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"o . I. SUMMARY OF RESEARCH OBJECTIVES

ri. Stuchastic point processes are models of points distributed
randomly in some space; thesze points may represent, for example,
locations (or even trajectories) of tracked objects, times and amounts
of precipitation events, or failure times and modec of a complex
cystem. Thie research project is directed toward two principal
problems arising in applications of point processes: statistical
inference for point processes whose probability law is unknown entirely
or in part, and state estimation for partially abserved point
processes, i.e.,, minimum mean squared error reconstruction,

realization-by-realization, of random variables that are not directly

o
observable, These problems are examined in several (not disjoint)
tontexts: stationary point processes, Cox processes, multiplicative
intensity preocesszes and Poisson processes. Another thrust of the

’

research is inference for stochastic processes based on point praocess
samples, with the particular goal to investigate inference and state

estimation for random fields given point process samples.

IT1. RESEARCH ACCOMFLISHMENTS

Fesearch during 1984 hxc focussed on six major problea areas.

3
X A) Inferepnce for Stationary Point Processes. Let M be a
o statiounary point process on E=Rd, d:»1, and consider the statistical
h‘ - .
S mod2! ¥ of probability measures F under which N is staticnary:
p.
: -1 . .
n e NT ° for each x, where tx is the tranclation y»*y-x. For each
® Pet let F' be t 1 fure, i the uni ini Creesa
cf te be the FPalm measure, i,e,, t f1f?$ﬂus5?}‘*9‘&e°@ﬁ§§9§§"‘_~u€““""5°‘
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such that for each (bounded, measurable) function H,

_.1 *
(11 EC[HINT " yxIN(dx) ) = € C[HN,x)dx1,

wher2 E° denotes "expectation” with respect to P*, even though P* need
nat be 2 probability, and dx (and below, \} denotes Lebesgue measure.
heuristically, P*{Ne(-)}/P*(Q) = P{Ne(-} IN({0}})=1}, sp that P* is the
“law" of N conditional on the null event that there is a point at the
origin. Extending work of Krickeberg (1982), a theory of estimation
for stationary point processes has been developed in which objects
estimated are the Pals measure and integral functionals of it,
especially moment and spectral measures, Data are single realizations
of N abserved over increasing compact sets.

Specifically {(cf. Karr, 1933, or Krickeberg, 1982, for

), let p& = £CN*1 e

k
the k-th order moment measure and let pt, defined on Ek-l, be the

packground), with Nk(dxl,...,dxk) = N(dxl)---N(dx

reduced poment peasure of order k:

k k
poo= JER_‘XZp*(dz),

where xz is the image of » under the mapping x+(zl+x,.. +RyX).

"1y
The reduced moment measures of orders one and two, to wit ui = vso,
where v is the fntensity of N (EIN(R)I=vX(A) for each A) and uf,

‘ A 2 2
along with the reduced covariance peasure p, = p:-v A, are of central

¥
importance, ac is the spectral measure F, which satisfies F(Y) = p*(Q),
where ¥ 15 a C -function wWith compact support and ¥ is its inverse

fFourier trancform.

The unbiased estimators
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B iy = X(K)—IIFH(NT;I)N(dx)]

of the Palm measure, where K is a compact, convex set, are natural
"empirical” estimators: for x a point of N -- and only such ¥
contribute to the integral -- NI;I has a point at the origin, so that
ﬁ*(H) is simply an average of H-values for translations of N placing
each point in kK at the origin. Here K should be regarded, albeit
loosely, as the sample size; calculation of the estimator requires
observation of N over a compact set related to but ordinarily larger
than k.

Strong ronsistency of the ﬁ*(H) has been establishad, unifarmly in
H over certain classes of functions, under broadly fulfilled conditions
on N, as has asynptotic normality of the "standardized" estimation
error 2(E1 Y 20E¥ () -P* (H)1, as the sets K increase to E. Detailed
properties of the estimators v = N(K)/)\(K) and
ﬁf(f) = x(K)'leN(dx)jN(dy)f(y-x), where f is continuous with

compact support, have been worked out; the latter yield properties of

2

*(Q) of the spectral measure. These

cubstitution estimators Fi(¥) = ﬁ
resuits appear in
Karr, A.F., Estimation of Palm measures and spectral measures
of stationary point processes., Technical report 403,
Department of Mathematical Sciences, The Johns Hopkins
University, 1984,
which contains further material concerning the problem of combined
inference and linear state estimation, i.e., linear reconstruction of
upobserved portions of N when v and Py T the only objects required for

linear state estimation -- are unknown and must be estimated. This

manuscript is currently under revision for I, HWahrscheinlich-
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keitstheorie und verw, Geb, to incorporate recently proved results on
Foisson appraximations that camplement the central limit theorem and on

estimation of P (the law of M) itself, rather than the Falm measure P*.

