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TAILEN HSING. Point Processes Associated with Extreme Value Theory.

(Under the direction of MALCOLM R. LEADBETTER.)

“+« This work demonstrates the application of point process theory in
the context of statistical extremes.

Consider a stationary random sequence which satisfies certain
dependence restrictions. We study the asymptotic behavior of a sequence
of point processes that record the positions at which extreme values
occur. Necessary and sufficient conditions are given for the weak con-
vergence of the sequence. It is found that the usual Poisson limit when
the random sequence is i.i.d. is replaced by a Compound Poisson limit.
The asymptotic distributions of extreme order statistics are derived
from the weak convergence result using simple combinatorial arguments,

A class of point processes in two dimensions is also considered.
The weak limit is characterized to be a cluster process which is deter-
mined by a homogeneous Poisson Process and the local dependence structure
of the random sequence.

A random sequence whose members are the weighted maxima of i.i.d.
random variables is studied. It is shown that the sequence satisfies
our dependence restrictions, and the point process results developed can

be applied. Specific limit forms of the various point processes of in-

terest are derived,
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CHAPTER I

INTRODUCTION

1.1 Extreme Value Theory and Point Processes

The focus of attention of classical extreme value theory is on the
distributional properties of the maximum Mn of n independent and identically
distributed random variables, as n becomes large. For example, the Extremal
Types Theorem (cf. [21]) states: If for some constants a > 0, bn’ we
have P{an(Mn - bn) s x} ¥ G(x) for some non-degenerate G, then G is one

of the following three extreme value types:

(l.1.1) Type I: G(x) = exp(—e—x), —o < x < w3

0 x £0,
(1.1.2) Type II: G(x) = { —a

exp(-x ), for some a > 0, x > O3

exp(—(—x)a), for some o > 0, x s 0,
(1.1.3) Type I: G(x) =

1 x > 0.

It is natural to combine point processes with extreme value theory.
Typically one is interested in the limit of a sequence of point processes
obtained from extremal considerations, and it is often the case that a
Poisson convergence result can be derived. For example, Resnick (31],
Shorrock [35] and Pickands [30] all consider point processes involving
"record times'" in i.i.d. settings— a research direction which was ini-

tiated by Dwass' and Lamperti's work (cf. [10], [15]) on extremal processes.,
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Resnick [32] further noted that many results in this setting can be de-
rived from a "Complete Poisson Convergence Theorem" in two dimensions.

It is known that the i.i.d. assumption can be relaxed. Leadbetter [18]
considers a point process of exceedance positions under the conditions
D(un) and D'(un) while Adler [1l] generalizes Resnick's two dimensional
result in [32] by assuming the conditions D and D'. In results of this
kird, a long range dependence condition (e.g. D(un)) is used to give
asymptotic independence of exceedances and together with local restriction
(e.g. D'(un)) to avoid clustering of exceedances so that, irn the limit,
the point process under consideration performs just like one obtained from
an i.i.d. sequence. If the local condition is weakened or omitted, then
clustering of exceedances may occur. Some such situations have been con-
sidered. For example, Rootzén [33] studies the exceedance point process
for a class of stable processes, Leadbetter [20] considers Poisson results
for cluster centers, Mori [26] characterizes the limit of a sequence of
pcint processes in two dimensions under strong mixing.

Our aim in this work is to study the limiting form of exceedence point
processes (and of related but more complex point processes) under as broad

assumptions as possible.

1.2 Framework and Poisson Results for I.I.D. Sequences

Let {£J, j € I} be a strongly stationary sequence of random variables

defined on some probability space (,B, P). Since we are mainly interested

in the "weak" instead of the "strong" or "almost sure" type of results, the

probability space will not be mentioned specifically each time., Write

Mik) for the kth largest value of &1 &

ooy n’

k=1,2,.0., and 1_ = (1)
n n

Let F(u) = P{&, s ul and F, i (u) = P{&i. su, j=1,.e0,kl}.

1 11,i2,.... K j
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The following result is useful and suggestive despite being trivial,

e
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.

A
RN S 3

Proposition 1.2.1 Let {éj} be an i.i.d. sequence. Let 0 £ T £ » and .

suppose that

(l.2.1) n{l - F(un)] + T as n +> ™,
Then E
(1.2.2) P{Mn < un} >e Uas n > o, )

Conversely, if (1.2.2) holds for some 7, O £ T s o, then so does (1.2.1).

Since this work will be centered upon point processes involving the

(1)
. 1,

sequence {un} in (1.2.1), we write {u T > 0, for a sequence of cons-

tants which satisfies

(1.2.2) n[l - F(uﬁT))] + T as n > o,
{ugr)} exists if and only if %—E;%%ﬁgl + 1 as x » Xp dgfsup{x: F(x) < 1}

{cf. [21], Theorem 1.7.13). It is obvious that if {uﬁT)} exists for one

T > 0, then it exists for all T > 0. We shall always assume implicitly

that {ur(lr)} exists. For each n =1,2,... and T > 0, define Nr(lT) to be .
the point process (cf. Chapter II ) on (0,1l] that consists of points {j/n: .?fi
< i< . (1) ) (1) . 2

1 £ j $n for which Ej > ug }. For convenience, Nn will be referred R0
LT

to as the "exceedance point process'. Now we state without proof a basic "a
=~ -

result which is again instructive. ,:?
"o

Proposition 1.2.2 Let {Ej} be an i.i.d. sequence and T a constant in .f_i
(f),»). Then NﬁT) converges in distribution (cf. Chapter Two) to a Poisson e
N

Process on (0,1] with mean T. T
|.3 Poisson Results under D(u ) and D'(u ) I
n n - 9

i

o

- 9
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k k .
{(“1’ cey W) E HIM(Si). Zi:lui(lil) St e L

ko,
o i) = )

m=1, 2,3, .., Iije Ti’ i=1, .., k, j =1, .., m. Since H is closed

under finite intersections, we may conclude from a monotone class theorem

(cf. [14], A2.1) that D D O(H). But by Lemma 2.2.5, 0(H) > MSM(S,).

Therefore P{(§,, .., ¢, ) € A} = P{(n, .., n ) € A} for each A € HLIM(SiM :q
i.e., (C], .o Ck) g (nl, .es nk), proving "(iii) => (i)". In similar
manner, we can show "(ii) == (i)" and this concludes the proof. Q. E. D. '_:;fj
2.3 Convergence in Distribution i
]

Let S be a metric space and PO, Pl, PZ’ +.. be probability measures .

4
on 3, the Borel o-field. Pn is said to converge weakly to PO’ or Pn =>PO, .
L

[fdP_ +~ [fdP ;
s s O =

as n + © for every bounded continuous real function f on S. A family, m, ;'1'

of probability measures on (S,d ) is said to be relatively compact (or

sequentially compact) if every subsequence contains a weakly convergent

subsequence, T is said to be tight if for every € > O there exists a com-
pact set K such that P(K) > 1 - £ for all P in 7,

The following two results are among the most important.

Theorem 2,3.1 (The Portmanteau Theorem) Let Pn’ P be probability

measures on (S, d). These five conditions are equivalent,

(1) Pn = P. :"l:'

(i1) lim[fdP_ = [fdP for all bounded, uniformly continuous real f. .
n-NX)

(iii) limﬁup Pn(F) S P(F) for all closed F. -,',

(iv) limri‘nf Pn(G) 2 P(G) for all open G.

L I L S UL G WAL IR S I S
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Theorem 2.2.6 Let (Cl, .o Ck) and (nl, .o nk) be two random elements

4 k K ., k k .
in (HIM(Si), HIM(bi)) (or (HIN(Si)’ HIN(Si))) and let T& C B(bi) be a
semiring satisfying 8(Ti) = B(Si)’ i =1, .., k. Then the following are

equivalent.

[}

[f=%

(i) (cl, v ck) (”1' ces nk);

ke
i=

e

. k
Ao LeE =40

K

(fly ¢ oy fk>e anC(Sl),

(11)'  Eexp(-L.X . £.) = Eexp(-£.% n.f.), (f £) ern®F (s.);
PU=8io15i% PU=y MR/ M e N SIS R

- k k
(111) (Zl=1C1(Ill), coay Zi=IC1(Ilm))

(=9

k k _
(Zi=1ni(lil)’ e o0y Zi=1ﬂi(Iim))’ m = l: 2’ 39 e ey

L€ T i=l ek j=1, ym.

Proof: We will prove this for random measures, the proof for point pro-

cesses being similar. We proceed according to the following plan:

(iii) = (i) => (i1)
N4
(ii)'

[t is obvious that (i) = (ii) => (ii)' and (i) = (iii). Thus it suffices

to show that both (ii)' and (iii) imply (i).

all sets of the form

4T 8T . T e T e

=
VLI . YL SRS

. . o e le eoe e
TR R Y .". Ry O

¢
e lnl el

g

o

Suppose (iii) holds and define o

@

k —

D= (A€ _MS): Pl(g, «vy g ) € AL = PL(np, .0y 0y ) € AM)L -

Then D is closed under proper difference and monotone limits, and it :?
contains ﬂTM(Si). Further, since (iii) holds, D contains the class H of !
L

. ‘.._?"..-‘1:-_'.-- e e et e e A A am Sen '...'-- P AP U ".‘A e o e i, ‘-L'.\_’-q PN LT SN L‘.\. '3_ ".L" L. .;




b2 S BRI e e SRl A MIVE ao _besn S e v Tl A A S R

15

product space HTM(Si) = (QUps +os u): b €M(S), i = 1, .., k) with the

K
usual product topology and o-field. The following lemma is a simple con-

sequence of [14], Lemma 1.4 and Lemma 4.1.

Lemma 2.2.5 For each i =1, 2, .., k, let T& c B(Si) be a semiring with
S(Ti) = B(Si). Then HTM(Si) (or HTN(Si)) is generated by any one of the

following three sets of mappings.

(1) (ul, ees uk) > ui(B),IBG B(Si), i=1, .., k;
(ii) (byy eer ) >0 (D), TET , i=1, .., k;
(1i1) (W wey ) WE, £ EF(S), 1 =1, .., k.

Let ﬂl, nz, .oy nk be random measures (resp., point processes) on Sl’

.y S, , respectively, defined on the same probability space (&2, B, P).

k’
(nl, ces nk) is therefore a random element in (HTM(Si), H%M(Si)) (resp.,

(HTN(Si)’ HTN(Si))). P(nl, . nk) L is said to be the distribution of
(”1’ .ey nk). Two random elements (nl, ees nk) and (Cl, . es Ck) in

(T*M(S.), T“M(S.)) (resp., (TN(S.), MEN(S.))) are said to be equal in
124 17424 174 A £dua’ 1in

. . . d . -1 _
distribution, or (nl, .oy nk) = (Cl, .o Qk) if P(nl, oo ﬂk) =

F(cl, . Ck)_l. The function
k
-z n.f.
i=]l 171
L(fl, .oy fk) = FE e

on HTF(Si) - {((1, ve, £ fi e F(Si)} is defined to be the Laplace

k)
Transform of n = (nl, . nk).

-~

The following theorem provides a number of equivalent ways in which

P(ﬂl. ces nk) can be specified.

.t - Y “ - R R T ] o,
. P T PR P ) L
‘ P T - P R I T

RO d P T R S
S A . P . =,

. e
- v ot et Ca e ' P e e
R N A T T T T . S L o S M iy .2 UIP P, St W by 3
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Proof: The assumption P{ZTn(Ej) < o} > 0 implies that Eexp(—ZTtin(Ei))
> 0, ty Lor eey H( € (0, »), Suppose first that n(El). .o n(Ek) are

independent. Then

k k
0 < Eexp(—thin(Ei)) = HlEexp(—tin(Ei)), tl’ t > 0,

20

which implies by (2.2.1) that

(1 - exp(—ZTt.u(E.))]X(du)
N(S)N o} ot

k
= I Nesyngop [T~ exp(-tu(E ) IA(dN) < =,
or, equivalently,
(2.2.3) ]M(S)\{o}{zT[I - exp(-t u(E )] - [1 - exp(—ZTtiu(Ei))]}A(du) - 0.
[t is easy to see that for = 2 X1s Xps eey Xy z 0,

k
Zitl(l - e-xi) 1 - e—Z]Lxi

oW

with equality holds if and only if no more than one of the X4 is non-zero.
The assertion (2.2.2) now follows from (2.2.3). The converse is similarly

proved. Q.E.D,

A random measure (resp., point process) n is said to be Compound
Poisson if it has a Laplace Transform exp[-w(l - mof)], where w € M(S) and
m is the Laplace Transform of some probability measure T on (0, =) (resp., N).
n is said to be Poisson with intensity w if w({1}) = 1. A Compound Poisson
Process n on Rk (or a subset of Rk), k e N, is said to be homogeneous if w
is a constant multiple of Lebesque measure. Throughout this work, we will
be mainly concerned with homogeneous Compound Poisson Point Processes.

Now let (Si’ JE), i=1, .., k, be k Polish spaces, we can form the

-
-
."‘
- 4

B YO

e l.v -
)

-

N RPN
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(2.2.1) -log Eexp(-nf) = af + [1 - exp(-uf)]A(du)
M(S)\{o}

PR < AP

defines a unique correspondence between the distributions of all infinitely
divisible random measures N on S and the class of all pairs (a, A), where

a € M(S) while A is a measure on M(S)\{o} satisfying

» WL

J (1 - e_u(B))A(du) < o, B €eB(S).
M(S)\ {o}
I In the point process case, we have a = o while A is confined to N(S)\{o}.

We will call (2.2.1) the canonical representation of Ln, o and A will

be referred to as the canonical measures of n. The following results will

.
) be useful in Chapter 4.
Lemma 2.2.3 Let n be an infinitely divisible point process on (S, d)
I with canonical measure A, and E a set ind. Then
P{n(E) = 0} = exp(-A{u € M(S)\{o}: u(E) > 0}).
E Proof: It is readily seen from (2.2.1) that
log E e tN(E) _ g (1 - e ™E 0y, v s o.
M(S)\{ o}
’
Passing t to =, the conclusion follows by monotone convergence. Q.E.D.
Lemma 2.2.4 Let n be an infinitely divisible point process on (S,d )
» with canonical measure A. Suppose El’ EZ’ cey Ek are sets in . such that
P{Z§ H(Ei) < o} > 0, Then (El)’ ees n(Ek) are mutually independent if
. and only if for i, j satisfying 1 s 1 < j sk,
s
(2.2.2) Mu € M(SN{o}: U(Ei) > 0, u(Ej) >0} =0

[ WIEIPINOPPFY | 1o s




L
b

[N
.-
.

AR . . AT B Y RN
Lu_‘ P I PR U, Y Y A R . M S AT AT YA YN

S

PrrrrTrgrerw Ml 2PN v andn it shus S J 2 il W i W T L B LN R R TR e T T ctiats i ing (i fiats Bat R A ™ S o

12

u=+uf, fe FC(S)

are continuous is said to be the vague topology. Let M(S) be equipped
with the vague topology and the Borel o-field. N(S) is known to be
vaguely closed in M(S) (cf. [14], A7.4). Let N(S) be equipped with the
relative topology and o-field. Then, it is known that M(S) and N(S) are

both Polish (cf. [14], A7.7).

A random measure (resp., point process) N is a measurable mapping

from some probability space (R, B, P) into (M(S), M(S)) (resp., (N(S),
N(S))). Pn-l, the probability measure on (M(S), M(S)) induced by n, is
called the distribution of n. Write Bﬂ = {Be B(S) : n(3B) = 0 a.s.}.

For f€ F(S), let nf be the random variable defined by nf(w) = fsfdn(w),

w € ?. Just as in the case of random variables, we can define Laplace

Transforms for random measures (or point processes). The Laplace Transform

for n, denote by Lﬂ(f)’ is a function on (S) defined by
Ln(f) = exp(-nf) = exp(—fsfdn).
As we shall see in Lemma 2.2.2, Pn_l is completely determined by Lﬂ(f)'

A random measure (resp., point process) N is said to be infinitely
divisible if for each n € N, there exists some independent and identically
distributed random measures (resp., point processes) ”1’ nz,.., nn such

that

The following result is important.

