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(1 .0)

I ntroduction

This report summarizes the achievements of a one year program

conducted at Princeton University under AFOSR sponsorship. To a certain

extent this report represents a continuation of a previous 5 year

program that studied a number of topics related to wind tunnel wall

interference. The present effort focused on the aerodynamics of an

isolated hole in the wind tunnel wall. This problem is not only of

interest in its own right but, as the previous research demonstrated, it

is also the basic building block for the determination of the average

boundary condition for a wall covered with holes. The basic approach is

to determine the behavior of a hole using a lifting surface type

computer code. This method was inspired by an analogy observed between a

2-D lifting wing and the free surface problem for a 2-D slot in a wall.

As an significant refinement, the effect of a power law boundary layer

has been included through the use of a "shear flow aerodynamics" kernel

function. The primary problems analyzed in this report are therefore

- 2-D and 3-D potential flow over an isolated hole, including the

effect of an imposed pressure gradient.

- 2-D and 3-D shear flow aerodynamics over an isolated hole.

Most of the remainder of this document provides a detail report on the

results of this work. The next section provides a list of publications

and participating personnel.

. .. .



2

(2.0)

Publications and Professional Personnel

(2.1) Professional Personnel

The professional personnel associated with the research effort were

Professor D.B. Bliss and Mr. P.-J. Lu, graduate assistant.

(2.1) Publications

The following publications are in preparation:

"Potential Flow over an Isolated Hole in a Wind Tunnel Wall," (to be

submitted to the AIAA J.), P.-J. Lu and D.B. Bliss.

"Application of Shear Flow Aerodynamics to Ventilated Wind Tunnel

Walls," (to be submitted to the AIAA J.), P.-J. Lu and D.B. Bliss.

"Aerodynamic Behavior of Ventilated Wind Tunnel Walls," Princeton Ph.D.

Dissertation to be completed in 1984, P.-J. Lu.

. . . .

. . .
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(3.0)

Research Activities

The reseach during the past year focused on the local analysis of an

isolated hole in a wind tunnel wall. Such holes are the elements which

make up a perforated wall. The purpose of this local analysis is to

develop theoretical models to examine the inner structure of the fluid

flow around an isolated hole. In subsequent sections the cases of

inviscid irrotational (potential) and rotational (shear) flows over

isolated holes will be discussed. The pressure gradient effect in the

potential flow case is also considered. For convenience sake, the

terminology used to describe the flow over a 2D transverse slot and a 3D

finite hole is leaking-slot and leaking-hole theory, respectively. These

local analyses will justify the functional relationship between the

pressure differential and average flow deflection angle across a hole,

and give analytic values of the flow resistance constant Kh."

(3.1) Potential Analysis

To date, potential flow has been assumed in every analytical

investigation of ventilated wind tunnel walls. For longitudinally

slotted walls, experiments show that viscous effects are not that

important. The fluid flow and interference effects are principally due

to potential flow aerodynamic phenomena. However, for perforated walls,

viscous/boundary layer effects are by no means negligible. On the

..-- .

~i1..-.
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contrary, many experiments suggest they are very important. The present -

potential flow analysis, which necessarily excludes viscous/boundary

layer effects, is undertaken in order to get a theoretical model which - -

gives a clear understanding of the most fundamental aspect of perforated

wall flow, namely, the momentum deflection of the oncoming stream across

the hole. Potential flow results are basically valid for large holes,

i.e., the cases when the hole diameter is much larger than the boundary

layer thickness. This potential flow treatment is only a first step in

the theoretical approach to understand the physics of perforated wall

flows and is a necessary undertaking prior to the more complicated

boundary layer analysis discussed later.

(3.1.1) Leaking-Slot Theory

Consider a transversely slotted wall, Fig.(3-1a), with negligible -

wall thickness separating two different streams, one in uniform motion

and the other at rest. The static pressure differential across this

slot is assumed so small that small perturbation techniques can be

applied, i.e. the free surface deflection is small compared to the slot

length. Fig.(3-1a) depicts this slot flow, as well as the coordinate

system location. The half slot width and free stream velocity are used

as the normalization quantities.

The equation of motion is,

.~~ ~ ~ "- .. . . .
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(3-1) .

The boundary conditions are:

a) On the wall, fore and aft of the slot region, w=a0/az and over

the slot region, p=p a holds.

b) 0 and Vo vanish in the far field.

c) At the leading edge of the slot, the Kutta condition is

satisfied, i.e., w=0 at x=-l.

(3-2)

The boundary conditions as specified are valid only for the out-flow

case. To date, no theoretical analysis has been developed to treat the

in-flow problem. In the in-flow case, the flow is sucked into the high

speed stream from the plenum chamber. This process involves many effects -

beyond the scope of simple potential flow analysis. For instance, a

wake flow usually will be generated after the flow passes around the

sharp trailing edge. Moreover, even without consideration of the

viscous effects, the sucked-in flow would form a low speed zone

downstream between the wall and the high speed main stream. The location

of the dividing slip streamline between the high and low speed zones is

not known in advance, therefore, the boundary condition (3-2a) is no

longer applicable for eqn(3-1). A reasonable solution to this potential

in-flow problem must consider two flows with different stagnation

pressures having static pressures that must match on the slip streamline

and satisfy individually the appropriate boundary conditions. This in-

flow problem is not treated in the present work, and only on the out-

................................................-...... .- °-.



- - .

6

flow problem is considered from here on.

Maeder ( I) discovered the analogy between the 2D lifting airfoil and

leaking-slot flow in the early fifties. In the almost thirty years

since the discovery of the 2D analogy, the 3D hole problem has not been

solved analytically. The approach to be presented here is different

from Maeder's, and it is particularly helpful because it can be readily

extended to the 3D case described later.

If we examine the governing equation and boundary conditions of the

2D lifting airfoil and leaking-slot flows, the analogy is immediately

apparent. The comparison is illustrated in Fig.(3-1b). Since both

p(=-20) and w (=O) satisfy the Laplace-type eqn(3-1), switching the
x z

roles of p and w and reversing the streamwise coordinate will transform

the lifting problem into the slot problem, or vice versa. The analogy

states,

P = S (3-3)

where subscripts L and s denote lifting and slot respectively.

To prove eqn(3-3) more formally, let us start from the integral

equation form which is deduced from the differential equation (3-1)

subject to the boundary conditions (3-2), except for the Kutta

condition. The integral equation, which can be found in many

texts(2,3,4), states that,

........... .. ........ ........ _ ".......... (3-4)

~ .'... .

.. . . ,~-- .- .
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The integral sign indicates that the Cauchy principal-value is taken for -

integration across the singular point x= .

Note that eqn(3-4) holds true for both the thickness flow of airfoil

theory and the leaking-slot flow, since the flows are symmetric for

these two cases. The differences between them lie in the mathematics and

the interpretation of the downwash distribution. For the thickness and

slot flows, w(&) stands for the surface slope distribution of the

airfoil or the free streamline deflection, respectively. The former is

given for a fixed airfoil configuration and the latter iQ what we want

to determine in the slot problem. Mathematically, t' .,ickness problem

is a direct problem, which means that by directly ip-grating the

principal-value integral the pressure distribution on the airfoil can be

determined. However, the slot flow is an indirect problem, because 0x

is known while w(4) must be obtained by solving the singular integral -

equation together with the Kutta condition satisfied at the leading

edge.

