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1. Introduction.

It has been observed over years that experimental relaxation behaviour

in many glassy materials is generally well fitted with Williams-Watts function

0(t) exp(-t/T e), 0 < a < 1 (1.1)

with a and Tr constants for a given material, where a is an index of slownesse

and T is an effective relaxation time. This is in contrast to the conventional
e

Debye exponential form

0(t) = Cxp(-t/r O)

where a = 1 and T0 is the primitive (Debye) relaxation time. Such stretched

exponential behaviour has been noted in a wide variety of materials including

organic liquids and solutions, polymers, and in particular in many glassy

materials. The recent interest in relaxation problem5-12) provides a number

of models explaining the universality of formula (1.1). However, a connection

with, the well known in probability theory, class of Levy a-stable distribu-

tions (13) is not realized, except the very recent work of Montroll and Bendler . U

Many scaling relations for complex systems in the physical sciences involve

non-integer exponents, similarly as the Fourier transforms of Levy a-stable

distributions. Consequently, there are many results in statistical physics

where Lvy a-stable distributions are invoked, but they are not recognized or

(14)
, kept hidden. For example, Khalfin derived an asymptotic formula for quantum

4 description of decaying physical system which is the Fourier transform of Levy

a-stable distribution of the system energy with O<a<l. His paper influenced many

physical studies in the decay theory of quantum systems but this relation was ",

4 not recognized. In the theory of dielectric relaxation of polymeric systems and 6

glasses Williams et al 3) have derived a series representation of the normalized

4.
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dielectric parameter. Its imaginary part up to multiplication factor is nothing

else as known series representation of Levy a-stable density. It is also well

known( 13) that this series representation has poor convergence properties for

large arguments. Neverless this fact is rediscovered again by Lindsey and

(6)Patterson who were forced to resort to special multiprecision computer

programs. Even at that they obtain only numerical results although the functional

form of the distribution function for large relaxation times is of equal interest.

Hlelfand (7) continued their work and derived an asymptotic formula for the distri-

bution function for large relaxation times which gives some correction terms to

the, known for probabilists, series expansion of Levy a-stable densities 15) . He

also made use of Zolotarev (16 ) explicit expressions of these densities for

a = 1/3 and a = 2/3.

In our opinion a connection between the statistical aspects of Williams-

Watts relaxation model and the class of Levy a-stable distributions is not only

a coincident analogy, but it seems to capture the essential statistical nature

of relaxation in complex materials. Recall, that Lfvy a-stable distributions

form a class of universal limit laws in the sense that they describe completely

the collective i.e., macroscopic behaviour of a complex system expressed by any

normalized sum of independent identically distributed random quantities. As a

(13.19)consequence of this important theorem in probability we shall derive in

this paper the Williams-Watts form (1.1) of the relaxation function, as well as

the existence of second universality relation, first obtained by Ngai(5)

connecting i with T

Ngai's cooperative-relaxation model based on Wigner's random matrices theory

of energy-level structures leads to the same formula (1.1) and the effective

relaxation time (in his notation) T is related to the primitiv, relalxationP

tile 1 0 a. f'ollows:

1-n yo n
1- = (1-n)(e W ) 0 , 0 < n < (1.3)
P c

.- . ..--~~~~. . . . . '.... . . . .....- . .. .. . .--. -. .-. '-.. . '. "".. . . .
• . . , • . : .. .. . .. . .. ... . ,, . . . , . . ,. .. , . - , . .' . . -: .. . , : . ,
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where yO = 0.5772 is Euler's constant and w is the high-frequency cutoff ofc

the linear density of excitations. Recently, Chamberlin et al.( 17) have

proposed a different empirical relation in the context of the remanent

magnetization in spin-glasses

l-n 1-n
T = (l-n)/C w , 0 < n < 1, (1.4)p

where C and w are two temperature-independent constants throughout the spin-

glass region. The controversy which arises here( 17 ,1 8 ) motivates us to seek

this relation from purely statistical point of view by using the scaling

property of the characteristic function of completely asymmetric Levy a-stable

distributions relevant to the relaxation rates.

