

Different trends are observed in Figures 4 - 0. A the virtual line times tested. R* does not vary over a large

rationale to explain these trends is: range for the virtual line times tested because of the discon-
nected structure of the problem; there is always a process

p F or scheduling is mre iortant. f oal ces - ready to run. This keeps busytime large relative to the vir-
ponent of scheduling is more important. If all processes tual line times tested; thus P *<<1. Since pairs differ in
are comparable (no bottlenek processes and each pro- their processing bursts it is important to approximate HRTF;
cess has the same approximate processing burst), then d is large and thus the choice of discipline ha- an impact
all disciplines are comparable and d is small. If the
processes are different then the discipline can make a a. Conclusion
difference and d is large. We have presented the results for five queueing discip-

0 For R'=l, both the local and global components are lines tested on three problems. The disciplines tested are
important. The size of d depends on the how the prob- first-come-first-serve, round-robin-fixed-quantum,

lem responds to the components. noupreemptive-priority, and preemptive-priority with two sets

For R*>>I, d can be large or small, and d -> con- of priorities. A heuristic is given to assign priorities. Ve
stant. The global component of scheduling is more found that the preemptive priority discipline with priorities
important. Each processor is mostly idle until a message assigned according to our heuristic was the best discipline
arrives. If only one process is ready at a CPU queue at tested. We also found that the choice of queueing discipline
a time and the processes order themselves, then d is 0 varied in its impact on performance. A rationale is given to
for large enough delays. This is the case for the central- predict when the choice of discipline has the most impact.
ized monitor. If all the processes become ready at a
CPU shortly after a message arrives for a process L, then 0. Acknowledgments

running L is important because it communicates across a The author wishes to thank Professor K. Mani Chandy
line. d is the time when L is ready to run but the other for suggesting this problem and providing valuable guidance

processes are scheduled ahead of L. This time is con- during this research. This research was supported in part by
stant for large euough delays, and thus d is a constant Air Force Office of Scientific Research under grant AFOSR
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7.S. Discussion of Graphs

Fach graph plots APTT as a function of virtual line Appendix A
time, wh-re virtual line time varies from 50 to at most 1200 The testbed consists of a compiler and a simulator. The
time units. Experiments were conducted outside this domain simulator includes operatizg system routines, network proto-
but *ere not plotted because no additional information was col routines, and an interpreter. The compiler produces
provided. Trendis etablished at the endpoints continued ['code instructions (instructions for the hypothetical proces-
beond the interva l plotted. sor) for each process. The simulator has two types of events
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* Interpret Pcode instructions ror processes on processorI
until time for the next event or until processor i has no f
processes to execute. We refer to this event as run pro- 2
cessor i.

5M 7.1" 0741T 7.30
* message arrival at processor i.

Initially, there are no message arrival events, and all proces. mooPssmI "3cf_ 2

eors i that have processes to execute are represented by the
event, run processor i. If several messages arrive at a proces-
sor at the same time, the messages are handled FCFS Figure 1. Structure of PDE Proverr

depending on the simulator's event list. If all processors are
the same speed and Pcode execution time is the same for
most instructions, then a run processor event will be the exe- [
cution of exactly one Pcode instruction at that processor. 2 2 103

The network architecture of the testbed is based on the 2 0IITO caAS 011
" conventional ISO OS reference model. We simulated enough 2 -O '1 2

layers to give a detailed model of distributed computing 9221 a229

without actually building a system. We simulated the 3 1 -- 7

language layer (application), transport, and a simplified net- - - _,

work layer. Below the network layer, the testbed assumes SSOR 3 PRXESS 3

error-rree full-duplex lines. This assumption is not quite as
strict as it seems. The actual line time can be increased by a PROCESSOR 4
random number to approximate the time for protocol execu-
tion and lower level messages in the data link and physical S OR
layers. We defined this in Section 2.3 as the virtual line time.

The language layer at a processor provides the buflLrs 6
for the messages that arrive at and whose destination is that 

7213

processor. These message arrivals are passed directly from
the network layer to the language layer, where an uninter- pRocEssOR 2
ruptahle language layer protocol routine is executed. Figure 2. S*,,cture of Centrcizec Mol:

The t-stbed was validated extensively using commercial
analytical and simulation packages. The commercial simula-
tion package was used to model several problems and archi-
tectures to validate detailed aspects of the simulator. The L
analytical package was used to model higher level aspects of K >
the testbed.

245 2334 -0 2600 2334
The testbed provides confidence interval estimates at 8

the 90/ level with relative widths less than 0.05 for various 6> 2.34

performance measures. In this paper we have reported only
the midpoint of the confidence interval for the measure, X7 , U04 A0 0

APTT 151.
PROCESSOR I PROCESSOR 2
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THE EFFECT OF QUEUEING DISCIPLINES
ON RESPONSE TIMES IN DISTRIBUTED SYSTEMS

Elizabeth Walliamat
Department of Computer Sciences
The L'niversity of Texas at Austin

Austin, Texas 78712

Abstract - A distributed program consists of processes, many of 3.2. Distributed Language
which can execute concurrently on different processors in a distri- A program in the distributed language consists of proce
buted system of processors. When several processes from the same that communicate and share data by using messages The

or different distributed programs have been assigned to a processor language is similar to CSP, hich is described in 2 . The

in a distributed system, the processor must select the next proce-i language uses synchronous (blocking) communication prinaitives,
to run. The question investigated is: What is an appropriate the sending process cannot proceed until the receiving process is
method for selecting the next process to run? Standard processor ready to receive the message. For each message sent at the pro.
queueing disciplines, such as first-come-first-serve and round- gram level, there are two messages sent at the protoI level that
robin-fixed-quantum, are studied. The results for four classe of implements the language. In this language there is a static
queueing disciplines tested on three problems are presented. number of processes. Dynamic creation of processes is simulated
These problems were run on a testbed, consisting of a compiler by a process beginning execution only after some other process
and simulator used to run distributed programs on user-specified sends it a mi.sage
architectures.

1. Introduction 2.3. Terminology

When several processes from the same or different distri- We define virtual line time for a message between two pro-
cessors connected directly by a line as the product of the actual

buted programs have been wLs.qigned to a prcessor in a distributed time to move the message over the line and a constant derived
system, an important design question is bow a processor selects from line reliability and the overhead of lower level protocols. The
the next process to run. This problem has not been considered in actual time to move the message over the line is the usual function
a distributed environment. An interesting question arises: How do of message length in message units (packets, number o bits per
the processes at other processors and communication delays in the message unit, line capacity, acid line length. Virtual line time does
system impact the selection of the not process to run? As a not include the time a message waits to use the communication
beginning study we have investigated the standard queueing dis- subnet. Virtual line time for a message between two processors is
ciplines - Irst-come-first-serve, round-robin-fixed-quantum, the sum of the virtual line times for the lines on the route.
preemptive priority, and nonpreemptive priority - in a distributed Currently in local area networks, lower level protocols executing in
en'.ironment. The study shows that the response time metric can the processors usually reduce the physical line capacity by at least
differ by 50t with different choices of queueing disciplines for a factor of 10 for any message Ill. Virtual line time reflects this !
three problems. effective line capacity.

The queueing disciplines were studied with feveral problems The message delay of a process for a synchronous commun-
that represent three important classes of problems. The partial ication as in CSP is a function of virtual line time, queueing at the
differential equation solver is based on an iterative grid technique port queues on the route in a store and forward network, and the
that is similar to those used in multidimensinal apidications such processing, waiting, and queueing tithe of the corresl,ondrag lro-
as weather prediction. structural mechanics, hydrodynamics, heat cese at its processor. Message delays can be very large compared
transport, and radiation transport. The centralized monitor has to a process's processing time between communications
the typical tree structure or hierarchically desgned applications
The producer-consumer pairs represent a multiprogramming In the testbed 1 unit of time can be thought of as I ill
environment in the distributed system and are representative of a For local area networks where processors are 1 km apart, transmis-
large class of problems. sion rates of 10 Mbit/s are common. For a p..cket of 256 bits it

takes approximately 29 s to send a packet over the lne Witb
In Section 2 a model of the distributed architecture and the the factor of 10 or more for kwer level protocols. 300 time units io

distributed language are described The metric for comparing the a reasonable number for virtual line time in this model f a local
performance of the different queueing disciplines and a description a rea network.
of the testbed are given in Section 3. In Section 4 we give a

heuristic for assigning priorities for the priority dependent queue- For each problem in this paper, we assume all the procesrs
ing dascip! ies Section 5 describes the distributed programs and h.ive the same speed. all lines are identi.al, and a mr,,age unit i
architectures on which each problem executes The results are 256 bits We a;o assume that on any simulation run all proces-
gisen in Section 6 se-rs have the saroe queueing ds.ciiline These atiuojo i,.n, are

tia toa in i. ,late the effects of the choice of qucuang dI- 1.a11i fr,.1,
2. Model of Distributed Computing other system % ariable.

