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NOTATION

an# bn Coefficients of Fourier series for intermittent pulse
function, Eq. (10)-(13).

A Constant in damping factor.

C Correlation coefficient in random number sequence.

D Damping factor for Reynolds stress.

F Flatness factor <( )4 >/<( )2>2; also intermittent
pulse function (Eq. 8 and 9).

Fi Body force.

H Intermittent pulse function, Eq. (10).

itIntegral time scale of turbulence Accession For

k Turbulence kinetic energy DTIC TA--

LSE Lrge caleeddyUnannounced
LSE Lrge caleeddyJustificatio

M Number of terms in Fourier series

MSE Medium scale eddy Distribution/ --

AvailabilitY Codes
n Frequency Avail and/or .Dist Special

N Frequency in wall variables

p Pressure

P Pressure in wall variables

Re Reynolds number

R Correlation coefficient uv>/(u2>v2> m2

71 Do

Ru2, Rv3 , R 3, Rn Random sequences, Eq. a 28)

S Skewness < )3>~/<( )2>3/2.

k Fluctuation intensity of streamwise spanwise wall shear
x z stress. -

SSE Small scale eddy

t Time

T Time in wall variables



NOTATIONS (continued)

0
u Friction velocity <( > "P

T w.

u,v,w Fluctuating velocity components

Ui  Total velocity components, <Ui> + ui; i = 1,2,3corresponds to x, y and z components of velocity * 9

xy, z Length coordinates

X,Y,Z Length coordinates in wall variables

XlX 2  Parameters appearing in intermittent pulse function
(Eq. 12 and 13)

a,8,' rms turbulence intensities streamwise, normal, spanwise
at outer edge of viscous sublayer

6 boundary layer thickness or channel half height 0

rate of turbulent dissipation

mean spanwise spacing between streaks

V kinematic viscosity .

density

o variance of random number sequence

T shear stress

spanwise coordinate 2Z/.

o momentum thickness

* phase angle .

.0 .
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SUBSCRI PTS

+ wall variables (Eq. 3 and foot note on page 11) 0...

1 small scale eddies

2 large scale eddies

3 medium scale eddies 0

e edge of viscous sublayer

es ejection/sweep event

op oscillating plate flow O

os oscillating shear flow

ppa peak to peak amplitude

CO edge of boundary layer or channel mid-point

w wall

x refers to x direction

z refers to z direction .

Special Notation

( )' rms fluctuation about mean value

< > space-time mean for computations, time mean for O
experiments

1(-) time mean at a fixed point

0
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INTRODUCTION

O

The modeling of near-wall turbulence represents one of the
weak links in present computational methods for wall-bounded -.-.

flows. Turbulence production, dissipation and kinetic energy

reach their maxima within the extremely thin viscous sublayer

adjacent to a wall. Because of this thinness it has not been

technically feasible to measure in the variety of flows of

practical interest some of the most important elements involved

in turbulence modeling - such as dissipation rate and the

limiting near-wall behaviour. Such circumstances have restricted

significantly the accuracy of present turbulence models.

The objective of the present research is to explore use of

the time-dependent Navier-Stokes equations as a method of

modeling viscous sublayer turbulence. This method attempts to

model directly the experimental observations of highly-elongate

organized eddy structures near a wall. Such modeling is not

limited as experiments are by the extreme thinness of the viscous

sublayer, but is limited by the degree to which realism can be

built into the boundary conditions for Navier-Stokes equations.

These boundary conditions, to be realistic, must represent the

main physical features of both organized structures and

disorganized turbulence.

One of the principal motivations for this research is the

possibility of providing a basis for strengthening present

Reynolds-average closure schemes. Because the modeled

differential equations for free turbulence yield demonstrably

incorrect results near a wall, various ad hoc functions (up to 5

in number for k- e methods) are conventionally added in an effort

to mend this shortcoming. Without a sound guide from experiment, - -

the inevitable consequence has been that different models with

-1- O._
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different ad hoc functions have yielded different results (Patel

et. al 1981). If, however, Navier-Stokes computations could 0

provide an improved guide to the modeling, then conventional

turbulence models might be strengthened. A further motivation

for the research undertaken is the possibility of producing a

simple test flow against which various subgrid scale models of

turbulence in large eddy simulations might be tested.

