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ABSTRACT

The problem addressed in this thesis is the maximization of the
expected matched filter receiver response to a signal that has been
transmitted through a communication channel whose average scattering
properties are known in terms of a scattering function. This is
accomplished by altering the receiver processing signal given the channel
scattering function and transmit signal. The channel is assumed to be
doubly-spread, meaning that any signal propagated through it will exhibit
both time and frequency spreading. The scattering functions that
describe these channels subtend a finite region in the delay-dopper
plane.

This thesis contains some of the background material necessary to
understand the modeling of communication channels as random linear
time-varying systems and the use of matched filter receivers for signal
detection. This material includes a review of the properties of linear
spaces, Fourier transforms, and the foundational material leading to the

development of the scattering function.
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CHAPTER 1

GENERAL INTRODUCTION

In active signal detection systems, detection is performed by
transmitting a signal over a communication channel, processing any
received signal by a receiver, measuring the receiver output, and
comparing the output to a predetermined threshold. The optimum receiver
{n Gaussian white noise is known to be a matched filter receiver, also
known as a correlation receiver. It consists of a multiplier used to
form the product between the received signal and processing signal, and
an integrator to integrate the multiplier output.

Channel scattering having a delay extent greater than the average
wavelength of the transmitted signal 1is said to be delay-spread. On the
other hand, channels whose scattering properties vary rapidly in a time
interval on the order of the signal time duration are said to be
doppler-spread. Any communication channel exhibiting a combination of
delay spreading and doppler spreading is said to be -doubly-spread.
Examples of doubly-spread sctterers are fish schools, volcanic plumes,

storm cells, rotating planets, and asteroids.

A portion of the transmitted energy can also be scattered by the

medium and is referred to as clutter or reverberation. Both clutter and
reverberation, which may also be doubly-spread, represent interference ]
and degrade the ability of the matched filter receiver to detect the “ﬂ
. L J
channel output signal. R
This thesis is concerned with the optimization of a matched filter 1
receiver to detect a signal that has been transmitted through a )
-
) L
doubly-spread communication channel whose scattering properties are 1
. ¥
>
-
.
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Figure 1.

SYSTEM

Block diagram of a linear time-varying system.

e A T

N x(t)
N

Figure 2.

1

0

T

|
yi(t)z h(ri) x(t -ri)Ar

it

(2.3-2)

Derivation of (2.3-1). Input x(t) approximated by
a pulse train. The response at time t due to the
portion of the input approximated by the shaded

panel.

-"'LY“";‘




U W CYE SR

then interpreted as an amplitude density function for the complex
exponentials included in the continuous sum (integral) in (2.2-26). It
is for this reason that the Fourier transform is also referred to as the
'spectrum' of the function x(t), since it gives a measure of the relative
weighting of each complex exponential as a component of the function
x(t). The terms Fourier transform and spectrum will be used

interchangeably throughout this thesis.

2.3 Linear System Theory

2.3.1 Linear Time-Invariant and Time-Varying Systems

Linear time-invariant systems are often described by a functionm,
h(t), referred to as the 'system impulse response function.' Its name
decribes exactly what it does: it expresses the system output y(t)
when the system input x(t) is an impulse function with unity weight.

The impulse response does provide another service. It can be used to
determine the system output for general inputs, and this is expressed by

the convolution between h(t) and the input x(t), i.e.,

-]

y(t) = [ h(t) x(c-1) dT . (2.3-1)

-

The derivation of (2.3.1) can be developed in the time domain where
the intezgral is considered to be a limit of a sum of responses to a
square pulse train that approximates the input x(t). Figure 1 shows the
linear time-invariant system as a block diagram and illustrates its
interpretation in terms of the impulse response. Figure 2 shows how the
fnput function is approximated by a series of square pulses with width
AT and height x(t-Tj). Note that the system response to the i-th pulse,
yi(t), can be approximated by the response to an impulse applied at time

t-7y whose weight is equal to x(t-ty) AT, therefore,

A . L o e . - SR - ML N S SR o intedemuintedamuitneiy Al o




13

Theorem 2.7 Let x(t) € LI(R1) and be bounded (]x(£)| < =) for all t & RL.

Then x(t) € L2(Rrl),

Proof Define the normalized function x by

~ - x(t) -
X(t) m . (2.2-23)

t

Where sup |x(t)| < = because x(t) is bounded by hypothesis. Then -
t

(i(t)l < 1 for all t € Rl. Moreover, lf(t),z S.fﬁ(t)f so

ik, =[R2 de < R0 de = iy < e (2.2-26)

2 -0 -0

Therefore, (t) € L2(R1) and x(e) = (sup |x(e)]) x(t) € L2(Rl) because
L2(Rl) is a linear space. This proves the theorem.

It should be noted that'the converse of this theorem is not true
because there exist functions in both L}(R!) and L2(Rl) that are not
bounded. The following theorem will be particularly useful later when
finite energy signals are discussed. Its proof can be found in any text

on functional analysis.

Theorem 2.8 (Schwartz Inequality) If x(t), y(t) € L2(Rl) then

|<x,y>| < tx (2.2-25)

2 yly.
Equality holds 1if and only if y(t) = Ax(t) or y = 0 where XA is a real

constant.

2.2.3 The Interpretation of the Fourier Transform

In engineering analysis, the inverse Fourier transform, given by

j2nfe

x(e) = [ X(f) e daf, (2.2-26)

is often given the interpretation that it expresses the function x(t) as

a continuous sum of complex exponential functions. The function X( “ is

S . .
P I

s L. ) , . P, e P S -
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Theorem 2.5 Let x(t) € L2(Rl) and define
a -j2nft
X(£,a) = [ x(t) e de. (2.2-19) -
-a
then as a + «, X(f,a) converges in the mean over Rl to a function X(f) in
LZ(Rl). Conversely,
8 ja2nfe ’
x(t,a) = | X(f) e df (2.2-20)
-a
converges in the mean to x(t) almost everywhere over Rl as a + =,

From this theorem it is possible to prove another.

Theorem 2.6 The Fourier transform (2.2-19) defines a bounded linear

transform of L2(Rl) to L2(Rl) which is norm preserving, i.e.,
IXbg = ixlq. (2.2-21)

This theorem states that Fourier transform maps L2(Rl) to L2(Rl), and so
it defines an isomorphism of LZ(Rl) onto itself. The symmetry between
any element of Lz(Rl) and its Fourier transform is not an unusual
property for a Hilbert space. For example, it can be shown that in a

Hilbert space ¥ all bounded linear functionals are of the form
f(x) = <x,9> (2.2-22)

for all x € x where ¢ is also in X (a Hilbert space is its own algebraic
dual)?.

Before discussing the appliction of Fourier transforms and
convolution to the analysis of systems in section 2.3, two theorems are

stated that will be useful later.
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By Fubini's theorem?:® it follows that

[] |x(t) y(e-1)| dtde

< [ |x(0)| dt [ |y(e-1)| 4at
= llxlll Uyﬂl . (2.2-17)

Therefore, from (2.2~16) and (2.2~-17) it can be seen that
Ix*yl] < fixl) kyll} < = (2.2-18)

and so x*y € LI(RD). Furthermore, since a(x(1) y(t-1)) = (ox(T)) y(t-7)
= x(t) (ay(t-t)) for all a € R! this establishes LI(Rl) as an algebra
under convolution.

Since the convolution of two functions in Ll(Rl) produces another
function also in LI(Rl) it immediately follows that this function is
Fourier transformable. The Fourier transform of a convolution is easily
found if the transforms of the two original functions are known. This is

shown in the following theorem.

Theorem 2.4 Let x(t), y(t) € LI(Rl), and let X(f) and Y(f) be the

Fourier transforms of x(t) and y(t). Then x*y € LI(RI) and its transform

is X(f) Y(f).

For the space Lz(Rl), the Fourier transform is defined to be a limit
as shown in the following theorem whose proof can be found in the

references. 3,4
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[ 8y daf = 1. (2.2-12)
Then the inverse Fourier transform of X(f) is S-summable almost
everywhere to x(t), i.e.,

lim [ g f j2nfe .

5>co {m 8(3) X(£) e df = x(t) a.e. (2.2-13)

In the case where both x(t) and X(f) are in LI(Rl), equation

(2.2-11) can be used immediately. This is stated in the following
theorem whose proof can be found in the references.
Theorem 2.3 If x(t) and X(f) are elements of LI(R1l) then

® 2nf

[ x(£) e3®™C 4f = x(t) a.e. (2.2-14)

Therefore, x(t) is equal almost everywhere to a function in LI1(R!) and
cO(rRl). 1If x(t) is continuous on Rl, then inversion formula (2.2-11)
holds for all t € RI,

The space LI(Rl) has the property that it is an algebra under the
operation of convolution with respect to the complex field. 1In other
words, if the functions x(t) and y(t) are elements of LI(R!) thén the
function given by

(x*y)(t) = [ x(1) y(t-1) dr (2.2-15)

is in LI(R1) and a(x*y) = (ax)*y = x*(ay) for all a Rl . Showing

x*y  LI(RD) {s easy by considering the integral of its magnitude, i.e.,

/ |x*y| dt = f [ x(1) y(t-1) dt| de

-G -0 - 00

< [ |x(1) y(t-1)| drde. (2.2-16)

. LR . Y . . ~, 7. - AR . . R ST L “ - LT,
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material for system and signal analysis in electrical engineering. It is

left to the reader to find the proofs in a text on Fourier analysis
since there exists a number of good books on the subject. Some of them
are listed in the references.3~®

The Fourier transform of a function is defined to be

X(£) = [ x(e) e I2TEE 4, (2.2-9)

The Fourier transform is known to exist for all functions in L1(R!) and
by the following theorem, X(f) is shown to be an element of the normed
linear space cO(rl). CcO(Rl) is the space of continuous bounded complex
functions over R! that has as its norm
lello = sup |x(t)|. (2.2-10)
t
Theorem 2.1 Let x(t) € L1(Rl). Then the Fourier transform exists and is

given by

-j2nft

X(£) = [ x(t) e dt (2.2-9)

and X(f) is an element of CO(RD).

The inverse Fourier transform of X(f) is defined to be

x(t) = [ x(£) I2MEE 4¢ (2.2-11)

and by the following two theorems is known to exist for all X(f) that are
transforms of elements of LI(R!).
Theorem 2.2 Let x(t) € LI(Rl). Also, let & be a positive even function

on Rl and monotonically decreasing on (0,«) where

. : .
VI
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Xo in X in the sense that lixy = xo! >0 as n » =

Finally, L2(R!) has the additional property of being a Hilbert space
which is a Banach space that has defined on it an inner product between
two elements.ls2 An inner product is an operation that associates a
complex number to each pair of elements, x and y, in the space and is
denoted by <f,g>. It has the following properties for all elements x, vy,
and z in a Hilbert space and a € Rl:

1) <x,y> = <y,x>*, where * denotes complex conjugation

1i) <x+y,y> = <x,y> + £z,y>

1iii) <ax,y> = a <x,y>
iv) <x,x> > 0 with equality holding if and only if x = 6.

In the space L2(Rl) the inner product can be defined as

x,y> 21 x(e) y*(e) dt. (2.2-7)
-0
It is easy to verify that this definition does obey the four properties *

of the inner product listed above.
Lastly, in a Hilbert space it can be shown that v¥<x,x> defines a
suitable norm in that it obeys the four properties of the norm listed

earlier. In the case of L2(Rl) the norm is given by

had 1/2 o 2 1/2
Ixi, = /<,x> = |[ x(t) x*(c) de = |/ |x()] “atc . (2.2-8)

- 00 -0

e

which coincides with (2.2-6).

2.2.2 The Fourier Transform and Convolution

Presented in this section are theorems concerning the Fourier
transform and convolution of functions that are elements of the spaces

LI(Rl) and L2(Rl). Most of these theorems are part of the foundational
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Both Ll(Rl) and L2(R1) are normed linear spaces. In general, a

normed linear space X is a space on which exists a function which maps

T Y~

elements of X to Rl. This function is called the norm, is denoted by lx!

where x € X, and satisfies the following axioms when x, y € X and a € RL: ‘E

i) 'xt > O with equality holding if and only if x = 6. . =
«

i1)  x+yl < Ixd o+ Uyl ) -]
X

iii) doxi = |afixi.

Property (1i) is often called the triangle inequality and is used to

b i~ aan 2

prove the inequality

Ix=-yl > Ixl - tyn, ' (2.2-4)
For the spaces LI(Rl) and L2(Rl) the norms are defined to be
o

[ |x(t)| dt for x(t) € LI(rl) (2.2-5)

-sd

e

ﬂxﬂl

A BN S e A ey o o

and

e

Ix

© 5 1/2
2 [ |x(e)]|° dt for x(t) L2(rl). (2.2-6)

-
It can be verified that these definitions do satisfy the three properties
of the norm listed above.

The norm is sometimes interpreted to be a measure of an element's
distance from the zero element. More generally, if x and y are two

elements Iin a normed space, Ix-yll is a measure of the distance between

LA kA Ant AN JD GEEN suse i Nmb aun 4

them. From property (i) of the norm it is seen that lIx-y! = 0 if and

e

only if x 3 y.
Both LI(Rl) and L2(R!) are Banach spaces because they are

complete.l'2 A Banach (complete) space is a space in which every Cauchy

LAl AR JER JEn AED SN el

sequence has a limit. Thus if {xn}:_1 is a sequence in a Banach space X

and "xa=xg# + 0 as n » =, then the sequence converges to some element




In either LI(R!) or L2(Rl), two elements (functions), f and g, are
considered to be identifiable if they differ from one another on a set of
measure O. In this case, it is customary to write f = g or £ = g a.e.
which means f is equal to g 'almost everywhere.' For example, consider
the function

2,t€12
f(t) = (2.2-3)
exp(-|t]) , t € Rl/z,

Here, the function f(t) maps Rl to C through a symetric decaying

exponential except when t is an integer. Since the set of integers Z is

)

a countable set, it has measure 0, so f = exp(-|°|) or £ = exp (-
a.e.

Both LI(Rl) and L2(Rl) are linear spaces.l>2 In general, a linear
space X is a set of elements that is closed under the operatioms of
addition and multiplication with respect to elements in a scalar field.
For example, if x, y € X, then (x + y) € X, and if a is a scalar then
ax € X. Additionally, the linear space X satisfies the following axioms
when x, vy, 2z € X and a, B € Rl:

i) Commutivity: x +y =y + x

ii) Associativity under addition (x +y) +z =x + (y + 2z)

1ii) The existence of a zero element 6 such that x + 9 = x

iv) Associativity under multiplication: a(Bx) = (aB)x

v) Distribution: a(x +y) = «x + By
vi) The existence of the scalar O and 1 such that Ox = 6 and
lx = x.