B) State Ectimatien for Cox Processes. A pair (N,H} comprising a

simple point process N and diffuse random measure M on the same space E
is a Cox palir if conditional on My N is a Paisson process with m=an

measure M; N is then termed a Cox process directed by M. The most

important special case is that of mixed Poisson processes, in which
* * . . .
M = Yy , where v is a diffuse measure on E and ¥ is a nonnegative

randam variahle. In applications, which include signal processing,

o

carcinogenesis and precipitation, only the Cox process N is observahle, A
but the directing measure W, which represents the underlying physical g
mechanism, is of primary interest, leading to the state estization '

. o , |

probleas of computation of minimum mean squared error state estimaters B
n

4

E[H!KN(A)], where EN(A) is the o-algebra corresponding to funcorrupted)

ohservation pf N over the set A. Such computations require
{effectively full) knowledge of the law af N, which of course typically
is not available,

An optimal solution to the problem of combined nonparametric

inference and state estimation for mixed Foisson processes was ohtained

in kFarr (1984}, One has as data i.i.d. mixed Poisson processes Ni‘

*

with unchservable directing measures Mi = Yiv s where the Yi are i.i.d. N
[

with unknown distributicon F. For each n the true state estimator aof =
Nn+l is expressible as i
i2) EtM . 13N (AT = HeF, vt N ) .
' n+1 U net A .
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wher2 H is a known functional form; in the combined problem it is

replaced by a pseudo-:ztate estimator

- & Nnﬁ-l & o~k
o E N =
(3) £t 19 (A1 = HEEVT N 1)y

A

where F, C* are estimators of F, v* based on Nl""’Nn'

During 1984 a partial but evidently less-than-optimal solution was
obtained for the corresponding problem for completely general Cou
processes. Its key components are a representation -- itself
significant -- for true state estimators in terms of the Pals
distributions f(see, e.g., Kallenberg, 1983, or Karr, 1985) of the
”i’ which are linked in turn to the reduced Palm distributions of the
Ni’ and a methodology for estimating the latter from observation of the
Ni' Estimation is effected with techniques similar conceptually, but
very different mathematically, to those discussed in II.A above. The
representation theorenm yields an analegue for the function H in (2) and
(I); the other main results are limit theorems describing asymptotic
behavier (as n»*n) of differences between true state estimators and
pseudo-state estimators., They appear in

tarr, A,F., State estimation for Cox processes with unknowun
probability law. Technical report 379, Department of
Mathematical Sciences, The Johnc Hopkins University,
1984,
which hzc heen accepted for publication in Stechkastic Processes and

therr Adpplications,

C) Multiplicative Intencity Models. 1In the theory of

intensity-based inference far point processes on E+, the best

compromize between applicability and tractability is the multiplicative

n
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intensity model of Aalen (1978B) (see Jacobsen, 1982, or Karr, 1985, for
general discussion}. Let (Q,3,F) be a probability space on which are

defined a point process (N’) and filtration (Rt). Provided that it

exists, the stopchastic intensity of N is the unique (predictable)

. - . _ _rt . )
proceszs (xt) such that nt = Nt onsds is a martingale,

Heuristically, i dt = E[ANtIR

t 1, where &N

is the jump (necessarily

t- t

one or zero) of N at t; the differential form th = dNt-xtdt reveals

the "innovation" interpretation of the martingale M, In the

[ ]
sultiplicative intensity model the unknown “"parameter" is a
positive function aetho,ll; under the probability Pu' N has stochastic

intensi ( 1
intensity \xtxt

)y where X is an observable, predictable process. The
“martingale method" of inference estimates integrals jsasds {more
precizely, random processes Bt(m) = I;l(xs>0)a5ds) with martingale
ectimatore §t=f;1lhsbﬂ)x;1dns, whose main attractions are
computational simplicity and the property that (ﬁt-Bt(a)) is a
Pa—martingale for each «; the latter permits calculation of variances
and application of potent martingale central limit theorems to develop
asymptotic properties of martingale estimatoers.