Theorem 2.2.2 (cf. [14], Theorem 6.1) The relation
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of all functions in F(S) which are continuous and have compact supports.
Let B(S) be the ring that consists of all the bounded (relatively compact)
sets in S, A semiring T C B(S) is said to be a DC-semiring (D for dis-
secting, C for covering) if T is a semiring with the property that given
any B€ B(S) and any € > 0, there exists some finite cover of B composed
of T-sets of diameters less than ¢ (in any fixed metrization). The notion
of DC-semiring is independent of the choice of metric (cf. Lemma 1.1 of
{14]). For any collection U of sets in B(S), o(U) denotes the smallest
ring which contains all the sets in U and all the bounded sets of the form
1B, , B,e u. If TCB(S) is a DC-semiring, then G(T) =B(S) (cf. [14],
Lemma 1.2).

A measure u on (S,.d) is said to be locally finite if u(B) < = for all

Be€ B(S). Write uf = fsfdu, f € F(S). Let 65, s € S, denote the measure
with a unit mass at s, and o the null measure on S. The structure of §

provides the following decomposition for locally finite measures.

Lemma 2.2.1 (cf. [14], Lemma 2.1) Any locally finite measure u on

(S, ) can be written in the form

.
L

for some diffuse (or non-atomic) measure My k € I+ U (=}, bl’b2"' € (o, =)
and tistos-s € S. This decomposition is unique apart from the order of
terms, provided that the tj are assumed to be distinct. u is integer

valued if and only if My = 0 and bl’b2"' € N.

A sequence of measures {un}T in M(S) is said to converge vaguely to

a measure u € M(S) if l%m unf = uf for each f e FE(S). The coarsest to-

pology on M(S) with respect to which all the mappings

N T et N
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CHAPTER II

RANDOM MEASURES AND POINT PROCESSES . J

2.1 Introduction

Point processes were first studied in the contexts of telephone
traffic models and queueing models, where, typically, a point process
refers to a random step function on the line representing the number of
"customers" in the "system" as time progresses. Along with the other ad-
vances in probability (e.g. the theory of weak convergence), the theory of
point processes on the line was extended to the general settings of random
measures on abstract spaces. A brief history of the development of the
theory can be found in [14].

For introductory purpose, [14] and [23] both provide rather complete
accounts of the theory with rigour and elegance, but with different em-
phases and approaches. However, some of the results there are too general
to be applied directly for our purpose. Thus the aim of this chapter is
to introduce the very basic notions of random measures and pojnt processes,

and to present results that are specially tailored (mainly from those in

[14]) for later used.

1 .
L

2.2 Basic Framework

Let S be a topological space with a separable and complete metrization, .

such a space is said to be Polish. In S we introduce the Borel o-fieldd,

i.e., the o-field generated by the topology. F(S) will denote the class

of all J-measurable functions that are non-negative, and FA(S) the sub-class
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[, Conversely if lim k P{M_ > u(T)} = 61, then
Q e N ro n
\
: (1), _
' P{Mrn < u. } =1 - GT/kn[l + o(1)]
!
: so that
. k k
. n (1) _ n -0t
P {Mrn s u } = [1 - GT/kn + o(l/kn)] + e
and hence P{Mn s ugr)} -> e_eT by Lemma 1.3.1. Q. E. D.

- e

By arguments similar to those used in proving Theorem !.3.3, one can

*
have a result concerning the convergence of N (cf. [20}).

Theorem 1.5.4 Let the stationary sequence {Ej} satisfy D(ugr)) for some

3
T > 0 and let the sequence {kn} satisfy (1.5.1) ~ (1.5.3). Then Nn con-
verges in distribution to a Poisson Process on (0, 1] with intensity pa-

rameter 6T7.

Finally note that, under the assumptions of the preceding theorem,

(1)
n

the mean "cluster size" of exceedances of u is given by

rp (Dery (1) _reefn (T r, (1)
(1.5.4)  E(Z.0 Xn, 12501 Xn,j > O = ECZ,0) xp /PLE R x5 > 0

_stn gy (D) 5 (T .
Ly E(Xn,j)/P{Mrn u Y~ (r t/n)/(8T/k ),
which converges to 6_1 as n + o, This implies that 6-1 is the asymptotic
mean cluster size, providing an intriguing interpretation for 6.

It is intuitively plausible that one may be able to prove a Compound
Poisson result for the exceedances themselves rather than cluster positions

under suitable assumptions. This is one of the major goals of this work.

F S
ws .
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positions of the clusters. For this purpose alone, the choice of {kn} re-

e T
R0

quires that r be large compared with all the cluster sizes so that a cluster

of exceedances does not get counted more than once, and, on the other hand,

o ‘L';I' "

ro should be small so that the positions of the clusters can be recorded

o

accurately. Together with the consideration concerning the mixing condition

D(u_), it will be seen that an appropriate {kn} is one which satisfies «

(1.5.1) kn + ®,
(1.5.2) k 2 /n~+ 0,
n"n
(1.5.3) knan,l + 0.
n
where @ o and Qn are the usual constants used in stating D(un). The ex-

istence of such a sequence is trivial.

Lemma 1.5.3 Let the stationary sequence {€j} satisfy D(ugr)) for some

T > 0 and let {kn} be a sequence which satisfies (1.5.1) ~ (1.5.3). Then

lim P{M_ = u(T)} = 97 for some 6 e [0, 1] if and only if lim k_ P{M_ >
N0 n n nao R r
(1)y _ = :
us } = 81 where r = [n/kn].
) < (1) -0t . .
Proof: Suppose lim P{M_ = u } =e . Then Lemma 1.3.1 implies that
Nn-»<o
k
lim P "{M_ s u(T)} = e 97T It follows simply that P{M_ > u(T)} + 1 and
1o r n ro n
log(1 - P(M_ > u{T}y = - 3
g ! u ) = -81/k _[1 + o(1)] )
r n n
n )
so that -~
. 2]
P > oD} 1+ o(1)] = -8t/k (1 + o(1)]

n

giving lim k_ P{M_ > u(T)} = 01 as reguired.
naco N r n
g
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totic distribution of Mn (or, more generally, the kth largest maxima).

For example, the extremal type theorems characterize the possible types of
limit laws that Mn can have under linear normalization. Although a vast
number of distributions belong to the domain of attraction (cf. [21],
Theorem 1.6.2) of the three extreme value type distributions, our study of
extreme value theory should by no means be confined to linear normalizations.

(*)

The possibly non-linear function u

provides perhaps the most "accessible"

non-linear normalization. Suppose that {ij} has extremal index 6, and that

for each n, ug ) is strictly decreasing. Then

P{u;I(Mn) sx}+1 -~ e—ex, x > 0.

However, it does not generalize the linear normalization as there are cases

where linear normalizations are applicable while ug.)

*)

n

may not even be defined.
While this study is based on the normalization u , most of the results are

expected to be extended to more general settings.

1.5 Point Process of Cluster Positions

(1)

n

It is of interest to explore the limiting behavior of N when the

extremal index is not necessarily 1. 1In this case, the limiting distribu-

(1)

n

tion of N , when it exists, may be a cluster process instead of a Poisson
Process, as was illustrated by Example 1.4.1.

Leadbetter [20] studies the process of cluster positions under D(un)
as follows. First devide the integers 1,2,...,n into kn intervals, with

*
{kn} properly chosen. Let Nn be the point process which consists of
points {j/k : j = 1,...,k_ for which ern g, > u(T)) > 0} where
n’ 't "n i=(j-1)rn+1 J n

r, = [n/kn]. That is, any group of exceedances in the interval [(j—l)rn+l,

jrn] is regarded as a cluster and replaced by a single point at j/k .

3
One can therefore think of Nn as a devise that records the approximate

1
A

tLhy

3
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Simple calculations show that lim P{M_ s
) "
(t

n

uﬁT)} - e 2, It is simply seen

that N does not converge in distribution to a Poisson Process since ex-

ceedances always occur in pairs.

Loynes [22] proves that, under strong-mixing, the only possible limit
functions of P{Mn < uﬁT)} are e-eT, where 8 € [0, 1]. [he following theorem
due to Leadbetter (cf. [20]) generalizes Loynes' result (and a result of

O'Brien [27]).

Theorem 1.4.2 Let {€j} be a stationary sequence and {uﬁT)} constants sa-

(TO)

n

tisfying (1.2.3) and such that D(u ) holds for some 5> 0. Then there

exist constancs 6, 8', 0 £ 6 £ 8' £ 1 such that

limsup P{M_ = u(T)} _ T ~
n -+ o n n .

[}
liminf P(M_ s u{™} = 8T ]
n > © n n ‘q

for 0 < 1 £ TO. Hence if P{Mn g ugT)} converges for some 1, 0 < T £ TO’

then 8 = 6' and P{Mn b3 uﬁr)} > e—eT for all such T,

We shall say (cf. [20]) that {Ej} has extremal index 68, 6 € [0, 1], if l

for each T > 0O, {uﬁT)} exists and P{Mn < ugT)} + e-eT as n *> o, -

With this definition, the case where D(ugT)) and D'(uﬁT)) both hold

leads to the extremal index 6 = 1. The sequence in Example l.4.1 has ex-

tremal index 8 = 1/2. Many authors (see Leadbetter [20] and the reference
f~‘ therein) have exhibited illuminating examples concerning the extremal index.
; Here we only mention that for each 6 € [0, 1], there exist sequences that
have 8 as their extremal indices and that there are examples for which the

extremal indices do not exist.

N o g v

()

It is worth comparing the normalization uy with the more traditional

linear normalization. Practically, we are often interested in the asymp-
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w . e e .
L)

.. . AN .. S T e T e LR I - A e T P T e
LY IS W By I " n PRSP S W TSNP, S NP, SR S, W . W Y TR WA VT TSN S S W ST . N W VR T S




L L T ke et

5. B o ae St an o iudng

‘i e e A

’

The condition D'(un) will be said to hold if limsup n Zgnik% P{g1 >y

n-—+ o n

£j > un} + 0 as k + », The following result is trivial (but useful) for

i.i.d. random variables and is also basic in a study of dependent cases.

Theorem 1.3.2 Let {un} be constants such that D(un) and D'(un) hold
for stationary sequence {€j}. Let 0 s T < », Then P{Mn s un} +> e U if

and only if n[l - F(un)] + T,

It may be shown (cf. [18]), for example, by using a general point

process theorem of Kallenberg, that the following result holds.

Theorem 1.3.3 Let 1€ (0, «») be fixed and suppose that D(uﬁT)) and D'(ugr))

hold for the stationary sequence {€j}. Then NﬁT) converges in distribution

to a Poisson Process N on (0, 1] with parameter T.

Intuitively, the condition D(un) provides the independence associated
with the occurrence of events in a Poisson Process while D'(un) limits the
possibility of clustering of exceedances so that multiple events are ex-
cluded in the limit.

It should be noted that Theorem 1.3.2 is an improvement of both Loynes'

and Berman's results.

1.4 Relaxation of D'(un) and the Extremal Index

The theory under D(un) and D'(un) is elegant indeed; however, a great

many processes do not satisfy D'(un) as the following example shows.

Example 1.4.1 Suppose {Xj}T is an i.i.d. sequence with marginal distribu-~

tion U(O, 1). Let {EJ}T be defined by

Ej = max(Xj, Xj+1)’ j=1,2,...

.-

- . T T - N-“- - AT A - «‘A‘-‘.>. AR
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It is well known that the independence assumptions in Proposition
1.2.1 and 1.2.2 are far from being necessary. Loynes [22] gives a
sufficient condition for the equivalence of (1.2.1) and (1.2.2) when

{Ej} is strongly mixing, i.e., when a(Q)dgfsup(|P(AﬂB) - P(A)P(B)|:

o

Ae F?m,Be F}?)-»Oasl-»oowhere F?m=0(€j,150)s FQ=o(€,.,

(A%

J

2). Berman [3] considers the specific case where {éj} is a Gaussian
sequence and shows that "rnlogn + 0" is sufficient for "(1.2.1)¢&= (1.2.2)",
where r is the covariance function,

- Leadbetter [17] introduces a '"Distributional Mixing" approach, which

t we now briefly describe. The condition D(un) will be said to hold if for

any integers 1l s il < 4ee <1< jl < ... < j v 2 n for which jl -i 22,

. P
I. we have

(un) - Fi i (un)F. , (un)l g an,l

9 |F.
.. 1... p Jl..'Jp'

1locoip,j1,oc¢’Jp'

where a »+ 0 as n + » for some sabsequence Rn = o(n). This is a long .

n,ln

range dependence restriction of the same type as strong mixing but sig-

nificantly weaker. Using a technique first used by Loynes, one can prove
the following result which shows that, roughly, the maxima on propely

chosen subintervals are asymptotically independent under the condition

D(un).

Lemma 1.3.1 Let {un} be a sequence of constants and let D(un) be

satisfied by the stationary sequence {&n}. Let {kn} be a sequence of

r. constants such that kn = o(n) and, in the notation used in stating D(un),
}- ann = o(n), knan,ln +0. Then

b

;-b P(M su) - Pkn{M Su})+0asn~+w
€L  "n ro * "n

-

b'-. =

- where r = [n/kn].

-

5

L




{(v) lim P_(A) = P(A) for all A such that P(9A) = O.
Ny N

Theorem 2.3.2 (Prohorov) A family 7 of probability measures on (S, )

is relatively compact provided it is tight. The converse is also ture if

S is separable and topologically complete.

Suppose Xo, Xl, X2, ... are random elements (not necessarily defined

on the same probability space) in S. Xn is said to converge in distribu-

tion to X., or Xn $ X., if Pn’ the probability measure induced by Xn,

0 0
converges weakly to PO’ the probability measure induced by XO. The notions
of tightness and relative compactness for random elements are similarly
defined in terms of the induced measures. See [5] for the proofs of
Theorem 2.3.1 and 2.3.2, and a fuller account of the theory of weak con-
vergence.

We now specialize to random measures and point processes. First note
that since N(S) is closed in M(S), it is easily seen from Theorem 2.3.1 (iii)
that the limit of a sequence of point processes is itself a point process.
Since point processes may be regarded as random elements in either M(S) or
N(S), we have two notions of convergence for them. However, using '"restric-

tion" and "extention' mappings, it follows from [5], Theorem 5.1 that the

two are in fact equivalent.

Lemma 2.3.3 A sequence of random elements {(nnl, . nnk)}n:1 in (HTM(Si),

nTM(Si)) (or (HTN(Si)’ HTN(Si)) is relatively compact if and only if
(2.3.1) lim limsup P{n .(B.) > t} = 0, B. € B(S.), for each i = 1,2,..,k,
t+00 N » ® ni 1 1 1

or if and only if

o k ~ N
(2.3.2) %ig %1Esgp P{Zi=lnni(Bi) >t} =0, Bi € B(bi), i=1,2,..,k.

[
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Proof: Lemma 4.5 of [14] together with the fact (cf. [13]) that {(nnl,
cos nnk)}nzl is relatively compact iff {nnl}’ {nnz}, .oy {n ) are imply

3 the first assertion. Suppose (2.3.1) holds. Then

lim limsup P{z 1n (B;) >t}

t+o n > ®

| T

2 lim limsup P{n (Bi) > t/r}

llt.)oon-pco
= 0,
which shows that (2.3.2) holds. Suppose conversely that (2.3.2) holds.

- . i k
Then (2.3.1) holds trivially since P{nni(Bi) >t} = P{Zj=1nnj(Bj) >t}

with Bj = Bi or ¢, the empty set, depending on j = i or not. Q. E. D.

The next result is an analogue of the so-called continuous mapping

theorem (cf. [S5], Theorem 5.1).

- Lemma 2.3.4 Let (nl. cey nk)o ("Ill, cey ﬂlk), (HZI, sy n2k), ... be
- random elements in (HTM(Si), H?M(Si)) (or (HTN(Si), HTN(Si)) and suppose
; that
: (g eor ) $ 1)y wus m).
3 Let m be any positive integer. For eachi =1, 2, .., k, let f .., j=1, :{j
3 1] .9
4 2, .., m, be bounded measurable functions on Si with bounded supports and R
2 ot
; satisfy ni(Df ) = 0 a.s., where Df is the set of discontinuity points of N
[ ij .
3 f. Then -
4 |
’ k k K >
k (Zi=lnnifil’ v Zi=1nnifim) $ (Z lnlfll’ t Z lnlf1m) )
h e
t Proof : Suppose first that all the fij are non-negative. Let T be the if
i -4
k mapping ‘
g .
X .
L o
L .
" «
k
;::i :-.'z > T
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(“1’ ces “k) + (X 1“ f oos Z )

itil’ =1Mi 1m

and nj the mapping

(ul, ces uk) + Z _qH ,y j=1,2, .., m.

i 13

Obviously DTT C szan . Further, applying [14], A7.3,
' J

k
DﬂjC Ui=1{(u1. . uk)- ui(Dfij) > 0}.