2.1. Distributed Architecture 3. Teethed and Metric
The distributed architecture is characterized by the numbet Th metric fand va ri c

of processors, the speed of each processor, the queueing discipline The metri for conilarini variu- queueing dmeipli .
at each processor, and the lines that connect the processors The defined as fsllrws All the Iroce .e of a d.trt, uted pr.r. a'.
lines may have different capacities, lengths, and error rates The assumed to start at time er . sum c- r - a* tit te st n,
processors have no shared memory and they communicate only by time, t(i) The metric s the sum over N pr,,esse ,f the te,,nina,
messages. We assume that any processor can communicate with tios times t(i) divided by N. and ts termed the average -,t the pr--
any other processor by routing messages through intermediate cess termination times (APTT) APTT reflects ba'a the nstrte.processors over fixed paths. tins processing requirements of processes and the message delais

Total time, defined as the maximum t(a), is sot always a g,.,A
'Preest Address Compslr Syssems Grosp, C-, Lee Alilsls Nsatssal Lb. metric for comparing quiuemng diciplines, becausie when m-ii.,ge

boriatery, Loo Aliaas, Ne Moejter 8764
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delays are very small, total time is comparable for all queueing dis- circle. The number and average size in message units of Inessages

ciplines. sent at the program level between two communicating processes ts

The teatbed runs distributed programs coded in the distri- given above each lime as the ordered pair (numbersize). Values

bated language mentioned above, which is similar to CSP. In for communication and processing time are obtained by running

addition to the distributed program, te testbed also requires a the program on the testbed with any assignment and architecture.
specift ion of the distributed rhitecture. Th e testbed eoats for tbese programs these quantities are independent of the archi-

of a compiler. interpreter, and simulator. The compiler produces tecture and assignment. Circles enclosed in a box mean that the

pseudo-instructions for the hypothetical processors in the distri- enclosed processes are aisigned to one processor. For each prob-
hated system. The interpreter executes the pseudo-instructions. lem the processors are identical and the virtual line time for a
The simulator manages the interpreter, processor queues, and port message unit is the same between pairs of processes that must

The imuato maage th inerpeter prcesor ueus, nd ort communicate over a line.
queues and executes protocol routines. The simulator is based on

the work presented in 141 and was validated extensively using com-
mercial analytical and simulation packages 13,51. 6.1. PartJd Differential Equation

We solve Laplace's partial differential equation (I)1') on a

4. Queuelng Disciplines grid with the outer edges of the grid given as boundary conditions.

The queueing disciplines tested were first-come-first-serve The iterative method used is Gauss-Seidel. The grid is partitioned

(FCFS). round-robin-lfied-quantum (RRFQ). nonpreemptive- into subgrids where each subgrid is some number of contiguous

priority (NPP), and preemptive-priority (PP) (41. The two priority rows. Each subgrid is solved by a process in the same way a

disciplines NPP and PP most assign priorities to the processes. In sequential program would solve the enti-e grid. A grid value L

a PP discipline if an expected message arrives for a blocked pro- computed as the average of its four Adjacent neighbors, thus. to

cess of higher priority, the blocked process preempts the currently compute a row of values, the two adjacent rows are required

running process. In the following discussion we give a heuristic for Hece, a process must request the two rows contiguous to its

assigning priorities. subgrid from its two neighboring processes.

Generally we have observed that scheduling a single procet- Figure 1 shows the structure of the problem that runs on

sor in a distributed architecture must be analyzed considering two processors. The two processors are connected by a line with

both the single processor (local component) and the distributed virtual line time for a message unit set at 92 time units. In presi-

environment (global component). Our heuristic for assigning ous work we found that the ssignment indicated in Figure I ot

priorities is given as follows: best for this architecture 15),

* Processes that communicate across a line are assigned high All processes are comparatlle: there ts no bottleneck process

priority (highest priority when message delays are large since because each process is logically equivalent and computes an equal

the global compconent is more important) number of rows. Since each process must execute one time per
Gauss-Seidel step over the same size subgrid, there is no need to

s A process on which several other processes may wait (a assign priorities to approximate SRTF. The two processes that

bottleneck process) is assigned high priority (highest priority communicate over the line are given highet priority. For PIg
when message delays are small since the local component is and NI'l'g, processes 3 arid 4 were assigned highest priority at 1.0,

more important). the others were assigned lower priority at 2 0, For I'lp, processes

0 Any other processes are assigned lower priorities to approxi- 3 and 4 were assigned losest priority at 2 0 and the others were
mate shortest-remaining-lime-first (SIlTF) l4]. assigned highest ipriority at 1.0.

Thus a good priority discipline should generally give highest prior-

ity to those processes communicating across a line in order to 6.2. Centrailsed Moritor
minimize the process5or idle periods and thus to finish executing all The centralized monitor consists of a resource process and

processes at the processor soner. The discipline should be three groups; each group consists of a requester process and its

preemptive so that messages over the line can be received by the three user processes. Each user process executes some given
corresponding process as quickly as possible. Choosing priorities amount of time and then makes a request to use the resource

using this heuristic is demonstrated in the problems in the next through its requester process The requester process passes the

section. user request on to the resource process This is repeated 20 times
A priority discipline with priorities assigned as described before a user terminates The processing tinies per iteration were

above is denoted by PPg for preemptive priority and NPPg for chosen so that (I I there is a small, medium, and large processing

osopreemptive priority. A preemptive priority discipline with user Icess at each processor and (2) the sum of the processing
priorntes assgned in such a way as not to follow the heuristic time of the users at each processor is approximately the same at

SiXosn above is denoted by PPp: processes that communicate across each processor.

line, and bottleneck processei are assigned lowest priority. and all Figure 2 shows the structure of the centralized monitor that
the other processes are assigned highest priority. We have found runs on four proce.ssors. Processor 4 is connected directly to pro-

that PIg usually does better than FCFS, RRFQ, PPp, and NI'F'g, cessors 1, 2. and 3. Each line has a virtual line time of 68 time

1'1'p does the poorest. units for a message unit. In previous work we found that the
assignment indicated in Figure 2 is best for this architecture I5(.

5. Problems The requester processes are 10, 11, and 12. A requester pro-

"The problems tested are a partial differential equation solver cess has high priority because it is a bottleneck and also because it
(fPDE), a centralized monitor (MONITOR), and a system ,of five communicates over a line. The user processes - i through g - at

producer-cousumer pairs (PC's). For each problem we present a each processor are not identical because of differing processing

brief description of the program aad a fgure that represents the requirements. The user processes are assigned priority using the
distributed program. architecture, assignment of processes to pro- average processing time between I/0 statements to estimate ('[,1

cessors, and priorities for both PPS ad NPPg. Each process is bursts and thus to approximate SRTF. For PPg and NPI'g.

rpresented by a circle with the process number in the circle; the requester processes 10, 11, and 12 get priority 1.0; user processes I,
totsl instruction processing time requirement per process is given 4, ad 7 get priority 20,; user processes 2, 5. and S get priority 30.;

below each circle. The priority for a process is given above each user processes 3, 6, and 0 get priority 4.0 For PI'p, processes 10,
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11. ad 12 get priouity 2.0, while all user processes I - 9 get prior- References
Ity 1.0. SRTF inan important component of the priority dmsep-
line because a ever process with a small barst time can fiaish em-* 11) E. E. Balkovich, Digital Equipment Corporation; David
ber that the others and thus decrease APTT. Wood, Mitre Corporation; Dieter Baum. Ilabe-Mevitmnier.

Institute, Germany; Private Communicaticos, 1983.
5.3 Peduer-Cnsusv121 C. A. R. Hoame, "Communicating Sequential Processes.,

There ate five prod ucer-consumer pairs. Figure 3 shows the Comm. ACM, August 1978, pp. 66"-477
structure of the problem that rums on two processors. The two
processors are connected by a line with virtual line time for a mes. 131 PAWS User's Manual, CADS User's Manual, Information
sage unit set at 346 time suits. Processes I to 5 are producers; Research Associates, Austin, TX. 1981.

*processes 6 to 10 are consumers. Each pair - (1,65) (2,7) and (3.8).- 141 C. HI. Sane, and K. M. Chandy. Computeor Systems Prfor-
has one-third the processing rquirement of each pair . (4.9) and mani-e Modeling, Prentice-liall, 1981, Chapter 7.
(5,10). Each producer sends 40 messages to its corresponding con- 15] E. A. Williams, Design, Analysis, and Implemenltton of

1111er.Distributed Syst ems from a Performance Pers pective, Phi).
One pair of processes communicates over the line and both Thesis, The University of Texas at Austin. 1993.

are gives highest priority. There wre no bottleneck processes in
this example. The two pairs with the large processing require-
ments should get lower priority to approximate SRTF. Priorities
for PPg are assigned as follows: processes 3 and 8 get priority 1.0;
processes 1. 6. 2, and 7 get priority 2.0; processes 4, 9, 6. and 102 VMulm 1a
get priority 3.0. For PPp. processes 3 and 9 get priority 2.0; the a
other processes get priority 1.0. The prod ucer-consumer pairn that #i -
awe not split across two processors are independent of each other.
These pairs can terminate independently of the other pairs; one 7 3
process waiting on a line cannot cause all the processes on that POESR11 RCSO
processor to block as can happen in the other two problems.

8. Results

The reslts for each program and its architecture are given
* in Table 1. Of the disciplines tested. PPg is the best while PPp is

the poorest. RRFQ always does better than FCFS; this is prob-
*ably due to its preemptive characteristic. The nonpreemptive 4 42

priority discipline, NPg is poorer than RRFQ for both the PDE
ad MONITOR problems. The percentage increase in APTT from
PPg to PPp as computed by (max APTT - min APTT) / (min

*APTT I is 32% fot PDE, 49% (fo MONITOR, and 57% for PC's.PRCSO2

7. Conclusion Figure 2. Stucture of Centralized Monitor

We have preested the results for Ilve queueing disciplines . .~

tested on three problems. The disciplines tested awe first-come- 2
Irst-serve, round-fois-Ixcilquantum, nopreemptive- priority,
ad preemptive-priority with two sets of priorities. A heuristic is 6

given to assign priorities. We found that the preemptive priority O W 60 110_
discipline with priorities assigned according to our heuristic was 38
the best discipline tested. 1 ( < )
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* The Drinking Philosophers Problem
K. M. CHANDY and J. MISRA
University of Texas at Austin __7

* The problemi fresolving conflicts biet wee n p)rocesses in (list ritiuted syste Is5is ol priva cIioi tija cis.

A conflict between a set ot pro cesses mutst lhe rt-sote tin iiiii'or of mpol uit Iuuaiv tone prove-s all

against the others: a favo~red process must have some p)ropert ' that distingoishes ilt rolli others. Tlo
guiaraittet. fairness, the (list inguishing wprojrt.- molst lieu Himi the. lirlicess seleited 1,-r fai'.rait)..

- ~treat ment is not always the same. A distributed i mpleimentatio mi o an acyclic pire'edenice grapth, ill
which the depth of a process (the lo ngest chaiin tot' predetessi irs) is ai dist i ngoisli ug ;itn nrtiv, is

lIm-sititet A simple conflict risolotion rule coupletd wit i lilt atYclic graipli enisures litir r-soiluiit i'
all conflicts. To make the problem concrete, two paradigms are piresetetd: the well-known (list rilsuteil

- d~~~oting ithilosoliers piroblleim mand ai genterali/al t illi of it. the It.iit rilititis ,Iriikimg pihilt .... ilitur plilttits.'
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D.4.7 [Operating Systemasl: Organizat ion and Design - distributecd s~ttsn

G eneral Tlerms: Algiirithms

Additional Key Words and phrases: Asymmnietry, dining philosopjhers problem

* 1. INTRODUCTION
We study the problem of fair conflict resolution in distributed systems. Conflicts

* can be resolved only if there is some property by which one process in every set
of conflicting processes can be distinguished and selected for favorahle treatment:
that is, a conflict is resolved in favor of the distinguished process. In order to
guarantee fairness, the distinguishing property must be such that the pirocess

- selected for favorable treatment is not always the same. Traditional schemes for
- fair conflict resolution use priorities assigned to processes [2, 3, 7, 9, 101 or

probabilistic selection [5, 81. We propose a new approach by usitng t he locations
of shared resources as a distinguishing property. By introducing auxiliary re- : *

- sources, where needed, and by judiciously transferring resources ttniotg p~rocesses
we show that all conflicts can be resolved fairly. We propose a paradigm, the
drinking philosophers problem, which captures the essence of conflict resolutitll
problems in distributed systems. This problem is a generalization of the classical
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dining philosophers problem 12, 31. We present both problems formally in the
following st.ctions. This section presents an infornal introduction to the I)roblem
of conflict resolution in distributed systems.