Since the statistical aspects of Williams-Watts relaxation model are

directly connected with the L~vy a-stable distributions we employ them to study

the distribution function of relaxation times which complements the discussion

given by Lindsey and Patterson (6) and Helfand (7 ). Also the statistical

properties of dielectric relaxation are discussed from this same point of view.

Acce,, ,

AvI

-tll............ ......



4

2. L6vy a-Stable Distributions

In this section we collect some basic facts on Levy c-stable (LaS in short

notation) distributions needed for the purpose of this article '' 2 0 )  One

should not be surprised that probabilistic ideas, in particular limit theorems

which provide a macroscopic distribution for a collection of microscopic

quantities, play a role in statistical physics. We can refer, for example to

Khinchin's(21) treatment of statistical mechanics which relies heavily on so

called central limit theorem leading to Gaussian limit distribution. In recent

years, inverse power long tails have become more evident in the analysis of

(22)physical phenomena of condensed matter and therefore LaS distributions pro-

vide useful models. However, the principal feature of these distribution, that

we want to stress for our purpose, is that they are completely described as

limits of the normalized sums of independent and identically distributed

summands. Consequently, LaS distributions express some kind of universality

law.

The distribution function F(x) is called stable if for every a1 > 0,

b,, a2 > 0, b2 there correspond constants a > 0, b such that the equation

F(a1x + 1 )  (a 2 x + b2) = F(ax + b) (2.1)

holds. The symbol F * I:2 indicates the convolution of two distributions in

the sense

F1 * I: = f Fl(X-y) dF 2 (y). (2.2)

It turns out that always

a a, a2~ with 0 < ot< 2 (2.3)
* S.

and the constant a is called the characteristic exponent of LaS-distribution.

, . . . ., . . . . ... . . **-. _ . ,



Equation (2.1) can be solved in terms of characteristic functions, i.e., via

Fourier transform

f(s) = exp[isx]dF(x).

Thus for ,the distribution function F(x) to be LaS it is necessary and

sufficient that its characteristic function f(s) be represented by the

formula

iys a Isla  if sign(s)tan(ic /2)} if cxJl
log f(s) = (2.4)

iys - osl - iR(2/7)os log Isi if a=

where (x,f,y and a are real constants with ci > 0, 0 < (x < 2 and < 1. Here

t is the characteristic exponent, y and a determine location and scale. The

coefficient (i indicates whether the LaS-distribution is symmetric (B=0) or

completely asymmetric (I8B = 1).

Since f(s) is absolutely integrable the corresponding LctS-distribution

has a density. It will he denoted by p(x;a,B) and can be calculated from the

Fourier inversion formula. It seems impossible to express them in a closed

form, but series expansions are available. Only in the case 0 < (I < 1 the

IAS-densities with I = 1 are one-sided i.e., their support is [0,+-D) for

P = I and (--,0] for f = -I.

By means of a linear transformation of the variable in the distribution

function I:(x), it is possible to make o- I and y = 0. Observe that only the

case (Y > 0 is of interest, because o = 0 corresponds to a degenerate distri-

bution. We will use the following asymptotic formulas for LaS-densities

when 0 < c < 1, y = 0 and =I.

,(xM= (1/n) A n for x -, (2.5)
n=1t:.i
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where

A (-1) n+r(nct+l) 2 n/2sin  'An= n! (1+B tan2 -) !lnLy~ + arctan(r3 tarn2 )]

n nt

and

P( 0)X() x2 exp(-B( a)x -X ( a)I

p~;ctl) B[ ct) X-t)l- 2

x rl + o x for x -* 0, (2.6)

where 1a --

B(a) (l-a)ct1 -a (Cos 2- (2.7)

and

X(c) (2.8)
1 -ot

The most convenient formulation of the limit theorem which gives the

description of the distribution law F governing the sum of a large number of

mutually independent identically distributed random quantities Xk can be given

in the following form(13): Only stable distributions have a domain of

attraction, i.e., there exist norming constant an > 0, b such that th distri-

bution of a (X + X +...+ X )-b tends to F. The normalization constants can
n 1 2 n n

