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a,, b, Coefficients of Fourier series for intermittent pulse
function, Eq. (10)-(13).

A Constant in damping factor.

(o Correlation coefficient in random number sequence.

D Damping factor for Reynolds stress.

F Flatness factor <( )4>/<( )2>2; also intermittent
pulse function (Eq. 8 and 9).

F; Body force.
Intermittent pulse function, Eq. (10).

I, Integral time scale of turbulence _l_l_ccessi_o_n For

k Turbulence kinetic energy Dgg ng"“ “g#_—

LSE Large scale eddy gﬁ:ﬁglilgg:?onj_ﬁ

M Number of terms in Fourier series By

MSE Medium scale eddy | Distribution/

__ﬂxg}}ability Codes
n Frequency Avail and/or
Dist Special

N Frequency in wall variables

P Pressure —/

P Pressure in wall variables

Re Reynolds number

R,y Correlation coefficient <uv>/(<u2><v2>)1/2

R,2, Ry3s Ry,3, R, Random sequences, Eq. (14) and 28)

S Skewness <( )3>/<( )2>3/2.

s!,s! Fluctuation intensity of streamwise spanwise wall shear
stress.

SSE Small scale eddy

t Time

T Time in wall variables
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NOTATIONS (continued)

Friction velocity J<rw>7p

Fluctuating velocity components

Total velocity components, <U;> + uy; i =1,2,3
corresponds to x, y and z components of velocity

Length coordinates
Length coordinates in wall variables

Parameters appearing in intermittent pulse function
(Eq. 12 and 13)

rms turbulence intensities streamwise, normal, spanwise
at outer edge of viscous sublayer

boundary layer thickness or channel half height
rate of turbulent dissipation

mean spanwise spacing between streaks

kinematic viscosity

density

variance of random number sequence

shear stress

spanwise coordinate 2%Z/2A

momentum thickness

phase angle
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Special Notation

SUBSCRIPTS

wall variables (Eq. 3 and foot note on page 1l1l)
small scale eddies

large scale eddies

medium scale eddies

edge of viscous sublayer

ejection/sweep event

oscillating plate flow

oscillating shear flow

peak to peak amplitude

edge of boundary layer or channel mid-point
wall

refers to x direction

refers to z direction

¢ )

rms fluctuation about mean value

space-time mean for computations, time mean for
experiments

time mean at a fixed point
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INTRODUCTION

The modeling of near-wall turbulence represents one of the B
weak links in present computational methods for wall-bounded 55{'\
flows. Turbulence production, dissipation and kinetic energy : :
reach their maxima within the extremely thin viscous sublayer R
adjacent to a wall. Because of this thinness it has not been

technically feasible to measure in the variety of flows of

Py

practical interest some of the most important elements involved
in turbulence modeling - such as dissipation rate and the -
limiting near-wall behaviour. Such circumstances have restricted

significantly the accuracy of present turbulence models.

The objective of the present research is to explore use of PRI,
the time-dependent Navier-Stokes equations as a method of
modeling viscous sublayer turbulence. This method attempts to
model directly the experimental observations of highly-elongate

organized eddy structures near a wall. Such modeling is not

limited as experiments are by the extreme thinness of the viscous

sublayer, but is limited by the degree to which realism can be ff?fy
built into the boundary conditions for Navier-Stokes equations. Lo
These boundary conditions, to be realistic, must represent the Eo e

main physical features of both organized structures and

s
[
'."A,""'E ‘ P

disorganized turbulence.

Vo,
WP 3PN

One of the principal motivations for this research is the

possibility of providing a basis for strengthening present o ]
Revnolds-average closure schemes. Because the modeled ;{béf;
differential equations for free turbulence yield demonstrably ffff &
incorrect results near a wall, various ad hoc functions (up to 5 :;f‘ :
in number for k- ¢ methods) are conventionally added in an effort :f"ﬁ.ﬁﬁ

to mend this shortcoming. Without a sound guide from experiment,

the inevitable consequence has been that different models with
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different ad hoc functions have yielded different results (Patel
et. al 1981). 1If, however, Navier-Stokes computations could
provide an improved guide to the modeling, then conventional
turbulence models might be strengthened. A further motivation
for the research undertaken is the possibility of producing a
simple test flow against which various subgrid scale models of

turbulence in large eddy simulations might be tested.

The method used herein to model turbulence is termed
"coherent~-structure” modeling. It differs from conventional
Reynolds-averaged methods in that it overtly attempts to model
organized quasi-periodic eddy structures in the sublayer. Since
the process of Reynolds averaging obliterates at the outset much
of the physics of organized motion, it has not been possible to
incorporate such features in the framework of Reynolds-average
modeling. The conventional procedure is to first time-average
the dynamic equations, then model turbulence transport terms, and
finally compute results. 1In contradistinction, we first model
turbulent velocity boundary conditions, then compute time-
dependent dynamics, and finally time-average results. Thus,
time-averaging is the last operation performed on computed
dynamics, rather than the first operation performed on dynamic

equations.

In recent years several coherent-structure models of viscous
sublayer turbulence have been explored. An initial model of
Hatziavramidis and Hanratty (1979) used extremely simplified
boundary conditions and obtained some interesting qualitative
features, although the results were not quantitatively realistic
in important respects (e.g. yielding zero Reynolds stress and
zero turbulence intensity at the outer edge of the viscous
sublayer). Subsequent coherent-structure models of Chapman and
Kuhn (1981) and of Nikolaides and Hanratty (1983) have employed

somewhat more sophisticated boundary conditions in representing
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the coherent structures, and have yielded more realistic

results. One unrealistic aspect of these models, however, is
that they produce anomalously high values for dissipation near
the outer edge of the viscous sublayer (Kaneda and Leslie (1982)).
Because dissipation is a key quantity modeled in Reynolds-average
closure schemes, considerable attention is given in the present

research to this anomaly.

Three different coherent-structure models are explored
herein. They differ mainly in the complexity of the space-and
time dependent boundary conditions imposed on the Navier-Stokes
equations at the outer edge of the viscous sublayer. The first
model uses simple harmonically varying components of velocity to
simulate large-scale and small-scale eddies. The second model
adds complexity by simulating time-intermittent production c¢
Reynolds-stress, and by including a third velocity component to
simulate intermediate-scale eddies. The third model adds a
further element of complexity by using randomly generated time
functions in place of harmonic variations. All of the models are
restricted to incompressible flow without heat transfer. The
mathematical development includes the effects of a mean
streamwise pressure gradient, although comparisons with
experimental data are made herein only for zero or small pressure

gradients.
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EXPERIMENTAL OBSERVATIONS GUIDING MODEL FORMULATION

The key technical step in model development is to construct
appropriate boundary conditions for the three fluctuating
velocity components at the outer edge of the viscous sublayer
(VvSL). An attempt is made to formulate these so as to reflect as
well as possible the main organized motions delineated by
experiments. Seven principal observational features of coherent
sublayer structure have been selected as guidelines for the
velocity boundary conditions to emulate, as listed in the

paragraphs which foilow.

1. Relatively Small Scale Eddies (SSE) produce the principal
Reynolds stress. Near the outer edge of the VSL, Kim, et al
(1971) observed "ejection" events involving u < 0 and v > 0
which contribute about 70% to uv , and "sweep" events
involving u > 0 and v < 0 which contribute about 60%, while
other interactions contribute negatively about 30% according
to Wallace, et al (1972). Characteristic spanwise
dimensions of these stress producing eddies are small, being
about 10 to 30 wall units (Lu and Willmarth, 1973; Kline et
al, 1967:; and Corino and Brodkey, 1969). At high Re these
dimensions are the order of 1072 § to 1073 . Thus,
relatively small-scale eddies must be treated in modeling
VSL turbulence.