It should be noted that subtraction is done using the scalar a = -1,
which in the scalar field is the additive inverse of 1. The element -lx

is denoted -x and so x - x = x + (-1x) = (1-1) x = Ox = 6,

]
4
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also show under what condition a linear time-varying system produces a
stable output. Stating this statiblity criterion allows additional
properties of linear time varying system functions to be discussed which
were not developed in Ziomek's original work.

Readers with a background in mathematics, electrical engineering, or
acoustics will probably find that sections 2.2 and 2.3 contain no
material unfamiliar to them. Those already knowledgeable in the
mathematical theory of doubly-spread communication channels (in the

Fontext of scattering functions) can proceed to Chapter 3.

2.2 Mathematical Background

2.2.1 The Spaces LI(Rl) and L2(R!)

In the mathematical development of the theory presented in this
thesis all functions used to represent signals will be elements of the
spaces L1(R!) and L2(Rl). The space LL(Rl) is defined to be the class of
all Lebesque measurable functions that map the field of real numbers rl
(the real line), to the field of complex numbers C (the complex plane),
and are magnitude integrable. A more compact notation for this class of

functions is
1,1 1 ®
L(R) = {£: R" »C | [ |f(t)]| de < =}, (2.2-1)

Similarly, the space L2(Rl) is defined to be the class of all Lebesque
measurable complex functions that map R! to C and are square integrable.

Again, a more compact notation for this class of functions is

® 11/2
LZ(RI) - (£: R » ¢ | [f |f(c)|2 dtJ < =}, (2.2-2)

.t . te L N Y
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CHAPTER 2

TIME-VARYING SYSTEM THEORY

2.1 Introduction

The primary objective of this chapter is to introduce the
mathematical fundamentals that will be used throughout this thesis.
Section 2.2.1 presents a brief review of the properties of linear spaces.
In particular, the spaces LI(R!) and L2(Rl) will be discussed since their
elements are functions that will be used to model signals. In section
2.2.2 the Fourier éransform is introduced and several theorems are stated
concerning the Fourier transforms of functions in L1(Rl) and L2(Rl).
Section 2.3 presents a review of linear system theory for both
time-varying and time-invariant systems. The chapter first presents the
output of a deterministic linear time-invariant system as a convolution
integral between the input waveform and the system impulse response
function. This is then extended to find the output of a deterministic
linear time-varying system which is described by a time-varying impulse
response function. Finally, Section 2.4 describes four autocorrelation
functions for time-varying systems for both deterministic and random
cases. For random linear time-varying systems it is shown that the
autocorrelation functions lead to the definition of the scattering
function provided the system is used to model a wide sense stationary
uncorrelated channel (WSSUS).

It should be mentioned that the derivation of the scattering
function as developed from random linear time-varying system theory was

originally done by ZiomeklO in his Ph.D. dissertation. What has been

done in this chapter is to not only present the same derivation but to

Ty T ——"r T S APl
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Finally, Chapter 4 introduces an iteration algorithm to optimize the
expected matched filter receiver response to a signal transmitted through
a channel having a known scattering function. The algorithm is derived
using the calculus of variations and generates a series of processing
) signals which in turn produces a convergent monotonically increasing
L< series of expected matched filter outputs. The chapter closes with

several numerical examples of the optimization technique.
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known. The optimization is accomplished by iteratively altering the
processing signal of the matched filter given a fixed transmit signal and
channel scattering function. Since the performance of a receiver is
determined by the signal to noise ratio (SNR) of its output (in this case
defined as the ratio of the receiver signal response to white Gaussian
noise and clutter or reverberation response), increasing the receiver
response to the channel output without significantly increasing the
response to the interference will increase the SNR and imply an improved
ability of the receiver to detect the channel output signal. If the only
interfering signal is white Gaussian noise, then increasing the receiver
signal response guarantees an increase in SNR.

It is important, however, to present the fundamental theory used to
establish the properties of the communication channel and performance of
the receiver. Therefore, Chapter 2 opens with a review for the
properties of linear spaces and Fourier analysis. The remainder of the
chapter presents the development of linear time-varying system theory for
both the deterministic and stochastic cases. This eventually leads to
the derivation of the scattering function which can be used to describe
the time delay and frequency spreading characteristics of the
communication channel.

Chapter 3 introduces the theory of matched filter receivers and
shows their use in hypothesis testing for signal detection. The
relationship betweén scattering function and receiver output is
developed. This is used in the closing sectién of the chapter to show
the conditions necessary for the matched filter to optimally detect a

siznal that has been transmitted through a channel whose scattering

function is known.
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yi(e) = h(ry) x(t-7q) AT ., (2.3-2)

It follows that as AT becomes smaller the approximation of yj(t) by .

(2.3-2) becomes more accurate. Thus in the limit

yi(t) = iifo h(ri) x(t-Ti) AT . (2.3-3)

The desired system response, however, is the sum of all the responses to

the approximating pulse train, so

y(e) = ] y; () = | h(t) x(t-7)) &t . (2.3-4)
i i

Again, as AT becomes small it follows that the approximation of y(t) by
(2.3-4) becomes more accurate. Furthermore, the summation becomes an
integral leading to (2.3-1).

It should be noted that from (2.3-1) it immediately follows that

h(t) is the system response to an impulse of unity weight, t.e.,

y(t) = [ n(t) §(t-1) dT = h(t). " (2.3-5)

- 0O
As mentioned earlier, (2.3-1) describes a system whose behavior is
invariant with respect to time. A clearer statement of this can be made

if one considers the response of the system to an impulse applied at some

time ty # 0 (x(t) = 8(t-ty)). Using (2.3-1), the system response is

R —

y(t) = [ h(1) 8(t-ty-1) dT = h(t-ty), (2.3-6)
- Q0
F0 which is just the system impulse response shifted forward in time an
amount t,. Outside of the fact that the response exhibits a time shift,
it has the same form as the function h(t). Therefore, the properties of
®

the system remain the same regardless of when the input is applied.
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In the real world, however, communication channels are never blessed
with the property of time-invariance. Their responses change over a
period of time depending on what mechanisms carry the signals in their
respective mediums.

To account for the time-varying property of a linear system, the

convolution integral determining the response can be rewritten as

-]

y(£) = [ h(t,r) x(t-t) dT , (2.3-7)

s
where h(t,t) describes the system response at time t to an impulse of
unity weight applied at time t - T. In this case T can be thought of as
the variable that describes the 'antiquity' or 'age' of the impulse
input.9 By defining the impulse response in this way, it will be shown
later that a symmetry will exist between h(Tt,t) and its Fourier transform
with respect to T.

One restriction that will be placed on the system described by
h(t,t) is that every bounded input will produce a bounded response. Such
systems are referred to as 'bounded input, bounded output' systems
(BIBO). The conditions for a system to be a BIBO system are stated in

terms of the impulse response and are given in the following theorem.

Theorem 2.9 Let a time-varying system be described by the impulse

response h(t,t). Then the system is a BIBO system if and only if

[ |n(t,t)] dt < = (2.3-8)

for all t € rL.

Proof. Proving the theorem in the reverse direction is easy. Suppose

the system input x(t) is bounded, i.e.,

Pl o= afi uf
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[x(t)] <M for ¢ (2.3.9)

then for any t

ly(e)| = |/ n(r,e) x(e-1) dt X
< [ |n(t,e)| |x(e-1)| dt !
f <M [ |h(t,t)] dt < = . (2.3-10) ]

Hence, any bounded input produces a bounded output.
Proving the theorem in the forward direction is done by
- contradiction. Suppose, a system is a BIBO system but its impulse

response does not satisfy (2.3-8). This can be stated as

sup [ |n(t,t)| dt = =, (2.3-11)

t -0

Therefore, for any M > 0, there exists a ty such that

[ InGr,g)| dt > M. (2.3-12)

Now define the bounded input function

xM(t) = sgn[h(tM-t,tM)] (2.3-13)

which is equal to the sign of the system respomse at time ty to an

impulse of unity weight applied to the system input at time t. The ‘

response to xM(t) at time ty is

e o lon

y(ty) = {w h(t,ty,) sgn(h(ty-t,+1,t,)] dt

= [ In(ng)] dron (2.3-14)

Therefore, given any M > 0, however large, we can construct a bounded
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A 2 N

input which will produce an output that at some time is larger than M.

This contradicts the hypothesis that the system is a BIBO system, and so

the theorem is proved.
For linear time-invariant systems h(T,t) reduces to h(Tt) and by

(2.3-8)

SR YO

)

thty, = [ |a(1)| dt < = (2.3-15)
-ao

Thus, h(t) is an element of LI(R!) which proves the following corollary:

A e 0",
P u.i'.".l;;.

1 Corollary 2.10 Let a time-invariant system be described by the impulse

{ response h(t). Then the system is a BIBO sytem if and only if h(t) is an

"
]
A

K
KW

element of LI(Rl).

It is now possible to solve for the response of a time-varying

system using Fourier analysis. Since the input x(t) is assumed to be
an element of Ll(Rl) and L2(Rl), its Fourier transform exists because
the transform exists for all functions in either space. Therefore, using

(2.2~-11) and (2.3-7),

y(t) = [ h(t,t) x(c-1) dT = [ h(T,t) {f x(f) eI2mE(E=T) de dt

. S 0 an b SR s .~ ghouiad st g anae @ -~ a2

- 00 -0 -0

= [ |l n(r,p) 32T d'r] x(£) eI27EE 4. |

. -0 - :-._.
| (2.3-16) -
f Notice that the bracketed term in the integrand of (2.3-16) is of the ;J
o

? same form as a Fourier transform of a function of a single variable. It D
-

is, in fact, the Fourier transform of h(T,t) with respect to T if one is

allowed to define the transform of a multivariable function with respect

to a single variable. Here, the bracketed term will be defined as

T
e k. -A,.u_;;
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[

f h(Tot) e

P ]
I2MET 4o, (2.3-17)

ne>

H(Ef,t)

Furthermore, H(f,t) exists and is bounded because by (2.3-8)

[H(E,e)] = |/ n(t,t) e siamET .
—-00
- -]
<[ |n(t,e)| dt < = . (2.3-18)
Now (2.3~16) can be rewritten as
y(e) = [ n(r,t) x(t-t) dt = | H(f,t) X(£) «I2™F 4. (2.3-19)
-0 -Q0

It appears that the system response is the inverse Fourier transform
of the function H(f,t) X(f). This is not, in fact, true, because the
Fourier transform of the response y(t) regardless of whether the system

is time-varying or time-invariant is

Y(£) = [ y(t) R L (2.3-20)

which is not a function of both f and t. The only time Y(f) = H(f,t)
X(f) is when the system is time-invariant. In this case, h{(t,t) +» h(T1)

which means H(f,t) + H(f), so (2.3-19) reduces to

y(t) = [ h(1) x(1-t) dt = [ H(f) X(f) e

-0 -00

jamee e, (2.3-21)

This also follows from Theorem 2.4 which states that the coavolution of
two functions is equal to the inverse Fourier transform of the product of

the Fourier transforms of the two functions. Because y(t) is given by

-]

y(e) = [ Y(f)

-0

327t 4¢ (2.3-22)

and because of the uniqueness of the Fourier transform, Y(f) = RH(f) X(f).
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It must be stressed, however, this is only guaranteed for time-invariant

systems.

The function H(f,t) can be interpreted to be the modulation of a g
single frequency (monochromatic) signal applied to the system. This
can be seen by finding the response to the signal x(t) = eJ2mfot,  From

. j2nE (e=1) 1

y(t) = [ h(t,t) e dt

o -j2nf 1t ijfot
T,t) e dT| e
[ h(r,0) °

-0l

j2nf°t
H(fo,t) e . (2.3-23)

If H(f,,t) changes with respect to t (time), it follows that the amplitude

of the input signal is modulated. Since H(f,t) can be used directly to

find the response to a monochromatic signal, it is often referred to as q
the time-varying transfer function or the time-varying spectrum of the

system impulse response.

. TERRAARD

2.3.2 The Space LI(R2) and the Time-Varying System Functions

It was shown in the last section that if the time-varying system

impulse response h(t,t) has the property

-]

[ |n(t,t)| dt < = for all t € Rl (2.3-8)

ST FXRNANR

E then it describes a BIBO system and the time-varying transfer function is

.

defined as

H(E,0) & [ n(r,p) e d3TET

-0

dt . (2.3-17)

v
AP AN

A question that naturally arises is: Can the Fourier transform of h(rt,t)

with respect to t be found and what is its interpretation? Also, is it

LSRN Jn 48 A SR
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possible to find the two-dimensional Fourier transform of h(rt,t)?
‘_( An affirmative answer to these questions requires an additional
3 restriction on h(rt,t).

It will be assumed that the time-varying impulse response h(Tt,t) is

an element of the normed linear space Ll(RZ). The space L1(R2) is the
class of all Lebeque measurable functions that map the set of real

ordered pairs RZ to the complex field C, and are magnitude integrable,

i.e.,
1,2 2 y;
; L (R°) = {x: R“ +C | ] [|x(1,t)] dwdt < =} . (2.3-24)
L -
- The norm of any element x(t) in Ll(Rz) is defined as
|
ixt; = [[ |x(1,0)| dde . (2.3-25)
The two-dimensional Fourier transform of any element x(t) in LI(R2) {is !
given by ]
R
X(£,0) = [ x(t,e) e IEMETHIL) g (2.3-26)
and is bounded because
[XC(E,9)] = |[] x(1,0) e IZTETHIE) rge
. -
- < [/ |x(1,t)| dwde = ixl, < . (2.3-27)
i An inceresting and useful property of the space LI(R2) is that if
|
! h(t,t) is an element of LI(RZ) then
[ In(r,e)] dt < = and [ |h(1,t)| dt < =, (2.3-28)
- D -0
¢

This property arises from Fubini's reduction theorem for double




RSP A i B i Y A B AP A e B S I A AR e g (el Al Sl Sl S il Sl S G ac b APV 8¢ A R A Sdy Sl atiriah - SR adnl > aiiern i S it St St Al e B S C AR Y y 7

® 23

integralsl, and it should be noted that its converse is not true. A

consequence of this property is that it is possible to find the one-

dimensional Fourier transform of h(t,t) with respect to either t or t.
The Fourier transform of h(Tt,t) with respect to t exists, is

given by

oo

[ h(r,e) e 32O g (2.3-29)

-0

e

s(t,¢)

and is bounded for all T and ¢ because by (2.3-8) it is easily seen that

-]

y Is(t,8)] = |/ n(t,e) e 327 ¢

[Q ‘ <[ |n(t,t)] dt < =, (2.3-30)

The function S(7,¢) is referred to as the spreading functionlQ and can be

interpreted as a measure of the system time variation. It follows that

if S(t,¢) is significantly large over a wide range of ¢, then the system
is rapidly time varying. Otherwise, if S(rt,¢) is significant only over a
small range of ¢ centered around ¢ = 0, then the system changes slowly
with time.

