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TAILEN HSING. Point Processes Associated with Extreme Value Theory.

(Under the direction of MALCOLM R. LEADBETTER.)

This work demonstrates the application of point process theory in

the context of statistical extremes.

Consider a stationary random sequence which satisfies certain

dependence restrictions. We study the asymptotic behavior of a sequence

of point processes that record the positions at which extreme values

occur. Necessary and sufficient conditions are given for the weak con-

vergence of the sequence. It is found that the usual Poisson limit when

the random sequence is i.i.d. is replaced by a Compound Poisson limit.

The asymptotic distributions of extreme order statistics are derived

from the weak convergence result using simple combinatorial arguments.

A class of point processes in two dimensions is also considered.

The weak limit is characterized to be a cluster process which is deter-

mined by a homogeneous Poisson Process and the local dependence structure

of the random sequence.

A random sequence whose members are the weighted maxima of i.i.d.

random variables is studied. It is shown that the sequence satisfies

our dependence restrictions, and the point process results developed can

be applied. Specific limit forms of the various point processes of in-

terest are derived.
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CHAPTER I

INTRODUCTION

1.1 Extreme Value Theory and Point Processes

The focus of attention of classical extreme value theory is on the

distributional properties of the maximum M of n independent and identically
n

distributed random variables, as n becomes large. For example, the Extremal

Types Theorem (cf. [21]) states: If for some constants a > 0, b , wenn

have Ptan(n - bn ) w x G(x) for some non-degenerate G, then G is one

of the following three extreme value types:

(1.1.1) Type I: G(x) exp(-eX), -- < x <

0 x 1 0,
(1.1.2) Type ]I: G(x) = {fo m.0 0

exp(-x- for some a > 0, x > 0;

exp(-(-x) ), for some a > 0, x :_ 0, --

(1.1.3) Type MiI: G(x) = {
Sx> 0.

It is natural to combine point processes with extreme value theory.

Typically one is interested in the limit of a sequence of point processes

obtained from extremal considerations, and it is often the case that a

Poisson convergence result can be derived. For example, Resnick [31],

Shorrock (351 and Pickands [30] all consider point processes involving

"record times" in i.i.d. settings a research direction which was ini-

tiated by Dwass' and Lamperti's work (cf. [10], [15]) on extremal processes.

-2

. . . . .
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Resnick [32] further noted that many results in this setting can be de-

rived from a "Complete Poisson Convergence Theorem" in two dimensions.

It is known that the i.i.d. assumption can be relaxed. Leadbetter 118]

considers a point process of exceedance positions under the conditions

D(u ) and D'(u n) while Adler [11 generalizes Resnick's two dimensionaln n

result in [32] by assuming the conditions D and D'. In results of this

kind, a long range dependence condition (e.g. D(u n)) is used to give
ni

asymptotic independence of exceedances and together with local restriction

(e.g. D'(u n)) to avoid clustering of exceedances so that, in the limit,

the point process under consideration performs just like onc, obtained from

an i.i.d. sequence. If the local condition is weakened or omitted, then

clustering of exceedances may occur. Some such situations have been con-

sidered. For example, Rootz6n [33] studies the exceedance point process

for a class of stable processes, Leadbetter [20] considers Poisson results

for cluster centers, Mori [261 characterizes the limit of a sequence of

point processes in two dimensions under strong mixing.

Our aim in this work is to study the limiting form of exceedence point

processes (and of related but more complex point processes) under as broad

assumptions as possible.

1.2 Framework and Poisson Results for I.I.D. Sequences

Let {., j e I} be a strongly stationary sequence of random variables

defined on some probability space (Q,()3, P). Since we are mainly interested

in the "weak" instead of the "strong" or "almost sure" type of results, the

probability space will not be mentioned specifically each time. Write

M(k) for the kth largest value of , , n k = 1,2 and M = M(l)
n n n

Let F(u) P{ ul and F. (u) P{. u, j l,...,k).
1, 29 .... ik -.
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The following result is useful and suggestive despite being trivial.

Proposition 1.2.1 Let be an i.i.d. sequence. Let 0 T and

suppose that

(1.2.1) n[1 - F(u)J T as n .

Then

(1.2.2) M u } e as n A
Conversely, if (1.2.2) holds for some T, 0 T i , then so does (1.2.1).

Since this work will be centered upon point processes involving the

sequence {u } in (1.2.1), we write {u(T)i, T > 0, for a sequence of cons-
n n

tants which satisfies

(1.2.3) n[l - F(u(T))] + T as n ,
n

n exists if and only if I - F(x-) d I as x x F = sup{x: F(x) < 11n 1 - F(x) 1asx+x:Fx)<}

(cf. [211, Theorem 1.7.13). It is obvious that if {u ( )} exists for one
n

T > 0, then it exists for all T > 0. We shall always assume implicitly
(T)()

that {u } exists. For each n = 1,2, ... and T > 0, define N- T ) to be
n n

the point process (cf. Chapter I1 ) on (0,11 that consists of points (j/n:

I j for which - > 1 For convenience, N will be referredj n n-..

to as the "exceedance point process". Now we state without proof a basic

result which is again instructive.

Proposition 1.2.2 Let {gj} be an i.i.d. sequence and T a constant in

(),' ). Then N(T) converges in distribution (cf. Chapter Two) to a Poisson -
n

Process on (O,11 with mean T.

1.3 Poisson Results under D(u) and D' (u)n n-
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k k k

m 1, 2, 3, .. , I. E T , = 1, .., k, j = 1, .., m. Since H is closed

under finite intersections, we may conclude from a monotone class theorem

(cf. [141, A2.1) that 0 D a(H). But by Lemma 2.2.5, G(H) D Ti M(S).

Therefore P ( * C ) G A) = P{(r) 1 .... nk) E A) for each A e HkM(Si);

i.e., ( "'' k) = (l " )' proving "(iii) (i)". In similar

manner, we can show "(ii)' : (i)" and this concludes the proof. Q. E. D.

2.3 Convergence in Distribution

Let S be a metric space and Pop Pit P2 Y ... be probability measures

on2, the Borel a-field. P is said to converge weakly to P09 or P n PoS" n ' n 0

ffdP n ffdP0
S S

as n + for every bounded continuous real function f on S. A family, 71,

of probability measures on (S,8 ) is said to be relatively compact (or

sequentially compact) if every subsequence contains a weakly convergent

subsequence, 7 is said to be tight if for every c > 0 there exists a com-

pact set K such that P(K) > I - c for all P in 7T.

The following two results are among the most important.
S

Theorem 2.3.1 (The Portmanteau Theorem) Let Pn' P be probability
.

measures on (S, J). These five conditions are equivalent.

n

(ii) limffdP ffdP for all bounded, uniformly continuous real f.n -co o " n "

(iii) limsup P (F) P(F) for all closed F.
n n

(iv) liminf P (G) P(G) for all open G.
n n

_1
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Theorem 2.2.6 Let (Cl. and (n1 ... rk ) be two random elements
k kk k

in (F M(S R ( (or 11kNS N(S.))) and letT.CBS ba
I 1  1  1 1 1)

semiring satisfying 3(Ti) = B(Si), i = 1, .., k. Then the following are

equivalent.

(i) ni = ' ' "'

E k k e = kt )' (' ' ) (
k I

(i' Eexp(-E .f. = Eexp(-X. k fQ (fi *f k F(

(iii) C k k

d k k
i= k i (I ) .. . i= li(I im m = 1, 2, 3,

Iij E Ti , i = 1, .. k, j = 1, .. , m.

Proof: We will prove this for random measures, the proof for point pro-

cesses being similar. We proceed according to the following plan:

(iii) ==:> Mi = (ii)_

(ii) t :

It is obvious that (i) =(ii) =(ii)' and (i) =(iii). Thus it suffices

to show that both (ii)' and (iii) imply (i).

Suppose (iii) holds and define

= {A G H k (S ... e A) = .. 9 e All.

Then 0 is closed tinder proper difference and monotone limits, and it

contains Rk M(S Further, since (iii) holds, 0 contains the class H of 3
1t h

all sets of the form-•

6
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, =, - , r. k M(S. , .- ° . . . , : i - I k ' i with% the .W °. i ;

product space RlkM(S) = {' M(S i , k with the

usual product topology and 0-field. The following lemma is a simple con-

sequence of [141, Lemma 1.4 and Lemma 4.1.

Lemma 2.2.5 For each i = 1, 2, .., k, let T. C B(S i) be a semiring with

Ak k
() = S(Si Then H TM(Si ) (or I N(Si) is generated by any one of the

following three sets of mappings.

1-•1Wi (wit'. W' k )  iJ(B)' BE B (Si) i =it . k;

k1
(ii) (wit "'9 Wk )  W i ( I ) , I E Tit i 1 , .., k;

(iii) (W -I "'k) Wi f, f G r (S.), i = 1, .. , k.

Let i' ,2 "t n k be random measures (resp., point processes) on SP

Sk , respectively, defined on the same probability space (Q, 3, P).
kk'

(nil' "' nk) is therefore a random element in (H kM(Si) II M(Si)) (resp.,

(niN(Si), lN(S))). Kn it .., k
) - is said to be the distribution of

(nl' "'9 nk). Two random elements (nIl ..' nk) and ( l' "'1 k) in

(RkM(S), Rk(Si))(resp., (n kN(Si), 1kN(S))) are said to be equal in

distribution, or (ni, .., Ik )  ('' k if P(TI , . n -

P(''' 9 )1 The function

k

L(f,. fk) = E e

on EkF(S) = {(ft .. ' f ): f E F(S.)} is defined to be the Laplace1 i i ..

Transform of n = (nit ". Tk).

The following theorem provides a number of equivalent ways in which

P("*l n can be specified.

kS

.A.
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k k
Proof: The assumption P{Z r(E) < co > 0 implies that Eexp(-ZXIt n(Ed)

> 0, t i p t , ..' tk e(O, ). Suppose first that r(E), .. ,(E are

independent. Then

0 < Eexp(-Zkt irj = t ,, tk > 0,

which implies by (2.2.1) that

k

f [I - exp(-1t i (Ei))IX(dW)
N(S)N{ ol

= kfN(S)\{o[I - exp(-tiu(Ei))]X(du) <

or, equivalently,

(2.2.3) fM(S)\{o{1[i[I - exp(-t i(Ei))I - [1 - exp(-Zkt i(Ei))]}X(dW) = 0.
01. 1

It is easy to see that for ' 
> xI , x2, -, xk  0,

k k
Z (1 - e x 1) Z I - e- ZIxi

with equality holds if and only if no more than one of the x. is non-zero.

The assertion (2.2.2) now follows from (2.2.3). The converse is similarly

proved. Q.E.D.

A random measure (resp., point process) n is said to be Compound

Poisson if it has a Laplace Transform exp[-w(l - of)], where w E M(S) and

7 is the Laplace Transform of some probability measure n on (0, -) (resp., IN).

n is said to be Poisson with intensity w if Tr({11) = 1. A Compound Poisson

Process n on Rk (or a subset of k ), k E IN, is said to be homogeneous if w

is a constant multiple of Lebesque measure. Throughout this work, we will

be mainly concerned with homogeneous Compound Poisson Point Processes.

Now let (Si, i), i = 1, .. , k, be k Polish spaces, we can form the

- • " --i- .- "" ' - " "1. ..
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I.(2.2.1) -log Eexp(-nf) =af + f [1 exp(-Lwf))X(dw)
M(S)\{o}

defines a unique correspondence between the distributions of all infinitely

divisible random measures q on S and the class of all pairs (a, A), where

a E M(S) while A is a measure on M(S)\{o) satisfying

f (1 e-(B) )(dui) < , B e(S).M(S) {o}

In the point process case, we have a = o while A is confined to N(S)\{ol.

We will call (2.2.1) the canonical representation of L , a and X will

be referred to as the canonical measures of n. The following results will

be useful in Chapter 4.

Lemma 2.2.3 Let n be an infinitely divisible point process on (S,,6)

with canonical measure A, and E a set in S. Then

P{q(E) = 01 = exp(-A{f E M(S)\{o}: u(E) > 01).

Proof: It is readily seen from (2.2.1) that

log E e-tn (E) = -f (1- eti(E )(du), t > 0.
M(S)\ { o1

Passing t to , the conclusion follows by monotone convergence. Q.E.D.

Lemma 2.2.4 Let n be an infinitely divisible point process on (S,)

with canonical measure A. Suppose El. E .. , Ek are sets in.0 such that

P{k n(Ei) < -} 0. Then (E1), .. , r(Ek) are mutually independent if

and only if for i, j satisfying 1 i < j k,

(2.2.2) A{u e M(S)\{o}: w(E.) > 0, w(E.) >0 = 0

I- J

uq

.. . . . ., . . - -

- . " . . . . - -i-
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L + if, f E F (S)
C

are continuous is said to be the vague topology. Let M(S) be equipped

with the vague topology and the Borel o-field. N(S) is known to be

vaguely closed in M(S) (cf. [14], A7.4). Let N(S) be equipped with the

relative topology and a-field. Then, it is known that M(S) and N(S) are

both Polish (cf. [14], A7.7).

A random measure (resp., point process) q is a measurable mapping

from some probability space (,$, P) into (M(S), M(S)) (resp., (N(S),

N(S))). P'n- , the probability measure on (M(S), M(S)) induced by n, is

called the distribution of n. Write B = {Be 8(S) : (3B) = 0 a.s.).

For fE F(S), let nf be the random variable defined by nf(w) = fsfdn(w),

w e Q. Just as in the case of random variables, we can define Laplace

Transforms for random measures (or point processes). The Laplace Transform

for n, denote by L (f), is a function on (S) defined by

L (f) = exp(-nf) = exp(-fsfdn).
Ti

As we shall see in Lemma 2.2.2, Pi is completely determined by L (f).
J3 T)

A random measure (resp., point process) n is said to be infinitely

divisible if for each n E IN, there exists some independent and identically

distributed random measures (resp., point processes) nil T2 .. " such

that

0
d

S= Ti + Ti2 + .. + Tn.

The following result is important.

Theorem 2.2.2 (cf. [141, Theorem 6.1) The relation

. .. ................................. ........: :: : . .....-,. ...... ::: ........ ....-...... v
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of all functions in F(S) which are continuous and have compact supports.

Let B(S) be the ring that consists of all the bounded (relatively compact)

sets in S. A semiring T c B(S) is said to be a DC-semirinp (D for dis-

secting, C for covering) if T is a semiring with the property that given

any B E 8(S) and any e > 0, there exists some finite cover of B composed

of T-sets of diameters less than e (in any fixed metrization). The notion

of DC-semiring is independent of the choice of metric (cf. Lemma 1.. of

[14]). For any collection 14of sets in B(S), O(U) denotes the smallest

ring which contains all the sets in U and all the bounded sets of the form

0A
IBi, B ic. If Tc B(S) is a DC-semiring, then a(T) =13(S) (cf. [14],

Lemma 1.2).