Two or more processes cannot execute certain actions simultaneously: for
instance, two processes cannot hold "write locks" on the same data item t t lie
same time. Conflicts arise when two or more l)rocesses attempt to carry out such "-
actions simultaneously. The resolution of such a conflict requires that so ne
processes be treated differently from others in the sense that the conflict be - . . -

resolved in faVor of some processes and against other conflicting processes. If all
processes in a set of conflicting processes are indistinguislhale (i.e., if every
property that holds for one process also holds for the others), then it is impossible
to resolve conflicts between them without resorting to randoin selectioi. This is
because any deterministic algorithm that selects one of the processes for favorable
treatment must carry out the selection on the basis of some property that holds
for that process and not for the others. Therefore, if we do not wish to use .-

probabilistic algorithms to resolve conflicts, we must ensure the followiig invr-
ant: . "

Distinguishability. In every state of the system at least one process in every
set of conflicting processes must be distinguishable from the other proves'Is of
the set.

An example of a distinguishing property is a process's identity nuniber (pro-
vided that it is different from the identity numbers of all processes that it nmya

,nlctwith).sal erqient

Fairness. Usually we require not only that conflicts be resolved but also that g

they be resolved fairly, that is, conflicts should not always be resolved to the
detriment of a particular process. If conflicts always occur in the same system
state, a deterministic conflict resolution scheme will always resolve conflicts in
the same way because the outcome of a deterministic scheme is a funCtion of the
system state. In this case conflict resolution will be unfair. Fairness equires that
the states that obtain when conflicts occur not always be identical. An example
of state information used to ensure that conflicts arise in different system states A

is tim,. where time may be determined by a centralized, global (lock or by- . .

distributed logical clocks [7]: every request (which may result in a conflict) is
timestainped, and a conflict between two requests is resolved in favor of the one t iI.
with the smaller timestamp. However, conflicts between processes with equal
timestamps must be resolved by using some other distinguishing property (such
as process IDs). The state information used to ensure fairness may reside in a
single process (the centralized sol,,tion) or it may be distributed. This paper is
about distributed schemes to ensure (1) distinguishability and (2) fairness.

We describe our problem informally by using a graph model of conflict. A
distributed system is represented by an undirected graph G with a one-to-one
correspondence between vertices in G and processes in the system. Edge (u, v)
exists in G if and only if there may be a conflict between (the processes
corresponding to) vertices u and t,. We assume that there is some mechanism
that, in every state of the system, ascribes a precedenre ordering to every pair of-

ACM Transactions on Programming 1In, ,ge and S%"rts, V'.. ii, No. 4, ()c',,ier l 4. - .
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p p

Fig. 1. Graph (;. Fig. 2. Graph II .

potentially conflicting processes so that one of the processes in the pair ha-,
precedence over the other. It' there is a conflict hetween a pair of processes, the
process with the lower precedence must yield to the process with greater prece-
dence in finite time. We represent precedences between pairs of potentially ." .

conflicting processes by a precrdctfce graph It, which is a graph identical to (; ..... :

except that each edge in G is given a direction in H as follows: An edge it, tl is
directed away from the process with greater precedence toward the process with
lesser precedence. For example, Figure 1 shows graph G for a system with :3
processesp, q, and r with the possibility of conflict between any pair of processes.

S Figure 2 shows graph H for a state of the system in which p has precedence over
q and r, and q has precedence over r.

If H is acyclic, then the depth of a process in H is a distinguishing property ly
which a process can he distinguished from all processes that it may conflict with; .. . .
depth of a process p in H is the maximum number of edges on any (directed) - .

path to p from a process without any predecessors. Note that a process with no
predecessor has depth 0. It follows that neighbors cannot have the same depth.
For example, in Figure 2, the depth of p, q, and r are 0, 1, and 2, respectively.

If H is a cycle, the topology of H does not allow us to distinguish one process
from another. We propose an algorithm that ensures that H is acyclic in every
state of the system..- . ..... .....

The acyclicity of H in every state of the system guarantees (istinguishal)ility - .. -
but does not guarantee fairness. We wish to ensure that every process with
conflicts has all its conflicts resolved in its favor in finite time; this requirement M. r
can be ensured by a guarantee that every process with conflicts rises to the top
(i.e., to zero depth), in H in finite time. By the phrase, a "process p will rise to
the top in H," we mean that the state of the system will change, and hence H
will change too, so that p will have no predecessor in the precedence graph H at

- smOfle later state. Ifp is at depth 0, then any conflict that p has will he resolved
in p's favor in finite time because p takes precedence over all of its neighbors.

How should It change? The only way to change 11 is by changing the directions
of the edges. We propose to implement H, and changes to 1t, by a distributed
scheme, where each change in i is made locally at one process. Therefore our
requirements are k1) 1H remains acyclic at all times, (2) 1t changes in such a

* manner that every conflicting process eventually rises to the top in H, and (3)
each change to H be done locally at a process. ... ........ . ..
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*To nsureacvcicitv, w emiplythe ollwaing rle for changing II:

Aic3dlicitv Rule. All edges incident on ai p~rocess p may be simultaneously (i.e., - -*------

in one atomic action) redirected toward 1).

Tlhis t ranisformation preserves acv'clicitv (1of II becaus- lit) cycle cooitai lung 1)
can be created by the transformation since there is no edge directed away fronm
p) after the tranisformaotion.

To ensure that every process in a conflict will rise to the top) in I/ eviiitiitllv
we employ the following role:

* Fairness Rule. Within finite time after a conflict is resolved in favor of' a

* process p at depth 0, p must yield precedence to all its neighbors.
This ensures that in the event that process at dlept h ( is lit conflict It will R

* redirect all incident edges toward itself in finite time. This redirection (of' edges
follows the acyclicity rule.

Example. Consider the precedence graph H shown in Figure 3a, where p, (1,
- and r have depth 0I, 1, aind 2, resp~ect ively. If' there- are coniflicts5, then if) 1-111il1

t ime thle directions of all edges incident. on p will he reve rsed to give thle precedenc e

graph shown in Figure 3b, in whvlihp. (1, and r have depthI 2, 0, and 1, respectively.
If conflicts persist, in finite time the directions of all edges incident on q will be ~-
reversed togive the precedence graph in Figure 3c, in which 1), (1, and r have
depth 1, 2, and 0, respectively.

T1he key issue is to devise a distributed implementation of 11, as well as the W7"
acyclicity and fairness rules. The distributed aspect of' the problem mnakes it
nontrivial. The difficulty is that a process has to drcide whether to yield or not
to yield in a co-iflict, and the decision has to be made solely on the basis if' t lie
process's local state. It may not be possible to determine the direction of' edges
incident on a process only on the basis if the process's local state. 'Fherelore we
devise a distributed implementation of H and a scheme by which pro(csses
resolve conflicts by making local decisions based on partiazl info rmat ion of UI.

0ur goal in this section was to discuss the concepts underlying dlist ribiuted
Conflict resolution and the treat ment has been infornial. The fo llowi tig sect I01mi

offer a more formal treatment of' conflict resolution by defining and solving a
* specific problem: TJhe drinking philosophe'r problem, which serves as ;I pariuligiut

of conflict resolution problems.
AC~(%j 'rrauns, mw-n V'~r- Krmmmgt I ,Twm gi,1 V,.1 N., 4), t.t rohIq
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2. THE DRINKING PHILOSOPHERS PROBLEM (DRINKERS PROBLEM)

The, following problem is : ge neraIlization olt lie diiiinn Ihihn.opfhe'rs jrohli4'n
12, 31, which has achieved the stattus of* legend, sli tce it captutres lhe essence of'
many, synchron izat ion 1) roble ins. Processes, cal led ph :Iosophers. are p~lacedI at It-e

% ertices of a finite undirected graph G with one philosopher at each vertex. A
philosopher is inone of' 3 stat es: (1) Irrun idi, (2) thirstY, or 0:) drildking.
Associated with each edge in Gz Is a bottle.' A philosopher ca In lyrun -
bottles associated with his incident edges. A tranquil philosopher may become '~ -'

thirsty. A thirsty philosopher needls it fonenifjty Set (ifl)ottles that lie wishies to
drink from. lit ia ' nee'd different sets of bottles for differenit drinking sessiOns.
On holding ill needed hottles, it thirsty philosopher starts drinking; at thirsty
p~hilosopher remains thirsty until he gets all bottles lie needs tod(rink. On entering
the drinking state a philosopher remains. in that state for a finite period, after
which he becomes tranquil. A philosopher may be in the tranquil state for anl
arbijtrary prooftime.

Two philosophers are neighbors if andl only if there is an edge between them .*

in G. Neighbors may send messages to one another. Message,, tire delivered in ~~..
arbitrary but finite time. Resources, such as bottles, are also encodedI and
transmitted as messages.

The problem is to devise a nonprobabilistic solution that satisfies the following
constraints.

Fairness. No philosopher remains thirsty forever.
Svrnrnetry. All philosophers; obey p~recisely the same rules for acquiring and

releasing bottles. There is no priority or any other form of externally specifiedIm i AW
static partial ordering among philosophers or bottles...

Economy. A philosopher sends and receives a finite number of messages
between state transitions. In particular, permanently tranquil philosophers do
not send or receive an infinite number of messages.

Concurrency. The solution does not deny the possibility of simultaneous drink-
inig from different bottles by different philosophers.

Boundedness. The number of messages in transit, at any time, between any
pair of philosophers is bounded. Furthermore, the size of each mnessage is hounded.

The drinkers problem is a general paradign for modeling conflicts between
processes. Neighboring philosophers will be prevented from drinking simultane-
ously if they wish to drink from the same bottlc-this situation models conflicts
for exclusive access to a common tile. Neighboring philosophers umlay drink
simultaneously from different bottles-t his sit uat ion models processes writing
into different files.

