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ABSTRACT

The problem addressed in this thesis is the maximization of the

expected matched filter receiver response to a signal that has been

transmitted through a communication channel whose average scattering

properties are known in terms of a scattering function. This is

accomplished by altering the receiver processing signal given the channel

scattering function and transmit signal. The channel is assumed to be

doubly-spread, meaning that any signal propagated through it will exhibit

both time and frequency spreading. The scattering functions that

describe these channels subtend a finite region in the delay-dopper

* plane.

This thesis contains some of the background material necessary to

understand the modeling of communication channels as random linear

time-varying systems and the use of matched filter receivers for signal

detection. This material includes a review of the properties of linear

spaces, Fourier transforms, and the foundational material leading to the

development of the scattering function.
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CHAPTER I

GENERAL INTRODUCTION

In active signal detection systems, detection is performed by

transmitting a signal over a communication channel, processing any

received signal by a receiver, measuring the receiver output, and

comparing the output to a predetermined threshold. The optimum receiver

in Gaussian white noise is known to be a matched filter receiver, also

known as a correlation receiver. It consists of a multiplier used to

form the product between the received signal and processing signal, and

an integrator to integrate the multiplier output.

Channel scattering having a delay extent greater than the average

wavelength of the transmitted signal is said to be delay-spread. On the

other hand, channels whose scattering properties vary rapidly in a time

interval on the order of the signal time duration are said to be

doppler-spread. Any communication channel exhibiting a combination of

delay spreading and doppler spreading is said to be -oubly-spread.

Examples of doubly-spread sctterers are fish schools, volcanic plumes,

storm cells, rotating planets, and asteroids.

A portion of the transmitted energy can also be scattered by the

medium and is referred to as clutter or reverberation. Both clutter and

reverberation, which may also be doubly-spread, represent interference

and degrade the ability of the matched filter receiver to detect the

channel output signal.

This thesis is concerned with the optimization of a matched filter

receiver to detect a signal that has been transmitted through a

doubly-spread communication channel whose scattering properties are
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LINEAR
6(t) TIME-INVARIANT h(t)

SYSTEM

Figure 1. Block diagram of a linear time-varying system.

x(t)

X(t -0-

0I

It

I -- = i

Yit M h (-ri ) x(t -r.)A (2.3-2)

Figure 2. Derivation of (2.3-1). Input x(t) approximated by

a pulse train. The response at time t due to the
portion of the input approximated by the shaded

panel.
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then interpreted as an amplitude density function for the complex

exponentials included in the continuous sum (integral) in (2.2-26). It

is for this reason that the Fourier transform is also referred to as the

'spectrum' of the function x(t), since it gives a measure of the relative

weighting of each complex exponential as a component of the function

x(t). The terms Fourier transform and spectrum will be used

interchangeably throughout this thesis.

2.3 Linear System Theory

2.3.1 Linear Time-Invariant and Time-Varying Systems

Linear time-invariant systems are often described by a function,

h(t), referred to as the 'system impulse response function.' Its name

decribes exactly what it does: it expresses the system output y(t)

when the system input x(t) is an impulse function with unity weight.

The impulse response does provide another service. It can be used to

determine the system output for general inputs, and this is expressed by

the convolution between h(t) and the input x(t), i.e.,

y(t)= f h(r) x(t-T) dT . (2.3-1)

The derivation of (2.3.1) can be developed in the time domain where

the integral is considered to be a limit of a sum of responses to a

square pulse train that approximates the input x(t). Figure 1 shows the

linear time-invariant system as a block diagram and illustrates its

interpretation in terms of the impulse response. Figure 2 shows how the

input function is approximated by a series of square pulses with width

AT and height x(t-Ti). Note that the system response to the i-th pulse,

Yi(t), can be approximated by the response to an impulse applied at time

t-T I whose weight is equal to x(t-Ti) At, therefore,
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Theorem 2.7 Let x(t) E LI(R I) and be bounded (jx(t)f < ) for all t E R1.

Then x(t) E L2(R).

Proof Define the normalized function x by

x(t) (2.2-23)sup Ix()7
t

Where sup jx(t)l < - because x(t) is bounded by hypothesis. Then
t

I~l( < I for all t C R1. Xoreover, 1;(t)l2 < lx(t) so

gxll2 = f Kx(t)i2 dt < I Ix(t)i dt - NxIlI < 0. (2.2-24)

Therefore, x(t) E L2(RI) and x(t) = (sup 1x(t)D) x(t) E L2(RI) because
t

L2(RI) is a linear space. This proves the theorem.

It should be noted that the converse of this theorem is not true

because there exist functions in both L(Ri) and L2(RI) that are not

bounded. The following theorem will be particularly useful later when

finite energy signals are discussed. Its proof can be found in any text

on functional analysis.

Theorem 2.8 (Schwartz Inequality) If x(t), y(t) P L2(RI) then

I<x,y>l < Oxll2  Ilyll 2 . (2.2-25)

Equality holds if and only if y(t) Xx(t) or y = 0 where X is a real

constant.

2.2.3 The Interpretation of the Fourier Transform

In engineering analysis, the inverse Fourier transform, given by

x(t) X(f) ej2 1tft dr, (2.2-26)

is often given the interpretation that it expresses the function x(t) as

a continuous sum of complex exponential functions. The function X( ' is
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Theorem 2.5 Let x(t) E L2 (Rl) and define

X(f,a) f a x(t) e-j 27f t dt. (2.2-19)
-a

then as a + -, X(f,a) converges in the mean over Rl to a function X(f) in

L2(RI). Conversely,

x(t,a) = , a X(f) e 21Tft df (2.2-20)

-a

converges in the mean to x(t) almost everywhere over Rl as a -.

From this theorem it is possible to prove another.

Theorem 2.6 The Fourier transform (2.2-19) defines a bounded linear

transform of L2(RI) to L2(Rl) which is norm preserving, i.e.,

RXU 2 = i1xIx2. (2.2-21)

This theorem states that Fourier transform maps L2(RI) to L2(Rl), and so

it defines an isomorphism of L2(Rl) onto itself. The symmetry between

any element of L2(Rl) and its Fourier transform is not an unusual

property for a Hilbert space. For example, it can be shown that in a

Hilbert space X all bounded linear functionals are of the form

f(x) = <x,:p> (2.2-22)

for all x x where is also in X (a Hilbert space is its own algebraic

dual) 2.

Before discussing the appliction of Fourier transforms and

convolution to the analysis of systems in section 2.3, two theorems are

stated that will be useful later.



I.1

By Fubini's theorem 5 ,6 it follows that

ff ix(T) y(t-T)I dTdt

'f x(T)j dT f iy(t-T)I dt

i Ilxh I  It11yI • (2.2-17)

Therefore, from (2.2-16) and (2.2-17) it can be seen that

Nx*ylj 4 OXl 1 lygl < (2.2-18)

and so x*y E Ll(RI). Furthermore, since a(x(T) y(t-T)) - (c(r)) y(t-T)

f x(r) (cy(t-T)) for all a E R1 this establishes L1(RI) as an algebra

under convolution.

Since the convolution of two functions in Ll(R 1 ) produces another

function also in L1(RI) it immediately follows that this function is

Fourier transformable. The Fourier transform of a convolution is easily

found if the transforms of the two original functions are known. This is

shown in the following theorem.

Theorem 2.4 Let x(t), y(t) E L1 (RI), and let X(f) and Y(f) be the

Fourier transforms of x(t) and y(t). Then x*y CLI(RI) and its transform

is X(f) Y(f).

For the space L2(RI), the Fourier transform is defined to be a limit

as shown in the following theorem whose proof can be found in the

references. 3,4

"" -"." . - " " ', " "".".. - T''- *.. . "'
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f 6(f) df 1 1. (2.2-12)

Then the inverse Fourier transform of X(f) is 0-summable almost

everywhere to x(t), i.e.,

SliM f O(8(-) X(f) ej 2ft df x(t) a.e. (2.2-13)

In the case where both x(t) and X(f) are in LI(Rl), equation

(2.2-11) can be used immediately. This is stated in the following

theorem whose proof can be found in the references.

Theorem 2.3 If x(t) and X(f) are elements of L1(RI) then

f X(f) ej2 ft df - x(t) a.e. (2.2-14)

Therefore, x(t) is equal almost everywhere to a function in LI(Rl) and

C0 (RI). If x(t) is continuous on R1 , then inversion formula (2.2-11)

holds for all t . R1.

The space L1(RI) has the property that it is an algebra under the

operation of convolution with respect to the complex field. In other

words, if the functions x(t) and y(t) are elements of L1 (R1) then the

function given by

(x*y)(t) -f X(T) y(t-T) dT (2.2-15)

-CO

is in L1 (Rl) and a(x*y) - (ox)*y = x*(ay) for all a . Showing

x*y LI(R I) is easy by considering the integral of its magnitude, i.e.,

Ix*yI dt f i: X(T) Y(t-T) dT dt

4 f7 Ix(T) y(t-T)j dTdt. (2.2-16)
-Cm
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material for system and signal analysis in electrical engineering. It is

left to the reader to find the proofs in a text on Fourier analysis

since there exists a number of good books on the subject. Some of them

are listed in the references.
3- 6

The Fourier transform of a function is defined to be
re

X(f) - f x(t) e-j21ft dt. (2.2-9)

The Fourier transform is known to exist for all functions in LI(R I ) and

by the following theorem, X(f) is shown to be an element of the normed

linear space CO(R 1 ). CO(R1 ) is the space of continuous bounded complex

functions over RI that has as its norm

llx 0 - sup Ix(t)I. (2.2-10)
t

Theorem 2.1 Let x(t) G Ll(RI). Then the Fourier transform exists and is

given by

X(f) = I x(t) e-j2 ft dt (2.2-9)

and X(f) is an element of CO(R1).

The inverse Fourier transform of X(f) is defined to be

f(t) I X(f) ej2lrft df (2.2-11)
-Cc

and by the following two theorems is known to exist for all X(f) that are

transforms of elements of LI(RI).

Theorem 2.2 Let x(t) E LI(RI). Also, let 6 be a positive even function

on R1 and monotonically decreasing on (0,-) where

S .. . < .-. - . -
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xo in X in the sense that 1Ixn - XoI 1 0 as n + .

Finally, L2 (R1 ) has the additional property of being a Hilbert space

which is a Banach space that has defined on it an inner product between

two elements.1, 2 An inner product is an operation that associates a

complex number to each pair of elements, x and y, in the space and is

denoted by <f,g>. It has the following properties for all elements x, y,

and z in a Hilbert space and a E RI:

i) <x,y> - <y,x>*, where * denotes complex conjugation

ii) <x+y,y> <x,y> + <zy>

iii) <ax,y> = <xy>

iv) <x,x> ) 0 with equality holding if and only if x E 8.

In the space L2(R1 ) the inner product can be defined as

<x,y> f I x(t) y*(t) dt. (2.2-7)

It is easy to verify that this definition does obey the four properties

of the inner product listed above.

Lastly, in a Hilbert space it can be shown that v<x,x> defines a

suitable norm in that it obeys the four properties of the norm listed

earlier. In the case of L2(RI) the norm is given by

J 1/2 2 1/2
UxR 2 __= x,x> = x(t) x*(t) d 1x(t)J d , (2.2-8)

which coincides with (2.2-6).

2.2.2 The Fourier Transform and Convolution

Presented in this section are theorems concerning the Fourier

transform and convolution of functions that are elements of the spaces

LI(R l) and L2(RI). Most of these theorems are part of the foundational

- - - - - - - - - -
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Both LI(Rl) and L2(Rl) are normed linear spaces. In general, a

normed linear space X is a space on which exists a function which maps

elements of X to R1 . This function is called the norm, is denoted by 11x1

where x C X, and satisfies the following axioms when x, y E X and a E RI:

i) 11x11 ) 0 with equality holding if and only if x E 6.

ii) lx+yl 4 ltxii + Hyll

iii) laxl = iaelixll.

Property (ii) is often called the triangle inequality and is used to

prove the inequality

Ix-yl > lxiI - IyU. (2.2-4)

For the spaces L1(R1 ) and L2(RI) the norms are defined to be

OxIl1 I f ix(t)i dt for x(t) E LI(RI) (2.2-5)

and

1xI 2 = Ix(t)1 2 dt for x(t) L2 (RI). (2.2-6)

It can be verified that these definitions do satisfy the three properties

of the norm listed above.

The norm is sometimes interpreted to be a measure of an element's

distance from the zero element. More generally, if x and y are two

elements in a normed space, lx-yI is a measure of the distance between

them. From property (i) of the norm it is seen that ix-y = 0 if and

only if x -:y. 

Both LI(Rl) and L2(Rl) are Banach spaces because they are

complete. 1 ,2 A Banach (complete) space is a space in which every Cauchy

sequence has a limit. Thus if x is a sequence in a Banach space X
n n-1

and lXn-Xmll + 0 as n + =, then the sequence converges to some element
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In either Ll(RI) or L2(Rl), two elements (functions), f and g, are

considered to be identifiable if they differ from one another on a set of

measure 0. In this case, it is customary to write f E g or f = g a.e.

which means f is equal to g 'almost everywhere.' For example, consider

the function

2 , t eZ
f(t) - (2.2-3)

exp(-Itl) , tC R1/Z.

Here, the function f(t) maps R1 to C through a symetric decaying

exponential except when t is an integer. Since the set of integers Z is

a countable set, it has measure 0, so f -- exp(-1J) or f - exp (-1.1)

a.e.