The method used herein to model turbulence is termed
"coherent-structure" modeling. It differs from conventional 0

Reynolds-averaged methods in that it overtly attempts to model

organized quasi-periodic eddy structures in the sublayer. Since

the process of Reynolds averaging obliterates at the outset much

of the physics of organized motion, it has not been possible to

incorporate such features in the framework of Reynolds-average

modeling. The conventional procedure is to first time-average

the dynamic equations, then model turbulence transport terms, and

finally compute results. In contradistinction, we first model 0

turbulent velocity boundary conditions, then compute time-

dependent dynamics, and finally time-average results. Thus,

time-averaging is the last operation performed on computed

dynamics, rather than the first operation performed on dynamic

equations.

In recent years several coherent-structure models of viscous

sublayer turbulence have been explored. An initial model of 0

Hatziavramidis and Hanratty (1979) used extremely simplified

boundary conditions and obtained some interesting qualitative

features, although the results were not quantitatively realistic

in important respects (e.g. yielding zero Reynolds stress and 0

zero turbulence intensity at the outer edge of the viscous

sublayer). Subsequent coherent-structure models of Chapman and

Kuhn (1981) and of Nikolaides and Hanratty (1983) have employed

somewhat more sophisticated boundary conditions in representing

-2- 5



the coherent structures, and have yielded more realistic

results. One unrealistic aspect of these models, however, is

that they produce anomalously high values for dissipation near

the outer edge of the viscous sublayer (Kaneda and Leslie (1982)).

Because dissipation is a key quantity modeled in Reynolds-average

closure schemes, considerable attention is given in the present

research to this anomaly.

Three different coherent-structure models are explored

herein. They differ mainly in the complexity of the space-and

time dependent boundary conditions imposed on the Navier-Stokes

equations at the outer edge of the viscous sublayer. The first

model uses simple harmonically varying components of velocity to

simulate large-scale and small-scale eddies. The second model

adds complexity by simulating time-intermittent production c

Reynolds-stress, and by including a third velocity component to

simulate intermediate-scale eddies. The third model adds a .

further element of complexity by using randomly generated time

functions in place of harmonic variations. All of the models are

restricted to incompressible flow without heat transfer. The

mathematical development includes the effects of a mean

streamwise pressure gradient, although comparisons with .0

experimental data are made herein only for zero or small pressure

gradients.

-3-
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EXPERIMENTAL OBSERVATIONS GUIDING MODEL FORMULATION

The key technical step in model development is to construct

appropriate boundary conditions for the three fluctuating

velocity components at the outer edge of the viscous sublayer

(VSL). An attempt is made to formulate these so as to reflect as

well as possible the main organized motions delineated by

experiments. Seven principal observational features of coherent

sublayer structure have been selected as guidelines for the

velocity boundary conditions to emulate, as listed in the

paragraphs which follow.

1. Relatively Small Scale Eddies (SSE) produce the principal

Reynolds stress. Near the outer edge of the VSL, Kim, et al

(1971) observed "ejection" events involving u < 0 and v > 0

which contribute about 70% to uv , and "sweep" events

involving u > 0 and v < 0 which contribute about 60%, while

other interactions contribute negatively about 30% according

to Wallace, et al (1972). Characteristic spanwise

dimensions of these stress producing eddies are small, being.

about 10 to 30 wall units (Lu and Willmarth, 1973; Kline et

al, 1967; and Corino and Brodkey, 1969). At high Re these

dimensions are the order of 10-2 6 to 10- 3 6. Thus,

relatively small-scale eddies must be treated in modeling

VSL turbulence.

2. Organized Large Scale Eddies (LSE) exist in the region

external to the VSL (Kovasnay et al, 1970; Falco, 1977;

Brown and Thomas, 1977). Their mean period determined from

streamwise autocorrelation data is TLSE 56/U.

independent of Re (Badri Narayanan and Marvin, 1978).

Because LSE interact with the SSE, their effects must also

be included in the computational model.

-4- 0
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In summary, Model 2 differs from Model 1 in several ways:

it simulates intermittent bursting and Reynolds stress

production, rather than sinusoidal as in Model 1; it employs a

medium-scale eddy component for ver whereas Model 1 has none; and

it also employs a medium-scale eddy component for we whereas

Model 1 employs a large-scale component. A further difference is

that Model 2 does not employ a body pressure gradient term

associated with the large scale eddy component for u.

Model 3 0

The primary feature characterizing Model 3 is the use of

time functions for LSE and MSE that are randomly generated

instead of harmonic. Otherwise it is similar to Model 2. The

periodic small-scale eddy structure remains the same as in Model

2. The outer edge boundary conditions for Model 3 are

SSE LSE MSE

Scale A Scale 1 10 A Scale 3A

u = r--I F (N T) sinC a2R 2 (T)
e 1lu 1 2u

Ve= /28 1 F (NIT) sin 28 3R 3 (T) sin3g (14)

w= /2-YIF (N1 T) cosC V2y 3 Rw3 (T) cos3..