Therefore, by Boole's inequality,

P(D ) s £ P{n (D ) >0},

j= l i=l 1J
which equals zero by assumption. The assertion follows from [5], Theorem
5.1. Suppose now the fij are not necessarily non-negative. Then treat the

positive and negative parts seperately, and the result follows again by

Theorem 5.1 of [5]. Q. E. D.

Next, we look at a result that contains some of the basic (and power-

ful) tools for proving convergence of random measures (and point processes).

Theorem 2.3.5 Let (nl, oo nk), (nnl’ . nnk)’ n=1, 2, 3, ... be

random elements in HTM(Si) (or HTN(Si)) and let Ti(: Bn , 1i=1, .., k, be
i
DC-semirings (see section 2 for definition) in S], cey Sk respectively.

Then the following are equivalent,

(i) (nnI- sey nnk) g (01, coy nk):

N k d .k k
i)z g by > Loty (B ooy £ € MRS,

oy N o k e k k
(11) Fexp(-L,_n.;f;) + Bexp( Zi:lnifi)’ (f1s «e £ ) €y £(S)),

-

j
'
3
3
]
'
3
g
..l
]
'
]
3
]
i
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4 =

& o k k k k 2

, (i11) (AN B, - 50300 $ @n, ;). e, B0, 8
4

m=1,23, ., B €T, i=1 .,k j=1, .., m

U

Proof: By Lemma 2.3.4 (i) implies (ii) and (iii) while (ii) implies

(ii)'. Thus it suffices to show that (ii)' => (ii) => (i) and (iii) =

(i). Suppose (ii)' holds. Then

k k
Eexp(—t2i=1nnifi) > Eexp(-tZi=1nifi), t >0,

showing (ii). Suppose now (ii) holds. For Bi € B(Si), i=l, .., k, we
can find some fi S FC(Si) with fi z lBi (cf. [14], A6.1) where lB. is the

i -
indicator of the set Bi' Then "j

lim limsup P{Z ln (B ) >t}

t»©o N >

kA

lim limsup P{Z n _.f. >t}

t*o n > © =1'pi"i
< lim limsup P{X f. 2t}
tso n + ® ﬂl i

733

11m P{Z ln f 2 t} (Theorem 2.3.1 (iii))

P

:._ =0-

.

5

3 Thus {(n_,, «., N, )} . is relatively compact by Lemma 2.3.3. Hence any

‘ nl nk’ ' n=1

pyet

L' subsequence N' of N = {1, 2, 3, ,,.} must contain a further subsequence

29

4 d '

9 N" such that (nnl’ .oy nnk) > some (gl, ves gk), n € N". Therefore, by

- Lemma 2.3.4,

{

- k d _k N

p-. 1" s =0

g zi=1nn1f1 +> I f, n e NY, £, € Fc(si)’ i=1,2, .., k. o
Comparing this with (ii), we conclude that .

p 9

g k k .

;__4 21” f = zlcifi' fie FC(SI.), i=1, .., k.

L -

. L |

- .

b e . m




By (ii) of Theorem 2.2.2, this implies that (nl, .o nk) d (Cl, .es Ck),
d 1" . .
and thus we have (nnl’ .oy nnk) > (”1' .oy nk), n € N". This proves (i)

by [S] Theorem 2.3.

Now suppose that (iii) holds. Then one may argue as above to show
that for any given subsequence N' of N, there exists a further subsequence

N" such that
1"
(nnl, .oy nnk) 4 some (gl, ves Ck), n € N",

However, one can not claim directly that

k k
(2.3.3) (K0 B D, ., 20 B )

i=1 ni

k k "

This problem can be resolved by showing that '2 - BC s, 1 =1, 2, .o, k,

i
in the following way. For eachi =1, 2, .., k, let i be the ring genera-

ted by Ti and note that (iii) implies nni(U) 1 ﬂi(U), U€ T by Lemma 2.3.4

since U can be written as a finite union of disjoint members in T . Hence

BC o) Bﬂ o] Ti, i=1,2, .., k by [14], Lemma 4.6. Thus (2.3.3) holds by
i i

Lemma 2.3.4, and we have
(n n) ¢ (z »)
l, LA ] k ’1’ ey k

by (14}, Lemma 1.2 and (iii) of Theorem 2.2.4, Therefore (nnl, .oy nnk) 4

(nl, ooy nk), n € N", which proves (i) by [5], Theorem 2.3. Q. E. D.
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Lemma 2.3.6 Let ”1' 02. .e. be point processes on ~ and letr 7 B(S)
be a DC-semiring. Assume that for each . > b and = - 7, there exists g
bounded set B such that 3U is in the 1nterior ot ¥ oy hamsup P‘nn(H) > U} <
€. Then the following holds:
(i) Suppose for each k = 1, 2, ... and disjoint sets Vl, VJ, - Yk 1n

T, (nn(Ul), - nn(Uk)) converges in distribution to some random ¢lement

. k .
nU u in I+. Then nn converges in distribution to some polnt process n.
1Y

(ii) If n, converges in distribution to some point process N, then T C 8n

dgf {B € B(S): n(3B) = 0 a.s.}. In particular, this implies that (nn(Ul),

. nn(Uk)) Q (n(Ul), .oy n(Uk)) for each k =1, 2, ... and sets Ul, U2, ey

Uk .

Proof: We first prove (i). Since for each bounded set B, there exists

a finite cover consisting of T-sets Ul’ U2, oo Uk’

. , . . k
lim lim P{nn(B) >t} s 1lim lim Zi=1P{ﬂn(Ui) >t} =0.

L+ n-oo t+® pooo
This implies that {nn} is relatively compact by Lemma 2.3.3. Thus, for
each subsequence N' of N = {1, 2, 3, ...}, there exists a further subse-
quence N" such that N, ¢ some n, n € N". Given any set U in T and constant

€ > 0, there exists by assumption a bounded set B such that 9U is in the in-

terior of B and limsup P{nn(B) > 0} <e. Since Bn contains a topological
base (cf. [14]), Lemma 4.3), there exists a set c € Bn such that aU ¢ C C B. f‘
By Lemma 2.3.4, nn(C) converges in distribution to n(C), n € N". The above l:
facts and Theorem 2.3.1 now imply ;j
P{n(3u) > 0} s P{n(C) > O} s liminf P{n (C) > 0}
n € N" n o
|
s limsup P{n (B) > 0} < €, }:
n € N n };
%
-4
- N o . R -i..i



&

showing that n(dU) = 0 a.s.. Hence for Ul’ U2, eey, U, €T,

- (N, (U «oy n_U) $ (WD, .y AU, 0 e N, |

by Lemma 2.3.4. The assumption

. (N (U, «en WS .o €N

na.

thus implies that (n(Ul), ces n(Uk)) U .., U, € T, By Theorem

n ’ )
Ul"Uk 1 k

2.2.2 (iii), n is uniquely determined by the family {nU U’ k=1, 2, ..,
1°*

k

Ul’ .o Ukez T} and is therefore independent of the choice of N' and N". .
'3
- Thus we conclude N, 4 n, n € N, proving (i). The proof of (ii) is similar 9
° .
. except that one could work with the limit n directly. Q. &. D. R
X
i
g
.J
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CHAPTER IO
THE CONDITION A(un) AND THE EXCEEDANCE POINT PROCESS ON {0, 1]

3.1 Introduction

Motivated by the results studied under the condition D(un), we will
introduce a mixing condition under which the limiting behavior of Nﬁr) will
be studied. It will be seen that the only possible limit laws of NﬁT) are

Compound Poisson.

First of all, we define NET) with the notation of Chapter II. For t e
(0, ©) and n = 1, 2, .., define fﬂ
(1) _ o0 (1) s
(3.1.1) Nn = Zj=lxn,j6j/n :

where

(1)

n, j

o1 (1)
X =1 if gj >u

0 E. & uiT)

S
:\.!

J
and 6x’ x € [0, 1] is the measure on [0, 1] with a unit mass at x. Nﬁr) -2
is a point process on [0, 1]. Note that the definition of ugT) only re- %i
quires that ii
E: (3.1.2) 1 - F(uﬁT)) ~ 1/n. -
; There are apparently many such sequences and therefore the corresponding ;i
3 point processes Nﬁr) are all different. Suppose now {ugfi} and {uﬁf;} are N

''''''''''''' . .
T e e e
- - . .‘.'.'.‘.'_\‘..".- T
RPN LW W W WL ST % IS

PRI
r & /4

Pr———rp
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two different sequences satisfying (3.1.2), and Nﬁri and Nﬁtg are the

corresponding point processes defined by (3.1.1). Then

(1) (1) . (1) (1)) no
PN,y # Np ) s an(Un,I) - F(”n,z)' -—0,

which implies that the distributional limits of Nsri and Nng are the same

provided that either one has a limit. Since we are only interested in

convergence results, we therefore need not be specific about the choice of

. T . .
1u£ )} and indeed we can use any convenient {uﬁT)} to our advantage.

3.2 The Mixing Condition A(un)

Definition 3.2.1 Let {un m}nfl’ m=1, .., k, be k sequences of constants. -
,m n=
L . o ~
For each n, i, j with 1 £i £ j $ n, define Bi(un,l’ ces un,k) = O{(&S <
u m), i sssj,1smsk}l. Also for eachnand 1 £ 2 s n - 1, write
k r
a o = max{{P(A N B) - P(A) P(B): A€ By(u 1y ooy uy ), .

n
B e Bk+9,(un,l’ . un,k)’ 1 sk £n-24}.

{ij} is said to satisfy the condition A(un,l' ey un,k) if Qn,l + 0 as

n

n - « for some sequence {Rn} with & = o(n).

The array of constants a, gL =1, 2, .., n -1, will be referred to
L
. as the mixing coefficient of the condition A(un 10+ Yy k) whenever there
. 9’ 14
. is no danger of causing ambiguity.
q It is worth nothing that the condition A(un) is stronger than the dis-
tributional mixing condition D(un) but weaker than the strong mixing condi- -
' (1) i
- tion. For our purpose, u . will always be u ~* for some 1 € (0, «). K
- ’ d
L Since there are only a finite number of events involved for each n, the L
o T : e »
condition A(ug )) can be easily verified in some cases (cf. Chapter 5). -
»
: B
. .
.“.‘
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Indeed, the strong mixing condition is "unnecessarily strong' for most

situations in the study of extreme value theory in that it poses restric-

tion not just on the extremal but on the overall behavior of the underlying
sequence. Finally, for the same reason as mentioned in section 1, the
statement that the condition A(uﬁr)) holds for {£.} has the precise meaning o
that A(uiT)) holds for any sequence {uﬁr)} satisfying 1 - F(ugT)) ~ T/n.
The condition A(un) can be expressed in terms of random variables as

well, The following result is a special case of [36], equation (I').

Lemma 3.2,2 For each nand 1 s 2 $n -1, write
Bn Q= sup{|Eng - En - EZ|: n and ¢ are measurable with iii
-
J n -
respect to Bl(un,l’ .oy un,k) and Bj+2(un,1’ ery un,k) s

respectively, 0 sn, g 1, 1 s j s$sn-2}.

Then X0 s B

dition A(u
n

0.2 is the mixing coefficient of the con- }}1
’ R

In particular, (Ej} satisfies the condition

s 160Ln where a

n,% W2

1 un,k)'

ACu_ .y e, u k) if and only if Bn 2% 0 for some sequence {Qn} with -
’ ’n “.

n,l £

Qn = o(n).

(1)

As noted in Chapter I, in order to study the limit of Nn , it 1is
convenient to first divide 51, &2, ooy En into groups. The appropriate

size of the groups is given by the following definition.

Definition 3.2.3 Suppose {EJ} satisfies the condition A(u_ ;4 ooy u ).

The sequence of positive integers {rn} is said to be A(un

® )
n=1 J10 0t Yn ke

-separating if rn/n + 0 and there exists a sequence {Qn} such that Qn/rn

+ 0 and nan,Qn/rn + 0, where an,l' £ =1, «., n - 1, are the mixing coeffi-

‘
D]
T
1
_1
*m
ey
R
.
Y
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cients of (§&; un,l’ ces un,k)'

It is easy to see that such an r -—sequence always exists and 1ndecd
one has considerable flexibility in choosing it. FYor example, 1if Ln = o(n)

1 1
is such that a + 0, then {r_ = the integer part of max (na® , , (n2 )’)}
n,Rn n n,Qn n

1s A(un,l’ ooy un’k)—separatlng.

The following result demonstrates how the condition A(un) gives appro-

ximate independence of the number of exceedances in different groups.

Lemma 3.2.4 Suppose Tl’ 12, ey Tk are positive constants and the con-

dition A(uﬁTl), .es uﬁTk)) holds for {éj}. If {rn} is A(ung), ves uﬁTk))

-separating, then for fi € F({O, 1), i=1, .., k, we have

. k (1) (kn] k (Tp)
(1) EexP(—Zm=1f[0, l]fmdNn m?) - ni=? EexP(‘Zm:lf(i—l/kn, i/kn]fmdNn ")
% o,

. k (1) [kn) k (Tp)
i) EexpCRyfro, 1) ™)/ Tl Bexp Gl Jsaii sk 1fn®n ™)
g

where kn = n/rn and [x] = integer part of x.

Proof: We will show (i), (ii) follows from (i) and the fact

. . k . (Tp)y 5 yii (1) _
AlTlgf hexp(—2m=]fl0’ l]tmdNn ) 2 512121 P{Nn (1o, 1]) = 0}
= liminf P{M < u(T)} 2 e "
n > w n n
where 1 = max(ri) (cf. [20], Theorem 2.2). Since {rn} is A(Ung)! oo UﬁTk))

-separating, there exists a sequence {Rn} such that 2n/n + 0 and na_ ) /rn
?
n

> 0. For each n, write I j = {(j - Dro+ 1, (j - Dr +2, .., jr_ - Rn},

.- e s
! ' Coed e ) .'-"-' ' .,
i . | TSN NN oy e

'A.* ks nsalte
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5=l wes [k ], and T = USZ?], I, ;+ By the triangle inequality,
lEexp(—Zmilf[O’ l]fmdNr(lT'“)) ik ]Eexp( -z 1f(1 Y ]fmdwﬁTm))l

= |Eexp(- z LIt ) m(;/n)xnfg) n[k" Eexp(- zm_l J_?l Dr_ 1E.(3/m) f?))|
(3.2.1)

< |Eexp(- Zmilijzlfm(j/n)xifg)) _ Eexp(—XmEleEInfm(j/n)xn 2y

+ ,Eexp(—ZmleJ.eInfm(j/n)xx(]fra_l)) - Hgin]Eexp( L1 JGI ’lfm(j/n)xn )l

+ lHE:?]Eexp(—ZmEIZJGIn’ifm(j/n)xﬁfg) n[k ]Eexp( z < Jr(l e o1 £ (j/n)

xifm))l

We will show that all three terms on the right hand side of (3.1.3) tends

to zero. Since f_, f2’ .., f are non-negative functions,

1 k \

. (1) Ken o . W(T) -

0 < Eexp(- Z 1 1 f (J/n)Xn"B.‘ ) - Eexp(—2m=12j=lfm(J/n)Xn,'}‘ ) ‘1

- Eexp(-L ¥ £ < /n)X( )) [1 - exp(-Z K £ (3/mxiT))) B

m=1 GI y P m=1 Je{l,..,n} I J n,j ]

. (1) .

