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I. SUMMARY OF RESEARCH OBJECTIVES

Stochastic point processes are models of points distributed

randomly in some space; these points may represent, for example,

locations (or even trajectories) of tracked objects, times and amounts

of precipitation events, or failure times and modes of a complex

system. This research project is directed toward two principal

*' problems arising in applications of point processes: statistical

inference for point processes whose probability law is unknown entirely

or in part, and state estimation for partially observed point

processes, i.e., minimum mean squared error reconstruction,

realization-by-realization, of random variables that are not directly

observable. These problems are examined in several (not disjoint)

contexts: stationary point processes, Cox processes, multiplicative

intensity processes and Poisson processes. Another thrust of the

research is inference for stochastic processes based on point process

samples, with the particular goal to investigate inference and state

estimation for random fields given point process samples.

II. RESEARCH ACCOMPLISHMENTS

Fesearch during 1984 has focussed on six major problem areas.

A) Inforence for Stationary Point Processes. Let N be a

0 sttuionAry point process on E=R d , d>1, and consider the statistical

moAil ? of probability measures P under which N is stationary:

N 5 NT- for each x, where T is the translation yky-x. For each
X

P-Ef let P* be the Palm easuire, i.e., the uniqu g 1r ii eAI I ,. .v- in 'v-i

Ch , ' 9@',n"gn "a o n t o D" "v" ' i ."I ';a
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such that for each (bounded, measurable) function H,

(1) E(JH'Ni ,()N(dx)] E (H(N,x)dx],

where E denotes "expectation" with respect to P , even though P need

not be a probability, and dx (and below, X) denotes Lebesgue measure.

Heuristically, P {N-()I/P*(g) = P{Ne('IHN({O3)=IB, so that P is the

"law" of N conditional on the null event that there is a point at the

origin. Extending work of Krickeberg (1982), a theory of estimation

for stationary point processes has been developed in which objects

estimated are the Palm measure and integral functionals of it,

especially moment and spectral measures. Data are single realizations

of N observed over- increasing compact sets.

Specifically (cf. Karr, 1985, or Krickeberg, 1982, for

background), with N (d>,l,...,dx ) = N(dxl)---N(d xk) let P =k E kI be

k k-Ithe k-th order moment measure and let p, defined on E be the

reduced soment measure of order k:

k E k X p, (dz),P =SEk -1 zP()

where X is the image of X under the mapping x+(z +x,...,zk+X,x).

The reduced moment measures of orders one and two, to wit = Vt,

2where v is the intensity of N (E[N(A)=vX(A) for each A) and p,,

2 2along with the reduced covsriance measure p= p-v X, are of central

importance, as is the spectral measure F, which satisfies F(M) = P,(1),

where T is a CO-function with compact support and Y is its inverse

Fourier transform.

The unbiased estimators

2 . )

2
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*(H) = (K)-'J H(NT ')N(dx)]

of the Palm measure, where K is a compact, convex set, are natural

"empirical" estimators: for x a point of N -- and only such x

-1
contribute to the integral -- NT has a point at the origin, so that

AH*
P*(H) is simply an average of H-values for translations of N placing

each point in K at the origin. Here K should be regarded, albeit

loosely, as the sample size; calculation of the estimator requires

observation of N over a compact set related to but ordinarily larger

than K.

Strong consistency of the P (H) has been established, uniformly in

H over certain classes of functions, under broadly fulfilled conditions

on N, as has asymptotic normality of the "standardized" estimation

error X(KI) P (H)-P (H)], as the sets K increase to E. Detailed

A

properties of the estimators v = N(K)/X(K) and

V,(f) = X(K) KN(dx)JN(dy)f(y-x), where f is continuous with

compact support, have been worked out; the latter yield properties of

AY A 2A
substitution estimators F() = (Y) of the spectral measure. These

results appear in

Karr, A.F., Estimation of Palm measures and spectral measures
of stationary point processes. Technical report 403,
Department of Mathematical Sciences, The Johns Hopkins
University, 1984,

which contains further material concerning the problem of combined

4 inference and linear state estimation, i.e., linear reconstruction of

unobserved portions of N when v and p-- the only objects required for

linear state estimation -- are unknown and must be estimated. This

manuscript is currently under revision for Z. Yahrscheinlich-

-. , -,... ., .. , . .. , - - -. - - ,-, . .. . . . *. ' - ' " '
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keztstheorie und verw. Geb, to incorporate recently proved results on