ORDER DISORDER

where the three functions Ru2 (T), Rv3 (T), Rw3 (T) are random

functions of time, each independently generated, and each

normalized to have an rms value of unity. All constants NJ,

al' a2' all 1 2' YI' and 12 are the same as in Model 2. The

essential difference from Model 2, therefore, is that Model 3

simulates disorder in the LSE and MSE, whereas Model 2 simulates

relatively coherent harmonic order in these eddies.

-18-_
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These results would suggest a value of 81/B between 0.49 and

0.72. For simplicity 8 1/ = 1/42-= .707 is used in the 0

numerical computations. This corresponds to equal amounts of v2

energy in small-scale and medium-scale eddies. From the

correlation-coefficient equation it follows that aI/ = .635.
1

The value of y1 /y was determined by computer trial to yield

a relatively smooth curve for w'(Y). In runs with only the SSE

active, it was found that various prescribed values of y1 would

result in substantially the same level of (w')= 0.45 over much 0

of the sublayer. Hence, Yl= 0.45 was selected as the outer edge

turbulence intensity of the SSE for Model 2.

The frequency Nu2 of the large scale eddies is taken to be

the same as in Model 1, namely, that given by equation (6). As

in Model 1, numerical computations for Model 2 have been made for

Nu2 = N1 = 0.44, corresponding to a Reynolds number of

Re, 14,000.
6

The frequencies Nv3 and Nw3 were taken to be equal. In most

calculations for model 2 they were taken to be Nv3=Nw3=
3Nl ...

In the numerical computations for Model 2 a body pressure

gradient is not imposed in association with the large scale

eddies. This feature differs from Model 1. Computer runs for

Model 2 were made both with and without the body pressure 0

gradient term. The results were somewhat better without this

term, although the differences were not major.

-17-
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5th-order polynominal. It is noted that Owl = 25.80 corresponds

to the SSE pulse in w leading in time the corresponding

ejection/sweep pulses of u and v.

The (uv)e correlation coefficient for the above boundary

conditions is -(Ruv)e = a8l/a8, which is set equal to 0.45.

The ratio 81/8 is evaluated from peak-to-peak ratios in

conditional samples of the ejection/sweep event taken from either

experiments or from large eddy simulations. Two different

methods of evaluations have been explored:

1. Equating the peak-to-peak amplitude ratio <v> /<U> to

ppa ppa
81 /ci, and then using the above equation for (Ruv)e to

determine both 81/8 and al/a;.

2. Equating measured values of the fraction of total u2 energy

during bursts to al/a, and then using the (Ruv)e equation

to determine 8I/8.

Results of these determinations are as follows with square

brackets designating conditional samples:

Data Source Method 81/8

Chen & Blackwelder (1978) [v]/[u] plus Ruv = -0.45 0.53

Nakagawa & Nezu (1981) [v]/[u] plus Ruv = -0.45 0.72

Blackwelder & Kaplan (1976) [v]/[u] plus Ruv = -0.45 0.49

Kim (1983) [v]/[u] from LES computations, 0.60

plus Ruv = -0.45

Kim, Kline, & Reynolds Fraction of total u2 energy 0.59

(1971) during bursts (0.68), plus Ruv

= -0.45

Blackwelder & Kaplan (1976) [v]/Cu] plus Ruv -0.45 0.64

-16-
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where T = time in wall variables, and

NI = frequency of ejection/sweep events
N = 2irU /56 = frequency of large-scale eddies
u2

Nv 3, Nw3 = frequency of medium-scale eddies

=21rZ/A

N NT

_Fu(,) = Fv( ,) _ H()
U v2

H (() (9)

+ w
F (4 ) = -1

w H2 
-

wH2(* + *w ) .O

The function H(f) is formeA by the first M terms of a fourier

series for the intermittent rectangular pulse function sketched

in figure 2.