A measure w on (S,2) is said to be locally finite if w(B) < - for all

B E B(S). Write Wf = Ssfdji, f E F(S). Let 6 s, s C S, denote the measure

with a unit mass at s, and o the null measure on S. The structure of S

provides the following decomposition for locally finite measures.

Lemma 2.2.1 (cf. [14], Lemma 2.1) Any locally finite measure u on

(S,8) can be written in the form

Ud + Ej= I bk j 6t

for some diffuse (or non-atomic) measure Udo k e I+ U (-}, blb e (o, c )

and tl,t 2,.. E S. This decomposition is unique apart from the order of

terms, provided that the t. are assumed to be distinct. W is integer

valued if and only if wd = 0 and bl,b 2,.. I J.

A sequence of measures I }0 in M(S) is said to converge vaguely to
n I

a measure w E M(S) if 1rm hnf = uf for each f E F (S). The coarsest to-

pology on M(S) with respect to which all the mappings

..d- .



W W G

CHAPTER I

RANDOM MEASURES AND POINT PROCESSES

2.1 Introduction

Point processes were first studied in the contexts of telephone

traffic models and queueing models, where, typically, a point process

refers to a random step function on the line representing the number of

customers" in the "system" as time progresses. Along with the other ad-

vances in probability (e.g. the theory of weak convergence), the theory of

point processes on the line was extended to the general settings of random

measures on abstract spaces. A brief history of the development of the

theory can be found in [14].

For introductory purpose, [14] and [23] both provide rather complete

accounts of the theory with rigour and elegance, but with different em-

phases and approaches. However, some of the results there are too general

to be applied directly for our purpose. Thus the aim of this chapter is

to introduce the very basic notions of random measures and point processes,

and to present results that are specially tailored (mainly from those in

[141) for later used.

2.2 Basic Framework

Let S be a topological space with a separable and complete metrization,

such a space is said to be Polish. In S we introduce the Borel a-fieldJ,

i.e., the a-field generated by the topology. F(S) will denote the class

of all i-measurable functions that are non-negative, and F (S) the sub-class
c
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Conversely if lim k P{M > u I 6T, then
n- n r n n

P{M < u (T)= - OT/kn[1 + o(l)]r n n -n
n "

so that
k k
SM u() = [1 -OT/k + o(1/k) A +e
P {r nnn

n

and hence P(M u ( T ) e- o T by Lemma 1.3.1. Q. E. D.
n n

By arguments similar to those used in proving Theorem 1.3.3, one can

have a result concerning the convergence of N (cf. [20]).
n

Theorem 1.5.4 Let the stationary sequence {&.1 satisfy D(u T ) for some
] n

T > 0 and let the sequence {k I satisfy (1.5.1) (1.5.3). Then N* con-
n n

verges in distribution to a Poisson Process on (0, 1] with intensity pa-

rameter OT.

Finally note that, under the assumptions of the preceding theorem,

(T)
the mean "cluster size" of exceedances of un is given byn

(1.5.4) E(Z rn (T)jZrn (T) Ern (T))/p{§n (T) > 0}
n,j j=lXn,j j=l n,j j=1 Xn,j

r (T) ()}
Z rn E(XnT )/P{Mr > u(T  (rnT/n)/(0T/k)
j=1 n n n

which converges to 0-  as n + . This implies that 0-  is the asymptotic

mean cluster size, providing an intriguing interpretation for 0.

It is intuitively plausible that one may be able to prove a Compound

Poisson result for the exceedances themselves rather than cluster positions

under suitable assumptions. This is one of the major goals of this work.

A
, .. . . :.--i '

. - . +. - +.
= .. '. . . . -o'. . - ' . ... '. . . " , + , - ,
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positions of the clusters. For this purpose alone, the choice of {k } re-
n

quires that rn be large compared with all the cluster sizes so that a cluster

of exceedances does not get counted more than once, and, on the other hand,

r should be small so that the positions of the clusters can be recordedn

accurately. Together with the consideration concerning the mixing condition

D(u n ), it will be seen that an appropriate {k n is one which satisfies

n n D(1.5.1) kn + o

(1.5.2) k nZ n/n 0,

(1.5.3) k n +, 0.
n

where a and Z. are the usual constants used in stating D(u ).The ex-
n,2. n n

istence of such a sequence is trivial.

* Lemma 1.5.3 Let the stationary sequence {Isatisfy D(ux(T)) for some

n nn

T > 0 and let tk Ibe a sequence which satisfies (1.5.1) - (1.5.3). Then
n

lir P{M - u = e -  for some e E [0, 1] if and only if lim k P{M >n-o n no n rn

U( )} = 0T where r = [n/k].

n n n

Proof: Suppose lim P{M - u(T) } = e-. Then Lemma 1.3.1 implies that
n- n n

k n u() -St (r)
lim P {M r u} = e. It follows simply that P{M > u n I and0r n r n
n- n  n

log(1 - P{M > u()) = -ST/k [1 + o(1)]
r n n
n

so that

-P{M > u(T) (1 + o(1)1 = -8t/k [1 + o(1)]
nr n nn

giving lim k P{M > u(T ) = T as reguired.
n-M n r n

0n

.- . . .- - .!-:':.:-:-':-j : i-.:- :: --- ::::: ',--'.
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totic distribution of M (or, more generally, the kth largest maxima).n

For example, the extremal type theorems characterize the possible types of

limit laws that M can have under linear normalization. Although a vastn

number of distributions belong to the domain of attraction (cf. [21],

Theorem 1.6.2) of the three extreme value type distributions, our study of

extreme value theory should by no means be confined to linear normalizations.

The possibly non-linear function un provides perhaps the most "accessible"

non-linear normalization. Suppose that { j} has extremal index 0, and that

for each n, u is strictly decreasing. Then

P~n(n 1 -O- x
P 1(M x) I--e , x > 0.

n n

However, it does not generalize the linear normalization as there are cases

where linear normalizations are applicable while un may not even be defined.
n

While this study is based on the normalization u most of the results are
n

expected to be extended to more general settings.

1.5 Point Process of Cluster Positions

It is of interest to explore the limiting behavior of N(T ) when then

extremal index is not necessarily 1. In this case, the limiting distribu-

(T)
tion of N( , when it exists, may be a cluster process instead of a Poisson

n

Process, as was illustrated by Example 1.4.1.

Leadbetter (201 studies the process of cluster positions under D(un)

as follows. First devide the integers 1,2,...,n into k intervals, with

{k n } properly chosen. Let Nn be the point process which consists of
6r nT)
points {j/kn: j = 1,...,k for which > UT)) > 0) where

n n i=(j-1)r n+1 j n
r = [n/k J. That is, any group of exceedances in the interval [(j-l)r +1,

Jrn is regarded as a cluster and replaced by a single point at j/k n.

One can therefore think of N as a devise that records the approximate
n
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Simple calculations show that lim P{M u ( )I e-T/2. It is simply seen
n n

. that N(T) does not converge in distribution to a Poisson Process since ex-
n

ceedances always occur in pairs.

Loynes [22] proves that, under strong-mixing, the only possible limit

functions of P{M n u(n I are e-  , where 6 E [0, 1]. [he following theoremi n n'

,- due to Leadbetter (cf. [20]) generalizes Loynes' result (and a result of

O'Brien [27]).

Theorem 1.4.2 Let { j} be a stationary sequence and u (T ) I constants sa-
j n

tisfying (1.2.3) and such that D(u(TO)) holds for some T > 0. Then theren0

exist constancs 0, 6', 0 5 e 6' i such that

limsup PM < U(T ) = eT

n o n n

< U() V6Tliminf P{M < u ) = e-
n n

* for 0 < T TO. Hence if P{M 6 u (T ) converges for some T, 0 < T 1 To p
n n

then 6 = e' and PM ! u I - e-  for all such T.
n n

We shall say (cf. [20]) that { j} has extremal index 6, 6 e [0, 1], if

(T) () 8
for each T > 0, un I exists and P[M u(T) }  e-  as n + o.

n  n n

With this definition, the case where D(u(T)) and D'(u(T) ) both hold
n n

. leads to the extremal index 6 = I. The sequence in Example 1.4.1 has ex-

tremal index e = 1/2. Many authors (see Leadbetter [20] and the reference

therein) have exhibited illuminating examples concerning the extremal index.

*Here we only mention that for each 6 E [0, 1], there exist sequences that

have 0 as their extremal indices and that there are examples for which the

extremal indices do not exist.

* It is worth comparing the normalization u( ) with the more traditional; n

linear normalization. Practically, we are often interested in the asymp-

- .... _- *-*. .:. . .* .. ..;. ...~
• . " * - , " .. ,- * + .. . . .-. , * - '* . " - ' • , ~. • , • . .
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The condition D'(u ) will be said to hold if limsup [n/k > Un n -* o ' -o

> u n 0 as k . The following result is trivial (but useful) for

i.i.d. random variables and is also basic in a study of dependent cases.

Theorem 1.3.2 Let {u } be constants such that D(u ) and D'(u ) hold
n n n

for stationary sequence { j}. Let 0 1 T < . Then P{M n u n e- T if

and only if nil - F(un)] T.

It may be shown (cf. [181), for example, by using a general point

process theorem of Kallenberg, that the following result holds.

Theorem 1.3.3 Let TE(O, ') be fixed and suppose that D(unT)) and D'(unT))

hold for the stationary sequence { .}. Then N(T) converges in distribution
n n

to a Poisson Process N on (0, 1] with parameter T.

Intuitively, the condition D(un) provides the independence associatedn

with the occurrence of events in a Poisson Process while D (un) limits then

possibility of clustering of exceedances so that multiple events are ex-

cluded in the limit.

It should be noted that Theorem 1.3.2 is an improvement of both Loynes'

and Berman's results.

1.4 Relaxation of D'(un) and the Extremal Index

The theory under DOu ) and D'(u ) is elegant indeed; however, a great
n in

many processes do not satisfy D'(u ) as the following example shows.

n

Example 1.4.1 Suppose {Xj} is an i.i.d. sequence with marginal distribu-

tion U(O, 1). Let {%Ii be defined by

= max(X., Xj+), j = 1,2 .....
3 +

".-. L. : . L : : ::::,: .. -: : .L i:. : ":... : : :::: :: L :: : ::: :: :: :: :: :: :: i...:! ::} .. : . i~!"?q



4

It is well known that the independence assumptions in Proposition

1.2.1 and 1.2.2 are far from being necessary. Loynes [22] gives a

sufficient condition for the equivalence of (1.2.1) and (1.2.2) when

de f
{ } is strongly mixing, i.e., when cx(k) = sup(IP(AB) - P(A)P(B)I:

J

_ F B E ) - 0 as Z where F =o(Cj, j i 0), F O( j

j ? £). Berman [31 considers the specific case where {4j} is a Gaussian

sequence and shows that "r logn -- 0" is sufficient for "(1.2.1)<=> (1.2.2)",n

where r is the covariance function.
n

Leadbetter [17] introduces a "Distributional Mixing" approach, which

we now briefly describe. The condition D(un ) will be said to hold if for

any integers 1 1 i1 < ... < 1 < p n for which - ip Z

0
we have

IF ... (u )n- F. (un)F. • (Un )I

pp n 1. p p..j, n n,£

where an 0 as n + for some sabsequence £ 0(n). This is a long

n,Z n n On.Ti saln

range dependence restriction of the same type as strong mixing but sig-

nificantly weaker. Using a technique first used by Loynes, one can prove

the following result which shows that, roughly, the maxima on propely

chosen subintervals are asymptotically independent under the condition

D(U n).

Lemma 1.3.1 Let {un I be a sequence of constants and let D(un) be

satisfied by the stationary sequence {Vn. Let {kn be a sequence of

* constants such that k = o(n) and, in the notation used in stating D(un),

kn n = o(n), knan,£ -0. Then
n

k
p{M u -P nM u 1 0 as nP{Mn "n r n

n

where r = [n/kn]
n- n

2 -- -- - --- - --- -. . <.. .. . ."... . ..- . . .. i"---.2. " '/ 2 • 2-2.- . . ,-i2
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(v) lim P (A) = P(A) for all A such that P(3A) = 0.
f n

Theorem 2.3.2 (Prohorov) A family ff of probability measures on (S,.J)

is relatively compact provided it is tight. The converse is also ture if

S is separable and topologically complete.

Suppose X0 9 XI , X .... are random elements (not necessarily defined

on the same probability space) in S. X is said to converge in distribu-
n

tion to XO , or X I X0 , if P the probability measure induced by X
orXn 0  n n

converges weakly to Pop the probability measure induced by X0. The notions

of tightness and relative compactness for random elements are similarly

defined in terms of the induced measures. See [5] for the proofs of

Theorem 2.3.1 and 2.3.2, and a fuller account of the theory of weak con-

vergence.

We now specialize to random measures and point processes. First note

that since N(S) is closed in M(S), it is easily seen from Theorem 2.3.1 (iii)

that the limit of a sequence of point processes is itself a point process.

Since point processes may be regarded as random elements in either M(S) or

N(S), we have two notions of convergence for them. However, using "restric-

tion" and "extention" mappings, it follows from [5], Theorem 5.1 that the

two are in fact equivalent.

Lemma 2.3.3 A sequence of random elements {(nl, .. ,0 in k M(S

p.-k k Rk
lM(Si )) (or (IIN(Si), HiN(Si)) is relatively compact if and only if

(2.3.1) lim limsup Pqn .(B.) > t) = 0, B. E B(S), for each i =1,2,..,k,
t -ow n+ -Ifl i 11

or if and only if

(2.3.2) lim limsup P[ k (B > t} 0, B C B(S i 1,2,.k.

(2 3. ) t-o- n co i =lrlni i '

) >ii 0,B. - -),- =. . .,... .
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Proof: Lemma 4.5 of [14] together with the fact (cf. [13]) that I
S nkn is relatively compact iff Inn1 ) , {nn2 r In are imply

the first assertion. Suppose (2.3.1) holds. Then

lim limsup PiEk ln (Bi) > t}

E klim limsup P{n (Bi) > t/r}
i~lt-K n co li 1

which shows that (2.3.2) holds. Suppose conversely that (2.3.2) holds.

Then (2.3.1) holds trivially since Ph 1(Bi ) > t} P{zjkn(B > t}

with B. = B. or 0, the empty set, depending on j = i or not. Q. E. D.

The next result is an analogue of the so-called continuous mapping

theorem (cf. [5], Theorem 5.1).