Another description of a time-varying system can be given by finding
the Fourier transform of the time-varying transfer function H(f,t) with

respect to t, i.e.,
«©

BCE,5) 2 [ H(E,e) e 32™% 4 . (2.3-31)

This is also equivalent to finding the two-dimensional Fourier transform

of h(t,t), because if H(f,t) is replaced by (2.3-17) then

B(E,8) = [/ h(r,t) e JZTETHI) e . (2.3-32)

“te s s AT et T e e LT T

- - - - - - . -
- - o - -
- -~ L LI - B R . -t . - - - - J
i B onsiivmtioon e D o Mt BT WO Al WAL SN SN Sy SRR L. SOV, 0 § L SR Sy - e A vy - O, e e . | g . L S L




M

v
o

Furthermore, B(f,¢) is bounded because

~j2n(ft+ot)

/] n(t,t) e dtde

| BC£, )]

Jf |n(t,£)] dtdt < =, (2.3-33)

I~

The function B(f,¢) is referred to as the bi-frequency funétionlo and can
be interpreted as a measure of the amount of modulation the system output
exhibits when the input is a monochromatic signal. For example, in
section 2.3.1 it was shown thac if the system input is ej2™ot then the
output is

j2wf°t
y(t) = H(fo,t) e . (2.3-34)

Therefore, H(f,yt), the system transfer function evaluated at f,, is the
modulation function of the output signal. The Fourier transform of the

modulation signal with respect to t is then

o0

f H(fo,t) e

-0

Sjamet e - B(E_,9) (2.3-35)

which is just the bi-frequency function evaluated at f, with ¢ left as a
free parameter. At this point the interpretation of the bi-frequency
function is clear. If the modulation of output signal changes rapidly
with time, then B(f,,¢) is significant over a wide range of ¢. On the
other hand, if the modulation changes slowly with time as a result of the
system varying slowly with time, then B(f,,¢) is significant for a small
range of ¢ centered about ¢ = O.

The bi-frequency function can also be found by determining the
one-dimensional Fourier transform of S(t,¢) with respect to T. This can

be seen by finding the Fourier transform of (2.3-29)
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-j2nfr dt
= I: {: h(t,t) e-j2n¢t dt e-j2nfr dt
[f m(eey e IENETHOO) 4o (2.3-36)

which is the same as (2.3-32).

Figure 3 shows the relationship among the four time-varying system

functions. Each function can be used to characterize the system because

if any one of the functions is known then it is only a matter of Fourier

transforming (or inverse Fourier transforming) with respect to the

correct variables to find any of the remaining three system functions.

The bi-frequency function can be used to find the Fourier transform

of the output signal y(t). From (2.3-19), (2.3-31), and the definition

of the Fourier transform,

Y(n)

Thus Y(n) can be

input x(r), with

projection of B(f,¢) on the line ¢ = n-f to the line ¢ = 0. This is

shown in Figure 4.

- .
o« -

. AT
W W VI Iy iy S Wy Wk e Sy

~j2mnt

| y(t) e dt

-j2n(n-f)t

[ X(£) H(f,t) e dfdt

[ X(£) [f H(E,t) e 2T(M7EE gt 4e

-0 -0

] X(f) B(£,n-f) df (2.3-37)

found by convolving X(f), the Fourier transform of the

the function B(f,n-f). The function B(f,n-f) is the
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Random Time-Varying System Theorv

2.4,1 System Autocorrelation Functions

PGl B i1

T~

To this point the time-varying system described by the time-varying

Rh(T,T',C,C')
Rﬁ(f,f',t,t')
Rg(t,1t',9,9")

RB(f)f"¢)¢')

is known precisely for all 7 and t.

impulse response h(T,t) has been deterministic.

time-varying system functions. They are

E{h(T,t) b*(x',t")}
E{H(f,t) H*(f',t")}
E{S(T,9) S*(t',%")}
E{B(f,$) B*(f',¢')}

In other words, h{(T,t)

is done by considering the autocorrelation functions of all the

For real world systems this is never
the case, so the behavior of h(t,t) and the three other time-varying

system functions must be described by their statistical properties. This

(2.4-1)
(2.4-2)
(2.4-3)

(2.4-4)

Ziomekl0 has shown that with the correct interpretation the four
time-varying filter functions are related through two-dimensional Fourier
transforms. For example, consider the spreading function autocorrelation

function which by (2.3-29) and (2.4-3) is

®

RS(T,T',>,D) = E{/ nh(t,t) e‘j2"°t dt [ h*(t',t'") e32“$ ' ode)
h(T,t) he (el o) e J2TETP'E) qrgery  (2.4-3)

- ;:""
= ey,

-0

Because the expectation operator and integration are linear operations,

(2.4-5) can be rewritten as

® - . - 1]
Rs(r,t',;,o') = ff E{h(t,t) h*(t',t')} e jan(ye=se’) dede!
= [ R, Tet) e T32m(ae=dtet) e (2.4-6)
-0

. e
NP . ot
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Note that (2.4-6) does not express Rg( §71',$,d') as a two-dimensional Q
Fourier transform of Ru(T,7',t,t'), even though it has a similar form. ;]
@
This is because the two-dimensional Fourier transform of Rp(rt,t',c,t') ]
1
is actually given by j
) -
-1 - WYt -~
[ R (t,7,6,8") e J2rCeeERTe ) geqer. (2.4-7) ol
The difference between (2.4-6) and (2.4-7) can be seen in the argument of :ﬁ
the exponential function in the integrand. o
&
The discrepancy can be cleared up redefining the Fourier transform
with respect to T' and t' as
1
hed . tet - 4
[ n(rt,ery 32T 4o (2.4-8) )
— i1
N
® j2me'e! !
[ n(t',e") el ae' . (2.4-9) D
Y- -] © M
2]
Thus, by using (2.4-9), (2.4-6) is the two-dimensional Fourier transform .
of Rp(t,7',t,t') which can be written as ;
R (r,t',e,t") <=> Rg(t, 1", 9,9'). (2.4-10) »
?
t,t ®
Similarly, using (2.4-3) and (2.4-9) the relationships between all the i
1
system autocorrelation functions are )
- L/
R.n(r,r',c,t') {=> R.H(f,t',t,t') (2.4-11) ik
T, 1" '
Rh(T,T',t,t') < > RB(f,f',¢,¢') (2.4-12)
T,1',t,t' -
®
R
' ' - ' ' - )
RS(T,T '¢)¢ ) <—'? RB(f)f )'by(b ) (2.& 13) 1
T, T t
3 ' ' —_ £ LI ' -1/
R (£,€',6,e') < > Rg(E,£7,5,%"). (2.4-14) .l
t,t J
Figure 5 illustrates the relationships among all four autocorrelation
functions. J
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where Cr is the radial speed referenced away from the scatterer and C is
propagation speed of the medium. It can be shown that the Fourier

transform of (3.2-11) is given by

Y(£) = ]_:T X(-ﬁ—) RIS (3.2-14)

The effect the doppler variable has on the spectrum of the input
signal is illustrated in Figure 8. For a scatterer traveling away from
the receiver, the doppler variable is less than one, causing the spectrum
to move toward lower values of f. This occurs because the point
scatterer is traveling with the expanding wavefront of the transmitted
signal, so it is irradiated by the wavefront for a period of time longer
than the duration of the signal. This causes the reflected siénal to be
a time stretched version of the transmit signal changing slower in time
and consequently composed of exponential signals of lower frequency. A
similar analysis holds when the point scatterer moves toward the
receiver. 1In this case the scatterer is irradiated by the expanding
transmitted wavefront for a period of time less than the transmit signal
time duration. Consequently, the signal is compressed in time, changes
more rapidly than the transmit signal and so is composed of higher
frequency exponential signals. This is also seen from Pigure B8, where the
doppler variable is greater than one causing the spectrum to shift to
higher values of f.

Another phenoﬁenon induced by the doppler variable s is a change in
bandwidth for bandpass transmit\signals. If the spectrum of the transmit
signal is significant only in the interval (f},f)) then the spectrum of
the received signal is significant in the interval (sf},sf). This

occurs because the spectrum of the transmit signal is either stretched or
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cummax or aad

constant b in (3.2-9) is not a random variable. In either the random or

deterministic case the idea is the same; 1if spreading or scattering

occurs at only one T and ¢ then the system output is a scaled time and
frequency shifted replica of the input signal. The time shift T is

evident by examining the argument of (3.2-5) and (3.2-9). Finding the
Fourier transform of (3.2-5) or (3.2-9) gives the spectrum of the channel .

output signal as

j2nf%

Y(f) = b X(£-¢) e (3.2-10)

where X(f) is the spectrum of the transmit signal. Examination of the
right side of (3.2~10) shows the frequency shifting of the transmit
signal spectrum by the amount $.

The reflection from a point scatterer that has a given range and
velocity can, under certain conditions, be modeled by a random linear
time~-varying system whose output is a scaled version of its input
having a specific time shift T and frequency shift $. This is why the
scattering function described by (3.2-1) was considered. A more accurate
modeling of the point scatterer reflection can be found by considering

Figure 7 where the geometry of a monostatic signal detection system is

shown. Here the reflection of the transmit signal is given by
y(t) = b x(s(t-1)) (3.2-11)

where 1T is the range delay, s is the doppler variable, and b is a random
variable. Applying simpie physics to the geometry it can be shown

thatl4,15

T = %5 (3.2-12)
T
1 - Cp/C

s = T CT/C (3.2-13)

- ) TR ORI - . - co. s .o - .
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Ry(t,tv) - E([b x(t-T) ejz"¢tJ Lb x(t'=7) eJ2"¢t']*}, (3.2-4)

Thus the system output can be interpreted as

y(t) = b x(e-1) eI2TOL, (3.2-5)
\J
) Time-varying systems whose outputs are of the form of (3.2-5) are used
to model a non-dispersive communication channel.ll,12 ’
A similar result can be derived by considering a time-varying system
l for which the spreading function S(t,¢) is known. It was shown in

section 2.3.1 that the system output is given by

- y(t) = [ n(t,t) x(t-1) dt. (2.3-7)

Also, from section 2.3.2 the time-varying impulse response is related to

the spreading function by
-] .2
h(t,t) = [ s(t,6) 20 4. (3.2-6)
-

Combining (2.3-7) and (3.2-6) gives the output as

y(e) = [f s(1,8) x(e-1) 327 dodr. (3.2-7)
If the spreading function 1is of the form
S(t,9) = b 8(t=T) 8(¢-$) (3.2-8)

then the system output is

y(t) = [[ b 8(t-1) 8(¢-4) x(t-1) AL

-0

j2nst

b [ 8(s-8) x(t-1) e dé

b x(t-1) ed2Tt, (3.2-9)

Notice that (3.2-5) and (3.2-9) are of the same form except that the

. - - - . . . - P e
. - i . L e . et . e e T B . . R .
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Finally, in section 3.3 it is shown that the expected matched filter
receiver output is maximized for a given communication channel if the
cross—ambiguity function and the channel scattering function are in

constant proportion.

3.2 Signal Detection

3.2.1 Propagation Modeling

Consider a linear random time-varying system which models a WSSUS

channel and has a scattering function of the form
RS(T,¢) = K §(1=-1) 8(9-9) . (3.2-1)

In section 2.4.2, the scattering function was interpreted as a density
function which determines the amount of delay T and frequency shift 4 an
input signal will exhibit at the output of the system. If the scattering
function has the same form as (3.2-1), then it implies that the system
output will be a replica of the input having time shift T and frequency
shift 3. This can also be implied by determining the system output

correlation using (2.4-33) and (3.2-1), i.e.,
R (e,t") = K [f x(e-1) 8(1-1) 8(4=9) x*(e'=D) e32m08) 44

K [ x(t-7) 6(4-8) xx(c'-7) eI2mOCAE) 44

K x(£-7) x*(t'-1) ed2To(AL)

K [#(t-?) ej2n¢s] [x(t'-;) ej2"¢t']*. (3.2-2)

Defining the constant K as

RS |

K = E{|b]2} = E{b b*} (3.2-3)

then (3.2-2) can be rewritten as

FERAIN . . B R . .
. ., . L. . . I L IR T TN GOV UL G
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CHAPTER 3

MATCHED FILTERING IN SIGNAL DETECTION

3.1 Introduction

In this chapter, the detection of a signal that has been transmitted
through a communication channel whose scattering properties are known is
developed. Detection will be performed by examining the output of a
matched filter receiver. In this receiver structure, the channel output
signal is.multiplied by a processing signal, the product integrated, and
the square of the magnitude of the integrator output is used as the
receiver output. If the receiver output exceeds a predetermined
threshold, then it is assumed that a portion of the channel output
contains a transmitted signal; otherwise, if the threshold is not
exceeded then it is assumed that no signal is present. This is also
referred to as a likelihood ratio test. It will be shown that the
expected value of the matched filter response to a channel output
containing a response to a transmitted signal can be written in terms of
the channel scattering function.

In section 3.2.1, the modeling of a signal transmitted through a
non-dispersive channel (point scatterer) as a time and frequency shifted
version of the original transmit signal is presented, and the conditions
necessary for this modeling to be valid are also discussed. Next,
hypothesis testing, the matched filter receiver, and the derivation of
its expected output are presented in section 3.2.2, followed by the =

derivation of the expected energy of the channel output is section 3.2.3.

In section 3.2.4 the finite volume property of the cross—ambiguity

D

function is derived, and it is also shown that the function is bounded.
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Thus, (2.4-31) can be rewritten as

v oo
L.

j2m(AL)

. Ry(t,c') =[] x(t-1) Ro(T,9) x*(c'-1) e dtd¢ (2.4-33)
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[

- R (£,t") = E(f X(E) H(E,E) eI2TEE g [ xa(£r) HR(e',tv) e J2TETEY 4euy

[‘ © : Pyt i
= E{J] X(£) X*(£') H(E,t) H*(£',t') I 2™EEEET) 4eiery ) !

b -0 4

j2n(fe-f't")

= [[ X(f) X*(f') E{H(f,t) H*(f',t")} e dfdf’

=[] X(E) XM (EY) RU(E,E',e,e) eI2MEE=EET) eyg, (2.4-28)

Under the WSSUS assumption Ryg(f,f',t,t') = Ry(Af,At) where Af ¢ £ -f'

and At 4 t -t', so (2.4-28) becomes

R (e,e") = ] X(E) XA(E') Ry(af, o) eI2MEE=ETEY) Geger,

(2.4.-29)

From (2.4-26), Ry(4af,At) can be replaced by its Fourier transform
relationship to the scattering function Rg(T,¢), so (2.4-29) can be

restated as

Ry(t,t') = .

[II1 XCE) Rg(T,0) xx(g) @I2TEETETED) o J2RCMAI=(ADIT) 41y pqeqs .

(2.4-30) !