Poisson approximations that complement the central limit theorem and on

estimation of P (the law of N) itself, rather than the Palm measure P

B) State Estimation for Cox Processes. A pair (N,M) comprising a

simple point process N and diffuse random measure M on the same space E

is a Cox pair if conditional on M, N is a Poisson process with mean

measure M; N is then termed a Cox process directed by M. The most

important special case is that of mixed Poisson processes, in which

M = Yv , where v is a diffuse measure on E and Y is a nonnegative

random variable. In applications, which include signal processing,

carcinogenesis and precipitation, only the Cox process N is observable,

but the directing measure M, which represents the underlying physical

mechanism, is of primary interest, leading to the state estimation

problem of computation of minimum mean squared error state estimators

N N
EM!M3 (A)], where 3 (A) is the o-algebra corresponding to (uncorrupted)

observation of N over the set A. Such computations require

(effectively full) knowledge of the law of N, which of course typically

is not available.

An optimal solution to the problem of combined nonparametric

inference and state estimation for mixed Poisson processes was obtained

in 1:.arr (1984). One has as data i.i.d. mixed Poisson processes Ni,
,1

with unobservable directing measures M = Y.y , where the Y are i.i.d.

with unknown distribution F. For each n the true state estimator of

Mn+ I is expressible as
( 2 IH v n A

(2) EEMn+II t N A)] =H(F,y,*,Nn+ I •,

4
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where H is a known functional form; in the combined problem it is

replaced by a pseudo-state estimator

nfl,
(3) Elm n+1IIIN W(A ] = H( , Y ,N n+11A)

A A*

where F, v are estimators of F, v based on N1 ,..., Nns

During 1984 a partial but evidently less-than-optimal solution was

obtained for the corresponding problem for completely general Cox

processes. Its key components are a representation -- itself

significant -- for true state estimators in terms of the Palm

distributions (see, e.g., Kallenberg, 1983, or Karr, 1985) of the

M , which are linked in turn to the reduced Palm distributions of the1

Ni, and a methodology for estimating the latter from observation of the

N . Estimation is effected with techniques similar conceptually, but1

very different mathematically, to those discussed in Ir.A above. The

representation theorem yields an analogue for the function H in (2) and

(3); the other main results are limit theorems describing asymptotic

behavior (as n-m) of differences between true state estimators and

pseudo-state estimators. They appear in

Karr, A.F., State estimation for Cox processes with unknown

probability law. Technical report 379, Department of
Mathematical Sciences, The Johns Hopkins University,

1984,

which h3s been accepted for publication in Stcrhastic Processes and

their 4ppIicatior?.

C) Multiplicative Intensity Models. In the theory of

intensity-based inference for point processes on I+, the best

compromise between applicability and tractabili.ty is the multiplicative

..- .: -7 - ..- ,-.-- ,.,-



intensity model of Aalen (1978) (see Jacobsen, 1982, or Karr, 1985, for

general discussion). Let (Q,J,P) be a probability space on which are

defined a point process (Nt) and filtration (Qt ). Provided that it

exists, the 9 ,,cthastic intensity of N is the unique (predictable)

process (Xt) such that Mt = N t- otsds is a martingale.

Heuristically, tdt = EAN tIt- 1, where ANt is the jump (necessarily

one or zero) of N at t; the differential form dMt = dN t-t dt reveals

the "innovation" interpretation of the martingale M. In the

aultiplicetive intensity model the unknown "parameter" is a

positive function exELl 0,1]; under the probability P N has stochastic

intensity (atXt), where X is an observable, predictable process. The

"martingale method" of inference estimates integrals Jads (more

precisely, random processes Bt (0) =>Ma ds) with martingale

estimators >X -dN , whose main attractions are
Bt= 0 s s s

A

computational simplicity and the property that (B t-B t(a)) is a

P -martingale for each a; the latter permits calculation o.f variances

and application of potent martingale central limit theorems to develop

asymptotic properties of martingale estimators.

