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1. Introduction.

(1-5)

It has been observed over years that experimental relaxation behaviour

in many glassy materials is generally well fitted with Williams-Watts function
o(t) = exp(-t/1)%, 0<ac<l (1.1)

with a and Te constants for a given material, wherc a is an index of slowness
and Te is an effective relaxation time. This is in contrast to the conventional

Debye exponential form
¢(t) = exp(-t/1,)

where a = 1 and TO is the primitive (Debye) relaxation time. Such stretched
exponential behaviour has been noted in a wide variety of materials including
. organic liquids and solutions, polymers, and in particular in many glassy

materials. The recent interest in relaxation problem(s—lz)

provides a number
of models explaining the universality of formula (1.1). However, a connection
with, the well known in probability theory, class of Lévy a-stable distribu-

(13) 11

tions is not realized, except the very recent work of Montroll and Bendler
Many scaling relations for complex systems in the physical sciences involve
non-integer exponents, similarly as the Fourier transforms of Lévy a-stable
distributions. Consequently, there are many results in statistical physics
where Lévy a-stable distributions are invoked, but they are not recognized or

(

| kept hidden. For example, Khalfin 14) derived an asymptotic formula for quantum
description of decaying physical system which is the Fourier transform of Lévy
a-stable distribution of the system energy with 0<a<l. His paper influenced many
physical studies in the decay theory of quantum systems but this relation was

not recognized. In the theory of dielectric relaxation of polymeric systems and

co 1 3 ) . . .
glasses Williams et alg ) have derived a series representation of the normalized
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dielectric parameter. I[Its imaginary part up to multiplication factor is nothing
else as known series representation of Lévy a-stable density. It is also well

(13)

known that this series representation has poor convergence propertics for

large arguments. Neverless this fact is rediscovered again by Lindscy and

- Patterson(6)

who were forced to resort to special multiprecision computer

b programs. Even at that they obtain only numerical results although the functional
i form of the distribution function for large relaxation times is of equal interest.
s Helfand(7) continued thecir work and derived an asymptotic formula for the distri-
bution function for large relaxation times which gives some correction terms to
the, known for probabilists, series expansion of Lévy a-stable densities(ls). He
also made use of Zolotarev(lb) explicit expressions of these densities for

a =1/3 and a = 2/3.

In our opinion a connection between the statistical aspects of Williams-
Watts relaxation model and the class of Lévy a-stable distributions is not only
a coincident analogy, but it seems to capture the essential statistical nature
of relaxation in complex materials. Recall, that Lévy a-stable distributions
form a class of universal limit laws in the sense that they describe completely
the collective i.e., macroscopic behaviour of a complex system expressed by any
normalized sum of independent identically distributed random quantities. As a

(13.19)

consequence of this important theorem in probability we shall derive in

this paper the Williams-Watts form (1.1) of the relaxation function, as well as

the existence of second universality relation, first obtained by Ngai(s)

connecting Te with TO'

Ngai's cooperative-relaxation model based on Wigner's random matrices theory |

of energy-level structures leads to the same formula (1.1) and the effective

time + . as tfollows:

;K relaxation time (in his notation) TP is related to the primitive relaxation
F 0

I]-n = (l-n)(eyow
P c

)n T 0 <n<l1, (1.3)

s

vrvvvyvewew

ey




R ]

where y° = 0.5772 is Euler's constant and wc is the high-frequency cutoff of N
the linear density of excitations. Recently, Chamberlin et al.(17) have
proposed a different empirical relation in the context of the remanent

magnetization in spin-glasses

Tll’-n = (1-n)/C ml'“, 0<n<l, (1.4)

where C and w are two temperature-independent constants throughout the spin-

glass region. The controversy which arises here(17’18)

motivates us to seek
this relation from purcly statistical point of view by using the scaling
property of the characteristic function of completely asymmetric Lévy a-stable
distributions relevant to the relaxation rates.