This multiple integral can be rewritten as the multiple iterated

integral
o [ o .
R (c,et) =[] ] xee) 2T df} Rg(T, 0)
‘-Q . ' ' *.
x |[ x(ery e 32ME(ET-D) df'] e32™8(8E) yrde.  (2.4-31)

By (2.2-11) the bracketed terms in the integrand of (2.3-31) become

j2nf(e=1)

[ X(f) e df = x(t-1) . (2.4-32)
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uncorrelated with the value for all f greater than f, + B or less than
fo - B.

The important result of this section is that under the assumption of
uncorrelated spreading, the scattering function can be defined as well as
other system functions based on the original system autocorrelation
functions. These other system functions described by (2.4-20), (2.4-23),
and (2.4~25) are related to the scattering function as either forward or
inverse Fourier transforms. This is illustrated in Figure 6. From the
figure it can be seen that

o
R (AF,88) = [[ R(T,6) I 2m(P(A)=(B)T) 444 (2.4-26)
-

which can be verified by using (2.4-20) and (2.4-25).

2.4.3 The System Output Correlation Function

In this section the correlation function of the linear time-varying
system output under the WSSUS assumption is derived. It will be useful
in the development presented in the next chapter where random
time-varying system theory is applied to signal detection.

By definition, the output correlation function 1s13
Ry(t,t") = E{y(t) y*(c")} (2.4-27)

Replacing y(t) by (2.3-19) the correlation function in (2.4-27) becomes

3 . .
= - . i - . L . | . . L. -t - ‘. . .
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Ry(E,E',9,0") = Ry(4F,¢) 8(¢-¢') (2.4~22)
where
RG(8E,0) = [ B (1,0) ¢I2TADT g, (2.4-23)

Thus, Rp(Af,¢) is the Fourier transform of the scattering function
Rg(T,¢) with respect to T.
Finally, an expression for Ry(f,f',t,t') under the WSSUS assumption

can be found. From (2.4-11) and (2.4-19)

-j2n(fT-f'1")

Ry(E.£e,8") = [[ R(T,T'he,e%) e ddt’

=[] Rh(r,At) §(t-1") e-j2n(fr-f'r') ddt’

= jw R (T,4¢) fm 8(t=-1') e S32m(E ) o] gn.
- a (2.4-24)
Evaluating the inner integral gives
Ry(£,£7,¢,8") = f& R, (7, 4t) A PLIC DRI
2 R, (af, 4e). (2.4-25)

Equation (2.4-25) is referred to as the time-frequency correlation
function.10 If Ry(Af,At) is significant only on a region centered at
(af,at) = (0,0), then it indicates that little statistical correlation
exists in the syste@s behavior for either time separation or frequency
separation. For example, if Ry(Af,At) = 0 for all |At| > T, then the
implication is that the system transfer function at time t is in no way
dependent upon the form of the system transfer function for all time
greater than t + T or less than t - T. Similarly, if Ry(af,at) = O for

all |Af| > B, then the value of the system transfer function at any f, is

i;
:
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j2“(¢t-¢'t') d¢d¢'

ej27\'(¢t-¢>'t') -

=[] Rg(t,0) 8(t-1') 8(¢-9") dod ¢’

=] Rg(r,0) [f 8(g-0") I2TIETHED) gl ag s(e-).

-0

[P

(2.4~-18)

VIO I

The inner integral, due to the properties of the impulse function, is
equal to ed27¢(t-t'), If the notation t - t' = At is adopted, then =

(2.4-18) can be rewritten as

Rp(t,T',t,t') = Ry(T,At) 8Ct-1') (2.4-19) 1
where )
4

R (T,80) = [ R(7,4) RELEC I (2.4-20)

v, J AN

Notice that Rh(T,At) is inverse Fourier transform of the scattering

function Rg(T,¢) with respect to 4.

A similar result occurs for the autocorrelation function

Rp(f,£',4,4"'). From (2.4-13) and (2.4-16) it follows that

I Ry(t,77,8,00) eTi2m(fr=£r7!)

RG(£,£',9,0") = ddt'
-0
,of -3 - ey
= I Rg(1,8) 8(x=11) 8(4mer) @ IITETEIT) goqu
(-] - -] s _ ' ' .'
= [ Rg(1,9) [ [ o8-ty e ZTETEIT) qoil dr s(e-00). R
(2.4-21) E
Again, due to the properties of the impulse function, the inner integral :
is equal to e~j27(f-f')T, Adopting the notation Af = f - £', (2.9-21) can J

be rewritten as

.A_l__“
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2.4.2 Uncorrelated Spreading

In their present form, the four autocorrelation functions, (2.4~-1)
to (2.4-4), are of little utility for communication channel description.
The additional assumption required is that the spreading function is

essentially uncorrelated with itself for different values of Tt and 4.

YL Y )

This is equivalent to expressing the spreading function autocorrelation

function as
Rg(T,T',6,') = R((T,4) 6(T-1') §(4=4")
- -mS(T,¢) ms*(T',¢') (2.4-15)

where mg(T1,4) = E{S(7,¢)}. Assuming that mg(t,4) = O then (2.4-15)

reduces to

Rs(r,r',¢,¢') = RS(T,¢) S(t=1') 8(9~¢") (2.4-16)
where i
2 ]
Rs(r,¢) = E{|s(T,9)|“} 20 . (2.4-17) B
1
The positive semidefinite function Rg(T,¢) is referred to as the -]
=
scattering functionl0,11,12 zp4, according to Ziomekl0, can be interpreted S
-
as a density function which determines the amount of delay T and L

frequency shift ¢ an input signal will exhibit at the output of a random

linear time-varying system with uncorrelated spreading.

Communication channels that can be modeled using scattering functions are

commonly referred to as wide sense stationary uncorrelated scattering

®

(WSSUS) channels. 10,11 &

-

K

The WSSUS assumption not only effects the form of Rg(T,T',4,%') but |

0

also the remaining three system autocorrelation functions. Consider j

! ®

r Rp(t,t',t,t') and its relationship to Rg(t,1',$,3') via the Fouriler -
transform, Using (2.4-10) and (2.4-16) it follows that »

,' :
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compressed due to the doppler variable s. Therefore, it follows that if

the signal bandwidth is defined as

BWrpans = £27 £y (3.2-15)

then the bandwidth of the received signal is

BW =3 fz - s fl =g (fz- fl) = s BW

TRANS®
This change in bandwidth can be related to the received signal carrier
frequency defined to be the spectral centroid. Since all signals are
considered to be elements of L1(Rl) and LZ(Rl) their spectrums are

magnitude integrable by Theorem 2.6, so the spectral centroid is defined

as
[ E|X(E)| df
£, == . (3.2-17)
TRANS f lx(f)l df

If the spectrum of the received signal is given by (3.2-14), then the

carrier frequency becomes

[ £ 12 x| ar

f =
0 - -]
REC £, £
L, |5 XD df
| f1X(£)| df
= S ~®
[ |X(E)| df
=5 f . (3.2-18)
OTRANS

Combining (3.2-16) and (3.2~18), the received signal bandwidth becomes

fo
REC

BwREC = ?;————— BwTRANS (3.2~19)
TRANS
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Figure 3. The shifting of spectra due to the
Doppler variable s.
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. thus the change in bandwidth is
ABW = BwREC- BWTRANS
= (s=1) Bppans
fo - f°
REC TRANS
{ - B¥rrans
.- OTRANS )
! =0 -
| = fo BWTRANS (3.2-20)
é. TRANS
where = f - f is the doppler frequency shift. Furthermore,
¢ OREC  OTRANS PP 1 y
from (3.2-20) this frequency shift is also given by
¢ = (S-l) fo . (3.2-21)
TRANS

It is easily seen that if the carrier frequency is substantially
larger than the transmit signal bandwidth, the change in bandwidth due to
the doppler shift ¢ is small. If a transmit signal in a communication
system is a bandpass signal and possesses a bandwidth much smaller than
the carrier frequency, then for an adequately small range of doppler
frequency shift, the return signal spectrum given by (3.2-14) can be

approximated by (3.2~10), i.e.,

%r x5y eI 2 x(£-9) I2TET, (3.2-22)
3 1
- The term 'adequately small doppler frequency shift' means that the 1
;. doppler variable s is never large enough to cause the change in bandwidth
. 1
& to be a significant percentage of the transmit signal bandwidth. ]
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3.2.2 The Matched Filter Receiver

From this point forward all system input signals are assumed to be
bandpass signals with bandwidths sufficiently small to allow the
communication channel to be accurately modeled as a random linear
time-varying system. The communication channel outputs will be
considered to be the sum of the responses to two random linear
time-varying systems and a nolse process. The first system models the

channel scattering; the second system models the medium scattering.

Detecting the presence of a signal is reduced to the hypothesis test:

Hy ¢ r(t) = yREv(t) + n(t) (3.2-23)

H, : r(t) = yCHN(t) + yREV(t) + n(t) (2.3-24)

where r(t) is the channel output, ygrgy(t) is the reverberation or clutter
response, ycHn(t) is the response to channel scattering, and n(t) {is

noise. It will be assumed that the noise term is white and uncorrelated
with both ycyy(t) and yggy(t). Furthermore, it will be assumed that
ycun(t) and ygrgy(t) are uncorrelated. The individual responses due to

the channel scattering and reverberation are given by

Youn(t) = / hoyy(To8) x(e-1) dt (3.2-25)
Ygey(£) = J gy (To£) x(£-1) dt . (3.2-26)

The hypothesis test will be implemented by testing the output of a
matched filter given by
- -]

[ r(r) g*(t) dt

) 2
|2]¢ = (3.2-27)

where g(t) is called the processing waveform. If the output |2|2 exceeds

a threshold Y then hypothesis H) is assumed and a signal has been




Ll
MR

MDY
v

OGS DO

.
’

Y

48

detected. The threshold Y is determined to maximize the probability of
detection for given probability of false alarm (Neyman-Pearson test).
The performance of the matched filter receiver for different threshold
settings is presented in Van-Treesll, so it will not be discussed here.
The entire channel model and receiver structure is shown in Figure 9.
Since the communication channel is stochastic, the expected matched
filter output is used to describe the performance of the receiver. For

the response to channel scattering, the expected output is

2
E( 2oyl } = B Ry fopy™?

E{f YCHN(C) g*(t) de J' yCHN*(t') g(t') dt'}

=[] g*(t) Elygy(t) yopy*(e")} g(e') dede’

= [[ g*(t) R, (t,t') g(t') dede’. (3.2-28)
= CHN

A similar result holds for the reverberation response, i.e.
2 -]
E{|2 = *(t) R t,t' t') dede’. 3.2-29
| 2gy! 7} {ig()mvu)g() ( )

Because it is assumed that the noise is white, its autocorrelation
function is

Rp(t,t') = Ny 8(t-t'), (3.2-30)
so the expected value of the receiver output due to the noise term {is
ECe %} = ] g*(e) R (e,t') g(t) dede’
- Q0

=N J] g*(t) 8(t~t') g(t') dtdtr’

=n [ Jao)]?ar . (3.2-31)
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{f; A figure of merit used to judge the performance of the matched
filter receiver is the signal-to-noise ratio defined as
5 -
E{]2.. |}
SNR = o, (3.2-32)
E{]zREV+zn| }

where |2y + 2n|2 is the receiver output response to both reverberation
and noise. Because it has been assumed that the noise is uncorrelated
with the reverberation response, the denominator of (3.2-32) can be

written as

2
E{IEREV+2n|2} = E{lzREvlz} + 2 Re[E{fpgy zn*}] + E{}2 |7}

2 2
= E{| eyl + EL2 [} . (3.2-33)
The cross-correlation term vanishes in (3.2-33) because
©
E{tggy 2%} = [] g*(t) Elypgy(t) n*(t)} g(t') dede’ (3.2-34)
-0

and E{ygrgy(t) n*(t)} is assumed to be zero. Thus, the SNR in (3.2-32)

can be rewritten as

2
E{IzCHNl }
SNR = : .
E{] tpeylF + ECl2 |7}
[[ g*(e) R, (£,e") g(x') dede!
= — - _ . (3.2-35)
[[ g*(e) R (e,t') g(t') dede' + N [ Ig(t:)l2 dt
-0 YR.EV [s] —c0

Although the SNR has been somewhat simplified in (3.2-35) both the
numerator and denominator can be reformulated in terms of the scattering
functions for both the channel scattering and reverberation. Cousider
the numerator in (3.2-35), using (2.4-33) and expressing the channel

scattering function as RSCHN(T.¢), the expected matched filter output is
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2
E{ 2517}

J] g% o) |[] x(e=) By (1,) wn(et=n) &I2TO000) drdf] g(t') dede’
TS xtemn grcey o32TOCETT2) 4l o
{i [i“ x(t-1) g*(t) e t Ry (T

© . ' *
' [f x(t'-1) gr(e') eI 2TH(E'T/D) dt'} dvds

-C0 -0

=[] [f x(£=1/2) g*(c+1/2) ed2T9E dt} R ey T2 )

o *
x [} x(t'-1/2) gr(c'+1/2) eI2TeE dt'} dtd ¢. (3.2-36)

-0

The bracketed terms in the integrand of the last equation of

(3.2-36) is called the uncertainty function and is written as

Xe,g(T8) 2 x(e-1/2) gr(err/2) 37T ae (3.2-37)
Using this definition, (3.2-36) can be restated as
2 N 2
E{]2 } = . R T, dtd 3.2-38
Uregyl = I I (r0d]® By (2,0) dnde ( )

where the function |xx,g(r,¢)|2 is referred to as the cross-ambiguity
function. The same reformulation can also be applied to the denominator,
so if RSREV(T,¢) is the reverberation scattering function, the SNR can

be written as

T 2
I 1x g Cra )] Rg  (7,0) dds
SNR = .

I !xx’g(w)l2 Rgpgy T ® 4740 + N[ |g(e)] % ae

(3.2-39)

A et oapco b e it S et St e dave, Jave dove Sate S dhon St Saee




e
’

r
3
4
..

P
e!

w

L

/L
e

,1."' ,ﬁv

ey P
B . o .

D sam aems oW Svul Suul e ar A aiiiedh S s i s AAR ST PO I IR S SN VN Sl S S YRR NI TS, T LT Y vy

52

If the SNR is used as a performance measure for the matched filter
receiver, then optimization (increasing the SNR) can be accomplished by
either attempting to decrease the reverberation response without
significantly decreasing the channel response or increasing the channel
response without significantly increasing the reverberation response.
Stutt16, and Spafford16:17, have been successful in optimizing the SNR
for a point scatterer embedded in doubly spread reverberation by altering
the processing waveform so as to minimize the denominator of (3.2-39).