2. Organized Large Scale Eddies (LSE) exist in the region
external to the VSL (Kovasnay et al, 1970; Falco, 1977;
Brown and Thomas, 1977). Their mean period determined from
streamwise autocorrelation data is Tisg = 56/Um'
independent of Re (Badri Narayanan and Marvin, 1978).
Because LSE interact with the SSE, their effects must also

be included in the computational model.




In summary, Model 2 differs from Model 1 in several ways:
it simulates intermittent bursting and Reynolds stress
production, rather than sinusocidal as in Model 1; it employs a

medium-scale eddy component for v whereas Model 1 has none; and

el
it also employs a medium-scale eddy component for Wo Whereas
Model 1 employs a large-scale component. A further difference is
that Model 2 does not employ a body pressure gradient term

associated with the large scale eddy component for u.
Model 3

The primary feature characterizing Model 3 is the use of
time functions for LSE and MSE that are randomly generated
instead of harmonic. Otherwise it is similar to Model 2. The
periodic small-scale eddy structure remains the same as in Model

2., The outer edge boundary conditions for Model 3 are

SSE LSE MSE

Scale 2 Scale > 10 2 Scale 32
u = V2 alFu(NlT) sing azRuz(T)

= i 5 in%
v /7_31FU(N1T) sing V2 B3RV3(T) sing

= 5 L
w, /7_71FW(N1T) cosg V2 Y3Rw3(T) cos

ORDER DISORDER

where the three functions R,5(T), R3(T), R,3(T) are random
functions of time, each independently generated, and each
normalized to have an rms value of unity. All constants N;,

ajs Gy Bl' 82. Yo and Y, are the same as in Model 2. The
essential difference from Model 2, therefore, is that Model 3
simulates disorder in the LSE and MSE, whereas Model 2 simulates

relatively coherent harmonic order in these eddies.

(14)
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These results would suggest a value of Bl/B between 0.49 and
0.72. For simplicity sl/s = 1//2 = .707 is used in the

numerical computations. This corresponds to equal amounts of v2

energy in small-scale and medium-scale eddies. From the

correlation-coefficient equation it follows that al/u = ,.635.

The value of yl/y was determined by computer trial to yield
a relatively smooth curve for w'(Y). In runs with only the SSE
active, it was found that various prescribed values of Yy would
result in substantially the same level of (w')= 0.45 over much

of the sublayer. Hence, Y= 0.45 was selected as the outer edge

turbulence intensity of the SSE for Model 2.

The frequency N,, of the large scale eddies is taken to be
the same as in Model 1, namely, that given by equation (6). As
in Model 1, numerical computations for Model 2 have been made for
Ny = Ny = 0.44, corresponding to a Reynolds number of

Re6 = 14,000.
The frequencies N3 and Ny,3 were taken to be egual. 1In most

calculations for model 2 they were taken to be N 3=N,3=3N;.

In the numerical computations for Model 2 a body pressure

gradient is not imposed in association with the large scale

eddies. This feature differs from Model 1. Computer runs for _
Model 2 were made both with and without the body pressure ®
gradient term. The results were somewhat better without this

term, although the differences were not major.
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5th-order polynominal. It is noted that ¢yl = 25.8° corresponds
to the SSE pulse in w leading in time the corresponding

ejection/sweep pulses of u and v.

The (uv), correlation coefficient for the above boundary
conditions is -(Ruv)e = ulsl/as, which is set equal to 0.45.
The ratio 81/8 is evaluated from peak-to-peak ratios in
conditional samples of the ejection/sweep event taken from either
experiments or from large eddy simulations. Two different
methods of evaluations have been explored:

1. Equating the peak-to-peak amplitude ratio <v> /<u> to

ppa ppa
Bl/al, and then using the above equation for (R,,). to

e
determine both 81/8 and al/a7

2, Equating measured values of the fraction of total u2 enerqgy
during bursts to al/u, and then using the (R,,)
to determine 31/3.

e €quation

Results of these determinations are as follows with square R

brackets designating conditional samples:

Data Source Method sl/s _
Chen & Blackwelder (1978) [v]/Cul plus Ry, = -0.45 0.53 :""fli’»_'ff"li
Nakagawa & Nezu (1981) Cvl/Cul plus R,, = -0.45 0.72 .n B
Blackwelder & Kaplan (1976) [v]/[ul plus R, = -0.45 0.49 i ]
Kim (1983) [v]/[u] from LES computations, 0.60 RS

plus Ry, = -0.45 jf}§€§;
Kim, Kline, & Reynolds Fraction of total u? energy 0.59 ,"'W
(1971) during bursts (0.68), plus R, :ﬁ;f"?
= =0.45 RS
Blackwelder & Kaplan (1976) ([v]/(u] plus R,, = -0.45 0.64 SI?}S
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where T = time in wall variables, and

N, = frequency of ejection/sweep events
Ny2> = 2nU_/58 = frequency of large-scale eddies
Ny3. N,3 = frequency of medium-scale eddies
g = 2n2/A ﬁ
¢ = N T L
"Fu(¢) = FV(¢) = ___}ii)___ '. -
2 R .
H™ (¢) (9) .
1
H(¢ + ¢wl) 7
- 4
Fw (¢) = = ..>‘1‘»d:
n2 (o + o, ) .®
The function H(¢) is formeé by the first M terms of a fourier 1ff if
series for the intermittent rectangular pulse function sketched SRR
in figure 2. 177tﬂi
FE |
M 5.7, 1
H (¢) = ) [ancos(n¢) + b sin(ng¢)] (10) IR
1 .
M
2 _1 2 2
H™ (¢) —212 (a_ + b_) (11)
a =L [ein(nx,) - 2L sin(nx,)3 (12)
n ™™ 1 X2 2
1 N
b = = (- [cos(nX )-1] + [cos(nx )- 13} (13) T
n wn X, SRR

values of M between 3 and 5, and values of X; # X, have been
investigated with little difference in computed results. For the
results presented herein, M = 5 and X; = X, = 0.3. The phase
angle ¢y = 60° was determined by computer trial, as in model 1,
to yield a reasonable level for the skewness of u. The phase
angle %01 = 25.8° was mathematically determined, also as in
Model 1, by the requirement that (avz/aY)e = 0. Since M=5,

this particular determination involved solving for the roots of a
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have been obtained by Fulachier (1972) at y-values near the outer
edge of the viscous sublayer. Spectral parameters at Y = 40,
interpolated between his measurements at Y = 31 and 77, are shown
in figure 1 wherein k represents the wave number, and f the

spectral density. Since
[5 fak = [ kfd(lnk) = 1 (7)

the areas under the curves of u2kfu, v2kfv, and w2kfw versus
log (k) are proportional to the relative amounts of kinetic
energy in these velocity components. The two dashed lines shown
alona the k axis correspond to large eddies of scale 1/6 (where
§ is the boundary layer thickness) and to small eddies of scale
n/A. The Reynolds-stress producing SSE, of course, must be
included for all three velocity components. If only a second
component is selected, the spectral data suggest that the most
appropriate such component would be a large scale eddy for u, and
medium-scale eddies (MSE) for v and w. In contradistinction to
the structure of Model 1, thes. spectral data do not indicate the
presence of a major LSE component for w. Thus the boundary
conditions for Model 2 are structured to represent SSE and LSE
er coupled with SSE and MSE for v, and wg,. The latter MSE
are structured to be out of phase in both space and time in order

for u

to yield uw = 0 throughout the sublayer.