Lemma 2.3.4 Let (rI, .. , nk), ('1 "'' 19k)' ( 21' "'' k "'" be
random elements in (11kM(si) k1M(Si)) (or (1NS s), k i and suppose

that

(rlnl, .., nnk) (rill .., k)"

Let m be any positive integer. For each i 1 1, 2, .. , k, let fij' j = 1,
2, .., m, be bounded measurable functions on S. with bounded supports and

satisfy ni(Df.) = 0 a.s., where Df is the set of discontinuity points of
1J

f. Then

Proof: Suppose first that all the f.. are non-negative. Let 7T be the

mapping

. . . . .,. .. - .. .. .- .. . . . . ...- .' . .. - -- -. - .-- . . -. i . ;.
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k k
1k 1-1 1 i i-ii 1 u

and TT. the mapping

k
(111' Wk Ei11 j j 1, 2, .,m.

reObviously D C Ur D Further, applying [14], A7.3,
Tr j 7Ti

k
D c u. i{1i9*, I(Df..) > 01.

Therefore, by Boole's inequality,

P(D) Pm k D > )
7T j=1 i=1{i(Df~J > 01

_which equals zero by assumption. The assertion follows from [5], Theorem

5.1. Suppose now the f.. are not necessarily non-negative. Then treat the

positive and negative parts seperately, and the result follows again by

Theorem 5.1 of [5]. Q. E. D.

Next, we look at a result that contains some of the basic (and power-

*ful) tools for proving convergence of random measures (and point processes).

Theorem 2.3.5 Let (ry, .. r1k), (nl' "' 'lnk) V n = 1, 2, 3, .. be

random elements in 111(15 (or IS and let T.C B ,i=1, .,k, be

*DC-semirings (see section 2 for definition) in SP~ ** k respectively.

Then the following are equivalent.

d

(i)~ k d k k
(ii) i=rni f -i P. E -i fi, (fit-9fk ' cS)

0 (11), Eexp(-E> k .f.) Eexp(-E k ri f (fi fK *E k
i~rni ik IC i)
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) (Bi ilni(Bim)) i(Bi), (B
( iV ni Bl), k., ( k 1 i ).

m 1 1, 2, 3, .. , Bij e i , i = 1, .. , k, j 1 1, m.

Proof: By Lemma 2.3.4 (i) implies (ii) and (iii) while (ii) implies

(ii)'. Thus it suffices to show that (ii)' =(ii) =(i) and (iii)

(i). Suppose (ii)' holds. Then

k k
exp(-t i=Irini fi Eexp(-tZilqi fi), t > 0,

showing (ii). Suppose now (ii) holds. For B. G 8(S.), i =1, .. , k, we

can find some f. E F (S.) with f. 2! 1 (cf. [14], A6.1) where 1 is the
1 C 1 1 B. B.11

indicator of the set B.. Then4 1

lim limsup P{Z ri _.(B) > t

lim limsup Pz k f > tt-om n -1 0 0 ni i

lim limsup NEik .nf. ti;-t-o n - 00 i=l i

g lim P{z k9 f t} (Theorem 2.3.1 (iii))
t-WO 111

=0.

Thus {(CO "., )}n~ is relatively compact by Lemma 2.3.3. Hence any

4ni' Tink n=1

subsequence 1N' of IN = {1, 2, 3, ...) must contain a further subsequence

dIN" such that (qnl' '' some ( I "'' n E N". Therefore, by

Lemma 2.3.4,

k d k
f cif i , n E I f E c(S,), 1, 2, .. k.

Comparing this with (ii), we conclude that

k k
Elnifi= Eliifi ' fi E Fc(Si), i = 1, .., k.
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By (ii) of Theorem 2.2.2, this implies that (n , . k' "'' )

d• and thus we have (q nl* rink) d0-01, . k n G IN". This proves (i)

by [5] Theorem 2.3.

Now suppose that (iii) holds. Then one may argue as above to show

that for any given subsequence IN' of IN, there exists a further subsequence

IN" such that

(n' r nk) some ( "'' Ck' n I N".

However, one can not claim directly that

k k
(2.3.3) (Zi=lni (B i), .., iklni (Bim)) 1

k k".'C ( Z ~ (B r .. (B n E IN" ,
i__l 1 im

m = 1, 2, .. , Bij E T., i = 1, .., k, j = 1, .., m.

This problem can be resolved by showing that T. c , i ; 1, 2, .. , k,

in the following way. For each i = 1, 2, .., k, let be the ring genera-

ted by Ti and note that (iii) implies nni( ni(U)' U G T by Lemma 2.3.4

since U can be written as a finite union of disjoint members in T.. Hence

" 5 D 8 D T., i = 1, 2, .. , k by [14], Lemma 4.6. Thus (2.3.3) holds by

Lemma 2.3.4, and we have

0 by [14], Lemma 1.2 and (iii) of Theorem 2.2.4. Therefore (n1 , .. lnk) T.

(l . rlk), n • IN", which proves (i) by [5], Theorem 2.3. Q. E. D.

. . ." " • . .' ' ". " " . . . " ' '
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Lemma 2.3.6 Let n ,  .. be point pro ,, ,s .f Intl lot s(.)

be a DC-semiring. Assume that for ea(h intl . t,r s, exit

bounded set B such that U is in the interior ,)! !In: I lmsup Kv, ( o) > O} <

E. Then the following holds:

(i) Suppose for each k = 1, 2, dnd disjoint int , i', .

T rn(U 1), . rln(Uk)) converges in distribution to ,ome randorn lement

k
in I + Then Yn converges in distribution to some point process r).

1 k +

(ii) If rn converges in distribution to some point process n, then T C B

de f
= {B e B(S): ri(B) = 0 a.s.}. In particular, this implies that (nn (U 1),

., rl(Uk)) 1 (ro(U1), .., r)(Uk)) for each k = 1, 2, ... and sets UP U2 .

Uk

Proof: We first prove (j). Since for each bounded set B, there exists

a finite cover consisting of T-sets UP, U2, .. , Uk,

lim lim P{h (B) > t lim lim ZkPh (U ) > 0 0.
t-*w n-K n t-*w n-)-m~ {f~U)> i=0

This implies that {n is relatively compact by Lemma 2.3.3. Thus, for

each subsequence IN' of IN = 1, 2, 3, ...}, there exists a further subse-

d
quence IN" such that tn + some , n E_ IN". Given any set U in T and constant

e > 0, there exists by assumption a bounded set B such that U is in the in-

terior of B and limsup P{q (B) > O} < E. Since B contains a topological
n r

base (cf. [14], Lemma 4.3), there exists a set c C B such that DU C C C B.

By Lemma 2.3.4, n (C) converges in distribution to n(C), n E 14". The above
n

facts and Theorem 2.3.1 now imply

P(n(3U) > O < Plii(C) > 01 < liminf Phn (C) > O
n E ' n

I Iimsup Pn n (B) > 01 < ,
n E 1N

fl.. . . .A

, ': " " " -" • "-" "- -"'" "" ' ', "" -" " """ "." " " " " " - ' "-'" ' " """- "; " " " - -' "
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showing that n(3U) =0 a.s.. Hence for UP, U,., U~ kE T,

by Lemma 2.3.4. The assumption

n~~ ~ I n k U - k

thus implies that (n(U d -. 9 r1(U)) gl U , u19 .. , ukE T. By Theorem
1 k

2.2.2 (iii), ni is uniquely determined by the family fn% U *Uk k =1, 2,

U1 9 -.9 U k e T} and is therefore independent of the choice of IN' and IN".

Thus we conclude ni 4 TI, n E IN, proving (i). The proof of (ii) is similar
0n

* except that one could work with the limit ni directly. Q. E. D.

%'



CHAPTER III

THE CONDITION A(un) AND THE EXCEEDANCE POINT PROCESS ON [0, 1]
n

3.1 Introduction

Motivated by the results studied under the condition D(un), we will

introduce a mixing condition under which the limiting behavior of N(T) willn

be studied. It will be seen that the only possible limit laws of N(T) are
n

Compound Poisson.
First of all, we define N( [) with the notation of Chapter II. For r e

n

(0, cc) and n = 1, 2, .. , define

(3.1.1) N(z) - n ( /)n = In, jj/

where

n-j = I if > n
Xn,j n

O ~.~u(T) NT0 j .u n

an X E [0, 1] is the measure on [0, 11 with a unit mass at x. N( T

is a point process on [0, 11. Note that the definition of un only re-

quires that

(3.1.2) 1 - F(u(T)) T/n.

There are apparently many such sequences and therefore the corresponding

point processes N are all different. Suppose now {u(T) and {u(T) are
n n,1 n,2

I.: + , - . . -? - +. - . - . : .i . , ! ; .. :: .
- i-- <. ; "i' - 7 , , -'- - , . , ' - ' , " ,i .'.-" " . . -- --- . . ; . . i .- '- -- . ', ._' , .
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4
two different sequences satisfying (3.1.2), and N(T) and N are then,l n.2

corresponding point processes defined by (3.1.1). Then

P(N t) N I) nIF(U(T) - F(u )(T)I E O
n,1 n,2 n,ln,

which implies that the distributional limits of N(T) and N(T) are the same
n,l n,2

provided that either one has a limit. Since we are only interested in

convergence results, we therefore need not be specific about the choice of
u(T)

u and indeed we can use any convenient {u I to our advantage.
n n

3.2 The Mixing Condition A(u n )nO

Definition 3.2.1 Let {un , n = 1, .. , k, be k sequences of constants.

For each n, i, j with 1 i j n, define B(un, . . , Un) =
i n, n,k ~ =

u ), i s j, 1 m k}. Also for each n and 1 : Z 9 n- 1, write
n,m

Qn E = max(IP(A 0 B) - P(A) P(B)I: AC G k(U U

B E Bk+(Un, ,  U 1 9 k : n -

{ .I is said to satisfy the condition A(unI, .. , Un) if n n  0 as
-~ n

n - ~for some sequence {k with n o(n).

The array of constants an '. = 1, 2, .., n - 1, will be referred to

as the mixing coefficient of the condition A(u .. , Un) whenever there
n,1' un,k

is no danger of causing ambiguity. ,

It is worth nothing that the condition A(u ) is stronger than the dis-
n

tributional mixing condition D(un) but weaker than the strong mixing condi-

(T)tion. For our purpose, uni will always be u for some T E (0, a).

Since there are only a finite number of events involved for each n, the

(T)
condition A(u ) can be easily verified in some cases (cf. Chapter 5).n

.4
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Indeed, the strong mixing condition is "unnecessarily strong" for most

situations in the study of extreme value theory in that it poses restric-

tion not just on the extremal but on the overall behavior of the underlying

sequence. Finally, for the same reason as mentioned in section 1, the

(T)
statement that the condition A(u ) holds for has the precise meaning

(T) (T) (T)
that A(u ) ) holds for any sequence {u I satisfying 1- F(u)) ~ T/n.

n n n

The condition A(u ) can be expressed in terms of random variables as
n

well. The following result is a special case of [36], equation (I').

Lemma 3.2.2 For each n and 1 ! Z ! n - 1, write

n,k sup{IEn4 - Eq •E : n and C are measurable with

respect to B(U 1 , .., uk) and " ,(UU )I ~' n,k j+9 ,l un "

respectively, 0 r, ¢ 1, 1 j n - Z1.

Thenc a 8 B <516ot werc

n,. n,Z = n,9. here an,X is the mixing coefficient of the con-

dition A(un,1  *o U In particular, { j} satisfies the condition

(uu ) if and only if 8 - 0 for some sequence (Z } with
n,1' n,k n, n  n

9n = o(n).
n

As noted in Chapter I, in order to study the limit of N(n it is ,1n -

convenient to first divide I, 29 "'' En into groups. The appropriate

size of the groups is given by the following definition.

Definition 3.2.3 Suppose {f&} satisfies the condition A(unl, .. un,k).

The sequence of positive integers frn )n 1 is said to be (U .. , U )
n n=l I(n, n,k

-separating if rn/n - 0 and there exists a sequence {9n I such that Z. /rn

- 0 and na /r + 0, where a k9 = 1, n - 1, are the mixing coeffi-n,Zn  n n, '
n

' " .. .- , ? . - .. ...-i . - - -' '- . . • .-..- ." i " . .- S
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cients of u~ U 1, u U~)

It is easy to see that such an r -sequence always exists and irldc(

one has considerable flexibility in choosing it. For example, if X, = n)
n

is such that a ,£ +0, then {r =the integer part of max (not2  ,n ))
ntnn n,Z n

is n(u , .. , un~)-separating.

The following result demonstrates how the condition A(u ) gives appro-
n

ximate independence of the number of exceedances in different groups.

Lemma 3.2.4 Suppose t1, T 2, ..'T are positive constants and the con-

dition n(u (Tl1, . . un k d) holds for (C.I. If {r I is Z (u (T1), .. , u (1k
n n j n n n

-separating, then for f. e FUGO, 1]), i = 1, .. , k, we have

(i) Eep(mEi f dN(Tm)) [knEexp(-EkfdN(M
(i Exp- f~[0, 11 m n - 1 m=il (i-i/kn i/k n] mdnrim

n-+on
S0,

(i) ep(1k 0 m~ [kn]Ex( k fd~)
(i)Ex(Zm=lfo [01] fm d n 1 ~ ep- m=lf(i-i/k n'i/k f m d n

n9 n

where k n n/r nand [xl integer part of x.

Proof: We will show (i), (ii) follows from (i) and the fact

liif ep(1k d(Tm) P(T) 1)=0
liin Exp-Ef f dNM iminf PN Q l1) 0m0l M- O1, 11n n n O

(T) -T
=liminf P{M u I e
n n n'

where T =max(-r.) (cf. t201, Theorem 2.2). Since fir n} is A(u(T) n . U,

-separating, there exists a sequence ft I such that Z /n -* 0 and not /r
n n n,Z n n

-~0. For each n, write I .~ f (j - )r n+ 1, (j I )r n+ 2, .,jr n z nil
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j ,.. [k and I = u j 1 , I .. By the triangle inequality,

lEexp(-Z k fdN (TM)) 1 k]ep- k Iff N(M
M=1 (0, 11 m n = M=1 (i-I/k n) ikj n]m n

= ~ep(Xk fl f( (Tm) _[E~ k ir (T)m~ep i- Z
1  

(j/flX) . - .1~Eexp\- m= ji-r 1f (j/fl)yt )
1 n

(3.2.1)

= jEexp(-~ E E *f (/)x(Tl 3 ) Eexp(-Emk Z f (j/fl)X(Tt )
m=1 )=Im M I ,j I~ n m n

+ IEexp(- ki ZjGf (j/l)X (7T)) f[k nEexp( _k Zj~ ifi(j/n)X (T)

+ I Ti[knIEex(- k Z f (/n) (T~ fIkI Eexp(-E k E irn f (j/n
1~ jEI .m Hin m=1 J=(i-1)r +n,i nl

We will show that all three terms on the right hand side of (3.1.3) tends

to zero. Since f,, f2  f* ~ are non-negative functions,

o0 E exp(-z k E. fm(j/f)X (-r' Eexp(-X k Zn f (j/)X T T
MlJIn m ~ m=1 *J-I .

m=1p(- k E f (j/n)X(fflM) exp(-Z k Zfm(j/n)X (TM~))
Eex(- k E n- n m=1 jE{1,..,n}-I nm n,j

SEfjl - exp(-E k Ef (i/n)X (T&)I
n

HEz Z f (/n)X m1  4 01

SP{ ( > U (T) for some j E {1,..,n)-Il (T= max(T.)

n n

r ( + r/n) T 0,

n n n

* .- * .