In this thesis, the numerator will be increased by altering the
processing signal. This will imply an increase in SNR if the denominator
of (3.2-39) does not also significantly increase. If the only
interfering signal is the white noise process, then the first term in

the denominator is zero (no reverberation response). In this case,

increasing the numerator guarantees an increase in SNR,

3.2.3 Return Energy and the Scattering Function

Using a result from the last chapter, the expected value of the
energy of the system response y(t) can be found. From (2.4-33) the
system output correlation function is

E{y(t) y*(c")} = Ry(t,t')

= [ x(t-1) RS(T,¢) x*(t'-1) esz(At) dtds, (3.2-40)

-0

where 8t =t - t'. Setting t = t' gives the expected system output power

as
Uy = [ Ix(e=0]% Rg(1,) duds . (3.2-41)

Now the expected system output energy, called the return energy, 1s
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defined as .

E =Bl |ye)]?de} = [ E{y(e)|?} de. (3.2-42)

-0

Substituting (3.2-41) into (3.2-42) gives

E_ = I Ix(t-r)lz Rg(7,¢) drdede
=[] 1 Ix(t:-r)l2 de| R(7,¢) dwdé
=E [] Rg(1,4) dide ' (3.2-43)
where
® 2 ® 2
E, = [ |x(e=1)|“ dt = [ |x(t)|° dt (3.2-44)

is the system input energy or transmit energy.

At this point several statements can be made. First, in any
practical communication channel it can be assumed that the return energy
will be finite. Second, the return energy can be expected to be less
than that of the transmitted energy. This occurs because a scatterer can
subtend only a small portion of the transmitted wavefront, thus it
reflects only a fraction of Ey. Furthermore, some of the transmitted
energy is lost due to absorption loss of the medium and spherical
spreading of the transmitted and reflected wavefronts. Therefore it can
be concluded that

® E
[] Rg(1,4) ddo = EE <1. (3.2-45)
- t

Furthermore, because the scattering function is positive definite

/] Rg(1,0) d1d¢ = /] |Rg(T, )| drdé (3.2-46)
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and so it is an element of LI(R2),

Scattering functions that are significant over a region of the (T, 9)
plane are said to describe doubly-spread or doubly-dispersive
communication channels. Such scattering functions will be considered in
this thesis, and in Chapter 4 a method for optimizing a receiver to
detect a signal that has been transmitted through a doubly-spread

communication channel is presented.

3.2.4 Properties of the Cross-ambiguity Function

From the SNR equation (3.2-39) it is easily seen that the
cross~ambiguity function in part determines the performance of the
recelver. Since the channel and reverberation scattering functions are
not free parameters, optimization of the receiver response to a signal
can only be done by altering either the transmit signal x(t), the
processing signal g(t), or both. Since these signals are related to
receiver response through the cross-ambiguity function, it will play a
major role in the optimization procedure developed in Chapter 4. Since
the cross—ambiguity function is significant to the theory developed in
this thesis, it is appropriate to discuss some of its properties.

The most important property of the cross—ambiguity function is that
its volume is finite. To prove this it is necessary to find a new form
of the uncertaianty function. From (3.2-37), and by expressing the

waveforms x(t) and g(t) as inverse Fourier transforms gives

X, o(T9) = [ x(t-t/2) g*(t+1/2) QJ2mot o
i j ® . *
< 17 xcey IFECETTYD) g || [T geny @322 G0 G2mee
=[] x(e) ox(ny | &IFTETMOE 4| SITCEAMTL yegn, (3.2-47)
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The bracketed term in the integrand of (3.2-47) can be replaced by a

delta function, i.e.,

f ejZﬂ(f‘ﬂ+¢)t dt = 8(n-f-¢) (3.2-48)

Replacing (3.2-48) in (3.2-47) gives

=

Xy g(r,¢) = [[ X(f) G*(n) 8(n-f-¢) e_jZ“(fM)T/2 dfdn ‘ \
- 4

= [ X(E) Gr(f+p) e I2TER/DIT 4o (3.2-49) i

Equation (3.2-49) now expresses the uncertainty function in a useable

form.

The volume of the cross—ambiguity function can now be found. From

the definition of the cross—ambiguity function in (3.2-49), the volume is

given by

<
i
o i

[ D gmool dnas =[] X (5,9) ¢ (5,9) dndg

-0

Il [} X(£) Gr(g+p) e J2M(E+O/2)T df}

© . *
x [I X(n) Gx(n+o) e 32T(n+e/2)T er dtds
= [[] X(£) X*(n) G*(£+4) G(n+4) [? e 32ME-MT ol dndedo.

(3.2-50)

As in (3.2-47), the bracketed term in the (3.2-50) can be replaced by an

impulse function thus reducing (3.2-50) to
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[[] X(£) X*(n) G*(f+4¢) G(n+$) 8(f-n) dndfd

-0

<3
[}

[] X(£) X*(£) G*(f+¢) G(f+¢) dfd¢

/] |X(f)|2 |G(f+¢)|2 dfds¢. (3.2-51)

Because it is assumed that both the transmit waveform x(t) and the

processing waveform g(t) are elements of LL(Rl) and L2(Rl), by Theorenm
2.6 the integral of the squares of their respective Fourier transforms
are finite and by convention are equal to the energies of each signal,

i.e.,

[ Ix©)|*af =E <= (3.2-52)
[ |6(e)|? af = B, < = (3.2-53)
Therefore, from (3.2-51)
® 2 | 2
v =] |X(£)| [f |G(£+9)| d;] df
= Eg f |X(f)|2 df
~E E <. (3.2-54)

Thus, the volume of the cross-—ambiguity function is finite and is equal
to the product of the energies of the transmit and processing waveforms.
By convention, the value of the processing signal is dimensionless
as opposed to the transmit signal which may have units of either volts or
amperes. Therefore, Eg is a dimensionless number and the volume of the

cross—ambiguity function is in units of energy.
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Another property of the cross—ambiguity function is that it is

bounded. This can be shown by applying the Schwartz inequality, i.e.,

I, ) S

2 > j2mer |2
| X, g(r.¢)| = |] x(t-1/2) g*(t+1/2) e dt
-] 2 © 2 {
- o< [ fx(e-t/2)|C de [ |gCe+t/2)| 7 de . (3.2-55) ;
By definition, the integrals on the right side of the inequality in ;

(3.2-55) are the energies of the transmit and processing signals, so
2
T, SEE (=, (3.2-56)
lXx’g( »l X g

Thus the cross-ambiguity function is bounded.

3.3 Principles of Matched Filter Receiver Optimizationm

From this point forward it will be assumed that the transmit signal

x(t) and processing signal g(t) are unit energy waveforms, i.e.,

[ lxe)|? de =1, | (3.3-1)

-0

l. . (3.3-2)

i Ig(t)l2 dt

L
These assumptions will cause no loss of generality in any of the theory

developed in this thesis. A consequence of (3.3-1) and (3.3-2) is

7 2
[T g gme)]” drdo =& 6 =1 (3.3-3)

and

‘l!_bl) [

2
|xx’g(r,¢)| <E Eg = 1. (3.3-4)

Thus, the cross-ambiguity function has unity volume and is bounded by

one.
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J(g+n) = J(g) + &J(g,n) +% 62J(g,n) + ees

v §™ g, + ... (4.3-21)
where
m
5§ (g n) = 1im 4= J(g+en) (4.3-22)
e+0 de™

and is referred to as the m-th Gateaux derivative of J(g) at g(t) with
increment n(t). In section 4.3.1, it was shown that J(g+en) is a second
degree polynomial in € (see equation (4.3-5)); therefore, by examination
of (4.3-22) all Gateaux derivatives of order three or higher are equal

to zero. Thus,

J(g+n) = J(g) + &J(g,n) +-% GZJ(g,n) t oees
= J(g) + 2 Re{] n(t) &*(t) dt} + J(n), (4.3-23)

by (4.3-8), (4.3-19), and (4.3-21). It is fortunate that the Taylor
series can be truncated to only three terms since this will allow for an

accurate analysis of the optimization procedure developed later.

4.3.4 Properties of the Gradient Function

In section 4.3.1, the gradient function, given by

j2nd(e-1/2)

o(t) = f[ xr (1,6) Rg(1,0) x(t-1) e dwd¢, (4.3-9)

arose from rearranging the integral that defined the first Gateaux
differential of the cost functional J(g). As with the cross-ambiguity
function, since the gradient function is significant to the theory
developed in this thesis, it is appropriate to discuss some of its

properties.

-
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Therefore,
|6%3(g,n,8)-6%0(g,n, 8)| 0
lim BT == lm gy = 0. (4:3-17) .
u8"2+0 2 "3"2*0 2

Thus, (4.3-15) holds for &J(g,n) as given by (4.3-6) so J(g) is twice
Frechet differentiable and 8J(g,n,B) describes a unique and continuous

linear mapping of all B(t) in L2(Rl) to RI.

For the purposes of analyzing the behavior of J(g) as g(t) changes
to g(t) + B(t), the second Frechet derivative must be evaluated with

n(t) = B(t). In this case, the second Frechet derivative is written as
2 2
§“J(g,n,n) = 87J(g,n). (4.3-18)

From (4.3-18) it follows that for the cost functional given by (4.1-1),

the second Frechet differential is
2 < 2
8°3(g,m) = 2 J] |y o (T,8)]7 Rg(1,0) drdg = 2 J(n). (4.3-19)

Note that because the second Frechet differential is proportional to the
cost functional evaluated at n(t), the cost functional itself is a

continuous mapping.

4.3.3 The Generalized Taylor Expansion

It is well known from elementary calculus that the function of a

real variable, f(x), can be written as a Taylor series, i.e.,

f(x+Ax) = £(x) + £'(x) &x +-% £''(x) (Ax)2 + .es
+ m_} £ ey (ax)® + ... (4.3-20)

It can be shown that the Taylor series can be generalized for functionals
that map one linear space to anotherl9,20, In this case the Taylor

expansion for the cost functional is expressed by
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8J(g,n,8) = lim 5%— 2 Re(ff X g+€6(r,¢) G n(T,¢) R(1,4) dtd¢}]
€0 - ’ ’
- _ d - ao
= ii@ T |2 Re{{i Xe,g{Tr®) 3 ((T,8) Ro(T,9) dud¢} ;
+ 2 e Re{f] xx,3(1,¢) xx’n(f,¢) Rs(T1,9) dfd¢}} ;3
- q
= 2 Re{[] x g(7,) x¥ (7,0) Rg(T,¢) d1do}. (4.3-14)

G
et e
[ RS TASEAS TR T

By its definition, the second Gateaux derivative is just the first

Gateaux derivative of §J(g,n) with respect to g(t). In effect, 8J(g,n)

e . ]

has been treated no differently than any other functional whose first

1
At

Gateaux derivative has been sought., Thus, 62J(g,n,8) gives the first

o

order change in 8J(g,n) when g(t) changes to g(t)+8(t).
As with the first Gateaux derivative, GZJ(g,n,B) describes a

continuous and unique mapping from L1(R1) N L2(RZ) if it is also the

Frechet derivative of 8J(g,n) with respect to g(t). Equation (4.3-13)
describes a second Frechet derivative if 8J(g,n) is a Frechet derivative
of J(g) and if for a fixed g(t) in LY(R1) N L2(Rl), and B(t) an arbitrary
element in L2(Rl), then

o - -52 o
| 8J(g+8,n) 6iéﬁ’n) 823(g,n, 8| _ . (4.3-15)
2

lim
HBHZ*O

Without loss of generality, the increment B8(t) can be replaced by ez(t)

where € 1s a real constant and lzllyp = 1. The differential of the two ]

first Frechet derivatives of J(g) in the numerator of (4.3-15) can be !

found from (4.3-14) and (4.3-6) to be
8J(g+B,n) - 8J(g,n)

= 2 Rel{f] x o(T,8) x*  (7,9) Rg(7,9) dTdo)

= §23(g,n,8). (4.3-16)

.- . - e -, ... ~ - - * A
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| J(x+€2)-J(x)-8J(g,cz)]|
ezl

lim
e+0 2

= ua el [ Ix_,(te)|? R(1,0) dwde = 0. (4.3-12)
e+0 - ’

This shows that §J(g,n) is a Frechet derivative and that it is a
unique and continuous mapping from the set of all functions in

LI(rl) N LZ(Rr!) to R,

4,3.2 The Second Gateaux Derivative

Although the second Gateaux derivative will not be used in the
development of the optimization procedure presented later, it will be
useful in the analysis of its performance and convergence. Furthermore,
the definition ultimately used does not express the second Gateaux
derivative in its most general form; however, it will be suitable for
analyzing the behavior of the cost functional.

The second Gateaux derivative of the cost functional J(g) with
increments n(t) and B(t), where g(t) is in LI(R!) and L2(Rl), and n(t)

and B(t) are arbitrary elements of L2(Rl) is given byl9,20

§23(g,n,8) = lim —S— 6J(g+eB,n). (4.3-13)

€
E*Od

In section 4.3.1 the first Gateaux derivative was expressed by (4.3-6),
thus, by applying the definition in (4.3-13), and using the property of
the cross-~ambiguity function given by (4.3-3), the second Gateaux

derivative is
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8J(g,n) = 2 Re {J n(e)e*(t) dt} = 2 Re{<n,®>} (4.3-8)

where $(t) is called the 'gradient function' defined as

j2nd(e-1/2)

o(e) =[] ¢ (1,0) Rg(1,4) x(t-7) e dtdg.  (4.3-9)

The properties of the gradient function will be discussed in section
4.3.4.

The Gateaux derivative of J(g) as given in (4.3-6) and (4.3-8)
defines a linear transformation (mapping) from the set of all functions
in LI(R1) NL2(R]) to Rl. However, from its definition, the existence of
a Gateaux derivative does not imply that it is a continuous or a unique
mapping of one linear space to another. This occurs because the norm of
the space L2(Rl) i{s not involved in the definition given by (4.3-1).
Continuity and uniqueness can only be guaranteed by a Frechet derivative.

By definition, the Gateaux derivative &J(g,n) is also a Frechet
derivative2,19,20 if for a fixed g(t) in LI(Rl) and L2(Rl) and an
arbitary n(t) in L2(Rl), then

LJ(x+ﬂ)-Jﬁti'5J<g’ﬂlL -0. (4.3-10)
2

lim
Hnﬂ2+0

Without loss of generality, the increment n(t) can be replaced by ez(t)
where € is a real constant and lzlip = 1. The numerator of (4.3-10) can
be found from (4.1-1), (4,3-5), and (4.3-6), i.e.