Recall that the integral equation for the 2D lifting problem is,

_ T (3-5)

The inversion formula of eqn(3-5) has a variety of forms; the one being

used here is from Ref.(5).

--

ILX (3-6a)

or,

..............
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-F,,"O - __ - (3-6b)14 I

-I

Equations (3-6a,b) are two conjugate solutions to the singular

integral equation (3-5). Eqn(3-6b) was adopted in lifting problem by

letting c'''=O to satisfy the Kutta condition at the trailing edge,

whereas eqn(3-6a) was discarded since no physically compatible flow was

found to be associated with it in the airfoil problem.

This technique developed for lifting airfoil theory can also apply to

the slot equation (3-4) since it possesses the same kernel function.

However, in the case of slot flow, we adopt eqn(3-6a) instead, since now

the Kutta condition is specified at the leading edge. Therefore, w(&)/5

in eqn(3-4) is given by

ti

For constant plenum chamber pressure, x is constant over the slot

area, namely,

where, AP=-(P -pa )/q (AP>O for out-flow ) (3-8)

Substituting the above pressure differential into eqn(3-7) yields,

1~ +K (3-9)

in which the integral identity

- * * °.
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ventilated wall behavior because there are fundamental

differences in the nature of these fluid flows.

(3.1.3) Pressure Gradient Effect on Slot and Hole Flows

The pressure gradient along a tunnel wall can very often reflect the

degree of interference between wall and model. For instance, if a very

low blockage-ratio model, say less than one percent, is installed in a

tunnel, the wall pressure gradient will be very small. However, for

larger models, especially ones in transonic flow with a supersonic

bubble intersecting the tunnel walls, very irregular pressure

distributions are seen, and under this situation, it is known that

severe wall and model interference occurs.

Suppose the hole in a tunnel wall is no longer considered as an

idealized point, but has finite dimensions. A pressure gradient will be

experienced as the hole is exposed in a non-uniform flow. It is

desirable to see how this pressure gradient affects the fluid flow

around the hole. As usual, we start our study from the 2D transverse

slot.

The downwash-pressure disturbance relation was already derived in

eqn(3-7) for a slot with constant imposed pressure,

e-- - , (c.f. 3-7)
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interference effects are negligible. Surprisingly, the potential

leaking-hole theory result fits very well with the experimental data for

smaller holes. However, since information on the boundary layer was not

provided, it can only be regarded as a coincidence.

Owing to the lack of reliable experimental data, justification of the

validity of the leaking-hole theory can only be performed indirectly.

Bliss (12 ) utilized slender-body theory to study longitudinal slots

analytically. He found that for certain slot shape, called D.B.B.'s

analytical shape, the exact solution can be found. This analytical

shape is shown in Fig.(3-10). This particular shape was used for the

hole planform, and the finite hole computer program was run for

different aspect ratios to check whether these two theories agree at low

aspect ratio. The result is plotted in Fig.(3-11), and the agreement is

encouraging.

At this stage, the properties and general features of the finite hole

in the tunnel wall can be summarized as follows.

1) The resistance coefficient Kh( 1/CQ ) decreases as the aspect

ratio of hole decreases.

2) The resistance coefficient K increases in proportion to i/ 3
h

(6 =---Ti ) as free stream Mach number increases in subsonic flow.

3) The hole flow is a thickness problem even though there are some

similarities between the corresponding flow variables for holes

and lifting surfaces. Experience gained in airfoil studies

should not be directly transferred to predict or explain

.........................
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sectional distribution. However, near the tip the low and high aspect

ratio cases show different tendencies. Generally speaking, the

sectional flowrate increases more sharply around the tip region as the

aspect ratio decreases.

Experimental data on the isolated hole problem is hard to find. Most

experiments are associated with perforated walls, most of which are

(10)thick wall cases done in the fifties and sixties 0
. The data found

for the isolated slot and hole was carried out by Maeder (1) and

(11)indirectly reproduced in Fig.(3-9) from Goethert . These data were

obtained from a 4 inch height test section wind tunnel, with a slot

having 1 inch width and a hole 2.26 inch in diameter. First consider the

upper plot in Fig.(3-9). The difference between potential theory and the

experimental results can be seen. Boundary layer effect cannot be blamed

because the dimensions of the slot and hole are deliberately chosen to

be large to eliminate the boundary layer effect. Moreover, the boundary

layer effect tends to decrease the slope of pressure coefficient versus

deflection angle. This trend has been justified by other more carefully

designed experiments in which boundary layer thickness was reported.

The slot width is much larger than the wall thickness, so the edge

effect is not likely to be important either. A similar trend also occurs

for the single hole case shown on the lower plot, on which is shown our

theoretical result Kh=l/CQ=1.003 . The reason for this trend is probably

the relative dimensions of the tunnel cross section to the slot or hole

size. For a one inch slot and 2.26 inch hole installed in a 4x4 square

inch tunnel it is hard to imagine that the side walls and ceiling
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divided by the free stream velocity to make it dimensionless. Since our

theory is linear, therefore, C is the reciprocal of the resistance
Q 1

coefficient Kh, i.e., CQ 1/Kh. Fig.(3-6) shows its behavior in

connection with the aspect ratio. Its trend of asymptotically

approaching the 2D slot limiting case agrees with physical intuition.

The computer program ceases to be valid for aspect ratios less than

0.25. The reason is not clear, but failure could be attributed to the

inappropriate simulation of the preselected mode functions to the actual

downwash, because these modes basically are designed for larger aspect

ratio cases. The program also cannot handle shapes with aspect ratios

greater than 3.5. This situation is probably due to increasing the

number of spanwise control points which introduces more higher order

polynomials that are oscillatory in character. This causes the

associated influence matrix to become less well conditioned to

inversion. A similar limitation with respect to aspect ratio range was

also encountered in the kernel function method for wings. Nevertheless,

the round hole case falls in the range of validity of this leaking-hole

theory.

The Mach number dependence of CQp is shown in Fig.(3-7). Its trend of

decreasing (increasing for Kh) in proportion to 0(1/5 for Kh) has long

been observed in many experimental investigations.

Presented in Fig.(3-8) is the sectional volume flowrate coefficient,

which is similar to the sectional lift coefficient of the finite wings.

Three cases are studied, the round hole case has a very squared
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various parameters were all performed with 9 control points. These

control points are positioned at x=-0.5 ,0, 0.5 in the chordwise

direction, and y=0.2, 0.5, 0.8 in the spanwise direction. Actually,

this kind of control point distribution was suggested as the optimal

collocation arrangement by Watkins et al. in their development of the

kernel function method for lifting-surface theory.

A series of numerical experiments were carried out to examine the

elliptical hole family. A primary concern, the round hole, is a special

case of the ellipse with equal major and minor axes. The downwash

distribution is shown in Fig.(3-4) for a round hole in incompressible

flow. Three stations are selected to be the representatives for flow

near the root chord, mid-span, and tip regions of a round hole. The

distributions show similar behaviors to each other, but, deviate

substantially from the 2D transverse slot result. Fig.(3-5) shows the

downwash distribution for different aspect ratio* holes. Roughly

speaking, the basic shape of the downwash is magnified uniformly along

the slot as the aspect ratio decreases. In other words, low aspect ratio

holes are more effective in allowing fluid to pass through.

Fig.'s (3-6) to (3-9) examine the volume flowrate coefficient C (C
Qp Q

at Ap/q=l). The volume flowrate coefficient C is defined as the volume -.