30

showing the first term on the right hand side of (3.2.1) tends to zero as

n tend to -. To deal with the second term, note that

J~x(ZkZ jnX(m) lk-ex(_ (j/n)X (TM)I
i~ EIm n,j i=l mn=1 jCI nj

Eexp(-E k~ ZEl jnX(T) ep- k Z f jn m

k ~~ (Tn)(T)
" Eexp(-Z k k1 f -jnX ) Eexp(- E Z Zj/)

m=li= E m n,j m= l me ~
n~i In,1

" jEexp(-Z__ k Z . f (i/n)x T)I H [Eexp(- k (Tn),
mli2 jeln~ m n,j i= m= jET i n,

nn1n,

<16 + Eexp( __ k Z tkn]Z f (i/n) (T ) - R~ ([knEx (_ I
m=1 n = jl =2 EI n,] __ jEIi= ~ ljI ~

(Tm

f (j/n)X(Tf2)
m n

by Lemma 3.2.2 and the non-negativity of the f.i ' .* By induction,

IEex p(-2 k Z f (j/n)X(TM)) -l[kn]Eexp(..Z k Z f (j/n)X (T&)
m=1 jET n rn n,j i~1 m1l jET. rlin n~j

the third term can be dealt with using the inequality

k k k
(1.2.2) 1 y R i= E, Ijy. xlj, 0 _ y, x, -s 1, i 1, .. , k,

,huwing t hat

jkFeXp(- k1 E ~ f (j'fl)X(T) H Ik~ I Eexp(.ZkZ rn f (j/n).
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S[kn]IE(_ k E f (j/n)X (Tm )) Eexp(-Zk
i=l e (m jI . m n,j -Eep(-ml j=(i-1)r +1fm(J/n)

S[k ]k [I F(u (T) 0. ~
n n n

This concludes the proof. Q. E. D.

x(Tm)(T)

3.3 Compound Poisson Convergence of N(T
n-

Now we state one of the main results of this section.

Theorem 3.3.1 Suppose - >TI>2 > > T. k > 0 are constants and the

condition A(u(T u~t) holds for {. If (N(T) .. , ) Con-
n ' 'n n n

verges in distribution to some (N(T) N. then the latter must

have a Laplace Transform of the form

exp(-f 1 - L(f(t), f(t))eTdt),

where L(s , --f s ) is the Laplace Transform of some probability measure
def k

7T onl I de 1it-9i EIk:i 2!1 and i i . >i )and e
k = ( 1  k) + 1 1 2 = k
im wogPsM uon (T 1he [0, 1]. If 6 0, then for each

-/1 n-- n n n

uTk))separating e,

7T({ir - r (Tm im 1, . Irn x(TI) > oi,
n-c i j=1 nj lm' m u ) o j= 1 nj

The implication of the theorem is most obvious when k 1. In this

exp(f (l- Lfl~t, .. fkt)))Tldt , q
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(i 1 , 
k  E Ik .

Here we ignored the trivial case 0 = 0, which leads to N (R) = 0

a.s. for each T > 0. When there is no danger of ambiguity, (N(T1) ..

N(T N(TO),.

N(Tk)) always denotes the distributional limit of (N jl "'' n-

Tit T2 .. T > 0.

4.3 Asymptotic Distribution of kth Largest Values

We now apply our convergence results to problems that are of concern

of the more traditional theory. Let M(k) be the k-th largest among
n

*. .' It is easy to see that (M(k) , u ) is the same event

as (N )  k-i). Using this fact, one can derive limiting distributions
n

for properly normalized M(k)n

Theorem 4.3.1 Suppose that for each T > 0, A(u( T )) holds for { }and-

n((T)

N(Tn converges in distribution to some non-trivial point process N()

Assume that a > 0, b are constants such that

Pta (M - b) x G(x)

n n n

for some non-degenerate distribution function G. Then for each k=l, 2,

3,

lim P{a (M(k) - b ) xl
n n n

k-i [-log G(x)l u({ 2 k-i)
: j=0  , , ..

(where G(x) > 0, and zero where G(x) = 0), where iJ is the j-fold convo-

lution of the probability measure defined by

(m n (T) r (T) > o
n({i}W : iP{ lXn,j = ln,j
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= exp{-6lf3R(I - L(gl(t), . gk(t)))dt}.

Thus by (4.2.3), (4.2.4) and a change of variable,

(4.2.5) lim Eex k f dN(aTm) in- P-m=l m n )=x{"T lLf~)''fk(t))d}

it follows from Theorem 2.3.5 that (N N converges in dis-n ' n

tribution to some (N (aTl, .., ) whose Laplace Transform is given

by (4.2.5), and it is now obvious that 8 is the extremal index. Q. E. D.

We remark that under the assumptions of the above result, the distri-

bution iT which determines the cluster sizes of the limit Compound Poisson

processes depends Dn TI , .9 Tk only through T2 /Ti, .. , Tk/T I if k > 1,

and is independent of T if k = 1.

The following result can be proved in a similar way using Theorem

3.3.4 and Lemma 4.2.2.

Theorem 4.2.4 Let TI t2  "" Z Tk > 0 be constants. Suppose {.) sa-

tisfies the condition A(u (aT) U, u( 0) for each a > 0. Also assumen n

that {. has extremal index 8 E (0, i], and there exists a A(u(T), .. ,n

u )-separating {rn such that for each i T k P (m) = i .
n ' j=ln,j n

m = 1, .. , kI (1 nI) > 0} converges as n * . Then for each a > 0,
j=l n,j

(N(O l) N(ak)) converges in distribution to some point processn ' " n

(N(atI ), .. , N(OTk) with Laplace Transform exp[-86TlfR(l-L(fl(t),

f k(t)))dt] where L is the Laplace Transform of the probability measure iT

on Ik determined byk

({(il' i "' )})=limP{nr z~ (-[m)=ijtn ml m=l,..,kz Zr n X~ j
( T I ) > 0},

* .. -. . ..k n -. j -.. . .. ... ......

- - ?"i "2:2 v .. 2 . < -;. + , 4. , - - . -.-- ." - -- •
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k (T)
Eexp(-Z E jj~v 1 (J/n/a])1 )X oj

k (Tr
Eep-M=1 Oij/In/a ]~va vaj[no [0,j )

It follows from the inequality (4.2.1) that the above expression is bound-

ed by

k= (OTn~ (Tn)n/o]''(j/n_ 1O~jj/n01v'

(1 - F(u(-T) )) + E( kna E 0 ))~

where all three terms tend to zero by the definition of u()and the choice
n

of the f's. Thus

(4..2.3) lrn Eexp(E M= f]RfdN m) lim Eexp(...=f gdN(Tm))

provided the latter limit exists, which is true by the assumption that

(N(,~) , .. , N 0k) converges in distribution. Since the limits N(Tl),*,
n n

N(Tk) do not have fixed atoms, Lemma 2.3.4 implies that

k N(Tm) i Ex(k f gdNm)
Eexp(-Z 1  f(0,l]gmd m n-* ex(- m=l f(0,1] md nm

and it follows by arguments similar to those in Theorem 3.3.1 that the last

expression equals exp{-eT1J%(l - L(gl(t), .. ~t))dt) where L is as=

stated in the theorem and 6 is such that lim P ulM eO-l
n-* n n

Note that the supports of g1, .. , gk are in (0, ovj, Lemma 4.2.2 thus

implies that

lim Eexp(-~ MlflRg dN(Tm) 11[v]+1 lim Eexp(-E k=fiigmNT)
n-- n m in

424' = [Ov]+1 (

(4.24) i=1 exp-eT~(,_',jl L~l~t, gkt ))dt
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Lemma 3.2.4 since the condition A(u( ' "', uVm)) holds for {.}. The

n n

conclusin follows. Q. E. 1).
q

Theorem 4.2.3 Suppose > T 1 2! T 2 
- "" - Tk > 0 are constants, and the

condition A(u( O l) ., u( O lk)  holds for {.} for each a > 0. If (N(l),' n Jn

"'' Nk)converges in distribution to some (N(TJ), .. , N( k )), then for
n

each a > 0, (N(O T I ), ..' N (k ) converges in distribution to some (N(OT I)
n n c r

N(OTk)) with Laplace Transform

I

exp{-6aT1f1R
(1 - L(fl(t), .+, fk(t)))dt}

where e e [0, 1] is the extremal index, which exists, and L is the Laplace 2
Transform of some probability measure ff on I If 8 4 0, T is determined by

7T(l - I lmfrn X(Tm) 1,2 . n Ix(TI) > O}
l ,ik)} = limP{ iXn, j  = 'm' m = 1, 2, .. , kli l'n,j

where tr ) is any L(u(Tl), .. , u(Tk))-separating sequence.
n n n

Proof: Let a > 0 be fixed, and fl, .' fk be functions in Fc (IR) with

supports in (0, v] for some 0 < v < -. Write gm(t) = fm(t/a), m = 1,2,..,k.

By the triangle inequality,

Eexp(_k f f dN(OTm) ) - Eexp(- k f (T)
m=1 IR m n m=l ]Rgmd[nO I

... p-~~(aT ) _E( k %.//] (j/[n/])"

0Eexp(-Zk= <j/nvfm(j/n)Xyjm )-Eexp( mE g=j[n[]/al).

(T)
X[n 2ol,j)l

J/n)X(° m))- fexp(-) I <vfm ( j /n ) X(

m=1 ,jn v m / j = fOj/n= m[noj

+ Eexp(- M = I O E/ nf (j/n ) X [n%],jmEexp(  =1 Ej/n<v m(j/ /o])

(T)
:[ n7 o I, j
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The results in Section 3.3 can now be extended as follows.

Lemma 4.2.2 Let 'T, 92  ' k be positive constants. Assume that {.}

satisfies the condition A(u 00, .. , for each a > 0. Then for
n n

functions fl, f2 ' "t f k in F(IR) with supports in some bounded interval

(u - , v], u, v being integers, we have

Eexp(- m E f dN(Tm)" -v Eexp(-7k f dNj m ) -

=I m n - 1=u M I-(i-1, m n

0 as n - .

Proof: Since {.} is stationary, we can assume without loss of generality

that u = 1. Hence

k dN(T in ) k vn (T)
Eexp(- m fmf n = Eexp(-E E i fm(j/n)X ' )

By the triangle inequality,

E(_k 1vnlfm (/n m)) v k in ./)(m)

I Eexp(..Zk Zf (j/n)X 7) R. Eexp( -~kZv f j/)

-I ji=Imexp(m=I j=(i-l)n+Im n,j

k n v T k n j (VT~~f(Jf))

IEexp(-Zk= Z nfm(J/n)x(m)" Eexp(-Z f nf(J/n)x m))""m, I -=I J= , - :j

k n(Tvk i (V'mT .

vnj

)k in (V ) v k in
+ In1  Eexp(-Ek Zf f (j/fl)X Vtr)-fl Eexp(-Zk Z f+IV=l e p(  m=l j=(i-l)n+l )-v ji=I ep-m=I j=(i-l)n+ifm-..

(j/n)X(Tm))

The first and third term tend to zero by the obvious inequality

xk  - k Z <  k Ix1 - yiI' 0 < x., Y1  i, i 1, k,

and the fact nIF(uT)) F(u (r) - 0. The second term tends to zero by

n "vn .
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and each choice of T 1, T2 , .. , Tk > 0. For convenience, call the above

-. assumption the A condition. Again, the condition A is weaker than strong

mixing.

4.2 Point Processes of Exceedance Positions on JR

In Chapter III, we restricted N(T) to be a point process on [0, 1].' n

We shall see that such a restriction makes little sense under the more

stringent mixing condition A. Instead we consider the point process N(T)
n

on JR defined by

Njn E ZjCI Xn,j 6j/n, T > 0, n E (T)'I,

where = 1(c > u (T)) j E I, and 6a, a E JR, is the measure with a unit

mass at a. We commence by stating a result which is slightly more general

than what is needed for the present purpose.

Lemma 4.2.1 Let T > 0 be a constant. If N(T) converges in distributionn ,

to some point process N, then N does not have fixed atoms; i.e., N({s}) = 0

a.s. for each s E JR.

Proof: Since Bn contains a topological base (cf. [14], Lemma 4.3), for

each s e JR and E > 0, there exists a set B Bn such that s E B Cn

I (s - E, s + c). Thus, by Theorem 2.3.1,

P{N({sl) > 01 i P{N(B) > 01 liminf P{N(T)(B) > 01
n n

liminf P{N(T)((s-c, s+)) > 01 lim (2nE+1) P u (T) }
n n 'n n

= 2ET.

This concludes the claim since c is arbitrary. Q. E. D.

• .* . . . .o. • . % .* - .



CHAPTER 1V

COMPLETE CONVERGENCE

4.1 Introduction

Let { jI be a stationary sequence with marginal distribution F.

Recall that fu(T )} is a sequence for which n[l - F(u(T)]" - T as n -•
n n

For simplicity, we now require, in addition, that u be strictly decreas-
n

-1
ing in T for each n so that u is well defined. For example, suppose F

n

belongs to the domain of attraction of some extreme value type distribution

G, and constants a > 0 and b are such that Fn(a x + b ) G(x). Then
n n n n

u( T) can be taken to be a-I G-l(e -T) + b . While the restriction is notn n n

essential, the removal of it would cause extra complexity and would not

add depth to the general theory. Write H for the point process
n

S6(/n, -1 ) where 6 (a, b) E ]R x R' (-n, c) X (0, w),
* jEl (jn, u (%)(a, b), msat(,+ Hi on

is the measure on IR x + with a unit mass at (a, b). In is a point

process on JR x IR'. As before, the convergence results for I are not

+ n

affected by the choice of {u n I .* Mori [261 shows, under a slightly

different setting, that if { j} is strongly mixing, the limit IN (in dis-

tribution) of IN n when it exists, must be infinitely divisible and invariant

under certain transformations. Using these facts, he further characterizes

N in terms of its canonical measure. We propose to both give sufficient

conditions for the convergence of IN and characterize the limit I under
n

(TI) (T)Othe assumption that A(un k) holds for { J} for each k = 1, 2,

- . . - .
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((il., ik)) lim 7nT{(i , .. ik))
1 k n, N n 1k

2

This implies that T = r and the assertion follows. Q.E. D.

The uninteresting case e = 0 was left out in the above theorem. In

this case,

lim P{N(T)([0, 1]) = 01 = lim PM < un-oc n n-o n
(T)f

showing that the limit of N(T) equals the null measure almost surely by
n

Theorem 2.3.1.