Since the statistical aspects of Williams-Watts relaxation model are
directly connected with the Lévy a-stable distributions we employ them to study
the distribution function of relaxation times which complements the discussion

(6) 4

given by Lindsey and Patterson' ', and Helfan . Also the statistical

properties of dielectric relaxation are discussed from this same point of view.
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2. Lévy a-Stable Distributions
In this section we collect some basic facts on Lévy a-stable (LaS in short

(13,19,20)

notation) distributions needed for the purpose of this article Onec

should not be surprised that probabilistic ideas, in particular limit theorems
which provide a macroscopic distribution for a collection of microscopic
quantities, play a role in statistical physics. We can refcr, for example to

Khinchin's(ZI) treatment of statistical mechanics which relics heavily on so
called central limit theorem leading to Gaussian limit distribution. In recent
years, inverse power long tails have become more cvident in the analysis of

(22)

physical phenomena of condensed matter and therefore LaS distributions pro-
vide uscful models. However, the principal feature of thesc distribution, that
we want to stress for our purpose, is that they arc complectely described as
limits of the normalized sums of independent and identically distributed
summands. Consequently, LaS distributions express some kind of universality
law.

The distribution function F(x) is called stable if for cvery a, > 0,

1

bl’ a, >0, b2 there correspond constants a > (0, b such that the equation

F(alx + bl) * F(azx + b2) = [F(ax + b) (2.1
holds. The symbol F1 * Fz indicates the convolution of two distributions in
the sensc

N * N = N - N

Fl I2 r Fl(x y) dlz(y). (2.2)

It turns out that always

1/a

a=(a] +a3) M with 0 <a <2 (2.3)

and the constant o is called the characteristic exponent of LaS-distribution.

T
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Equation (2.1) can be solved in terms of characteristic functions, i.e., via

Fourier transform

f(s) = Jo expl isx]JdF(x).

Thus for the distribution function F(x) to be LaS it is necessary and
19
sufficient( that its characteristic function f(s) be represented by the
formula
. a . . .
iys - o |s|” {1 - iB sign(s)tan(na/2)} if afl

log f(s) = (2.4)
iys - ol|s| - iB(2/m)os log |s]| if a =1

where o, B8,y and g are real constants with g>0, 0 <a<2and |B| < 1. Here
@ is the characteristic exponent, y and o determinc location and scale. The
cocfficient # indicates whether the LaS-distribution is symmetric (B=0) or
completely asymmetric (|B| = 1).

Since f(s) is absolutely integrable the corresponding LaS~distribution

has a density. It will be denoted by p(x;a,B) and can be calculated from the

. § LA NI W

Fourier inversion formula. It seems impossible to express them in a closed

-,

form, but scries cxpansions arc availablc. Only in the case 0 < a < 1 the

laS-densities with |B| 1 are one-sided i.c., their support is [0,+x) for

-1.

I

R=1and (-~,0] for R
By means of a lincar transformation of the variable in the distribution
function F(x), it is possiblc to make v = 1 and vy = 0. Observe that only the

casc 0 > 0 is of interest, becausc 0 = 0 corresponds to a degenerate distri-

NN IV AALSIRIES | RS

bution. We will use the following asymptotic formulas(ls) for LaS-densities

when 0 <a <1, y=0and g = 1.

P TN U

[+ 0]

plx;a,B) = (1/m) X An x'"m-1 for x » =, (2.5)
n=1

i
;
p|
l




n+l
a = LD ’T(na*l) (1+than2 Eg)n/zsin n[22 + arctan(B tan’y]
n n! 2 2 2
and
hooM@)
B(a) X(a 2 =)
POl =3 x exp(-B(a)x (V)
l(g) .
x 1 + 0]x ] for x » 0, (2.6) /
where 1 ;
& 1-a !
B(a) = (l—a)al'“ (cos 3%3 (2.7) 1
and :
o ;
Ma) = T (2.8) ;
The most convenient formulation of the limit thcorem which gives the ;
description of the distribution law F governing thc sum of a large number of .

mutually independent identically distributed random quantitics X, can be given

k
in the following form(IS): Only stable distributions have a domain of

attraction, i.e., there exist norming constant a >0, hn such that the distri-

bution of a;l(x1 + X, 4.+ Xn)-bn tends to F. The normalization constants can

1/a

2

be chosen in such a way that a =n
If ¢ denotes a common distribution of the random variablcs Xk put for
x >0,

X

ulx) = f y2G(dy). (2.9)

=X
Then in order that G belongs to some domain of attraction it is necessary that
u be of the form u(x) ~ xz—aS(x), where 0 < a < 2 and S is slowly varying at
o, that is, for fixed x > 0 S(tx)/S(t) » 1 when t + «, There arec only two

cases:

..........
-------

~~~~~~~~
........
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7
S {i) if o = 2 then G belongs to the domain of attraction of Gaussian
B
) distribution if and only if u is slowly varying,
ii (iit) if 0 < a < 2 then ( beclongs to the domain of attraction of LaS-
P 2-a .
» distribution if and only if u(x) ~ x S(x) and the following two

limits exist

. 1 - G(x) . G(-x)

lim o and lim = . (2.10)
{ X300 - G(x) + G(x) X300 - G(x) + G(-x)
i Observe that case (i) holds whenever the second moment of G exists, i.e.,
-
d Var G < =, Jlor distributions without variance we have case (ii).
;.
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3. The Williams-Watts Function.

One ot the most characteristic features of glassy materials is the non-

exponential character of relaxation as a function of time. This has been shown

(23)

to be true in a wide varicty of materials, including organic liquids
(24) (4,5,25)

and

.n AL ol

solutions (26), -

, polymers , and in particular, many glass forming materials

TR | L
(TP IS I A,

It is a striking fact that, despite the varicty of materials usced and of the

(5)

o

experimental techniques cmployed, the relaxation behaviour is universal

Good fits to the observations have been obtained with a functional form termed

the Williams-Watts function given by formula (1.1).

. 6,7,11 . . . -
It is common()’ 1) to attempt to interpret general rclaxation in terms _ii
of exponential relaxations, writing _4
-.d
') t/ ';‘
- 1
¢(t) = I e p(1) dT,
0 ji
00 ! -
where p(1) is the density of a statistical distribution, i.c., f p(t) dt = 1, .
0 -]

of relaxation times T across different atoms, clusters, or degrees of frecdom.

Ifu-= Tn/T where T, 1s a single relevant relaxation time associated with

0
bebye rclaxation, then u is called a relaxation rate and is intcrpretable as
dimensionless time. Substituting s = t/'r0 in formula (3.1) we have
00 / N U
-S -2 -S|
d(T1,.8) = e H 1,0 “plr,/wdy = e lW(u)du, (3.2)
0 0 0 0 0

where

wil) = Tou'zp(ro/u) (3.3)

is the density of a distribution of dimensionless relaxation rates. Since this

approach is microscopically arbitrary we may consider the random variables
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o= r0/1 as the possible relaxation rates of elements in a given complex _
material. The index i indicates the number of the clements in the system '

and by are mutually independent and identically distributed. The problem is

then to determine a random variable 14 for describing the collective, i.e.,

R S B

macroscopic, behaviour of the relaxing system. The idea is to introduce a
suitable normalized block-variable.
Suppose we divide our system in blocks of length n. The total relaxa- -
n L
tion rate of each block will be equal to z My Clearly this is not a good
i=1
collective variable since for large n it goes to infinity. Therefore we need
to consider normalization ]
[
"
1= g t a > 0. 3.4
W= ), . (3.4)
1=1
Thus it follows from the linit theorem discussed in Section 2 that the distri-
[

bution w(idy of the collective, i.c., macroscopic relaxation rate, helongs -
to the class of LaS-distributions 0<au<2., Since relaxation rates are non-nega- -
tive, w(u) has to have only non-negative support. Consequently, w(i) is the

1S density with O<a<l and B=1, (cf. Section 2),

wiu) = plongl), O<ua<l, (3.5)
! .
t! We have then shown that the macroscopic behaviour of relaxation rates of i
Ef our system is described by a distribution belonging to a rather restricted ;‘
class of LaS-distributions with parameters O<a<l and 8=1. ‘'The possible initial ;
distributions of the relaxation rates split naturally into universality classes, -
parametrized by the characteristic cxponent «, according to which domain of -
attraction they belong., Observe that all reclaxation rates have an infinite i

variance and mean value, since for LaS distributions only p-th moments for

p<nt exist.




Now using (3.2) we get

Q0
¢(1ys) = I e " paia,dy, (3.6)
0