< E[1 - exp(- Z -1 Je{l,..,n} -1 £ (J/n)xn,? )] T
< k (T)

N P{Zk=12j€{l,..,n}—1 d (_]/n)Xn [3' # o} '

‘o

< pP{ &J. > u[gT) for some j € (1,..,n}—1n} (T = max(Ti)) 1

S ([k 18+ ) (1 - JONY

. @

3

~ (Qn/rn + rn/n) T 225 0, ‘

-@

.".‘ LI

e T e . . N e e
-.’L.l'.‘hnr’.‘-'-_.\~-‘.“ o
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showing the first term on the right hand side of (3.2.1) tends to zero as

n tend to ®, To deal with the second term, note that
oy (Tp) [kq] (T)
|Eexp(- Zm 1 JGI f (J/n)xn’j ) - H Eexp( Z -1 JEI (J/n)x )
s [Eexp(-L * £ (i/nxd m)) - Eexp(-Z X L (i/nyx ™))
EI =] JGI m Xn,J
k o[kg] _ () k (Tp, )
x Eexp(-Zm=IZi=g L. ,fm(J/n)Xn,j o+ I‘Iexp(—Zm___IZj€I f (J/n)x
n,i n,l
- k [k T.) .
x IEexp(—Lm=lZ£ ]Z f (J/n)X( m ) - [ ]Fexp( Z l JEI .fm(J/n)'
n,1 n,i
(Tm))|
. ok olky] Ty lkg]
< léan.l + |Eexp( Zm=121 Z .fm(J/n)Xn’? ) - ﬂ1=2 Eexp(- Zm 1 JGI _
n n,1 n,1
./ ( m)
fm(J/n) n, j )l
by Lemma 3.2.2 and the non-negativity of the fi'S By induction,
. (t,,) (kpl k (r )
|Eexp(~ z ) Jex £, (3/mxy ™) - 1 Eexp(—Zm=lzjeIn 1f (3/m)x, ™)1
< n-m
< 16 [kn] an’Q — 0.
n
the third term can be dealt with using the inequality
; k k k
(3.2.2) |ni=lyi - n1=1"1i < zmlyi - x,l|, 0 sy, x;, s1,i=1, ..,k
howing that
cnlko T ok . (1) [k ] gir
[JizT Fexp( Zm:lzjeln ifm(J/n)xn'? ) - ﬂ Pexp( Z l i=Ci- l)r +1f (j/n)-

Sl Thal 4
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(T ))

f (J/n)x Eexp(- 5 K

A
[ne]
e —
nox

—3

i

m
]
<
o

~

ae!

e}

m=1%j=(i~1)r_+1"n (j/n)-

A

[k 12 [1 - FlDy) 225 o,
n ' n n
This concludes the proof. Q. E. D.

3.3 Compound Poisson Convergence of NﬁT)

Now we state one of the main results of this section.

Theorem 3.3.1 Suppose @ > 3 > Ty > .02 Ty > () are constants and the

condition A(u( ), .o (Tk)) holds for {& }. If (NﬁTl), .oy Nng)) con-

(Tl)

verges in distribution to some (N .y N(Tk)), then the latter must

have a Laplace Transform of the form
exp(-[o(1 = L(E\(E)s -ey £,(£)))0T,db),

where L(Sl’ - sk) is the Laplace Transform of some probability measure

T on 1 def {(il’ .oy ik) € IE: i1 2 1 and i1 2 12 2 .. 2 ik} and 6 =

T
—l/T lim IODP{Mn S uﬁ 1)} € [0, 1]. If B £ 0, then for each A(usTl), cey

N0
u(rk))-se arating {r }
N sep g (r },
. (T ) _ _ A I'n (Tl)
m({1)) = lim P(2I0) =i, m= 1, ., k|2 x40 >0l

-j:. = (11! ey 1k)€ Iko

The implication of the theorem is most obvious when k = l. [n this

. e . . - Y. - . . .
R T R Tk U D, T S VR Y AL S W S

L T R (P N
e L L L
‘»‘_Jr‘,JA, A-IA'I,‘LJ
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(il' .o ik) € zk.

Here we ignored the trivial case 6 = 0, which leads to N(T)( R) =0

a.s. for each T > 0. When there is no danger of ambiguity, (N(TI), .oy
N(Tk)) always denotes the distributional limit of (Ngrl), .oy Nng)),
Tys Tos v Ty > 0.

4.3 Asymptotic Distribution of kth Largest Values

We now apply our convergence results to problems that are of concern

of the more traditional theory. Let Mgk) be the k-th largest among

51, 52, ces En. It is easy to see that (Mﬁk) < uﬁr)) is the same event

as (NﬁT) < k-1). Using this fact, one can derive limiting distributions

(k)

for properly normalized Mn

Theorem 4.3.1 Suppose that for each 1 > 0O, A(uﬁT)) holds for {Ej} and
N,

Nﬁ ) converges in distribution to some non-trivial point process

Assume that a >0, bn are constants such that
w
P{an(Mn - bn) s x} + G(x)

for some non-degenerate distribution function G. Then for each k=1, 2,

3, .ty

lim P{an(Mgk) - bn) s x}

n-»o

i
= Zﬁ;é G(x) 111933%1511- ™31, 2, .., k-1})

(where G(x) > 0, and zero where G(x) = 0Q), where n*j is the j-fold convo-

lution of the probability measure defined by

. oy ro (1) _ . ,¢Fp J(T)
m({i}) = iiﬂp[zjzlxn,j = llzjglxn,j > 0}

T e e L m A At e R A A M e A A e B A e Amn_ m_ m
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= exp{—GTlf ]R(l - L(gl(t)) cey gk(t)))dt}'

B I T R SR YA TTV.'WWWWW
75
]
”
L
b
Thus by (4.2.3), (4.2.4) and a change of variable, L

|

. k (ot ) \_
(4.2.5) rllig Eexp(—Zmzlf RE AN, T )—exp{—OOTlf ]R(l-L(fl(t),..,fk(t)))dt}.

it follows from Theorem 2.3.5 that (N
N(OTI)' N(OTk)

ﬁOTI), ces NﬁOTk)) converges in dis-

tribution to some ( ) whose Laplace Transform is given

by (4.2.5), and it is now obvious that 6 is the extremal index. Q. E. D.

We remark that under the assumptions of the above result, the distri-

bution T which determines the cluster sizes of the limit Compound Poisson

processes depends >n T, .., T, only through Tz/Tl, ces Tk/T1 if k > 1, i!
and is independent of T if k = 1. R
The following result can be proved in a similar way using Theorem g

|

3.3.4 and Lemma 4.2.2. &

Theorem 4.2.4 Let 2T, 2 .. 2 Ty > 0 be constants. Suppose {ij) sa-

(011)’ .., (0T
n

tisfies the condition A(un ) for each 0 > 0. Also assume

(19)
n ?

that {Ej} has extremal index 6 € (0, 1], and there exists a A(u

(Tk) _ . . r (Tm) s
ur k7)-separating {rn} such that for each i € I, P{nglxn,j =i,

etttk d

. ¥

m=1, .., kIZ;EIX£T§) > 0} converges as n + =, Then for each 0 > 0,
= 1]

(Néorl), ey Nﬁork)) converges in distribution to some point process

(N(Otl). .oy N(OTk)) with Laplace Transform exp[—60T1f<R(l-L(f1(t), ey

fk(t)))dt] where L is the Laplace Transform of the probability measure 7

on Ik determined by

. ‘ 14 rn Tg)_. _ rn (11)
n({(1l, - 1k)}) $i2P{2j=1xn'? =i_, m 1""klzj=lxn,j > 0},

el AW i

. e

. - *» - « e - .
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. | (1)
+ IEexp(—Zm=1ZO$j/n§vgm(J/[n/o])X[nTO]’j) -

k . (1)
EexP(_Zm=leSj/[n/0]$v0gm(J/[n/o])X[n7o],j)|

It follows from the inequality (4.2.1) that the above expression is bound-

ed by

k

m=1 0§j/n§v,F(ur(\on))—F(u(T )

[n o])I+Z;_120<j/n<v|e‘fm(J/n)_e-8m(j/[n/o])!.

k

ETNGY) (1)
(1 F(u[n/o])) + zm=lzo[n/015jgvo(1 F(u[n o]))
where all three terms tend to zero by the definition of uﬁr) and the choice

of the f's. Thus

. , ok (at )y _ 4. gk (Tq)
(4.2.3) rl.ﬂ Eexp( zm=1j RERAN, M) = rlxig Eexp( Zm:lf REndN, ™)

provided the latter limit exists, which is true by the assumption that

(Nﬁrl), ces Nﬁrk)) converges in distribution. Since the limits N(Tl), .

v k) do not have fixed atoms, Lemma 2.3.4 implies that
ok (Tw)y _ 14 ok n(Tm)
Eexp( Zm=1f(o'1]gmdN ) = iig Eexp( Zm:lf(O,l]gmdNn )

and it follows by arguments similar to those in Theorem 3.3.1 that the last
expression equals exp{-GTlfé(l - L(gl(t), .o gk(t)))dt} where L is as
stated in the theorem and 6 is such that lim P{M(l) < uﬁrl)} = e—eTl.

n->oo

Note that the supports of 81» ++s B are in (0, ov], Lemma 4.2.2 thus

implies that
1 _ (tg)y _ plov]+l 1. vk (Tg)
ni$ Eexp( 5;=1fnzgmdNn m’y = Hi=1 %ig Eexp( Zm=1f(i-1,i]gmdNn m’ )

, 1
bo2.0) = MO M exploor 1 (- Lag (0, Ly g (0t

' . [ . .
NS ! e = .

gt

- L "u "
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.

Lemma 3.2.4 since the condition A(uéVTl), ves uﬁVTm)) holds for {€j}. The .

conclusin follows. Q. E. D. 25

C

Theorem 4.2.3 Suppose «© > T 2 T, 2z ,, 2 Ty > 0 are constants, and the .é
condition A(u(orl) ces uﬁOTk)) holds for {ﬁj} for each ¢ > 0., If (NﬁTl),

. Nﬁrk)) converges in distribution to some (N(Tl), e, N(Tk)), then for ;

each ¢ > 0, (V(OTI) .oy NﬁOTk)) converges in distribution to some (N(OTI), %

, N(OTk)) with Laplace Transform

exp{—@OTlf.R(l - L(fl(t), v fk(t)))dt}

where 3 € [0, 1] is the extremal index, which exists, and L is the Laplace

Transform of some probability measure 7 on Ik. If 8 # 0, m is determined by

(Tl)

. . . r (t,)
n{(ll, .es 1k)} = éigP{nglxn,? =1i,m= 1, 2, .., kIZ n > 0}
where {r } is any A(u(T ), ces uﬁrk))—separating sequence.
Proof: Let ¢ > O be fixed, and fl’ vey fk be functions in FC(ZR) with

supports in (0, v)] for some O < v < », Write gm(t) = fm(t/O), m=1,2,..,k

By the triangle inequality,

(0Ty)

|Eexp(~ z 1) jEa9YN, ) - Eexp(-ZL

k (T )
ne1! REaN[oD0)) ]

lEeXp(_Z$=120§j/n<v m(J/n)xn tn) )-Eexp( Z IZO<J/[n/O]<VO°m(J/[n/O])

X(nlol,

A

)
[Eexp (B Ty g/ En(3/MX ™)) -exp(-2¥ sy /meeEn (/X000 )

+ |Eexp(- Z z (J/n)X<T?éJ ]

m=1"0 J/n<v m )-Eexp(- Z

IZO $j/nsv m(J/[n/O]

‘[n%l L
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The results in Section 3.3 can now be extended as follows.

Lemma 4.2.2 Let Tys Tor eesr T be positive constants. Assume that {Ej}
satisfies the condition A(u(OTI) ooy uﬁork)) for each ¢ > 0. Then for
functions fl’ f2’ cey fk in F( R) with supports in some bounded interval

(u -1, v], u, v being integers, we have

_ (Tm)y _ 1 (1)
Bexp(-L%_ [ pf dN ™) — I!_ Eexp(-Z}_, fiiot, 11EadNy ™)
+ 0 as n + ™,
Proof: Since {€j} is stationary, we can assume without loss of generality
that u = 1. Hence
_ (1)
Eexp( Z f £dN m ) = Eexp(- gk —l J 1 £ (J /n)xn m )

By the triangle inequality,

v ) v (1)
|Eexp(-Z; j=1fm{J /")xn )y - Ny Eexp(-g;_ )2 i (1 Dn+1En(3/00%; 3|
s |Eexp(- Z l J 1 m( /n)xn m ) - Eexp(- Z 1 J 1 m(J/n)X(VTm))I
+ |Bexp(-zk Gy _ Y [Eexp(-g& £ (j/n) (VTm))[
P =1 J-I m Xvn,j i= Pl-tne l J (1 Dn+l™m J X
v (vT) gin
+ IHi Eexp(- Zm-l j= (1 1)n+lf (J/n)xvn ? )= H lEexp( Z:m =1%j=(i- 1)n+lfm

. (Tm)
(J/n)Xn’j ).
The first and third term tend to zero by the obvious inequality

Iy - n?=lyi] s I -y b Osx,y, sl =1, ..,k

i=1"1 il

(T)) F(u(VT))I + 0. The second term tends to zero by

and the fact nIF(u
vn

]
{
{
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and each choice of Tl’ TZ’ ooy Tk > 0. For convenience, call the above

assumption the A condition. Again, the condition A is weaker than strong

mixing.

4.2 Point Processes of Exceedance Positions on R

(1)

n

L

In Chapter NI, we restricted N to be a point process on [0, 1].
We shall see that such a restriction makes little sense under the more

stringent mixing condition A. Instead we consider the point process N£ )

on R defined by

— Ak

(1) _ (1)
Nn _ZJGI Xn,j cSJ./n,T>O,ne]N, |
where Xr(1T§ = l(&J, > ur(1T))’ jel, and da’ a € R, is the measure with a unit =

mass at a. We commence by stating a result which is slightly more general

than what is needed for the present purpose.

Lemma 4.2.1 Let T > 0 be a constant. If NI(IT) converges in distribution
to some point process N, then N does not have fixed atoms; i.e., N({s}) =0

a.s. for each s € R.

Proof: Since Bn contains a topological base (cf. [14], Lemma 4.3), for
each s € R and € > 0, there exists a set B &€ Bn such that s € B C

(s - ¢, s + €). Thus, by Theorem 2.3.1,

P(N({s}) > O} s P(N(B) > O} = liminf P{NﬁT)(B) > 0)

A

liﬁinf P{NﬁT)((s—e, s+€)) > 0} s Lim (2ne+l) P{E1 > uﬁT)}

2€T.

i

This concludes the claim since € is arbitrary. Q. E. D.
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COMPLETE CONVERGENCE

N Y

" 4.1 Introduction

' Let {gj}I be a stationary sequence with marginal distribution F.

: Recall that {uﬁT)} is a sequence for which n[l - F(ugT))] + T as n + =,
i For simplicity, we now require, in addition, that ugr) be strictly decreas-
ing in T for each n so that u;l is well defined. For example, suppose F
belongs to the domain of attraction of some extreme value type distribution
G, and constants a > 0 and bn are such that Fn(anx + bn) + G(x). Then

uﬁr) 1G-l(e—T) +b . While the restriction is not

can be taken to be a;
essential, the removal of it would cause extra complexity and would not
add depth to the general theory. Write Nn for the point process

= € X ' = X
ZJEI 6(j/n, uni(gj)) where G(a, b), (a, b) R R+ (=0, ®) x (0, =),

is the measure on R x Ri with a unit mass at (a, b). Nn is a point

process on R x RL. As before, the convergence results for Nn are not

(

affected by the choice of {unT)}n T Mori [26] shows, under a slightly

different setting, that if {Ej} is strongly mixing, the limit N (in dis-
v tribution) of Nn, when it exists, must be infinitely divisible and invariant
under certain transformations. Using these facts, he further characterizes

N in terms of its canonical measure. We propose to both give sufficient

g conditions for the convergence of Nn and characterize the limit N under

(Tl)

the assumption that A(un

ces usTk)) holds for {Ej} for each k = 1, 2, ..
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“({(11y o0y lk)}) =nl€1ﬂ2 nn({(lli «es 1k)})°
This implies that T = m and the assertion follows. Q. E. D.

The uninteresting case 6 = O was left out in the above thecrem. In

this case,

lim P4 s o{T) - 1,
n n

n->co

1im PN ([0, 1]) = 0)
N n

showing that the limit of Nér) equals the null measure almost surely by

Theorem 2.3.1.
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'
5 {rn} such that for each i € 1, P{Zgglxﬁfg)=im, m=1, 2, .., k|ZJ 1X(Tl)>0}
; converges as n + ©, Then
! (i) the measure ™ on I, defined by
m({i}) = 11m P(Z nlx(Tm) =i ,m=1 2,..,k|£§“ (1) },

J. Vo
. i= (il, ces ik) € Iy is a probability measure;

(ii) (NﬁTl), . NsTk)) converges in distribution to some (N(Tl), ces N(Tk))

with Laplace Transform
exp{~67 f3[1 - L(E (1), .., £, (t))]dt}

where L is the Laplace Transform of 7.