M
H ( ) = [a cos(n ) + b sin(n )] (10)

1 n n

2 1 2 2H (a + b ) (11)
n n

x
=-1[sin(nXI) sin(nX2 )] (12)

n -rn X2 2

b= L {l2 [cos(nX2 )-l] + [cos(nX1 )- l} (13)

values of M between 3 and 5, and values of X1  X2 have been

investigated with little difference in computed results. For the

results presented herein, M = 5 and X1 = X2 = 0.3. The phase

angle *u2 ! 600 was determined by computer trial, as in model 1, •

to yield a reasonable level for the skewness of u. The phase

angle wl = 25.8* was mathematicallydetermined, also as in

Model 1, by the requirement that (av 2/Y) = 0. Since M=5,
e

this particular determination involved solving for the roots of a

-15- •
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have been obtained by Fulachier (1972) at y-values near the outer

edge of the viscous sublayer. Spectral parameters at Y = 40, S

interpolated between his measurements at Y = 31 and 77, are shown

in figure 1 wherein k represents the wave number, and f the '

spectral density. Since
S

f[_ fdk = f kfd(ink) = 1 (7)

the areas under the curves of ukful V and w kf versus

log (k) are proportional to the relative amounts of kinetic S

energy in these velocity components. The two dashed lines shown

along the k axis correspond to large eddies of scale v/6 (where

6 is the boundary layer thickness) and to small eddies of scale

w/A. The Reynolds-stress producing SSE, of course, must be .

included for all three velocity components. If only a second

component is selected, the spectral data suggest that the most

appropriate such component would be a large scale eddy for u, and

medium-scale eddies (MSE) for v and w. In contradistinction to S

the structure of Model 1, thes, spectral data do not indicate the

presence of a major LSE component for w. Thus the boundary

conditions for Model 2 are structured to represent SSE and LSE

for ue , coupled with SSE and MSE for ve and we. The latter MSE .

are structured to be out of phase in both space and time in order

to yield uw = 0 throughout the sublayer.

SSE LSE MSE S

Scale X Scale > 1OX Scale 3X

ue / aFu ( )sinC 2 sin(Nu2T u2

ve =- I1 F (O)sinC + 283 sin(N 3 T)sinJ--

we =2YIFw($)Cosc + 2 y COS(NT)cosl
e 3co w3 T 3o

-14- _



model 1 differ somewhat from those of Chapman and Kuhn who used

N1 = .025, w = 3w/4 and u = w/3, but otherwise used the same

constants. w2

The LSE frequency Nu2 is determined by the mean period
T of organized large scale eddies as obtained from the
LSE

experimental relationship U T = 56. Since
goLSE

Nu2 TLSE = 2w, the large-eddy frequency is

2 irU
u2 56 (6)

which is Reynolds-number dependent. For a flat plate or channel

flow the dependence of Nu2 on Re is as follows

Be6 R N
Re 6 + e u2

4700 240 460 .1

11500 530 1100 .05

29000 1200 2800 .025

67000 2500 6500 .0125

160000 5600 15600 .00625

*.
For simplicity, numerical computations herein have been made for

Nu2 N1 = .044. This corresponds to a Reynolds number of

Re, 14,000.

Model 2

Relative to Model 1, this model adds complexity by

structuring the velocity boundary conditions to simulate

intermittent production of burst events and hence of Reynolds

stress. Also, two components of velocity for each of ue, ve s and - ..-

we are modeled to represent the principal eddy scales reflected

in spectral data. Such data for all three velocity components

-13-
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Three Models Investigated

The three different computational models investigated are

distinguished mainly by their outer edge boundary conditions on

velocity. The models are termed Model 1, 2, and 3 in order of

increasing complexity.

Model 1.

This relatively simple model is essentially the same as that

reported by Chapman and Kuhn (1981). It considers two

coherent harmonic components of motion at the outer edge:

one represents small scale eddies (SSE) and the other large

scale eddies (LSE). The three fluctuating edge velocities ..

are:

Component 1 Component 2

SSE LSE

2 2ue = 2alsin(NiT)sin + [2(a- a)] sin(N 2T + u2

ve =-20sin(NiT)sin (5)

2 2 Nwe = 28sin(NiT + *w)Cos + [2(y 2
- B2)] sin( -2-T+,"

In order for the (uv)e correlation coefficient to be 0.45,

a /a also must be 0.45! and hence a, = 0.9. In order forI

(dv /dY)e to be zero in accordance with experimental data, it

follows that owl = /2 • The value Ow2 = 2w/3 is determined by S

computer trial to yield as good agreement as possible with the

law of the wall for <U(Y)>, the slope (3<U>/aY) w = 1 at the

wall, and the Reynolds stress distribution. The value

Ou2 = 0 is also determined by computer trial to yield a - 0

reasonable level of skewness for ue. Since N1 is taken as .044,

the computations for

-12-
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The Navier-Stokes equations become*

a._v + aw 0 .. ,T.
TV a z

au + v au 32u +2•+- v - + w Z X + +_ .
ay2 aZ 2 a. a-...a.. 2

av + v -L w u _ P +2v + 2v (4
aT ax a z ax 2 2

ax' a z
2 2

ax'- z

aw + v L + w -L 1P +  + a =
-2a az az 2 2

Thus we treat three velocity components fluctuating in two space

dimensions and time (Y, Z, T). Being more than 2D flow, but not

fully 3D flow, this mathematical approximation has been termed

"2 1/2 D' flow. An alternate descriptive term would be "slender

turbulence" theory.