However, martingale estimators are not derived from optimality
caonsiderations. By adapting the method cof sieves of Grenander
(1951) and collaborators, it has been possible -- in the cantext of
1.1.d. multiplicative intensity processes -- to construct maximum
Ittelihood ecstimators that are strongly consistent in the sense that

H&-arl + O almost surely. Further results that identify conditions

engendering cn-censistency, local asymptotic normality of likelihood

rati1os and asymptotic normality of the % have also been obtained. A

Ty oV LYTTENTITN TR OV S S e YL,
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preltiminary report
tarr, A.F., Maxipum likelihood estimation in the multiplicative
intensity medel, via sieves., Technical report 46,
Center for Stochastic Processes, University of HNorth
Carolina, 1987,
writter during a3 sabbatical visit in Fall, 1983, has been revised and

expanded during 1984; this new version has been accepted for

publication in The Annals of Statisztics.

D) Foissen Frocesses, Conzider a Poisson process N = Z¢ on

(Xg,24)

a product space E = EOXE1 with mean measure p{dx)K(x,dy), where K is

a known transition probability from Eo to E, and g is an unknown

1

and suppoce that only the secand component N1 = Isz is
1

obzervable. The goal is inference concerning u, the mean measure of

peazure on E

L

0!

the Foisson process N0 = ESX“ given observation of n i.i.d. copies of
Hl. Agoplications of this model include positron emission tomography
{Shepp/Vardi, 1982) and other forms of medical imaging (D.L. Snyder,
personal communication). Estimation of p via the EM algorithm of
Dempster/Laird/Fubin (1977} is under investigatian; this iterative
algorithm {for each fixed value of n) uses a provisional estimate of y
to canstruct a2 pseudo-state estimator g[NolﬁNll, which is used in turn
to update the estimated value of u. With n fixed, this procedure
converges in soms cases to @ maximum likelihood estimator of p.  The
bey 1zzue, consicstent estigation of g as n+r, repains unresolved

descite progreszs during 1984; completieon of this research during 1985

E} Fandon Fields, A& rardom fleld is a stochastic process

y o= v pe with a rultidimensional (Euclidean) pe-ameter set,
v ouel

it
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< twat Y 1e a statianary randam field on md that can be observed

m

Sugpo
only 3t the points Xi of a stationary Poisson process N on Rd that is
tndependent of ¥; more precicely, M 1s also observable, so that
chservation=z conziitute a marlad point process in which each peint of
the za2mpling procecs N 15 marked by the value of Y at the point. For
example, Y may be a precipitation field and the Xi locations of
raingsges, or Y a petroleum reservoir and the Xi locations of test
drillings.

Techniques have been developed for estimation of the mean

m = E[YV] and the cevariance function R(x) = Covi{Y_,Y ) given

z+y

observaticn of single realizations over compact, convex sets K, even if
: . . . ~ - 1

the i1ntenzity v of N 1s unknown. The estimators a = N(K) IVYdN’

rzable regardless of whether v is known, are mean square consistent and

asymptotically normal under minimal assumptions, Similarly, given that

m = 2 and v is knoun, the nonparametric esztimators

A 7 - s (2
Ree) = Ly a{E)] IIFJer(x—x +u )Y YY{u_IN )(dx

1772 1 2 rd¥pts

(2) -d . .
! (dw ,dx = N{dx 1} (N- %) Ax) = &, ;
where } d l‘d 2) N(d 1' N EK‘)(d 2 and NK(X) RK w(c/aK) is a

"winQow“ tfunction (w i5 a bounded, isotropic density and the X, are
positive constant:z converging to zero) are, again under anly mild
restrictions, mean square cansistent, gsymptotically norral pointwise
in ¢ and asymptotica2lly uncorrelated for ¥ # 2x'. These properties,
alternative 2stimators of K via the signed measure 2{A) = IAR(x)dx
and linecar state estimation of unobserved values of Y, are treated in
Farr, A.F., Inference for stationary random fields based on

Poiszon samples. Technic2l report xxx, Department of

Hathematica2]l Sciences, The Johns Hopkins University,

193¢,

Y
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which will shortly be submitted for publication in Advances iIn

Spplied Preobability,

Though unrelated to the preceding topics the following research
activity eynthesizes several lines of inguiry.