Both LI(RI) and L2(RI) are linear spaces., 2  In general, a linear

space X is a set of elements that is closed under the operations of

addition and multiplication with respect to elements in a scalar field.

For example, if x, y E X, then (x + y) G X, and if a is a scalar then

ax E X. Additionally, the linear space X satisfies the following axioms

when x, y, z E X and a, a E RI:

i) Commutivity: x + y - y + x

ii) Associativity under addition (x + y) + z = x + (y + z)

iii) The existence of a zero element 6 such that x + 6 = x

iv) Associativity under multiplication: a(Bx) = (a8)x

v) Distribution: a(x + y) = ax + By

vi) The existence of the scalar 0 and I such that Ox = 6 and

1x = x.

It should be noted that subtraction is done using the scalar a -1,

which in the scalar field is the additive inverse of 1. The element -1x

is denoted -x and so x - x = x + (-lx) = (1-1) x - Ox - 0.
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also show under what condition a linear time-varying system produces a

stable output. Stating this statiblity criterion allows additional

properties of linear time varying system functions to be discussed which

were not developed in Ziomek's original work.

Readers with a background in mathematics, electrical engineering, or

acoustics will probably find that sections 2.2 and 2.3 contain no

material unfamiliar to them. Those already knowledgeable in the

mathematical theory of doubly-spread communication channels (in the

context of scattering functions) can proceed to Chapter 3.

2.2 Mathematical Background

2.2.1 The Spaces LI(Rl) and L2(Rl)

In the mathematical development of the theory presented in this

thesis all functions used to represent signals will be elements of the

spaces LI(Rl) and L2(Rl). The space LI(Rl) is defined to be the class of

all Lebesque measurable functions that map the field of real numbers R1

(the real line), to the field of complex numbers C (the complex plane),

and are magnitude integrable. A more compact notation for this class of

functions is

L I(R) I (f: R + C I I If(t)J dt < -}. (2.2-1)

Similarly, the space L2(RI) is defined to be the class of all Lebesque

measurable complex functions that map R1 to C and are square integrable.

Again, a more compact notation for this class of functions is

R1/2
2(R) I {f: R 1+ C ['It12 dt] < 1.(2.2-2)
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CHAPTER 2

TIME-VARYING SYSTEM THEORY

2.1 Introduction

The primary objective of this chapter is to introduce the

mathematical fundamentals that will be used throughout this thesis.

Section 2.2.1 presents a brief review of the properties of linear spaces.

In particular, the spaces LI(R I) and L2(R1 ) will be discussed since their

elements are functions that will be used to model signals. In section

2.2.2 the Fourier transform is introduced and several theorems are stated

concerning the Fourier transforms of functions in Ll(R 1 ) and L2(R1 ).

Section 2.3 presents a review of linear system theory for both

time-varying and time-invariant systems. The chapter first presents the

output of a deterministic linear time-invariant system as a convolution

integral between the input waveform and the system impulse response

function. This is then extended to find the output of a deterministic

linear time-varying system which is described by a time-varying impulse

response function. Finally, Section 2.4 describes four autocorrelation

functions for time-varying systems for both deterministic and random

cases. For random linear time-varying systems it is shown that the

autocorrelation functions lead to the definition of the scattering

function provided the system is used to model a wide sense stationary

uncorrelated channel (WSSUS).
I

It should be mentioned that the derivation of the scattering

function as developed from random linear time-varying system theory was

originally done by Ziomek'0 in his Ph.D. dissertation. What has been

done in this chapter is to not only present the same derivation but to



Finally, Chapter 4 introduces an iteration algorithm to optimize the

expected matched filter receiver response to a signal transmitted through

a channel having a known scattering function. The algorithm is derived

using the calculus of variations and generates a series of processing

- signals which in turn produces a convergent monotonically increasing

series of expected matched filter outputs. The chapter closes with

several numerical examples of the optimization technique.
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known. The optimization is accomplished by iteratively altering the

processing signal of the matched filter given a fixed transmit signal and

channel scattering function. Since the performance of a receiver is

determined by the signal to noise ratio (SNR) of its output (in this case

defined as the ratio of the receiver signal response to white Gaussian

noise and clutter or reverberation response), increasing the receiver

response to the channel output without significantly increasing the

response to the interference will increase the SNR and imply an improved

ability of the receiver to detect the channel output signal. If the only

interfering signal is white Gaussian noise, then increasing the receiver

signal response guarantees an increase in SNR.

It is important, however, to present the fundamental theory used to

establish the properties of the communication channel and performance of

the receiver. Therefore, Chapter 2 opens with a review for the

properties of linear spaces and Fourier analysis. The remainder of the

chapter presents the development of linear time-varying system theory for

both the deterministic and stochastic cases. This eventually leads to

the derivation of the scattering function which can be used to describe

the time delay and frequency spreading characteristics of the

communication channel.

Chapter 3 introduces the theory of matched filter receivers and

shows their use in hypothesis testing for signal detection. The

relationship between scattering function and receiver output is

developed. This is used in the closing section of the chapter to show

the conditions necessary for the matched filter to optimally detect a

signal that has been transmitted through a channel whose scattering

function is known.
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yi(t) h(Ti) x(t-T i ) AT . (2.3-2)

It follows that as AT becomes smaller the approximation of yi(t) by

(2.3-2) becomes more accurate. Thus in the limit

Yi(t) = lir h(Ti) x(t-Ti) AT . (2.3-3)
AT+O

The desired system response, however, is the sum of all the responses to

the approximating pulse train, so

y(t) - yi(t) = [ h(Ti) x(t-Ti) AT • (2.3-4)

Again, as AT becomes small it follows that the approximation of y(t) by

(2.3-4) becomes more accurate. Furthermore, the summation becomes an

*integral leading to (2.3-1).

It should be noted that from (2.3-1) it immediately follows that

h(t) is the system response to an impulse of unity weight, i.e.,

y(t) = f h(T) S(t-T) dT = h(t). (2.3-5)

As mentioned earlier, (2.3-1) describes a system whose behavior is

invariant with respect to time. A clearer statement of this can be made

if one considers the response of the system to an impulse applied at some

time to * 0 (x(t) - 6(t-to)). Using (2.3-i), the system response is

y(t) = f h(T) 6
(t-to-T) dT h(t-to), (2.3-6)

0 which is just the system impulse response shifted forward in time an

amount to. Outside of the fact that the response exhibits a time shift,

it has the same form as the function h(t). Therefore, the properties of

* the system remain the same regardless of when the input is applied.

°S *
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In the real world, however, communication channels are never blessed

with the property of time-invariance. Their responses change over a

period of time depending on what mechanisms carry the signals in their

respective mediums.

To account for the time-varying property of a linear system, the

convolution integral determining the response can be rewritten as

y(t) f h(T,t) x(t-r) dT , (2.3-7)

where h(t,t) describes the system response at time t to an impulse of

unity weight applied at time t - T. In this case r can be thought of as

the variable that describes the 'antiquity' or 'age' of the impulse

input. 9 By defining the impulse response in this way, it will be shown

later that a symmetry will exist between h(T,t) and its Fourier transform

with respect to r.

One restriction that will be placed on the system described by

h(T,t) is that every bounded input will produce a bounded response. Such

systems are referred to as 'bounded input, bounded output' systems

(BIBO). The conditions for a system to be a BIBO system are stated in

terms of the impulse response and are given in the following theorem.

Theorem 2.9 Let a time-varying system be described by the impulse

response h(r,t). Then the system is a BIBO system if and only if

f [h(Tt)I dt < (2.3-8)

for all t C R1.

Proof. Proving the theorem in the reverse direction is easy. Suppose

the system input x(t) is bounded, i.e.,

,._S i . . "- . " - . - . .
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Ix(t)I 4 M for t (2.3.9)

then for any t

Iy(t)I =f h(T,t) x(t-T) dT

4 f lh(T,t)l jx(t-T)[ dT

4M j h(T,t)l dT < •(2.3-10)

Hence, any bounded input produces a bounded output.

Proving the theorem in the forward direction is done by

contradiction. Suppose, a system is a BIBO system but its impulse

response does not satisfy (2.3-8). This can be stated as

sup f Ih(r,t)l dT = . (2.3-11)
t -

Therefore, for any M > 0, there exists a tM such that

f lN(T,t M) I aT > M •(2.3-12)

Now define the bounded input function

xM(t) = sgn[h(tM-t,tM)] (2.3-13)

which is equal to the sign of the system response at time tM to an

impulse of unity weight applied to the system input at time t. The

response to xM(t) at time tM is

y(t M ) = f h(r,tM) sgnth(tM-tM +T,tM)] dT

f I fh(T,%1 )j dT > M (2.3-14)

Therefore, given any M > 0, however large, we can construct a bounded
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input which will produce an output that at some time is larger than M.

This contradicts the hypothesis that the system is a BIBO system, and so

the theorem is proved.

For linear time-invariant systems h(T,t) reduces to h(T) and by

(2.3-8)

Uhil 1 - f Ih(T)I dT < . (2.3-15)

Thus, h(T) is an element of Ll(R 1 ) which proves the following corollary:

Corollary 2.10 Let a time-invariant system be described by the impulse

response h(t). Then the system is a BIBO sytem if and only if h(t) is an

element of LI(RI).

It is now possible to solve for the response of a time-varying

system using Fourier analysis. Since the input x(t) is assumed to be

an element of L1 (RI) and L2(RI), its Fourier transform exists because

the transform exists for all functions in either space. Therefore, using

(2.2-11) and (2.3-7),

y(t) = f h(T,t) x(t-T) dT = f h( -,t) X(f) ej 2 vf(t -
T) df dT

- S h(T,t) e-j 27rfT dT X(f) ej2 "ft df.

(2.3-16)

Notice that the bracketed term in the integrand of (2.3-16) is of the

same form as a Fourier transform of a function of a single variable. It

is, in fact, the Fourier transform of h(T,t) with respect to T if one is

allowed to define the transform of a multivariable function with respect

to a single variable. Here, the bracketed term will be defined as

..
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H(ft) f I h(t,t) e-j2rfr dr . (2.3-17)

Furzhermore, H(f,t) exists and is bounded because by (2.3-8)

IH(ft) f h(r,t) e -j2TfT dT

f I h(r,t)l dT < 0 . (2.3-18)

Now (2.3-16) can be rewritten as

y(t) = f h(r,t) x(T-t) dr f' H(f,t) X(f) ej2lft df. (2.3-19)

It appears that the system response is the inverse Fourier transform

of the function H(f,t) X(f). This is not, in fact, true, because the

Fourier transform of the response y(t) regardless of whether the system

is time-varying or time-invariant is

Y(f) f f y(t) e -j 2ift dt (2.3-20)

which is not a function of both f and t. The only time Y(f) = H(f,t)

X(f) is when the system is time-invariant. In this case, h(r,t) + h(r)

which means H(f,t) + H(f), so (2.3-19) reduces to

y(t) f I h(t) x(T-t) dr = f H(f) X(f) ej2 7rft df. (2.3-21)

This also follows from Theorem 2.4 which states that the convolution of

two functions is equal to the inverse Fourier transform of the product of

the Fourier transforms of the two functions. Because y(t) is given by

j 2iT f t
y(t) = f Y(f) e df, (2.3-22)

and because of the uniqueness of the Fourier transform, Y(f) H H(f) X(f).

. . ..6 .", , . . . :
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It must be stressed, however, this is only guaranteed for time-invariant

systems.

The function H(f,t) can be interpreted to be the modulation of a

single frequency (monochromatic) signal applied to the system. This

can be seen by finding the response to the signal x(t) = ej2 fot. From

(2.3-7) and (2.3-17),

j2wf (t-)
y(t) = f h(Tt) e dT

f h(T,t) e i2 t o dTj e 27fot

H(fot) e j2rf0t (2.3-23)

If H(fot) changes with respect to t (time), it follows that the amplitude

of the input signal is modulated. Since H(f,t) can be used directly to

find the response to a monochromatic signal, it is often referred to as

the time-varying transfer function or the time-varying spectrum of the

system impulse response.

2.3.2 The Space Ll(R 2) and the Time-Varying System Functions

It was shown in the last section that if the time-varying system

impulse response h(T,t) has the property

f lh(T,t)l dT < for all t E R1 (2.3-8)

then it describes a BIBO system and the time-varying transfer function is

defined as

H(f,t) A f h(T,t) e-j2 if T d• (2.3-17)

A question that naturally arises is: Can the Fourier transform of h(t,t)

with respect to t be found and what is its interpretation? Also, is it

4]



22

possible to find the two-dimensional Fourier transform of h(T,t)?

An affirmative answer to these questions requires an additional

restriction on h(T,t).

It will be assumed that the time-varying impulse response h(T,t) is

an element of the normed linear space LI(R 2). The space L1(R 2) is the

class of all Lebeque measurable functions that map the set of real

ordered pairs R2 to the complex field C, and are magnitude integrable,

i.e.,

L I(R2 ) = {x: R2 + C I ff Jx(r,t)j drdt < (2.3-24)

The norm of any element x(t) in L1(R 2) is defined as

lxI1  ff jx(r,t)l dTdt . (2.3-25)

The two-dimensional Fourier transform of any element x(t) in Ll(R 2) is

given by

X(f,4) = f x(T,t) e_ 2Trt) dTdt (2.3-26)

and is bounded because

IX(f,p)I =fir x(r,t) e-j 2 (
T
+
'
t ) drdt

I -

4 ff x(T,t)I dTdt = 11x11I < 00 (2.3-27)

An interesting and useful property of the space L1 (R2 ) is that if

h(r,t) is an element of LI(R 2 ) then

f Ih(T,t)I dT < - and f Ih(T,t)l dt < . (2.3-28)

This property arises from Fubini's reduction theorem for double

I I
t -

*p
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integrals1 , and it should be noted that its converse is not true. A

consequence of this property is that it is possible to find the one-

dimensional Fourier transform of h(t,t) with respect to either T or t.