J(g+ez) - J(g) - 8J(g,en)

- ] Ixx’z(r.dp)l2 Rg(7,4) dtdd. (4.3-11)

Applying (4.3-11) to (4.3-10) gives
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T 2
I Ixg, gren(T " Rg(r,0) dndo

=[] |Xx’g(f,¢)|2 Rs(r.¢) dtd ¢
+2¢ {i Re{xx’g(1,¢) x;’n(r,¢)} Rg(T,¢) dtd¢

S I PR CROIEE WERPLY ,

= J(g+en) (4.3-5)

which is a second degree polynomial in €. Evaluating the derivative of
[ - (4.3-5) with respect to € and taking the limit as € + 0 gives

the first Gateaux differential of the cost functional J(g) as

-

§J(g,n) =2 [[] Re{ (t,6) x* (t,8)} Ro(T,¢) dtdd
2o Xx,g Xx,n S

W

L

=2 Re {f] x (7,8 Xk (T,0) Rg(T,4) drd}. (4.3-6)

Equation (4.3-6) can be rewritten into a form that will be
convenient later. This is done by replacing the conjugated uncertainty
function in the integrand by its definition in (3.2-37), changing

variable of integration, and rearranging terms as follows:

S 1“rvv -

3 8J(g,n)

? =2 Re{{z Xy,g(Tr®) 1: x(t-1/2) n(e+r1/2) 32T ¢ *Rs(r,¢> dtd ¢} )
i - 2 Re{fz X, g (T ) {: xx(e=1) n(e)e IETHETYD) gel R (1, 9) dands) ;
E‘ e ;’
{ - 2 el]_n(e) [ii X, g{Tr®) Rg(T,8) x¥(e=D) e I2M(ETD) yrggl ar. .
E‘ (4.3-7)

Equation (4.3-7) can be more compactly written as

......
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o ]
ﬂ second Gateaux derivatives of the cost functional. They are often given %
5 the interpretation of being generalized directional derivatives over a :;

linear space, and in the engineering literature these derivatives are B

referred to as the first and second variation. :
B Let g(t) be an element of LI(R!) and L2(Rl) and n(t) be an arbitrary i;
¥ element of LZ(Rl), then _ iy
{ . d

8J(g,n) = lim a—-J(g+en) (4.3-1)
£%0 €

] is the first Gateaux differential of J(g) with increment n(e)2,19,20, 1o

sctasinaind SR LA

start, it 1is necessary to find the derivative on the right side of

- (4.3-1), therefore,

9

A 4 J(g+en) -4 f? | (t ¢)|2 R.(T,0) dd¢ (4.3-2)
de °'8 de 77 Xx,g+€n ? st : )

The integral in (4.3-2) can be expanded as a polynomial in €. From the

definition of the uncertainty function by (3.2-37),

o

x(t=t/2) [g(t+T/2) + en(t+T/2]* e dt
/ g jamet

&’g_’_en(T,‘b)

[ x(t-1/2) gr(c+t/2) e3P 4e

+ € [w x(t-1/2) n*(t+1/2) eI ¢
= Xx,ng’¢) + € xx‘n(r,¢). (6.3-3) :?
It follows that the cross—ambiguity function derived from (4.3-3) is E
| -4
lxx,g+€n(T,¢)I2 = Ixx’g(r,da)l2 + 2 Re{xx,g(f,¢) x;’n(f,¢)} € gﬂ
+ |xx’n(r,¢)|2 e . (4.3-4) R

Substituting (4.3-4) into the integral of (4.3-2) gives
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Figure 10. The set S in RZ consisting of all
vectors lying on the unit circle.
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By Theorem 4.1, the supremum on the right side is uniquely known, giving

. inf le—yll§ = IIxII2 + 1 - 2 Ixi.. (4.2.8)

y(t) €S 2 2

where y(t) = x(t)/lxla. The right side of (4.2-8) is a quadratic 5

. . equation of the norm, and it can be easily verified that its value is

i always greater than or equal to zero. Thus, the unique best approxima- . ;

. tion to any x(t) with a non-zero norm by an element of the set S defined j
by (4.2-5) 1is yo(t) = x(t)/Uxly. This completes the proof of the ii

theorem.

Although Theorem 4.2 is stated in terms of L2(Rl), it can extend to

i

other Hilbert spaces. This can be illustrated by considering a Hilbert

space familiar to nearly everyone; the set of all two-dimensional vectors

a

R2 (the real plane). Figure 10 shows a portion of R2 near the origin and

the set S, which in this case is the unit circle. Also shown is the

NN VRS

vector x and its best approximation in the set S, the vector y,. It is

Ry

<

intuitively clear that the best approximation is mearly a scaled version

[ N

of x that has unity length. Other vectors in S are shown, and it can be
seen that the norm of the difference vectors between them and the vector

X are not minimal.

e ]

4.3 Gateaux Derivatives of the Expected Matched Filter OQutput

4,3.1 The First Gateaux Derivative

As mentioned in the introduction to this chapter, the cost
functional used in the optimization of the matched filter receiver is its
expected output subject to the constraint that the value of the norm of

both the processing signal and transmit signal is unity. To develop and

analyze the optimization procedure, it is necessary to find the first and
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Proof By the properties of the complex numbers and the Schwartz
inequality

Re<x,y> € |<x,y>| < Ixi, dyl,. (4.2-3)
The right inequality of (4.2-3) is an equality if and only if
y(t) = A x(t) where A € Rl. Because y(t) is an element of S, either
A = 1/lUxlly or X = -1/lxly, causing <x,y> to be a real quantity, thus

Re{<x,y>} = £ <x,y> =t Ixl (4.2-4)

2.
Therefore, the left inequality of (4.2~3) is an equality and Re{<x,y>} is

maximized only when X = 1/lxlg. Equation (4.2-2) follows immediately.

Theorem 4.1 is used to prove the following theorem.

Theorem 4.2 Let S be the set of all functions in L2(R!) whose norm is

unity. For any non-zero element x(t) in LZ(Rl), the unique best

approximation by an element y,(t) in S is given by yo(t) = x(t)/Ixljy.

Proof Finding the best approximation is defined as a minimum norm

problem; in other words, an element y,(t) is sought such that

Ix-y ﬂé = inf Hx—y"% > 0. (4.2-5)
% yeres

In the Hilbert space L2(Rl) the norm can be defined in terms of the inner

product, thus (4.2-5) can be restated as

2

inf ﬂx-y"z = inf {x=y,x~y>
y(e) € 8 y(t) €8 .
= inf {uxng + Ilyllg - 2 Re{<x,y>}}. (4.2-6)
y(e) € s
Since y € S then ﬂyﬂg = 1, therefore,
2 2
inf Ix-yly = nxﬂ2 +1 -2 sup Re{x,y>}. (4.2-7)

y(e) € S y(e) € S
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In section 4.2 the set of unit energy signals is discussed, and a
theorem is stated and proved giving the best approximation of any element
in the space LZ(Rl) by a unit energy signal. In section 4.3, the first
and second Gateaux derivatives (also known as first and second variations)

of J(g) are derived as well as 1its generalized Taylor expansiomn, and in

section 4.4 the procedure for optimizing J(g) subject to the constraints

]
]
|
j
}
;

(4.1-2) and (4.1-3) is presented. Finally, in section 4.5 several
numerical examples of optimizing a matched filter receiver using this

procedure are given.

4.2 The Set of Unit Energy Signals

As indicated in Chapter 1, all functions used to represent signals
will be elements of L2(R!) and LI(Rl). Furthermore, it was established
in section 3.3 that the energies of both the transmit and processing
signals are unity. Thus, it follows that the set of all functions in
LZ(RI) whose norm is equal to unity is of considerable importance to the
development of the theory presented in this chapter. Two theorems are
stated and proved below. The second theorem will be applied in the

development of the optimization procedure developed in Chapter 4.4.

Theorem 4.1 Let x(t) and y(t) be non-zero elements of the complex

Hilbert space L2(R!). Let y(t) be an element of the set of all functions

in L2(R}) with unit norm (unit energy), i.e.,

(4.2-1)

L AR

s = (y(r) € L2(rl) | Iyt, = 1}.

If x(t) is fixed then the value of Re{<x,y>} is maximized if and only if

y(t) = x(t)/lixly giving

P . et ..

sup Re{<x,y>} = Ixi,. (4.2-2)

y(t) € 8
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CHAPTER 4

OPTIMAL SIGNAL DETECTICN

4.1 Introduction

In this chapter an iterative optimization procedure is developed to
increase the expected matched filter recelver response to a signal that
has been transmitted through a communication channel whose average
scattering properties are known. As might be expected, the cost

functional used in this procedure is
J(g) = E{|2|2} = I}. R.(T,9) | (t ¢)|2 dtd¢ (4.1-1)
e S 1 x’(’g ? »

where an increase in the value of J(g) is sought subject to the

constraints
«©
i = [ [x(o)|?ae = 1, (4.1-2)
-0
ig? = [ {g(e)[® ae = 1 (6.1-3)

In other words, both the transmit and processing signals have unit
energy. The cost functional is defined for all x(t) and g(t) in L2(rl),
and this can be shown by examining the integrand of (4.l1-1). Because
x(t) and g(t) have finite energy, the value of the cross—ambiguity
function is bounded for all T and ¢ by (3.2-56)., Furthermore, it was

shown in section 3.2.3 that the scattering function has finite volume,

thus
J(g) £ Hxﬂz igh, ff RS(T’¢) d1d¢ < =, (4.1-4)

showing J(g) exists for all x(t) and g(t) in L2(Rl). 1In fact, it means

that J(g) is a bounded functional over the space L2(Rl).

T - - o iy .
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function is bounded by unity the constant K is constrained by

1
max RS (t,9) °
RINR, CHN

K < (3.3-9)

thereby causing the right side of (3.3-8) to be less than or equal to
one for all (t,¢) € RN Ry, |

Equations (3.3-8) and (3.3-9) imply that if the cross—ambiguity and
scattering functions are constrained to be non zero in the regions R} and
Ry, respectively, then the expected value of the matched filter receiver
response to the channel.output is maximized if the cross-ambiguity
function has the same shape as the channel scattering function in their
region of intersection in the (T,¢) plane. If the regions R} and R have
finite areas of nonintersection, then some of the volume of the
cross—ambiguity and channel scattering functions are lost when their
product, the integrand of (3.2-38) is formed. This implies that an
improvement in the matched filter response can occur if the cross
ambiguity function and the scattering function subtend the same region in
the (t1,9) plane. Since the channel scattering function is not a free
parameter, improvement in receiver performance can only be attained by
altering the shape of the cross-ambiguity function which can be done by
changing either the transmit signal, the processing signal, or both. A
method for optimizing the matched filter output by altering the

processing signal is presented in Chapter 4.
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Consider the expected value of the matched filter receiver output to

a received signal which was shown in section 3.2.2 to be given by
B 2oyl Y = ] Ix, (6,&)° Ry (1,4) dudo. (3.2-38)
CHN e )S{,g ’ Scun

If R} is defined to be the region of the (t,¢) plane where the cross-
ambiguity function is non-zero, and Ry is defined to be the region where

the scattering function is non-zero, then (3.2-38) can be restated as

E{|e.. |2} = [[ | (1,02 R, (t,) ddo. (3.3-5)
canl T g e, ™8 Scan

By the Schwartz inequality an upper bound for (3.3-5) can be found,

2y _ 2
E{ltgyyl Y = RH 1%, g(T 0" Ry (5,0) ddg
1N &y
[ -] 2 ©0
I I (00" dnde J] R (5) dTds
Er
=g =B <l (3.3-6)
X

Regardless of its statistical nature, the matched :iilter output is, in

fact, always less than unity because from (3.2-27), (3.3-1) and (3.3-2),

© 2
!2CHNIZ = {Q Yopn(t) 8*(t) de
< lygm®1?ae [ e e
< [ x(e)|“dt [ Jg(e)]© de = 1. (3.3-7)

From the Schwartz inequality the matched filter receiver output can

attain its bound if and only if

X g(T9I% = KRy (,0) for (1,0) RN, (3.3-8)

i 2

where K is a positive real constant. Because the cross—-ambiguity
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Property l: The gradient function #(t) is a bounded function if the
transmit signal x(t) is also bounded, i.e., |x(t)] < K for all ¢t RIL,
This can be shown by first finding the magnitude of ®(t) and

applying the Schwartz inequality to (4.3-9) as follows:
le(o)] <[] Iy (6 0] Rg(r,9) [x(e-0)| dnds
<K {i Ixx,g(r,$)| Rg(1,¢) dd¢. (4.3-24)

Furthermore, because the scattering function has finite volume, and

'Xx,g(r"b)l < 1 by (3.3-4),
[e(e)] < K [[ Rg(t,0) dtdé < =, (4.3-25)
so ¢(t) is a bounded function.

Property 2: The gradient function ¢(t) is an element of L1(R!) and
L2(Rl),

Showing that &(t) € Ll(Rl) can be done by using (4.3-24),

-0 -—C0

[ e(o)] de < {{i Ixx,g(f,¢)| Ro(T,¢)  [x(e-1)| dtd¢] de

-]

- Ii Ix, g (T 0 Rg(7,0) [I Jx(t=1)] dt} dtd . (4.3-26)

- 00

Since x(t) is in LI(R1) and L2(R!) and !Xx,g(f,¢)| <1,
-]

o le(e)] de < Ixi // Rg(T,9) d1d¢ < = ‘ (4.3-27)

Hence, $(t) is magnitude integrable, and it is an element of L1(rl).

Also, because it is bounded, by Theorem 2.7 it is also an element of

L2(rl),
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Property 3: The inner product of the processing signal g(t) and the
gradient function ¢(t) is equal to the value of the cost functional,
i.e.,
g, = [ g(t) o*x(t) dt = J(g) . (4.3-28)

This is shown by expanding the left side of (4.3-28) using the
definition of the gradient function in (4.3-9) and rearranging the

integrand as follows:

<, = [ g(&) ] x (7,0) Rg(T,8) x*(c=T) e ~32me(e=1/2) dmepJ dt

=[] x, (o) Rg(T,9) [ x*(c-1) g(t) e 32Te(E-T/2) dt] dtdé
-C0 ’ L—co

3 ) *
=[] Xe,g{Tr®) Rg(Th9) [ x(t-1/2) gh(e+t/2) o327 dt} dtd ¢
- = (4.3-29)

The bracketed term in the integrand of (4.3-29) is equal to the

uncertainty function xx,g(r,¢), so the equation can be rewritten as

@ =[] Ix, x(r,¢)|2 Rg(T,9) dtdo. (4.3-30)

-0

But the right side of (4.3-30) is the cost functional, thus <g,¢> =
J(g).

By itself, this property is of little consequence. It is, however,
useful in establishing the next, and final, property of the gradient

function.