SSE LSE MSE e

Scale Scale > 102 Scale 32 - -
u, =/2 alFu(o)SJ.ng +/2a251n(Nu2T + ¢u2) :
= - : ; o1
vy = /EBIFV (¢)sing + 23351n(Nv3T)51n3;
= 1
Wy —/iyle(¢)cos; + 2yjcos(N_,T)cos3g
-14- . .
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model 1 differ somewhat from those of Chapman and Kuhn who used

N; = .025, ¢, = 3n/4 and oy = x/3, but otherwise used the same

constants. 2 2

The LSE frequency N,, is determined by the mean period
ELSF of organized large scale eddies as obtained from the

experimental relationship U_ TLSE = 56. Since

Nu2 TLSE = 2%, the large-eddy frequency is

N = —— (6)

which is Reynolds-number dependent. For a flat plate or channel

flow the dependence of Nu2 on Re is as follows

Re6 S, Re Nu2

4700 240 460 .1
11500 530 1100 .05
29000 1200 2800 . 025
67000 2500 6500 .0125
160000 5600 15600 .00625

For simplicity, numerical computations herein have been made for

Ny = Ny = .044. This corresponds to a Reynolds number of

Mcdel 2

Relative to Model 1, this model adds complexity by
structuring the velocity boundary conditions to simulate
intermittent production of burst events and hence of Reynolds

stress. Also, two components of velocity for each of u v and

e’ ‘e’
we are modeled to represent the principal eddy scales reflected

in spectral data. Such data for all three velocity components
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Three Models Investigated

The three different computational models investigated are
distinguished mainly by their outer edge boundary conditions on
velocity. The models are termed Model 1, 2, and 3 in order of

increasing complexity.
Model 1.

This relatively simple model is essentially the same as that
reported by Chapman and Kuhn (1981). It considers two
coherent harmonic components of motion at the outer edge:
one represents small scale eddies (SSE) and the other large

scale eddies (LSE). The three fluctuating edge velocities
are:

Component 1 Component 2
SSE LSE

. . 2 2 .
e 2a151n(NlT)51n t + [2(a"- al)] 51n(Nu2T + ¢u2)

o
i

<
]

—ZBsin(NlT)sin z (5)

2 .2 Nu2
2sin(N T + ¢ )cos g + [2(y"- 8)] sin(—= T+¢w2)

w
e

In order for the (uv), correlation coefficient to be 0.45, f_f,._ﬁ

al/a also must be 0.45: and hence % = 0.9. In order for “';;ff

P T

(dvz/dY)e to be zero in accordance with experimental data, it e
follows that ¢, = n/2 . The value ¢y2 = 27/3 is determined by -®
computer trial to yield as good agreement as possible with the ;}?}}}
law of the wall for <U(Y)>, the slope (a<U>/aY)w = 1 at the 5

wall, and the Reynolds stress distribution. The value

¢y = 0 is also determined by computer trial to yield a - @

reasonable level of skewness for Ug - Since Nl is taken as .044,

the computations for ik{xﬁ?ﬂ
-12- _
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The Navier-Stokes equations become*

g—;-+%-"zi=o

Thus we treat three velocity components fluctuating in two space
dimensions and time (Y, Z, T). Being more than 2D flow, but not

fully 3D flow, this mathematical approximation has been termed

“2 15 D" flow.

turbulence" theory.

The boundary conditions for the differential equations at

the wall are

side boundaries of the computational domain the boundary
conditions are taken as periodic in each of the three velocity

components.

at Y = 40 for all models. The spanwise extent of this domain,
however, is not the same for all models.

Cha At IO S T O R AR T T AR AT A AN AR SN S ¥ A AR A AR AR T AR ) SR

An alternate descriptive term would be "slender

u(o, 2, T) =v (0, 2, T) =w(O, 2, T) = 0. At the

The outer edge of the computational domain is taken

*Inasmuch as we use wall variables throughout, the + subscript
will be dropped from velocity components for simplicity in the
remaining sections of this text.
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technique would yield ﬁes/x = 120. In the computational model
N, Tes/x = 2%, so that the value above of N, = .044 corresponds
to Tes/x = 143, reasonably close to the value interpreted from

dye observations.

Still further elements of commonality for all models are the
turbulence intensities at the outer edge of the viscous
sublayer. These are inputs a,8,y into the computations defined
in wall variables as
2 2 2

= < > = < > = < >
a Ue+ 8 Vet Y Ye+ (2)

The values a =2, g =1, and vy = 1.3 are used throughout.

The experimental observation of highly elongate streamwise
eddies in the viscous sublayer provides a basis for
mathematically simplifying the models. Velocity derivatives in
the streamwise X direction are neglected compared to velocity
derivatives in the spanwise Z and normal Y directions. The
recent turbulence simulations of Moser & Moin (1984) show that,
although the u patterns are elongate streamwise, the v and w
patterns are less so; hence some approximation is introduced by

making this mathematical simplification.

The conventional wall variations are:

tu 5 + A
u = 1 /p T = p :P.-:E__E
w v T T ]
w w 3
xu yua zu e
X =-T~ Y = y+=—\’— Z =_\)_ (3) K )
= =¥ =¥
T Y+ T 30 Y. T 1
T T T
nv
N = &5
2 Y
T

S e LIPSO A L DL Y . B PR A R TR Y L UL AN .. P R R TR
Ty ) LI, ] 2 LW L adal 2ol 2 2 M P AP LI LV PP S Sl Tl S Y e gl ot gl o~ - - d Sental LRI UL PSP T Y




L T

motion. The function f(t) is structured such that for o <
I £ < v an ejection preceeds a sweep, whereas for =« < g < 271 a
sweep preceeds an ejection. Thus ejection/sweep and

sweep/ejection events are equally numerous in the models.

IL The mean frequency N; of the SSE burst events is also taken
to be the same for all models. With the Variable Interval Time
Average (VITA) technique used by Blackwelder and Haritonidis

(1983) to determine bursting frequency, only ejection/sweep

; events were counted. Since these meander spanwise over a fixed
' hot wire probe, their measured mean frequency of
?es ~ .0035 would correspond to an average over space and time
in the computational models. For O < g < n the frequency of
p: computational ejection/sweep events is N1/2n: whereas the

corresponding frequency for « < g < 2n is O. Thus the average
frequency of ejection/sweep events over space and time is
Ees = N1/4n, which corresponds to the value

N1= 47(.0035) = .044

22 This value for N; is not inconsistent with the mean burst
i period of TB/A
the dye technique (Schraub and Kline, 1965; Smith, 1978; Donohue
et al, 1972). If an ejection preceeds a sweep, dye first

= 120 determined from visual observations with

] accumulates along the spanwise station of the event and then

b’ becomes visible as a burst of dye when it is subsequently ejected
: upward. If a sweep preceeds an ejection, however, dye is first

: removed away from the spanwise station of the event by the sweep:
Efi and hence there may not be enough dye left at this station to

9  make the subsequent ejection visible. Thus the "burst" frequency
per ) of span from dye visualizations may represent primarily
the mean frequency of ejection/sweep events, while missing most

of the sweep/ejection events. If this is the case, then the dye




COMPUTATIONAL MODELS

Before describing features which distinguish between the
computational models, the several features that are common to all
three are to be noted. These relate to the small-scale eddy
structure, and to a mathematical approximation made in view of
the highly elongate streamwise eddies observed in the viscous

sublayer.