The Fourier transform of h(r,t) with respect to t exists, is

given by

S(t,4) h(T,t) e - j 2 7r t dt (2.3-29)

and is bounded for all T and € because by (2.3-8) it is easily seen that

Is(,O)l= f h(r,t) e-J2 t dt

f Ih(r,tl dt < . (2.3-30)

The function S(T,O) is referred to as the spreading function 10 and can be

interpreted as a measure of the system time variation. It follows that

if S(T,O) is significantly large over a wide range of *, then the system

is rapidly time varying. Otherwise, if S(T,O) is significant only over a

small range of centered around € 0, then the system changes slowly

with time.

Another description of a time-varying system can be given by finding

the Fourier transform of the time-varying transfer function H(f,t) with

respect to t, i.e.,

B(f, ) = f H(f,t) e - j 2 t dt • (2.3-31)

This is also equivalent to finding the two-dimensional Fourier transform

of h(T,t), because if H(f,t) is replaced by (2.3-17) then

B(f, ) = fi h(T,t) e - j2-T(fT+#t) dTdt . (2.3-32)

-C
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Furthermore, B(f,) is bounded because.0
JB(f,)l f f h(t,t) e-j2 7t(fT+t) dTdt

< ~JI h(r,t)I drdt < (2.3-33)

The function B(f, ) is referred to as the bi-frequency function I0 and can

be interpreted as a measure of the amount of modulation the system output

exhibits when the input is a monochromatic signal. For example, in

section 2.3.1 it was shown thac if the system input is ej2 Tfot then the

output is

j 2rf t
y(t) = H(fot) e (2.3-34)

Therefore, H(fot), the system transfer function evaluated at fo, is the

modulation function of the output signal. The Fourier transform of the

modulation signal with respect to t is then

J H(fot) e - j 2 T # dt = B(f ,) (2.3-35)

which is just the bi-frequency function evaluated at fo with left as a

free parameter. At this point the interpretation of the bi-frequency

function is clear. If the modulation of output signal changes rapidly

with time, then B(fo,4) is significant over a wide range of 4. On the

other hand, if the modulation changes slowly with time as a result of the

system varying slowly with time, then B(fo, ) is significant for a small

range of 0 centered about 0.

The bi-frequency function can also be found by determining the

one-dimensional Fourier transform of S(T,) with respect to T. This can

be seen by finding the Fourier transform of (2.3-29)

* - ~. -
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f S(r,4) e- j f dT

hT,t) e j 2IT dtj e-j 2 Trf T dTCO

ff h(T,t) e-jz2(ft+#t) dTdt (2.3-36)

which is the same as (2.3-32).

Figure 3 shows the relationship among the four time-varying system

functions. Each function can be used to characterize the system because

if any one of the functions is known then it is only a matter of Fourier

transforming (or inverse Fourier transforming) with respect to the

correct variables to find any of the remaining three system functions.

The bi-frequency function can be used to find the Fourier transform

of the output signal y(t). From (2.3-19), (2.3-31), and the definition

of the Fourier transform,

Y(n) f y(t) e-j2v qt dt

Go _

- ff X(f) R(f,t) e-j 2n( n -f )t dfdt
-0

=f X(f) H(f,t) e-j2 (n-f)t dt] df

f X(f) B(f,n-f) df (2.3-37)

Thus Y(n) can be found by convolving X(f), the Fourier transform of the

input x(t), with the function B(f,n-f). The function B(f,n-f) is the

projection of B(f,c) on the line € = n-f to the line 0 = . This is

shown in Figure 4.

2.."'.. - -... -. ... - . .
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2.4 Random Time-Varying System Theory

2.4.1 System Autocorrelation Functions

To this point the time-varying system described by the time-varying

impulse response h(T,t) has been deterministic. In other words, h(T,t)

is known precisely for all T and t. For real world systems this is never

the case, so the behavior of h(T,t) and the three other time-varying

system functions must be described by their statistical properties. This

is done by considering the autocorrelation functions of all the

time-varying system functions. They are

Rh(T,T',t,t') = E{h(r,t) h*(t',t')} (2.4-1)

RH(f,f',t,t') = E{H(f,t) H*(f',t')} (2.4-2)

Rs(r,T', , ') = E{S(T, ) S*(T', ')} (2.4-3)

RB(f,f',,') = E{B(f,4) B*(f',4')} (2.4-4)

Ziomek I0 has shown that with the correct interpretation the four

time-varying filter functions are related through two-dimensional Fourier

transforms. For example, consider the spreading function autocorrelation

function which by (2.3-29) and (2.4-3) is

R S( T, ' , ,) f E{ h(T,t) e-j 2 T>t dt f 0 h*(T' t') 'ej2 rt' dt'}

= _t °  h(rt) h*(r',t') e-j2i( t-'t') dtdt'} (2.4-5)

because the expectation operator and integration are linear operations,

(2.4-5) can be rewritten as

') Eh(r,t) h*( ',t') ed dt (2 -

= Rh(T,T',t,t') e -j ,( t it )dtdt'. (2.4-6)
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Note that (2.4-6) does not express RS( F, ' as a two-dimensional

Fourier transform of Rh(T,T',t,t'), even though it has a similar form.

This is because the two-dimensional Fourier transform of Rh(T,T',t,t')

is actually given by

ff Rh(T, ',t,t') e -j 27( t+ 't ')  dtdt'. (2.4-7)

The difference between (2.4-6) and (2.4-7) can be seen in the argument of

the exponential function in the integrand.

The discrepancy can be cleared up redefining the Fourier transform

with respect to T' and t' as

f h(r',t') ej2 f ' T dT' , (2.4-8)

f h(r',t') e dt' (2.4-9)

Thus, by using (2.4-9), (2.4-6) is the two-dimensional Fourier transform S

of Rh(T,r',t,t') which can be written as

Rh(T,t',t,t') <=> Rs(T,T',,4'). (2.4-10)
t,t' p

Similarly, using (2.4-8) and (2.4-9) the relationships between all the

system autocorrelation functions are

Rh(T,T',t,t' )  < > RH(f,f',t,t' )  (2.4-11)

Rh(T,T',t,t') <= > R(f,f',€, ') (2.4-12)
T, T' , t,t

R<=> R(f,f',p,+') (2.4-13)
T TI

R, (f,f',t,t') <=> RB(f,f',P,$'). (2.4-14) 1
t,t'

Figure 5 illustrates the relationships among all four autocorrelation

functions.

• ° .
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a

where CT is the radial speed referenced away from the scatterer and C is

propagation speed of the medium. It can be shown that the Fourier

transform of (3.2-11) is given by

Y(f) = b X(f-) .j2Tf (3.2-14)

The effect the doppler variable has on the spectrum of the input

signal is illustrated in Figure 8. For a scatterer traveling away from

the receiver, the doppler variable is less than one, causing the spectrum

to move toward lower values of f. This occurs because the point

scatterer is traveling with the expanding wavefront of the transmitted

signal, so it is irradiated by the wavefront for a period of time longer

than the duration of the signal. This causes the reflected signal to be

a time stretched version of the transmit signal changing slower in time

and consequently composed of exponential signals of lower frequency. A

similar analysis holds when the point scatterer moves toward the

receiver. In this case the scatterer is irradiated by the expanding

transmitted wavefront for a period of time less than the transmit signal

time duration. Consequently, the signal is compressed in time, changes

more rapidly than the transmit signal and so is composed of higher

frequency exponential signals. This is also seen from Figure 8, where the

doppler variable is greater than one causing the spectrum to shift to

higher values of f.

Another phenomenon induced by the doppler variable s is a change in

bandwidth for bandpass transmit signals. If the spectrum of the transmit

signal is significant only in the interval (fl,f 2) then the spectrum of

the received signal is significant in the interval (sfl,sf2). This

occurs because the spectrum of the transmit signal is either stretched or
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constant b in (3.2-9) is not a random variable. In either the random or

deterministic case the idea is the same; if spreading or scattering

occurs at only one T and P then the system output is a scaled time and

frequency shifted replica of the input signal. The time shift T is

evident by examining the argument of (3.2-5) and (3.2-9). Finding the

Fourier transform of (3.2-5) or (3.2-9) gives the spectrum of the channel

output signal as

Y(f) = b X(f-$) ej2wfr (3.2-10)

where X(f) is the spectrum of the transmit signal. Examination of the

right side of (3.2-10) shows the frequency shifting of the transmit

signal spectrum by the amount $.

The reflection from a point scatterer that has a given range and

velocity can, under certain conditions, be modeled by a random linear

time-varying system whose output is a scaled version of its input

having a specific time shift and frequency shift 3. This is why the

scattering function described by (3.2-1) was considered. A more accurate

modeling of the point scatterer reflection can be found by considering

Figure 7 where the geometry of a monostatic signal detection system is

shown. Here the reflection of the transmit signal is given by

y(t) = b x(s(t- )) (3.2-11)

where T is the range delay, s is the doppler variable, and b is a random

variable. Applying simple physics to the geometry it can be shown A

that 14 , 15

T 2r (3.2-12)
CT
I - T/C

I + C T /C
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R (t,t') E(Lb x(t-t) ej2T$t] [b x(t'-) ej21$t'j*}. (3.2-4)

Thus the system output can be interpreted as

y(t) = b x(t-) e . (3.2-5)

Time-varying systems whose outputs are of the form of (3.2-5) are used

to model a non-dispersive communication channel.
1 1, 12

A similar result can be derived by considering a time-varying system

for which the spreading function S(T,O) is known. It was shown in

section 2.3.1 that the system output is given by

y(t) f h(T,t) x(t-T) dT. (2.3-7)

Also, from section 2.3.2 the time-varying impulse response is related to

the spreading function by

h(r,t) ff S(r,O) ej 2 1 # t dp. (3.2-6)

Combining (2.3-7) and (3.2-6) gives the output as

y(t) =ff S(T,4) x(t-T) ej21t d~dT. (3.2-7)

If the spreading function is of the form

S(T,p) = b 6(T- ) 6(p-$) (3.2-8)

then the system output is

y(t) - ff b 6(T- ) 6(-)x(t-T) e j 2 t #d~d T

= b f 6(-)x(t-;) e j 2 1r do

- b x(t-t) ej21 t .  (3.2-9)

Notice that (3.2-5) and (3.2-9) are of the same form except that the
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Finally, in section 3.3 it is shown that the expected matched filter

receiver output is maximized for a given communication channel if the

cross-ambiguity function and the channel scattering function are in

constant proportion.

3.2 Signal Detection

3.2.1 Propagation Modeling

Consider a linear random time-varying system which models a WSSUS

channel and has a scattering function of the form

R S(T,1 ) =K 6(T-T) 65( -4) *(3.2-1)

In section 2.4.2, the scattering function was interpreted as a density

function which determines the amount of delay T and frequency shift an

input signal will exhibit at the output of the system. If the scattering

function has the same form as (3.2-1), then it implies that the system

output will be a replica of the input having time shift T and frequency

shift ;. This can also be implied by determining the system output

correlation using (2.4-33) and (3.2-1), i.e.,

R (t,t') K ff x(t-T) 6(- ) S( -$) x*(t'-T) ej2 ( At) dTd
y -

= K f x(t- ) 6(c-$) x*(t'- ) ej 2 1t 0 ( At) d4

= K x(t-;) x*(t'- ) ej2$(At)

K [x(t-;) e j 2 $t] [x(t'-;) ei2 t]*. (3.2-2)

Defining the constant K as

K = E({bj 2 ) = E(b b*} (3.2-3)

then (3.2-2) can be rewritten as

. . -
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CHAPTER 3

MATCHED FILTERING IN SIGNAL DETECTION

3.1 Introduction

In this chapter, the detection of a signal that has been transmitted

through a communication channel whose scattering properties are known is

developed. Detection will be performed by examining the output of a

matched filter receiver. In this receiver structure, the channel output

signal is multiplied by a processing signal, the product integrated, and

the square of the magnitude of the integrator output is used as the

receiver output. If the receiver output exceeds a predetermined

threshold, then it is assumed that a portion of the channel output

contains a transmitted signal; otherwise, if the threshold is not

exceeded then it is assumed that no signal is present. This is also

referred to as a likelihood ratio test. It will be shown that the

expected value of the matched filter response to a channel output

containing a response to a transmitted signal can be written in terms or

the channel scattering function.

In section 3.2.1, the modeling of a signal transmitted through a

non-dispersive channel (point scatterer) as a time and frequency shifted

'7 version of the original transmit signal is presented, and the conditions

necessary for this modeling to be valid are also discussed. Next,

hypothesis testing, the matched filter receiver, and the derivation of

its expected output are presented in section 3.2.2, followed by the

derivation of the expected energy of the channel output is section 3.2.3.