The boundary conditions for the differential equations at

the wall are u(0, Z, T) = v (0, Z, T) = w(O, Z, T) = 0. At the

side boundaries of the computational domain the boundary

conditions are taken as periodic in each of the three velocity

components. The outer edge of the computational domain is taken S

at Y = 40 for all models. The spanwise extent of this domain,

however, is not the same for all models.

..-

*Inasmuch as we use wall variables throughout, the + subscript
will be dropped from velocity components for simplicity in the
remaining sections of this text.

-Ii- -,"0
-11--Tl-l
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technique would yield T - 120. In the computational model
es/X 'I-

N1 Tes/X = 2w, so that the value above of NI = .044 corresponds -.

Tes 143, reasonably close to the value interpreted from

dye observations.

Still further elements of commonality for all models are the L

turbulence intensities at the outer edge of the viscous

sublayer. These are inputs a,8,y into the computations defined

in wall variables as

a = <u2e+ > = <v2 +> Y = <W2 e+> (2)

The values a = 2, 8 = 1, and y = 1.3 are used throughout.

0

The experimental observation of highly elongate streamwise

eddies in the viscous sublayer provides a basis for

mathematically simplifying the models. Velocity derivatives in

the streamwise X direction are neglected compared to velocity

derivatives in the spanwise Z and normal Y directions. The

recent turbulence simulations of Moser & Moin (1984) show that,

although the u patterns are elongate streamwise, the v and w

patterns are less so; hence some approximation is introduced by

making this mathematical simplification.

The conventional wall variations are:

2

tu
2 / T T

/pT T = p = -_ + Api. ..

T w , T .w wxu yu zu
=+ V + =V Z = - (3) ..

u v W w
u+ =- v4 = - w+ -

+ uu u
T T T

N nv
u
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motion. The function f(t) is structured such that for o <

C < w an ejection preceeds a sweep, whereas for r< < C 2w a S

sweep preceeds an ejection. Thus ejection/sweep and

sweep/ejection events are equally numerous in the models.

1 The mean frequency N, of the SSE burst events is also taken 0

to be the same for all models. With the Variable Interval Time
Average (VITA) technique used by Blackwelder and Haritonidis

(1983) to determine bursting frequency, only ejection/sweep

events were counted. Since these meander spanwise over a fixed •

hot wire probe, their measured mean frequency of

f Z .0035 would correspond to an average over space and time
es

in the computational models. For 0 < 4 < v the frequency of

0 computational ejection/sweep events is NI/2v; whereas the .6

corresponding frequency for nr < < 2w is 0. Thus the average

frequency of ejection/sweep events over space and time is

fe I/4' which corresponds to the value

NI= 4w(.0035) = .044

1This value for N1 is not inconsistent with the mean burst .° i>2'

period of T - 120 determined from visual observations with S

the dye technique (Schraub and Kline, 1965; Smith, 1978; Donohue

et al, 1972). If an ejection preceeds a sweep, dye first

accumulates along the spanwise station of the event and then

D becomes visible as a burst of dye when it is subsequently ejected .

upward. If a sweep preceeds an ejection, however, dye is first

removed away from the spanwise station of the event by the sweep;

and hence there may not be enough dye left at this station to

make the subsequent ejection visible. Thus the "burst" frequency 9
per A of span from dye visualizations may represent primarily

the mean frequency of ejection/sweep events, while missing most

of the sweep/ejection events. If this is the case, then the dye

7 . • ."97-. o ..



COMPUTATIONAL MODELS

Before describing features which distinguish between the

computational models, the several features that are common to all

three are to be noted. These relate to the small-scale eddy

structure, and to a mathematical approximation made in view of -

the highly elongate streamwise eddies observed in the viscous

sublayer.