Common Modeling Characteristics

In each model, the boundary condition on each velocity
component is composed of two separate components structured such
that the Reynolds stress at the outer edge of the viscous
sublayer is produced only by a small-scale eddy component (SSE,
subscript 1) that is periodic in time and space. The SSE

velocity boundary conditions are of the general form

u,, = f(t)sing
Vep = -f(t)sing (1)
o = f(t + le)cos;

where ¢ = 2%Z/) is the dimensionless spanwise coordinate, t is
time, f(t) is a periodic function with frequency N;, and %1 is
a phase angle to allow for the circumstance that the spanwise
velocity pulse in a burst may lead (or lag) the ug,; and vg,
components. All of these quantities are in dimensionless wall
variables. This SSE structure corresponds to 180° phase
difference between ugy and vgy, in accordance with experimental
observations (Wallace et al, 1977) of conditionally sampled
bursting events. The spanwise variation as sin [ for Vepr and as

cos g for W1 correspond to a simple contrarotating vortical
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observations of Johansson, and Alfredsson (1982) have also
revealed large scale inward motions preceding an ejection 9
event. Their data for the smallest threshold values and the o
longest integration times show that the ejection/sweep and
the sweep/ejection events are about equally numerous. Hot
wire measurements indicate that the duration of the
Reynolds-stress intensive ejection and sweep is only about .
20% to 25% of the mean period between bursts. Such AR,
observations suggest how to structure the appropriate time -f?},
phasing and duration of the two principal Reynolds—stress ®
producing events.
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Coherent sublayer eddy structures are highly elongate
streamwise. This has been observed in visual studies (Kim
et al, 1971; Kline e* al, 1967; Grass, 1971; Cantwell et al,
1978) as well as inferred from hot wire measurements of
spatial correlations of velocity (Blackwelder and Eckelmann,
1979; Kreplin and Eckelman, 1979). Such observations enable
a significant mathematical simplification to be made in the
computational modeling.

There is a statistically mean period T between

ejection/sweep bursts per length A of 2é;n when observed
visually by the dye technique (Schraub and Kline, 1965;
Smith, 1978; Donochue, et al, 1972). There is also a
different mean period T between such bursts when measured
by a hot wire at a fixed point in the flow. Various
measurements of the latter show considerable scatter (e.g.
Bandyopadhyay, 1982). Moreover, they vary with distance
from the wall (Nakagawa and Nezu, 1981). Formerly it was
thought that T scales on outer variables U_ and § (Laufer
and Badri Narayanan 1971:; Rao et al, 1971). However, at the
outer edge of the viscous sublayer, where our boundary
conditions are applied (y+= 40), the recent measurements of
Andreopoulos et. al. (1983) and of Blackwelder and
Haritonidis (1983) yield the relatively consistent result of
T, = 250 to 300.
Reynolds number over the range 103 «< Ree < 1.5 x 104

covered by these two sets of experiments: and is used to set

the value of T for numerical computations.

B/ A
The principal Reynolds-stress production is intermittent,
consisting of periods of relative quiescence terminated by
burst events. This has been reported from visual studies
(Corino and Brodkey, 1969; Offen and Kline, 1975; Praturi
and Brodkey, 1978:; Nychas et al, 1973) and from hot wire
measurements (Blackwelder and Kaplan, 1976). Recent

This result is essentially independent of



3. Streamwise streaks of low-speed and high-speed fluid

alternate spanwise. This streaky structure has been
observed visually near a wall in both the velocity pattern
(Kline et al, 1967) and the temperature pattern (Hirata et. .
al. 1982; Iritani et. al. 1983). It has also been detected
in hot wire measurements (Gupta et al, 1971), and in large
eddy numerical simulations of turbulence (Moin and Kim,
1982). Many experiments have demonstrated that the mean
spanwise spacing between low-speed streaks is A, = 100 for _
the R, range of usual laboratory experiment. Schraub and

Kline (1965) found the value of A, to be insensitive to

pressure gradient. Offen and Kline (1975) suggest that

successive streamwise generations of low-speed streaks

appear to be staggered spanwise in a checkerboard like .
fashion. Such observations provide a guide for structuring

the spanwise distribution of the streamwise velocity.

4. Streamwise vortical motions are the dominant Reynolds-~stress

producing eddy structure in the VSL. Visual observations
have revealed stretched streamwise vortical motions (Kim et
al, 1971; Kline et al, 1967; Clark and Markland, 1969) as
well as contrarotating pairs (Smith, 1978). Presence of .
vortex pairs has also been inferred from various correlation
data (Bakewell and Lumley, 1967;: Lee et al, 1974; Willmarth,
1975; Blackwelder and Eckelmann, 1979; Kreplin and
Eckelmann, 1979). Recently, the conditional averaging
technique has been applied to numerically computed turbulent
flow in a channel (Kim 1983, 1984), and has revealed clearly
that a pair of counter rotating streamwise structures
accompanies ejection and sweep events. Thus, the principal -
Reynolds-stress producing events are associated with '
vortical pairs, although single streamwise vortical

structures appear more common than pairs (Moser and Moin,

1984). These various observations provide a guide for -
structuring the spanwise variations of the normal and :

spanwise components of velocity.




NUMERICAL COMPUTATION METHOD

A computer code recently developed by Kim and Moin (1984)
was adapted to the conditions of this study. The reader is
referred to their report for details of the numerical
algorithms. A brief qualitative description is given herein of
the numerical method along with an account of the modifications

made for the present computations.

With the pressure gradient split into three terms, the

Navier-Stokes equations in tensor notation are

U,

i 3 3P aP 2
- ax; Wiy e ek YR A VY (15)
J 1 i
an
. =0 i=1,2,3 (16)
where Uy = the velocity components U,V,W corresponding to
i=1,2,3, respectively
P = the mean pressure normalized by the wall shear
stress, T
P = the pressure perturbation normalized by the
wall shear stress
Fy = a body force used in Model 1 which corresponds
to a global pressure gradient associated with the
LSE
X4 = the Cartesian coordinates X,Y,Z in wall
variables

The equations are to be solved in a rectangular region
0 <Y « Ye, 0 ¢ Z < ZMAX. The flow is assumed to be periodic

in Z with zero velocity at Y = 0. At Y =Y the boundary

el
conditions are

-19-
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u; (X,Y_,2) = U, (2,7) + U, (T) (17)
el e2
In model 1, the functions F,(T) are taken to correspond to the
LSE pressure gradients of simple oscillating shear flow in the X
and Z directions. Thus, for this model
U

1 au
_ e2 _ e2
F, (T) = ST = =T (18)
f F2 (T) =0 (19)
I Y
3 W

_ e2 _ e2

F3(T) = ST = =T (20)

and the mean pressure, P, is assumed to be a function of X

Sanes

alone. For models 2 and 3, Fi(T) was set to zero.

For numerical solution of Egqs. (15) and (16), Kim and Moin

Vn"

use an Adams-Bashforth formula for convective terms, and centered

differences for viscous terms. A factored semi-implicit solution

T I 7Y
L

algorithm is used that is explicit in convective terms, and
implicit in viscous terms. The first step in time-advancing the
solution calculates a predictor velocity field which satisfies
appropriate boundary conditions, but not the continuity
equation. A second step then corrects the velocity field to
satisfy the continuity equation and the Poisson equation for
pressure. The method is second-order accurate in both space and
time.

An accuracy test of the Kim-Moin code was made by computing
oscillating shear flow and comparing results with exact
analytical solutions (Chapman and Kuhn, 1981). With 320 time
steps per cycle, and 17 points uniformly spaced across the
oscillating layer, the numerical method was found to be very
accurate (indistinguishable from the exact analytical solution on
a normal size plot).