In section 3.2.4 the finite volume property of the cross-ambiguity

function is derived, and it is also shown that the function is bounded.
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Thus, (2.4-31) can be rewritten as

4R (t,t') =ff x(t-T) s(r,cp) X*(t'-T) eJ d Tdt (2.4-33)
y S
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R (t,t') = E{f X(f) H(f,t) ejzlft df j X*(f') H*(f',t') e- z'f 't df')Y - -

E(ff X(f) X*(f') H(f,t) H*(f',t') ej2r(ft -f'c') dfdf'}

= X(f) X*(f') E{H(f,t) H*(fr,t')} e j21(ftft) dfdf'

=f X(f) X*(f') RH(f,f',t,t') ej 2 7( f t - f t ) dfdf'. (2.4-28)
-00A

Under the WSSUS assumption RH(f,f',t,t') - RH(Af,At) where Af A f - f,

and At = t - t', so (2.4-28) becomes

R (t,t') = ff X(f) X*(f') RH(Af,At) e j 2 n(ft - f ' t ' ) dfdf'.
y -c

(2.4.-29)

From (2.4-26), RH(Af,At) can be replaced by its Fourier transform

relationship to the scattering function Rs(r,O), so (2.4-29) can be

restated as

R (t,t') =

Y

ffff X(f) RS(t, ) X*(f) ej 2 7(ft - f't') e j21r(0(At)-(Af)T drddfdf'

(2.4-30)

This multiple integral can be rewritten as the multiple iterated

integ,'3i

R (t,t') = ff X(f) j2rf t-T)df] Rs(t,4)

_x [ X(f') e j27ft(t'-T) df '] ej 2 1(At) dTd4. (2.4-31)

By (2.2-11) the bracketed terms in the integrand of (2.3-31) become

* X(f) e j2nf(t-T) df = x(t-r) . (2.4-32)

*q
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uncorrelated with the value for all f greater than f. + B or less than

fo - B.

The important result of this section is that under the assumption of

uncorrelated spreading, the scattering function can be defined as well as

other system functions based on the original system autocorrelation

functions. These other system functions described by (2.4-20), (2.4-23),

and (2.4-25) are related to the scattering function as either forward or

inverse Fourier transforms. This is illustrated in Figure 6. From the

figure it can be seen that

RH(Af,At) = ff RS(T,) ej 2 1( ( At) - ( f)T) dTd# (2.4-26)

which can be verified by using (2.4-20) and (2.4-25).

2.4.3 The System Output Correlation Function

In this section the correlation function of the linear time-varying

system output under the WSSUS assumption is derived. It will be useful

in the development presented in the next chapter where random

time-varying system theory is applied to signal detection.

By definition, the output correlation function is
13

Ry(t,t') - E~y(t) y*(t')} (2.4-27)

Replacing y(t) by (2.3-19) the correlation function in (2.4-27) becomes

6I

61
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R RB(ffAf,P) 6( -p') (2.4-22)

where

RB(Af,o) - f RS(T,) ej 2 ( f )T dT. (2.4-23)

Thus, RB(Af,O) is the Fourier transform of the scattering function

RS (T,4) with respect to T.

Finally, an expression for RH(f,f',t,t') under the WSSUS assumption

can be found. From (2.4-11) and (2.4-19)

R (f,f',t,') - ff Rh(T,T',t,t') e - j 2
"(fT - f ' T ' ) dTdT'

= ff Rh(T,At) S(T-T') ej 2 (f - f ' ) d Td T'

= f Rh(T,At) 6(T-T') e -j21T(fT-f'T') dT dT.

(2.4-24)

Evaluating the inner integral gives

RH(f,f',t,t') f R(r,At) e -  dT

= H(f,At). (2.4-25)

Equation (2.4-25) is referred to as the time-frequency correlation

function. 1 0  If RH(Af,At) is significant only on a region centered at

(Af,At) - (0,0), then it indicates that little statistical correlation

exists in the systems behavior for either time separation or frequency

separation. For example, if RH(&f,At) = 0 for all kAtl > T, then the

implication is that the system transfer function at time t is in no way

dependent upon the form of the system transfer function for all time

greater than t + T or less than t - T. Similarly, if RH(Af,At) - 0 for

all IAfj > B, then the value of the system transfer function at any fo is

I
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Rh(T,T',t,t') ff RdSd(T,T' , , ) ed ' 0'
-oO

=ff RS(t,4) 6(T-T') 5(p- p') ej27( 0 tt) d~d1'

= f RS(T,4) 6(4-,') ej2e(t-p't') dO' do S(-T').

(2.4-18)

The inner integral, due to the properties of the impulse function, is

equal to eJ21,(t - t '). If the notation t - t' - At is adopted, then

(2.4-18) can be rewritten as

Rh(T,T',t,t') = Rh(T,At) 6(T-T') (2.4-19)

where

Rh(r,At) = f RS(T,) e j 2 1r ( At ) dO. (2.4-20)

Notice that Rh(T,At) is inverse Fourier transform of the scattering

function RS(T,O) with respect to .

A similar result occurs for the autocorrelation function

RB(f,f',p,4'). From (2.4-13) and (2.4-16) it follows that

Go

R(f~f', i,4') f1 RST ',0 eJi 1r(fT-f-rTd T

-f Rs(T, () 6(-') e - j 2
T

( f - f '  T ') dd

(2.4-21)

Again, due to the properties of the impulse function, the inner integral

is equal to e-J2,( f - f ')T. Adopting the notation Af = f - f', (2.9-21) can

be rewritten as

:i: 1
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2.4.2 Uncorrelated Spreading

In their present form, the four autocorrelation functions, (2.4-1)

to (2.4-4), are of little utility for communication channel description.

The additional assumption required is that the spreading function is

essentially uncorrelated with itself for different values of T and 1.

This is equivalent to expressing the spreading function autocorrelation

function as

RS,, = RS(T,O) S(T-T') 6(0-0')

-ms(T,O) mS*(T',O') (2.4-15)

where ms(T,,) = E{S(T,O)}. Assuming that ms(r,p) = 0 then (2.4-15)

reduces to

RS(tt',4, ') = RS(T,4) (t') ( h--') (2.4-16)

where

(T,) E(IS(T,4)1 2 } ) 0 . (2.4-17)
S

The positive semidefinite function RS(T,4) is referred to as the

scattering functionl0 ,11, 12 and, according to Ziomek I0 , can be interpreted

as a density function which determines the amount of delay r and

frequency shift t an input signal will exhibit at the output of a random

linear time-varying system with uncorrelated spreading.

Communication channels that can be modeled using scattering functions are

commonly referred to as wide sense stationary uncorrelated scattering 2
(WSSUS) channels. 10''1

The WSSUS assumption not only effects the form of Rs(T,T',, ,t') but

also the remaining three system autocorrelation functions. Consider

Rh(T,T',t,t') and its relationship to RS(T,T', , ') via the Fourier

transform. Using (2.4-10) and (2.4-16) it follows that

l.*
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compressed due to the doppler variable s. Therefore, it follows that if

the signal bandwidth is defined as

BWTRANS f2- f1  (3.2-15)

then the bandwidth of the received signal is

BW = s f2 - s fl = s (f2- f = s BWTRANS * (3.2-16)

This change in bandwidth can be related to the received signal carrier

frequency defined to be the spectral centroid. Since all signals are

considered to be elements of LI(Rl) and L2(RI) their spectrums are

magnitude integrable by Theorem 2.6, so the spectral centroid is defined

as

f fjX(f)i df

f - . (3.2-17)
°TRANS f jX(f)J df

If the spectrum of the received signal is given by (3.2-14), then the

carrier frequency becomes

-wf f -X()Id
f 0 REC f I f- X(4)I df

f fjX(f)j df
S -

f IX(f)I df

s f . (3.2-18)
TRANS

Combining (3.2-16) and (3.2-18), the received signal bandwidth becomes

f
0RE

BWREC = f BWTRAS (3.2-19)
°TRANS

'" " " .'" .*" "- " " " " " . " " - , -. , . " ::. .,i ::.
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thus the change in bandwidth is

LBW = BWREC BWTRANS

= (s-I) BWTRAN S

f -f
°REC °TRANS
f BWTRANS

°TRANS

BW (3.2-20)
f TRANS
0 TRANS

where f = f - f is the doppler frequency shift. Furthermore,OREC OTAS

from (3.2-20) this frequency shift is also given by

= (s-1) f 0 (3.2-21)

°TRANS

It is easily seen that if the carrier frequency is substantially

larger than the transmit signal bandwidth, the change in bandwidth due to

the doppler shift is small. If a transmit signal in a communication

system is a bandpass signal and possesses a bandwidth much smaller than

the carrier frequency, then for an adequately small range of doppler

frequency shift, the return signal spectrum given by (3.2-14) can be

approximated by (3.2-10), i.e.,

I X( f ) ej2lT _ X(f- ) . (3.2-22)

The term 'adequately small doppler frequency shift' means that the

doppler variable s is never large enough to cause the change in bandwidth

to be a significant percentage of the transmit signal bandwidth.

61

I"
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3.2.2 The Matched Filter Receiver

*[ From this point forward all system input signals are assumed to be

bandpass signals with bandwidths sufficiently small to allow the

communication channel to be accurately modeled as a random linear

time-varying system. The communication channel outputs will be

considered to be the sum of the responses to two random linear

time-varying systems and a noise process. The first system models the

channel scattering; the second system models the medium scattering.

Detecting the presence of a signal is reduced to the hypothesis test:

H0 : r(t) = YREV(t) + n(t) (3.2-23)

H1 : r(t) = yCHN(t) + yRV(t) + n(t) (2.3-24)

where r(t) is the channel output, yREV(t) is the reverberation or clutter

response, yCHN(t) is the response to channel scattering, and n(t) is

noise. It will be assumed that the noise term is white and uncorrelated

with both YCHN(t) and yREV(t). Furthermore, it will be assumed that

YCHN(t) and yREV(t) are uncorrelated. The individual responses due to

the channel scattering and reverberation are given by

YCH(t) = f hHN(T,t) x(t-T) dt , (3.2-25)

0 CO

!YREV(t) f hREV(Tt) x(t-T) dt • (3.2-26)

The hypothesis test will be implemented by testing the output of a

* matched filter given by

2 -272ILI2  I r(t) g*(t) dt (3.2-7

where g(t) is called the processing waveform. If the output Ijl2 exceeds

a threshold y then hypothesis H1 is assumed and a signal has been

-S,'? . .Y .. , '" " . , .,' . . "i-''-,.."Y ? -L ? ?. i. -'-" ' :" ' ':: .. .
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detected. The threshold y is determined to maximize the probability of

detection for given probability of false alarm (Neyman-Pearson test).

The performance of the matched filter receiver for different threshold

settings is presented in Van-Trees I , so it will not be discussed here.

The entire channel model and receiver structure is shown in Figure 9.

Since the communication channel is stochastic, the expected matched

filter output is used to describe the performance of the receiver. For

the response to channel scattering, the expected output is

EIZCHN12} = ECHN I CHN*}

= E{f YCHN(t) g*(t) dt f YCHN*(t') g(t') dt'}

- ff g*(t) ECcHN(t) YCHN*(t')} g(t') dtdt'

= ff g*(t) R (t,t') g(t') dtdt'. (3.2-28)
- YCHN

A similar result holds for the reverberation response, i.e.

Ef{REV 2} ff g*(t) R (t,t') g(t') dtdt'. (3.2-29)
_ YREV

Because it is assumed that the noise is white, its autocorrelation

function is

Rn(t,t') - No (t-t'), (3.2-30)

so the expected value of the receiver output due to the noise term is

E{IZ n 2} ff g*(t) Rn(t,t') g(t) dtdt'

O
=N 0JJ g*(t) 6(t-t') g(t') dtdt'

- N f Ig(t)l 2 dt • (3.2-31)

60
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A figure of merit used to judge the performance of the matched

filter receiver is the signal-to-noise ratio defined as

E (II CHN l 2}
SNR ff2 (3.2-32)

E(II R.EV+1 n I }

where IXREV + In1 2 is the receiver output response to both reverberation

and noise. Because it has been assumed that the noise is uncorrelated

with the reverberation response, the denominator of (3.2-32) can be

written as

E{IZ.REV+1nI12 = E(IXV I } + Re[E(Lv in*}] + Eflinl2

SE(iLREVJ } + E(lzn121 . (3.2-33)

The cross-correlation term vanishes in (3.2-33) because

E{REV £n*} = ff g*(t) E{yREV(t) n*(t)} g(t') dtdt' (3.2-34)

and E{yREV(t) n*(t)} is assumed to be zero. Thus, the SNR in (3.2-32)

can be rewritten as

E{ I Z.CHNI 21

SNR 
2 (ZCN

ESIZg* 2vl2 } + E(I n12

f* g*(t) R (t,t') g(t') dtdt'

S-4 YCHN o. (3.2-35)

ff g*(t) R (t,t') g(t') dtdt' + N f Ig(t)12 dt
-c YREV o-D

* Although the SNR has been somewhat simplified in (3.2-35) both the

numerator and denominator can be reformulated in terms of the scattering

functions for both the channel scattering and reverberation. Consider

* the numerator in (3.2-35), using (2.4-33) and expressing the channel

scattering function as R CHN(T,), the expected matched filter output is

0'
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E{I CHN 2} 

ff g*(t) fx(t-T) R (T,0) x*(t'-T) e 2 ( ) dTd g(t') dtdt'

= ff x(t-T) g*(t) e J h1T-  dt RS T9)

-00 aoCHN

x [ 0x(t'-T) g*(t') e j 2 ir ( t ' - T/ 2 ) dt' dTd¢

x [ x(t'-T/2) g*(t'+T/2) ej2rot dJ drd4. (3.2-36)

The bracketed terms in the integrand of the last equation of

(3.2-36) is called the uncertainty function and is written as

A j 2r#)xx,g(r,4) f x(t-T/2) g*(t+t/2) e dt. (3.2-37)

Using this definition, (3.2-36) can be restated as

E(IlCiN 2l _ff IXg(T, )12 RSCHN(T,) dTdO (3.2-38)

where the function Ix.,g(T,4)1 2 is referred to as the cross-ambiguity

function. The same reformulation can also be applied to the denominator,

so if RREV(T,) is the reverberation scattering function, the SNR can

be written as

ff IXxg(T, )2 dSCHN(T' dd,

SNR =

If Ixxg(T,O)) 2 RSREv(T,O) dTd + N f lg(t) 2 dt

(3.2-39)

~. -
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If the SNR is used as a performance measure for the matched filter

receiver, then optimization (increasing the SNR) can be accomplished by

either attempting to decrease the reverberation response without

significantly decreasing the channel response or increasing the channel

response without significantly increasing the reverberation response.