S M N

Proof: We will only show (i), (ii) follows by arguments similar to those

in Theorem 3.3.1. Let " be the probability measure on Ik defined by

. . _ rp J(Tg) _ . _ rn, J(T1)
ﬂn({(ll, ces 1k)}) = P{nglxn,? =i, m=1, .. klzjglxn,j > 0}

(il’ cey ik) € Ik' Write Qn for the probability measure on N defined by

(Tl) (Tl) i ip-1 .
n n
Q ({i})= P[Z 0 X, 1|Z 1%n >0}= Z ~0%i%=0"" Z. o" ({(1. 1yyee, 1k)}) o
12 3 k -
=
i € N. It is clear that {nn} is tight if {Qn} is, which follows readily ™
from >;
Lim 7, k Q ({k}) = 1/8 < = (cf. (1.5.4)). -
Ny KT n
<
Therefore, by Prohorov's Theorem, for any infinite subset N, of N, there
exists a further subset NZ and a probability measure T on Ik such that :;
. o P
n => ™ n € N,. Thus for each (11, eer L) € I
L

. . oo Soe - ..
L R B DU A . ST P % fm Dot lonnndi
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By (3.3.1), (3.3.2) and (3.3.3),

log Eexp(—Zmilf[o’ 1]fmdNr(lT"‘))

kIR (t)dt - k_[OV(R (£))dt + o(1)

~6t 1 - Zexp(-2 X £ ()3 ) (()]dt + o(1),

(ty) N(Tk)) con-
n

which converges as n + = by the assumption that (Nn s eey
verges and Theorem 2.3.5. But this implies that the limit iig Zexp(—smjm)-
nn({i}) exists for each (Sl’ .oy sk) EEﬁRt, which is equivalent to the
existence of a measure T on Ik such that n({i}) = %12 ﬂn({l]) for each

Je Iy» and in this case,
lim Zexp(-Z k s_jm ({j}) = Zexp(-Z k s _jn{{i})
N Plen=1%mIm/"n ' td P2 1%mIm J

for each (sl, ces sk) EEIRE. We conclude, by dominated convergence, that
. v k (ty)y _ 1 s k i .
%ig log Eexp( Zm=lf[0, l]fmdNn ) = -Grlfo[l - Zexp( Zm=1fm(t)3m)"({l})]dt‘

Theorem 2.3.5 now implies that

Eexp(—Zmzlf[o’I]fmdN(Tm)) = exp{—GTlfé[l—Zexp(—Zmilfm(t)jm)n({1})]dt

where 7 is seen to be a probability measure since, for example, N(Tl), “ey

N(Tk) are point processes. Q. E. D.
One can also state a constructive result as follows.

Theorem 3.3.4 Suppose {Ej} satisfies the condition A(ung), . uﬁTk))

for constants ® > 1, > Ty > .. 2T >0. Assume that limP{Mn < u(Tl)}=e'eTl
n

1 k oo
(Tl), .., uéTk)

for some B € (0, 1] and that there exists a A(un )-separating

=
|

- b

.
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. . s

nimimilRLL

2 2

ST




P s oinl ot stul e arah AR A NAARNME ARl Pl AR R S A R A A

o Mma gk Ragt Ses g e maue S iec been i e B artht St i Mg

.
o
p—

A
—

35

1 (t)
(0, [k 1/k_)

k , .
= (8T +0(IN[1 - Zielkexp(-2m=1fm(t)Jm)nn({1})]1(0’ [kn]/kn)(t)

Proving (ii). Q. E. D.

We now prove Theorem 3.3.1.

Proof of Theorem 3,3.1: Lemma 3.3.2 concludes that there exists a O e

[0, 1] such that P{Mn s uﬁT)} s e—er for each T € (0, Tl]. If 6 = 0,

then the conclusion follows immediately. Suppose that 6 # 0. Let Rn and

En be as defined in Lemma 3.3.3. By Lemma 3.2.4, C|

log Eexp(- -z lf[O 1]f dN(T ))

- Z(k ] (Tp)
1=

(3.3.1)

log Eexp(- Zm 1[(1 l/k ’ 1/k ]f dN m”y 4+ o(l)

£ dN(Tm 7] + o(1)

knz£2?11/knlog[1-(1-Eexp(-z Vo Ui, 1/k_1fn

k fologl = R (£)]dt + o(1).

Lemma 3.3.3 implies that

(3:3.2) KR ()07 [1-2 exp(-Z, ¥ £ ()T (LID]1 o RIS

) k

5 . uniformly in t, Let ¢(x) = -log(l - x) - x, x € [0, 1), ¥(x) ~ x2/2 as

. x > 0. Hence for large n, IW(Rn(t))l s Rg(t) for all t since R _(t) + 0 Tg
S uniformly in t. As a consequence, if}
. N
g 1 1 2, niow L
8 (3.3.3) knfolw(Rn(t))ldt s l/knfo[kan(t)] dt —> 0. 9
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[k (R (t) - R (t)]

[knle k -f (j/n) -f
KnZi=1 Em=12j/ne(i—1/kn, i/kn]le " €

A

l(i—l/kn, i/kn](t)
< [kl (T )
s n nanl 1 (i-l/kn’ i/kn](t)Z P{E >u }

—fm(S)_e—fm(t)I: I

where Qn = supf{ |e
easily seen that Qn 225 0 since l/kn %5 0and f

formly continuous. Thus

Ikn(Rn(t) - Rn(t))l

A

k (ty)
knrnQn Zm=lp{€l > Uy ")

k
-~ knrnQn Zm:le/n

Q1Ko 225
n“m=1"m

’

showing (i). To show (ii), first note that

> ung)} ~ erl/kn

(T )
P{zJ X 1 0} = P{Mrn

by Lemma 1.5.3. Hence by stationarity,

= [k ] rn (T _
kan(t) =k z [1 - P{Ziglxn,; =0} - de

k
ro (11)
PZ 21X s 2 O}“(1—1/kn, i/kn](t)

k

k P{Z 2%, > 0}t - ZJI

€k

AT @ TN ® ¥ ¥ WL VeSS LY

s - t] < l/kn, m=1,

ll

k
I exp(_zm=1

m(t)lp{€1>u£Tm)}'

2, .., k}. It is

f2, s fk are uni-

£ () dm ((§1)

£ () m (1)1
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- k) | (1)
% Ry(0) = 31 (-gexp(-L, 5y f 1, ik 1t O Gk, k(0
[kq] k (19), /. .
Rn(t) = Z:i=r11 [I—EexP(-zm=lfm(t)Nn " ((1'1/kn’ 1/kn])ll(i—l/kn, i/kn](t)
where {r } is A(u( 1 u(Tk))—separatin k =n/r_ and f f, are
i} e ey n g’ n n 1’ ¢ oy k
continuous functions on {0, 1]. Then as n + =,
(i) kn(Rn(t) - Rn(t)) + 0 uniformly in t,
. k . .
(ii) knﬁn(t)—BTl[1-Zielkexp(—2m=13mfm(t))ﬂn({l}) 1(0, [kn]/kn](t) -0
uniformly in t where ﬂn({i})=P{2§21x;T?)=jm, m=1, .., k|2§21xﬁrﬁ) > 0},

= (le s oy Jk) E Ik'

Proof : [k (R (t) - R ()]

[ 12

an£Z?]IEexp(—Zmilf(i_l/kn, e £ dN( m))-Eexp(- z KE(6)

(1), ,. . |
NnTm ((l'l/kn’ l/kn]))ll(idl/kn' i/kn](t)

K £k ]IEexp( 5 K (1 m)> “Eexp(-L ¥ £ (t)-

m=1 J/n€(1 l/k s l/k ] m(J/n)x

(t)
J/n (i- l/k , 1/k ]Xn j )|1(1 l/k ’ 1/k ](t)

: . [k ] . (t,)
'. S kpliad Zm-lzj/ne(l 1k , i/kn]IEexP(—fm(J/n)Xn,? )-Eexp(-£  (t)- P~
F (r ) —?
a M1k b ik 1(e) 3
b =
L . ]
0 by (3.2.2). Since |Eexp(—fm(j/n)x§T?))-Eexp(—fm(t)xﬁr n)) fo]e~ (/M) =€ (0], L
Plg >u(Tm)}, we have ?;

1 'n 0

F..' .................. ‘:
E: Sl 20w X ; e N i). ST >
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(1) ¢ (O y(T

, then the Laplace Transform of }

(V)

case, if No is exp(-eTfé

(1 - L(f(t)))dt), showing that N is Compound Poisson. When 0 # O,
the probability measure T that corresponds to L is obviously restricted

to a certain class; for example, by Fatou's Lemma,

© . e @ r (T) TS o (1)
=11n({1}) = Zi=ll ﬁigP{ng 1%n,§ = IIZjEIXn,j > 0}
< liminf Z 1P{E n (T) = 1|Z n ( 2 > 0}
n->o n J n,]
- 1im E(ZTn, (T)] x(” > 0)
=1/6

(cf. (1.4.4)) where {rn} is A(uﬁT))—separating. The precise relationship
between 8 and 7™ is still an open problem.

We first prove two lemmas.

Lemma 3.3.2 Suppose {€j} satisfies the condition A(uﬁT)) for some T > O,

and NgT) converges in distribution. Then there exists a 6 € [0, 1] such

-06

that lim P{M = u(é)} = e for each 6§ € (0, T].
oo n n

Proof: Since [0, 1] is a bounded set with empty boundary, the assumption

impliesthat NﬁT)([O, 1]) converges in distribution (cf. Lemma 2.3.4).

Thus, the conclusion follows from the identity P{Mn < uﬁT)} = P{NﬁT)([O, 1])

= 0} and Theorem 1.4.2. Q). E. D.
Lemma 3.3.3 Let Tl > Tz > .. > T > 0 constants. Suppose the condition
A(u(Tl), cos uﬁTk)) holds for {ij} and there exists a 8 € [0, 1] for which
%ig P{W s uﬁTl)} = e_eTl. Define two functions R_(t) and ﬁn(t) on [0, 1]
by

2 2 = & B A :
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i=1, 2, 3, .., for any arbitrary 1T > 0 and arbitrary sequence {rn}

which is A(uﬁT))—separating.

Proof: According to Theorem 4.2.3, the Laplace Transform of N(T) is
(4.3.1) exp(—GTf:R[l - L(f(t))]dt)

where 6 € (0, 1] is the extremal index of {Ej} and L the Laplace Trans-
form of the probability measure 7 stated in the theorem, L and 7 being y
independent of the choice of the positive constant T and the A(uiT))— '??
separating sequence {rn} by the remark following Theorem 4.2.3. The fact
that {€j} has a non-zero extremal index 6 and P{an(Mn - bn) s x} ¥ G6(x)

imply (cf. [20], Theorem 2.5) that G is one of the three extreme value ji

type distributions, and

tim P{an(l\zn - b)) s x) = 610 x) "

A

where Mn is the maximum of n independent random variables all having the

same distributions as &1. Thus

.. 5&“1 Ly

1

'.l."_l T o
tat . LSRN

. ” ~1.~-1, -671
lim P{Mn s a G (e ) + bn}

n-—><o

=T

- Gl/e(G-l(e—ﬁr)) =T,

which shows by Proposition 1.2.1 that

1 - F(a;IG—l(e—eT) + bn) ~ 7/n as n + «,

)
PR
N W OO u)

. /
Writing t(x) = -logGl’e(x), we get

(4.3.2) 1 - F(aglx +b) ~ 10 /n.

]

Now it follows from (4.3.1), (4.3.2) and the fact NgT)((O,l]) g N(T)((O,l])

|
TS

'

.

.
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Y T N Y .



CRminail st Gadh Gl Vadh M oC g S SN 0 b AT g% oD RER s aalh il g e il Nt Ayl S R Rt At it AT A N A i il AR A A A el i e T '.“_.'
.

(cf. Lemma 4.2.1 and Lemma 2.3.4) that
n

. (k) .
%iﬂ P{an(Mn -b ) s «x}

- 11 P £ (T

= %iﬂ P{NiT(x))((O, 1]) s k-1}

= PN (0, 17y s k1)

j .
_ gk=1,-87(x) 191§§ll_ (1, 2, .., k-1})

30 ;

i ]

- 2475 60 L8SIF wX((a, 2, L, k1), Q. E. D. ]
3! -

Using the same idea, the asymptotic joint distribution of a finite number

of the k-th largest maxima Mgk) can be obtained.

Theorem 4.3.2 Suppose that for each Ty Ty >0, A(uﬁTl), ugTz)) holds
for {€.} and (Nﬁrl), N§T2)) converges in distribution to some non-trivial

(N(Tl), N(Tz)). Assume that a, >0, bn are constants such that
Pla (M - b ) s x} % G(x)

for some non-degenerate distribution function G (which is one of the three

extreme types by [21], Theorem 3.3.3). Then

lim P{an(M;I) - bn) s x, an(Mgz) - bn) syl

n-»o

= 61 - o TBEEL )+ 10gG(y)] y < x, 6(y) >0,
G(x) y 2 x, G(x) >0,
0 otherwise,

A A A O U
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where p, a function on (0, 1), is defined by

n lx(or)

(1)

. ) SRR

p(o) = llmP{Z n (T) =1, gt

ry, (1)
=1%n. j =0 | Zjglxn,j > 0}

for any arbitrary T > 0 and A(u_ "7, u£01))—separating {rn}. -

Proof: We only prove the assertion for the non-trivial situation y < x,

G(y) > 0. By Theorem 4.2.3, the Laplace Transform of (N'©, N(9T)y,

H

T>0, g€ (0,1), is
exp(-6T IZR[I - L(fl(t), fz(t))]dt)

where L is the Laplace Transform of the probability measure T on 12 satis-

fying

mCl(iy, 1p))=1inP(Z nlxﬁT) : X(OT)—IZIZ 1X§T)>O}

(1)

{r } being any O u(OT))-separating sequence. By the comment that
n

follows Theorem 4.2.3, m depends on (T, OT) only through the ratio 0.
Thus, write w(+; 0) for 7 to emphasize this dependence.
Suppose y < x, G(y) > O. By the notation and arguments used in

Theorem 4.3.1,

Lin Pla () - b)) s x, a, (P - b)) s y)

- 1im pn(D 5 (TN, D) L GO,
= 1PN T 0, 1D=1, KTV 0, 11)=014p(n TV (0, 113-01)

= or(y)e a1, 01 (x)/1(y)) + e 0T(y) ”‘ E

= e 0T 4 ry)m(i(1, 0)); T(x)/T(y))]

= G(y)[1 - 7({(1, 0)}; 1ogG(x)/1logG(y))logG(y)].
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Writing p(0) = w({(1, 0)}; o), 0 € (0, 1), the result follows. Q. E. D.

We now state an interesting result due to Welsch ([37]).

Theorem 4.3.3

Let {Xn} be a stationary strong-mixing sequence. If
there exists a sequence of constants {an > 0, bn: n 2 1} so that

(n (2) o . e
P{Mn Sax+ bn’ Mn say+ bn} has a limiting distribution, H(x, y),
with G(x), the limiting distribution of P{Mn S ax + b} non-degenerate,

then

H(x, y)

G(y)[1 - p(1logG(x)/10gG(y))1logG(y)] y <x ]

G(x) y

W
*
|
L8

o

where o(s), £ s 51 is a concave, non-increasing function which satisfies

A

p(0)(1 - s)

p(s) s 1 - s. G is one of the three extreme types and we B
interpret (®/®@) =1, (0/0) = 1 and (0/®) = O. fjfg

As can be seen easily, Theorem 4.3.2 is not an attempt to improve

Welsch's result. However, it properly explains the role of p from the

point of view of exceedance.

4.4 The Convergence of wr1

In Chapter I, the method of Laplace Transform was used to show con-
vergence of point processes. We now demonstrate another useful technique.

Let P = {[a, b) X [c, d): =< a <b<w 0<c<d<w, Pis obvi-

ously a DC-semiring contained in B( R x R;).

Lemma 4.4.1 Suppose for each R =1, 2, 3, .. and Ul’ ces Uk e P,

(an(Ul), cey an(Uk)) converges in distribution., Then INn converges in —‘!
distribution to some point process IN. Suppose, on the other hand, that e
T
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an converges in distribution to some point process IN, Then P C B'N =

{B€ B(R x R;): IN(3B) = O a.s.}.

Proof: The boundary of a set in P contains at most four finite lines,
each of which is of the form [a, b] X {c}, =» < a < b <w®, ¢ >0, or the

form {u} x [v, w], 0 < v<w<oo, u € R, By Lemma 2.3.6, it suffices to

e WA,

show that for each € and each line L of the above forms, there exists a
bounded set B in R X R+ such that L is in the interior of B and

limsup P{INn(B) > 0} < e. Consider, for example, L = [a, b} x {c}.