However, martingale estimators are not derived from optimality

considerations. By adapting the sethod of sieves of Grenander

(1!i81) and collaborators, it has been possible -- in the context of

i.i.d. multiplicative intensity processes -- to construct maximum

likelihood estimators that are strongly consistent in the sense that

0,7.-YF . 0 almost surely. Further results that identify conditions

engendering c -c: nsistency, local asymptotic normality of likelihood
n

ration and asymptotic normality of the ,a have also been obtained. A

. ./ ::
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preliminary report

Varr, A.F., Maximum likelihood estimation in the multiplicative

intensity model, via sieves. Technical report 46,
Center for Stochastic Processes, University of North

Czrolina, 1983,

written during a sabbatical visit in Fall, 1983, has been revised and

expanded during 1984; this new version has been accepted for

publication in The Anna!; of Statistics.

D) Poisson Proresses. Consider a Poisson process N = Ic on(Xi ,Zl)

a product space E = E xE I with mean measure p(dx)K(x,dy), where K is

a known transition probability from E0 to E and p is an unknown

oeasure on Er, and suppose that only the second component N = Z, is

observable. The goal is inference concerning p, the mean measure of

the Foisson process N =IS given observation of n i.i.d. copies of

N 1. Applications of this model incltde positron emission tomography

(Shepp/Vardi, 1982) and other forms of medical imaging (D.L. Snyder,

personal communication). Estimation of p via the EM algorithm of

Demp-ster/Laird/Fubin (1977) is under investigation; this iterative

algorithm tfor each fixed value of n) uses a provisional estimate of p

to construct a pseudo-state estimator E[NO13 J, which is used in turn

to update the estimated value of p. With n fixed, this procedure

con-'erges in some cases to a maximum likelihood estimator of p. The

Iei issue, consistent estisation of p as n-m, renains unresolved

despite progress during 1984; completion of this research during 1985

is antitipated.

E) Par don Fields. A random field is a stochastic process

Y ""- wlth a multidlmensional (Euclidean) pa arneter set.

7



Sugpos, that 'Y is a stationri random field on Rd that can be observed

only 3t the points X of a stationary Poisson process N on Rd that is

independnt of Y; more precisely, N is also observable, so that

observtionc constltute a marled point process in which each point of

the sampling process N is marked by the value of Y at the point. For

example, Y may be a precipitation field and the X locations ofI

raingages, or Y a petroleum reservoir and the X. locations of test
I

drillinq.

Techniques have been developed for estimation of the mean

m ECY I and the covariance function R(x) = Cov(Y,,Y ,+ ) given

observation of single realizations over compact, convex sets K, even if

the intensity Y of N is unknown. The estimators m = N(K) K

usable regardless of whether v is known, are mean square consistent and

asymptotically normal under minimal assumptions. Similarly, given that

n = 0 and v is known, the nonparametric estimators

A (2)Rkz) = LV X())I f Lw. ( x I' Yx 2)Y yx )N (dx41 ,dx 2

where N d,, dx,) = N(dx (N-E ,)(dx 2 ) and wK(x) = KK wO/aK) is a

"window' function (w is a bounded, isotropic density and the -K are

positive constants converging to zero) are, again under only mild

restrictions, mean square consistent, asymptotically normal pointwise

in ;end asymptotically uncorrelated for x 0 ix'. These properties,

alternative estimators of R via the signed measure IUA) = JAR(x)dx

and linear state estimation of unobserved values of Y, are treated in

Karr, A.F., Inference for stationary random fields based on
Poisson samples. Technical report xxx, Department of

Mathematical Sciences, The Johns Hopkins University,

- • .-. .w > t .s±- - .- .-. - - . .,



which will shortly be submitted for publication in Advances in

4pplied Probability,

Though unrelated to the preceding topics the following research

activity synthesizes several lines of inquiry.