Stutt 16 , and Spafford1 6 ,17 , have been successful in optimizing the SNR

for a point scatterer embedded in doubly spread reverberation by altering

the processing waveform so as to minimize the denominator of (3.2-39).

In this thesis, the numerator will be increased by altering the

processing signal. This will imply an increase in SNR if the denominator

of (3.2-39) does not also significantly increase. If the only

interfering signal is the white noise process, then the first term in

the denominator is zero (no reverberation response). In this case,

increasing the numerator guarantees an increase in SNR.

3.2.3 Return Energy and the Scattering Function

Using a result from the last chapter, the expected value of the

energy of the system response y(t) can be found. From (2.4-33) the

system output correlation function is

Efy(t) y*(t')} = R (t,t')* Y

CO j2rr( at)
= Hf x(t-T) RS(T, ) x*(t'-T) e 2  dTd, (3.2-40)

where At = t - t'. Setting t - t' gives the expected system output power

as

2 cc 2
E(ly(t) 2 } i'f Ix(t-T) 2 RS(T,) drd • (3.2-41)

Now the expected system output energy, called the return energy, is
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defined as

2 12jE = E{f Iy(t)l dt} = f E(ly(t)I } dt. (3.2-42)
-2

Substituting (3.2-41) into (3.2-42) gives

m = fff Ix(t-T) 2 RS(T, ) dzddt
r

= f Ix(t-T) 2 dt RS(T,4) dTd.

Et II RS(T, ) dTd (3.2-43)

where

2 2
Et = f Ix(t-T)I dt = f Ix(t)I dt (3.2-44)

is the system input energy or transmit energy.

At this point several statements can be made. First, in any

practical communication channel it can be assumed that the return energy

will be finite. Second, the return energy can be expected to be less

than that of the transmitted energy. This occurs because a scatterer can

subtend only a small portion of the transmitted wavefront, thus it

reflects only a fraction of Et. Furthermore, some of the transmitted

energy is lost due to absorption loss of the medium and spherical

spreading of the transmitted and reflected wavefronts. Therefore it can

be concluded that

cc E
ff RS(T,4) dTd = E L i 1 (3.2-45)

Furthermore, because the scattering function is positive definite

ff RS(T,4) dTdO ff IRs(T,O)I dTdO (3.2-46)

- . . .
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and so it is an element of Ll(R 2 ).

Scattering functions that are significant over a region of the (r, )

plane are said to describe doubly-spread or doubly-dispersive

communication channels. Such scattering functions will be considered in

this thesis, and in Chapter 4 a method for optimizing a receiver to

detect a signal that has been transmitted through a doubly-spread

communication channel is presented.

3.2.4 Properties of the Cross-ambiguity Function

From the SNR equation (3.2-39) it is easily seen that the

cross-ambiguity function in part determines the performance of the

receiver. Since the channel and reverberation scattering functions are

not free parameters, optimization of the receiver response to a signal

can only be done by altering either the transmit signal x(t), the

processing signal g(t), or both. Since these signals are related to

receiver response through the cross-ambiguity function, it will play a

major role in the optimization procedure developed in Chapter 4. Since

the cross-ambiguity function is significant to the theory developed in

this thesis, it is appropriate to discuss some of its properties.

The most important property of the cross-ambiguity function is that

its volume is finite. To prove this it is necessary to find a new form

of the uncertainty function. From (3.2-37), and by expressing the

waveforms x(t) and g(t) as inverse Fourier transforms gives

x. ,(r,) f X(t-T/2) g*(t+T/2) ej27lt dt

L X(f) ej27f(t -T/ 2 ) df ] [i G(n) ej27 n(t+T/2) d] ej 2 *t dt

If X(f) G*(n) e dt e dfdn. (3.2-47)

,.,--,'."-"d ~ k h'J :"" ,,ej'" -l~) dt ej2- "'T"...f'" .. .)T " -/"
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The bracketed term in the integrand of (3.2-47) can be replaced by a

delta function, i.e.,

f e j 2 ( f -n + )t dt = 6(n-f-p) (3.2-48)

-0

Replacing (3.2-48) in (3.2-47) gives

Xxg(T,) = ff X(f) G*(n) S(n-f-,) ej2 (f+n)T/2 dfdn

= ff X(f) G*(f+O) e-j2l(f+ 0/2 )T df. (3.2-49)

Equation (3.2-49) now expresses the uncertainty function in a useable

form.

The volume of the cross-ambiguity function can now be found. From

the definition of the cross-ambiguity function in (3.2-49), the volume is

given by

2V = ff Ix (T,, )I dTd = ff XX,g (T, ) y*(T,) dTd

=ff X(f) G*(f+ ) ej2T(f+ /2)T df

x X(n) G*(n+) j 21( n+/2)T d dTd,

fff X(f) X*(n) G*(f+) G(n+$) e d dndfd4.
-00

(3.2-50)

As in (3.2-47), the bracketed term in the (3.2-50) can be replaced by an

impulse function thus reducing (3.2-50) to
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V = fff X(f) X*(n) G*(f+ ) G(n+ ) 6(f-n) dndfd

= ff X(f) X*(f) G*(f+p) G(f+p) dfdp

= f IX(f)l 2 JG(f+ )1 2 dfdO. (3.2-51)

Because it is assumed that both the transmit waveform x(t) and the

processing waveform g(t) are elements of Ll(Rl) and L2(RI), by Theorem

2.6 the integral of the squares of their respective Fourier transforms

are finite and by convention are equal to the energies of each signal,

i.e.,

f IX(f)1 2 df = E < - (3.2-52)x

IG(f)i2 df = E < - (3.2-53)
_ g

Therefore, from (3.2-51)

V = f IX(f)l2 IG(f+o)l2 d df

= E f IX(f)1 2 df
g _CO

= E E < . (3.2-54)
g x

Thus, the volume of the cross-ambiguity function is finite and is equal

to the product of the energies of the transmit and processing waveforms.

By convention, the value of the processing signal is dimensionless

as opposed to the transmit signal which may have units of either volts or

amperes. Therefore, Eg is a dimensionless number and the volume of the

cross-ambiguity function is in units of energy.
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Another property of the cross-ambiguity function is that it is

bounded. This can be shown by applying the Schwartz inequality, i.e.,

IXx,g(T, )l2 = x(t-T/2) g*(t+T/2) eJ27t d

f Jx(t-T/2)j 2 dt f lg(t+T/2)1 2 dt (3.2-55)

By definition, the integrals on the right side of the inequality in

(3.2-55) are the energies of the transmit and processing signals, so

tXxg(,4)1 2 < E ( E . (3.2-56)

Thus the cross-ambiguity function is bounded.

3.3 Principles of Matched Filter Receiver Optimization

From this point forward it will be assumed that the transmit signal

x(t) and processing signal g(t) are unit energy waveforms, i.e.,

f 0x(t)l2 dt = 1, (3.3-1)

f Ig(t)1 2 dt = 1. (3.3-2)

These assumptions will cause no loss of generality in any of the theory

developed in this thesis. A consequence of (3.3-1) and (3.3-2) is

ff IX.~g(t, ) 2 drd = E 1 (3.3-3)- x g

and

IXx~g(t4)12 4 Ex E = 1. (3.3-4)

Thus, the cross-ambiguity function has unity volume and is bounded by

one.
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J(g+in) = J(g) + 6J(g,n) + 6 2 j(g, n) +

+ .. 6(m)JTn) + ... (4.3-21)

where

6(m)j(g,n) = lim -- J(g+en) (4.3-22)

s-N0 dEm

and is referred to as the m-th Gateaux derivative of J(g) at g(t) with

increment n(t). In section 4.3.1, it was shown that J(g+en) is a second

degree polynomial in E (see equation (4.3-5)); therefore, by examination

of (4.3-22) all Gateaux derivatives of order three or higher are equal

to zero. Thus,

J(g+n) = J(g) + SJ(gn) +1 6 g,n) +

= J(g) + 2 Re{f n(t) 0*(t) dt} + J(n), (4.3-23)

by (4.3-8), (4.3-19), and (4.3-21). It is fortunate that the Taylor

series can be truncated to only three terms since this will allow for an

accurate analysis of the optimization procedure developed later.

4.3.4 Properties of the Gradient Function

In section 4.3.1, the gradient function, given by

()=- f ,g (r, ) RS(T,c) x(t-T) ej 2
1T4(t

- T/2) dTd4, (4.3-9)

arose from rearranging the integral that defined the first Gateaux

differential of the cost functional J(g). As with the cross-ambiguity

function, since the gradient function is significant to the theory

developed in this thesis, it is appropriate to discuss some of its

properties.
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Therefore,

lim C2 J(8)- 2 J(g'n'8)1 lir a 0. (4.3-17)
118aI2 -*0  2 1i 2.+0  2

Thus, (4.3-15) holds for SJ(g,n) as given by (4.3-6) so J(g) is twice

Frechet differentiable and 6J(g,n,B) describes a unique and continuous

linear mapping of all a(t) in L2(RI) to R1 .

For the purposes of analyzing the behavior of J(g) as g(t) changes

to g(t) + B(t), the second Frechet derivative must be evaluated with

n(t) = a(t). In this case, the second Frechet derivative is written as

6 2 J(g,n,n) = 62J(g,n). (4.3-18)

From (4.3-18) it follows that for the cost functional given by (4.1-1),

the second Frechet differential is

j(g,n) = 2 ff Ix gn(T, )i 2 RS(T,4) dTd = 2 J(n). (4.3-19)

Note that because the second Frechet differential is proportional to the

cost functional evaluated at n(t), the cost functional itself is a

continuous mapping.

4.3.3 The Generalized Taylor Expansion

It is well known from elementary calculus that the function of a

real variable, f(x), can be written as a Taylor series, i.e.,
12

f(x+Ax) = f(x) + f'(x) Ax + _ f''(x) (Ax) 2 +

+ f(m)(x) (Ax)m +... (4.3-20)

It can be shown that the Taylor series can be generalized for functionals

that map one linear space to another1 9,20 . In this case the Taylor

expansion for the cost functional is expressed by
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I-i

6J(g,n,i) = lim - - Reff XTg+ ,(tO) X*,n(T,O) RS(T,$) d d

e+0 -d
- lim - 2 Re(ff xg(t,¢) x, ,(r,c) R(,4) dTdp

+ 2 e Re{ff Y,(r,4) x,(r,4) RS(T,¢) dTd}

2 Re(ff Xa(-r,$) Tn(T,$) RS(T,$) dTd4}. (4.3-14)

By its definition, the second Gateaux derivative is just the first

Gateaux derivative of 6J(g,n) with respect to g(t). In effect, 6J(g,n)

has been treated no differently than any other functional whose first

Gateaux derivative has been sought. Thus, 62j(g,n,a) gives the first

order change in SJ(g,n) when g(t) changes to g(t)+a(t).

As with the first Gateaux derivative, 62j(g,n,a) describes a

continuous and unique mapping from L1(R1 ) n L2(R2) if it is also the

Frechet derivative of J(g,n) with respect to g(t). Equation (4.3-13)

describes a second Frechet derivative if 6J(g,n) is a Frechet derivative

of J(g) and if for a fixed g(t) in L1 (R1 ) n L2(RI), and a(t) an arbitrary

element in L2(R1 ), then

lim naJ(g+)0n)-.J(g'n)-&2J(g'n')I - O (4.3-15)
UaII +0 aI I 2

2

Without loss of generality, the increment a(t) can be replaced by ez(t)

where E is a real constant and lzll2 = 1. The differential of the two

first Frechet derivatives of J(g) in the numerator of (4.3-15) can be

found from (4.3-14) and (4.3-6) to be

6J(g+B,n) - 6J(g,n)

= 2 Re(Jf x, 6(T',) X*x,n(t,1) RS(T,b) dTd}.

62j(gn,). (4.3-16)-

. .. ::, ..: - . : : : :- -: 7 :: : [ : ;::; ; _A
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lrn IJ(x+ez)-J(x)-SJ(g, z)I
F 0 u zu2

lim jl f f Ixz(r, )I 2 RS(t,) dTd = 0. (4.3-12)
( . 1

This shows that SJ(g,n) is a Frechet derivative and that it is a

unique and continuous mapping from the set of all functions in

LI(Rl) n L2(RI) to R1.

4.3.2 The Second Gateaux Derivative

Although the second Gateaux derivative will not be used in the

development of the optimization procedure presented later, it will be

useful in the analysis of its performance and convergence. Furthermore,

the definition ultimately used does not express the second Gateaux

derivative in its most general form; however, it will be suitable for

analyzing the behavior of the cost functional.