PO WP

Choose 0 < § < min (e/2(b-a+2c), c). L is contained in the interior of
{a-8, b+8] x [c-6, c+8), and
P{IN_([a-6, b+6] x [c=6, c+8)) > 0}

(c+68)
= P{Ej/n € [a-8, a+f] (Xn,j -

xﬁf}d)) > 0)

(c +96)

n

A

((b -a+ 28)n + 1) P{u < 51 s uﬁc'-é)}

¥

2(b - a + 28)6 < €.

The other form of L can be dealt with similarly, proving the lemma.

It is obvious that there is a close relationship between the conver-
T T
gence of (Ng 1), .o Nﬁ k)) and that of an. The following result makes
:f: the relationship precise. Like the previous result, it does not depend
o’ on any mixing assumption.
“{
o Theorem 4.4.2 INn ﬂ some point process IN if and only if (NﬁTl), Ngtz),
- v N0y § D KT Ny for each k = 1, 2, L. and 1), T,
;jj T > 0. In this case,
i. ’
o i
*'_ 1
2 '
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[ ] I
A
k. el AT




| e fa= it~ A Bn o= e

i
’ Lo

L%adl Cafiiic” sl oire e ol ali=Sulir~ e St obl Sadb il b i et et S e i A e e ET T T LT T T T T

(4.6.1) CNCXC0, 7))y wes NCx(0, 1000 & (NCTD, L, (W)

for each choice of Tps eos T > 0.

Proof: First assume that (Nng) NﬁTk)) converges in distribution

s ooy
for each k =1, 2, 3, .. and Tys Tos oes Ty > 0. For Ui = [ai, bi) x

[Ci’ di) €EP,i=1, .., m,

CIN (U, ey IN (U D)

[[[=%

Ly, b)) ay, 50, ey N (a5 )N (e, b))

+Q-

OV (ay, b tlan b)), oo KO ([, b )NE ([, b))

by Lemma 4.2.1 and Lemma 2.3.4. Thus, by Lemma 4.4.1, Nn converges in

distribution to some point process N with
( N(Ul), oo N(Um))
280, 5NV (la), 5, s 8O (L, b )N (e, b))

for each choice of Ui = [ai, bi) x [ci, di) € Pi=1, .., m. In partic-

ular, it can be shown simply that
('N([alv bl)x(oy Tl))’ coy IN([aks bk)x(oo Tk)))

e, b, o MW (s, b))

15 s
v

AR TITEENEA .'_
.‘ ‘ r' . 1. Ve
: A T
3 DR .
PUSV ST BRI GV,  § =

v

P o .-.- Ty LT T
IR R .
. . . n F . 0

" . . 0 . -

o
.

‘e ‘e ‘.'-.'.
-

ai
Y

for each choice of Tl’ TZ' ees Tk > 0 and [al, bl)’ ces [ak, bk)‘ It now P
follows from Theorem 2.2.2 (iii) that :fii
CNC-X(0, 7)), es NCx(0, 1)) & V(0 y(Td)y, =3

,:!

The converse can be shown similarly. Q. E. D. B
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4.5 The Characterization of N under A

Suppose that the condition A holds for {£j} and Wn converges in
distribution to some point process [N, By Theorem 4.4.2 and Theorem 4.2.3,
the finite dimensional distributions of IN can be derived from (4.4.1) and
(4.2.4). While the distribution of IN is determined by the finite dimen-
sional distributions, this knowledge does not provide a clear picture of
N. It is desirable to transform the knowledge into a description which
is more "visible", so to speak. To do so, we approach from the point of

view of "infinite divisibility" — a technique used by Mori [26].

Lemma 4.5.1 Assume that {Ej} satisfies the condition A, and an con~
verges in distribution to some point process IN. Then IN is an infinitely

divisible point process.

Proof: By [14], Lemma 6.3, it suffices to show that (IN(UI), ees IN(Uk))
is infinitely divisible for each choice of Ui = [ai, bi) x [Ci’ di) € P,

i=1, 2, .., ke It is simply seen that

(INQUD), wey INCU)

( N([aj, b))X[0, d)))-WN(a;, bx[0, €))s +., W([ay, bIX[0, d))-

N([a,, b)x[0, ¢,)))

[[{=9

80 ¢a, b)), M (la), b)), vy N (Cay, b), WL, b))
by Theorem 4.4.2 where T is the linear map

T(x1, Yl, coy xk’ Yk) = (XI_Yl’ ey Xk‘)’k)-

)

Therefore it suffices to show that (N(Tl (Bl)’ .o N(Tm)(Bm)) is infinitely

M
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divisible for each choice of constants 1,, T,, .., T, > O and Borel sets
1 2

k

B., B Bm in R. For a fixed choice, let k be the number of differ-

1’ 2’ LI ]
ent T, and 13, j=1, .., k, the j~th largest value of Tyr wen Tpe By

)

Theorem 4.2.3, the L. T. of (N(Tl)(Bl), eoy N(Tm (Bm)) is of the form

Eexp(—ZizlziN(Ti)(Bi)) = Eexp(—Zjilf:Rfj(t)N(Ta)(dt))
= exp[-BTif]R(l - L(tl(t). .es fk(t)))dt],

where fj(t) = 2‘.211B (t), the summation extending over the set of i's for
i

which Ti = 13. Also, by Theorem 4.2.3, for each k =1, 2, 3, ..,

. o1)
rexp(-2," 2 NV B)) < etp(- L[ (1 - LE(D), .oy £(00))A0),

)

showing that Eexp(—ZizlziN(Ti (Bi)) = [Eexp(—ZizlziN(Ti/k)(Bi))]k. The

conclusion follows. Q. E. D.

If IN is infinitely divisible, write P for the canonical measure of
IN. P is a measure on N(R X% ]R{")\{o}. o being the null measure on
R x ]R+ (cf. Theorem 2.2.2).

Write N([1l, »)) for the collection of all locally finite integer-
valued measures ¥ on [1, ®©) such that V{1} 2 1. As a space, N([1, ®)) is
equipped with the vague topology and the Borel O-field N([1, ®)). Ir what
follows, we shall consider mappings between N( R X R;)\[O} and N([1, *©)).
The measurability of the mappings. can be established by routine arguments,
and will not be pursued specifically. To describe mappings between spaces
of measures, it is often convenient to consider the corresponding trans-
formations for "atoms". To do so, we first let Ey’ ye[l, ®) and 6x’

x € RX R‘:_ be the Dirac measures on [1, ®) and R X ]R; respectively.




Now let g be a measurable mapping on (R X Rl) xN([1, ®)) into

(R x R;)\{o} defined by g(x, V) = Zaié ) where x = (s, t) e

(s, ty,;

R x R;. we'ﬁ([l, »)) and has a decomposition ai€y (cf. Chapter 2).
i

Since (R X Ri) X N([1, ®)) and N(R X R;)\{o} are both Polish,

Kuratowski's Theorem (cf. [29]) implies that g maps measurable sets to

'
measurable sets. Let A be the range of g, namely, A={¢ € N(R XR+)\{0}:

¢ =g(x, ¥), x e R x (0, »), b N([1, =))}.

Lemma 4.5.2 Suppose the condition A holds for {Ej} and INn converges
in distribution to some point process IN. Then 5, the canonical measure

of IN, concentrates on A,

Proof: Since P is a measure on N(HQXIRL)\{O}, it is to be understood

that all set operations are performed in this space. First it is obvious

that

(4.5.1) A ={0de N(]RXR_;_)\{O}: o({s} x ]R+)=O for all but one s € R}
= nm=1 Nn=1 Am,n

where

A= {6e N(R xR)\(o}: o([k/2", k+1/2") x [0, m)) = 0

for all but possibly one k in I}.

Note that Amn is monotonically non-increasing in m for each fixed n, and

© : . . 3
M=l Amn is also monotonically non-increasing in n. Thus

(4.5.2) P {de N(R x ]R;)\{o}: d)({s}XIR;)=0 for all but one s € R}€

’
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lim lim P (A )
N0 Mo

A

lim lim £ P {6€ N(R x R)\o}: o([i/2", i+1/2")x[0,m)) > O,
N+ Mro J +

o([j/2", j+#1/2") x [0, m)) > O}

By Lemma 2.2.4 since
CINC[i/2", i+1/2™) x [0, m)), IN([§/2", j+1/2%) x [0, m)))
d N (/27 14172, N (13727, §+172%))),

N(™([1/2", i+1/2)) being independent of N™([j/2", +1/2%)) if i#j (cf.

Theorem 4.4.2 and Theorem 4.2.3). Q. E. D.

For each T € R and 0 > O, define mappings u, and vy by

UT(so t) = (s+7, t),
ve(s, t) = (0s, t/0),
X 1
(s, t) €ER ]R+.
Lemma 4.5.3 A measure U on R X lR; is a scalor multiple of Lebesque

measure if and only if Mou, = MOv, =M for all T € Rand 0 > O,

Proof: The "only if" part is trivial. To show the "if" Part", let

[a, b) X [c, d) C R X]R.;,, the assumption implies that

(4.5.4) u([a, b) x [c, d))

U([O, b-a) x [C, d)),

(4.5.5) u(fa, b) x {c, d)) = u([0oa, Ob) X [c/0, d/0)), 0 > O.
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For eachm =1, 2, 3, ..,
u(fo, 1) x [0, 1))
= g0 w(lk=1/m, k/m) x [0, 1))
= mU([Ov 1/m) X [09 1))1 . Zi
by (4.5.4). Thus ([0, 1/m) x (0, 1)) = 1/m u([O0, 1) * [0, 1)), which i
implies that M([O, n/m) ¥ [0, 1)) = n/m u([0, 1) X [0, 1)) for each m, n= f
1, 2, 3, ... Since the set of rationals is dense in R, we have :;
(4.5.6) u({a, b) x [0, 1)) ;:
-
= u(loa b'a) X [0’ 1)) ]
- Lm0, n/m) x [0, 1)) ii

= (b-a) y ([0, 1) x [0, 1)).
Let t > Q be arbitrary,

(4.5.7) u(la, b) x [0, t))

gy
RPN} A :

= U([Or b”a) X [O’ t))

e

= u([0, (b-a)t) x [0, 1)) o
= (b-a)e-p([0, 1) x [0, 1)). ]
g%
Hence u(la, b) x [c, d)) Eg
:
= y([a, b) x [0, d)) - u(la, b) x [0, c)) 3
.
= {(b-a)d - (b-a)c} u([0, 1) x [0, 1)) by (4.5.7) _i
:}
-
o
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= (b-a) (d-c) u ([0, 1) x [0, 1)).

The conclusion follows since {[a,b)x[c,d) = < a < b <o, 0<¢ <d < »}

is a generating semiring for the Borel o0-field in R X R;.
Q. E. D.

Lemma 4.5.4 Suppose the condition 4 holds for {ﬁj} and INn converges

in distribution to some point process IN. Then lNouT d IN, INo v d IN

for allt € R and 0 > O,

Proof: First, we show INouT d IN. By Theorem 2.2.2 (iii), it suffices

to show for Ul’ U2, ey Uk € P,

(4.5.8)  (INCUD), ooy MUY S (W(u(U))), ey INQu(U))).

Note that for U = [a, b) x [c, d), N(U) 3 M@ ((a, b)) - N(([a, b))
and IN(u_(U)) 4 N ([ast, be1)) - N ([a4t, b4T)) by Theorem 4.4.2.

Thus we only need to show that
o, Ny & T a4y, L, v (1)

for each Tys Tor vos Tk > 0, which is readily seen from Theorem 4.2.3.

By the same token, if we have Vo instead of up in (4.5.8), we would have

to show
4.5.9) T, Ny 4w (T 6y L N9 6y

for each Tys ees T2 0. By Theorem 4.2.3, if Eexp(-zjilfn;fde(Tj) =

k
exp(-81, [(1 - L(£,(t), .., £ (t)))dt), then

Eexp(- Z f (t)N(‘T/O)(odt)

SRS

N(T/o)

= Eexp(- Z lfRf (t/o) (dt)
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6
exp(= —L [ (1 = L(E (£/0), .., £,(£/0)))dt)

exp(—OTl f (1— L(fl(t)n ooy fk(t)))dt)

¢ k @)
Eexp Zj=lfRfde J

by a change of variable. The conclusion follows. Q. E. D.
Further, for each T € R and ¢ > 0, let UT and VO be mappings from

1 L} ] 3 - .
N(R x]R+)\{o} to N(E%X‘R+f\{o} defined by UT. o > ¢>ou_T and VO. o -+ ¢0vl/0

respectively; namely, if ¢ € N(R x R+)\{o} with a decomposition Zibiéx ,
i

then U_(¢) = Z.b.8 , V(d) = Z.b.§ .
T ii uT(xi) o i'i vo(xi)
Corollary 4.5.5 Write P for the canonical measure of IN. Then §°UT=§’
P0V0=P for all T € R and 0 > 0.
Proof: It is obvious that ﬁoUT and ﬁovo are the canonical measures of

INouT and lNovO respectively. Since there is a one-to-one correspondence

between the canonical measures and the distributions of infinitely divis-

ible point processes, the result follows from the lemma. Q. E. D.
Lemma 4,5.6 For x € R x RL, v e N1, ©)), we have

(4.5.10) Ur°8 (x, V) =g (uTx, V)

and

(4.5.11) Voog (x, ¥) =g (Vox, V)

for every T € R and o > 0.

Proof: Let U have a decomposition Ziaiey , and x = (s, t), Then
1
! = 8 =
Urog(x, V) UT(Ziai (s, tyi)) Ziaid(s+1, tyy)® On the other hand,

g(UTX. V) = g((s+T, t), V) = L proving (4.5.10). (4.5.11)

iaid(s+r, tyi)’

BL LR BN R e AN S IR e A S T R e s A M A N Y D T T e "R P P I e S A S S v'v*‘rj




can be proved similarly.

Q. E. D.

We now combine our lengthy and somewhat disconnected discussions to

give the following result.

Theorem 4.5.7

verges in distribution to some point process

divisible with a canonical measure P satisfying

B = 6.(Q x mog !

Suppose that the condition A holds for {EJ} and IN con-

IN is infinitely

where 8 is the extremal index of {Ej}, m the Lebesque measure on R X R;

and Q a probability measure on (N([1, ®)), N([1, ®))).

Proof:

(0, 1].

(4.5.12)

If 6 = 0, then the assertion is trivially true.

For each M€ N([1, =)), define a measure Vv

Vr() = Pog(-xM).

for BE@(]R X ]R;_)l

by Lemma 4.5.5 and Lemma 4.5.6.
could show similarly that VM = VMovo, o> 0,

a scalor multiple of Lebesque measure m; i.e,

(4.5.13)

for some contant Q(M) € [0, =].

Vy(u_(B)) = Poglu (BYa) = Pol og(BXM)

= Pog(BxM) = vy(B)

Vy(+) = 8:Q(M) * m(+)

is a countable collection of disjoint sets in N([1,

This shows that V,, = VMOUT’ T €

It is clear that Q(¢) = O.

Suppose 8§ €

on B(R x ]Rl_) by

R. One

By Lemma 4.5.3, VM is thus

©)), then for

R
N |y

e

¥
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variables with the same distribution as El. If for each g, v > 0,

(5.3.10) n Pla_ sup (c,2Z,) > e} & 0,
n oy ATA
2nv

n-»>o
n P{an igp (CAZA) > ¢} —> 0,
S-nv

then {Et} satisfies the condition A(un,l’ ooy un,k) with Ui = xi/an +

bn for arbitrary x ey X

1’ k*
Proof: We only prove for the case k = 1. The extension to k > 1 is

straightforward. Thus, let u = x/an + bn’ G(x) > 0. For a fixed v €

(0, 1/2), let A, B be two events in the o-fields

B (u) =ol(g, su), t =1, .., K,

@E‘an\) (Un) = 0{(€t 2 un)r t = k+2nv, .., n}

respectively, where k is any number for which the above statements make

sense, It is easy to see that A, B can be represented in the forms

! (n)
U2 (6 € A5

o2
|

t =1, .., k),

]

k+2nv, .., 0)

_ub (n)
B=US_ (5 eB ¢

t,j’
where A(n) and B(n) equal (==, u ] or (u, ©), a, b < », Let
t,] t,] ' “n n’ *
1
&, = sup (c,Z,. .,
t Asnv-1 ATA+t
€' = sup (c\Z,..)s
t Azenutl AT A+t

M =max (| -E']),
1stsn t t

M = max (1&g - E"l).
lstsn © t
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For each 1 s A £ n, Bn y=¢ and thus P{Bn A Z1 > un} ~ caT/anci by

(5.3.3). This and the fact A(y) ~ y2/2 as y + 0 imply that

n o a2

ZA=1 A(P{Bn,A Z1 > un}) ~ n/2 (c T/nZAcA) +>0asn—+o
This concludes the proof. Q. E. D.
Corollary 5.3.3 Let {an} be a sequence of constants satisfying

a -1 a
a I_.(an ) ZA c) ~ 1/n as n + », Then
P{an Mos x} ¥ exp(—ca/(ZAcixa)), x > 0.
Proof: It is easily seen that

n

(5.3.8) P{X1 > a

implying that {a"1 T—l/a} is a "u(T)—sequence". The conclusion follows
n n

from the proposition by letting T = x . Q. E. D.