Q
of fluid flow passing across the hole per unit time per unit area, then

The aspect ratio defined in the hole problem is the maximum span to
chord ratio. Multiplying this result by 7 recovers the usual aspect
ratio defined in the airfoil theory.

. .

. . ,-..,,.-., .- , ,v-'-'- ,- .. ... . .. . . ... .. ..-, : i , . ..i .: .- / :.. .-. :. --. ."
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eqn's(3-20) and (3-21). This is the most difficult portion of the

numerical simulation. To adapt the numerical scheme to the present hole

problem, treatment of the singular integration must be modified. For

the lifting-surface problem, a Nangler type singularity is encountered

in the spanwise integration; however, for the hole problem, a Cauchy

type singularity occurs in the chordwise integration. Experience gained

from numerical lifting-surface theory indicates that proper handling of

the singularity is crucial to the accuracy of the final results.

Generally speaking, the quadrature scheme must be sufficiently accurate

and must preserve the special character of the principal-value

integration.

Guassian quadratures are adopted here for the numerical integration.

In order to achieve high accuracy, the hole area was divided into six

sub-regions, which are illustrated in Fig.(3-3). Each sub-region is

confined within the nearest solid lines. Sub-region IV contains the

control point(x,y) where singular behavior occurs, and considerable care

must be taken (the Cauchy principal-value and the Hadamard finite part

concept must be invoked). The location of the control point makes the

aspect ratios of these sub-regions change vastly. In order to use the

Guassian quadratures effectively, the order of the Guassian quadrature

used must be adaptable to the variation of this aspect ratio change.

A computer program was thus developed to study the finite hole

problem with 4,9,12 and 16 control points. The program results show

that the 9 point case is already converged. Therefore, studies for

. ... ..
. . . . . . . . .. . . . . . . . . . . . . . . . .
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yields

T') 25 (3-20)

and,

G.(rO = § A(X-%,5- 1SN (e)S;v do (3-21)

A -K- ' 1, 3/2, (3-22)

in which, s=l/b0 , and all quantities are dimensionless.

The methods of solving for these unknown coefficients include: the

collocation method which makes the pressure differential be satisfied

exactly at a set of points; or the least-square method which

approximately satisfies the pressure differential at a larger set of

control points in the sense of least-square error. There is no concrete

evidence to suggest that the more complicated and expensive least-square

method is superior, therefore, we use the collocation method here.

If the hole shape is symmetric with respect to the mid-plane y=O,

which is often the case, and the imposed pressure differential is also

right-left symmetric, then the flow field will possess the same symmetry

property. Under this circumstance, there is an advantage to distributing

the control points only on half of the hole area and choosing only even

power polynomial modes in eqn(3-17). This significantly reduces the

computing effort.

The remaining problem is how to numerically evaluate the integrals in
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The mode functions selected in the chordwise direction are in terms

of the angular variable 6. These functions are

The leading one, tan(8/2), takes care of the square-root singularity and

vanishing behavior at the trailing and leading edges. The rest are

regular over the region of interest and vanish at both ends.

The spanwise mode functions, however, are polynomials weighted by the

factor /_lT" 2 which accounts for the vanishing of downwash at the tip.

These mode functions approach unity asymptotically at the symmetry plane

y=0. ,.

IO1 (3-17)

Therefore, the unknown downwash distribution is expanded as, -

64

- A. (1(Aci (3-18)

In the above, the chordwise modes are multiplied by a factor 4/2 2n(n>l)

for convenience. The chordwise mode functions are

- . 5;'1 rl n ri_ ) (3-19)

Substituting eqn's(3-18), (3-19), and (3-17) into the integral equation

(3-13), and manipulating the non-dimensionlization factors, finally

7. .

• " " ' :J " " -" % ' ! .. .. . . . . .... |- I
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the 2D slot flow problem. However, the tip behavior must be justified

separately. Since the tip behavior is not singular, a loss of knowledge

about its behavior causes no serious trouble in the present numerical

analysis. The unknown coefficients of the downwash modes can adjust

themselves to achieve the best fit of the boundary conditions. Based on

this reasoning, Watkin's spanwise modes are adopted without modifying

the weighting function, since this weighting function ensures that

downwash vanishes at the tip which is required by the boundary

condition.

Since the approach is based on Watkin's method, we adopt his notation

and nondimensionlization. The new coordinate system is illustrated in

Fig.(3-2). Two reference length scales are taken, one is the half root

chord b0 in the x-direction and the other is the maximum half span £ in

the y-direction. Thus, the (x,y) or ( ,q) coordinates of the hole fall

within the range, [-1, 1]. An angular chordwise variable 6 was defined

also which allows the use of sin (nB) mode functions in the chordwise

direction. The 8 variable is defined as

-- Lose (3-16a)

where,

I{- (%,- 2/ (3-16b)'

/ o -" t / e l (3-16c) . .

The functions TI (ri) 4 (r) and ,t(i) represent the equations of the
le m te

leading edge, midchord line, and trailing edge, respectively.

"-"U" ' " " " m ' " ' - d - ' | d -" -. .. ' -" -.. . .. . .. . - -. " - .. . . . . ' "
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basically the kernel function method approach, which was developed in

1959 by NASA researchers, Watkins et al. (9) Of course, some

modification must be done to adapt this method to the present leaking-

hole problem.

First of all, we expand the unkown function 0 z into a series of

preselected mode functions with arbitrary coefficients to be determined,

Each function I (i) must satisfy the Kutta condition at the leading

edge, otherwise the solution will not be unique. This spanwise mode

functions O.(TI) must vanish at the side edge, or tip, of the hole.
I

Whether this series converges and how many terms it takes to converge

within certain satisfactory error bounds, depends strongly on the choice

of mode functions. Generally speaking, the more we know about the

behavior of 0 z at the edges of the planform, the fewer the number of

mode functions that are required for the series to converge. This is

because the fluid flow changes abruptly at the edges where the

discontinuity in the boundary condition occurs. For lifting surfaces,

the pressure distribution usually behaves in proportion to E , and

El at the leading, trailing, and side edges, respectively, where c

is the distance to the edge. These behaviors near the edges have been

obtained from the study of simple cases such as a flat plate at angle of

attack and the elliptic planform of lifting-line theory. In regard to

the hole problem, leading and trailing edge behaviors were determined in

.- . I

• oI

,.....-.. ... ". ... °"o.,-............ ...°. ...°-...-°,-..... ...... ,- -% %° "%.,".o. -,
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Eqn(3-14) can be arrived at by many methods, such as a Green's

Function approach or integral transforms. The derivation is not

-.-

performed here, since in the subsequent shear flow analysis a complete

integral transform method will be presented, and this potential flow is

just a limiting case. By observation, we know eqn(3-13) is in correct

form.

Physically, this integral equation can be interpreted as follows:

20z is the source strength distribution (a factor 2 is needed because

sources are located on the wall), and the kernel function A(x-4,y-T)

represents 0 induced at point(x,y) by a point source located at ,

Note that equation (3-14) also holds for the airfoil thickness problem. -

The integral equation is again a singular one. A double bar across

the integral sign denotes a second order singularity, which is of the

Cauchy type rather than the Mangler type. This singularity happens when

y=1, for then

A( - (3-15)

It can be seen that A(x-&,O) is anti-symmetric and has a singularity of

-2order r across the point x=4. It is this anti-symmetric property that

makes the singularity of the Cauchy type. Therefore, the Cauchy

principal-value is invoked for chordwise integration across this jump

point.