Ui

4

*

* '

0i

F - =I.*-*--* . . A , '~-A.
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ar
{rnI such that for each i E I k' ~ni (Tm)=i m=l, 2, .. , kIrn1X(T)>01

converges as in - .Then

Mi the measure nT on Idefined by

7T({il) limr p[Ern (Tm) - M' 1,29 ...,kIrniX(TI) > 1

(ill i Ik is a probability measure;

(ii) (N iNin 0)converges in distribution to some (

with Laplace Transform

exp{-OrT fl[1 L(f (t), f. f(t))Idtl

where L is the Laplace Transform of 7T.

Proof.: We will only show (i), (ii) follows by arguments similar to those

in Theorem 3.3.1. Let fin be the probability measure on Ik defined by

Tn M(ill*. ik) M NE n X(m M i , m 1, .. , i(n x(l > o1
nkj=1 n,j mj=l n,j

k) Ei ) * Write Qn for the probability measure on IN defined by

InIjlnj i =0 i 0- '= 0 in 29" k

i E IN. It is clear that OrT n is tight if [Q n) is, which follows readily

from

Llim zl k Q(k)) 1/6'< (cf. (1.5.4)).

Therefore, by Prohorov's Theorem, for any infinite subset IN, of IN, there

exists a further subset 142 and a probability measure Tton I k such that

n in E IN Thus for each (il .

2* k k
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By (3.3.1), (3.3.2) and (3.3.3),

log Eexp(-E kl[ lf dN(Tl))

= -k f IR (t)dt - k f'4(R (t))dt + o(1)

=-eTifl~l - exp(- kfm 't'r I"dt + o00),0 ~m=1 m~m7(!

*which converges as n - by the assumption that (N (Tj) , N (Tk)) con-
nn

verges and Theorem 2.3.5. But this implies that the limit lim Eexp(-s j m)'
n-mm

k
7T n({Oil) exists for each (s,, ... s k) E ]R +, which is equivalent to the

existence of a measure 7T on Iksuch that nr(ji) lim 7T ({j)) for each
n~.D~

Jek'and in this case,

lim Eexp(-E k i r (Q) Eep= k 7(j

for each (s1 ** s) k E IR' + We conclude, by dominated convergence, that

lim log Eexp(-E k ifdN~J) 1e~ff kep I
m=lf[O, 1] -em[ n 0

Theorem 2.3.5 now implies that

Eexp(-E k dN(T) exp{-OTrlf [1-Eexp(- f (t) )T({jl)Idtm=lf[0,1] m mlm m

where nT is seen to be a probability measure since, for example, N (TI),.,

*N(k) are point processes. Q. E. D.

One can also state a constructive result as follows.

T6(
Theorem 3.3.4 Suppose {f. satisfies the condition A(u(T u~ k.

n n

for constants OD > T > T > > T >'0. Assume that limP{M ;k u (T 1)j~eG1 2 k n- n n

for some 0 E= (0, 1] and that there exists a dA(u (j1) .u(Tk))-separating

n0
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(0, [kmn /k[n)

=e (l+o(1))[ E. Z exp(-Zmkf[](t)Tr ({il)]lo,[k]n ) t

Proving (ii). Q. E. D.

We now prove Theorem 3.3.1.

Proof of Theorem 3.3.1: Lemma 3.3.2 concludes that there exists a e E

[0, 11 such that P{M 1 u(T) } E e-0 T for each T E (0, T i. If e = 0,n n

then the conclusion follows immediately. Suppose that 0 0. Let R and
n

n be as defined in Lemma 3.3.3. By Lemma 3.2.4,

k dN(Tm))
log Eexp(-Z[ ]=f[O ' 1f f] n

E [k]log Eexp(-Ei nf dNT M)) + o(l)
(3.) i-i m=1f(i-1/k , i/k m n

(3.3.1)n n

~[n~l/k ol-IEx(E ffd
= kni= / nl -(i-/kn, i/k n f dN(Tm)))] + o(i)

=knflog[I - Rn(t)idt + o(I).

Lemma 3.3.3 implies that

(3.3.2) knRn (t)-6Tl[l-E. exp(-Em.Ifm(t)Jm) n({l)]1(0, [k /kn)(t) 0
4E.k n n

2uniformly in t. Let i(x) = -log(l - x) - x, x c [0, 1), W(x) x /2 as

x + 0. Hence for large n, 14(Rn(t)) I R2(t) for all t since Rn (t) 0

uniformly in t. As a consequence,

(3.3.3) knfolq(Rn(t))Idt - I/k nf[knRn(t)] 2dt 0.

,- * .". . ' 77"
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Ikn(Rn (t) - n(t))l

k" knJZ k Zk~E i-/n i/nle- fm(J/n)-e- fm(t) IP{E>u (Tm)}'

n _= m=1j/ne=(i-1/ki i/k n] in

l(i-i/kn i/kn(t

n n

kn n(lt(it/k(no i/kn] m=1 1 n

where 2 = sup{e-fm(s)-e- fm(t)F: Is - tj < 1/kn m = 1, 2, k}. It is

easily seen that 02n 0 since 1/k n 0 and fl, f 29 "- fk are uni-

formly continuous. Thus

Ikn(Rn(t) - (t))

Sknrn mklP{l > (Tm)

kr Q ZmklE >m/nn n n m=1 I u

k
kn rn Qn Em=l1 m /

k n
Q nZ T 0,n m=1 m

showing (i). To show (ii), first note that

p{ZrnI(T), > 01 = P{M > ul} 6Tl/kn

j=nj r n n in

by Lemma 1.5.3. Hence by stationarity,

k (t) k nZ[kn[l - p{Zrn x(TI) - O} -1 exp(-Z klfm(t)Jm)n )

n n n=1i=1 nos iE k =m mn

n s > i-1/kn i/kI(t)

s= 1 ns nIE n

k " k n 1 (T1) > 0)1i E.e". k k ,mn . " )7 .-

n0~x~ =
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n mt I (ik][E(/J i/k fmd n (1 1 (1/k ,i/k

no n no n

n(t) = ~[n][I-Eex(-f (t)NTm((i-1/k , / 1(i-i/k , / (t)
n m~ m no (i1/kno n]

where {r Iis A(u(T1'), .,u(Trk))-separating, k~ n/rn and fl, * f~ are
n n nn nk

continuous functions on [0, 1]. Then as n

(i) k~ (Rn (t) - (0)) 0 uniformly in t,

nik n-O 1 ~ !E k M_1mM n(0, Ik n /k n] 0

uniformly in t where TF(i)P~ n(m m=l,, klz rnx x(T) > 1nt~lni =mi=1 n,j

Proof: k n(R n(t) -~))

;5[k nlE(-Ef f dN(T)-Eexp(-Z f()
n k _ m=1 (i-i/k ,i/k I m n k~ m_()

no n

n n -/ i/k I)11n n

-k Z~ lEep-Z k f (j/n)X m )-Eexp(-Z (t).n i=l ex\m=l j/nE(i-1/k noi/k n] M n,j m=l m

Zj/n (i-i/kn i/k]I Xn,j )(i-1/kn i'kn I(

i/k I k (T

Xn,j )I(i-i/k nikn t

(T , (T .)tfm(j/n) -f(t,
4 by (3.2.2). Since J~xp- (t)Hm -ep(fM , )~l--

P{ >U(Tm) we have
in
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case, if N T) N(T), then the Laplace Transform of N(T) is exp(-eTfl

(1 - L(f(t)))dt), showing that N(T) is Compound Poisson. When 0 0,

the probability measure 7 that corresponds to L is obviously restricted

to a certain class; for example, by Fatou's Lemma,

0 ii({i}) = ODi limP{ r = ilirnx > 01

n-n,j j= nj

liminf E ip{'ir (T) irn x(T)
n n,j j=l n,j

li ~rn= (T)r

nlim E(rn ~n X(T) > 0)
n-*.o j== nj

(cf. (1.4.4)) where fI is A(u (T) )-separating. The precise relationship

between e and n is still an open problem.

We first prove two lemmas.

(T))
Lemma 3.3.2 Suppose { .} satisfies the condition A(un )) for some T > 0

and N(T) converges in distribution. Then there exists a 6 e [0, 1] such
n

that lim P{M u un = e for each e (0, T].
n n

Proof: Since [0, 1] is a bounded set with empty boundary, the assumption

impliesthat N(T)([O, 1]) converges in distribution (cf. Lemma 2.3.4).n

Thus, the conclusion follows from the identity P{M 5 u(T)= P{N(T)([O, i])n n n

01 and Theorem 1.4.2. Q. E. D.

Lemma 3.3.3 Let -r > > " >  > 0 constants. Suppose the condition

(u )  uk)) holds for {.1 and there exists a e [0, 1] for which

lim P{M 9 u( 1 )1 = e 1. Define two functions R (t) and R(t) on [0, 1]n-+oo n n n n

by

............... ......................................-+........ ...-... ,
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= , 2, 3, .. , for any arbitrary T > 0 and arbitrary sequence {r in

((T)

which is A(u ))-separating.

Proof: According to Theorem 4.2.3, the Laplace Transform of N(T) is

(4.3.1) exp(-6Tf ]Rl - L(f(t))Jdt)

where e E (0, 1] is the extremal index of { j} and L the Laplace Trans-

form of the probability measure Tr stated in the theorem, L and 7 being

independent of the choice of the positive constant T and the L(u (T)-
n

separating sequence {r I by the remark following Theorem 4.2.3. The fact
n

that {j has a non-zero extremal index e and P{a (M - bn ) x) w G(x)n n bn

imply (cf. [20], Theorem 2.5) that G is one of the three extreme value

type distributions, and

lim P{a (M - bn) : x) - Gl/(x)n-*M n n

where Mn is the maximum of n independent random variables all having the

same distributions as I Thus

li P{M ) a-G-(e + b nnm n n n

- GI/0(G -(eT)) =e

4M

which shows by Proposition 1.2.1 that

1 -F(an G- (e- 0 ) + b T/n as n .
an n

1/0
Writing t(x) = -logG/(x), we get

(4.3.2) 1 - F(a x +.b) T (x)/n.n n

Now it follows from (4.3.1), (4.3.2) and the fact N(T)((O,I) 4 N(T)((O,1])n

w
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(cf. Lemma 4.2.1 and Lemma 2.3.4) that

lim P{a (M bk) b x}
n4*w n n

(k))M )

lrn P{N (TX)((0, 1]) k-l}

=P{N (T(X)) ((Q, 1]) k-li

= -k -iO6 (x) (eT(X))j * ,., -i
Ej=Oe j! Tr({l, 2 -1

k-i [-1ogG(x)i *j= o- G(x) iTr(1 2, .,kl)Q.E. D.

Using the same idea, the asymptotic joint distribution of a finite number

of the k-th largest maxima M (k) can be obtained.
n

Theorem 4.3.2 Suppose that for each Ti. T2 > 10, A(u(Tl), u (T2)) holds

for {E. and (N(Tn) N(Tn) converges in distribution to some non-trivial

(N(T) N'') Assume that a > 0, b are constants such that

n n

for some non-degenerate distribution function G (which is one of the three

extreme types by [211, Theorem 3.3.3). Then

l1.m P~a (M~' - b) x, a (M - b) Y

=GWy)[ - lobC(y)) logG(y)] y < x, G(y) > 0,

0 otherwise,
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where P, a function on (0, 1), is defined by

p(o) =limP{ Ern x(T) 1, Z0 (T) > O}
n = l n.j = Xn,j

(T) (OT)for any arbitrary T > 0 and A(u( , u )-separating {r 1.
n n n

Proof: We only prove the assertion for the non-trivial situation y < x,

G(y) > 0. By Theorem 4.2.3, the Laplace Transform of (N(T) N(ax))

> 0, a E (0,I), is

exp(-OT fR[l - L(fl(t), f2(c))]dt)

where L is the Laplace Transform of the probability measure 71 on I satis-
2

fying
w

(x ()(O)(>l
C{(i I , i2)}=lime{Z n+ = Ern X(O)= Irn ()O

2 nx* j=lX ,j iP j=i n,j 2 j=lxn j '

{r I being any A (T), u (OT))separating sequence. By the comment that
n n n

follows Theorem 4.2.3, Tr depends on (T, aT) only through the ratio a.

Thus, write 7T(-; a) for 7r to emphasize this dependence.

Suppose y < x, G(y) > 0. By the notation and arguments used in

Theorem 4.3.1,

lim P{a (M(I ) - b ) < x, a (M(2 )
- b) < y}

n n n n n n n

= l m P M( I  (T(x ) ) ,  M(2 )  g (T ( y ) ) }

=lim P{ u M~2  U(~

= Iim(P{N( Y)((O, 1])=l, N( )((O, I])=O}+P{N( M)((, I])=0})

n- co n n n

= eT(y)e- eT(Y) T({((, 0)1; T(x)/T(y)) + e-eT(y)

= e-T(Y)[I + 6T(y)n({(1, 0)1; T(x)/T(y))]

= G(y)[1 - T(U(1, 0)}; logG(x)/logG(y))logG(y)j.

"'. -
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Writing P(O) = ({(I, 0)}; 0), a E (0, 1), the result follows. Q. E. D.

We now state an interesting result due to Welsch ([37]).

Theorem 4.3.3 Let [X ) be a stationary strong-mixing sequence. Ifn
there exists a sequence of constants (a > 0, b : n z 11 so that

n n
P{M ) <a x + b M (2) <ay + bI has a limiting distribution, H(x, y),

n n n n

with G(x), the limiting distribution of P{M n  a nX + bn non-degenerate,

then

H(x, y) = G(y)[1 - p(logG(x)/logG(y))logG(y)] y < x

G(x) y a x

where P(s), 0 ! s 1 is a concave, non-increasing function which satisfies

p(0)(1 - s) -9 p(s) - 1 - s. G is one of the three extreme types and we

interpret (1/) _ 1, (0/0) = 1 and (0/c) = 0.

As can be seen easily, Theorem 4.3.2 is not an attempt to improve

Welsch's result. However, it properly explains the role of p from the

point of view of exceedance.

4.4 The Convergence of IN n

In Chapter I, the method of Laplace Transform was used to show con-

vergence of point processes. We now demonstrate another useful technique.

Let P = {[a, b) x [c, d): -c < a < b < c, 0 < c < d < co}. P is obvi- S

ously a DC-semiring contained in 8( IR x IR).
+

Lemma 4.4.1 Suppose for each k = 1, 2, 3, .. and U1, .. , UkE P,

(INn(U 1), .., INn(UK)) converges in distribution. Then INn converges in -

distribution to some point process IN. Suppose, on the other hand, that

..- .. .
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IN converges in distribution to some point process IN, Then P C BN =
n

{B E B( JR x R+): IN(B) = 0 a.s.}.