Common Modeling Characteristics

In each model, the boundary condition on each velocity

component is composed of two separate components structured such

that the Reynolds stress at the outer edge of the viscous
sublayer is produced only by a small-scale eddy component (SSE, -. ..-

subscript 1) that is periodic in time and space. The SSE

velocity boundary conditions are of the general form

Uel = f(t)sin"

Ve1 = -f(t)sini

W el ft + owl)cosc

where = 21Z/A is the dimensionless spanwise coordinate, t is

time, f(t) is a periodic function with frequency NI , and Owl is

a phase angle to allow for the circumstance that the spanwise

velocity pulse in a burst may lead (or lag) the uel and Vel

components. All of these quantities are in dimensionless wall

variables. This SSE structure corresponds to 1800 phase

difference between Uel and Vei, in accordance with experimental

observations (Wallace et al, 1977) of conditionally sampled

bursting events. The spanwise variation as sin 4 for vel and as .

cos € for well correspond to a simple contrarotating vortical ,_

~~~-8- _9_
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observations of Johansson, and Alfredsson (1982) have also

revealed large scale inward motions preceding an ejection 0

event. Their data for the smallest threshold values and the

longest integration times show that the ejection/sweep and ".. -

the sweep/ejection events are about equally numerous. Hot

wire measurements indicate that the duration of the 0

Reynolds-stress intensive ejection and sweep is only about

20% to 25% of the mean period between bursts. Such

observations suggest how to structure the appropriate time

phasing and duration of the two principal Reynolds-stress 6

producing events.

-7-
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5. Coherent sublayer eddy structures are highly elongate 0

streamwise. This has been observed in visual studies (Kim

. et al, 1971; Kline e- al, 1967; Grass, 1971; Cantwell et al,

1978) as well as inferred from hot wire measurements of

spatial correlations of velocity (Blackwelder and Eckelmann,

1979; Kreplin and Eckelman, 1979). Such observations enable

a significant mathematical simplification to be made in the

computational modeling.

6. There is a statistically mean period T between
B/X

ejection/sweep bursts per length A of span when observed

visually by the dye technique (Schraub and Kline, 1965; .

Smith, 1978; Donohue, et al, 1972). There is also a .

different mean period T between such bursts when measured

by a hot wire at a fixed point in the flow. Various

measurements of the latter show considerable scatter (e.g.

Bandyopadhyay, 1982). Moreover, they vary with distance

from the wall (Nakagawa and Nezu, 1981). Formerly it was

thought that T scales on outer variables U and 6 (Laufer

and Badri Narayanan 1971; Rao et al, 1971). However, at the

outer edge of the viscous sublayer, where our boundary -

conditions are applied (y+= 40), the recent measurements of

Andreopoulos et. al. (1983) and of Blackwelder and

Haritonidis (1983) yield the relatively consistent result of

T+ = 250 to 300. This result is essentially independent of

Reynolds number over the range 103 < Re < 1.5 x 104

covered by these two sets of experiments; and is used to set

the value of TB/A for numerical computations.

7. The principal Reynolds-stress production is intermittent,

consisting of periods of relative quiescence terminated by

burst events. This has been reported from visual studies

(Corino and Brodkey, 1969; Offen and Kline, 1975; Praturi

and Brodkey, 1978; Nychas et al, 1973) and from hot wire

measurements (Blackwelder and Kaplan, 1976). Recent

-6-
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3. Streamwise streaks of low-speed and high-speed fluid

alternate spanwise. This streaky structure has been

observed visually near a wall in both the velocity pattern

(Kline et al, 1967) and the temperature pattern (Hirata et.

al. 1982; Iritani et. al. 1983). It has also been detected

in hot wire measurements (Gupta et al, 1971), and in large

eddy numerical simulations of turbulence (Moin and Kim,

1982). Many experiments have demonstrated that the mean

spanwise spacing between low-speed streaks is X+ = 100 for

the Re range of usual laboratory experiment. Schraub and

Kline (1965) found the value of X+ to be insensitive to

pressure gradient. Offen and Kline (1975) suggest that

successive streamwise generations of low-speed streaks

appear to be staggered spanwise in a checkerboard like

fashion. Such observations provide a guide for structuring

the spanwise distribution of the streamwise velocity.

4. Streamwise vortical motions are the dominant Reynolds-stress

producing eddy structure in the VSL. Visual observations

have revealed stretched streamwise vortical motions (Kim et

al, 1971; Kline et al, 1967; Clark and Markland, 1969) as
U-

well as contrarotating pairs (Smith, 1978). Presence of

vortex pairs has also been inferred from various correlation