F) Stopping Times of Markov Processes. The structure of stopping

times of a Marov process is central not only to such theoretical

issues as the strong Marlov property but also to applications,

including optimal stopping, stochastic orderings and "inverse

problems"; see, e.g., Karr/Pittenger (1978, 1979). In the manuscript

Karr, A.F., and Pittenger, A.O., Structural properties of

random times. Technical report xxx, Department of
Mathematical Sciences, The Johns Hopkins Universit

19S5,

an algebraic structure is devised that elucidates the nature of natur-

and randomized stopping times, espe:ially randomized terminal times and

the new class of randomized quasi-terminal times, extreme randomized

terminal times are identified, and a sequential compactness theorem is

established. Un4ortunately, no "real" applications are apparent or

imminent. This manuscript will be submitted to Z. Wahrscheinlich-

keitstheorie urc vern. Get.

Ill. PAFERS APPEARING DURING 1984

During 1984 t0e following papers supported by grants from AFOSR

appeared in print:

I) Karr, A.F., Estimation and reconstruction for zero-one Markov

procrases. Stnrxastic Proc szi. Appl. 16 219-255.

• -. ° o- .. .... x> . > -.



2) 'arr, A.F., Combined nonparametric inference and state

estimration for mixed Poisson processes. Z. ahrscheinlichkeitstheorie

urid veri. Gab. 66 81-96.

IV. ADDITIONAL ACTIYITIES

The following activities, even though they either do not receive

AFOSR funding or do not result (directly) in publications containing

new results, are nevertheless integral to the research program and are

evidence of its vitality.

I) Boo[. The book Point Processes and their Statistical

Inference, by A.F. Karr, was completed in October, 1984; it is to be

published in late 1985 by Marcel Dekker, Inc. Although its writing has

not been supported by AFOSR the book contains new results that will not

(fmr various reasons) be published elsewhere. Nearly all of these are

outgrowths of AFOSR-supported research and will be so acknowledged.

2) Expository Papersa. The papers

Kerr, A.F., The martingale method: introductory sketch and
access to the literature. Operations Res. Letters 3

(1934) 59-67.

Karr, A.F., Point pro ess. In Encyclepedia of Statistical
cierce; VI, N.L. Johnson and S. Kotz, eds. Wiley, New

York (to appear).

iarr, A.F., Poisson process. In Encyclopedia of Statistical
Sc:*en':eI VI, N.L. Johnson and S. Kotz, eds. Wiley, New
York (to appear).

i'arr, A.F., Stationary point process. In Encyclopedia of
Statzlticml Scjences Vi, N.L. Johnson and S. Kotz, eds.

Wiley, New Yori (to appear),

which 3-e expository presentations of point processes and inference for

1k i
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them, have likewise not been prepared under AFOSR support. However,

each is an invited contribution and contains substantial discussion of

supported research. That they are invited papers confirms the

visibility and strong reputation of the research program.

3) Seminar and Conference Presentations. Invited seminar and

conference addresses on the research accomplishments discussed in II

were presented during 1984 at The Johns Hopkins University, the Centre

for Mathematics and Computer Science (Amsterdam), the University of

Copenhagen, the Ecole Polytechnique (Paris), a Mini-conference on

Inference for Stochastic Processes (Lexington, KY) and the Fourteenth

Conference on Stochastic Processes and their Applications (Gbteborg).

4) Visitors to Johns Hopkins. During 1984 visitors to Johns

Hopkins for discussion of inference for point processes included D.

Kdniq (Freiberg, DDR), D.J. Daley (Canberra), P.E. Greenwood

(Vancouver). A.N. Shiryayev (Moscow), E. Arjas (Oulu, Finland) arid S.

Johansen (Copenhagen). None of these visits received grant support (it

does not include such funds); the international stature of the visitors

and their willingness to visit even without support are further

indication of the strength of this research program.

11
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