Property 4: The norm of the gradient function ¢(t) is greater than or

equal to the value of the cost functional.
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Because both g(t) and ¢(t) are elements of LI(R!) and LZ2(Rl) they -
both have finite energies, in fact, Hgly = 1 by convention. Therzrfore,

by applying the Schwartz inequality to (4.3-28) zives

J(g) = [I(@)| = [<g,®>| < ugi, Weu, = vo1,. (4.3-31)

4.4 Optimization of the Expected Matched Filter Output

4.4.1 The Increment of the Cost Functional

In section 4.3.3 it was shown that the cost functional could be

expanded into the generalized Taylor series

J(g+n) = J(g) + 2 Re{/ n(t) o*(t) dt} + J(n), (4.3-23)

where g(t) is the processing signal and an element of LI1(R!) and LZ(Rl),
n(t) is an arbitrary element of L2(Rl), and #(t) is the gradient

function given by

j2md(e=1/2)

o) = [[ x (5 Rg(T,9) x(e-1) e dtd¢. (4.3-9)

Consider the increment of the cost functional J(g) with increment n(t),

defined as

8J(g,n) = J(g+n) - J(g)

-]

= 2 Re{[/ n(t) o*(t) dt} + J(n). (4ob-1)

@

Since J(n) is always a non-negative number, if the increment AJ(g,n) is
to be positive, then it is necessary to choose n(t) in such a fashion to
guarantee that the first Gateaux derivative, the integral term in

(4.4-1), 1is positive. This can be done by choosing the increment n(t)

to be

n(t) = v &(t) (4.4-2)
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N where ¢is a positive real number. Using this rule causes the increwent

-

of the cost functional to become

+ J(v$) > 0. (4.4-3)

Lane n e o g LSO o
. .d ‘ Y.
L]
—

AJ(g,n) =2y ] |<b(c)|2 dt + J(Y®) = 2 ¥ u@n%

-0

Notice that by the Schwartz inequality, choosing the increment using

R T

(4.4-2) maximizes the value of the first Gateaux derivative.
The choice of the name 'gradient function' for the function &(t) can
now be easily explained. Consider the analogy of being at some point on

a surface which can be modeled as a function of two real variables

Ce L3 0 MENEMR 1 8 V_T_ e _e

f(x,y). If one wants to move in the direction that will cause the
greatest positive change in elevation, then one moves in the direction of

the gradient vector given by

Yalm At MEERAL . .

Vi(x,y) = %§ (x,y) 1 + %5 (x,y) J. (4.4=4)

By choosing the direction vector of travel to be v = Y VE(x,y) where Y is

a positive real scalar will, to first order, guarantee a positive

increase in elevation, denoted by h, which is approximately §

Ah = y 1VE(x,y)1? (4.4-5) !

:

where el is the vector norm given by the Pythagorean theorem. Notice :

the similarity between (4.4-4) and the first term on the right side of i

(4.4-3), '

Equation (4.4fa) essentially extends from the concept of a ;

directional derivative. In the general case the value of the change in i

elevation approximated by |
h = <ya, VE(x,y)> = v <A, YE(x,y)>, (4.4-6)

where n is a direction vector with unity length and Y is the horizontal .

length of travel. This relates well to the first Gateaux derivative

. . . . - . -, - - i -~ - - . - . . . - . - . - .
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(first variation) 8J(g,n), which is to first order an estimate of the
change of the value of the cost functional when the function g(t) changes

to g(t) + n(t). In this case, if n(t) = v z(t) then

6J(g,vz(t)) = 2 Re{] v z(t) ¢*(t) dt} = 2 y Re{<z, ®>}. (4.4-7)

-0

Since both (4.4-6) and (4.4-7) are of a similar form it is natural to

refer to g(t) as the 'gradient function.'

4.4.2 The Gradient Projection Algorithm

In the last section, it was shown that if the increment n{t) was a
scaled replica of the gradient function %(t), then the increment of the
cost functional is positive. If this approach is used to choose a new
processing signal é(t) by letting é(t) = g(t) + n(t), then it can be seen
immediately that there is no guarantee that this processing signal has
unit energy. Therefore, the increment n(t) must be chosen not only to
insure a positive change in the cost functional but also guarantee that
the new processing signal has a unity norm. In other words, g(t) = g(t)

+ n(t) is an element of the set S where
s = {y € LARL) | syn, = 1}. (4.2-1)

One way to do this is to set n(t) = v &(t), giving a new processing
signal equal to g(t) + Yy &(t) and then projecting this function onto the

set S by using its best approximation in S which by Theorem 4.2 1is

g_(t) + Y Q(t) (‘0-4‘8)

g(t) = rgrvet, .

The actual increment, denoted as 8g(t), in this case is

g(t) + v &)
2

§g(t) = g(r) - g(t) = - g(t). (4.4-9)

Ig+yol




77

Figure 11 illustrates the process of choosing a new processing
signal if the analugy of signals represented by vectors is used.

The method of choosing a new processing signal presented above will
be applied recursively to increase the value of the cost function, which
in turn implies that the expected value of the matched filter receiver
will increase. 1Ir terms of the processing signal, this means it will
more closely match the form of the signal at the output of the channel
whose scattering function is RSCHN(T,¢).

The cost functional, defined as the expected value of the matched

filter receiver output to the channel output, given by
7 2
J = T R (T dtd¢ , (4.4-10)
(g) {a{ '&’g( "b)l SCHN ’¢) $

will be increased recursively using the following procedure:
l. Choose a transmit signal x(t) and an initial
processing signal gj(t).
2. Calculate the initial uncertainty function xx’gl(r,¢).

3. Calculate the gradient function given by

- P - j2ne(t-1/2)
o, (t) L{ )g*(’gi(r,cb) Reoy$ 7 ) X8 @ dtd¢.
(4.4-11)
4, Form the new processing signal
gy (t) + v ¢, ()
8341(8) = . (6.4-12)

Hgi+y¢iﬂz

5. Calculate the uncertainty function xXngi+l(T’¢) .

6. Calculate the cost functional J(gj+]) .

7. Return to step 3 or stop if a2 maximum amount of interations
have been reached or the value of J(gj+]) equals or exceeds a

predetermined threshold.
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Figure 11. Visualizaton of the projection algorithm -1
The signal g(t) + Y ¢(t) is best approximated =

by g(t) in the set S. 1
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In general, there is no way to perform each step in closed form. In

particular, closed form calculation of the cross-ambiguity or gradient

B~ AR RO St
L]

functions presents an unwieldy task. Therefore, all the equations must

be discretized and the optimization procedure done numerically.

4,4.3 Convergence of the Gradient Projection Algorithm

Determining the convergence of the gradient projection algorithm

presented in section 4.4.2 is done by examining the behavior of the

increment of the cost functional. By showing that the increment is
always a non-zero positive value for any non-zero positive step size Y
will imply that the sequence {J(gi)}:;1 monotonically increases and will
converge because it is bounded.

To begin, it is necessary to determine the processing signal

increment for the i-th step of the recursive algorithm which by (4.4-9)

is

gi(t) + v o, ()
ﬂgi+Y®iH2

Ggi(t) = - gi(t). (4.4-13)

Substituting (4.4-13) into (4.4-1) gives the increment of the cost

functional at the i-th iteration as

8J(g;,8g;) = 2 Re{<dg,,v0, >} + J(8g,)

2 Re{<gi,¢i>+<¢i,¢i>7}
= Tg, +Ye T, - 2 Rel<g;, 0>} + J(8g;).
" (4.4-14)

By property 3 of the gradient function, the numerator in (4.4-14) can be

restated as

2
2 Re(<gi<bi>+<¢i,¢i>y} =2 Re{J(gi)+n<x>i uzy}

B, R

=2 (I(g) + 18, u§ vl. (4.4-15)
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Because J(gi), “¢i"§, and Y are all real numbers the operation of

finding the real part of the complex number is not required in

(4.4-15). The denominator of the first term on the right side of
(4.4-14) can also be simplified using (2.2-8), property 3 of the gradient

function, and the fact that gj(t) is a unit energy signal as follows:

ugi+Y¢in§ = <gi+y¢i,gi+y¢i>
= <gi,gi> + 2 Re{<g1,01>} Y + <®i,¢i> Y2
=1+ 23(g) v+ io 15 v (4.4-16)
The-efore, by (4.4-15) and (4.4-~16), the increment of the cost functional

is

2 [3(g;) + u¢in§ v]

AJ(gi,Ggi) = -2 J(g) + J(Ggi). (4.4-17)

/142 3(g) v+ uoiué vt

Since J(8gy) is always a positive value, it is only necessary to
determine if the sum of the first two terms of the right side of
(4.4-17), the first Gateaux derivative of J(gi), is always positive. By
examination of (4.4-17), it is seen that the first Gateaux derivative is

a function of the step size Y, therefore,

2 (g + “’1"2 !

F(Y) 2 60(g, . 08,) = - 2 J(g). (4.4-18)

Y1 + 2 J(gi) Y+ 14, 1

2 2
i2

Y
The function F(Y) is continuous for all Yy > 0 and can be shown to be
monotonic by examining its first derivative. Since differentiating

(4.4-18) involves considerable algebraic manipulation, the details are

omitted here, and only the result stated, which is
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dF(Y) =
dy
2 (¢ "2 - J( )2] lg.+y9, 1
i2 i i 7% .
4 4 2 .3 2 2 2
utxaiﬂ2 Y + 4 J(gi) “’1"2 Yo+ 2 [llcbiu2 + 2 J(gi) ] y“+ 4 J(gi) Yy + 1
(4.4-19)

The denominator of (4.4-19) is a polynomial in Y with positive
coefficients because both J(gi) and #djly are positive; therefore, for
all v » 0 its value is always greater than or equal to 1. As for the
numerator, it is always non-negative since the norm term is always

positive, and because by property 4 of the gradient function,

2 2
b 15 > J(g )" (4.4-20)

Therefore, for all vy > 0, the first derivative of F(Y) is non-negative.
From elementary calculus it is known that if the first derivative of a
function is non-negative on an interval, then the function monotonically
increases on that interval; consequently, F(Y), or the first Gateaux
derivative 8J(gj,8gi), increases monotonically for Yy in [0,«). If the

step Y is zero, then from (4.4-13) and (4.4-18)

8J(g;,38,) = 8J(g;,0) = F(0) =0 . (4.4-21)

Thus F(Y) = 8J(gi,8g{) is non-zero for all vy > O. It now follows that

because the second Gateaux derivative is always non-negative, then
AJ(gi,Sgi) >0 for all Yy > 0 . (4.4-22)
This in turn implies
J(gi+1) > J(gi) for all vy > 0. (4.4-23)

From (4.4-23) it is guaranteed that the sequence {J(gi)}:;l
monotonically increases if ¥y > 0. Furthermore, the sequence is bounded

from above by (3.3-6) giving J(gi{) < l. From elementary calculus, it is
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known that a bounded monotonic sequence of real numbers is convergent.

Thus,

lim J(g <1. (4.4-24)

Ln 3(g;) = 3,
The analysis presented above proves that the gradient projection
algorithm will increase the expected matched filter output. It should be
noted that it does not guarantee that the sequence of processing signals,
{gi}:=1, converges. However, what is guaranteed 1s that each successive
g1(t) produces a better average receiver output. This extends from the
fact that the cross-ambiguity function is not unique for a given pair of
transmit and processing signals. Since the value of the expected matched
filter output, the cost functional
®
Ig) =[] |xx’g (t,9)] 2 Ry (7,4) dud¢ (4.4-25)
— i CHN

is related to gj(t) via the cross-ambiguity function, the value of J(gi) is
not unique for a given gi(t). It should be realized that this does not
invalidate the optimization procedure presented in this chapter since it

does insure an increase in J(gi). Therefore, the nonuniqueness of each

gi(t) in the optimization sequence is of little consequence.

4.5 Examples of Matched Filter Optimization

Since the optimization procedure presented in section 4.4.2 must be
implemented on a digital computer, it is necessary to discretize the
equations used in the procedure.

Consider the uncertainty function derived in Chapter 3 and given by

X (T,8) = [ x(e-1/2) gr(e+1/2) I2T9F qc . (3.2-37)
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By invaoking a change of variable and defining the function
v(t,$) = g*(t) ed2mot , (4.5-1)
equation (3.2-37) can be restated as
xx,g(r,¢) = d"T {: x(t-1) v(t,4) dt . (4.5-2)

The integral in (4.5-2) can be approximated by a sum by setting ¢ = 2
(A¢), t = m (At), and T = n (A1), and by replacing the integral sign by a

summation symbol giving

. M
e-Jﬂnl(Afb)(AT) 2 x(m(At)-n(AT)) v(m(At), 2(Ad)) At.

m=1

xx,g(n(AT),l(A¢)) ~
(4.5-3)

A simplification can be made by setting AT = At, thus allowing the

definition of the discrete sequences

x(m(at)-n(A1)) = x((m-n)(47))

2 Xa-n) (4.5-4)
v(m(at), 2(4¢)) = v(m(At),2(4¢))
2 3a,0) . (4.5-5)

Substituting (4.5-4) and (4.5-5) back into (4.5-3) gives for the

discretized uncertainty function

. M
-jma(a1)(44) T x(a-n)v(m, £). (4.5-6)

X, o(n(81),2(84)) = At e
'8 m=1
The summation in (4.5-6) is actually a correlation between the

sequence Q(n) and G(n,l), so it can be calculated using discrete Fourier

transforms.!8 Therefore, it can be shown that (4.5-6) can be written as
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r e 3/n2(A0)(aT)

xx’g(n(Ar),z(Acb)) = A IDFT (DFT(x(-n)) DFT(v(n, 1))}

(4.5-7)
where
Nol -j2nkn/N
DFT(x(n)) = ) x(n) e = X(k) (4.5-8)
n=0
is the forward discrete Fourier transform of the sequence x(n) and
N-1
IDFT(X(k)) = {T X(k) eI2mkn/N (4.5-9)
k=0

is the inverse discrete Fourier transform of the sequence of Fourier
coefficients X(k).
Another equation that requires discretization is the formula for the

gradient function given by

o(t) = [] Xt (6,0 Ry (1,8) x(e-1) & ?THETID) 4oqq,
-= 28 CHN
(4.5-10)
By defining the functions
a(t,¢) & Xt (1,4) Ry (7,0 eTITeT (4.5-11)
'S CHN
w(t,4) 4 x*(t) er"“’t (4.5-12)
equation (4.5-10) can be restated as
8(t) =[] o(t,4) w(t-1,4) dtd¢
=] {f 8(T,¢) w(t-1,9) dr} do
= [ 8(t,d)*w(t,s) do . (4.5-13)

As befcre, the integral in (4.5-13) can be approximated by a sum by
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summation symbol giving
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n (AT) and by replacing the integral sign by a

(n(AT)) =) [8(n(AT),2(A4))*x(n(AT), 2(Ad)) AT] Ad .  (4.5-14)

2

By defining the two-dimensional sequences

e

8(n(aT),2(A9))
w(n(At),2(4¢))
d(n(AT))

ue>

e

and substituting them into

$(n) = (A1) (A9)

where the discrete conv->lu

to the variable n. Again

ik e B o Sandhaiiefienite SRSk ol LAt A b Al e Sl Ol g5 el - it B M- e At 4

8(n, 1), (4.5-15)
w(n,2), (4.5-16)
8(n), | (4.5-17)

(4.5-14) gives
Y 8(n,2)*w(n, 1), (4.5-18)
2

tion inside the sum of (4.5-18) is with respect

the convolution can be calculated using

discrete Fourier transform, therefore

$(n) = (A1) (4¢) | IDFT{DFT(8(n,%)) DFT(w(n,2))} . (4.5-19)
3

Now that the equations giving the uncertainty function and gradient

function are in a useable form, the gradieiat projection algorithm can now

be stated in a form suitable for implementation on - digital computer:

l. Choose a discret

ized transmit signal x(n) and an initial

discretized processing signal él(n).