1/cx
* be chosen in such a way that a = n

n

If C denotes a common distribution of the random variables Xk put for

x>0,

u(x) y 2 G(dy). (2.9)
-X

Then in order that G belongs to some domain of attraction it is necessary that

u be of the form u(x) - x 2-S(x), where 0 < a< 2 and S is slowly varying at

0% that is, for fixed x > 0 S(tx)/S(t) - 1 when t - o. There are only two

0 cases:

0 o*. . . .. . . . . . . . . . . . . . . . . . . . . . . .
.. * - .* . *-. .*** **** .'
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i) if = 2 then G belongs to the domain of attraction of Gaussian

distribution if and only if u is slowly varying,

(ii) if 0 < (x < 2 then G belongs to the domain of attraction of LxS-
2 -(

distribution if and only if u(x) - x S(x) and the following two

limits exist

1 - (x) -- and lim G(-x)
l 1- G (x) + G,(x) 1 - G(x) + G(-x) (2.10)
X-,o-

Observe that case (i) holds whenever the second moment of G exists, i.e.,

Var . , For distributions without variance we have case (ii).

a:

9

, 4  t - C..* * . n
.. . . . . . . . . . . . . . . . .
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3. The Williams-Watts Function.

One of the most characteristic features of glassy materials is the non-

exponential character of relaxation as a function of time. This has been shown

to be true in a wide variety of materials, including organic liquids (2 3 ) and

(24), (4,S,25), s(6
solutions 4 , polymers 2 , and in particular, many glass forming materials (2 6 )

It is a striking fact that, despite the variety of materials used and of the

(S)
experimental techniques employed, the relaxation behaviour is universal

Good fits to the observations have been obtained with a functional form termed

the Williams-Watts function given by formula (1.1).

It is common(0, 7 ,1 1) to attempt to interpret general relaxation in terms

of exponential relaxations, writing

f ( e )(T) dr,

0

where P(T) is the density of a statistical distribution, i.e., P(T) dT 1,

of relaxation times T across different atoms, clusters, or degrees of freedom.

If 11 = "(/1 where T0 is a single relevant relaxation time associated with

D)ebye relaxation, then p is called a relaxation rate and is interpretable as

dimensionless time. Substituting s = t/T 0 in formula (3.1) we have

-) s
S) = C s / i T()(/ = ( w(~d (3.2)

where

w (1) T 0Ij p(T 0 /11) (3.3)

is the density of a distribution of dimensionless relaxation rates. Since this

approach is microscopically arbitrary we may consider the random variables

* . . - . ...,, .~ ... ... . ... .. ..
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i  t fr as the possible relaxation rates of elements in a given complex
1 0 /14

material. The index i indicates the number of the elements in the system

and 11. are mutually independent and identically distributed. The problem is

then to determine a random variable ji for describing the collective, i.e.,

macroscopic, heh;,viour of the relaxing system. The idea is to introduce a

suitable normalized block-variable.

Suppose we divide our system in blocks of length n. The total relaxa-
n

tion rate of each block will be equal to 1.. Clearly this is not a goodFi=l

collective variable since for large n it goes to infinity. Therefore we need

to consider normalization

4n
-1

Ii 1' a > 0. (3.4)
n i' ni=l

Thus it follows from the limit theorem discussed in Section 2 that the distri-

bution w(lj)dlj of the collective, i.e., macroscopic relaxation rate, belongs

to the class of LtS-distributions 0<x<2. Since relaxation rates are non-nega-

tive, w(p-) has to have only non-negative support. Consequently, w( j) is the

LS density with 0<x<l and =1, (cf. Section 2),

w(1j) p(i';",l), 0<a<1. (3.5)

We have then shown that the macroscopic behaviour of relaxation rates of

our system is described by a distribution belonging to a rather restricted

class of lqS-distributions with parameters O<(%<l and B=l. The possible initial
.4

distributions of the relaxation rates split naturally into universality classes,

parametrized hy the characteristic exponent (, according to which domain of

attraction they belong. Observe that all relaxation rates have an infinite

variance and mean value, since for lzS distributions only p-th moments for

p<(x exist.