The second Gateaux derivative of the cost functional J(g) with

increments n(t) and $(t), where g(t) is in LI(R I) and L2(RI), and n(t)

and a(t) are arbitrary elements of L2(RI) is given by19, 20

6JJ(gna) - urn 6j(g+Can). (4.3-13)

In section 4.3.1 the first Gateaux derivative was expressed by (4.3-6),

thus, by applying the definition in (4.3-13), and using the property of

the cross-ambiguity function given by (4.3-3), the second Gateaux

derivative is

I
• "

, ° [ .ii. . -..... . -,.,,,, - [1 ' .- , _ , . - -. , .. . •, . . - . : -7/ . - -.. < ? . - . . :
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dJ(g,n) 2 Re ff n(t)$*(t) dtl 2 Re{(<n,>} (4.3-8)

where 0(t) is called the 'gradient function' defined as

CO

(t) =- ,g (T,4) RS(T,) x(t-t) e j 2 ( t - T/ 2 ) dTd. (4.3-9)

The properties of the gradient function will be discussed in section

4.3.4.

The Gateaux derivative of J(g) as given in (4.3-6) and (4.3-8)

defines a linear transformation (mapping) from the set of all functions

in LI(RI) f L2(RI) to RI. However, from its definition, the existence of

a Gateaux derivative does not imply that it is a continuous or a unique

mapping of one linear space to another. This occurs because the norm of

the space L2 (RI) is not involved in the definition given by (4.3-1).

Continuity and uniqueness can only be guaranteed by a Frechet derivative.

By definition, the Gateaux derivative J(g,n) is also a Frechet

derivative 2 ,19 ,2 0 if for a fixed g(t) in LI(R I) and L2(RI ) and an

arbitary n(t) in L2(Rl), then

lim IJ(x+n)-J(x)-6J(gfl)I =0 . (4.3-10)
IIn r 2 2+0 U "11l2

Without loss of generality, the increment n(t) can be replaced by Ez(t)

where e is a real constant and Ilz112 = 1. The numerator of (4.3-10) can

be found from (4.1-1), (4,3-5), and (4.3-6), i.e.

J(g+ez)- J(g) - 6J(gen)

2 ,2 RS(T,) dTd. (4.3-11)

Applying (4.3-11) to (4.3-10) gives
IP

p

.
...................-
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ff Xx,2+cn(T, RS(T,) dTdO

=-f I xgt(T,1)2 RS (T,) drd4

+ 2 e ff Re{JXxg(Tr,4) y ,(T,0) Rs(T,) dTd

+ifi Ixxtj ii )I R :::T,0 dddt

=J(g+en) (4.3-5)

which is a second degree polynomial in C. Evaluating the derivative of

(4.3-5) with respect to e and taking the limit as e + 0 gives

the first Gateaux differential of the cost functional J(g) as

6J(gtn) =2 ff Re{Xx,g(T,4) 4n(T,)} RS(T,) d~d

2 Re (ff 4x,g(.C,) X,(T ,) RS(T, ) dTd }. (4.3-6)

Equation (4.3-6) can be rewritten into a form that will be

convenient later. This is done by replacing the conjugated uncertainty

function in the integrand by its definition in (3.2-37), changing

variable of integration, and rearranging terms as follows:

6J(gn)

2 Refff X (t,4) If x(t-T/2) n*(t+r/2) e j2 r dt RS(-,.) dTdW}
-cc

Re(ff x (T,0b) x*(t-T) n(t)e dt Rs(, ) dTd }

-~ x~ fl~teJ2  -j /21 r s(t )

2 Re{f n(t) ,f Xxg(r ) RS(Tt) x*(t-T) e-j2 *(t-tl2) dTd dt.

(4.3-7)

Equation (4.3-7) can be more compactly written as

.J ' .- . . "::-: . : . : i" -. :i ., . ".< :i -. .- . -. :'" ".-: -. ? .. " -.. "........-.--.-..
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second Gateaux derivatives of the cost functional. They are often given

the interpretation of being generalized directional derivatives over a

linear space, and in the engineering literature these derivatives are

referred to as the first and second variation.

Let g(t) be an element of LI(R I) and L2(ELI) and n(t) be an arbitrary

element of L2(Rl), then

d "

6J(g,n) = lim dJ(g+n) (4.3-1)

is the first Gateaux differential of J(g) with increment n(t) 2 ,19 ,2 0 . To

start, it is necessary to find the derivative on the right side of

(4.3-1), therefore,
dJ(g+tn) f

d- ff I X"g+j(T ,)l 2 RS(T, ) dTd . (4.3-2)

The integral in (4.3-2) can be expanded as a polynomial in E. From the

definition of the uncertainty function by (3.2-37),

xx,g+c (T,) = f x(t-T/2) [g(t+T/2) + En(t+T/2 ]* ej 2 1r t dt

= f x(t-T/2) g*(t+T/2) eJ21Tt dt

+ C f x(t-r/2) n*(t+T/2) e j 2 t dt

f Xx1g(T, ) + E X., n(T,) (4.3-3)

It follows that the cross-ambiguity function derived from (4.3-3) is

Ix, ,g+i(t,1,,) 2 I Xx,g(T, )l 2 + 2 Re(Xxg(T, ) T,)

+ IXx,n(T,,)l 2 . (4.3-4)

Substituting (4.3-4) into the integral of (4.3-2) gives
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Figure 10. The set S in R consisting of all

vectors lying on the unit circle.
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By Theorem 4.1, the supremum on the right side is uniquely known, giving

jf 2 2+I-2lxtinf 1 x-y 11 2 lxll2  + 1 2 1x112  (4.2.8)
y(t) E S

where y(t) = x(t)/11x112. The right side of (4.2-8) is a quadratic

equation of the norm, and it can be easily verified that its value is

always greater than or equal to zero. Thus, the unique best approxima-

tion to any x(t) with a non-zero norm by an element of the set S defined

by (4.2-5) is Yo(t) = x(t)/llxll2. This completes the proof of the

theorem.

Although Theorem 4.2 is stated in terms of L2(RI), it can extend to

other Hilbert spaces. This can be illustrated by considering a Hilbert

space familiar to nearly everyone; the set of all two-dimensional vectors

R2 (the real plane). Figure 10 shows a portion of R2 near the origin and

the set S, which in this case is the unit circle. Also shown is the

vector x and its best'approximation in the set S, the vector yo. It is

intuitively clear that the best approximation is mearly a scaled version

of x that has unity length. Other vectors in S are shown, and it can be

seen that the norm of the difference vectors between them and the vector

x are not minimal.

4.3 Gateaux Derivatives of the Expected Matched Filter Output

4.3.1 The First Gateaux Derivative

As mentioned in the introduction to this chapter, the cost

functional used in the optimization of the matched filter receiver is its

expected output subject to the constraint that the value of the norm of

both the processing signal and transmit signal is unity. To develop and

analyze the optimization procedure, it is necessary to find the first and
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Proof By the properties of the complex numbers and the Schwartz

inequality

Re<x,y> < I<x,y>l 4 U1xll2  Hlyll 2 .  (4.2-3)

The right inequality of (4.2-3) is an equality if and only if

y(t) = X x(t) where X E R1 . Because y(t) is an element of S, either

X 1/1x112 or X = -I/11x112, causing <x,y> to be a real quantity, thus

Ref<x,y>} - ± <x,y> ± + lxU 2. (4.2-4)

Therefore, the left inequality of (4.2-3) is an equality and Re{<x,y>} is

maximized only when X = I/1lx112. Equation (4.2-2) follows immediately.

Theorem 4.1 is used to prove the following theorem.

Theorem 4.2 Let S be the set of all functions in L2(Rl) whose norm is

unity. For any non-zero element x(t) in L2(RI), the unique best

approximation by an element yo(t) in S is given by yo(t) = x(t)/11x112.

Proof Finding the best approximation is defined as a minimum norm

problem; in other words, an element yo(t) is sought such that

2 i 2 ) 0. (4.2-5)
y(t) E S

In the Hilbert space L2(RI) the norm can be defined in terms of the inner

product, thus (4.2-5) can be restated as

inf Ox-yll 2  inf <x-y,x-y>
y(t) C S y(t) C S

yinf (xil 2 + Ifyl12 - 2 Re(<x,y>}}. (4.2-6)
y(t) E S 2 2

Since y S then ttyll 2 = 1, therefore,

inf x-yR2 = 2 + I - 2 sup Re(<x,y>}. (4.2-7)

y(t) E S y(t) E s

0 " " -' . : . ' .. i . -~ -'i i .- ." i ? - . ., ,: .l -' , ' ..: " , .- -.." -. -
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In section 4.2 the set of unit energy signals is discussed, and a

theorem is stated and proved giving the best approximation of any element

in the space L2(RI) by a unit energy signal. In section 4.3, the first

and second Gateaux derivatives (also known as first and second variations)

of J(g) are derived as well as its generalized Taylor expansion, and in j
section 4.4 the procedure for optimizing J(g) subject to the constraints

(4.1-2) and (4.1-3) is presented. Finally, in section 4.5 several

numerical examples of optimizing a matched filter receiver using this

procedure are given.

4.2 The Set of Unit Energy Signals

As indicated in Chapter 1, all functions used to represent signals

will be elements of L2(RI) and LI(RI). Furthermore, it was established

in section 3.3 that the energies of both the transmit and processing

signals are unity. Thus, it follows that the set of all functions in

L2 (RI) whose norm is equal to unity is of considerable importance to the

development of the theory presented in this chapter. Two theorems are

stated and proved below. The second theorem will be applied in the

development of the optimization procedure developed in Chapter 4.4.

Theorem 4.1 Let x(t) and y(t) be non-zero elements of the complex

Hilbert space L2(Rl). Let y(t) be an element of the set of all functions

in L2(RI) with unit norm (unit energy), i.e.,

S = (y(t) E L2 (Rl) I iiyU2 = I}. (4.2-I)

If x(t) is fixed then the value of Re(<x,y>} is maximized if and only if

y(t) - x(t)/9xiI2 giving

sup Re(<x,y>} = ilxg 2. (4.2-2)
y(t) P S

. . . . - . . . . -
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CHAPTER 4

OPTIMAL SIGNAL DETECTION

4.1 Introduction

In this chapter an iterative optimization procedure is developed to

increase the expected matched filter receiver response to a signal that

has been transmitted through a communication channel whose average

scattering properties are known. As might be expected, the cost

functional used in this procedure is

J(g) = EI 2 = fx (,) 2 dTd, (4.1-1)

where an increase in the value of J(g) is sought subject to the

constraints

1xq = f Ix(t)1 2 dt = 1, (4.1-2)

2 2

Ugil2 =f Ig(t)I dt = 1. (4.1-3)

In other words, both the transmit and processing signals have unit

energy. The cost functional is defined for all x(t) and g(t) in L2(Rl),

and this can be shown by examining the integrand of (4.1-1). Because

x(t) and g(t) have finite energy, the value of the cross-ambiguity

function is bounded for all T and by (3.2-56). Furthermore, it was

shown in section 3.2.3 that the scattering function has finite volume,

thus

-' (g) < 0XII2  1gq 2  ff RS(-r,o) dTdO < ",(4.1-4)

showing J(g) exists for all x(t) and g(t) in L2(R1 ). In fact, it means

that J(g) is a bounded functional over the space L2(Rl).

. , . .U ' . . ." .' , ., . , . - ,., : . . . . . . .
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function is bounded by unity the constant K is constrained by

1max RF ) (3.3-9)

R 1  R2 SCHN

thereby causing the right side of (3.3-8) to be less than or equal to

one for all (r,) E RIfR 2.

Equations (3.3-8) and (3.3-9) imply that if the cross-ambiguity and

scattering functions are constrained to be non zero in the regions R1 and

R2 , respectively, then the expected value of the matched filter receiver

response to the channel output is maximized if the cross-ambiguity

function has the same shape as the channel scattering function in their

region of intersection in the (T, ) plane. If the regions R1 and R2 have

finite areas of nonintersection, then some of the volume of the

cross-ambiguity and channel scattering functions are lost when their

product, the integrand of (3.2-38) is formed. This implies that an

improvement in the matched filter response can occur if the cross

ambiguity function and the scattering function subtend the same region in

the (r,O) plane. Since the channel scattering function is not a free

parameter, improvement in receiver performance can only be attained by

altering the shape of the cross-ambiguity function which can be done by

changing either the transmit signal, the processing signal, or both. A

method for optimizing the matched filter output by altering the

processing signal is presented in Chapter 4.

• . " ,. ..
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Consider the expected value of the matched filter receiver output to

a received signal which was shown in section 3.2.2 to be given by
[0€

EIZ CHNI 2 I f IXx,g(T, ) 2 RSCHN(T,4) drd4. (3.2-38)

If R1 is defined to be the region of the (T,4) plane where the cross-

ambiguity function is non-zero, and R2 is defined to be the region where

the scattering function is non-zero, then (3.2-38) can be restated as

E{lJ CHN 12} = If IXx,g(T, )I2 R5  (T,4) dTd4. (3.3-5)
R1 fl R2  RN

By the Schwartz inequality an upper bound for (3.3-5) can be found,

E{Iz C } R1 If R2 xg RSCHN(T,') dTd

If IXxg(T,)I 2 dTd If RSCM(T,) dTd
-00 -00 CH
Er = E 1 1. (3.3-6)
E r
x

Regardless of its statistical nature, the matched 'ilter output is, in

0 fact, always less than unity because from (3.2-27), (3.3-1) and (3.3-2),

2CH' = ~ CN~ g*(t) dt

SI IYCHN(t)l 2 dt I Ig(t)j 2 dt

f jx(t)j 2 dt I )g(t)j 2 dt = 1. (3.3-7)
-w -w

From the Schwartz inequality the matched filter receiver output can

attain its bound if and only if

4 IXx,g(T, )1 2 = K RSCHN (T,) for (T,p) RIrlR2 , (3.3-8)

where K is a positive real constant. Because the cross-ambiguity

6
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Property 1: The gradient function D(t) is a bounded function if the

transmit signal x(t) is also bounded, i.e., Ix(t)I < K for all t RI.