-20-
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In making numerical computations, an arbitrary initial
velocity profile is needed at T = 0. To accelerate convergence BRI
to periodicity, an analytical approximation for a turbulent

boundary layer profile was used. The boundary conditions at Yo
were multiplied by an exponential factor which starts at zero and
reaches unity asymptotically over the first time cycle of the
computation. The solution was then advanced until periodic flow
conditions were attained, usually after about 3 or 4 cycles of
time for Models 1 and 2. Space and time averages were then taken
over a cycle of periodic flow. A typical computation of viscous
sublayer turbulence for our normal mesh used 400 time steps per
small-scale cycle, 30 points in the Y direction; 32 points in the
Z direction:; and, for models 1 and 2, required 4 to 5 minutes of
CRAY X-MP time per run. The corresponding run time for model 3
was considerably longer due to the lack of periodicity. For the

special fine mesh used to define the near-wall behaviour of

turbulence, up to 3200 time steps per small-scale cycle were used "'“
with 60 points in the Y direction, 64 in the Z direction, and a

run time of over one hour.

The computational method was found to be quite stable as
long as the time step was smaller than a certain value which
depends on the spatial grid size. The particular value was
determined by trial and error for each grid. Below the
instability limit, the solution obtained was not strongly
dependent upon the time step size, but was affected somewhat by
the spatial grid.

Calculation of statistical quantities

The computation of the time dependent dynamics of the flow
was followed by time and spanwise space averaging of the
results. This produces profiles of statistical characteristics
of the flow field which can then be compared with measured
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data. For models 1 and 2, the quantities of interest were
computed by calculating three time-cycles of the periodic
solution after convergence to periodicity was attained. Three
cycles were used in order to allow the computation of the
appropriate mean values from which various perturbations are
calculated. The quantities calculated in each cycle were as
follows, wherein < > designates the time and spanwise space
average:

First Cycle: Calculate <u>, <v>, and <w>

Second Cycle: Re-calculate <u>, <v>, and <w>, then u - <u>,
v - <v>, and w - <w>, then calculate <u - <u>>, <v =<v>>, and <w
-<w>>, and all cross-products, such as <{u - <u>){(v - <v>)>,
etc. Also calculate the higher order products, such as <{(u -
<«u»)?>, <(u - <u>)3>, and <(u - <u>)%>, and the derivatives and

products needed to calculate the dissipation.

Third Cycle: Calculate the perturbations from the mean
Reynolds Stress and the various products needed to calculate the
intensity of <uv> fluctuations, and the Skewness and Flatness of
<uv> fluctuations. It is noted here that all products were
computed. That is, the results were not limited to products of
the u and v components, but also include the w component.
However, most data comparisons are made with the u and v
components, and the combinations of those components that make up
the Reynolds stress and various perturbation statistics of the
Reynolds stress.

For Model 3, a slightly revised procedure was followed.

Since there is no periodicity in the time variation of the

solution, all calculated values must be included in the

statistical summations. 1In order to minimize the computer time
and storage requirements, the formulas for the most interesting

statistical quantities were derived, to allow the calculation to




Bl 2y .

be done in a single pass, and to allow the calculation to be done
in stages. In this way new results could be calculated as a
continuation of previous results. The quantities so determined

are as follows:

Mean Value

z

Nt
Y u,. (21)
1l

N

1
<u> = Z
1 1]

Nth

Turbulence Intensity

u'2= <(u - <u>)2 > = <u2> - <u>2 (22)

Cross Correlations (e.g. Reynolds stress)

<(u = <) (v = <v>)> = <uv> - <ud<y> (23)

Intensity of Reynolds Stress Fluctuations

<C(u - <«w)(v = <v>) - <uv>1?> (24)

= <u?v? + <u>? v - 2¢uvrcur-<uvr2

Skewness of Velocity Fluctutations

<u3> + 2 <u>3— 3 <u><u2>
§ = 3 3372 (25)
[<u®> -~ <u>“]
Flatness of Velocity Fluctuations
<u4> - 4<u3><u> + 6<u2><u>2 - 3<u>4
F = 2 o) (26)
[<u®> - <u>“]

Each of these quantities contains terms which are functions
of y only and are obtained from sums of the quantities at each

point. Thus, calculations can be carried out to any number of

.........




steps by storing the value of the sums at each step, allowing the
calculation of a few steps at a time until examination of the
results indicates a statistical steady state has becn achieved.
This results in a greatly reduced storage requirement and
computer cost compared to the approach used for periodic
solutions which would require storing the entire flow field array

at each time step in order to compute the complete statistics.
Generation of Random Numbers

In generating a sequence Rn of N random numhers, a new
parameter C is introduced representing the correlation
coefficient between successive terms R, and R,y of the

sequence. That 1is,

c=RR _, (27)

where R_R
n n-1

over a long time period of the sequence. The sequence is

is the average value of the product over all terms

constructed to have an rms variance of unity. The relationship

between a sequence of random numbers R; generated by a computer
and the desired random function with correlation C_is relatively
simple. 1If the sequence R; has a mean value of R; and an rms

value of ¢, the corresponding random function with unit rms is

(Moshman, 1967)

—
2 R

R = CR + [o n

2 *
n =1 (1-c™)] (R -

) (28)

Thus, a sequence with mean value of zero and rms value of 1 can

be generated from any random sequence.

A measure of the time scale of the sequence R, is found by

calculating the integral of the autocorrelation of the _
sequence. Thus, o

I, = aT [J[0 R R, dmdn (29) ;_};if?}

t +m
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This integral time scale in wall variables can be used to ‘;*“;1
determine a value for the correlation coefficient C since the Tt
A

4

autocorrelation for the sequence (Rn) is cM, and therefore,

= ® .n - AT
It =AT jo C dn —In(i/c) (30)
where AT represents the time step between successive terms.
Thus, .
-AT/1 *
t S
C = e (31) .
Since the integral time scale of turbulence for a given velocity R
component depends upon Reynolds number, the correlation ‘o ]

coefficient will be a function of both Reynolds number and the

time step taken in the numerical computations. R

Data on the integral time scale of turbulence near the outer ®
edge of the viscous sublayer (Y = 40 to 50) have been obtained ‘
from the experiments of Comte~-Bellot (1963), Fulachier (1972),
Elena {1977), and Hofbauer (1978). Their data are shown in

figure 3 as a function of § the boundary layer (or half

+!
channel) thickness expressed in wall units. The integral time

scale was determined from experimental measurements of
autocorrelation for each velocity component. Each set of RRRE

experimental data was taken at a different § and hence °

+!
different Reynolds number. These data, together with the
Reynolds number and time step used in numerical calculation,
determine the appropriate correlation coefficient to be used for

each velocity component in generating the random time functions K o
Ry2r Ry3z Ry3-

A typical time step used in the numerical calculations is

AT = (32)
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where N is the total number of steps used in the numerical
calculation of one cycle of the small-scale, and N; is the
frequency, defined previously. At the location Y = 40, the data
of figure 3 indicate that the integral time scales of the v and w
components are approximately equal at 8 wall units of time while
that of the u component is approximately 42 wall units. The
corresponding values of the correlation coefficient are obtained

from
c=e 1 (33)

which yields values of C from 0.95 to 0.99 for the values of N
and N; typically used in the numerical calculations. In order to
provide an illustrative calculation and keep computer time within
acceptable bounds, the value of C = 0.95 was used in the

numerical computations for Model 3.

In order to obtain meaningful results for the statistical
quantities, the random sequences must be calculated until a
steady state is reached. The number of steps required for this
is not known a priori. Due to the combination of periodic and
random functions, the total number of steps used must be an
integral number of periods of the small scale components. For
the results discussed herein, the calculations were carried out
until two successive cycles resulted in a negligible change of

the accumulated statistics.
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COMPUTATIONAL RESULTS COMPARED
WITH EXPERIMENT

Law of the Wall - As illustrated in figure 4, the mean

streamwise velocity profile computed for models 1 and 2 agree
well with experiment. For model 3, however, the computed values
of <U> are a little low. Because of the relatively long
computer times required when random time functions are used,
systematic variations in the parameters of model 3 were not
explored. It is possible, therefore, that modest changes in
these parameters could bring the computed <U> profiles for model
3 into agreement with experiment comparable to that of model 1
and 2.