Over the years great effort had been spent in the development of

(6,7,8)numerical lifting-surface theory 6 7  
. The method used herein is

• .° .,. "- ".- .- ',."--"..'..."..............,..,'..-...-...-..,.....-..-...-.......-."....-."-.-.."-"-.".."..".........................................................................



(3.1.2) Leaking-Hole Theory

For the finite hole problem, no analogy between leaking-hole and

lifting-surface theories can be found. The reason for this is due to the

wake of a lifting surface, which has no counterpart in the finite hole

case. Making the problem three-dimensional introduces the spanwise

coordinate and spanwise variables, such as the y-perturbation velocity

*y. Across the wake of a lifting surface, 0 takes a finite jump, and
y y
is anti-symmetric with respect to the z=0 plane. However, for the hole

in a rigid plane wall, y is continuous and symmetric across the z=0
y

plane. No mechanism in the leaking-hole problem can be found to match

the role of the trailing vortex sheet in the lifting problem.

Therefore, it is unlikely there will exist an analogy between these two

flows. Thus, to solve the 3D hole problem, we have to directly deal with

the boundary-value problem, and the understanding gained in the previous

2D investigation is very helpful.

As mentioned earlier, a hole can be replaced by distributed

source/sink singularities which occupy the same hole area. Other types

of singularities are excluded since they can not satisfy the boundary

condition on the rigid wall. The integral relation connecting 0x and z

is therefore

A(K-~~-'7 24~?~ ~(3-14)

where,

- r

. .- . .. . . . . . . . . . . . .
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the present me "rd directly attacks the boundary-value problem by

establishing and solving the associated integral equation. The

advantages for the present method are that the physical picture is

clearer, and the integral transform method can be extended to three-

dimensional flows without fundamental difficulties.

What is learned from the leaking-slot(2D hole) theory can be

summarized as follows

1) The slot flow is a thickness problem; it takes exactly the same

integral equation as the non-lifting problem of airfoil theory.

The slot flow problem can be viewed as finding a suitable

strength distribution of sources/sinks over the slot region which

can sustain the pressure differential across the hole as well as

satisfy the Kutta condition at the leading edge.

2) From a mathematical standpoint, slot flow is analogous to lifting

flow. The techniques developed originally to solve the singular

integral equation of the lifting problem can also apply to the

slot flow problem.

3) The downwash distribution over the slot region has a square-root

singularity at the trailing edge and vanishes in a square-root

manner at the leading edge. Indeed, the slot downwash

distribution is analogous to the airfoil pressure distribution,

and the slot pressure distribution is analogous to the downwash

on the airfoil surface.
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T~l -FO fr - &)* (3-10)
|.1

was used.

For a flat plate with angle of attack a, the pressure perturbation on

the upper surface is,

- =- - -, (3-11)

By appropriately choosing the constants a, ,AP and q, the analogy to

eqn(3-3) can be established.

Integrating w(x) from eqn(3-9) over the slot area yields the volume

flowrate across the slot,

-. 2.

The mean downwash velocity across the slot can now be obtained by

dividing Q by the slot width,

• z 4.

or,

(3-12)

The flow resistance constant, K h=4/nt, of our analysis is the same

that Maeder obtained. However, the approach is different. Maeder solved

the incompressible flow problem by modifing the complex potential

function to transform the 2D lifting problem into the slot problem, but
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The total static pressure comprises three parts,

'P. (3-23)

where P is the free-stream pressure of the tunnel flow p is the

pressure disturbance induced by the model and adjacent holes; and p is

the pressure disturbance caused by the hole which is under discussion.

For the inner slot flow, P_+ pg is regarded as the imposed static

pressure infinitely far away, where p is considered to vanish. Moreover,

p also satisfies the Laplace equation since it is derived from the

tunnel flow. Therefore, eqn(3-7) still holds for the case of an applied

pressure gradient. However, 0x takes on another form and meaning over

the slot region. Across the slot area the pressure matches with the

ambient pressure pa' hence

=~~*.+ iot +

and,

(3-24)

Assume that p is a linear function in the streamwise direction, say,
g

Y. ~ \ (3-25)

Upon substitution of eqn(3-25) into eqn(3-24), 0x on the slot can be

derived,

2. +-."(3-26)

where,

* . . . . . .._
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? -- (3-27)

An analytic expression for the downwash distribution can be obtained

by inserting eqn(3-26) into eqn(3-7), together with the following

integral identities,

, 'I- (3-9)

S-% " , . ' -- i-x - a.x'-I " (3-28)

-l 4

Thus, the downwash distribution becomes,

+~ -1.~ ( 3 -2 9 ) -

The volume flowrate, found by integrating w(x) over the slot region, is

given by
4.

421 #NP2 ~ j-6XI (3-30)

Averaging the volume flowrate by dividing it by the slot width, 2, and

rewriting in dimensional form, a modified AP/q versus w m/U. relationship

which accounts for pressure gradient is obtained, (Here AP is the mean

pressure differential across the hole and wm/U. is the averaged flow

deflection angle)

LO A-3P-31)

where d is the slot width.

Recently, Bliss (13 ) extended his slender-slot theory to take into

account the pressure gradient effect. For his analytic shape with aspect

-................ inml d d ml~lbilm.......*..*..*.... .. • ........ *.. **....:.~
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ratio 0.25 and M =0, an equation form similar to the above 2D transverse

slot relation, eqn(3-31), can be deduced with coefficients calculated

correspondingly. The relation is,

t- o . 2 3 2 . (3-32) --

in which, I is the maximum slot length in the streamwise direction.

The same functional form can also apply to finite(3D) hole cases,

with the left hand side pressure differential term of the integral

equation(3-14) being replaced by eqn(3-26). The whole numerical

algorithm stays unchanged. Therefore, the pressure gradient effect can

easily be investigated by using the same constant pressure differential

program. The results calculated by these three theories are plotted in

Fig.(3-12). Slender slot theory breaks down for aspect ratios greater

than about 0.3, for which the slenderness assumption is violated. The

agreement is generally acceptable.

Fig.(3-13) shows the sectional volume flowrate distribution

influenced by the presence of pressure gradient. The basic shape of the

distribution seems not to be disturbed too much by reversing the sign of

pressure gradient.

Since the above three theories are all linear, the effect of volume

flowrate change due to the presence of pressure gradient can be analyzed

in a more convenient manner. First, let us begin with eqn(3-31), the 2D

transverse slot case. Listed below are the 2D slot relations with and

without pressure gradient,

. . ...... .. .. . . . ..... ...... . . . ...t.: """.''.' k .:.'' ' " '._- .": " ,' -. ," '" ." .' " . • _- '" ," - . " . ' . ' ".": '"..."., . L ,. --
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S_ (3-31)

where AP can be viewed as the average pressure differential over the

slot, and the subscript c denotes the constant pressure case.

Subtracting these two equations yields

ax

where, l4(-') . -- and therefore,

Similar processes operate in the slender-slot and finite-hole theories.

Tne influence of pressure gradient on the volume flowrate is the same

for these three theories, i.e., the slopes are all of the same sign, as

expected. However, the family of curves for finite holes does not fall

in between the transverse and slender-slot theories. The reason is not

clear, and needs further explanation. It would be especially desirable

to compare with experimental results, should these become available in

the future.