"" ..."" " "" " " -/" " i " '> .-: -. : .--.- -"i.. " :. ' .-i i1,1: -'i' >.- ' : ; ': . I
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Now using (3.2) we get00
0  = f e-s li p(i;ct, I dp, (3.6)

i.e., O(T0 s) is the Laplace transform of LaS density p(ii;c%,l). Recall, that

from (2.4) the Fourier transform of p(ji;a,l) can be written as

f(s) = exp {fi's - os (1 i tan(Trc/2)))

= exp {iys -(o/cos(Trct/2))s( (cos(Tcx/2) i si.n(nrt/2))}

= CXp {iYs -Lo/cos(c/2))(-is) (} (3.7)

By using a general relation between Laplace and Fourier transform for functions

with the non-negative support L(p(pi);s) = F(p(ii);is), (3.6) and (3.7) give

(T(s) = exp {-ys - (a/cos (ra/2)) s } (3.8)

Since in our notation - = t thus (3.8) can be rewritten as

(t) = exp {-yt/T 0 - (0/cos ( rc/2)) (t/T0)a} (3.9)

As we observed in Section 2 one can choose y = 0 and hence

¢(t) = cxp {-(t/T)}, (3.10)

where

T = [(I/o) cos (rncx/2)] T" (3.11)
C0

Thus (3.10) gives the Williams-Watts form of the relaxation function and (3.11)

gives the relation between the effective relaxation time T and the primitive
e

relaxation time T O. Let's remark that formulas (3.10) and (3.11) have universal
0'

character as a consequence of the use of universal limit law in macroscopic

behaviour of the relax~ng system. This provides an answer to the question

(12)
which has been posed recently by Palmer et al

, .

* ~ -
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Since cos (Tx/2) I - € for )<x<l then (3.11) can be approximated by

T 1C - (3.12)

which differs from (1.4) only by changing the numerator I - a in (3.12) into

, if one has made an unnecessary assumption 17) that l-n = a and w - l/T 0 .

It seems to be that our relation (3.11) or (3.12) is not comparable directly

with (1.3).
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4. The Iistribution Function of Relaxation Times

If the statistical approach to explaining nonexponential relaxation

behaviour is taken, it becomes important to determine the distribution of

(6,7,11)
exponential relaxation times which produce the Williams-Watts function

In this section we will employ the known asymptotic formulas for one-sided

LaS-densities to derive the asymptotic behaviour of the distribution function

(in probabilistic terminology density) p(T), defined in (3.1).

Since p(T) =- 0 
1 12w(J) according to (3.3), thus by (2.5), if we put [ = 1,

we have for i - 0

1 0 1 n+IF +  1) [_] a - 1
Y(-I) (n + 1) sin nra, (4.1)

n() = T e n=l n! {c -

where

T= Icos(7ct/2)]l/ 0

For T we get from (2.()

P(T) = e() " exp - (4.2)

-r V1 r ee

-X- (ci)O
where = 1 0 B(i) and X(a) are given by (2.7) and (2.8)

respectively.

Observe that the existence of average relaxation time <-',, and higher

moments, <Tn>, n>1 follow without any trouble since by (3.3) and (2.5)

0 0
n --- n

This is in sharp contrast to the momentless distribution of the relaxation

... j -
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rates ji = i0/i.

The relationship between the relaxation function (t) and the LS-

density w(ji), see (3.2), permits to find the relaxation time <T> and higher moments

without explicit knowledge of p(T). Namely, since

)e F( s) ds,

where s t/ 0 and 11 = T /T, one has from (4.3)

<-n C -Is  S)ds] dJ.

Moving the vj term inside the integral over ds, interchanging the order of

integration, and moving the O(T 0s) term outside of the integration over do.

yields

<t> J p(ToS) -- f - e1J5do] ds

fCKCO

nT j- ttn-I
/l'(n)} J (TOS) lds = {l/r(n)) 4(t)t dt

{l/'(n)l tn -I exp {=1 )(i} dt
-'0ne

= T r r(-)/(ct(n)) (4.4)

= 0  1(n /u) cos Oral2)] r()I((J(n) (4.5)

where we have used formulas (3.10) and (3.11). Formula (4.4) corresponds to

the result in Lindsey and latterson(6)