Intensity of Turbulence - The computed rms intensity of

streamwise turbulence u' is not greatly different for the three
models (figure 5a). Each model yields peak values of u' higher
than experiment. For models 2 and 3, some irregularities can be
seen near the outer edge of the viscous sublayer (Y between about
35 and 40). This irregularity, as shown later, is manifested in
a more pronounced outer-edge anomaly in the rate of dissipation
and the intensity of streamwise vorticity fluctuations. The
sl?pe of the curve of u'(Y) 3t Y = 0 is equal to

2.1/2 , . .
S, = <(rxw - <rxw>) > / /<rw> the fluctuating intensity of

streamwise wall shear stress. In wall units, computed values of

Sx for the normal mesh are 0.55, 0.47 and 0.50 for models 1, 2,

and 3, respectively. These values are higher than experimental :j. }
values which range between 0.24 and 0.49. Runs with finer mesh Tl
[} .~ e .

intervals did not change appreciably the computed values of Sy ?g{l.q
S

-9 !

The computed intensity of turbulence v' normal to the wall
is nearly the same for all three computational models (figure
5b). Although the experiments indicate higher values of v' near
the wall, this may be due in sizeable part to experimental

-27- -9 f
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errors, since hot-wire measurements of v' are notoriously
inaccurate near a wall. Most of the experimental data, in fact,

extrapolate erroneously to non-zero values at the wall.

The computational curves of spanwise turbulence intensity w'
(figure 5c) show more variation between the three models.
Although the computed levels of w' are in reasonably good
agreement with experiment for all three models, some irregularity
is exhibited near the outer edge. At the wall, the slopes of the
w' curves, representing the intensity of spanwise shear stress
fluctuations, are 0.14 and 0.31 for Models 1 and 2,
respectively. These values were determined from runs with a fine

mesh. Expermental values are about O0.1.

Reynolds Stress - The computed distributions of <uv> as

might be expected, show similar results to those for

<U(Y)>. This is illustrated in figure 6a. For models 1 and 2
the Reynolds stress computations agree very well with experiment,
but for model 3 the computed values are somewhat low. In the
case of model 1 the parameters $w2 and ¢, Were determined by
computer trial to provide good agreement with Reynolds Stress
measurements; and in the case of model 2, the parameters

%3 and ¢,, Were determined likewise; but, for model 3 these
parameters do not appear. The parameters Bland Yy¢ however,
were found in models 1 and 2 to affect <uv> significantly, and

presumably could be adjusted in Model 3 to provide better

agreement with experiment for both <uv> and <U(y)>. Primarily
because of the long computer times required for model 3, however,

such parameter adjustments were not investigated.

The computed rms fluctuations in Reynolds Stress as shown in
figure 6b also differ relatively little between the three

models. Considering that the experimental data scatter widely -
because of the inherent difficulty of such measurements very near
a wall - the agreement between computation and experiment is R 1;T

reasonably good.

......




It is to be noted that in the outer region of the viscous
sublayer, the rms fluctuations in uv are about twice the mean

value uv, for both computation and experiment.

Skewness and Flatness Factor - Distributions of skewness

and flatness factor for the streamwise velocity fluctuations are
presented in figure 7. Near the wall, both skewness and flatness
are low for Model 1 with its simple harmonic boundary conditions
on velocity. For model 2, which simulates more realistically the
intermittent character of burst events, these factors are in much
better agreement with experiment near the wall, as might be
expected. In the case of model 3 with randomly generated time
functions, the skewness and flatness of u' are considerably
greater than for model 2 and the experimental data. The reason
for this is uncertain. A possible cause may be that these higher
order statistics may require larger computation times to reach
steady conditions than do the lower order statistics such as u',

v', etc.

Similar characteristics are exhibted by the skewness and
flatness factor for the fluctuating Reynolds stress (figure 8a
and 8b). Here again, the flatness factor for model 2, agrees

better with experiment than does model 1. Computations were not

made of the Reynolds Stress skewness and flatness for model 3. ﬂig;;f

Correlation Coefficient Ruv

models yield values of R,, between about 0.4 and 0.5 in the outer

As shown in figure 9, all three ffqg

three-fourths of the viscous sublayer. The computations for :
models 3 and 2 exhibit very similar trends, indicating that the :.”.
use of random time functions in place of periodic ones has only a

small effect on the u-v correlation. Experimental data scatter

widely below about ¥ of 10, with one data set (Eckelmann 1974)

suggesting increasing values of R, as the wall is approached, Jb ;
whereas another set (Kutateladze 1977) indicates strongly
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decreasing values. Considering the wide scatter of these
experimental data, all three models yield acceptable computations
of Ryv:

Dissipation and Streamwise Vorticity Fluctuation ~ These

two quantities illustrated in figure 10 reveal most clearly the
existence of an anomaly in all three models near the outer edge
of the viscous sublayer. Both the rate of turbulence dissipation
€, and the rms intensity of fluctuating streamwise vorticity
Q;, exhibit anomaloulsy high values in ?he outer region between
about Y = 35 and Y = 40. Since ¢ and a, reflect the magnitude
of velocity gradients, it is clear that all three models produce
a region near the outer edge in which velocity gradients are
large and vary rapidly with Y. Such a region is of the "Stokes-
Layer" type. It is believed due to some unrealistic or
artificial aspect of the velocity boundary conditions imposed at
Y = 40, to which the Navier-Stokes equations make rapid
adjustment, leaving most of the turbulence characteristics below

Y of about 35 in reasonable accord with reality.

Inasmuch as dissipation rate is a quantity often used in
Reynolds-average modeling to determine the important length scale
of turbulence, an effort was undertaken to vary the model
parameters and eliminate, if possible, this undesirable
anomaly. Systematic variations were made in the parameters

opr Bye Ype Npo Nyge Noge Nogo dgpedyp0 &0 9300 XuM, and (V).
While some of these variations altered somewhat the high value
of € at the outer edge, none eliminated or reduced it by more
than a factor of about 2. In addition, phase angles in spanwise
space and in time for the intermediate-scale component of model 2
were introduced and varied; but without any essential effect on
the anomaly. Moreover, the spanwise profiles of velocity were
altered from sin g to sin p;, with p being a power greater or

less than one, and still the anomaly remained. When runs were
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nade with only the small-scale eddy components present, and

vithout any large or intermediate scale components, it was found 7_"
that the anomaly still existed. On the other hand, it was not

sresent when only the large-scale components of velocity were Eff;;;.
ased. We conclude, therefore, that the outer-edge anomaly is a j?i,fﬁ-
consequence of some unrealistic aspect in the structure of the ® ‘
velocity boundary conditions for the small-scale eddies which :

produce the Reynolds Stress in all three models.

It may be noted that the Stokes-layer anomaly at the outer °
edge is not attributed to the approximation of 2.5D flow. In , ;
principle, the velocity fields computed at Y of 30, say, could '
have been used as outer-edge boundary conditions imposed at
Yo = 30, and identical results would have been produced below Y ‘@
of 30 without an anomaly. A cursory examination of the velocity
fields at Y = 30, however, showed them to be rather complex.
More detailed study of such fields, however, might provide a
guide as to how the small-scale eddy velocity components could ﬁ‘ ]
properly be constructed without producing an anomaly at the outer ,-iibq

edge.