Proof: The boundary of a set in P contains at most four finite lines,

each of which is of the form [a, b] x {c}, _- < a < b < -, c > 0, or the

form {u) X [v, w], 0 < v < w < -, u E JR. By Lemma 2.3.6, it suffices to

show that for each E and each line L of the above forms, there exists a

bounded set B in JR x JR such that L is in the interior of B and+

limsup P{ IN n(B) > 01 < E. Consider, for example, L = [a, b) x {c}.

Choose 0 < 6 < min (E/2(b-a+2c), c). L is contained in the interior of

[a- 6 , b+61 x [c-6, c+6 ), and

P{ IN ([a-6, b+6] x [c- 6 , c+6)) > 01

NE (X(c+6) - (C-6)) > 0}
= P{Zj/n E [a-6, a+6] (X1 n~ - cn,j

<((b - a + 26)n + 1) Pfu(c+
6 ) < u(c - 6)1

n 1= n

2(b - a + 26)6 < E.

The other form of L can be dealt with similarly, proving the lemma.

It is obvious that there is a close relationship between the conver-

gence of (N(l1 )  "', Nk(Tk)) and that of INn. The following result makes
n n n

the relationship precise. Like the previous result, it does not depend

on any mixing assumption.

*d (Tl) (T 2 )Theorem 4.4.2 IN + some point process IN if and only if (N , N ,
n n n

(TOk) d ((TI) N(T2) N(Tk).OT
N., , .. , N ) for each k = 1, 2, and T1.
n2

.. T k > 0. In this case,

... ........ . . . . . • . _ . ........ . . " . . .
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(4.4.1) (IN(.x(O, T1 )), .. , IN(.x(O, k)))d (N(T1), .. , N(k))

for each choice of Ti, T., > 0.

Proof: First assume that (N(T) , N (Tk )) converges in distribution

for each k = 1, 2, 3, .. and TI, T2, ., T k > 0. For U i  [ai, bi) x

[ci, d i) E P, i = m, ..,

(IN (U ), .., IN (U m))

d (N (dl) ([a,, bl))-N cl)([al, b)) N° N(dm)([a b ))-N(cm) ([am b))
n 1 n m ,m)

dd (dlb)(d ( a
-0 d (N al, b ))-N(cl)([a 1, b)), N( [a, bm) (cm)([am bm)))

by Lemma 4.2.1 and Lemma 2.3.4. Thus, by Lemma 4.4.1, N converges in

distribution to some point process N with

(IN(), .. , I(Um)).j

N(dl)([ I  ,l , , dm)( ,("C.
N abl))-N(C)(a I  bl) N(  am  bm))-Ncm)([a, bm). -

for each choice of Ui = [a., b.) x [cif d.) E P, i = 1, .., m. In partic-

ular, it can be shown simply that

fo ahcoc f' oo, 'U

(IN([a I , bl)X(0, Tf)), IN([a k , b k)x(0, Tk))) -

(N (([al, b) ' ., N(T ,a bk)

for each choice of Ti T2P .. T k > 0 and [al, bl), .., [ak, bk). It now

follows from Theorem 2.2.2 (iii) that

(N('X(o, T I) , o IN(.x(O, T k))) =d (N( I) . , N('k ) -. i"

- cThe converse can be shown similarly. Q. E. D.

_ _ _

.• : '.i
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4.5 The Characterization of N under A

Suppose that the condition A holds for { j} and INn converges in

distribution to some point process IN. By Theorem 4.4.2 and Theorem 4.2.3,

the finite dimensional distributions of IN can be derived from (4.4.1) and

(4.2.4). While the distribution of IN is determined by the finite dimen-

sional distributions, this knowledge does not provide a clear picture of

IN. It is desirable to transform the knowledge into a description which

is more "visible", so to speak. To do so, we approach from the point of

view of "infinite divisibility" - a technique used by Mori [26].

Lemma 4.5.1 Assume that { j} satisfies the condition A, and INn con-

verges in distribution to some point process IN. Then IN is an infinitely

divisible point process.

Proof: By [14], Lemma 6.3, it suffices to show that (IN(U1), .., IN(Uk))

is infinitely divisible for each choice of U. = [ai , b.) x [ci, d.) E P,

i = 1, 2, .. , k. It is simply seen that

(IN(U 1), .. , IN(Uk))

= ( IN([a, bl)x[O, dl))-IN(a I , bl)X[O, Cl)), .. , IN([ak, bk)X[O, dk))-

IN([ak, bk)X[O, Ck)))

T(N Qal, )), N(Cl)([a I, bl)), .. , N(dk)([ak, bk), N(ck)([ak, bk)))

by Theorem 4.4.2 where T is the linear map

T(X1  y "'' Xk' Y) = (x- y' xk-Yk

Therefore it suffices to show that (N(t1)(B1 ), .. , N(m)(B m)) is infinitely

*q



-. . . .4 4..- -- -7 - . 7 -

53

divisible for each choice of constants T , , '', > 0 and Borel sets

B B2 , ., B in IR. For a fixed choice, let k be the number of differ-
en9 t -an A1' m
ent T., and Tl', j=1, .. , k, the j-th largest value of TIP, T m. By

Theorem 4.2.3, the L. T. of (N(TI)(BI), .. , N(m)(Bm)) is of the form

Eexp(-z i ZIN( B) B) Eexp(-Z f~fj(t)N(TJ)(dt))

= exp[-6T- f(I - L(tl(t), .. , fk(t)))dt],

where f.(t) = i lB.(t), the summation extending over the set of i's for

which T.= TP. Also, by Theorem 4.2.3, for each k = 1, 2, 3,

Eexp(-whiiziN(Ti/k)(Bi eip(- QTI f* D.
k xm (l - L(f1(t)' fk(t)))dt) '

showing that Eexp(-EiMiziN( i)(Bi)) = [Eexp(-ZiEmziN( i/k)(Bi))]k. The

conclusion follows. Q.E.D.

If IN is infinitely divisible, write P for the canonical measure of

IN. P is a measure on N( IR x ]R)\fol, o being the null measure on+

IR x R+ (cf. Theorem 2.2.2).

Write N([1, co)) for the collection of all locally finite integer-

valued measures 41 on [1, ) such that V{I} 1 1. As a space, N([l, ")) is

equipped with the vague topology and the Borel o-field W([I, -)). In what

follows, we shall consider mappings between N( IR x )\(o} and N([I, c)).

The measurability of the mappings can be established by routine arguments,

and will not be pursued specifically. To describe mappings between spaces

of measures, it is often convenient to consider the corresponding trans-

formations for "atoms". To do so, we first let Ey, y E [1, ) and 6x9

x E IR x R' be the Dirac measures on [1, m) and IR x IR' respectively.
+ +

_6
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Now let g be a measurable mapping on (]R x R+) xN([1, o)) into

(R x +)N{ol defined by g(x, 1)) = Eai6(s ' tYi) where x = (s, t) E.j

F + x I?, Q)E N([, c)) and has a decomposition a (cf. Chapter 2).

Since (F x FR+) x N([l, -)) and N(IR x IR+)\{o} are both Polish,

Kuratowski's Theorem (cf. [29]) implies that g maps measurable sets to

measurable sets. Let A be the range of g, namely, A={E NOR x]+)\o}:

Sg(x, ,), x e F x (0, '), ' N([l, .

Lemma 4.5.2 Suppose the condition A holds for { j} and INn converges

in distribution to some point process IN. Then P, the canonical measure

of IN, concentrates on A.

Proof: Since P is a measure on N(RXiRx .)\{o}, it is to be understood

that all set operations are performed in this space. First it is obvious

that

(4.5.1) A {OE N(]Rx]'+)\{ol: 4({s} x F+)=0for all but one s E }

=f n- nn~ A m n=-.2
m=l )n=1 m,n

where

Amn E { N(IR x4+)\{o: 4 ([k/ 2n, k+1/ 2n) x [0, m)) = 0

for all but possibly one k in I.

Note that A is monotonically non-increasing in m for each fixed n, andmni

)__ A mnis also monotonically non-increasing in n. Thus

(4.5.2) E { N(IR x ')\{o}: ({s xR+)=0 for all but one s e 1R1c
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lim lim (ACn)
n-c n~ mn

. lim lim E P {tE N(R x R')\{ol: ([i/2n, i+1/2n)x[O,m)) > 0,n-ow ff •~ +-

4([j/2n, j+1/2n) x [0, i)) > 01

0

By Lemma 2.2.4 since

(IN([i/2 n , i+1/ 2n) x [0, m)), IN([j/2 n, j+1 /2 
n ) x [0, m)))

(N(m)([i/2n  i+1/2n) N m([j/2n ji2))

N(m)([i/ 2
n , i+1/2-n)- ) being independent of N(m)([j/2n , j+1/2 n)) if i j (cf.

Theorem 4.4.2 and Theorem 4.2.3). Q. E. D.

For each T E IR and ( > 0, define mappings uT and v. by -A

uT(s, t) = (S+T, t),

V(s, t) = (as, t/c),

(s, t) e R x R' I
Lemma 4.5.3 A measure U on R ,IR' is a scalor multiple of Lebesque

+

measure if and only if UOuT = WOv 0 = for all T E JR and a > 0.

Proof: The "only if" part is trivial. To show the "if" Part", let

[a, b) × [c, d) C JR X]R, the assumption implies that

(4.5.4) U(a, b) x [c, d)) UO, b-a) X [c, d)),

(4.5.5) U([a, b) x [c, d)) = U([Oa, Ob) x [c/a, d/0)), a > 0.

.

. - + . ° - ,- °, . .. , • + L + , m _ _ .-h, -. ..
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For each m = 1, 2, 3, ,

u([o 1) 0 [, M) i.

zm

k1l i([k-1/m, k/m) x [0, 1))
k-_l

= mu([O, I/m) x [0, 1)),

by (4.5.4). Thus ([O, 1/m) x (0, 1)) 1/m WUO, 1) x [0, 1)), which

implies that I([O, n/m) x [0, 1)) = n/m W([0, 1) x [0, 1)) for each m, n=

1, 2, 3, ... Since the set of rationals is dense in R,we have

(4.5.6) W([a, b) x [0, 1))

= U1([O, b-a) x [0, 1))

= lmt(b-a) [0, n/m) x [0, 1))

- (b-a) W ([0, 1) x [0, 1)).

Let t > 0 be arbitrary,

(4.5.7) jj([a, b) x [0, t))

= W([O, b-a) x [0, t))

= U([O, (b-a)t) x [0, 1))

(b-a)t.j([O, 1) x [0, 1)).

Hence u([a, b) x [c, d))

- u([a, b) x [0, d)) - W({a, b) x [0, c))

= {(b-a)d - (b-a)c} 1([O, 1) x [0, 1)) by (4.5.7)

.j

e

• " ... . - -. . ." " 2 . " ' ' "" " " " " - .i . '-. ";. .,- . ' " '
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=(b-a) (d-c) QI([, 1) x [0, 1)).

The conclusion follows since {[a,b)x[c,d) -~ < a < b < ~,0 < c < d < ~

is a generating semiring for the Borel CY-field in JR x IR.

Q. E. D.

Lemma 4.5.4 Suppose the condition A holds for { Jand IN converges
j n

in distribution to some point process IN. Then IWotu IN, INo v. IN

for all T E JR and ay > 0.

Proof: First, we show INouT IN. By Theorem 2.2.2 (iii), it suffices

to show for U1, U 2, .t U k E P,

(4.5.8) (IN (U 1) ., IN(U k)) (IN(uT(Ul)), .,IN(uT (Uk))).
d d)(c

Note that for U = (a, b) x [c, d), IN(U) = N d)(a, b)) - N c)a, b))

andIN~ (U) N d)([a+, bT)) N c([a+T, b+T)) by Theorem 4.4.2.

Thus we only need to show that

for each TI, 1 -9T > 0, which is readily seen from Theorem 4.2.3.

By the same token, if we have vinstead of u T in (4.5.8), we would have

to show 
A

for each T,, T* > 0. By Theorem 4.2.3, if Eexp(-E k f fdN(TJ
k j-1 JR j

exp(-eT~f(1 - L(f I(t), .. fk (t)))dt), then
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= exp(--- f (1 - L(fl(t/0), .. , fk(t/0)))dt)
aIk

= exp(-6T I f (I- L(f1 (t), .., fk(t)))dt)

= Eexp -Zj=lf1 fjdN(J

by a change of variable. The conclusion follows. Q. E. D.

Further, for each T e F and a > 0, let UT and V be mappings from

N(IR x 1R'>.{ol to N(Rx ]R+')\{ol defined by UT: b - OuT and V: ¢ - ovl/

respectively; namely, if E C N(IRx R+)\{ol with a decomposition Z b 6
+ ~l

then U ( .b.6 V Zb)b6
T 1 1 u(xi)' a i i va(x

Corollary 4.5.5 Write P for the canonical measure of IN. Then PoU T=P,

P0 Vo=P for all T e I and a > 0.

Proof: It is obvious that PoUT and P0V are the canonical measures of

INOuT and INov respectively. Since there is a one-to-one correspondence

between the canonical measures and the distributions of infinitely divis-

ible point processes, the result follows from the lemma. Q. E. D.

Lemma 4.5.6 For x E IR x ', WE N[1, o)), we have

(4.5.10) UT og (x, W) = g (uTx, 4)

and

(4.5.11) Vaog (x, 4) = g (vax, 'P)

for every T E R and a > 0.

Proof: Let W have a decomposition Z a E , and x = (s, t). Then

U 0 g(x, ) = UT (i a I6 ( ) = ia i 6 On the other hand,

g(u" T X g((s+T, ti (s+T , in (
g~ux O = ((sT, ) 0 = a (s+T, tYi), proving (4.5.10). (4.5.11)

. . .. .. . .... . " " " " - i. . . ( ". . . ... -. -.., - .. .. . .
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can be proved similarly. Q. E. D.

We now combine our lengthy and somewhat disconnected discussions to

give the following result.

Theorem 4.5.7 Suppose that the condition A holds for { j} and IN con-
j n -

verges in distribution to some point process IN. Then IN is infinitely

divisible with a canonical measure P satisfying

= .(Q x m)og-

where 0 is the extremal index of {j, m the Lebesque measure on IR x IR
+

and Q a probability measure on (N([l, R)), N([I, o))).

Proof: If 0 = 0, then the assertion is trivially true. Suppose 0 E

(0, 1]. For each Me N(I, )), define a measure vM on1(]R x ]R+) by

(4.5.12) vM(.)= P0g(.XM).

for BE(]R x ]'),

V M(U (B)) = Pog(u (B)xM) = PoUT og(BxM) I
= Pog(BXM) = vM(B) ?'

by Lemma 4.5.5 and Lemma 4.5.6. This shows that V V MU T G R. One
M VM~u n

could show similarly that VM = VMov, a > 0. By Lemma 4.5.3, VM is thus

a scalor multiple of Lebesque measure m; i.e,

(4.5.13) VM( .) = e-Q(M) "m(')

for some contant Q(M) E [0, -]. It is clear that Q(O) = 0. Also if _

00
{Mi}. is a countable collection of disjoint sets in V([I, o)) then for, ,i.1

_ I.
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variables with the same distribution as If for each E, v > 0,

(5.3.10) n P{a sup (c ZA) > E 0,
nv

n P{a sup (cZA) > E} O,
n v

then { t satisfies the condition A(un 1 , "'P Unk) with u =xi/an +

b for arbitrary x1 , .., Xk. .