Z. . .*
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5. Dielectric Relaxation

The complex dielectric permittivity c£(w) is related to the relaxation

function p(t) by a one-sided Fourier transform (2 7 )

C * ( W) - C "" o - - , ( 1
=e -(Ct) dt,E 0 - Eo° 0t

where I- (d/dt) (t)] is the normalized transient decay current which follows

when a steady electric field is removed from a sample. [Jere c is the static

dielectrical constant and :o. the high-frequency limit of the dielectric

constant. One generally writes

C * (W) -E

C E'(W) - iE"(), (5.2)

where c'(w0) and -"(w) are, respectively, the real and imaginary parts of the

normalized dielectric parameter. Williams et al.  derived an expression for

£*(w) when (t) = exp {-(t/T )al in the form

c' (w) ic"(L) = X ( 1 )n - I 1 (nc + I)
n=l (A) fle)"

C (5.3)

r2 i2x (cos n )--i sin n -)

By the comparison with (2.5) one obtains immediately that

f"(W)= x'rp(x;a,(), (5.4)

where x wT . This direct relation between the imaginary part c" of the

normalized dielectric parameter and the symmetric US density p(x;nh,O) has

" - . . ...- o ... °. . , . ° . . . . . .
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been also shown recently by a different method (11 )  It is interesting to

explain why here in contrast to Sections 3 and 4 synnetric ((=O) LOES distri-

butions arise.

For this observe that if we put y : 0 and a = 1 in formula (2.4) then

for 0 < cx < !

log f(s) = Isi I1 - ia sign (s) tan (na/2)}. (5.5)

Knowing that the density p(x;a,r) of such LaS distribution is real, it can be

written, after a short calculation, in the form

(s)
e= 2 R e sXf(s) ds=

. C-S cos fxs-s tan(1a/2)] ds. (5.6)

On the other hand the integration by parts in (5.1) yieldsr- o c- o
F - 1 - ic"() = -x e- s sin(sx)dx ix Fe cossx)ds, (5.7)0 0 ,

where s t/T and x = . The comparison of (5.6) and (5.7) shows that the
c e

imaginary part t"(w) of the normalized dielectric parameter is related to

LaS distribution p(x;ax,) if and only if 0 = , i.e., when the LcS distribution is

a symmetric one. Namely one obtains from (2.5) and (3.11)

(w[ ) = Ld%, ('u c,

, ., ( 5 . 8 )
nn+I '(na+ 1) (WT) ncot s(a/2)] sin (nc/2).

n. %
no= i
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6. Concluding Remarks

There are several approaches to explaining nonexponential relaxation

(1-12)behaviour in glassy materials The statistical approach interprets

the nonexponential relaxation behaviour of the material in terms of a super-

position of exponentially relaxing processes which then leads to a distribu-

tion of relaxation times. In this paper we derived the Williams-Watts formula

directly from the limit theorem in probability theory that explains the univer-

sality of this formula, as well as provides a relation between the effective

relaxation time r and the primitive relaxation time TO. This procedure is

different from those in the existing literature and provides the main departure

from all the previous work on the statistical approach to the relaxation problem.

The most important consequence is that the theory of Levy (%-stable distributions

can be directly employed to the study of the problem.

We do not propose that the statistical approach is the physically more

correct one; instead we discuss the mathematical foundation and consequences

of this approach which must be understood when physical interpretation is

attached to the distribution functions underlying the relaxation. We would

like to conclude the paper by quotation from E.P. Wigner 2 8 ): "'he first point

is that mathematical concepts turn up in entirely unexpected connections.

Moreover, they often permit an unexpectedly close and accurate description of

the phenomena in these connections. Secondly, just because of this circum-

stance, and because we do not understand the reasons of their usefulness, we

cannot know whether a theory formulated in terms of mathematical concepts is

uniquely appropriate." Let it be an excuse for the authors, if they were not

sufficiently modest in some formulation of this paper.