NEAR-WALL LIMITING BEHAVIOUR OF TURBULENCE

Experimental techniques have not been able to determine the
limiting behaviour of turbulence very near a wall. As a

consequence, several different ideas have been advocated. Over Y

+
PO

thirty years ago, Reichardt (1951) concluded that for streamwise

inhomogeneous flows, u' would be proportional to y, v' to y2, and o
av to y3, as y approaches zero; but that for streamwise fﬁf?ff

homogeneous flows uv would be proportional to y4. Elrod (1957) ;‘
arrived at the same conclusion. The widely used and highly '

successful damping-factor model of Van Driest (1956) corresponds

also to uv ~ y4. . Some support for this appeared to be -
provided by the theoretical results of Ohii (1967) for Y

homogeneous flows which also yield near the wall
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uv ~y , together with R,, ~ Yy, and (Ruv)w = 0. A review of
the differing views on the y3 versus y controversy has been

given by Hinze (1975).

Numerical computations from the Navier-Stokes equations
offer a means of resolving this issue. Towards this end
computations with very fine meshes and small Courant numbers have
been made for models 1 and 2 for the case of zero pressure
gradient. (Considerations of computer time precluded doing this
for model 3.) 1In the y direction 60 points were used across the
viscous sublayer, with clustering near the wall and with the
closest point at Y = .018. 1In the z direction 64 points were
used evenly spaced spanwise. Due presumably to a numerical
truncation error at the wall boundary, the wall turbulence values
were not precisely zero (ranging from 10712 for <uw> to 1074 for
w') and were subtracted out in order for the turbulence to be
precisely zero at the wall. The results are shown as log-log
plots in figures 11 and 12 for the range of Y between .01 and
10. The limiting near-wall behavior in each model is clearly
V)w = constant # 0. The

constants of proportionality, of course, differ between the two

u'~y, v'~ y2, w' ~ y,<uv>~ y3, and (Ru

models: R,y near the wall, for example, approaches 0.34 for
model 1, and 0.21 for model 2. But the limiting power law
exponents are precisely the same for the two models. It is
noteworthy that the range of validity of the limiting power laws
is quite different for different turbulence quantities:

u‘~y out to Y of about 3 or 4, while v'~ y2 and Ry, =

constant out to Y of only about 0.3.

In general, the near-wall limiting behavior extends to Y of
about 0.3. Between 0.3 < Y < 3, R

av' V'+. and w', especially for
model 2, depart considerably from their respective limiting near-

wall power laws.
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positive correlation between u and 3aw/3z, and this requires a y3
variation to conserve mass. Since these fundamental coherent

motions have been observed in flows with streamwise pressure

gradient as well as without, in streamwise homogeneous as well as
inhomogeneous flows and over curved as well as flat surfaces, the
y3 variation is concluded to be rather general. The constant of
proportionality, of course, may depend upon pressure gradient and

curvature.

It is noted that the limiting power laws for several of the
turbulence quantities, are accurate only for Y less than about
0.3. This is a surprisingly small domain. In the range 0.3 < Y
< 3, power laws are still a good approximation, but the exponents
change a little: to less than one for w', less than 2 for v', and
to slightly greater than 3 for uv. The u-v correlation varies

considerably over this range.

The several applications made to Reynolds-average turbulence
modeling are illustrative of the way in which time-dependent
Navier-Stokes computations can be used to strengthen practical
methods of turbulence computation. A number of uncertain
elements still exist in the important e¢- transport equation
which is commonly used to determine the length scale of
turbulence. They could be resolved with improved computational
models that are more accurate for dissipation than the present
models.

The observed limiting behavior of various turbulence

qguantities near a wall, as reflected in the exponent of their

1

L _

. ".."..".." .
bttt Py

limiting power-law behavior, is summarized as follows:

AR
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CONCLUDING REMARKS S

Three different computational models for incompressible
viscous sublayer turbulence have been investigated. They are
characterized by different velocity boundary conditions imposed

on the time-dependent Navier-Stokes equations at the outer edge
of the viscous sublayer. Although these boundary conditions
differ significantly, they yield surprisingly similar results for
most of the turbulence quantities. All models, for example,
yield reasonably realistic computations of mean streamwise :.
velocity, Reynolds stress, u-v correlation coefficient, and of
the fluctuating intensities of velocity and Reynolds Stress.
Relative to model 1, which is the simplest, the principal merit
of model 2 is that it yields more realistic values for the ,.i
skewness and flatness factors near the wall. Model 3, which S
requires much more computation time than either model 1 or 2,
does not appear to yield significant improvement over model 2,and

relatively little over model 1.

All three models exhibit near the outer edge of the viscous
sublayer a thin region in which velocity gradients vary rapidly
from anomalously high values at the outer edge (Y = 40) to
reasonably realistic values at Y values of about 30 to 35. 1In
this thin, Stokes-layer region, both the rate of turbulent energy

dissipation and the rms fluctuations in streamwise vorticity are T?f;fi
anomalously high. This is the principal shortcoming of the ® ]
models. The outer-edge anomaly is attributed to some unrealistic
aspect about the small-scale eddy structure in the boundary

conditions.

The limiting third-power variation of Reynolds stress near a
wall is concluded to be very general because of the physical
explanation underlying it. In essence, organized sweep and

ejection motions that produce Reynolds stress also produce

e - ~ - e nd - . e e e e . . PO - T . - -
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e, =K - Y ak /a3y
H:(E =2_aE
Yy Y 'w Iy
e = 2k - ¢
W
As illustrated in figure 15, the quantity (k - y %§)+ is very

nearly constant near the wall. It is equal to the wall
dissipation (e+)w within 0.1 percent up to about Y = 0.6, and
within 1 percent up to about Y = 1.3. The quantity 23e/3y is
nearly constant up to about Y = 0.3. The quantity 2k-¢ in the
numerical computations is equal to the wall dissipation within 1
percent out to about Y = 0.8. For some numerical algorithms, a
boundary condition involving only a first derivative, or no
derivative, is preferable to one involving a second derivative.
The fourth equation listed above probably provides the simplest

wall boundary condition for use in the ¢ transport equation.
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_ 2 3
u=ay+a,y +0 (y™)

_ 2 3
w=Dby+by" +0 (y)

v = c2y2 + 0 (y3)

where the coefficients a;, a, by, by, and c, are functions of x,
z, and t. Hence,
+ bi) + 2(ala2 + blbz)y + O(yz). Disregarding the

2
very small contribution of spanwise derivatives to ¢, we have

2x/y? = (a}

2 2
_ ¢(9u w N4 - 2 2 2
€ = (3§ + (3§ + (3§ (a1 + 2a2y) + (b1+ 2b2y) + 0(y)

22 —_— 2
(a1 + bl) + 4 (a1a2+ blbz)y + 0(y“)

from which it follows that € azk/ayz = (a,2 + blz), and that

near the wall (¢ - ew) varies linearly with y. It also readily
follows from manipulation of the above equations that the rms
streamwise and spanwise vorticity vary similarly, e.g.,

(n; - Q') ~y and (Qé - géw) ~ y; but that the rms normal

Xw
vorticit Q' ~ since Q' = 0.
Yy Y yw

With C = (ala2 + b1b2)' and X = 2k/y2, it follows that the
first two terms in the near-wall expansion are

e =¢, +4Cy

k=ew+2Cy

Since 3k/3y = 2C, four alternate near-wall limiting equations
for dissipation follow from these two equations. These four
equations are valid within the small but finite Y range of

limiting near-wall behavior.