We must prevent the system from entering states in which neighboring
philosophers are indistinguishable. For examplle, consider philoso dirs arranged
in a ring and a state in which each philosopher is drinking fromt his "left" bottle-
philosophers cannot be distinguished in this state. If all philosophers are dIrinking
from their left bottles and then require both bottles for their next drinking

'The solution given in this paper also applies to multiple botties on every edge.T'ht. iasumption of
'inc bottle per edge is madv flr brevity inI expoIsii T
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* session, then the philosophers mnust remain thirsty Forever because at (k'ItrmIiII

* istic algorithm cannot choose between indistinguishable philosophers. I Itowc' r,
* ~~a system state is certainly possible in whichalJilsjhrhldhirlf
* bot tles. If we were to disallow hiis state, we Would he disallowing it fIasile st ale

in which progress is bteing made. merely to solve our prolemn; ilisallowing f'easible
stat ,s violates our constraint of' ct'idrr,'m'v. We appear to he' iI it quiand~ary

bec'ause the cop.Flraints of symmetric processes, nonprobabI list ic solutons00, and1*~
* ~~concurrency are Incompatible for this lproli. The solut io n is 14, imuplelinemt .- -

precedence graph H by using special "auxiliary" resources. Thel solution to the
(linling philosophers problem shows uts how to imleenit HI. Tlherefore wt, sI ndY
the (lining philosophers problem next. We then study the drinkers problem using

* the diners problem solut ion to. imiplemetnting HI.

3. THE DINING PHILOSOPHERS PROBLEM (DINERS PROBLEM) ________

* 'rhe diners problein 121 is a special case of the drinkers problem in which every
thirsty philosopher needs bottles associated with all its incident edges for (III:;

* ~drinking sessions. We present a solution for this problem with the properties of''-'
fairness, symmetry, economy, concurrency, and houndedness. To distinguish

* lbetween these two problems. we use the following termns for the diners prolem,
with the corresponding term for the drinkers problem in parentheses: thiliking
(tranquil), hungry (thirstx'), .'ating (drinking), fork (boille.). '[he (liners p~rolemIl
disallows neighbors from eating simultaneously. TIhe drinkers probl'm allows
iu'igldmors to drink simultaneously provided t hal t hey are drinkinig froum dilleretit
ILot tles.

WVe first present an inf'ortmal outline of* the solutil; thet mlext se('tioll flas at
detailed formal description. A fork is either clean or dirtv. A fork being used toW.
eat with is dirty and remains (dirty until It is cleaned. A lanfork remains ('lea!.
until it is used for eating. A philosopher cleans a f'ork wheni mailing it (fie is

- hygienic). A fork is cleaned only when it is miailed. Ani eating pillosophi'r dos
not satisfy requests for forks until he has finished eating. TIhe key issue is: which
requests should a noneating philosopher (defer? In our algorithlun, I noujeating
philosopher defers requests for forks that are clean and satisfies requests for ~
forks t het are dirty. *-. .. :.:'J~.

This solution to the diners prohlemn suggests an implementation of precedit'ntt'

graph H. The direction of an edge between two neighbors u and I, Is f'm it t o I, 4-O C
* (i.e., at has precedence over v) if and only if (1) it holds the fork shared by3 it and

v, and the fork is clean, or (2) v holds the fork, and the fork is dirty, or (3) the
* fork is in transit from v to iu. Observe that the direction (from it to I,) of the edg

can change only when u starts eating. Furthermore, all edges incident on an

eating philosopher are directed toward it. Hence we have an imiplemnentat ion of'
- the acyclicity rule: The direction of edges incident on a process may be c!hanged

only in the following way--all edges incident on a process niay be simultaneously
directed toward it.

- Initially all forks are dirty and are located at philosophers in such a way that
H is acyclic. Hence the following is an invariant: H is acyclic.

4 ~~~Immediately upon completion of an eating session, a philosopher yields prec--___________

edence to his neighbors. A hungry philosopher at depth 0 in H will contience .:::'a'.:
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inductin ldepthihungry philsopher atdepth k, k O, will vat I inite i MR,
eaus i'infnttieItcithe has pre((fiw ove oll hi iihl os

A formal treatment of hese argumnents is found in the next sect iOn ________________

4. A HYGIENIC SOLUTION TO THE DINERS PROBLEM-

4.1 Algorithm
We now give a precise descript ion oft he solti on ot lined In I lit, last sect ioll. Tlo
simplify our description, we introduce' a reqtue'st liukenf for each fork. Only the
holder of the request token for fork f canl request fork f. A request for it fork is
made by sending the corresponding request token to t he holder of the fork. It
follows then that only one process- t lie holder of the reqIuest token for f -may______________
request fork f and the requested process, after recec. ing the token, has the next. ..... *

chance to request the fork. Also, if af process holds a fork and the request token .

for the fork then his neighbor (with whom he shares the fork) has an outstanding
request for the fork. We introduce the following B~oolean variables:

fork,, ( f )philosopher u hold,, fork f,
rf'qf, (f) philosopher u holds the request token for fork f,
dirty,,( f) fork f is at u and is dirty,
thinking~/hungry/eating,,: philosopher u is thinking/hungry/eating.

We drop the subscript,- from the Bsoolean variables when the context is clear.
Each philosopher follows the rules given below for requesting and sending

forks. In each case a rule is written as g - A, where g is a condition and A is a - ..-

sequence of actions. These rules constitute our solution to the diners problem.
The set of rules forms a single guarded command 14).
(RI) Reque.ting a fork f:

send request token for fork f (to the philosopher with whom f is shared);

(112) Releasing at fork f: , '-

-eating, req/ti(, dirtyv t(fj
send fork f (to the philosopher with whom fork f is shared);
dirtY (f)= fuzI; :4w

fork (f ) :false
(103) Receiving a reqtnest token for f:

upon receiving a request for fork f-.
r -qf(f) true

6 tR4) Receiving a fork f:
upon receiving fork f
fork(f) :=true
J-dirt.Y(f) I

WVe note that the statement of the diners problem defines transitions among
states (thinking, hungry, eating) for a philosopher, and we furthermore have for
any philosopher, __________

ACMrta~&tin~eating, fork(f) dirty(f).

S-'7 * -: - -------

fi61,1
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F Initial Conditions
1. Ail forks are dirty. I V f. di'rt.%v.( f or dirtY, (f ) where u., L, art- thet( philosoptr's

who can use fork f[1
2. Every fork fland request token forf tire held by different philosophers. Iff fork

j is shared lc'tween philosophers (it, 0, then it holds the fork anid 1, the toiiae
i.e., fork. f) reqf, (f), -fork, (f rcq(f,, (f or tholdsthefrani tv

tokeni -

:i. It is acyclic. IThe forks are initially placed in suich a manner that II is acyclic.1

4.2 Proof of the Hygienic Solution for the Diners Problem

WAe silo" ill tis section flint clrhiinrN pliilosophler will vat. fit addition 14)
this fairness condition, we show that ouir stolut ion has teproperties of~l iiie y
ei.onlfiY. conicurrency, and botundedniess.

Fairness

LEMMA 1. Hlis always aev. .-.-

PROOF. Initially H is acyclic. The directions of edges in HI may he aiffected
only when a fork changes its status (dirty or cleanr) or its location. We will show
that every change to H preserves acyclicity. Every transinission of' a fork is
accompanied by a change in its status from dirty to clean; this does not change

j the direction of any edge. A fork is dirtied when the philosopher it holding it,
eats. In this case u must he holding all other forks associated withI edges incident
upon it, and they must all be dirty. ut cannot then create at cycle iin 11 because all

* edges upon u are directed toward it. 0

THE OREM 2. Every~ hungrx' philosopher eats.

The following proof is based on the fact that a hungry philosopher requesting
it fork that is currently dirty will receive it (front rule 112), and since the fork is
clean upon receipt the philosopher will hold it until he eats. A phlilosoplher
requesting a fork that is clean must make the request to as philosopher at a______________

- . sumaller depth and, by indluction onl depth, this philosopher will eait amid thl -

dirty the fork, in which case the first argument applies.

PROOF. Recall that the depth of a philosopher in II is the miaximxum number
of edges along a path to that philosopher fronm one without piredecessors. We

* prove the theorem by induction on depth of a hungry p~hilosopher; thle induction
* amounts to showing that hungry philosophers at depth k in (.very Ui eat providled

all hungry philosophers at depths smaller than h in every ItI eat. for all k ? 0.
We will not do at special analy ;is for hungry philosophe rs at dlepth I), lscauxse

t eat case is subsumped by Case 1, below.
Let u, v be neighbors and u be hungry. We show that ia holds or will hold the

fork f corresponding to the edge (u, v) and will thereafter continue to hold it
until u eats. If u holds the fork currently and holds it continuously until he eats,
the result is trivial. Therefore assume that v, holds the fork f someutime before' i

S eats, next. We do a case analysis on the status of f at the time that v holds t he..
fork. At t his t ime we have: hungry%, -fork,, (f, forA (f)

AC'M Transac ion., on Pro.gramming Vol.u.g. 6rdS~~n. i, No. 0, 10%-,hr P
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('aie 1: f(is dirty (dirtY, (It true). If' rcqf,(f) holds Ithen u will request f
(because precondition ot rule R1 will hold) and subseq(uenitly reqf4 (f ) will hold;
ot herwise reqf, ( f airea-1 holds. If eating, holds then at some later point (since
eating is finite), -eating, holds, and all other predicates for rule R2 still hold.
Tlherefore rule R(2 will be apjplit-d 1) 'v, and u will eventually hold at clean fork, u
will1 not release a clean fo)rk Uint 11 C ats.

( ustc 2: (is clean (dirt, I) false'). Every fork hield by a nonhungry philos- -

opher is dirty beciuse .

(it) fill forks are dirty initially.,
(b) only hungry philo sopher.- receive cleaim h rks, and1(
(c) all forks held by eating philosophers-ire dirty.

Since f is clean, the plihiso phier t holding it mnust be hunigry. F'urthermore,
because f is clean, (I,, u) is an edge in 11 and hence depth(v) < depth(u). According :~>:*

to the induction hvpotlhesis, c eats aMid lVIRT' (dirt ies f. Case I then applies. [I

Svin etr-v. I t ollo( w- fro)n I t' elesc'r ilpt iou11 of theI( algorit hiii I hatit Ill pitiloso ~::..
phers follow the same rules.