i.e., ¢(TOS) is the Laplace transform of LaS density p(u;x,1). Recall, that

from (2.4) the Fourier transform of p(u;a,1) can be written as

f(s) exp {iys - os” (1 - i tan(m/2))}

[

exp {iys -(0/cos (1a/2))s " (cos (ma/2) - i sin(ma/2))}

< = exp {iys —(o/cos(na/Z))(-ie)a} ) (3.7)

f‘f‘

. By using a general relation between Laplace and Fourier transform for functions

r—

q . . . .

ﬁ‘ with the non-negative support L(p(u);s) = F(p(u);is), (3.6) and (3.7) give

L‘.

E #(1,5) = exp {-ys - (o/cos (ma/2)) 5"} . (3.8)

3

- Since in our notation Tn® = t thus (3.8) can be rewritten as

b 6(t) = exp {-yt/7 - (0/cos (ma/2)) (t/1)%} (3.9)
As we observed in Section 2 one can choose y = 0 and hence

: ¢(t) = cxp {-(t/Tc)a}, (3.10)

- where

N T(; = [(1/0) cos (ma/2)] Ty . (3.11)

:fﬁ Thus (3.10) gives the Williams-Watts form of thc relaxation function and (3.11)

e gives the relation between the effective relaxation time Te and the primitive

N relaxation time TO. Let's remark that formulas (3.10) and (3.11) have universal

:l character as a conscquence of the use of universal limit law in macroscopic

-i behaviour of the relaxtng system. ‘This provides an answer to the question

which has been posed recently hy Palmer ct al(lz).
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Since cos (T1/2) ~ 1 - a for 0<a<]l then (3.11) can be approximated by

T (3.12)

which differs from (1.4) only by changing the numerator I - a in (3.12) into

(17)

n, if one has made an unnccessary assumption that l-n = o and w ~ l/TO.
It secems to be that our relation (3.11) or (3.12) is not comparable directly

with (1.3).




Lank e
.

L e o anh

12

4. ‘The Distribution Function of Relaxation Times

If the statistical approach to explaining nonexponential relaxation

behaviour is taken, it becomes important to determine the distribution of

exponential relaxation times which producc the Williams-Watts function

(6,7,11)

In this section we will employ the known asymptotic formulas for one-sided

LaS-densities to derive the asymptotic behaviour of the distribution funceion

(in probabilistic terminology density) p(t), defined in (3.1).

Since p(1) =

we have for 1 » 0

where

where

T

0

w n*l on-1
_ 1 (-1) I'(nx + 1) T .
ol(1) = = ) - {T ] sin nma,
e n=1 (]
- o ( 1/a
T, = jcos(ma/2)] T
For 1 » = we get from (2.0)
% Ma)-1
p(t) = Al —%—- cxp
TUVZﬂa c
1= B(a)'x~l(a)1
€ 0’

respectively.

']uzw(u) according to (3.3), thus by (2.5), if we put 8 = 1,

(4.1)

(4.2)

B(a) and A(a) are given by (2.7) and (2.8),

Observe that the cxistence of average relaxation time <1>, and higher

n
moments, <T >, ni}

n
<1 >

This is in sharp contrast to the momentless distribution of the rclaxation

"

2

follow without any trouble since by (3.3) and (2.5)

n
0

I " p(T)dT = T I MG du
0

1

n
0

0

on al-
I I < w
0

“- -\. " --.‘N..-“‘-H hd
ST OO

YRS

.
e

-. Ph" . -
A

(4.3)
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rates 1 = 10/1.

The relationship betwecen the rclaxation function ¢(t) and the LaS-
density w(i), sce (3.2), permits to find the relaxation time <t> and higher moments
without cxplicit knowledge of p(T). Namely, since
i 1 i us
where s = t/TO and y = TO/T, one has from (4.3)
n n (O -n 1 i us ]
<T> =T I u lf?f I ' ¢ ¢(Tos)ds] du. o
0 -im S
Moving the u_" term inside the integral over ds, interchanging the order of - L
integration, and moving the ¢(105) term outside of the integration over du ?i}j
N |
)’ields ':‘
—9
4 n, n * v (2 -n US4 1 g R
< = —— [
t ), ¢(143) 33 Mo e Tdu] ds ]
~jo -t
= {T::/l'(n)} J ¢(1,8) $"lys = {(1/T(n)} J ¢(t)t"" dt “".":“_Z%
0 0 -
'?3
® 1 t.( ~
- (/rm) J e
0 e
n.n
=T, F(&)/(ar(n)) (4.4)
o
- 0 1(1/0) eos (/21 1D/ @), (4.5)
where we have uscd formulas (3.10) and (3.11). Formula (4.4) corresponds to
the result in Lindsey and Pattcrson(ﬁ).
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5. Dielectric Relaxation

The complex dielectric permittivity E;(w) is related to the relaxation

i function ¢(t) by a one-sided Fourier transform(27)