F) Stopping Times of Markov Processes, The structure of stopping

times of a Mar&oQ process is central not only to such theoretical
iesu2s as the strong Markev property but also to applications,
including optimal stoppinyg, stochastic orderings and "inverse
problems"; see, e,g9., Karr/Pittenger (1978, 1979). In the manuscript
Karr, A.F., and Pittenger, A.LQ., Structural properties of
randoa times, Technical report xux, Department of
Mathematical Sciences, The Johns Hopkins Universit
1928z,
an algebraic structure is devised that elucidates the nature of natur_.
and randopized stopping times, ecpecially randomized terminal times and
the new class of randomized quasi-terminal times, extreme randomized
terpinal timez are idertified, and a sequential compactness theorem is
estatlished, Urfortunately, no "real" applications are apparent or

imminent. Thic manuscript will be submitted to 2, Hahrscheinlich-

kejtztheorie urs verw, Gab.

ITI. FAFERS AFPEARIMNG DURING 1984

During 1984 the following papers supported by grants from AFOSR
appesred in print:

1) ¥Karr, A4.F., Estimation and recanstruction for zero-one Markav

procosses. Stochaztic Procez:, Appl. 16 219-259.
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2) Farr, A.F., Combined nonparametric inference and state
z

estimation for mixed Feisson procesces. J. Hahrischernlichkeitstheorie

urd verw. Geb, £& 81-%4,

IV, ADDITIOMAL ACTIVITIES

The following activities, even though they either do not receive
AFOSR funding or do not result (directly) in publicatiens containing
new rezults, are nevertheless integral to the research program and are
evidence of 1ts vitality,

1} Boob, The book Pofnt Processze: and their Statisztical

Inference, by A.F., Karr, was completed in October, 1984; it is to be
publizhed in late {925 by Marcel Dekker, Inc. Although its writing has
not been supperted by AFODSR the book contains new results that will not
(for variecus reasons) be published elsewhere, MNearly all of these are
gutgrowths of AFOSR-supported research and will be so acknowledged.

2} Eupository Papers, The papers

Karr, A.F., The martingale method: introductory ske
access to the literature, (fOperations Res, Lle
(1984) 59-47.

Varr, A.F., Point process., In £
Sciernces VI, N.L., Johneon
York (to appear).

n
Ltk

Iopedia of Statistical
€. Fotz, eds. Wiley, New

™

Y
-
20

barr, A.F., Poiszson procescs. In Erncyclopedia of Statiztical
Sorences YI, N.L. Johnzon and S, Kotz, eds. Wiley, New
York (tc appear!.

Varr, A.F,, Stationary point procesz. In Encyclopedia of
Statyistical Sciemcez VI, N.L. Johnson and 5. Kotz, eds.
Wiltey, New Yorl (to appear),

which are expository preszentationz of print proc=szz2s and inference for




them, have likewise pnot been prebared under AFO3SR support. However,
each 1s an invited contribution and contains substanticl discuscicn of
supported research. That they are invited papers confirms the
visibility and strong reputation of the research program,

3) Seminar and Conference Presentations. Invited seminar and

conference addresses on the research accomplishments discussed in []
were presented during 1984 at The Johns Hopkins University, the Centre
for Mathematics and Computer Science (Amsterdam), the University of
Copenhagen, the Ecole Folytechnigu= (Faris), a Mini-conference on
Inference for Stochastic Processes (Lexington, KY) and the Fourteenth
Conference on Stochastic Frocesses and their Applications (Gdteborgl.

4) Visitors to Johns Hopkins. During 1984 visitors to Johns

Hopkins for discussicn of inference for point processes included D.
Kdnig (Freiberg, DDR), D.J. Daley (Canberral), P.E, Greenwood
(Vanceuver), A.N. Shiryayev (Moscow), E. Arias (Dulu, Finland)-and s.
Johansen (Capenhagen). MNone of these visits received grant support (it
does not include such funds); the international stature of the visitors
and their willingness to visit even without support are further

indication of the strength of this research prograam.
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