Ecorioflfliv. The number ofnmessage sends and receives before a state t ransition
is bounded as follows: if' d is the number of' neighbors of a philosopher, then no
more than d requests or forks will be sent or ret'eivL'(. More precisely, suppose a

I philosopher has e dirty forks when he transits to hungry state. Then hie must
send d - o. requests arid receive it fork c'orresponfldinig to each request. In addition,
in the worst case, he may lose all t, forks he had held initially arid therefore have
to reqluest and receive them. Assume that a philosopher implements the latter49M
situation by sending at fork and the request for it in one message. Then no more
than 2d messages are needed before transiting to the eating state. The only
JJ1.S.Sag('s received in tlhe eatilig or 1hinking state are t iv requiests for forks held
by the philosopher andl hence these do not exceedld. [in the best case, apJhilosopher
wit i perinatintly thlinkiing phlo!sophetrs its neighbors will rvc('i~t no' reque-sts for
forks and therefore may live a life (think and eat) free of interact ion wit~h others.

'iurrecy . Our solution does not deny any feasible systein state; that is, *. .:...

111VSatle of the svsteni in which neighboring philosophers arc, not eating is
allbl in our solution. Tlhis is because the solution does not prevent a -

philosopher from entering t he t hinking or hungry state; t he only restriction is in
entering the eating state, and that is allowable when a hutngry p~hilosopher holds
all fork..1, as requtired hy the p~roblemi.

Botundtdness. There are at niio~; twvo messages - a fork and a reqjuest for a
fork-in transit, between any two philosophers.

5. A SOLUTION TO THE DRINKERS PROBLEM

V 5.1 The Precedence Graph
Orsolut Ion to the drinkers p~rob~lem uses precedence graphs discussed in Section

1. Tlhe solution to thte diners problem demonst rates at (list ributed implemnentation
* ~~of the precedence graph H. Fairness and the acyclicity of If are ensured by ':;'

implementation of the fairness and acyclicity rules. It may appear that H provides
CM run.,atti~*m, on i'ro~grumming I tnguag ma ,tei w .~ VI 6,N,, 1. 4) g,,Ir V'1i,
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A simiple resolution mechanismn f'(r any type of eonilhct, including contlict Ibr
bottles in the drinkers problem, since any conflict canble resolvedl in flavor o't he
process with greatest precedence. However, there Is a dit'ficultY dueI( to the
distributed implementation of' IL. (iveii only the state of' process u we (-,in

determnine which of* neighbors u or I, has precedence if it holds the foirk: It' the
f*Ork is clean it has precedenice, it'it i,, dirty~ I, has lpret-tive. I lowever, if it does

* . riot hold the fork wo' cannot (ictcrinine whiCh of it or v has pro-co'di nce from, thec

state. of it a~to. In this case u must make local dec'isions about holdIng on to icr
* releasing bottles without using precedence graph U1. This issue is (ljsciissedl next

in (fhe context of the drinkers problem.
We use forks to implement 11. Fork-, are atixiianv resourves in t lhe sense I hat

their sole purpose is to implement precedence grap~h It. F~orks are not p~art oft the
drinkers problem specification: they are part of the solut ion. The real resources
in the drinkers prohiem aire bottles. Our philosophers can eat and dIrink sirnul-

- taneousl , and we emphasize that eating is an artifact of our solution, u~sedl onlV
to guarantee fair drinking. InI our solution, the state of' a philosopher is a pair
(diner's state, drinker'-, state), where at (liner's state is on(e of' thinking. hungry,
or eating and a drinker's starte Is; one of' tranquil, thirsty, or drinking. Our niext
step is to define the dining characteristics of' our p~hiloso~phers; the drinkingv
characteristics are specified Ly the problem. We give rules that ensure that 111l
thirsty philosophers drink in finite timne.

Consider the state transitions of a dining philosopher. T1he only transitions
* that are decided by the philosopher are thinking-to-hungry and] eating-to-think-

ing:, tho only transition completely specified by the (liners problem is hungry-to-
eating (which occurs when a philosopher holds all fourks he needs). We now give
rules for the dining philosopher to decide the point of the first two transitions.

(1)1) Th in king- to- Hutngry- TransitiOn1:
A thin king, thirst) philoiopher becomnes hungry.

1D2) Eating-to- Thinking Transition:
An eating. ne'nthirst%' phlos eopher starts thining.

In the diners problern, a phliosopher can think for arhitrary time thmugh he
must eat for finite time. Theref'ore our obligation, arising out of' rules (DlO and
(D2), is to ensure that ench eating period is finite. This is accomplished by the

* rule t(M) given below.

*~ Dl3) The Conflict R~esolut ion ule-'
Philosopher u sends a bottle to philosopher v, in response to aI rtequest
from v, if and only if' t (does not need the bottle or lit is niot drinking
and does not hold the fork for the edge (u. ty).

Note that u's decision to send or hold onto a bottle requested by v depends on
whether u holds the fork associated with edge (u, v), and does not depend on
iihet her u or v has precedence in I1. In particular, u must send the bottle to L it'
u has precedence over v, but u does not hold the fork associated with edge (u. 1).
We mnust show that despite this f'act, the algorithm is fair.

The basic idea is this: Suppose it has precedence over I, (i.e., (it, v) is an edge
in 11). hut v holds the fork (i.e., the fork is dirty), andl suppose it requests a bottle

ACNtTraninttv'ivlorl P'r'grtnmlng 0;.ici~" in Vt*i ' N' 1 I Oci-h HIM'1
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held by v'. We require that a not only request the botde held lby v, but t hat u ild

request the fork. We show (from the soltioLn to the diners probilein) that in finite
tirne v' will yield the fork 14o i after which it must also yield t he bot tle to it. Tlhus,
the algorithm ensures that it' u has p~recedIence over v iii If timeii c'vittuallY the
conflict resolution rule causes conflicts for bottles b~etween it andl v to be resolved_________________

in u's favor. -

5.2 Algorithm for the Drinkers Problem

Now, we state the algorithmn formally. As before, we introduce a request token,
iqb, for every bottle b. TIhe following Boolean variab~les are used:

bot,h): philosopher it holds bott(le 1)
r#e'qh,,h): phbilosophelr it holds request toke~n for botle Iv
ni'cdj.(b): philosopher it needls bottle 1)

truntqil,/Ithirstv,./d(rnJiking,,: philosop~ her it is frwiiqud/'ltirstv/d(rinikm'g :'*

As before, we drop the subscript when the cont ext is understood. l'romn the

problem statement w ae
tranuqil VhI - ncf vd(li 4

State transitions for dining philosop~her determined by dlrinking states are

(M) thinking, thirsty -~hung'ry: = true
d)2) cating, - thirsty -. thin king :=trite,

Other actions of the dining philosopher remiain unchanged.

Rules for bottle and request transmnissions I Let f be the lork cormi.ponding to
bottle b, i.e., fork f and bottle h are shared by thby samne two lprocessesi:LMI;r

lit) Riequest a Bottle:
thir,;tv, need~ (h)), re-q/*Ilt. - hotd (ht)
send requVst token for h.t tle h;

(112) Send a Bottle:
rcqh(b). hot (b), - [?wcd (1) 1and (drinking or f..rktl) /i j
send bottle b;
bot Ib) :~false ~

(10) Receive Request fir a Bottle:
uptin receiving request 1'1,r hot tlet
rcqbtb) :=true

lR-0 Receive at Bottle:
upon receiving bot tle he

*i btxt b - true

Initial (onditirM

For Dining Philosophers: As before.
For Drinking Philos.ophers: A bottle and the requc'4t token for it are held by

different philosophers, t it is, if ", v share bot I e th 1len u holds the bott le and
v ithe token (bot,,b" reqb, (h), -but: (b), - re'qb,(). or t, holds the bottle and u
the token.
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5.3 Proof of Correctness of the Solution to Drinkers Problem

We show that the solution has the desired properties of fairness, sYminet ry,
economy, concurrency and boufldtedIICs.

Fairness

L 1EMMA 3. Every eating period is finite.te

P~ROOF. If an eating philosopher is nonthirsty, he comiplete-s eaIng()) f.-
philosopher u is eating, he is holding all forks. If he holds at botle t hat het- neds,
he will not release it until he complletes drinking, from the p~recondlition of' (1().

* If hie needs and does not hold a bottle that hie shares with I,, t hen lhe holds oJr will
hold the request token for the hottle (same proof as in Case 1 of'Theoreil 2). H-e
will request the bottle, fromi (1R1), and v will have to send the bottle in finite ti e

* (112) since v does not hold the fork and v can be in drinking state only for finite
- ~~duration. Therefore u will hold all bottles he needs in finite tUne. Sliic ui dr'ks..

for finite time, u will become tranquil in finite time and, from (1)2), a4 will slop.
eating in finite time. 0

Since every eating period is finite, Theorem 2 applies and we have

COROLLARY 4. Ever-y httngIr.- philosopher starts eating in fintite time.

THEOREM 5. Every thirst), philosopher drinks in finite time.

PROOF. When a philosopher -becomes thirsty he is either thinking, hutngry, or ___________

eating. A (thirsty, thinking) philosopher becomes hutngry in finite limhe (froin
DO;: a hungry philosopher starts eating in finite time (from Corollary 4). There- fOI
fore every philosopher who remains thirsty will eat in finite time. The theorem

* iollo%%s from Lemma 3 and the fact (D2) that eating can be terminatedl only by
drinking. 0

* Symmetry. Follows from the description of the algorithm.

- l~Econiomy. We first show that a bottle b can travel at most twice betweii
* neighbors, u. v, before one of them drinks from b. A bottle is sent in response to
* ~a request from a thirsty philosopher. Let (u, I)) be a directed edge in HI; the bottle - '

will travel at most once from u to v and will then be held by I' until u dIrinks.
*This is because (1) either v' holds a clean fork, which will not Ibe released uni A O

after eating (and hence drinking), and therefore the bottle h, which is ieeded by
I, will not be released, or (2) u holds a dirty fork, which must have been requested
by v (when v became thirsty and hence hungry) and will be mailed, after being

* cleaned, along with the bottle to v, and then case (1) nppliesi. Hence a1 bottle canl
travel at most twice between neighbors before one of them drinks.

- ~~LEMMA 6. There are at most 4qd ,nessazg( transmfissions for q dirining sc.siuJns
among all philosophers, where d is the maximum degree (i.e., the rnax'mim n nmbe/ir

* of neighbors) of any philosopher.