(3.2) Shear Flow Aerodynamics

Classical potential flow theory has proved to be extraordinarily

useful in aeronautical engineering. Attempts had been made to extend the

methods of inviscid flow analysis to more realistic flows which can

account for the effect of a boundary layer, at least qualitatively.

......
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Many researchers (14 "2 2 ) have undertaken the development of methods to

solve for small disturbances to an inviscid, parallel shear flow passing

over a nearly plane surface. All these approaches are basically the

same: the equations of motion are derived by taking small perturbations

to the Euler equations with the main shear stream profile assumed given.

The role of viscosity is included only in that a mean shear flow profile

has been established. Neglecting viscous effects is valid as long as

they do not play an important role in the response of the shear flow to

the disturbances of interest. This will be the case as long as

convective effects on the rotational velocity field are dominant.

Obviously, a certain amount of judgement is required to determine for

which problems the method is applicable.

Shear flow aerodynamics is claimed to be valid for certain problems

involving free turbulent wake and jet flows, as well as for turbulent

(14) (15) (16)
boundary layer flows. Dowell 14  Ventres Williams 1

, and

Chi ( 17 ) used the turbulent power law profiles as their main shear stream

. (18) (19)pattern. Lighthill 1 , Weissinger 1 , Homentcovschi and Barsony-

(20) .(21,22)

Nagy (  , and Hanin assumed no specific shear flow profiles in

their theoretical models, except for requiring a non-vanishing main

shear stream velocity and some integrability and smoothness conditions

(14-17)
on the profile at rigid surfaces. Dowell, et al. developed their

model originally for the purpose of solving panel flutter problems in

the presence of a wall boundary layer. They achieved considerable

success in comparisons with experimental results (2 3 ) by using a power

law profile. However, researchers who have applied shear flow models to
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the aircraft lifting-surface problems have met with rather limited

success. Two major criticisms can be made of the use of the power law

profile for wings. First, on the wing of an aircraft, there always

exists a finite extent of laminar boundary layer starting from the

leading edge region which can not be modelled by a turbulent power law

profile; second, the boundary layer thickness is not constant along the

wing. (The case of slowly varying thickness has been treated by

(17)
Chi 1 , although the analysis is considerably more complex.)

Application of this type of shear flow aerodynamics is therefore

restricted to control surfaces for which the boundary layer has already

been fully developed on the main wing. The smaller chord lengths of

control surfaces provide less chance for the boundary layer thickness to

vary significantly. Lighthill's approach (18 ), as adopted by Barsony-Nagy

and Hanin et al. (21,22) was to study the aerodynamics of wings in a

sheared wind, a jet, or a wake. The approach provides much flexibility

in selecting the appropriate shear flow profile. However, the difficulty "

in deriving the kernel functions is increased, and thus the whole

analysis relies heavily on numerical means which in general are complex

and expensive.

A perforated tunnel wall boundary layer is a mixed combination of

wall turbulent and free turbulent boundary layer flows. For the case of

zero porosity (a completely closed wall) the flow is entirely wall

turbulence; for unity porosity (fully open wall) it is free turbulence.

Since the aim of the analysis is to analyze boundary layer effects on

low porosity walls, it is natural to adopt the shear flow model of
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Dowell, et al.. The aforementioned two drawbacks of this model become

unimportant for the present application. In a wind tunnel test section

the wall boundary layer is usually a fully-developed turbulent flow, and

the layer thickness may be nearly constant, or at least slowly varying

throughout the test section. It is the combined contributions of

inertia, wall shear stress, momentum diffusion by viscosity, and

boundary layer suction due to leakage through the holes which result in

the equilibrium, constant boundary layer thickness power law profile.

The boundary layer effect on a leaking-hole is therefore ideally suited

for the methods of shear flow analysis. The boundary layer is well

established before encountering a hole, and the hole size and boundary

layer thickness may be comparable. This means that the layer structure

cannot be greatly altered by its brief encounter with the hole. Viscous

effects act only in the formation of a free shear layer at the free

surface over the hole, but this shear layer thickness will be small

compared to the overall boundary layer thickness. The deflection of the

flow into the plenum chamber is therefore regarded as the bending of

streamlines to counterbalance the vertical pressure differential.

Viscosity dominates only when this pressure differential does not exist,

or is very small.

In order to keep the analysis as clear as possible, a method

developed by Ventres (15 ) is considered here to analyze the boundary

layer effect on the transverse slot and finite hole flows. We will first

review Ventres' approach, then add the necessary modifications to adapt

this method to the hole problem.

.................................

.....................-..........-...-. .. .. ... .. ... \... .. .- ,



30

(3.2.1) Basic Shear Flow Analysis

(15)
Ventres considered a steady, incompressible, parallel shear flow

as depicted in Fig.(3-15). The surface, z=f(x,y), creates a small

perturbation from the initially parallel shear flow u=U(z), v--w=0. The

function U(z) is constant for z>6, so that the shear layer is limited to

the region 0<z<6 adjacent to the surface.

The momentum and continuity equations for the fluid flow are

Lk kr -k- +r Jos 0ALAf A- r.J 4 0LS/~~=

(3-34 a,b,c,d)

Let u', v', w' be the perturbation velocity components, and let p' be

the perturbation pressure. Then the total velocity and pressure are

Ap.-4. p

(3-35 a,b,c,d)

Inserting eqn's (3-35 a-d) into eqn's (3-34 a-d), and retaining only

the lowest order terms yields,

- *.*.....-
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A single equation for the perturbation pressure p ( the prime is now

dropped for convenience ) can be derived by eliminating the velocity

perturbations between the equations.

x 2p-( ( r /a4C P C > (3-36)

where V 2 is the Laplacian operator. The Fourier transform technique is

used here to solve the boundary-value problem. The Fourier transform

pair is defined as,

+Coo

JXci
" - 4 &L i(k,x+ )

-cc (3-37)

By applying this transform to eqn(3-36), an ordinary differential

equation is obtained,

a' -( ., . )f .0 (3-38)

The variable coefficient in front of the second term vanishes for z>6,

where the initial flow velocity is constant.

Specifying a 1/n power law for the shear flow velocity profile,

° 4.'
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(3-39)

and applying it to eqn(3-38) gives

c (3-40)

Eqn(3-40) can be transformed into a recognizable Bessel equation by the

following transformations of the dependent and independent variables,

(3-41)

where, v = 1/2 + 1/n. The transformed equation reads,

(3-42)

The general solution to eqn(3-42) is,

---- A (R7.-) + I (R3 I (3-43)

in which, I is the Bessel function of the second kind of order v. The

unknown coefficients A and B are determined by the boundary conditions

imposed on the surface and at the outer edge of the shear layer. The

boundary condition for the outer edge of the shear layer is obtained by

noting that eqn(3-40) reduces to

I

V.. = 0.

01 Z2"

.................................................................................................... li.)l°-l: ,i 1 1-l'L~l"T
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Solutions to this equation have the form,

le.

Only the second one is bounded as z -. Therefore, for z>6, p* satisfies

the equation

(3-44)

We shall employ this relation as the boundary condition at z=6.