_ .2 2
e, = 9 k/3y
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By way of comparison, the corresponding results for the present
computational models are:

Computational Model -(GV)+/Y3 near wall
Model 1 . 0007
Model 2 . 0005

Of the two damping factors that yield the correct near-wall
behavior, the one based on oscillating shear flow yields values

of (EV)+/Y3 closer to the computational models.
Wall Boundary Condition for Dissipation

In k-¢ models, as well as in Reynolds stress models of
' turbulence, it is necessary to impose a boundary condition on the
mean homogeneous dissipation ¢ at the wall. As summarized by
Patel et. al. (1981), three different boundary conditions have
been employed in the past:
| e, = O (;e/ay%w= 0é and (e)w = (azk/ayz)w, where
2k = (u'“+ w'+ v' %) . As a test of the first two of these,
the near-wall behaviour in models 1 and 2 of the mean value ¢ of
the computed space and time-dependent turbulence dissipation

2 2 2 2 2

2
au w v u v aw
Lay) + Gy) + Gy + )+ )+ ) )

is shown in figure 15 in wall variables. It is clear that

U

e,~ 0 is incorrect (as is well known), and that (ae/ay)w = 0 is -0
also incorrect. That the third boundary condition is a correct

e .
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one, follows directly from the limiting near wall behavior of u'

'
'

P,
“,/ ‘ /. T

o 4
A

e
-

e s e s
5
f

and w'. Moreover an alternate boundary condition for € that

i

does not involve azk/ayz, but only a first derivative, can also

be derived. We have
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Still a different damping factor is obtained from the
I analogy of oscillating shear flow over an infinite stationary
: wall (Chapman and Kuhn, 1981). This type of flow seems more
analogous to real flows than does the Stokes flow of an
oscillating plate under a stationary fluid. 1In oscillating shear flow

the u fluctuations are damped as D__ = (1 - 2cosn e " + e -2") ,

os

where n = Y/Ao » and A, is a constant. This damping factor

s
applied to Reynolds Stress also yields the correct cubic power-
law behaviour near a wall, —(GV)+ = k2Y3/Aos.

In each case the constants A, A and Aos are determined

’
through a quadrature (Van Driest, 19?2) in which it is required
that the logarithmic law of the wall for U(Y) is satisfied.
Using 5.6 + 5.75 logY for the logarithmic region, the constants
that fit this turn out to be A = 27.8, Aop = 71.2, and

A,g = 111. As illustrated in figure 14, the resulting

U(Y) profiles are nearly the same for all three damping
factors. As far as U(Y) and momentum decrements are concerned,
therefore, it would make relatively little difference which

damping factor is used.

Although the different damping factors yield similar results
for U, they yield very different results for uv near a wall, e
For applications involving heat transfer in fluids with high j}i?fi?
Prandtl number, or diffusion in fluids with high Schmidt number, :Jf;f“ﬁ
the near-wall values of uv are of central importance. The three
different damping factors, when used in the simple eddy-viscosity
(mixing-length) model of turbulence, yield the following results
for Reynolds stress near a wall:

Damping Factor —(GV)+/Y3 near wall ;éggfgf

Dyqr Van Driest .0002 Y
D
D

op’ oscillating plate flow .0022
og’ ©Oscillating shear flow .0014

..........
et .
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APPLICATIONS TO REYNOLDS AVERAGE 3
TURBULENCE MODELING e

The limiting behaviour of turbulence near a wall as defined

by the computational models can be applied to strengthen certain

aspects of Reynolds average turbulence modeling. Two examples
illustrating this are outlined in the paragraphs which follow.
One pertains to the damping factors for Reynolds stress in eddy-
viscosity models; and another to the wall boundary condition for

dissipation in k-¢ models and stress-equation models. - @
Damping Factors For Eddy Viscosity Models

In eddy-viscosity (or mixing length) models, the Reynolds . 6
stress near a wall is expressed as —(GV)+ = x%v?D, where k = 0.4
is the Karman constant, and D is a "damping factor" required to “
provide a smooth transition between the wall and the logarithmic
region. The most widely used damping factor has been that of Van ®
Driest (1956), namely, D,4 = (l—e"Y/A)z, where A is a constant.
Near a wall this yields -(GV)+ = k2Y4/A2, unfortunately, an
incorrect limiting behavior. Van Driest obtained his damping
factor by using Stokes flow of an oscillating plate under a ,ji

stationary fluid to obtain (l-e_Y/A)

as the damping factor for
u fluctuations; but he further assumed (incorrectly) that the v
fluctuations would be similarly damped, and thus obtained

(l-e-Y/A)2 as the damping factor for Reynolds Stress. )

It is of interest that the correct near wall behaviour of
Reynolds stress is obtained if the analogy of oscillating plate
flow is adhered to for v as well as u fluctuations. The ;.
incompressible v-velocity field for an infinite plate oscillating
in the y direction is not damped; hence the damping factor for

oscillating plate flow is Dop = (1-e°Y/Aop), where Aop is a

constant. This yields the correct cubic power-law behaviour near

a wall, -(uv)+ = k2Y3/Aop
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(e.g., along the dashed line in the sketch) is such that u and
3w/ 3z are positively correlated during both of these motions, o

and hence produce a y3

term. We conclude from the requirement of
mass conservation, therefore, that the leading y3 term in :
Reynolds stess is provided by the sweep and ejection motions near f“it?
a wall for streamwise homogenous or inhomogenous flows. Since 6,
these structures are present in flows with or without streamwise

pressure gradient, it follows that the limiting uv behavior near

a wall will in general be proportional to y3. The constant of
proportionality in wall variables is 0.7 x 1073 for model 1, and ®

0.5 x 10 -3 for model 2.

From the above considerations we can now understand how some
previous theories have incorrectly yielded y4 variations for @

4

uv . Elrod (1957), for example, obtained the y* variation for

streamwise homogenous flows through the erroneous assumption that
".. by symmetry, u and w (and their derivatives) are

uncorrelated." 1In the Reynolds Stress producing sweep motions, u o
and 3w/3z are strongly correlated; and this correlation produces
a y3 term. We believe that implicit in the theory of Ohji
(1967), which yielded a y4 variation for uv, is also some
erroneous assumption equivalent to assuming that u and 3w/3z are ;‘i

uncorrelated. -
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A simple physical explanation based on mass conservation in
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sweep and ejection motions can be given for Reynolds stress o
varying as y3. Very near the wall the leading terms in a Taylor [::
series expansion for the fluctuating velocities are jﬁﬁ
u = f(x,z,t)y + ... w =g(x,z,t)y + ... f;
For mass conservation,
Vv au w of 9g -
- - = ey + ~ = -y e . oo
Yy 9X 9z (ax + az) y + - @
so that integration yields,
of , 39, y° .
-— 3 —— + . e 0
§ M (ax + az) 2 j‘.
[ L
o The leading term in Reynolds stress, upon time averaging, becomes O
- ) 3 T
- v = (X 3f 99,y ¥ "o
F uv (2 % faz) £+ . .-j,o
- o
- which clearly produces a y3 term in streamwise inhomogenous ﬂf
& flows. o
ji . .
4 -
i In streamwise homogenous flows afz/ax is zero and S
NozHY oW y B
-uv=faz2+ --o=u52+ LRI} ‘
_®
from which it is seen that a leading y3 term will also be present ﬂjx
if u and %%, (each of which is proportional to y) are S
positively correlated near the wall. Sweep events primarily and j?i
ejection events secondarily, are the Reynolds-stress producing .0
motions close to a wall. These motions are illustrated in the -
simplified sketch of a sweep and ejection shown in Figure 13. e
The spanwise distribution of u and w along a given value of y fﬁ
.
-33- -
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Figure 1. Spectral density of the three components of velocity
fluctuation at ¥ = 40 from data of Fulachier (]972).
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stress fluctuations. OsSchildknecht et. al.
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Figure 9: Reynolds stress correlation coefficients.
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Figure 10: Turbulence dissipation and streamwise vorticity
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MODEL 1

Figure 15: Near-wall behaviour of dissipation € and the quantity
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