This can be shown by first finding the magnitude of D(t) and

applying the Schwartz inequality to (4.3-9) as follows:

[ D(t)l < ff Ixg (T,d ) R s(T, ) [X(t-T)l d~d

K ff IxXg(T,)l) RS(T,O) dTd . (4.3-24)

Furthermore, because the scattering function has finite volume, and

[Xx,g(T,)I 4 I by (3.3-4),

I (t)[ - K f7 RS(T,) dTd4 < w, (4.3-25)

so D(t) is a bounded function.

Property 2: The gradient function (t) is an element of LI(R 1 ) and

L2 (RI).

Showing that D(t) E L1(RI) can be done by using (4.3-24),CO
I 1(t)l dt 4 f f lx, g(T,P)l RS(T, ) Ix(t-T)j dTd dt

-00 -001 C

= ff !X.,g(T,) RS(r,4) Ix(t-T)I dt dTdo. (4.3-26)

Since x(t) is in L1(R 1) and L2(R1 ) and I~x,g(t, )i I,

f (t)I dt 4 11x111 ff RS(T,O) dTdp 1 '. (4.3-27)

Hence, D(t) is magnitude integrable, and it is an element of Ll(RI).

Also, because it is bounded, by Theorem 2.7 it is also an element of

L2(Rl).
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Property 3: The inner product of the processing signal g(t) and the

gradient function D(t) is equal to the value of the cost functional,

i.e.,

<g,0 f g(t) 0*(t) dt = J(g) • (4.3-28)

This is shown by expanding the left side of (4.3-28) using the

definition of the gradient function in (4.3-9) and rearranging the

integrand as follows:

=<g, f g(t) f x ,g(T, ) X*(t-T) e-3 drd dt

Sff Xx'g (T, ) R S(T, ) x*(t-T) g(t) e - j 2 " ( t - T/ 2 ) dt dTd

f= f XX'g(Tl) RS(T,O) x(t-r/2) g*(t+r/2) e j 2 = o t dt dd .
. (4.3-29)

The bracketed term in the integrand of (4.3-29) is equal to the

uncertainty function xx,g(T, ), so the equation can be rewritten as

<go = ff Ix gx(r, )i 2 RS(r,,) dTd,. (4.3-30)

But the right side of (4.3-30) is the cost functional, thus <g,O> -

J(g).

By itself, this property is of little consequence. It is, however,

useful in establishing the next, and final, property of the gradient

function.

Property 4: The norm of the gradient function 0(t) is greater than or

equal to the value of the cost functional.

..-
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Because both g(t) and 0(t) are elements of LI(R 1 ) and L2 (R 1 ) Zhey-

both have finite energies, in fact, IlU2 = I by convention. Therzfore,

by applying the Schwartz inequality to (4.3-28) gives

J(g) = IJ(g)l -<g,>l 4 ugl 2 IDII2 = ll Da2 .  (4.3-31)

4.4 Optimization of the Expected Matched Filter Output

4.4.1 The Increment of the Cost Functional

In section 4.3.3 it was shown that the cost functional could be

expanded into the generalized Taylor series

J(g+n) = J(g) + 2 Re{f n(t) 0*(t) dt} + J(n), (4.3-23)

where g(t) is the processing signal and an element of Ll(R 1 ) and L2(RI),

n(t) is an arbitrary element of L2(Rl), and 0(t) is the gradient

function given by

t ff X T (,4) RS(r,) x(t-T) e j 2 Tp(t-t/2) dTd4. (4.3-9)

Consider the increment of the cost functional J(g) with increment q(t),

defined as

AJ(g,n) = J(g+n) - J(g)

= 2 Reff n(t) 0*(t) dt} + J(n). (4.4-1)

Since J(n) is always a non-negative number, if the increment AJ(g,n) is

to be positive, then it is necessary to choose n(t) in such a fashion to

guarantee that the first Gateaux derivative, the integral term in

(4.4-1), is positive. This can be done by choosing the increment n(t)

to be

r(t) = 0 {(t) (4.4-2)

6~I - . " ' ' ' - " " -' ' " i . . .i ] ." ,
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where pis a positive real number. Using this rule causes the increuent

of the cost functional to become

AJ(g,n) = 2 y f I¢(t)1 2 dt + J(Y) = 2 y 2 + JY) > 0 .(4.4-3)

2

Notice that by the Schwartz inequality, choosing the increment using

(4.4-2) maximizes the value of the first Gateaux derivative.

The choice of the name 'gradient function' for the function 0(t) can

now be easily explained. Consider the analogy of being at some point on

a surface which can be modeled as a function of two real variables

f(x,y). If one wants to move in the direction that will cause the

greatest positive change in elevation, then one moves in the direction of

the gradient vector given by

af af

Vf(x,y) = - x (x,y) i + i (x,y) J. (4.4-4)

By choosing the direction vector of travel to be v y Vf(x,y) where y is

a positive real scalar will, to first order, guarantee a positive

increase in elevation, denoted by h, which is approximately

Ah = y llVf(x,y)ll2  (4.4-5)

where 11.11 is the vector norm given by the Pythagorean theorem. Notice

4 the similarity between (4.4-4) and the first term on the right side of

(4.4-3).

Equation (4.4-4) essentially extends from the concept of a

4 directional derivative. In the general case the value of the change in

elevation approximated by

Ah = <yn, Vf(x,y)> = y <n,Vf(x,y)>, (4.4-6)

where n is a direction vector with unity length and y is the horizontal

length of travel. This relates well to the first Gateaux derivative

*
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(first variation) J(g,i), which is to first order an estimate of the

change of the value of the cost functional when the function g(t) changes

to g(t) + n(t). In this case, if n(t) = y z(t) then

6J(g,yz(t)) = 2 Re(f y z(t) *(t) dt} = 2 Y Re{<z, 1>. (4.4-7)

Since both (4.4-6) and (4.4-7) are of a similar form it is natural to

refer to g(t) as the 'gradient function.'

4.4.2 The Gradient Projection Algorithm

In the last section, it was shown that if the increment n(t) was a

scaled replica of the gradient function 0(t), then the increment of the

cost functional is positive. If this approach is used to choose a new

processing signal g(t) by letting g(t) = g(t) + n(t), then it can be seen

immediately that there is no guarantee that this processing signal has

unit energy. Therefore, the increment n(t) must be chosen not only to

insure a positive change in the cost functional but also guarantee that

the new processing signal has a unity norm. In other words, i(t) - g(t)

+ n(t) is an element of the set S where

S = {y C L2(RI) I oyll2 = 1). (4.2-1)

One way to do this is to set n(t) = y 4 (t), giving a new processing

signal equal to g(t) + Y 4(t) and then projecting this function onto the

set S by using its best approximation in S which by Theorem 4.2 is

0(t) = g(t) + y D(t) (4.4-8)

IIg+YD 2

The actual increment, denoted as 6g(t), in this case is

6g(t) = i(t) - g(t) g(t) + Y '(t) - g(t. (4.4-9)0gD
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Figure 11 illustrates the process of choosing a new processing

signal if the analugy of signals represented by vectors is used.

The method of choosing a new processing signal presented above will

be applied recursively to increase the value of the cost function, which

*in turn implies that the expected value of the matched filter receiver

will increase. In terms of the processing signal, this means it will

- . more closely match the form of the signal at the output of the channel

whose scattering function is SH(,.

The cost functional, defined as the expected value of the matched

filter receiver output to the channel output, given by

J(g) = f IXx,g(Tc0)1 2,.(TO dTdO (4.4-10)

will be increased recursively using the following procedure:

1. Choose a transmit signal x(t) and an initial

processing signal g1(t).

2. Calculate the initial uncertainty function Xx,gl(TO).

3. Calculate the gradient function given by

( = (t ' x*g (r') RSC N(TS4) x(t-T) e3 2l T L -T 2" dtd .
- g1  SC(4.4-11)

4. Form the new processing signal

gi(t) + Y 4el(t)gi+(t) = lg +Y( $1t (4.4-12)

0

5. Calculate the uncertainty function Xx,gi+l(T,O)

6. Calculate the cost functional J(gi+l)

7. Return to step 3 or stop if a maximum amount of interations

have been reached or the value of J(gi+l) equals or exceeds a

predetermined threshold.

]'- , - F.". F(I " i .i "i :i
T 

. .'- .fi . .. . .. .. . ." ' ."
, .. . i. - • - .- .t - ... - .. .. .- - - .. - .. ..-- -. -.. - -. .,
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Figure 11. Visualizaton of the projection algorithm
The signal g(t) + y 0(t) is best approximated
by ^9(t) in the set S.
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In general, there is no way to perform each step in closed form. In

particular, closed form calculation of the cross-ambiguity or gradient

functions presents an unwieldy task. Therefore, all the equations must

be discretized and the optimization procedure done numerically.

4.4.3 Convergence of the Gradient Projection Algorithm

Determining the convergence of the gradient projection algorithm

presented in section 4.4.2 is done by examining the behavior of the

increment of the cost functional. By showing that the increment is

always a non-zero positive value for any non-zero positive step size y

will imply that the sequence [J(g )} monotonically increases and will
i n=1

converge because it is bounded.

To begin, it is necessary to determine the processing signal

increment for the i-th step of the recursive algorithm which by (4.4-9)

is

g.(t) + y 'i(t)
6g.(t) g (t). (4.4-13)i gi+y~ i 2

Substituting (4.4-13) into (4.4-1) gives the increment of the cost

functional at the i-th iteration as

AJ(g , g,) = 2 Re{<6gi,Y i>} + J(6gi )

2 Re f<gi,( ¢i>+< i i>Y}gi+Y<l - 2 Re<gi,.i>} + J(6gi).

i $12 (4.4-14)

By property 3 of the gradient function, the numerator in (4.4-14) can be

restated as

2 Re(<gjOi>+<,e i>y} 2 Re(J(gi)+2)I y}

- 2 [J(g + o 12 ]. (4.4-15)g 1. 2

* . .. . .
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2
Because J(gi), l(ill 2, and y are all real numbers the operation of

finding the real part of the complex number is not required in

(4.4-15). The denominator of the first term on the right side of

(4.4-14) can also be simplified using (2.2-8), property 3 of the gradient

function, and the fact that gj(t) is a unit energy signal as follows:

g + i 12 = <gi+y(ig +Yi >
i i 2 '. ii i

= <gipgi > + 2 Re{(<gi, i >1 Y + <ibi> Y2

+2 J(2 2
- I + 2 J(g i ) Y + ) i 2. (4.4-16)

The-efore, by (4.4-15) and (4.4-16), the increment of the cost functional

is

2 [J(g.) + UO.112 y1
AJ(gg) = i 2- 2 J(gi) + J(ag (4.4-17)

Vl + 2 J(gi) y + 10ia2 Y 
g

Since J(6gi) is always a positive value, it is only necessary to

determine if the sum of the first two terms of the right side of

(4.4-17), the first Gateaux derivative of J(gi), is always positive. By

examination of (4.4-17), it is seen that the first Gateaux derivative is

a function of the step size y, therefore,

2 [J(gi) + 2IiD Y]
F(y) =_ 6j(gi, 6gi) = 2 2 _ - 2 J(gi). (4.4-18)

Vi + 2 J(gi) Y + 11 (D U11 2 2
01 +

The function F(y) is continuous for all y > 0 and can be shown to be

monotonic by examining its first derivative. Since differentiating

(4.4-18) involves considerable algebraic manipulation, the details are

omitted here, and only the result stated, which is

S
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dF(y) =
dY

2 j~i2]
2 [IIi 112 - J(g llgi+Yi 11

ii 114 y4 + 4 J(gi) IIiU2 y3 + 2 [UI.ii12 + 2 J(gi) 2  y2 + 4 J(gi) y + I

(4.4-19)

The denominator of (4.4-19) is a polynomial-in y with positive

coefficients because both J(gi) and 10i0I2 are positive; therefore, for

all y > 0 its value is always greater than or equal to 1. As for the

numerator, it is always non-negative since the norm term is always

positive, and because by property 4 of the gradient function,

U¢. 112 2 J(gi )  (4.4-20)

Therefore, for all Y ) 0, the first derivative of F(y) is non-negative.

From elementary calculus it is known that if the first derivative of a

function is non-negative on an interval, then the function monotonically

increases on that interval; consequently, F(y), or the first Gateaux

derivative 6J(gi,6gi), increases monotonically for Y in [0,-). If the

step y is zero, then from (4.4-13) and (4.4-18)

6J(g., i ) = J(gi,O) = F(O) = 0 . (4.4-21)

Thus F(y) c 6J(gi,Sgi) is non-zero for all y > 0. It now follows that

because the second Gateaux derivative is always non-negative, then

AJ(gi,6gi ) > 0 for all y > 0 . (4.4-22)

This in turn implies

J(gi+1
) > J(g,) for all y > 0. (4.4-23)

From (4.4-23) it is guaranteed that the sequence {J(gi)}n=1

monotonically increases if y > 0. Furthermore, the sequence is bounded

from above by (3.3-6) giving J(gi) 4 1. From elementary calculus, it is

'V*b
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known that a bounded monotonic sequence of real numbers is convergent.