Note that both the shear flow profile, eqn(3-39,) and the equation of

motion, eqn(3-36) do not apply on the surface. The profile does not

apply because the shear flow model is not valid within the laminar

sublayer. The equation of motion is not applicable because it is not

permissible to take perturbations around a vanishing base quantity. The

inner boundary condition should be specified at the outer edge of the

laminar sublayer. Here we denote the height of the sublayer by z=z0 , and

from the z-momentum equation,

where,

or,

10/s (3-45)

The Fourier transform of this boundary condition is,

. .. . . . . . . .. . . . . . . . . . . .
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Ok - (3-46)

Using the outer boundary condition, eqn(3-44), will eliminate one

unknown coefficient, and the general solution becomes,

1p = (R-4 V A, V( - L (701 (3-47)

where,

(3-48)

By imposing the inner boundary condition and using the recurrence

relation for Bessel functions, it can be found that,

= ( .1,) ., ( ; x')"(3-49).-i

Since the thickness of the laminar sublayer is usually very thin,

z0<<6, the terms in the square bracket of eqn(3-49) can be expanded in a

Taylor series. Note that,

By taking the limit of zo-o in eqn(3-4q), the constant A can be

determined,

r)k("-%, (3-SO)

- ...."--_=..-. ,............J..--;...........-' ... • .................... . .. .. .
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Analogously, we let z in eqn(3-47) approach zero to seek a relation

connecting p* and (af/Dx): on the surface,

) /nL) R

- - % + [--\( ")(3-51 a,b,c)

By inverting this Fourier transformed relation and using the

convolution theorem, the pressure on a surface of infinite extent with

an arbitrary perturbation contour can be established. The integral

region becomes finite if we further utilize the specific symmetric/anti-

symmetric property of the lifting or thickness problem. Ventres treated

the lifting case by inverting 1/A to obtain the lifting kernel

function. He then solved the lifting case numerically using an approach

similar to Watkin's method. The present interest is to solve the

problem of a hole on a plane rigid surface, which is a thickness

problem. Therefore, from here on we proceed to solve the integral

equation pertaining to this case.

(3.2.2) Shear Flow Leaking-Slot Theory

The two dimensional integral equation can be obtained by setting the

y-direction wavenumber k 2= 0 in the 3D equations. The 2D transformed

equations thus derived are of the form

7. .: -
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4 *-- A" C "a-/r-'I

.2/n

(3-52 a,b,c)

in which quantities are normalized by the potential flow velocity U and

the half slot width.

To obtain the thickness kernel, A(x), we must invert A . However, it

cannot be inverted in the usual Fourier transform sense. According to

(24)
Lighthill , the singular part of A(x) can be obtained by inverting

the asymptotic expansion of A for large k1 . The function L(6k 1 1)

approaches unity uniformly regardless of the parameter v, therefore with

(25)
the aid of the formula

%.sx'K o× Ok Y "(l-P) Cos (-j9"'r

(3-53)

where the singular part of the kernel function is expressed as,

Nf~x", I______ I o I ',2. ..,

~>L-i-i

A (xj then takes the form,

. . . . . . . .. . . . . . . . . . . .
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important characteristic that differentiates the hole from the slot

(Another important characteristic is the swept leadi-i and trailing

edges). It is shown in Fig.(3-28) that the velocity defect of the shear

profile tends to enlarge this difference. A similar trend is also found -- -

for the boundary layer thickness effect on the sectional volume flowrate

as illustrated in Fig.(3-29). This diagram also reveals the powerful

influence of boundary layer thickness on the volume flowrate across the

hole.

Fig.(3-30) demonstrates the boundary layer thickness effect on the

volume flowrate. The simulation was performed for a 1/7 power law

profile with pressure differential Ap/q= 0.1, and with 6 normalized by

the hole radius. A similar trend is observed by comparing with the slot

case, Fig.(3-24). A dent in the curve occurs around 6=0.5 for the hole.

A check of the convergence of the program was done for this raivge of 6,

and it appears this behavior is not due to numerical error. This

special feature was not observed in the 2D case. The reason for this

behavior may be related to an effect of the finite width of the hole and

the complicated nature of the flow near the side edges.

Since the presence of the boundary layer magnifies the deflection of

the oncoming stream into the hole, it is desirable to see at what

thickness value the boundary layer would make the flow violate the small

perturbation assumption. A test was carried out for the 1/7 power law

profile shear flow with Ap/q=0.1. Since it is known that the largest

deflection of the flow always occurs at the trailing edge of the hole, a

2......
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the potential case, but it is still of the Cauchy type. The singular

integration involved in the solution method has the form,

Y. (3-74)

It can be resolved by the method discussed in the potential flow with

slight modifications.

Watkin's method is again employed to solve this singular integral

equation. The mode functions are borrowed from the potential case

without regard for their inappropriate representation of the edge

behaviors. The numerical simulation was performed for two shapes, the

round hole, and D.B.B's analytic shape. The latter can be regarded as a

more nearly square hole.

The important C versus w /U9 behavior is illustrated in Fig.(3-26).

As in the slot flow case, the curves are slightly non-linear and

boundary layer shows a strong effect in changing the C versus w /U.
p m

characteristic.

Fig.(3-27) shows the influence of shear profile on the volume

flowrate across the hole. As compared to the 2D case of Fig.(3-18), the

finite hole is more profoundly affected. This is probably due to the

finite span effect which distinguishes the hole from the slot. This

explanation is confirmed in the next figure.

The sectional volume flowrate is a convenient quantity for making

comparisons between 2D and 3D cases. The finite lateral span is the most

. . . .. . . . .. . . . . . . . . . . . . . . .. . - .
. .
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approximately twice the boundary layer thickness. For thin boundary

layer cases, 6/d<<l, the averaged perforated wall condition only needs

modification of its resistance constant kh; the streamline curvature

term will remain largely unaffected because the boundary layer effect is

not likely to extend far enough.

According to Lighthill (24 ) the kernel function behavior in the larger

distance r>>l can be deduced from the behavior of its Fourier

transformed counterpart for small R=%k2+k<l. A for R<< is found

to be,

R- (3-71)

Since,

K I~0 2

r

We have

r +  
j-&- +""r r >> (3-73)

rI

Eqn(3-73) justifies that for r>>6 2 , the shear kernel function A

decays at the same rate as the potential kernel. Based on the numerical

data exhibited in Fig.(3-25) and the far field analysis, in later

numerical calculations the shear kernel is replaced by the potential

kernel for r/6>2. This simplification saves a lot computing effort.

The singular behavior of the present kernel is weaker than that of

.~~~~ .- . .- ' . . .
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the use of

Zax - r .<

we can obtain a more numerically suitable form for 6A., namely,

jr 0 vrl-v) "(3-69)

We can now conclude that the integral equation for 3D hole in shear

flow is,

2-m

S~.% - AK,%-r+ A cVi*
S (3-70) ,a

in which, A and A are defined in eqn's(3-67) and (3-69), respectively.
s r

Because of the fundamental importance of the kernel function, we

evaluate and plot the kernel in Fig.(3-25). The potential kernel is

plotted from the previous potential flow analysis. The implications of

this kernel function behavior are the same as for the 2D transverse

slot: mutual interaction between holes is weakened by the presence of

the boundary layer, and the boundary layer effect does not extend very

far. In fact, beyond a distance of approximately twice the boundary

layer thickness, the shear and potential kernels are not significantly

different and die out at the same asymptotic rate. This implies that

the boundary layer effect is confined within a zone of radius
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eqn(3-63) is radially symmetric. Upon using polar coordinates for (x,y)

and (k1 ,k2), the Fourier transform turns into the form of a Hankel

transform and it states,

Y2z.