data (Bakewell and Lumley, 1967; Lee et al, 1974; Willmarth,

1975; Blackwelder and Eckelmann, 1979; Kreplin and

Eckelmann, 1979). Recently, the conditional averaging

technique has been applied to numerically computed turbulent

flow in a channel (Kim 1983, 1984), and has revealed clearly

that a pair of counter rotating streamwise structures

accompanies ejection and sweep events. Thus, the principal

Reynolds-stress producing events are associated with

vortical pairs, although single streamwise vortical
structures appear more common than pairs (Moser and Moin,

1984). These various observations provide a guide for

structuring the spanwise variations of the normal and

spanwise components of velocity.

* ..
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NUMERICAL COMPUTATION METHOD

d

A computer code recently developed by Kim and Moin (1984)

was adapted to the conditions of this study. The reader is

referred to their report for details of the numerical

algorithms. A brief qualitative description is given herein of •

the numerical method along with an account of the modifications

made for the present computations.

With the pressure gradient split into three terms, the .|

Navier-Stokes equations in tensor notation are

aul 1 1
-i a (UiU j ) P - P + F (T) + V 2U. (15)
a .T ax. x. ax. i

-. Ui
0 i= 1,2,3 (16)

ax.

* where Ui  = the velocity components U,V,W corresponding to

i = 1,2,3, respectively

P = the mean pressure normalized by the wall shear

stress, T

P = the pressure perturbation normalized by the

wall shear stress

D Fi = a body force used in Model 1 which corresponds

to a global pressure gradient associated with the

LSE

xi = the Cartesian coordinates X,Y,Z in wall

variables

The equations are to be solved in a rectangular region

0 Y 4 Ye' 0 e Z 4 ZMAX. The flow is assumed to be periodic

in Z with zero velocity at Y = 0. At Y Ye' the boundary

'" conditions are
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u (X,YZ) = U. (Z,T) + U. (T) (17)
1el 1 e2

In model 1, the functions Fi(T) are taken to correspond to the

LSE pressure gradients of simple oscillating shear flow in the X

and Z directions. Thus, for this model

aUl

F. (T)= =e2 (18)
i 3T 3T

F (T) = 0 (19)
2

FU)e2 _ e2 (F3(T) 3T aT (20)

and the mean pressure, P, is assumed to be a function of X

alone. For models 2 and 3, Fi(T) was set to zero.

For numerical solution of Eqs. (15) and (16), Kim and Moin

use an Adams-Bashforth formula for convective terms, and centered

differences for viscous terms. A factored semi-implicit solution

algorithm is used that is explicit in convective terms, and
implicit in viscous terms. The first step in time-advancing the

solution calculates a predictor velocity field which satisfies

appropriate boundary conditions, but not the continuity

equation. A second step then corrects the velocity field to

satisfy the continuity equation and the Poisson equation for

pressure. The method is second-order accurate in both space and

time.

An accuracy test of the Kim-Moin code was made by computing

oscillating shear flow and comparing results with exact

* analytical solutions (Chapman and Kuhn, 1981). With 320 time

steps per cycle, and 17 points uniformly spaced across the

oscillating layer, the numerical method was found to be very

* accurate (indistinguishable from the exact analytical solution on

a normal size plot).

-20-
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w <12

In making numerical computations, an arbitrary initial

velocity profile is needed at T = 0. To accelerate convergence

to periodicity, an analytical approximation for a turbulent

boundary layer profile was used. The boundary conditions at Ye

were multiplied by an exponential factor which starts at zero and

reaches unity asymptotically over the first time cycle of the

computation. The solution was then advanced until periodic flow

conditions were attained, usually after about 3 or 4 cycles of

time for Models 1 and 2. Space and time averages were then taken

over a cycle of periodic flow. A typical computation of viscous

sublayer turbulence for our normal mesh used 400 time steps per
small-scale cycle, 30 points in the Y direction; 32 points in the

Z direction; and, for models 1 and 2, required 4 to 5 minutes of

CRAY X-MP time per run. The corresponding run time for model 3

was considerably longer due to the lack of periodicity. For the

special fine mesh used to define the near-wall behaviour of

turbulence, up to 3200 time steps per small-scale cycle were used -

with 60 points in the Y direction, 64 in the Z direction, and a

run time of over one hour.

The computational method was found to be quite stable as

long as the time step was smaller than a certain value which

depends on the spatial grid size. The particular value was

determined by trial and error for each grid. Below the

instability limit, the solution obtained was not strongly

dependent upon the time step size, but was affected somewhat by

the spatial grid.

Calculation of statistical quantities