-- Thus,

lim J(gi) =Jop 1 (4.4-24)

i op

The analysis presented above proves that the gradient projection

algorithm will increase the expected matched filter output. It should be

noted that it does not guarantee that the sequence of processing signals,

{gi} nl, converges. However, what is guaranteed is that each successive

gi(t) produces a better average receiver output. This extends from the

fact that the cross-ambiguity function is not unique for a given pair of

transmit and processing signals. Since the value of the expected matched

filter output, the cost functional

J(gi ) = ff I XXg (T, )12 RSN(T, ) drd (4.4-25)

K W CHN

is related to gi(t) via the cross-ambiguity function, the value of J(gi) is

not unique for a given gi(t). It should be realized that this does not

invalidate the optimization procedure presented in this chapter since it

does insure an increase in J(g). Therefore, the nonuniqueness of each

gi(t) in the optimization sequence is of little consequence.

4.5 Examples of Matched Filter Optimization

Since the optimization procedure presented in section 4.4.2 must be

implemented on a digital computer, it is necessary to discretize the

equations used in the procedure.

Consider the uncertainty function derived in Chapter 3 and given by

XX (T, ) = f x(t-T/2) g*(t+T/2) ej 21r Ot dt • (3.2-37)

-0 .0 ..-
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By invoking a change of variable and defining the function

v(t,O) = g*(t) ej 2 1rPt ,(4.5-1)

equation (3.2-37) can be restated as

XL (r,4O) =eJt x(t-T) v(t,P) dt .(4.5-2)

The integral in (4.5-2) can be approximated by a sum by setting X~2

(AO~), t - m (At), and T- n (AT), and by replacing the integral sign by a

summation symbol giving

_j nnkAoA(AT)~ M
Xxg(n(AT),Z(& )) -e~n v~ I x(m(At)-n(AT)) v(m(At),L(A4 )) At.

m I
(4.5-3)

A simplification can be made by setting AT= At, thus allowing the

definition of the discrete sequences

x(m(At)-n(AT)) =X((ni-n)(AT))

A k -)(4.5-4)

v(m(At),2(AW) vWmAT),Z(AW)

v~m'X)(4. 5-5)

Substituting (4.5-4) and (4.5-5) back into (4.5-3) gives for the

discretized uncertainty function

Yx'g(n(Ar),Z(AO)) -AT e n I~~ (m-n)v(m,L). (4.5-6)

The summation in (4.5-6) is actually a correlation between the

sequence X(n) and v(n,X), so it can be calculated using discrete Fourier

transforms. 18 Therefore, it can be shown that (4.5-6) can be written as
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Xxg(n(AT),Z(AO)) =A e - j n ( AO)(AT) IDFT(DFT(x(-n)) DFT(v(n,l))}

(4.5-7)

where

N-i e- n/N

DFT(x(n)) = N x(n) ej 2 1Tk = X(k) (4.5-8)
n=O

is the forward discrete Fourier transform of the sequence x(n) and

1N-1 eJ2lkn/N
IDFT(X(k)) - 1-g X(k) e (4.5-9)

k--0

is the inverse discrete Fourier transform of the sequence of Fourier

coefficients X(k).

Another equation that requires discretization is the formula for the

gradient function given by

(t) =-ff X,(tO) RS (T,O) x(t-T) ej21 (t - T / 2) dTd .
(4.5-10)

By defining the functions

8(T,O) (r,4) RS (T,O) e- j "T (4.5-11)
0 S CHN

w(t,) A x*(t) ej 2 Trt (4.5-12)

equation (4.5-10) can be restated as

0(t) = ff e(T,O/N w(t-T,O) drd

= 6 (, ) w(t-, ) d d

f 8 (t, )*w(t, ) d (4.5-13)

- ,

As befcre, the integral in (4.5-13) can be approximated by a sum by
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setting = (A) and t = n (AT) and by replacing the integral sign by a

summation symbol giving

(n(Ar)) = [e(n(AT),z(AO))*n(A(Ar),z(A)) At] AO . (4.5-14)
£

By defining the two-dimensional sequences

(n(A),(A)) (n,), (4.5-15)

w(n(AT),.Z(O)) (n,£), (4.5-16)

O(n(AT)) O (n), (4.5-17)

and substituting them into (4.5-14) gives

$(n) = (AT) (A) 6 g(n,Z)*w(n,Z), (4.5-18)

where the discrete conv'lution inside the sum of (4.5-18) is with respect

to the variable n. Again the convolution can be calculated using

discrete Fourier transform, therefore

$(n) = (AT) (At) ) IDFT(DFT(6(n,X)) DFT(w(n,X))} . (4.5-19)

Now that the equations giving the uncertainty function and gradient

function are in a useable form, the gradient projection algorithm can now

be stated in a form suitable for implementation on digital computer:

1. Choose a discretized transmit signal x(n) and an initial

discretized processing signal gl(n).

2. Calculate the initial discretized uncertainty function
p

S(n,Z).xg
1

3. Calculate 6i(n,t) and wi(n,Z).

4. Calculate the gradient function Di(n) using (4.5-19).

5. Form the new discretized processing signal
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'* g(n) + Y $i(n) (4.4-20)
gi+l (n) =  _.

AT / I [gi(n)+Y$ (n) 2

n

6. Calculate the discretized uncertainty function X. (n,l).
xtgi+

1

7. Calculate the value of the cost functional using

Ji T = )(A) I I ^ (n,Z))2
n 9. 91+l xg TGT (4.4-21)

where

R SCHN(n,9.) RSCHN(n(AT),X(A0)). (4.5-22)

8. Return to step 3 or stop if a maximum amount of iterations

have been reached or the value of Ji+j equals or exceeds a

predetermined threshold.

The version of the gradient projection algorithm given above was

implemented on the VAXII/782 at the Applied Research Laboratory. The

algorithm was written as a FORTRAN 77 program, was run in a low priority

batch queue, and for these examples required about one hour of CPU time.

The transmit signal and initial processing signal are both analytic

signals with ten percent raised cosine windows. Both were linear

frequency modulated with the transmit signal being a 200 Hz upchirp and

the processing signal a 200 Hz downchirp. Figures 12 and 13 show the

magnitude and the real and imaginary parts of the envelopes of both

a signals. Figure 14 shows the initial cross-ambiguity function derived

from these two signals. Figure 15 shows the scattering function which

consists of three two-dimensional Guassian pulses each with a T - 0.015

sec. and o= 25.0 Hz. One pulse is centered on the T axis at T = 0.065

sec. and the remaining two pulses are centered at r 0.155 sec. and =
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Figure 14. The original cross-ambiguity function for the
first and third example.
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Figure 15. A scattering function consisting of three
0 two-dimensional Gaussian pulses.
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±75 Hz. Furthermore, the pulses have been scaled so that the volume of

the scattering function (the ratio of the average return energy to the

transmit energy) is 0.2. For the discretization of all functions, the

values At =AT 0.00025 sec and A 10 Hz were used and the step size

was set at y -5.0.

The program iterated 15 times, and an increase in the cost functional

occurred at each iteration. This is shown in Figure 16. Figure 17

shows the magnitude and real and imaginary parts of the final processing

signal and Figure 18 shows the cross-ambiguity function derived from the

transmit signal and final processing signal.

By comparing Figures 14 and 18, it can be seen that the volume of the

cross-ambiguity function has been redistributed from one large plateau

into two ridges. Each of these ridges subtends nearly the same region in

the (T- b) plane as do the three Gaussian pulses of the scattering

function; in fact, by close inspection of large ridge it can be seen that

the ends of the ridge have assumed a shape similar to two of the pulses

in the scattering function. What occurred during the optimization

procedure is that the processing signal was altered to cause the volume

of the resulting cross-ambiguity function to collect in the same

locations as the pulses in the scattering function and if possible cause

the cross-ambiguity function to assume the same shape. This follows the

principle developed in section 3.3, which said that the expected matched

filter receiver output is maximized if the cross-ambiguity function is

proportional to the scattering function of the channel. In this case,

however, the shape of the cross-ambiguity function never actually matched

that of the scattering function. This occurred because the processing

signal was only parameter altered during the optimization process.
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Figure 18. The final cross-ambiguity function for the first

example.
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It can also be demonstrated that the processing signal generated by

the gradiant projection algorithm is highly dependent upon the placement

of the initial cross-ambiguity function in the (r,p) plane and upon the

distribution of its volume. Figure 19 shows a cross-ambiguity function

derived from an 0.012 sec. transmit signal and an 0.210 sec. processing

signal. Both signals were contimuous wave tones with a ten percent

raised cosine window. The scattering function used was the same one used

in the first example and is shown in Figure 15. By examining Figures 15

and 19, it can be seen that the two high doppler pulses of the scattering

function, located at T = 0.155 sec. and = ± 75 Hz., are not fully

subtended by the cross-ambiguity function. Furthermore, the

cross-ambiguity function does not have a large portion of its volume in

the region of the (r,p) plane where the high doppler pulses and the

cross-ambiguity function intersect.

As in the first example, the computer program iterated 15 times, and

an increase in the cost functional occured at each iteration. This is

shown in Figure 20. Figure 21 shows the final cross-ambiguity function.

It can be seen that the optimization procedure placed most of the volume

of the cross-ambiguity function at the pulse of the scattering funcion

located at T = 0.065 sec. and = 0 Hz. This is also the same pulse of

the scattering function that was completely overlayed by the initial

cross-ambiguity function and where it had a significant portion of its

volume. Thus, the gradient projection algorithm tends to place the

volume of the cross-ambigutiy function over the prominent portions of the

scattering function that are best overlayed by the initial

cross-ambiguity function. S
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Figure 19. The initial cross-ambiguity function for the
second example.
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Figure 21. The final cross-ambiguity function for the
second example.
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Another way to test the validity of the gradient projection

algorithm is to have it produce a known result. Figure 22 shows a

scattering function that clos '.v models a point scatterer. It is a

single gaussian pulse located at T - 0.15 sec. and i = 0 Hz. with

standard deviations of aT = 0.002 sec. and a = 2.0 Hz. The transmit

signal and initial processing signal are the same used in the first

example where the magnitude and real and imaginary parts of their

envelopes are shown in Figures 12 and 13. The initial cross-ambiguity

function is shown in Figure 14. The opimization procedure iterated 7

times, and the final cross-ambiguity function is shown in Figure 23. It

is an autoambiguity function, which is a cross-ambiguity function derived

from equal transmit and processing signals. In effect, the gradient

projection algorithm dechirped the 200 Hz. downchirp FM processing signal

to a 200 Hz. upchirp FM. It is shown in Van-Trees I1 and is well known in

the literature that to optimally detect a point scatterer in the presence

of white gaussian noise both the transmit and processing signals must be

equal (this gives rise to the autoambiguity function).
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Figure 22. A scattering function modeling a point scatterer.
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Figure 23. The final cross-ambiguity function for the
third example.
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CHAPTER 5

SUNNAY AND CONCLUSIONS

The derivation of the scattering function and its three Fourier

transforms, under the assumption that it describes a wide sense

stationary uncorrelated system (WSSUS), has been presented. Also it was

shown that the scattering function can be used to determine the expected

output of a matched filter receiver by multiplying it with the

cross-ambiguity function and integrating the resulting two-dimensional

function. Finally, a method for optimizing the matched filter by

altering the processing signal was developed, and a numerical example was

given.

It should be pointed out that the cross-ambiguity function is the

bridge chat links scattering properties via the scattering function to

the signals used in detection. It is for this reason that the

cross-ambiguity function is of major importance in the design of

receivers for signal detection in the communication systems. There are

two important results in this thesis related to cross-ambiguity

functions. First, it was shown that if a receiver is to maximally detect

a signal at the channel output, then the cross-ambiguity function derived

from the transmitted signal and the processing signal must be

proportional to the channel scattering function. Second, a method was

derived to iteratively find an optimum processing signal given a fixed

transmit sign l and channel scattering function. The validity of the

method was demonstrated by producing a known result; specifically, when

the channel was modeled by a point scatterer, the cross-ambiguity

function converged to an auto-ambiguity function.

6
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There are a number of extensions to this work that could be made.

For example, an analysis could be made to determine the rate of

convergence of the gradient projection algorithm, and the optimum step

size could be determined to accelerate the optimization procedure. To do

this, the behavior of the second variation of the cost functional with

respect to the step size would have to be examined. Another possible

research project would be to develop a method of jointly altering the

transmit and processing signals with a global search to produce a better

match between the cross-ambiguity and scattering functions. This would

be a generalization of the problem addressed in this thesis. It was

shown that the optimized processing signal depended upon how well the

original cross-ambiguity function overlayed the scattering function and

to what extent its volume was placed with respect to the scattering

function support. As a result, the optimization procedure converged

locally over the whole set of possible transmit and processing signal

pairs. The analysis of a procedure where both signals are altered, and

the cross-ambiguity function is shifted in the (T,1) plane, may show that

it is possible to globally maximize the expected matched filter output

over all admissible transmit and processing signals.
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