(3-64)

where J is the Bessel function of the first kind of order zero. Since,

from Watson(26),

f (a)A = #A --1 2(3-65)

therefore,

' - -2/ ,, 2- - [ ( _M

R 3rr (3-662
r r-

and consequently,

.- I- (3-67 a)

or,

Sr. 
/  (3-67 b)

Likewise, the regular part can be deduced by inverse Fourier

transforming A -As  (actually Hankel transforming in the polar

coordinate). The regular part A takes the form,
r

7) £L,- j1(u- 4 (3-68)
0

The partial derivative a/ax can be taken inside the integral sign. With

* . .. . . *. * . * . .- * .. . . . . . . . * .-. *"..,-.
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(3.2.3) Shear Flow Leaking-Hole Theory

To study the 3D finite hole problem in a shear flow, we must first

obtain the integral equation. The Fourier transformed equation connecting

the pressure differential and the free surface slope function is already

available in eqn(3-51). As noted in the 2D case, the kernel function is

not invertable in the usual Fourier transform sense because it is

singular. Therefore, we split the kernel into regular and singular

parts. The singular part is derived analytically, for which the finite

part concept is invoked, The regular part is not analytically derivable

but can be obtained through routine numerical means.

The singular part, A can be obtained by Fourier inversion of the

asymptotic expansion of A Note that the asymptotic expansion of the

Bessel function I is even with respect to the index v. Therefore,
V

L(6R)-l as R-- (R=Vk2+k2), and the asymptotic expansion of A for

large R is,

A R ,S - (3-62)

Applying eqn(3-36) to invert eqn(3-62) yields,

(3-63)

in which the finite part concept is used. Note that the integrand in

- .2



44

Here n is the normal coordinate, V is the flow velocity, and R is the

radius of curvature of the streamline. For the same pressure

differential across a slot, the boundary layer tends to slow down the

flow velocity near the wall and slot. This will make the streamlines in

the vicinity of the slot region curve more to produce the same normal

pressure gradient, thus resulting in a larger deflection of the free

surface. A larger boundary layer thickness and a more slowly varying

shear flow profile will both tend to reduce the flow velocity near the

slot. Therefore, the free surface deflections, based on the above

reasoning, become larger. However, the effective shear stream velocity

along the entrance plane is affected in the opposite manner. These two

counteracting tendencies both contribute to the final volume flowrate

through the slot. The boundary layer thickness is found to be the more

influential factor, and this generally agrees with experimental

observations.

Fig. (3-24) shows the effect of boundary layer thickness on the volume

flowrate. ' ere the pressure differential is not too large, Ap/q=0.1, and

1/7 power law profile is employed in the shear flow model. Below 6=0.5

the boundary layer and the effective shear velocity U(f.s.) nearly

balance each other to stay close to the potential flow result. Beyond

6=0.5, the boundary layer effect becomes increasingly dominant and CQ

increases steadily, and does not approach an asymptotic value within the

small perturbation range.

..o "..o.
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Owing to the non-linear behavior of the C versus w m/U. curve, thep

rest of our examination of the characteristics of a slot in shear slow

is performed with the pressure differential Ap/q=0.l.

The free surface slope distribution and the slot entrance downwash

distribution are shown in Fig's(3-20) and (3-21) for three shear flow

profiles n=5,7, and 50. The n=50 case is very close to the potential

flow result. The results show that the greater the velocity profile

defect(smaller n), the larger the free surface deflection will be.

However, the main stream velocity at the entrance plane, U(z ), is
f.s.

reduced for larger velocity profile defect to an even greater extent.

These two opposite trends, when multiplied together to produce the

downwash distribution on the entrance plane, reduce the difference

between the boundary layer flow and potential flow. Therefore, w(x,o)

in Fig.(3-21) is seen to depart less from the potential flow result than

does the free surface slope.

A similar situation occurs for a fixed shear profile shape, say n=7,

when the boundary layer thickness is varied. Fig.'s(3-22) and (3-23)

illustrate this behavior in detail. All these slot flow phenomena are

associated with the momentum and velocity deficits introduced in by the

boundary layer, and can be explained in the following way.

The inviscid flow momentum equation in the normal direction described

by the intrinsic coordinate system is,

(3-61)

.................
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Fig.(3-18) shows the volume flowrate coefficient C at pressure

differential Ap/q=O.l for different profiles. In turbulent flow the

index n ranges between 5<n<12, depending on the Reynolds number of the

flow. The most common case is n=7. The boundary layer thickness was set

to be unity, which means the boundary layer thickness equals to half the

slot width. The diagram indicates that CQ is not too sensitive to the

shear flow profile shape.

Fig.(3-19) shows the Cp versus w m/U characteristic curves. The shear

flow model is a 1/7 power law profile, and the boundary layer thickness

is chosen as the parameter being varied. A strong influence of boundary

layer thickness on the C versus w /U characteristics is seen. The
pM

family of curves are only slightly non-linear near the origin. As

pointed out earlier, the present theoretical model may not be

appropriate for a very small pressure differential, since real viscous

effects would be as important as the pressure differential term is in

this case. Experimentally obtained C versus w m/U characteristics also

show very irregular and fluctuating data distributed around the origin.

Moreover, experimentists often claim little confidence in their data in

this region. The trend of decreasing slope of the C versus w mU/. curveP

with increasing boundary layer thickness exhibited in Fig.(3-19) is

consistent with the experimented results for thick walls with normal or

(11)slanted holes Unfortunately, no experiments have been carried out

for a single slot or hole in a thin wall. The-efore, detailed

comparisons can not be made to test the theoretical model.

.~~~~ .. ."

-° .- .
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The singular behavior of the shear kernel is proportional to

2/A~

Ax

near the point x=O. A(x) is discontinuous at x=O, but it is integrable

from both sides of this singular point. There is no need to invoke the

Cauchy principal-value concept. Care has to be exercised in the

integration to be sure not to jump across the singular point when it is

contained in the region of integration.

The kernel function method presented in the previous potential hole

problem is used here to solve the singular integral equation(3-56). We

expand the unknown free surface slope function into a set of preselected

mode functions,

- - (3-59)

I.,

where, (r)O'-

S= I n,,o c.0s ( .i)
2

(3-60)

The singular mode is borrowed from the potential slot flow result

with some reservation since its behavior at the leading and trailing

edges are not yet known. This kind of strategy was also employed by

Ventres. The numerical results show that convergence is satisfactory for

this selected set of mode functions.

...........................-.--.... .... .... .... ...
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to it. The mass flux going out of the control volume is

Using the law of mass conservation gives,

kA ( ,, , i + ,, , - -

C (3-57)

The right-hand-side term can be approximated as,

= , L, ix,),A + --X A .(At) -H 1.0.7.
o : 1 c{)

Therefore, by taking Ax- O, w is found to be

-- °V -0 )' "°

I. X

C TJ( .<-S (3-58 a)

and

.s. = 
) -(3-58 b)

because z f.s.=0 at the leading edge x = -1.

Eqn(3-58) implies that the main shear stream profile as well as the

height and slope of the deflected free surface all have an influence on

the flowrate across the hole. The dependence of the entrance downwash on

the free surface slope is in general non-linear, therefore, we cannot

expect a linear relationship between C and w /C in the shear flow.

p

. W.U, .. . ..- . .