PROOF. There is at most one request (for fork and/or hottle), one t ransmission1
* of a fork, and two transmissions of a bottle between neighbors before oine of t hem

ACM Trsrim.iconq on Pmrogrnmming Languages and.Sygi..ins, V~ i ,. M,. 4. ,INOh r i'54g:.:.;h..::.:i
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drinks. Therefore, when a philosopher (Irinks. tlwrv moust have beeni no imore

than 4 mnessaiges per eah oI it neighbors aiit -zc t he result.. I I

Coriurrenc 'v. Thle argument ftr conctirrency is siiilr to that for lie dliners
jpr blern. We note t hat tio feasible st ate of t he drinkers prob lemn is b~einig
eliminated in our solut ionl.

iIunflbdnaess. rhere are za mo.4 three inessages request for a botle mic a(or

fork, it bottle, or at fork i-; t ransit from one phbilosopiher to another at any point.

6. SUMMARY
We have desc'ribed a (list ribute ('I ii)j)eJnieta)t io) iii 11 freveden(e graphI. Tlhe
changes to the graph are such that the graph is always acychic. Thel depjth of aI
process lin the graph is the process's distinguishing characteristic. The graph is

* implemented by the "forks" of the (liners p~rob~lem. Tlwo processes share at fork if'
they may conflict with one another. Tlhe conflict -resolut ionc rule is: A proce.S.; hu

yielis in a oitwthajrcs if and only, ifi d (oes not hold the fork shared -.. *

wxt h u. The algorithm ensur"s that if p~rocesses u4 and v are in conflict , and ts Ila.
precedence over t, in the precedence graph, then the conflict resolution rule will.
ea'entuall v, cause conflicts to be resol, ed in u's favor.

Many types of conflict call be res.olved by using thle con flict - resolut io n rule
coupledi with our distributod imlmnainof the precedenve graph. F~or ill-

4 stance, consider the Rmult ilile concurrent mutuaiul exclusion pribleti described
llx.A critical section in a process has anl arbitrary number (if c~lors issociiitecI

withI it where- i color is some att ribuite ofl tceitic al sect ionw. T[he prof dent Is 1o%
devise a scheme lbv which, for each color c, there is at most one, process exect tng
it critical sect ion with associaited( color c. For example, a color may corre.spond to i.-

the privilege of exclusive acces-s to a specific file and associated with each critical
sect ion is the set of tiles accessed wit hin that eect ion. If all critical section., have
he salie set of colors. the p~roblemt redhtces to thie classical intil t~xchtsOl!

We Ilse our soluition to dite drinkers prololemi to solve thet cotcirrviot iiitmdi~

exclusion problem. WVe use a variant of the dIrinkers prolem in which a paiir of
pliloi ihes my-hare an -N-tr~ number of holdtes. Thel bottles arm colored,

each bottle having precisely one color. A pair of lplilo.;opliers share at mo.i;t (one
hottle of a given color. A bottle Is specified by the edge it is on (i.e., by the pair
of philosophers % ho shacre it) and by its color. Tlhe set of' bottles ai thirsty
philosopher needs to drink is nrbitrary i! amY invwutl any boile he shares. For
Inst ance, when philoso pher i becottes thirsty, lie maiy neced u, hold I ie( redl hot tle
shart-d withj / and the red hot tle shared withi k (and the blue bot tle shared with k.
If' there is; precisely o1n0 bottle onl each edge thie problem redluces to the onle
discussed earlier. We leave it to the reader to show that the algorithmit given
eaI.lier also tipplies to the ext ension to colored bottles.