The following result provides a convenient argument for verifying
the condition A(un) for the max-moving average processes in general.

The idea of the proof is based upon that of [34], Lemma 3.1.

be a max-moving average process; namely, & =

Lemma 5.3.4 Let (&t} t

tel

sxp(cx_t ZA) for some sequence of constants {CA}NEI and i.i.d. random

variables {ZA} Here we impose conditions on neither {CA} non the

AEI’

tail behavior of 21. Suppose there exists constants a_ > 0, bn and

non-degenerate distriiution function G such that

(5.3.9) P{an(l?qn - b ) s x} B G6(x)

for each x with G(x) > 0, where Mn is the maximum of n independent random

R P TR TP _L" I,
1‘_,.‘ Wl _'_1. 1:..&;.‘1__‘“\1;..“. .
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Proposition 5.3.2 {Xt} has an extremal index 6 = ca/ZAci, i.e.,
. () a a
< = p—
éig P{Mn S } = exp(—c T/Zyey).
Proof: Again, we write u for uﬁr) and assume cg=°¢ for convenience.

Since Xt = s;p Cy-t ZA’ we have

P{Mn s un} P{mac  sup ot zZ, s un}

Istsn A

A
=4
—

P{sup max ¢ Z
A 1lstsn A-t A n

P{sup max ¢ Z) sul
A A-nstsa-l

[
A
[+
—
.
R
. &
.;' A

= HA P{Bn,k Zl

Hence for large n,

~-log P{Mn s un} = XA P{Bn,A Z1 > un} + ZAA(P{Bn,A Z1 > un})

where A is defined by (5.1.1). By Lemma 5.3.1.

n n»®e.  Q a -
el PBux 2 7 v T U/ -
and
n+x -
(5.3.7) ie[ P{Bn,A Z1 > un} — 0. .

{1,2,..,n}

oL e , * P A I
K ‘ o, N 'l'v""-'-‘.'

ey T .-'i‘..‘.' Sl S

atdhadca '_...l' ....!_14.‘_._‘4'_._;‘4 ! 2l dl

Therefore it suffices to show that ZAA(P{Bn A Zl > un}) 2=, o. By 7‘
(5.3.7) and the definition of A, it is readily seen that N
z A(P{B Z, >ul})+0asn -+, j
el n,A 1 n .
’\Q{IQZ’..,H} ‘ .
.9
D e e S

L T T R W WP WP S ) a A a PP,




+1 + I

. 4 —T
First consider 2 _ t=p +T

P{Bpn.t Z1 > un}. For each t s -T+l

(resp., t 2 p, + T), Bp ot equals some Coo U S -T (résp., t 2 T); and
n

for each t 5 -T (resp., t 2 T), . does not appear in the summation for

more than Py times. Thus

(5.3.5) gz 1, ™

t=—o t=pn+T P{Bp 2,72 un}

£t 71
n

A

P, ZItIZT P{ct 2y > ul

a a
~ P, L(un) zlt]zT e / u by Lemma 5.2.1
~ P T zltlzT c% / n ZA ci by (5.3.1)
a
sp, TE / n Iy

by the choice of T. Also it follows simply from (5.3.3) that

+T-1
(5.3.6) 0 Py P(8 z, > u )

+ Z
=-T+2 t=pn+1 Pt 1

A

2(T - 1) P{cZ1 > un}

o(Pn/n)-
By (5.3.4), (5.3.5) and (5.3.6),

limsup n/p_ I P{B Z, >u_} s te/L,cy.
o P /Py el Pt 1 n ATA
t¢{1,2,..,pn}

The second assertion now follows since € is arbitrary. Q. E. D.
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and
(1) _
z P{Bp ot Z1 > up } = °(pn/n).
teI n
t&{1,2,..,p.}
n

Proof: To prove the first assertion, assume that the maximum c of y

is attained at A = k. Thus for each fixed n,

B =c, t = k+l, k+2, .., k+pn.

I

By (5.3.1),
(5.3.3) P {cZ1 > un} = caL(c-lun)/u: ~ caL(un)/u: ~ caT/nZAci,
where we write u for uﬁt) for simplicity. Therefore

k+p a a
I *n P{Bp e 42 un} ~ pC T/nZAcA.

t=k+1 n’

The first assertion now follows from

|2Pn  P(B Z, >u } - Py p(B Z, >u H
t=l Pyt n t=k+l = P st n

_ _ k+p
< 2kP{cZ1 > un} = o(pnP{ch > un}) = O(Zt=k21 P{Bpn,t Zl>un})

since Py ® as n > o,

Next, for each ¢ > O, there exists T such that thl>T cz < g. Let

n be fixed, I p{B Z. > u } can be written as

t&(1,2,..,p )

(5.3.4) 5T 4 (0 ptT-1 | o

R R Zt=pn+1 * zt:pn+T P{Bpn,t Zl > un}'

. . . S . N g - T L A . =t
. e § - S y s i LA D W PRLIFSE I NN T LY B VO G R S ey
(RS T NI DU S I Y JE. T DU WU S B PRI PGS0 SN UL TSI G W W " A A -
Y RSP SR L e

>
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P(X > x) ~ EA P(CA ZA > X) ~ X L(x) ZA A
proving (5.2.2). Q. E. D.
For convenience, we assume henceforth, if not otherwise stated, that

the moving average {Xt} under consideration always satisfies one of (a),

(b), (c).

5.3 The Extremal Properties of {Xt}

It is well known that Xl belongs to the domain of attraction of the
(max-) stable law G(x) = exp(-x_a) (cf. [21], Theorem 1.6.2). It will be
shown that Mn' when properly (linearly) normalized, has a limiting dis-
tribution which is of the same type as G. The mixing properties of high
level crossings and the point processes considered in Chapter 3 and 4
will also be discussed.

We start with some notation, As before, write {u§T>} for a sequence
satisfying P(X1 > ugt)) ~ 1/n, or, by (5.2.2),

(5.3.)  Wu{Dy ™%, § -1

Let ¢ = mix Cye For eacht€ I and £ =1, 2, 3, .., write

5.3.2 B = max (c,).
¢ ) Lot~ t-gsAst-1 A

The following result is useful,

Lemma 5.3.1 Let Py» Pos eee be positive integers, P, T ®asn -+
Then
a
p (1) p_Tc
Ztgl p{ep ,t Zl > Un } ~ _I'_l____
n nZAc

d

I! .J.L I

e R o
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-€

L(ox)/L(x) S 2 exp(efé du/u) = 207 s 207°.

2€

We can thus take K to be 206 and this concludes the proof. Q. E. D.

Proposition 5.2.2 Let {Xt} be as defined in (5.2.1) where the c, are

non-negative and P(Z1 >z) = z—aL(z), L being slowly varying at « and a

positive. Then X1 is almost surely finite and, in fact,

Qa

(5.2.2)  P(X] > x) ~ x % L(x) Zy <3

as x + = provided that any one of the following (a) (b) or (c) holds:

(a) ZA ci—e < o for some 0 < £ < a3

(b) ZA ci < = and L is eventually non-increasing;

(c) ZA ci < o and L(x) converges to some positive constant as x tends to
w'
Proof: We only prove the assertion under (a). The proofs under (b)

and (c) are more straightforward. The assumption implies that c dgf

max(cA) < o, Since c), 2c?> 0 for each A, Lemma 5.2.1 implies that

there exist X0 and K such that

I, Pley 2, > O/L(x) = 1, c§ L(c}! x)/L(x)
-a a-€
s K x ZX <y
for each x xo, where we interpret c L((:-'1 x) as zero if ¢ = 0.

Hence Zk P(CA ZA > x) ~ x e L(x)'ZA ci by dominated convergence and the
fact L(tx)/L(x) l(:f?%l for each fixed t > O. Theorem 5.1.1 now implies
that X1 < © a,s., and, consequently, the distribution function of X1 does
not have a jump at its right end point since the right end point obvious-

ly equals infinity. Thus Lemma 5.1.2,

'''''
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and ¢ > 0, there exist x, and K such that

':\: 0

X 2 X

W ORI

L{px)/L(x) < er for all p z DO, 0

Proof: It is known (cf. [11]) that L can be represented as

L(t) = a(t) exp(f§ e(u)/u du)

where a(t) is a positive, bounded and measurable function that converges

to some positive constant as t + o, and €(t) is a continuous function

a(px)/a(x) exp(f? £(ux)/u du)

_ that tends to zero as t + ®. We can assume without loss of generality ]
L that 0 < Py < 1. Tt is easily seen that there exists an Xq such that

ﬁi for each p 2 DO and x 2 Xy we have i
a(px)/a(x) < 2 ]

Ei- and ?
_ lecox)| < e. i
- :
}? Thus for o 2 p, and x 2 x, 5
- !
L(px)/L(x) = a(px)/a(x) eXP(fix £(u)/u du) i

1

4

A

2exp(€|f? du/ul)

where we interpret f: f(u)du as -fg f(u)du if b < a. Consequently for

each p z 1 and x 2 x

Ul

L(px)/L(x) s 2 exp(€f$ du/u) = ZDE,

and for 0, S0P <1 and x = x

0 0’




5.2 Framework
©
Let {CA}a» be a sequence of constants which are not all zero. Define
L]
a stationary sequence of random variables {Xt}dm by

(5.2.1) Xt = s;p et ZA

where {ZA}T;r the noise sequence, consists of independent and identically
distributed random variables. For convenience, call {Xt} a max-moving
average process. It is interesting to note the parallels between {Xt}
and the usual moving average. We shall see, with certain tail assump-
tions, the extremal behaviors of the two are strikingly similar.

A function L is said to be slowly varying at ® if it is positive and
measurable on (0, ®) with iig L(tx)/L(x) = 1 for each t > 0. A function
R is said to be regularly varying at « with index o if R(x) = x®*L(x),

x > 0, where L is some function slowly varying at <. Naturally,

lim R(tx)/R(x) = @

X 500

Some helpful references concerning slowly and regularly varying functions
are [11] and [12].

Throughout this and the later sections, our study of the max-moving
average process will be confined to the special case where the coeffi-
cients cA's are non-negative and P(Z1 > z) is regularly varying at « with
index -a, @ > Q. For (Xt} thus defined, two immediate questions are:

(a) Is Xl < ®a,s., ?
(b) Is P(X1 > x) regularly varying at «?

The following technical lemma provides an anwser.

Lemma 5.2.1 Let L be a slowly varying function. For any fixed o >0
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4
Conversely, suppose X < = a.s.. Then there exists an x such that :ﬁ
P(X s x) > 0, which implies that -log P(X £ x) < =, By independence and -#
(5.1.1), R
-log P(X = x) = -log Hi P(Yi S x) = —Zi log P(Yi s x) ]

= Zi P(Yi > x) + Zi /\(P(Yi > x)).

But this implies that Zi P(Yi > x) < © since -log P(X £ x) < = and

Zi A(P(Yi >x)) z 0. Q. E. D.

Corollary 5.1.2 Write x, = sup{u: P(X s u) < 1}. If P(X< xO) =1, B
then P(X > u) ~ ZiP(Yi > uy) as u » Xg* Ei
Proof: Since P(X < xo) =1, we can find x < X0 for which P(X = x) > 0. e
Hence for x s u £ x,, .ﬁ

~log P(X s u) = Zi P(Yi >u) + Zi /\(P(Yi > u)).

The assumption P(X < xo) = 1 implies P(X s u) + 1 as u > Xqe As a conse-

quence,

-log P(X £ u) ~ P(X > u)

3
"

and

I, P(Y, > u) > 0as u~ xg
r' The result now follows from the fact Z/\(P(Yi >u)) = o(ZP(Yi > u)). !!

]
b .
:'- Q. E. D. q
} {5
3 »
g .
=
- .
4 o
- -1
q ¢
3 =
b‘ . . . . - ot
r:.-. ':“ ‘ -':‘ :: 'V.A'U_A‘-..' - A- - -.'-i .","‘i A_‘A'--,".'-g A' \_:‘J‘_‘,‘,'-:A“'; f.:_,“;:.;_ - .';.-v_-,-‘;&.....‘- - -.',.' '.'4 ' L. 'J‘. S ‘: t‘:....‘;.q..:..‘x;..»...*,‘_m“h....._-_.., .*ﬂﬁ:}i ,k.»ﬁ;",:
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< CHAPTER V

EXTREME VALUE THEORY FOR THE SUPREMUM OF WEIGHTED RANDOM

VARIABLES WITH REGULARLY VARYING TAIL PROBABILITIES

5.1 The Supremum of a Sequence of Independent Random Variables

To demonstrate the notions mentioned previously, we now stady a
class of processes which is interesting in its own right.

Throughout this chapter, a random variable bears the meaning of an
extended real-valued random variable, i.e., it is a measurable mapping
from some probability space to the extended real line R = [, «].

The following result is basic.

Theorem 5,1.1 (cf. [8]) Let Yl’ Y2, «e. be a.s. finite and mutually
independent random variables defined on some probability space. Write
X = sup Yi' Then X < = a.s. if and only if ZiP(Yi > x) < o for some

X < w. This shows, in particular, that X = « a.s. or x < © a.s..

Proof: write
(5.1.1) AMy) =y + log(l -y), 0 sy <1.

It follows by Taylor's Theorem that A(y) z O, A(y) ~ y2/2 as y » o,

r

b

: Suppose first that ):iP(Yi > x) < » for some x < w». Then

¥

lim P(X > u) < lim 5. P(Y. >u) =0 v
U0 U0 1 1 '_!

by Boole's inequality and dominated convergence. Thus X < « a.s..

PO - e e A .. ) RS S - . . I . U
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On the other hand, Faton's Lemma implies that
EIN((O, 1) x (0, 1)) S liminfEan((O, 1) x (0, 1)) = 1.

If follows that EIN((O, 1) x (0, 1)) = T and k1 =1 a.s. Q. E. D.

It is important to observe the differences between Mori's and our
result. Mori assumes that {Ej} is strongly mixing and considers the

point process Za(j/n, agl(ij-bn))' We assumed the condition A& and con-

sidered the point process Zd(j/n, u;l(gj))' It is quite obvious that
neither result contains the other. However, the two are similar when b
the extremal index 6 exists in (0, 1] and &1 belongs to the domain of

attraction of some max-stable law. We feel that it is possible to have

a unified approach using normalizations that are more general than the 'i

ones in both results. To be more specific, we propose to study the point ] ‘]
process Zé(j/n, UHI(Ej)) where {fn} is a sequence of measurable functions
such that P(Mn s ugr)) -> e—T, T >0, as n + >, Here we neither assume

that u, is linear nor require that 1 - F(ugT)) ~ T/n. This is certainly

the direction of future endeavor. i
g
) ;
'. ;:.4
)
r‘« o'
[ - }
[ - b
1 -
- . ‘--
. §
}.

-
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The intimate relationship between the limit point processes and

Poisson Processes is simply seen as follows.

Corollary 4.5.8 Let {(Si, Ti)’ i=1, 2, ..} be the points of a homo-

geneous Poisson Process  on R X‘RL with mean 6. On the same probabil-
ity space, let Nys Nys eee be a sequence of identically distributed
random elements in (ﬁk[l, ®})), ﬁz[l, ©))) with common distribution Q, and

let {1 =Y., sY,s...5 Yiki} be the points of n , i =1, 2, .., where

kl’ kyy ... are r.v.'s in {1, 2, .., ©}. Assume that the n; are independ-

ent of ¢ and are themselves independent. Then

d s ki
(4.5.14) N = Zi=1 Zj=1 G(S.,T.Y..)'
itij
Proof: It suffices to compare the Laplace Transforms of the two point
processes in (4.5.14) A Q. E. D.