.. . . . . . . . .. . .

.. . . .. . .. . . .. . .. . . .. . .. . . .. . . .. .. . . . . . . .



39

Ventres) as the downwash that would exist on the surface if the shear

layer were absent. Furthermore, this normal velocity is specified on the

z=0 mean plane instead of the real surface because only lowest order

solution of the perturbartion theory is to be considered. However, in

the slot flow problem, the variable specified as the boundary condition

over the slot region is the pressure, not the surface slope. Similarly,

because the deflection of the free surface is small, and only lowest

order solution is sought, the pressure is specified on the slot entrance

surface z=0. The role of df/dx in these two closely related problems

should not be confused, as both of them involve the specification of a

boundary condition in which some approximation is made. The function

df/dx of the slot flow problem is related to the downwash distribution

on the z=0 plane. However, this relation is obtained from considering

the conservation of mass, not the flow tangency condition used in the

airfoil problem.

Consider, in Fig.(3-17), a shear flow that slides along the free

surface deflected down into the plenum chamber. The dashed lines

represent a control volume, and the distance between the left and right

control surfaces is Ax. The mass flux coming into this control volume

from the left control surface is

f

and from the top is,

0.-, o-.

No mass flux goes across the bottom surface because the flow is tangent

'e. 7e
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wall would be attenuated by the presence of boundary layer. One

implication of this behavior is that interference between neighboring

holes is strongest in potential flow.

The integral equation for the 2D shear flow thickness problem can be

determined by formally inverting eqn(3-52), and using the convolution

theorem and the fact that (df/dx) vanishes outside the hole planform.

Thus, (

A (x= A1 cx - AriX (3-56)

where A (x) and Ar (x) are defined in eqn's (3-54) and (3-55).

Before proceeding to solve the integral equation, some care must be

taken to differentiate between df/dx and the downwash distribution on

the z=0 plane. In our slot problem, z=f(x) is the equation of the free

surface which separates the tunnel flow from the stagnant plenum

chamber. Along this free surface the static pressure of the flow

matches with the plenum chamber pressure. Without invoking any basic

fluid flow equations, such as the continuity or momentum, df/dx has no

special meaning except that it is the free surface slope distribution

function. For airfoil problems, df/dx is associated with the normal

velocity on the wing surface through the use of a kinematic flow

tangency condition. In potential flow, U df/fx is this normal velocity,

while in shear flow, the corresponding quantity is multiplied by the

outer potential flow velocity to become U1df/dx, and is explained (by
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The regular part of the kernel can be obtained by inverting A -As, so

that A takes the form,
r

(3-55)

A (x) must be calculated numerically. This is not too difficult becauser

of the exponential decay property of (L(u)-l).

A check on the shear flow kernel can be performed by letting the

power n--. Since by definition v=i/2+l/n, therefore v-*1/2 as n4-. This

makes the function L identically equal to 1, and therefore from

eqn(3-55), A (x)-+O. The singular part and the kernel can easily be
r

deduced,

This recovers the familiar 2D thickness kernel of potential flow.

Fig.(3-16) shows the shear flow kernel. Because it is anti-symmetric

with respect to the streamwise coordinate, only the positive part is

plotted. It can be seen that shear flow kernels for different profile

shapes are all enclosed within the envelope of the potential kernel.

This reflects the fact that if we have a point impulse of volume flow

injected into the shear stream, the induced pressure disturbance on the

. . . . . . . .."~. -% ,
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plot was made to examine the flow deflection at the trailing edge. The

largest deflection in Fig.(3-31) is found at the center-line trailing

edge for the case 6=5.0, and its value is about a quarter of the hole

diameter in dimensional terms. Roughly speaking, this is just barely

permissible for a small perturbation theory. Because the maximum flow

deflection of a round hole is always found located at the center-line

trailing edge, this suggests a way to determine the largest boundary

layer thickness that would not violate the small perturbation

assumption. Remember that the free surface deflection is linearly

related to the pressure differential, hence Ap/q is set to be 1 for

convenience. The results of this investigation are shown in Fig.(3-32).

Figures(3-33) to (3-37) show the results for D.B.B.'s analytic shape.

The Cp versus wm/U. characteristic curve, the shear flow profile defect

and boundary layer thickness effects, the sectional volume flowrate, and

the total volume flowrate increase with respect to the boundary layer

thickness are examined and plotted. In all, they are generally similar

to the round hole case. This implies that the shape of the opening has

much less influence on the cross-flow than the hole aspect ratio and

boundary layer effect.

The conclusions of the boundary layer effect on the transverse slot

and hole can be summarized as follows:

1) The boundary layer tends to decrease the flow resistance constant

Kh(oI/CQ), and it does this very effectively.

2) The interference between neighboring holes, as indicated by the

ill2
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disturbance induced by a unit strength source/sink, is strongest in

potential flow. The boundary layer tends to suppress the mutual

interference, but this suppression is likely to be localized within a

zone of the order of its thickness.

3) For a real wall flow, how the streamline curvature coefficient is

modified by the velocity and momentum deficits of the main stream

shear flow needs further careful study, because the above two effects

tend to compensate for each other.
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kutta
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L.E. 'C T.E.

PLENUM CHAMBER

Fig. (3-la) Two-dimensional slot flow.
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p=o w known P

kutta
condition

SLOT PROBLEM

z

L.E. x T. E.
w=O P known w=O

k utta
condition

Fig.(3-lb) Schematic illustration of the analogy between the 2D lifting
and slot flows.
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bo

Fig. (3-2) The coordinate system and non-dimensional notation used in
Watkin's kernel function method.
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Fig. (3-7) Volume flowrate versus free-stream Mach number relationship
obtained from the numerical leaking-hole theory.
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Fig.(3-8) Sectional volume flowrate distributions over finite-holes with
aspect ratios 0.5,1.0, and 2.0.
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TUNNEL FLOW

U(z.Z) Z ,n
Um

I A
PLENUM CHAMBER A.

Fig.C(3-17) Sketch of the control volume for the relation between
entrance plane downwash and free surface slope distributions of a shear

flow over a slot or hole.
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x streamwise coordinate

boundary layer thickness

8 (all lengths are normalized by the half slot width)

7na a* (potential f low)

U. ,

4

n=7
3

x
QO 0.5 1.0

Fig.C3-16) Kernel function for a parallel shear flow over a 2D
transverse slot.
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(a) Shear flow over a wing

V

(b) Shear flow over a hole on a wall.

Fig.C3-15) Shear flow aerodynamics.
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M,= 0

D. B. B. ANALYTIC SHAPE
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Fig.(3-13) Sectional volume flowrate distributions of the cross-flow
over a finite-hole with imposed pressure gradients.
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Fig. (3-28) Sectional volume flowrate distributions for a round hole in a

power-law profile shear flow.
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Fig. (3-29) Sectional volume flowrate distributions for a round hole in
shear f lows with different boundary layer thicknesses.
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D.B.B. ANALYTICAL SHAPE (B/A=1)
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boundary layer profile -U 6
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Fig.(3-35) Sectional volume flowrate distributions for a D.B.B. hole in
shear flows.
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D.B.B. ANALYTICAL SHAPE (B/A=1)
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Fig. (3-36) Sectional volume flowrate distributions for a D.B.B. hole in
shear flows with different boundary layer thicknesses.
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