2. Calculate the initial discretized uncertainty function

X. . (n,2).
x)gl

3. Calculate 6;(n,%) and wy(n,%).

4, Calculate the gradient function ¢;(n) using (4.5-19).

5. Form the new discretized processing signal
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R g, (n) + v & (n) 4. 4m
g 4 (0) = L L . (447200
s/ ] |8, ()+y ()] o

6. Calculate the discretized uncertainty function x, _ (n,%). 3
X385 +1
Calculate the value of the cost functional using

..-.T'H.rv,rfr,. T
. v '-’ s e 0
-
L]

T = (A0 (a9 I 7 |x (mo)? R, (n,0) .
i+l A oA S
n L X,8i+1 TGT (4.4-21)
i where
R, (n,0) 2R, (n(a1),2(80)). (4.5-22)
CHN CHN
>. 8. Return to step 3 or stop if a maximum amount of iteratioms
f

have been reached or the value of Jj4] equals or exceeds a
predetermined threshold.

The version of the gradient projection algorithm given above was

implemented on the VAX11/782 at the Applied Research Laboratory. The

algorithm was written as a FORTRAN 77 program, was run in a low priority

batch queue, and for these examples required about one hour of CPU time.
The transmit signal and initial processing signal are both analytic
signals with ten percent raised cosine windows. Both were linear
frequency modulated with the transmit signal being a 200 Hz upchirp and
the processing signal a 200 Hz downchirp. Figures 12 and 13 show the

magnitude and the real and imaginary parts of the envelopes of both

P

signals. Figure 14 shows the initial cross-ambiguity function derived

N

from these two signals. Figure 15 shows the scattering function which

ey

consists of three two-dimensional Guassian pulses each with or = 0.015

e sec. and gy = 25.0 Hz. One pulse is centered on the T axis at T = 0.065 ?

sec. and the remaining two pulses are centered at t = 0,155 sec. and ¢ =
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Figure 12.

The magnitude and the real and imaginary parts
of the transmit signal envelope for the first

example.
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of the original processing signal envelope for
the first example.
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Figure 14.

The original cross—-ambiguity function for the
first and third example.
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A scattering function consisting of three
two-dimensional Gaussian pulses.
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* 75 Hz. Furthermore, the pulses have been scaled so that the volume of
the scattering function (the ratio of the average return energy to the
transmit energy) is 0.2. For the discretization of all functions, the
values At = At = 0.00025 sec and A¢ = 10 Hz were used and the step size
was set at y = 5.0,

The program iterated 15 times, and an increase in the cost functional
occurred at each iteration. This is shown in Figure 16. Figure 17
shows the magnitude and real and imaginary parts of the final processing
signal and Figure 18 shows the cross-ambiguity function derived from the
transmit signal and final processing signal.

By comparing Figures 14 and 18, it can be seen that the volume of the
cross~ambiguity function has been redistributed from one large plateau
into two ridges. Each of these ridges subtends nearly the same region in
the (t-%) plane as do the three Gaussian pulses of the scattering
function; in fact, by close inspection of large ridge it can be seen that
the ends of the ridge have assumed a shape similar to two of the pulses
in the scattering function. What occurred during the optimization
procedure is that the processing signal was altered to cause the volume
of the resulting cross-ambiguity function to collect in the same
locations as the pulses in the scattering function and if possible cause
the cross-ambiguity function to assume the same shape. This follows the
principle developed in section 3.3, which said that the expected matched
filter receiver output is maximized if the cross=-ambiguity function 1is
proportional to the scattering function of the channel. In this case,
however, the shape of the cross-ambiguity function never actually matched

that of the scattering function. This occurred because the processing

signal was only parameter altered during the optimization process.
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Figure 17. The magnitude and the real and imaginary parts
of the final processing signal for the first
example.
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Figure 18. The final cross-ambiguity function for the first
example.
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It can also be demonstrated that the processing signal generated by

the gradiant projection algorithm is highly dependent upon the placement
of the initial cross-ambiguity function in the (t,$) plane and upon the
distributicn of its volume. Figure 19 shows a cross-ambiguity function
derived from an 0.0l2 sec. transmit signal and an 0.210 sec. processing
signal. Both signals were contimuous wave tones with a ten percent

raised cosine window. The scattering function used was the same one used

in the first example and is shown in Figure 15. By examining Figures 15 ,
and 19, it can be seen that the two high doppler pulses of the scattering .;
function, located at Tt = 0.155 sec. and ¢ = * 75 Hz., are not fully ﬂ
subtended by the cross-ambiguity function. Furthermore, the ».lh
cross—-ambiguity function does not have a large portion of its volume in 4
the region of the (t,%) plane where the high doppler pulses and the
cross—ambiguity function intersect. .
As in the first example, the computer program iterated 15 times, and ‘
an increase in the cost functional occured at each iteration. This is
shown in Figure 20. Figure 21 shows the final cross-ambiguity function. ;i
It can be seen that the optimization procedure placed most of the volume j
of the cross-ambiguity function at the pulse of the scattering funcion 1
located at 1t = 0.065 sec. and 4 = 0 Hz. This is also the same pulse of .:
the scattering function that was completely overlayed by the initial j
cross-ambiguity function and where it had a significant portion of its ]
volume. Thus, the gradient projection algorithm tends to place the .J
volume of the cross-ambigutiy function over the prominent [;ortions of the :
scattering function that are best overlayed by the initial "
cross-ambiguity function. .1
:1
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Figure 19. The initial cross-ambiguity function for the
second example.
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& second example.
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Another way to test the validity of the gradient projection
algorithm is to have it produce a known result. Figure 22 shows a
scattering function that clos v models a point scatterer. It is a
single gaussian pulse located at T = 0.15 sec. and ¢ = 0 Hz. with
standard deviations of dg¢ = 0.002 sec. and oy = 2.0 Hz. The transmit
signal and initial processing signal are the same used in the first
example where the magnitude and real and imaginary parts of their
envelopes are shown in Figures 12 and 13. The initial cross-ambiguity
function is shown in Figure l4. The opimization procedure iterated 7
times, and the final cross-ambiguity function 1s shown in Figure 23. It
is an autoambiguity function, which is a cross-ambiguity function derived
from equal transmit and processing signals. In effect, the gradient
projection algorithm dechirped the 200 Hz. downchirp FM processing signal
to a 200 Hz. upchirp FM. It is shown in Van-Treesll and 1s well known in
the literature that to optimally detect a point scatterer in the presence
of white gaussian noise both the transmit and processing signals must be

equal (this gives rise to the autoambiguity function).
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Figure 23. The final cross—ambiguity function for the
third example.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

P——

The derivation of the scattering function and its three Fourier
transforms, under the assumption that it describes a wide sense
stationary uncorrelated system (WSSUS), has been presented. Also it was

shown that the scattering function can be used to determine the expected

output of a matched filter receiver by multiplying it with the
cross—ambiguity function and integrating the resulting two-dimensional
function. Finally, a method for optimizing the matched filter by
altering the processing signal was developed, and a numerical example was
given.

It should be pointed out that the cross-ambiguity function is the
bridge chat links scattering properties via the scattering function to
the signals used in detection. It 1is for this reason that the
cross—ambiguity function is of major importance in the design of
receivers for signal detection in the communication systems. There are
two important results in this thesils related to cross-ambiguity
functions. First, it was shown that if a receiver is to maximally detect
a signal at the channel output, then the cross-ambiguity function derived

from the transmitted signal and the processing signal must be

proportional to the channel scattering function. Second, a method was
] ' derived to iteratively find an optimum processing signal given a fixed
{ transmit signal and channel scattering function. The validity of the
method was demonstrated by producing a known result; specifically, when

the channel was modeled by a point scatterer, the cross—ambiguicy

T——

function converged to an auto-ambiguity function.
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There are a number of extensions to this work that could be made.

RANSR P A A i Pt

For example, an analysis could be made to determine the rate of
convergence of the gradient projection algorithm, and the optimum step
size could be determined to accelerate the optimization procedure. To do

this, the behavior of the second variation of the cost functional with

respect to the step size would have to be examined. Another possible
research project would be to develop a method of jointly altering the
transmit and processing signals with a global search to produce a better
match between the cross—ambiguity and scattering functions. This would
be a generalization of the problem addressed in this thesis. It was
shown that the optimized processing signal depended.upon how well the

original cross—ambiguity function overlayed the scattering function and

T )Y

to what extent its volume was placed with respect to the scattering

function support. As a result, the optimization procedure converged

I
a®

locally over the whole set of possible transmit and processing signal

pairs. The analysis of a procedure where both signals are altered, and

-

NIC NSNS

the cross—ambiguity function is shifted in the (T1,4) plane, may show that
it is possible to globally maximize the expected matched filter output

over all admissible transmit and processing signals.

T

.U

PP}

g

'*"'.A!J.A

e e

. . . . . - . et e . R R -, v - . B .. . - A
< - - ata - et w8 PEP S TSN P 3 et S et e At e alytatatalaialatata e




e ryy
P .

BIBLIOGRAPHY
{
Pt l. Royden, H. L. Real Analysis. London: The MacMillan Company, i
g 1968. !
! [
2. Luenberger, D. G. Optimization by Vector Space Methods. New York: 1
L John Wiley and Sons, 1969.
ii 3. Butzer, P. L., Nessel, R. J. Fourier Analysis and Approximation

(Vol. I). Birkhauser Verlag Basel, 1971.

P

4. Titchmarsh, E. C. Introduction to the Theory of Fourier Integrals.
Oxford University Press, 1937.

El 5. Bachman, G. Elements of Abstract Harmonic Analysis. New York:
Academic Press Inc., 1964.

{ 6. Dym, H., McKean, H. P. Fourier Series and Integrals. New York:
Academic Press Inc., 1972.

1
_! 7. Lathi, B. P. Signals, Systems, and Communication. New York:
John Wiley and Sons, 1965.
Ef 8. Zadeh, L. A., Desoer, C. A. Linear System Theory. McGraw-Hill,
1963.
9. Kailath, T. Channel Characterization: Time Variant Dispersive ﬂ

Channels. In E. J. Baghdady (Ed.), Lectures on Communication
System Theory. New York: McGraw-Hill, (1969).

10. Ziomek, L. J. A Scattering Function Approach to Underwater Acoustic
Detection and Signal Design. Ph.D. Dissertation. The Pennsylvania
State University, 1981.

11, Van Trees, H. L. Detection, Estimation, and Modulation Theory, Part
III. New York: John Wiley and Sons, Inc., 1971.

12. Kennedy, R. S. Fading Dispersive Communication Channels. New York,
John Wiley and Sons, Inc., 196Y.

13, Papoulis, A. Probability, Random Variables, and Stochastic
Processes. New York: McGraw-Hill, 1984.

l4. Kelly, E. J., Wishner, R. P. Matched Filter Theory for
High-Velocity Accelerating Targets, IEEE Transactions on Military
Electronics, 56-69, January 1965.




L 2ne Ttk s Bl ingt Juadh et Saath Sdit St Ml S At Sadh Jhi Ml SlngiSnis Bl Mt iind aadh santh MSCIL St g L s At Madh il Sad Sl i il it el Sl A St S A A B i LA SR NT A Sl G 4

- 105

[
i 15. Sibul, L. H., Titlebaum, E. L. Volume Properties for the Wideband j
N Ambiguity Function. IEEE Transactions on Aerospance and Electronic N
Systems, Vol. AES-17(1):83-87, January 1981. ]
I - 16. Stutt, C. A., Spafford, L. J. A "Best” Mismatched Filter Response ?
for Clutter Discrimination. IEEE Transactions on Information .
Theory, 280-287, March 1968.
17. Spafford, L. J. Optimum Radar Signal Processing in Clutter. IEEE ;
ﬁ Transactions on Information Theory, 734-743, September 1968. ?
18. Oppenheim, A. V., Schafer, R. W. Digital Signal Processing. - 4
Englewood Cliffs, NJ: Prentice-Hall Ine., 1975.
. 19. Lusternik, L. A., Sobolev, V. J. Elements of Functional Analysis.
. New York: Gordon and Breach, 1968. q

20. Milne, R.D. Applied Functional Analysis. Marshfield Mass.: Pitman }
Publishing Inc., 1980. t

‘-
Y. J¥

-
WL

S S




DISTRIBUTION LIST FOR UNCLASSIFIED ARL INTERNAL MEMORANDUM 84-185

by D. D. Drumheller, dated 10 December 1984

Commander

Naval Sea Systems Command
Department of the Navy
Washington, DC 20362

Mr. D. Porter, SEA 63R1 Copy #1

Mr. D. C. Houser, SEA 63R-14 Copy #2
Code SEA 9961 (Library) Copy #3

Naval Coastal Systems Center
Panama City, FL 32401

Dr. David Skinner, Code 790 Copy #4

Commanding Officer
Naval Underwater Systems Center
Newport Laboratory
Newport, RI 02840

pr. J. R. Short, Code 303 Copy #5

University of Texas at Austin
Applied Research Laboratories
P.0. Box 8029

Austin, TX 78712

Dr. J. F. Willman Copy #6

Commander
Naval Ocean Systems Center
San Diego, CA 92152

Mr. J. Campbell, Code 635 Copy #7

Commander

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Dr. E. J. Wegman, Code 411SP  Copy #38
Dr. A. J. Faulstich, ONT Copy #9

University of Washington
Applied Physics Laboratory
1013 N. E. 40th Street
Seattle, WA 98105

Mr. C. Sienkiewicz Copy #10

Naval Ocean Research Development Activity
NSTL, MS 39529

Mr. R. L. Martin, Code 113 Copy #11

Defense Technical Information Center

Cameron Station

Alexandria, VA 22314

Copy #12,13,14,1
16, and 17

Director

Applied Research Laboratory
The Pennsylvania State University

P. 0. Box 30

35,

(six)

State College, PA 16804

C. L. Ackerman
R. Stern

R. D. Ingram
D. W. Ricker
L. H. Sibul
F.-W. Symons

. Tague

. R. Sacha

A. Matuson
. D. Hatlestad
ARL Library

LEGY

Copy
Copy
Copy
Copy
Copy
Copy
Copy
Copy
Copy
Copy
Copy

#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28

| SRS AP A WY Sy ool AP I PA S S T T A8 _a's & e a9 8w 4 e 2 o~ a alelale o le 0] PUNE

PSR

PR PR e ST R P e

ol RS "




——rw - W

o

L gl S amns aren Snmn )

- Vs

el it A Al LA

e
.

e

Y

4-85

v
5 e e T T
POy ‘-l-h-“

P N N LY VI Py

Toa

. . L
PR SRS DS T P )

PUEE VRg WL WY W