An extremely pleasant situation is when ny is degenerate; i.e. the
atoms of n, are fixed with probability one. The following is well known

(cf. [21], Theorem 5.7.1),

Corollary 4.5.9 Suppose g, the extremal index, equals one. Then IN

is Poisson with mean 1.

Proof : Using the notation of Corollary 5.6, it can be seen that

EIN((O, 1) x (0, 1))

E[5((0, 1) x (0, ™)1 « E(ZL [ 5 PL, 0 € /)]

ky (1 N
TE[ZJ=1 IO P(Y) 5 € 1/x)dx] 2 T

Yt e

2 AP, G 4 B nthe i e

_. T T w - ¥ T

N
A
o
3
e
L e
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-
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each B € B(R x ]RJ_) for which m(B) > 0, we have
Q(M, ) = Pog(BxUM, )/6m(B) = IPog(BxM,)/6m(B) = IQ(M,)

since g is one-to-one. This shows that Q is a measure on N([1, «)).
Moreover, note that g maps the set ([0, 1) x (0, 1)) X N([1, «)) to

{6 € N(R x R;)\{o}: ([0, 1) x (0, 1)) > 0} N A, and
Plod e N(R x lR;_)\{o}: ¢([0, 1) x (0, 1)) > 0}

-log P{ N ([0, 1) x (0, 1)) = 0}

-10g PINT ([0, 1)) = 0}

ot

by Lemma 2.2.3 and Theorem 4.3.4., Consequently,

QN([1, @))) = Bog(([0, 1) x (0, 1)) x N([1, =)))/6m([0, 1) x (0, T))

=1,

showing that Q is a probability measure. We have thus shown, by (4.5.12)

and (4.5.13), that
Pogo= 8-(Q x m).

Finally for each set E in the Borel o-field of N(R X ]RJ'r)\{o},
Bogo(g lE) = 6-(Q x m)(g™'E).

The left hand side is simply ﬁ(E N A), which equals ﬁ(E) since P is con-

centrated on A. Thus

P =6.(Q%m g‘l. Q. E. D.

W ks
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Clearly, E; and 5; are independent if j - i 2 2nv. Therefore for € > 0,
a 1 ~(n) _ . b " ~(n)
P(A N B) s P{uj=1(§t € At’j, t=1, .., k)} P{uj=1(€t € Bt,j’

t = k+20v, .., n} + P{M; > e} + P{M: > ¢}

A(n) a(n)y _ _ .
where At,j (or Bt,j) = (—», un+E] or (un €, ) depending upon

AE?? (or Bé?;) = (-, u Jor (u, =). Thus

P(A N B)

A ) NUAORAOPIRAS B ORI | AL

s P (B € KM el ooy 0) ¢ POY) (g € BN, caezn L o, )

+ 2P(M > €} + 2P(M > €}
n n

j, J SR

2(n) |, E(n), _ . .
where At,j (or Bt,j) = (—o, un+2€] or (un 2e, ) depending upon

(n) (n)y _ (o ®
At,j (or Bt,j) = (~», un] or (un, ). We therefore have

n
P(A n B) s P(A)P(B) + zt=1 P{un—ZE < &t < un+28} +

2P(M' > €} + 2E(M > ¢}.
n n

A corresponding lower limit can be obtained similarly. As a consequence, .

|P(A N B) - P(A)P(B)| = nP{un-Ze < go s un+2€}
;'-:.'; + 2n1>{|50 - g(')| > e}l + 2nP{]g0 -~ g(';l > g},

The quantity on the right-hand side is independent of the choices of k, A

and B. Replace ¢ by e/an and writing u + 2€/an = x+2t~:/an + bn’ etc., we
: have that
) ) k n
'. A\),n = sup(|P(AﬁB) - P(A)P(B)I. Ae CBl(un), Be (Bk+2n\) (un), k s
°

P N
PRI
S e e
s,
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(1-2v)n) s nP{(x-ze)/an +b <&y s (x+2e)/an + bn}

+ 2nP{a_ sup (c,Z,) > e} + 2nP{a_ sup (c,Z,) > €}.
" Aznv A7 ‘ " As-nv A7

The first term converges to log G(x+2e) - log G(x~2e) according to [21],
Theorem 1.5.1. The second and third term converges to zero by assumption

(5.3.10). Thus, by letting € + 0, we have

A +0asn+x
v,n

since G is an extreme value distribution and hence continuous., This
shows that A(un) holds since v € (0, 1/2) is arbitrary by a variant of

[21] Lemma 3.2.1. Q. E. D.

Corollary 5.3.5 Let {Xt} be a max-moving average process as described

in Proposition 5.2.2. Then {Xt} satisfies the condition A(uSTl),
uﬁTk)) for each k and each choice of positive Tyr oos Ty i.e, the condi-

tion A holds for {Xt}.

Proof: By corollary 5.3.2, P{an Mn £ x} converges weakly to the dis-

tribution function exp(-ca/(ZA ci x* ), x > 0, where a satisfies

ay .1 o
(5.3.11) anL(an )ZACA ~ 1/n.

Thus if for each ¢, v>0,

(5.3.12) nP{a_ sup (c
T aznv

- nN-»co
AZA) > g} —> o,

and

(5.3.13)  nPla_ sup (¢ 2,) > e} 222 o,
n AS A
--n\)

then {Xt} satisfies the condition A(un,l’ oy un,k) with u_ ., = xi/an for

. .
.‘a".’ 3

1
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. . . w-1_-1/2 b
arbitrary X1» eos X which concludes the proof since P{Xl/an T }~1/n, .
T>0 (cf. (5.2.11)). Hence it suffices to show (5.3.12) and (5.3.13). :
4

Here we only verify (5.3.12) for the case where there exists 0 < § < « A
for which ZA ci_é < o, the rest being similar. By Lemma 5.2.1, there ;f
"

exist nO and k such that for n 2 nO, ;
s

aa -a -1 -1 N

(5.3.14) Zkznv P{anc)‘Z1 > e} = ZAznv ac\e L(an <y €) N
-

<

a S-a -1 a-6 -4

s Kan € L(an ) sznv €A -

.

since a;1 + o, (5.3.14) and (5.3.11) imply that for large n ji
§-a a=0 a -

n lenv P{ancAZ1 >¢g} sKe Zkénv Y / ZA Cyr B

8

—~

. . a8 .
which tends to zero as n tends to « since ZA y < o, The assertion

(5.3.12) now follows by Boole's inequality. Q. E. D.

We now examine the "local" behavior of {Xt}. The most important
idea involved in the following proof is roughly that a cluster of ex-
ceedances of a high level by {gj} is the consequence of a single large
"Z" from the noise sequence-a property shared by the usual moving average
(cf. [34]). Since the c, are not assumed to be all different, it is con-

A

venient to introduce the following. Define {Aj}j:b inductively by

(5.3.15) = o, A, = max{k: ¢, = max (c
X0 1 e

D)

A = max{k: ¢} = max (CA)}' i=2,3,4, ... .
J WEINA s wey Ay )

Obviously, c 2 cC zcC 2 hee

A




Lemma 5.3.6 Suppose T, > T, > .. > Tj > 0 are constants, and {rn} is
a sequence such that r, = o(n) and r *easn->+®, For large n, let

J ., 121, be the interval
n,i

[1 + max (A.)), r_ + min (A))]
1sjsi+l 3 1sjsi+l

and E . the event
n,i

(Brn,k z, > uﬁTl), B, ;2% uﬁTl) for all i # k).

n,i n

Then for each (il’ ces iJ) € {J'

r (ti) _ . o
P{Zm:1 Xn,% =i = 1, .., J, En,il}

-1 . a a +
~n e (rZey) " o[min (t.cy )-max (1. )]
n=A"A 1sjsg J Aij 1sjsJ 9 Aij+1

where x' = max (x, 0).

Proof: Assume that min (T.Ci ) > max (T.C: ), and that <y
lsjsJ 3 i, lsjs J i+l i+

> 0, which implies <y 2 O for all 1 5 j = il; the modification needed is

obvious if otherwise. If ke d& i’ then k-1 2 max ().) and k-rn g
1 lsjsil+1
N T
11+1 n

} and, consequently, for each 1 sr g il+l, the r-th

min (X.). This implies that {CA O
lsjsij+1 ) 1R

“k-r_+1? *** k-1
n

largest among Ck—rn’ cer Cp) equals CAr. Now
pzfn, (T3 =4 j=1 J,E .}
m=1 xn,m i’ vt n,i1
r (13) _ (Tl)
- Zke-ﬂ Pz =] Xn,% h lJ’ =1, . J, Brn,k Zk > Yn o

.o ST el eTel e . .t .- - “~ .

. Lt e - - - . .
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for all i # k}

< u(‘l’l)
n

Zk < ugtj) <c, Zk’ j
n,i ij+l i

i
™
"o
—
(e}

s ung) for all i # k!}

]
[ng}

< Y Z

s ung) for all i # k!
By stationarity and the fact (cf. Lemma 5.3.1)

gtl) for all i} =

lim P{B . Zi Su

1
n-»o n

we have

(5.3.16) OIS LR TR S WORIRAS

.=1, ey J,

~r P{CX Z, s u(Tj) <cy 2y i 1, .., J}

i.+l i,

J J
= r_ P{max uﬁTJ)/cA < Zli min ugrj)/cA }
o1sju i 1sjsJ i+l

since L(uﬁT))/(uﬁT))a ~ T/nZAcA by (5.3.1), it follows that

)/CA ) < Z s m1n (uﬁTJ)/cA )}

P{max (u ﬁ J
jsJ ij+l

15 isJ
] 1

= min P{Z > u(TJ)/cA } - max P{Z > u(TJ)/cA +1}

sisJ U 1sisJ .
= 1 J 1

n c: L(u (T )/CA )/(u(TJ YL max Ci L(ugrj)/c
jsJ i i Lsjs) i+l

N o+l
j

1, .., JIP(B . Z,
r ,i 7i

?

)/(ulT3)ye

e AW IR

e O




?9

T " s &N V& v © ¥

~ (min T.ci - max T.ci )/nZAci.
1sjsJ J i, 1558 J 41

¢ ¥ v ¥ @

This together with (5.3.15) conclude the proof. Q. E. D.
A(u(Tl) u(TJ))—se aratin Then for each (i i,) el T
n 9 ey n P g‘ - 1’ LIS ] J J’ :._‘i
(5.3.17)  1im P(Fn {7 ) - R ER RN X1 1 > 0} 2
oo sM n,m
L
= [min (7T c(}l‘ /Tlc ) - max (T.C(; /Tlca)]+ q
1sjs7 3 MdL 1sjs; 3 M4l -
J J
where xT = max(x, O).

f
Proposition 5.3.7 Let T, > T, > .. > T; > 0 be constants and {rn} be

Proof: First note that
(5.3.18) 0 sP{zn xﬁfg) =i, 3=1, .., 0050 ngé) > 0}
- P(z 0, xﬁfg) =i, d=1, ., J, B 1ll &n x(Tl) > 0}
= P(zfn ¥ (TJ) =i 3=l e J E llz n xﬁfé) > 0)
E s (P{Brn,i Zi > ung) for some i€{l,..,r }} + P{Brn,i Zi
: > ung) for more than one i in {1,..,r /Pt oy ngé) > 0}.

?

By Lemma 5.3.6, the proposition would have been prcved if we could show

the right hand side of (5.3.18) tends to zero since (cf. Lemma 5.3.1)

r 1) a ]
(5.3.19)  Pizfny x{TL) > 0} ~ ot ery/(n2ye).

By Boole's inequality and Lemma 5.3.1,




(5.3.20) PB. .2, >u
r n

for some i € {1, .., rn}}

sz pig. . z. >}
iel Tt n
iQ{l,..,rn)

= o(rn/n).
Also we have

(5.3.21) P{B_ .2 > u(Tl) for more than one i in {1, .., r_}}
r ,i “i n n

n

L1

r (T1)142
( ;’ ) [Plez; > u "17}]

A

(r P{Z, > ugr)/c})z/Z

~ (¥t rn/(nlxcg\))z/Z

o(rn/n).

Combining (5.3.18), (5.3.19) and (5.3.20), the conclusion follows.
Ql E. D.
Combining proposition 5.3.7, Corollary 5.3.5, Proposition 5.3.2,

the following is immediate by Theorem 4.2.4.

Proposition 5.3.8 Let {Xt} be as described in Proposition 5.2.2.

Using the notation of Chapter N, for each choice of constants ® > Tl

T2 > .. > TJ > 0, the point process (Nﬁrl), . NﬁTk)) converges in dis-

(tp)

tribution to some point process (N ) e N(Tk)) with Laplace Transform

. a
exp(- —,Tzir fRil = LIEE)s vy £5(6)))dD)

where

L2
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L(sl. ces sJ) =z

max (T.cAa /Tlca))+ x exp(—Zq
1sjsJ 7 i+1 J

L]
—
.

.

By Theorem 4.4.2 and the above, a complete convergence result can be

stated as follows.

Proposition 5.3.9 Let mn be as defined in Chapter I for the sequence

{Xt}. Then an converges in distribution to some point process IN with
Laplace Transform
&

exp-gig ff (-
A X Rx(0,)

_f[l’w)f(s, tw)w(dw))dsdt)

Where \D = Z)\ ECQ/C%.

Proof: Let ¢ be a point process with the Laplace Transform described
in the proposition. By Proposition 5.3.8 and Theorem 4.4.3, INn con-
verges in distribution to some point process IN. Thus it suffices to
show that ¢ d IN. By Theorem 4.4.2 and arguments used there, we only

need show
(5.3.22)  (&(X[0, 1)), ..y TCx10, TN & T, L, Ny

T T
for each choice of k and T > T, > .. > T > 0, with (N( 1>, ves N( k))

defined by Proposition 5.3.8. The Laplace Transform of (g(.x[O, TI)),

ooy C('X[Os Tk))) is
k
Bexpl-1%_| [ £,()2(ds [0, T))]

= EexP[—jllxR+,Z§=1fj(S)1[O, Tj)(t)c(dedt)],

o
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which equals the Laplace Transform of evaluated at f(s,t)=Z§=lfj(s)- =
1 (t). Thus it follows from the definition of Z that )
[O'T-) i
k t;

(5.3.23) Eexp[—2j=1fnzfj(s)c(dsX[O, Tj))] if
k -

_ _ Ca _ -f 1'm Z._ f.(S)l 0.7. (tw)w(dw))dsdt —

= exp[ —E,T;II]RX]R+(1 € [ ) J—l J [ ’ J) ] !

k .

a =, f.(s)Yl1, 1./t) ,

- expl- =< [ [T 71 3" ydtds) R

L ¢) sER t=0 K =

a T =z, o f.(s)[1, T./t) -

- - ¢t PSS | j=1 7] J =

= exp| N fse]R(l 7 ft=0 e dt)ds] _.1
Simple calculations show :j
., f.(s)u[L, T./t) i

1/, [Ty e 37103 e 3

:

-2, f.(s)i. .

- j=1"] h| N

= 1/ I S CORIPREITS 1 (t)de ]

(w[l’Tj/t)=1J! j=1"°,k)

(s)i.
1 & e J -5 A1l (t)dt.

1/t 0
(i)sesip)ET, (w[l,Tj/t)=ij,j=1,..,k)

But

1(\1)[1, Tj/t) = lJ’ J = ly coy k)

l(Ca/C%' s Tj/t < Ca/cc}!‘ ] J = l: 2: coy k)
1

i ij+1
= 1(max (T.C% /c®) £ t < min (T.Cg /c®)),
1sjsk J i 1sjsk 41

showing that




1 (T k
B [ exp(-L3_; £(s)U[1, T,/t))dt

=z (i, oo, 1 )}exp(-Zk_ f.(s)i.)
(il, .oy ik)elk 1 k 3=1"] J

where n{(il, “es ik)} = (min (T.C: /Tlca)—max (T.ci /Tlca))+.
1sjsk N lsjsk i+l

(5.3.22) follows from (5.3.23) immediately. Q. E. D.

[9] uses a more direct argument to derive a complete convergence

result for the usual moving average process with regularly varying tail

probabilities. It can be seen easily that the sequence of point pro-
cesses |Nn defined for the usual moving average converges in distribu-
tion to the point process IN in the above result. This phenomenon is

interesting in its own right, and is yet to be explained.
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