PI
-o

.. . .... . . . .. . . . . 5

, o o o, , • .. . .. .- . . o .. . . o o , .. . . ° . • So.; ° ° . , "" ° . ", ' '' ' ~ °

% - " • % . - "



Re ferences

1. R. Kohlrausch, Ann. Ihys. (Leipzig) 12, 393 (1847).

2. G. Williams and I).C. Watts, Trans. Faraday Soc. 66,80 (1970).

3. G. Williams, D.C. Watts, S.B. Dev, and A.M. North, Trans. Faraday Soc. 67,
1323 (1977).

4L 4. A.K. .Jonsher, Nature 267, 673 (1977).

5. K.L. Ngai, Comments Solid State Phys. 9, 127 (1979) and 9, 141 (1980).

6. C.P. Lindsey and G.D. Patterson, .J. Chem. Phys. 73, 3348 (1980).

7. E. Ilelfand, J. Chem. I'hys. 78, 1931 (1983).

8. K.L. Ngai, A.K. Rajagopal, R.W. Rendell and S. Teitler, Phys. Rev. B, 28
6073 (1983).

9. T.V. Ramakrishnan, Ed., Non-iebye Relaxation in Condensed Matter, (World
Scientific, Singapore 1984).

10. M.F. Shlesinger and 1.W. Montroll, Proc. Natl. Acad. Sci. U.S.A. 81, 1280 (1984).

11. L.W. Montroll and .J.T. Bendler, J. Stat. Phys. 34, 129 (1984).

12. R.G. Palmer, D.1,. Stein, i. Abrahams and P.W. Anderson, Phys. Rev. Lett. 53,
958 (1984).

13. W. Feller, An Introduction to Probability and its Applications, Vol. 2,

(Wiley, New York 1966).

14. L.A. Khalfin, Zh. Eksp. Teor. Fiz. 33, 1371 (1957).

15. A.V. Skorohod, I)okl. Akad. Nauk SSSR 98, 731 (1954). English Transl. in Select.
Transl. Math. Stat. and Prob. 1, 157 (1961).

16. V.M. Zolotarev, Dokl. Akad Nauk SSSR 98, 735 (1954). English transl. in Select.
Transl. Math. Stat. and Prob. 1, 103 (1961).

17. R.V. Chamberlin, G. Mozurkewich, and R. Orbach, Phys. Rev. Lett. 52, 867
(1984). and 53, 1025 (1984).

18. K.I,. Ngai, and A.K. Rajagopal, Phys. Rev. Lett. 53, 1024 (1984).

19. B.V. Gnedenko and A.N. Kolmogorov, Limit Distributions for Sums of Indep)endent
Random Variables (Addison-Wesley, Cambridge Mass. 1954).

20. V.M. Zolotarev, One-dimensional Stable Distributions, (in Russian - Nauka,

Moscow, 1983).

21. [.A. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover
Publ. Inc., New York, 1949).

~°



22. E.W. Montroll and M.F. Shlesinger, J. Stat. Phys. 32, 209 (1983) and

Lecture Notes in Math. 1035, 109 (Springer-Verlag, Berlin, 1983).

23. G. Williams, Dielectr. Relat. Mol. Processes 73, 151 (1975).

24. G. Williams and P.J. 11ains, Chem. Phys. Lett. 10, 585 (1975).

25. L.C.[. Struik, Physical Aging in Amorphous Polymers and Other Materials
(Elsevier, Amsterdam, 1978).

26. C.C. Lai, P.B. Macedo, and C.J. Montrose, .1. Am. Ceramic Soc. 58, 120
(1975).

27. N.G. McCrum, B.F-. Read, and G. Williams, Anelastic and Dielectric Iffects
in Polymeric Solids (Wiley, London, 1967).

28. E.P. Wigner, Comm. Pure Appl. Math. 13, 1 (1960).

"- IL P

-"S ., . . " ' ' - " .. , " ' -... ., ., ., ' " ' ' . ' . . , . . " . ' -" -" -' -" 
• 
' . . " , " - " ." • -" -" " ." • " -" .

o.S .-. ., ., - -... - . .. .... , .. .. . . ... -. . . .< . ..; ; .. .: -. . .; ; . . . . ..



J

ip

ip

FILMED

4-85

DTIC
co iI

. .,.. . -; -... ,,,, .. . . '.F .,,, . .. ,.... . , . . ... . ....