G~iven a conc-urrenlt inutual exclusion p~roblem, we construct a lrikers problemi
as., tolliow,. Philosophers tprocess4es) i and j share a bott le with color c if ard only
if both philogophers have critical sections with color c. A process. i mnay enter a

* ~~~~critical section with at set (ii colors 1: if and1( only if' for 'elilr~cinc n uedlges c incident on process i, the bottle of color c onl edge e is held by phuilosoapher

6,N,'. clhr1K

0~.. t .. -I z7-*,. **.
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-I. III this ease it is obvious that no neiglilxiring philosopher ciin 4111.1 a t i ica
section with a color c in C.

7. PREVIOUS WORK

* ~~The distributed dining philosophers problem (philosophers at thie vert ices of a ________________

graph) and t he dfilling philosophier,, probhlemi (live philo sophers a rrange ilil ~-:'.
ring) appear in 12, :11. Iijkst Fa' solti ons to thle fortner probilemi art, based uon

iist atlaneotis atoini(' t ransinissions oif messages to all neighbors or stlitic f.ork .*- -

orderings. Lynch 19) has carried out an extensive analysis of' static resource
ordering algorithims.

'[he problem of mutual exclusion amiong a group of processes in ext-cutilngl
their critical sect ions is a special case 4)!th (f ilters probliiem: Every provess is "I
neighbor of' every other process and execution of a critical section vorresponids to
eating. D~ist ributed solutions to mutual exclusion using t ineslanjps and process ________________

MI), to break ties, appear in Laniport 71 and In Ricart aind Agrawala 1101J. Sharedl
(-t1inter variables have been used in 111, for solving the dfinling philosophers. .*1

A symmietric distributed solution to the diners problenm appears in h'raiicez and
Hodeh 1,51. They use an extended foin of' CSP 161 in which bo1th Inu i10 nd]
output i ommands are used in guards.

Llihmann and Rabin Ji give a perfect ly symmnietric jprollalilistie algorit hi and
*show that there is no perfectly symmnetric nonprohabilistic solut ion to the (filters
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1. Introduction
K This paper presents algoritlis by Which a process ill a (list rilo(ited SYSIVk -iiicn tleteriiie :1

global state of the system during a computation. Processes in a distributed stostem comnmiunicate

by sendiing and receivinug iuie.,;iges . A process (-in record its owii sa te an~d tI~ he iussaig-- >I k'ld

and receives; it raniti cuord imili'iy 11. To dclutriuiiil(' a gliibdal ii stat.', A 1i1i. p iitu't

ilitthe c)operationi of other Jirocesse-s who luti1st record t heir. moI local st i s and! Send Ow

recorded local states to p). All processes cannot, record their local states at, precisely Ohe "alici

inst ant wnless they have access to a com11mon clock. WeC Lssiiie t-hat proce'sses Jo niot stuart' liot k,

or memory'. Tile problem is to devisec algorithmius by wliich proc-esses recordl lbir own sIa wlii

the states of communication channels so that tilie set of process anid chiannmel states recorded foriii

a global system state. T1'le global state detection algorimii is to be sn pen inpose-d oui tile

underlying computation: it intist I-illi cuuzcu rrently wi th, biit niot, alter, thlis ii nderly I"m

computation.

The state-detection algorithmn plays the role of a group of photographers ob~servinig a

panoramic, dynamic scene, such as a sky filled with miigrating birds - a scene so vast that it

cannot be captured by a single photograph. rhe phiotograpiliers miust, take several snapshots and

piece the snapshots together to form a picturer of ie( overall scvnie. Thle snapshot.s caninot all b.'

taken at precisely thle satine instanit, because of syniclironizatjon prolbleims. Fnrthierfiore, tile

phiotograplhers should iiot ouist urb tie process that is bteinig photographmed; for ist.auice they cannot.

get all fte birds inl the hecavenis tro reiliiii iiiotloile(ss Wh-ille d ie phlocograpdis are taiken. Yet.. flit

composite picture should be umeaiingful. 'The probliii before us to to define "mneaningful" anld

then to determiine how flth- photographs should lbe ta;kein.

Wefow describe anl iiiportanit class of prolems Chiit Call Ie solved With tile global stalle

ttect ion ;ilgorithi. Let V be a predicate- finction defint-d onl the global states of a (list ribuited

!"Vstelm 1). i.e. y(S) is true or false for a global state S oif 1). Thle predhicate y is said to be a .qfi'ble

,iropi ny of I) if v (s) i iil ts y.(s') for all global states S' of 1) reachable fromn global state S of

1). Ili othter words, if Y is a sa le property anid y I.- trie atl a point iii a coimpulitat ion of 1), thiemi

is true at, ;ll later poinit. in that collpuiti i. vxamiles of stable properties are "comrpuatatioin

hi-; termiinated," "the svstt'n is dvadlocki'il" amit "all tokeis in a token ring have disappeared."

Several distribuitedl str'Iij rh eii ali I( foriiiilate'd as thlit general problem of devi-sinig

an algorithmn by which a process ill a distributed system can dett'riie whether a stable prop~erty

y of thle system holds. D~eadlock detfectioin 1-5 aint teriiat ion detection 16-8i are special cas's

orfilhe stable property deite'ctioni prolem. lD'.tails of I lic algoritlii are presented later. Tle ba.sic

idea of thic algorithmii is that a global state S of till' systeiii is ultterui liuied anid Y(S) is colill ed to
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see if the stable property y holds.

Several algorithms for solving deadlock and termination problems by determninig the global

states of distributed systems have been published, Gligor and Shattuck [I] state that many of the

published algorithms are incorrect and impractical. A reason for the incorrect or impractical

algorithms may be that the relationships between local process states, global ..systemmm states and

points in a distributed computation are not well understood. One of the contribuimions of this

paper is to define these relationships.

Many distributed algorithms are structured as a sequence of l)h;Lses, where each I)h:Ls

consists of a transient part in which useful work is done, followed by a stable part in which the

system cycles endlessly and uselessly. The presence of stable behavior indicates the en(l of a

phase. A phase is similar to a series of iterations in a sequentiai progran , which are repeated

until successive iterations produce no change, i.e. stability is attained. Stability must be detected

so that one phase can be terminated and the next, phase initiated [71. The tertnination of a

computational phase is not identical to the termination of a computationi. when a computation

terminates, all activities cease - messages are not sent and process states do not change. There

may be activity during the stable behavior which indicates the end of a computational phase -

messages may be sent and received, and processes may change state, but this activity serves no

purpose other than to signal the end of a phase. In this paper, we are concerned with the

detection of stable system properties; the cessation of activity is only one example of a stable

property.

Strictly speaking properties snuch as "the systmin is deadlocked" are not stable if the

deadlock is "broken" and complutation is reinitiated. lowever, to keep exposition simple, we

shall partition the overall problem into the problems of (I) detection of the termimation of one

phase (and informing all processes that a phase has ended) and (2) initiating a new pbase. 'he'

following is a stable property: "the k-th comnputatiiial pIhae hls terminMate-d", k 1,2,. Ience,

the methods presented in this paper are applicablo, to detecting the t,.rmin:mmllon of tiw k-i pima.l ,

for a given k.

In this paper we restrict attention to the problem of detetiig .tatd, Trheri,*s. "l'm'

problem of initiating the next l)hase of coil) putation is not collsi(hIed 14herc becauls the sol tio to

the problem varies significantly depending on the application, being different for database

deadlock detection than for detecting the termination of a diffusing computation.

We have to present our algorithms in tertms of a imodel of a systemn. The model chosem i-

not important in itself, we could have couched our discussion in terms of other Iodels. We shall

*
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describe our model informally and only to the level of detail nec essary t) ,nake the algrithils

clear.

2. Model Of A Distributed System
A distributed system consists of a finite set or p~ oeses :an( a finile set of cliannI.. It i

described by a labeled, directed graph in which the vertices rei)resevi. processes amnd the edges

represent channels. Figure 2.1 is an example.

4

Figure 2-1: A Distributed System With Processes p,q,r and
Channels cl,c2,c3 and c4

Channels are assumed to have infinite buffers, to be error-free and to deliver messages ill

the order sent. (The infinite buffer assumption is made for ease of exposition: bounded buffers

may be assumed provided there exists a proof that no process attempts to add a message to a fill

buffer.) The delay experienced by a message in a channel is arbitrary, but finite. The sequence

of messages received along a channel is an initial subsequence of the sequence of messages sent

along the channel. The s1ate of a channel is the sequence of messages sent along the channel

excluding the messages received along the channel.

A process is defined by a set of states, an initial state (from this set), and a set of events.

An event e in a process p is an atomic action which may change the state of ) itslr and the state

of at most one channel c incident on p: the state of c may be changed by the sending of a

message along c (if c is directed away from p) or the receipt of a message along c (if c is directed

towards p). An event e is defined by (1) the process p in which the event occurs, (2) the state s of

p immediately before the event, (3) the state s' of p immediately after the event, (4) the channel c

*l (if any) whose state is altered by the event, and (5) the message NI, if any, sent along c (if c is a

-*



channel directed away front 1I), or received alouig c (if c is directed towards i)). We dfiile e by
the 5-tuple .p,s,s',S11,c- where NI and c are a special sy nldl, mull, if the orcurrel,'e of 4 d,.s

not change the state of any channel.

A global state of a distributed system is a set of component process and channel tlal s: the

initial global state is one in which the state of each proc.ss is it5 iniitia state :1 the >' ate of

each channel is the eleipty qeuell(e. The occuIrrenIe of' fill I'Vell ilay c'hallgI thl' glhI,;dI I'ta!'.

Let e -- pss',,c' A e say e can occur ii global satev S if and only if (I ) Ihu ,1:1.1 vf pI , -

p in global state S is s and (2) if c is a channel directed towards p, One tie stin' of r il gl< ':l

state S is a sequence of messages with MI at its head. We definle a function ,nzut whre re t(.,,.)

is the global state immediately after the occurrence of event eii global .tatl.k S. 'Il .' alh. of

fnext(S,e) is defined only if event e can occur in global state S, in which cast- yiex(s ,.) is 11i1.

global state identical to S except that: (1) the state of p in nexl(S,e) is s', (2) if e is a climinl

directed tow'ards p then the state of c in nexr(Se) is C's state il S will Iness:,ge N dchltcd froni

its head, and (3) if c is a channel directed away from p then the state of c in m xl(S,.) is the saie

as c's state in S with message X1 added to the tail.

Let seq (e.: O<i<n) be a sequence of events in component processes of a distributed

system. We say that eeq is a computation of the sysitcit if and only if event e, can occur in

global state S., O<i<n, where S0 is the initial global state an~d

St I = ncxt(St,e), for O<1<n

..\ alternate model, based oin latnport [9I, which views coil) pitatiois as pailially ordert.d

sets of events is given in [10].

Example 2.1

To illustrate lie definition of a di.stributed systen coi ider a siipe systeUii comnit ig of 2

processes p and q, and 2 channels c and c' as shown ii figure 2.2.

'rie system contains one token which is passed from one proce.s to another, and hence we

call this system the "single-token conservation" system. Each process has 2 statcs: s0 and s

where s is the state in which the process does not possess the token and sI is the state in which it

does. The initial state of p is s, and or q is so* Each process hm 2 events: (I) a transition froni

st to SO with the sending of the token and (2) a transition from so to SI with the receipt of the

token. The state transition diagram for a process is shown in figure 2.3.

* The global states and transitions are shown in figure 2.4.

S.-..-.....-......-................-.'..-.,-.... ,......,..............-".,..,..,......--..............................-....-........................"..........-............'-
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Figure 2-2: The Simple Distributed Systei of Lor'ample 2.1 a.i 2.2

Figure 2-3: State-Transition Diagrain of a ProceSs in E'Lxaml)le 2.1

A system computation corresponds to a path in (ie gloIal state tiraMI.Sition diagrai (figilre

2.4) starting at the initial global state. Examples of system computations are: (1) the empty

sequence and (2) <p sends token, q receives token, q sends token, .. The following seuence is

not a computation of the systetm: <p sends token, (I send.s l(kemi, becallse the event "q svin.is

tokenN cannot occur while q is in the state so.

For brevity, the four global states, in order of trat-ition (se'e figuro 2.4), will be called: (1)

in-p, (2) in-c, (3) in-q and (4) in-c' to denote the location of the tukeii. This example will be us.d

later to motivate the algorithm.

Example 2.2

This example illustrates non-deterministic computations. Non-determinism plays an

interesting role in the snapshot algorithm.

In example 2.1 there is exactly one event possible in each global state. Consider a systemi

with the same topology as example 2.1 (see figure 2.2) but where the processes p and q are

' ~~~~~~~~~~~~~~~..................--- -... ............. ..-- .... ........... ........ . .... ... ..... . --- .,-..-..-
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Figure 2-4: Global States and Transitions of the Single-Token
Conservation System

Figure 2-5: State-Transition Diagram for Process p in Example 2.2

defined by the state transition diagrams of figures 2.5 and 2.6.

*
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Figure 2-8: State Transition Diagram for Process q in Example 2.2

An example of a computation is shown in figure 2.7. [he reader should observe that there

may be more than one transition allowable from a global state: for instance events "p sends Nl"

and "q sends M' may occur in the initial global state, and the next states after these events are

different.

3. The Algorithm

3.1. Motivation for the Steps of the Algorithm

The global-state recording algorithm works as follows: each process records its own state,

'rid the 2 processes that a channel is incident on cooperate in recording the channel state. We

cannot ensure that the states of all processes and channels will be recorded at the same instant

because there is no global clock; however, we require that the recorded process and channel states

form a "meaningful" global systeti state.

The global-state recording algorithm is to be superii posed on the underlying computation,

i.e. it must run concurrently with, but not alter, the underlying computation. The algorithm

may send messages and require processes to carry out computations; however, the messages and

computation required to record the global state must not interfere with tlie underlying

computation.

We now consider an example to motivate the steps of the algorithm. In the example we

shall assume that we can record the state of a channel instantaneously; we postpone discussion of

how the channel state is recorded. Let c be a channel from p to q. The purpose of tile example is

to gain an intuitive understanding of the relationship between the instant at which the state of

0

" .' 2 "" " ". ... .. . . " " . . ". . . . ... .. . "" ""... . . .". . . .. " " " "" "" " " " . .
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Figure 2-7: A CompuLaLion ror Exaiiiplc 2.2