Proof: We only prove for the case k = 1. The extension to k > 1 is

straightforward. Thus, let u = x/a + b , G(x) > 0. For a fixed v E
n n n

(0, 1/2), let A, B be two events in the o-fields

k
(31 (u) = U), t = 1, .. ,

k+2nv (u) = Un) t = k+2nv, .,, n}

respectively, where k is any number for which the above statements make

sense. It is easy to see that A, B can be represented in the forms

A Uj=I( A n  t = 1, .. , k),

bB(n)" ...

B = U . (t E B t = k+2nv, .. n)
= t t,j

where A (n and B(n) equal (-', u ] or (u 0) a, b < c. Let
twj tj n n'

= sup (cAZA+t),
Anv-1.

sup (c XzA+t)

A-nv+l

M =max -

M = max (14t - .-i
1 <t I<n

-- 1
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For each 1 A n, n,= c and thus P{rn~ Z > un }  ca r/n ce by

(5.3.3). This and the fact A(y) y2/2 as y - 0 imply that

n A(P Z U) n/2 a a 2 .an

X=(cT/nXc) + 0asn+

This concludes the proof. Q. E. D.

Corollary 5.3.3 Let {a I be a sequence of constants satisfying

n1-1 anI
aL(a E c 1/n as n+ Then
n n X

P{a M x} w exp(-ca/(AE cxa)), x > 0.

Proof: It is easily seen that

(5.3.8) P{X > an
1 T -/fln

implying that {a- T - 1  is a "u(Tn -sequence". The conclusion follows

from the proposition by letting T = x -a. Q. E. D.

The following result provides a convenient argument for verifying

the condition A(u n) for the max-moving average processes in general.

The idea of the proof is based upon that of [34], Lemma 3.1.

Lemma 5.3.4 Let (Et tI be a max-moving average process; namely, &t

s p(c X-t Zx) for some sequence of constants {c)AI and i.i.d. random

variables {Z XE I . Here we impose conditions on neither {cX} non the

tail behavior of Z1. Suppose there exists constants an >0, band

non-degenerate distriiLtion function G such that

(5.3.9) P{a n(M - b ) x) G(x)n n

for each x with G(x) > 0, where M is the maximum of n independent random
n
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Proposition 5.3.2 {X I has an extremal index e c OY 1 i.e.,
tXA

lrn PfM~ ; u(I)l exp(-CaT/Z CC').

Proof: Again, we write u~ for u ()and assume c c for convenience.

Since Xt sup cA ZA. we have
A-

P{M U~ I =Pfmac sup c Z~ u

= Pfsup max c Z <u
A 1~~n -t A -n

= Pfsup maxc Z Un

= n A Pl n Z I n

Hence for large n,

-log P(M~ uI ZA Ptn, Z > u) + Z A(P{(, Z1 >u

where A is defined by (5.1.1). By Lemma 5.3.1.

and

(..) ZMn,X 1 >un 0.

Therefore it suffices -o show that Z A(P[Bn, Z > u }) 0. By 41

(5.3.7) and the definition of A, it is readily seen that

A(P6 Z1 > u} +j 0 as n +~

nX I

................................
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-T+ 1 0P
First consider - + E NO Z > un For each t 9 -T+It=-W t=p +T p t I n=n ig

(resp., t z p + T), t equals some ct , t . -T (resp., t z T); and
n Pno

for each t . -T (resp., t Z T), ct does not appear in the summation for

more than p times. Thus

-" T+ 1 00 .
(5.3.5) E = o +  Et P + P{ P~ Z1 >  Un

t=-C t=p +T pt 1 nn Pn

Pn EItl-T P{ct Zl > Un}

Vun L(Un) tI-T ct / u a by Lemma 5.2.1

- pn T lItlT ci n Zx c by (5.3.1)

- p T E n c

by the choice of T. Also it follows simply from (5.3.3) that

0 p +T-1
(5.3.6) Z T+ E n +T -I

t-T+2 + t=p n+1 P Z1 > unP ntn.

- 2(T - 1) P(cZ1 > u"

- O(p/n). n!

By (5.3.4), (5.3.5) and (5.3.6),

limsup n/pn P{B t Z > Un} TE/Zc"n-mm tEI Pn '

The second assertion now follows since e is arbitrary. Q. E. D.

• . - ~ ~ . .. , . . . - . - -
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and

Pi >(T) /n
2 ,t 1 > = O(Pn/n)tEI no

t4{ 1,2,.. ,pn} -I

Proof: To prove the first assertion, assume that the maximum c of c.

is attained at X = k. Thus for each fixed n,

t c, t k+1, k+2, .,k+p.

p ,t'

Pn 

n

By (5.3.1), 9

(5.3.3) P {cZ > un = caL(c- u n)/u - c L(un)/U n C T/nX.c,.

where we write un for u (T) for simplicity. Therefore -!

k+n n Z n t o

~k+p p c a /n- c a

t=k+l fPnt c

The first assertion now follows from

'ZPn P{B Z > u - k+P n P{ Z > U
t=1 Pn' t  n t=k+l Pn t t 1-n

k• p
2kP{cZ > u } =O(CZ > Un}) = n P{ z >u

1 n nP I nt=k+l Pn't I "-n

since p 4 o as n *

Next, for each E > 0, there exists T such that Z ct < E. Let
ltkzT a

n be fixed, Z P{B Z > u} can be written as
tEI Pn't 1
tA{1,2,..,p I

n

(534) -T+I 0 pn+T-1 + E Z1 > .
t t=-+ t=-T+2 + Et=pn +1 t=p n+T pnot Un

• .- . •.- . ". . . " . -_ - -.-U-:- . " " ' " - . -. " " .' - : -- " i -
-" " • - " . " . " ._ - ". - _ ___ _ " . ' . ' " ' " , - . . -
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P(X > x) ~ZE P(c Z > x) ~x L(x) E c

proving (5.2.2). Q. E. D.

For convenience, we assume henceforth, if not otherwise stated, that

the moving average {X } under consideration always satisfies one of (a),

(b), (c).

5.3 The Extremal Properties of {X t

t|

It is well known that XI belongs to the domain of attraction of the

(max-) stable law G(x) = exp(-x -a) (cf. [21], Theorem 1.6.2). It will be

shown that M , when properly (linearly) normalized, has a limiting dis-

tribution which is of the same type as G. The mixing properties of high

level crossings and the point processes considered in Chapter 3 and 4

will also be discussed.

We start with some notation, As before, write {u(')} for a sequence
n

satisfying P(XI > u(-[) - T/n, or, by (5.2.2),

(5.3.1) (m(u()/(u( )E c a T
Sn X A

Let c = max c. For each t E I and Z = 1, 2, 3, .. , writeX
= max (cX).

(5.3.2) 8£'t t-2£At-i1

The following result is useful.

Lemma 5.3.1 Let pI, P2' ... be positive integers, p n 00 as n co.

Then

(') PnT c

I 1p{B t Z1 > n p

. • . . n... ........ .......... . - ..
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L(px)/L(x) - 2 exp(-f1 du/u) = 2P- £ 2Po0

We can thus take K to be 2P and this concludes the proof. Q.E. D.

Proposition 5.2.2 Let {X be as defined in (5.2.1) where the cA are I
non-negative and P(Z > z) : z"L(z), L being slowly varying at and a

positive. Then X is almost surely finite and, in fact,

(5.2.2) P(XI > x) - x L(x) Z CA

as x - provided that any one of the following (a) (b) or (c) holds:

(a) Z c < - for some 0 < E < a;

(b) Z) c < - and L is eventually non-increasing;

(c) Z c < - and L(x) converges to some positive constant as x tends to

Proof: We only prove the assertion under (a). The proofs under (b)

def
and (c) are more straightforward. The assumption implies that c =

max(cA) < -. Since c I Z c > 0 for each X, Lemma 5.2.1 implies that

there exist x and K such that

ZA P(c Z > x)/L(x) = x ZA CA L(cA x)/L(x)

< K x-  c

L-1 .
for each x x0, where we interpret c L(c x) as zero if c = 0.

Hence E P(cX ZX > x) - x L(x) Z CA by dominated convergence and the --

fact L(tx)/L(x) X- 1 for each fixed t > 0. Theorem 5.1.1 now implies

that X < c a.s., and, consequently, the distribution function of X does

not have a jump at its right end point since the right end point obvious-

ly equals infinity. Thus Lemma 5.1.2,

.-.7..
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and E > 0, there exist x0 and K such that

L(px)/L(x) < Kp£ for all p Z pop x xO.

Proof: It is known (cf. [11]) that L can be represented as

L(t) = a(t) exp(ft E(u)/u du)

where a(t) is a positive, bounded and measurable function that converges

to some positive constant as t ', and c(t) is a continuous function

that tends to zero as t . We can assume without loss of generality

that 0 < p0 < 1. It is easily seen that there exists an x0 such that

for each p Z p0 and x Z x0 we have

a(px)/a(x) < 2

and

1E(Px)j < E.

Thus for p Z p0 and x xtO

L(px)/L(x) = a(px)/a(x) exp(fpx E(u)/u du)

= a(px)/a(x) exp(f? E(ux)/u du)

2exp(Elf[ du/u[)

where we interpret f(u)du as f(u)du if b < a. Consequently for

each p Z i and x Z x0

L(Px)/L(x) S 2 exp(Efp du/u) = 2P£,

and for P0 1 P < l and x Z xO ,

-
-.. .]

. .. . .]
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5.2 Framework

Let {c X be a sequence of constants which are not all zero. Define

a stationary sequence of random variables {X I byt -

(5.2.1) X = sup cA Z.t X -t X : : _ .

where {Z the noise sequence, consists of independent and identically

distributed random variables. For convenience, call (X I a max-moving
t

average process. It is interesting to note the parallels between {X -

and the usual moving average. We shall see, with certain tail assump-

tions, the extremal behaviors of the two are strikingly similar.

A function L is said to be slowly varying at if it is positive and

measurable on (0, -) with lim L(tx)/L(x) = 1 for each t > 0. A function

R is said to be regularly varying at with index a if R(x) = xkL(x),

x > 0, where L is some function slowly varying at 0. Naturally,

lim R(tx)/R(x) = t
x -W

Some helpful references concerning slowly and regularly varying functions

are [11] and [121.

Throughout this and the later sections, our study of the max-moving

average process will be confined to the special case where the coeffi-

cients c 's are non-negative and P(Z, > z) is regularly varying at o with

index -O, Ot > 0. For {X thus defined, two immediate questions are:
t

(a) Is XI < - a.s. ? L

(b) Is P(X1 > x) regularly varying at o?

The following technical lemma provides an anwser.

Lemma 5.2.1 Let L be a slowly varying function. For any fixed p0 > 0

7' " .,
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Conversely, suppose X < a.s.. Then there exists an x such that

P(X - x) > 0, which implies that -log P(X < x) < . By independence and

(5.1.1),

-log P(X < x) = -log i P(Y. < x) =- log P(Y X)

= E P(Yi > x) + Z A(P(Y. > x)).
i 1

But this implies that Ei P(Y. > x) < since -log P(X X x) < and
1 1

i  A(P(Y i  > x)) . Q.E.D.

Corollary 5.1.2 Write x0  sup{u: P(X u) < 1}. If P(X < xO) = 0 ,

then P(X > u) - Z.P(Y. > u) as u+ x.

Proof: Since P(X < xO) = 1, we can find x < x0 for which P(X $ x) > 0.

Hence for x - u - xO ,

-log P(X - u) = Ei P(Y. > u) + Ei A(P(Y. > u)).

The assumption P(X < xO) = 1 implies P(X u) +1 as u xO , As a conse-

quence,

-log P(X - u) ~ P(X > u)

and

E. P(Y. > u) 0 as u xO .

The result now follows from the fact EA(P(Y. > u)) = o(zP(Yi > u)).

Q.E. D.

*,

* 6

------------------------------



CHAPTER V

EXTREME VALUE THEORY FOR THE SUPREMUM OF WEIGHTED RANDOM

VARIABLES WITH REGULARLY VARYING TAIL PROBABILITIES

5.1 The Supremum of a Sequence of Independent Random Variables

To demonstrate the notions mentioned previously, we now stady a

class of processes which is interesting in its own right.

Throughout this chapter, a random variable bears the meaning of an

extended real-valued random variable, i.e., it is a measurable mapping

from some probability space to the extended real line e = [-W, 00].

The following result is basic.

Theorem 5.1.1 (cf. [8]) Let Y,' Y2 ' ... be a.s. finite and mutually

independent random variables defined on some probability space. Write

X = sup Y.. Then X < o a.s. if and only if EiP(Y i > x) < o for some
11 1

x < . This shows, in particular, that X = o a.s. or x < = a.s..

Proof: write

(5.1.1) A(Y) = Y + log(1 - y), 0 y < I.

It follows by Taylor's Theorem that A(Y) Z 0, A(y) ~ y2/2 as y o =.

Suppose first that EiP(Y. > x) < for some x < =. Then
1 1

lim P(X > u) g lim Zi P(Y. > u) = 0
U-U-

by Boole's inequality and dominated convergence. Thus X < c a.s..

i i l i i ] i i i i ii i i . . . .~iii- .il i iA
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I

On the other hand, Faton's Lemma implies that

EIN((O, 1) x (0, T)) < liminfEIN ((0, 1) x (0, T)) = T.
n

If follows that EIN((O, 1) x (0, T)) = T and k= 1 a.s. Q. E. D.

It is important to observe the differences between Mori's and our

result. Mori assumes that { .} is strongly mixing and considers theJ

point process Z6(j/n, anl(&j-bn)). We assumed the condition A and con-

sidered the point process Z6(j/n u-l(j)). It is quite obvious that
n

neither result contains the other. However, the two are similar when

the extremal index e exists in (0, 1] and &1 belongs to the domain of

attraction of some max-stable law. We feel that it is possible to have

a unified approach using normalizations that are more general than the

ones in both results. To be more specific, we propose to study the point

process Z6(j/n ' ul(j)) where {fn ) is a sequence of measurable functions
() -T,

such that P(Mn U(T)) - e , T > 0, as n m. Here we neither assume

that un is linear nor require that 1 - F(u j )) n T/n. This is certainly

the direction of future endeavor.

IA

* 1

-. I

*'

6 '~

- q
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The intimate relationship between the limit point processes and

Poisson Processes is simply seen as follows.