- It ¢(t)] dt, (5.1)

£* (W) - Eo =-Im -iwt ( d
0 oo 0

where [- (d/dt)¢(t)] is the normalized transient decay currcnt which follows
when a steady clectric ficld is removed from a samplc. lere € is the static

dielectrical constant and € the high-frequency limit of the dielectric

q
: constant. One generally writes
e*(w) -€_
T =e'(w) - ie"(w) , (5.2)
. 0 L)
where €'(w) and €' (w) are, respectively, the real and imaginary parts of the
- normalized dielectric parameter. Williams et "1§3) derived an expression for
‘ €*(w) when ¢(t) = exp {—(t/Te)a} in the form f
- w <.
.- e - ien@) = ) (-1y"! ] _ F(nant 1) ii
‘ n=1 (wTe) ) p
(5.3) A
. R
i x(¢cos n LA sin n Eg-) =
T2 ‘ 27 ¢
2 Y
i By the comparison with (2.5) one obtains immediately that

et

e"(w) = xup(x;a,0), (5.4)

where x = wT, - This direct relation between the imaginary part €' of the

BN RN

normalized dielectric parameter and the symmetric LaS density p(x;a,0) has
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been also shown recently by a different mcthod(ll).

It is interesting to
explain why here in contrast to Sections 3 and 4 symmetric (R=0) LaS distri-
butions arisc.

l'or this observe that if we put Yy = 0 and 0 = 1 in formula (2.4) then

for 0 < o < 1
log f(s) = - |s|® {1 - i sign (s) tan (na/2)}. (5.5)

Knowing that the density p(x;a,B) of such LaS distribution is real, it can be

written, after a short calculation, in the form

plx;, R = %ﬁ Re J c-lsxf(s) ds =

-0

Lo 3} .a
- ) f ¢™® cos [xs-Bs™ tan(ma/2)] ds. (5.6)
0 .

n
On the other hand the integration by parts in (5.1) yields

© O © a
[e'(w) - 1] - ie"(w) = -x J e sin(sx)dx - ix J e~ cos(sx)ds, (5.7)
0 0

where s = t/TC and x = mTc. The comparison of (5.6) and (5.7) shows that the
imaginary part «'"(w) of the normalized dielectric parameter is related to
LaS distribution p(x;a,R) if and only if B = 0, i.e., when the LaS distribution is

a  symmetric one. Namcly onc obtains from (2.5) and (3.11)

£ (w) =HM%IWW%ULU)

(5.8)

[£ 3]

) (-1

n=1

n+l I'(na + 1)
n!

WT,) " [cos(na/2)1™" sin (nma/2).

0
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6. Concluding Remarks

There are several approaches to explaining nonexponential relaxation

-12
behaviour in glassy materials(1 1").

The statistical approach interprets

the nonexponential relaxation behaviour of the material in terms of a super-
position of exponentially relaxing procecsses which then leads to a distribu-
tion of relaxation times. [In this paper we derived the Williams-Watts formula
directly from the limit theorem in probability thecory that explains the univer-
sality of this formula, as well as provides a relation between the effective

relaxation time Ta and the primitive relaxation time T This procedure is

0°

different from those in the cxisting literaturc and provides the main departure

from all the previous work on the statistical approach to the rclaxation problem.

The most important consequence is that the theory of Lévy a-stable distributions
can be directly employed to the study of the problem,

We do not propose that the statistical approach is the physically more
corrcct one; instead we discuss the mathematical foundation and conscquences
of this approach which must be understood when physical interpretation is
attached to the distribution functions underlying the relaxation. We would

(28)

like to conclude thc paper by quotation from E.P. Wigner "The first point
is that mathematical concepts turn up in entirely uncxpected connections.
Moreover, they often permit an uncxpectedly close and accurate description of
the phcnomena in these connections. Secondly, just becausc of this circum-
stance, and because wc do not understand the reasons of their uscfulness, we
cannot know whether a theory formulated in terms of mathematical concepts is

uniquely appropriate.' Let it be an excuse for the authors, if thcy were not

sufficiently modest in some formulation of this paper.

at ¥ LT o vr o
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