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channel c is to be recorded and the instants at which the states of processes p and q are to be

recorded.

Example 3.1

Consider the single-token conservation system. Assume that the state of process p is

recorded in global state in-p. Then the state recorded for p shows the token in p. Now assume

that the global state transits to in-c (because p sends the token). Suppose the states of channels c

and c', and process q were recorded in global state in-c, so the state recorded for channel c shows

it with the token and the states recorded for channel c' and process q show them not ii possessi(on

of the token. The composite global state recorded in this fashion would show ' tokens in the

system, one in p and the other in c. I, it a global slate wihi '2 tokens iSi rll'achbtl, friuei oil.

initial global state in a single-token conservation system! The inconsi-tency arise. beciau, the

state of p is recorded before p sent a message along c and the state of c is recorded after p svnt

the message. Let n be the number of messages sent along c before p's state is recorded, and let n'

be the number of messages sent along c before c's state is recvorded. Our example suggest that.

the recorded global state may be inconsistent if n<n'.

Now consider an alternate scenario. Suppose the state of c is recorded in global state in-p,

the system then transits to global state in-c, and the states of c', p and q are recorded in global

state in-c. The recorded global state shows no tokens in the system. This example suggests that

the recorded global state may be inconsistent if the state of c is recorded bcfore p sends a nessage

along c and the state of p is recorded after 1) sends a message along c, i.e. it n > n1'.

We learn from these examples that (in general) a conisistemnt global state requires

n ii ' (I)

Let ti be the numnber of nessages received along c before q's state is record(ed. Let fi' Iw

the number of messages received along c before c's sta|trV iS recorded. Wc leave it Ill) to Itle re-ader

to extend the example to show that consistency requires
m ...m' (2)

In every state, the numiiber of niessages received along a channel cannot exceed the number

of messages sent along that chainel, i.e.

n' > m'

From the above equations:

n1 > m (I)

The state of channel c that is recorded must be the sequence of messages sent along the

Io
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channel before the sender's state is recorded excluding the sequence of messages received along the

channel before the receiver's state is recorded, i.e. if ii' - in', the recorded state of c must be the

empty sequence and if n'>i', the recorded state of c must be the (Ii'i- lst,..,i'-th messages sent

by p along c. This fact and eqils I - I suggest a si iiple algorithmi by which q can record the state

of channel c. Process p sends a special message, called a markcr, after the ji-th ,,ess.age it sends

along c (and before sending further messages along c). The maLrker has no effect on the

underlying computation. The state of c is the sequence of messages received by q after q records

q's state and before q receives the marker along c. To einsure eqn(.I), q iiiust record its state, if it

hasn't done so already, after receiving a marker along c and before q receives furth.r messages

along c.

Our example suggests the following outline for a global state detection algorithii.

3.2. Global State Detection Algorithm Outline

Marker Sending Rule for a Process p

For each channel c, incident on, and directed away from p:

p sends one marker along c after p records its state

and before p sends further messages along c.

Marker Receiving Rule For a Process q

On receiving a marker along a chanmel c:

If q has not recorded its state then

begin q records Its state;

q records the state c as the empty sequence

end

else q records the state of c as the sequence of messages
received along c after q's state was recorded and
before q received the marker along c.

3.3. Termination of the Algorithm

The marker receiving and sending rules guarantee that if a marker is received along every

channel then each process will record its state and the states of all incoming channels. To ensure

that the global-state recording algorithm terminates in finite timie, each process must ensure that

(LI) no marker remains forever in an incident input chanuc and (l,2) it records its state within

V .................................................................. . -.... : .' ".. - .........- ,.,......-.-.-...
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finite time of initiation of tlt- algorithm.

The algorithm can be initiated by one or more processes, each of which records its ,tate

spontaneously, without receiving markers fromn other processes; we postfpone disciission of what

may cause a process to record its state spontalneously. If process p records it: state and there is a

channel from p to a process q, then q will record its -LLate in finite ti ine Iecause p1 will senld a

n-irker along the channel and q will receive the inarker i,, finite time (1,I). 114,11c! if I ,4co,'ls it.

state and there is a path (in the graph representing the systein) fromi p to a process q, then 41 will

record its state in finite time because, by induction, every process along the path will record its

state in finite time. lerminatioll in finlite tile is ensiired if fur every lroce .s (1: q spot anuvojly

records its state or there is a path from a process p, which spolnt; aiiesly records it-,, slt ie, io q.

In particular, if tile graph is strongly connected and at least one process spoiilaneously

records its state, then all processes will record their states in finite time (provided LI is enisured).

Tile algorithm described so far allows each process to record its state and the stateb of

incomint, channels. The recorded process and channel states must he collected and a.semIhiled' to

form the recorded global state. We shall not describe algorithms for collecting tile recorded

information because such algorithms have been described elsewhere [6,71. A simple algorithm for

collecting information in a system whose topology is strongly-connected is for each process to send

the information it records along all outgoing channels, and for each process receiving information

for the first time to copy it ind( propagate it along all of its otitgoing channels. All the recorded

information will then get to all the processes in fiinite time, allowing all processes to deterinine the

recorded global state.

4. Properties of the Recorded Global State
To gain all intuitive understanding of the prolpie(it of tile global state r4COr(1.( hy thl.

algorithm, we shall study example 2.2. Assume that the st ate of p is recorded in global state SO
(Figure 2.7) so the state recorded for P is A. After rcoriniig its state, p seiitds a irker along

channel c. Now assume that the system goes to global state SI, then S, aiid then S3 while the

marker is still in transit, and the marker is received by q when the system is in global state S3 .

On receiving the marker, q records its state, which is 1), and records the state of c to be the

empty sequence. After recording its state, q sends a marker along channel c'. On receiving the

marker, p records the state of c' as the sequence consisting of the single message M'. The

recorded global state S* is shown in figure .4.1. The recording algorithm was initiated in global

state S0 and terminated in global state S3.

, i '" '. - ' - .. . . .i : i " :" . : .. . . . .. . . - . . - . . . . - . -
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Figure 4-1: A Recorded Global State for l-xaihple 2.2

Observe that the global state S* recorded by the algorithm is not identical to ally of the

global states So, Si, $2, S3 that occurred in the computation. Of what use is the algorithm if th,

recorded global state never occurred? We shall now answer this question.

Let seq (ei, O<i) be a distributed computation and let S. be the global state of the system

innediately before event e., O<i, in seq. Let the algorithm be initiated in glohal state S and let

it terminate in global state S+, 0<L<,; in other words, the algorithn is initiated after e,. If L-0.

and before e , and it terminates after e .1 if >0, and before e . We observed in exaniiile 2.2 that

the recorded global state S* may be different from all global states Sk, tk<o.

We shall show that:

1. S* is reachable from S and
I

2. S is reachable from S*.

Specifically. we shall show that there exists a conillt ation .q q' where

1. -;cq" is a permutation of ;cq, Stich that S, S* and S occur a.s global states in sc.q', and

* 2. S S* or S occurs earlier than S*, and

3. S S* or S* occurs earlier than Se in scq'.

Theorem 1: There exists a computation ,qsq' ( 'i, 0<0i) where

1. For all i, where i -- or i>0 : e'. ei, and

2. The subsequence (e' i , 5i < (,) is a permutation of the subsequence (e., b < i < ),
and

3. For all i where i<L or i>b: S'. Si, and

4. There exists somie k, L< k <, such that S* 'k

p
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Proof: Event e. in seq is called a prc-recording event if and only if e is on a

process p and p records its state after e in S 'vent e i in e q is callhd a

post-recording event if and only if it is not a pre-recording event -- i.e. if e. is on a

process p and p records its state before ei in scq. All events e i, i L-, are pire-recording

events and all events el, i>, are post-recording events in seq. There may be a post-

recording event e. 11 before a pre-recording event e. for some j, t<j<o; this can occur

only if e,.! and e. are in different processes (because if ej! and e. are on the same

process and e,. 1 is a post-recording event then so is e.).

\Ve shall derive a computation seq' by permuting scq, where all pre-recording

events occur before all post-recording events in scq'. We shall show that S* is the

global state in seq' after all pre-recording events and before all post-recordilig events.

Assume that there is a post-recording event e,_! before a pne-recording event e. in

seq. We shall show that the sequence obtained by interchanging e. 1 and e j ziust also

be a computation. Events ej. and e. must be on different processes. Let p be the

process in which e,. 1 occurs and let q be the process in which e. occurs. There cannot

be a message sent at e,-l which is received at e i because (1) if a message is sent along a

channel c when event e.. occurs, then a marker must have been sent along c before

e., since e.D is a post-recording event and (2) if the message is received along channel

c when e. occurs, then the marker must have been received along c before e. occurs

(since channels are first-in-first-out), in which case (by the marker-receiving rule) e.
would be a post-recording event too.

The state of process q is not altered by the occurrence of event e,. 1 because e 1 is

on a different process p. If e. is anl event in which (I receives a message M along a
channel c then N1 must have been the message at the head of c before event ej 1 , since

a message sent at e.. cannot be received at e.. Ilence event e. can occur in global state

S.I"

The state of process p is not altered by the occurrence of e.. Ilt-lce e can occur

after e. llence the sequence of events e,..,e.2,e ,e,._ is a computation. From the

arguments in the last paragraph it follows that tile global state after computation

e,..,e is the same as the global state after computation e,..,e. 2 ,eI,e.1 .

Let seq* be a perntut.ation of scq which is identical to scq except that e. and e

are interchanged. Then seq* must also be a computation. Let S. be the global state

immediately before the i-th event in seq*. From tile arguments of the previous
paragraph

S. S. for all i where i f= j

By repeatedly swapping post-recording events which immediately following pre-
recording events, we see that there exists a permutation seq' of seq in which

1. all pre-recording events precede all post-recording events, and
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2. Req' is a computation, and

3. for all i where i<L or i>o: e'. = e., and

4. for all i where i<L 01 i>: S'. - - S..
I I

Now we shall show that the global state after all pre-recording events and before all post-

recording events in seq' is S*. To (to this we need to show that:

1. the state of each process p in S* is the same as its state after the process computation
consisting of the sequence of pre-recorded events on p and

2. the state of each channel c in S* is: (sequence of messages corresponding to pre-
recorded sends on c) - (sequence of messages corressponding to pri.-recordlfl reclves oil
c).

The proof of tile first part is trivial. Now we prove part (2). Let c be a 'liuel fromin

process p to process q. The state of channel c recorded in S* is the sequence of inessages received

on c by q after q records its state and before q receives a marker on c. The sequence of inessages

sent by p along c before p sends a marker along c is the sequence corresponding to pre-recorded

sends on c. Part (2) now follows.

Example 4.1: The purpose of this example is to show how the computation qcq' is derived

from the computation seq. Consider example 2.2. The sequence of events shown in tile

computation of Figure 2.7 is:

e 0: p sends NI and changes state to It
(a post-recording event)

eI q sends Ni' and changes state to I)

(a pie-recording event)

p receives NI' and changes state to A

(a post-recording event)

Since e0 , a post-recording event immediately precedes e, a pre-recording event, we

interchange them, to get tile permuted sequence acq':

e 0: q sends M' and changes state to D
(a pre-recording event)

e': p sends M and changes state to [t
(a post-recording event)

e 2: p receives M' and changes state to A
(a post-recording event)

De~~~~~~~~~~~..................,..........- ..... .- .. . . .......... .. • .-. ... ".... .. -.. . -. 4-.''' .



In seq', all pre-recording events precede all post-recording events. We leave it up to the reader to

show that tile global state after e' is the recorded global state.

5. Stability Detection

We now solve the stability detection problem described in section 1. We study the stability

detection problem because it is a paradigm for many ipractical problems such as distributed

deadlock detection.

A stability-detection algorithm is defined as follows:

Input: A stable property y

Output: A Boolean value dcfinitc with the property:
(y(S) -- definite) and

(definite - y(SO)

where S and S are the global states of the system when the algorithm is
initiated and when it, terminates, respectively. (The symbol - dnotcs logical
implication.)

The input to the algorithi is (the definition of) function y. l)uring the execution of the

algorithm the value y(S) for some global state S may be determinted by a process in the system by

applying the externally defincd function y to global state S. By the output of the algorithm being

a Boolean value definite we mean that (I) somne specially designated process (say p) enters amid

thereafter remains in some special state to symbolize an output of d finile - true, and (2) p

enters and remains in some other special state to symbolize an output of definite := false.

Definite - true implies that the stable property holds when the algorithm tcrminatcs.

IHowever, deffinite.= false implies that the stable property does not hold when the algorithin is

initiated. We emphasize that dcfinitc -- truc gives us information about the state of the system

at tie termination of the algorithn wherexs dfcfinite- frbic gives us informiation al,oit the

system state at the initiation of the algorithn. In particular, we cannot deduce from

definite~false that the stable property does not hold at termination of the algorithm.

Solution to the stability detection problem:

begin
record a global state S*;
definite := y(S*)

end.

The correctness of the stability detection algorithm follows from the following facts:

S* Is reachable from S, and

ILI

* ** -. * *. .- - . --. -: ~ . ,.' . . . - .- - . . . . . .
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S0, Is reachable from S* (Theorem 1) and

y(S) -. y(S') for all S' reachable from S
(definition of a stable property)

0

k~.o.
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