Corollary 4.5.8 Let {(Si, Ti), i = 1, 2, ..J be the points of a homo-

geneous Poisson Process C on IR x R' with mean 0. On the same probabil-
+

ity space, let ql, 92 , ... be a sequence of identically distributed

random elements in (N([I, oo)), N([1 "))) with common distribution Q, and

let { =Yi i ... .< YikiI be the points of ni, i = 1, 2, .., where

ki, k2, ... are r.v.'s in {i, 2, .. , 4}. Assume that the qi are independ-

ent of and are themselves independent. Then

(4.5.14) IN d k 1 6

i=l j=1 (Si,TiY ij)"

Proof: It suffices to compare the Laplace Transforms of the two point

processes in (4.5.14) Q. E. D.

An extremely pleasant situation is when n, is degenerate; i.e. the

atoms of rI are fixed with probability one. The following is well known

(cf. [21], Theorem 5.7.1).

Corollary 4.5.9 Suppose e, the extremal index, equals one. Then IN I
is Poisson with mean 1.

Proof: Using the notation of Corollary 5.6, it can be seen that .

EIN((O, 1) x (0, T)) _0

= E[C((O, 1) X (0, T))1 E[Zk1 f T P(Y u < T)d(u/T)
j=1 u=O i.J

TE[k,< f/x)dx Z T
= E[j=1 P(Y Ij
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each E (BR IxRF) for which m(B) > 0, we have

Q(fJM) Pog(BxUM.)/Om(B) = Pog(BxM )/Om(B) = Q(M)

since g is one-to-one. This shows that Q is a measure on Va[l,c).

Moreover, note that g maps the set ([0, 1) x (0, T)) x N(I1, ct)to

{r~E N]R i')\{ol: 4'UO, 1) x (0, T)) > 01 nl A, and

+

= -log P{IN ([0, 1) x (0, T)) =01

= -log P{N(T)([O 1)) =01

= 8T

by Lemma 2.2.3 and Theorem 4.3.4. Consequently,

Q(N([l, P)) og(([0, 1) x (0, T)) X N([l, co)))/eM([0, 1) x (0, T))

showing that Q is a probability measure. We have thus shown, by (4.5.12)

and (4.5.13), that

* Pogo= e.(Q X in).

Finall1y f or each set E in the Borel a-f ield of N(]R x R)I0,

*Pogo(g'1 E) = 6-(Q x in)(g- E).

The left hand side is simply P(E nl A), which equals P(E) since Pis con-

centrated on A. Thus

P O(Q X m) g .Q. E. D.



Clearly, ~.and E.are independent if j -i 2nv. Therefore for E > 0,

P(A n B pta= (1 I=(n), = 1, .., k)}-l .{b_ r- (n)

t =k+2nv, .,n} + P(M' > EJ + P{M" > F-I

Ahee ,(n (or j~n = u**E +E] or (unE c) depending upon
(n) (n

A t'j (or B t).) - ul or (un cc). Thus

P(A n B)J

+. 2P{M' > E) + 2P{M" > el*n n

Z(n) Z(n)
where At~ (or B )=(.',U +2e] or (u -2c, c)depending upontj tj n n

A (n)(or B ) U or (uiec) We therefore have

P(A n B) 9 P(A)P(B) + n { E< u+e

2P{M' > el + 2FtM" > C).
n n

A corresponding lower limit can be obtained similarly. As a consequence,

jP(A r) B) - P(A)P(B) I i nP{u n-2c < CO un+20}

+ 2nP{IC - 1> El + 2nP{IC% - E1> el.

The quantity on the right-hand side is independent of the choices of k, A

*and B. Replace e by /an and writing u + 2E/a x+2E/a + b ,etc., wennn n n

- have that

A v~ sup(IP(AnB) -P(A)P(B) I Ac 03 k (u) BE 3n (u) k

vS +n
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(1-2v)n) " nP{(x-2e)/a + b< C (x+2e)/a + b 2nP (- :/n bn 0n n.-.

2nP{a sup (c ZA) > el + 2nP(a sup (c Z X ) > E).
anv AS-nv

The first term converges to log G(x+2c) - log G(x-2E) according to (211,

Theorem 1.5.1. The second and third term converges to zero by assumption

(5.3.10). Thus, by letting e 0, we have

A OasnV,n

since G is an extreme value distribution and hence continuous. This

shows that A(u ) holds since v E (0, 1/2) is arbitrary by a variant of
n

(21] Lemma 3.2.1. Q. E. D.

Corollary 5.3.5 Let {X t  be a max-moving average process as described

in Proposition 5.2.2. Then {Xt} satisfies the condition A(TI)
t n

u Tk) for each k and each choice of positive -l, T i.e. the condi-nk

tion A holds for (Xt}.

Proof: By corollary 5.3.2, P{a Mn 5 x} converges weakly to the dis-n n

tribution function exp(-c /(E ca xa )) x > 0, where a satisfies
Ax n

(5.3.11) a~L(an Z I/n.

Thus if for each C, v> 0,

(5.3.12) nP{a sup (c Z ) > } 0,
Xanv X

and

(5.3.13) nP(a sup (cXZX) > C} 2= , 0,
n A<-nv

then {Xt} satisfies the condition A(un I  . Unk) with un i  xi/a n for

. . . , . n . . .. . . . . . , . . . , n. . , . . . . .n . , x i• ,,n . .
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arbitrary x,, x which concludes the proof since P{XI>a- T-I 2 }~T/n,
1 n n

T > 0 (cf. (5.2.11)). Hence it suffices to show (5.3.12) and (5.3.13).

Here we only verify (5.3.12) for the case where there exists 0 < 6 < a
ot-6

for which ZA c A  < -, the rest being similar. By Lemma 5.2.1, there

exist nO and k such that for n Z n

L 0. -a . -i -

(5.3.14) ZlAnv Pfa c Z1 > l Zn anc E L(an cl E)

a. -c L  1 c-6

Ka c La E~~nn n Jvc

-i
since an (5.3.14) and (5.3.11) imply that for large n

n Zln P~anc Z 1 > E}I ; K E6 - Z- C aX
nv nXn1 na cnvA / XA cA,

c -6

which tends to zero as n tends to - since Z1 c. < . The assertion

(5.3.12) now follows by Boole's inequality. Q. E. D.

We now examine the "local" behavior of {Xt}. The most important
t

idea involved in the following proof is roughly that a cluster of ex-

ceedances of a high level by { j} is the consequence of a single large

"Z" from the noise sequence-a property shared by the usual moving average

(cf. [34]). Since the c are not assumed to be all different, it is con-

venient to introduce the following. Define {l Jj=o inductively by

(5.3.15) A,0  , X, = max{k: ck = max (cA),

Xj max{k: ck = max (C)}, j = 2, 3, 4.....AE\{X , .. , Xj-1}

Obviously, cA X 1 3 X ... .

."- ...+ . ?ii ~- . .-- .-- .- -----.ii i . .i .-! . ...- ..-. - .;~ -- -. rn *i -i. ? ! li,:.
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Lemma 5.3.6 Suppose T1 > > .. > T. > 0 are constants, and {r } is
1 n

a sequence such that rn = o(n) and rn as n + . For large n, let

i a 1, be the interval

[I + max (), r + min (.)]1 j -i+l kJ n 1-j-il "

and En,i the event

k n4  . r k Zk > un r n,i i u n for all i € k).

n,i n no

Then for each (iI , .. ij) eIj.

P IEr = i., j = I, , J, Eni

~ n (rnE C )-I [min (T ) - max (Tjci )]"I-<j<- jci I-<j -J .+I :

J J--

where x +  max (x, 0).

Proof: Assume that min (Tjc ) > max (Tjc a  ), and that cil
I 1j JJ I 1 +1

> 0, which implies c > 0 for all 1 -g j ! il; the modification needed is

obvious if otherwise. If kE n , then k-I a max (A.) and k-rn r".-
1 1js +1n

min (A This implies that (c c , .. , c. } C {c
1 <gj ;-i + '2'1+1 n

ck c I and, consequently, for each 1 < r < il+1, the r-th
k-r +1 k-i
n

largest among ckr , .. , ck_ equals c Now
n r

P{ n 3n - i.. j 1, J, E . .m=1 "n~mn,i 1

p{j rn  x(TJ) >i, j = (T J )n Z > u(t 1)
E i 1 nm r "rk k n

n, n
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u() for all i kJ

Zk"1 (i1 ck. Zk' j = 1, .. , n X. Zj
kE~n, i i 1

1 + .n

SZ. - u for all i kr n?1 1 n

'-"" = ZkE9 PX. Zk uJn < Xc. Zk' j =  ' JP{Br ,i Zi

n,iI  ij +1• 1

-u u( rI  for all i kJ

n

By stationarity and the fact (cf. Lemma 5.3.1)

lim P{ Z. I u(tI) for all i} = 1,
n- r , i n

we have

(5.3.16) p n (Ti) = ji, j = 1, J, Eni
m=1 n,m ..,

m(T

rn Ptc Z - j = 1 J}

r P{max u(TJ)/c < Z n(T
~ Z 1 min u(T3/cA.

= n 1l-j< Ji n I. lij J l+

3 3

since L(u(r))Mu (T))a T/nE ca by (5.3.1), it follows that
n n A

P{max (u'(Tj)/c,. < Y min (U(TJ)/C
1 A. lmn<J (u.A

3 3

m main P{Z > u(TJ /cA I - max P{ZI> U nTJ)/cA +11
1j .< n. 1 .<j < J 1.

i--3 3

= Ca /C M T) m ca Vu (T)J/C Mu (rj))J a
6jj .1. 1". lgj i .+1 l+

3 ii 3 3

* " " "" . . . " "..... " " .... " - -:- -. j- -JK-.'..-- -KK:
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-(min -a max TC a )/n c a

Thstgte ih(5.3.15) conclude the proof. Q. E. D.

Proposition 5.3.7 Let TI> T2> .. > T> 0 be constants and {r I be

A~u (TO u(Tj) )-separating. Then for each (i,I .. , i) 1n n 1

(..7 liP{Zrnl (T.) j . 1, jIZrn x(Tl) > oi

'iX* M~X,M j M=1 n,m

[min (Ta /TCa Max (T c a /

where x =max(x, 0).

Proof: First note that

(5.3.18) 0 i PUfl 1 r Q (T- j = ., (TI) >o

1 M M1 Xn,m

NE rn x(T-) _ rn (Tl)I
= =1 nm j n,i1  m=l "n,m 0

Ma~ Z. > u(l for some iEf1,..,r )I + PO{ Z

n r

> u (I) for more than one i in {1,..,r })1/ptjr. X x(Tl) > 0).

By Lemma 5.3.6, the proposition would have been proved if we could show

the right hand side of (5.3.18) tends to zero since (cf. Lemma 5.3.1)

(5.3.19) P{z~ 1 xT~ > 01 c .T1 .r/(n n~cX

By Boole's inequality and Lemma 5.3.1,
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(TI
(5.3.20) p{a Z. > u for some i E il, r

r 1 1 fnl

E~ Pi > U(I

r ,ir 1 n

ij{ 1,.. ,rl

=o(r In).
n

Also we have

(5.3.21) P{5 Z. > u (TI) for more than one i in r .. 1n

~~~~~ (rPZ U1 ~~ /

(ct Tr (T~) 2

=o(r /n).

Combining (5.3.18), (5.3.19) and (5.3.20), the conclusion follows.

Q. E. D.

Combining proposition 5.3.7, Corollary 5.3.5, Proposition 5.3.2,

*the following is immediate by Theorem 4.2.4.

Proposition 5.3.8 Let {X tI be as described in Proposition 5.2.2.

Using the notation of Chapter 1V, for each choice of constants 00> T1

* .. >> > 0, the point process (N(Tj), (T, k~)covre ind-

tribution to some point process (N(T1' N. 0~k) with Laplace Transform

*exp(- ExCo f, (I L(fl(t), f. f (t)))dt)

where

0I
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L(sI  s = ( . i) (min (T ca /T co) -

ijj

max (T.c /Tc x exp(- =1 sj i.).
Ij=J Ai.+l 3

By Theorem 4.4.2 and the above, a complete convergence result can be

stated as follows.

Proposition 5.3.9 Let IN be as defined in Chapter ]Vfor the sequencen

{Xt 1. Then INn converges in distribution to some point process IN with

Laplace Transform

exp(--c - ff (1 - e-[l,°) f(s' tw)J(dW))dsdt)
A ep A R x(O,w)

Where = ZEca/c .

Proof: Let t be a point process with the Laplace Transform described

in the proposition. By Proposition 5.3.8 and Theorem 4.4.3, IN con-
n

verges in distribution to some point process IN. Thus it suffices to

show that IN. By Theorem 4.4.2 and arguments used there, we only

need show

(5.3.22) (z(x[O, TI )), .. , (.x[0, k))) d (N(TI), .. , N(k)

for each choice of k and T > T > .. > T > 0, with (N(11 ), .. , N(Tk))

defined by Proposition 5.3.8. The Laplace Transform of (C(.x[O, TI)),

.(.X[0, Tk))) is 6

Eexp[-Zf~ fl fj(s) (ds [0, j))].

SEexp[-f3x]E+ k fj(s)l, j)(t)C(dsxdt)],

..... * + . ~ 3 [ , ...

% J.-
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k6

which equals the Laplace Transform of evaluated at f(s,t)=z =ifj(s).

l[0,T )(t). Thus it follows from the definition of that

(5.3.23) Eexp[-Ek f f (s)C(dsX[O, T.))]

= exp[- ca ff] (l-e-f[l,aO)'j=1 fj(s)1[0,)(tw)(dw))dsdt ]
c + k

c -Z k fj(s)[1, fr/t) /
exp[- c f fT(-e )dtds]s

c S EIR t t/t
C tT1 T I Ej=l f 1( ,' /

=exp[- E c fs EIR(I - Ti 
f tl O e dt)ds] i

A 1i

Simple calculations show

- jl fj(s)4i[l, T./t) i

I/T t=0 e dt

= I/T 1  Z eI  j  f i (s)ij 1 (t)dt
t= (il . .P)ik (l ,t./t)=i, j=l ,..,k)

k

But

-11

i([i T/ )= (4)1, / = 1, .., k) k)

1 (ca/cj 9- T /t < ca/c. , j = 1, 2, .. , k)
i. 3 .+I

- l(max (TjcO /ca) < t < min (T.cot /cC,)),
l~jgk -i.19j<-k i

showing that
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1 -k f ) f (i/t))dt . -:
t o exp( j-- 1

kk f (s)i) -

where {(iI, .. , ik) = (min (T C /Tlca)-max (i.ce !XC))+
k 1j<k i. 1-j<k ^i .+1

(5.3.22) follows from (5.3.23) immediately. Q. E. D.

[91 uses a more direct argument to derive a complete convergence

result for the usual moving average process with regularly varying tail

probabilities. It can be seen easily that the sequence of point pro-

cesses IN n defined for the usual moving average converges in distribu-

tion to the point process IN in the above result. This phenomenon is

interesting in its own right, and is yet to be explained.

b-9

I

, I

- --
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