The computation of the time dependent dynamics of the flow

was followed by time and spanwise space averaging of the

results. This produces profiles of statistical characteristics

of the flow field which can then be compared with measured

-21-
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data. For models 1 and 2, the quantities of interest were

computed by calculating three time-cycles of the periodic

solution after convergence to periodicity was attained. Three

cycles were used in order to allow the computation of the

, appropriate mean values from which various perturbations are

calculated. The quantities calculated in each cycle were as

follows, wherein < > designates the time and spanwise space

average:

First Cycle: Calculate <u>, <v>, and <w>

Second Cycle: Re-calculate <u>, <v>, and <w>, then u - <u>,

v - <v>, and w - <w>, then calculate <u - <u>>, <v -<v>>, and <w

-<w>, and all cross-products, such as <(u - <u>)(v - <v>)>, 0

etc. Also calculate the higher order products, such as <(u -

<u>)2>, <(u - <u>)3 >, and <(u - <u>) 4>, and the derivatives and

products needed to calculate the dissipation.

Third Cycle: Calculate the perturbations from the mean

Reynolds Stress and the various products needed to calculate the

intensity of <uv> fluctuations, and the Skewness and Flatness of

<uv> fluctuations. It is noted here that all products were

computed. That is, the results were not limited to products of

the u and v components, but also include the w component.

However, most data comparisons are made with the u and v

components, and the combinations of those components that make up

the Reynolds stress and various perturbation statistics of the

Reynolds stress.

For Model 3, a slightly revised procedure was followed.

Since there is no periodicity in the time variation of the

solution, all calculated values must be included in the

statistical summations. In order to minimize the computer time

and storage requirements, the formulas for the most interesting

statistical quantities were derived, to allow the calculation to

-22-
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be done in a single pass, and to allow the calculation to be done

in stages. In this way new results could be calculated as a

continuation of previous results. The quantities so determined

are as follows:

Mean Value
Nz Nt  •

1U .ui (21) .
Nu z Nzt 1 1 1

Turbulence Intensity (

u 2 = <(u - <u>) 2 > = <u2 > - <u>2  (22)

Cross Correlations (e.g. Reynolds stress) "

<(u- <u>)(v- <v>)> = <uv> - <u><v> (23)

Intensity of Reynolds Stress Fluctuations.

<[(u- u)(v- <v>)- uv>] 2> (24)

= <u2 v2 > + Cu> 2  v 2> _ 2<uv 2 ><u>-<uv> 2  0, -

Skewness of Velocity Fluctutations

<u3> + 2 <u> 3
- 3 <u><u2>s 2= - - (25)[<U2> - <U>2]3/2 (25)

Flatness of Velocity Fluctuations

<u4 - 4<u 3 ><u> + 6<u 2 ><u>2 - 3<u>4 .

F = 2 (26)
[<u > - <u> .

Each of these quantities contains terms which are functions

of y only and are obtained from sums of the quantities at each

point. Thus, calculations can be carried out to any number of A
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steps by storing the value of the sums at each step, allowing the

calculation of a few steps at a time until examination of the

results indicates a statistical steady state has becn achieved.

This results in a greatly reduced storage requirement and

computer cost compared to the approach used for periodic

solutions which would require storing the entire flow field array

at each time step in order to compute the complete statistics.

Generation of Random Numbers

In generating a sequence Rn of N random numbers, a new

parameter C is introduced representing the correlation

coefficient between successive terms Rn and Rnl of the

sequence. That is, S

C R Rnn_ (27)

where Rn R n1 is the average value of the product over all terms S

over a long time period of the sequence. The sequence is

constructed to have an rms variance of unity. The relationship

between a sequence of random numbers R generated by a computern
and the desired random function with correlation C is relatively

simple. If the sequence R has a mean value of Rn and an rmsnn
value of a, the corresponding random function with unit rms is

(Moshman, 1967)

2 2 *Rn = R Rn-l + [ 2 (1-C2)] (R - R n ) (28)

Thus, a sequence with mean value of zero and rms value of 1 can

be generated from any random sequence. 0

A measure of the time scale of the sequence Rn is found by

calculating the integral of the autocorrelation of the

sequence. Thus, S

I = T f00f0RR mn(9
t o o Rn n+dmdn (29)
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This integral time scale in wall variables can be used to -

determine a value for the correlation coefficient C since the

autocorrelation for the sequence (Rn) is Cn, and therefore,

I =AT Cn dn = An(l/C) (30) A

where AT represents the time step between successive terms.

Thus,

-AT/1t I
C =e (31)

Since the integral time scale of turbulence for a given velocity

component depends upon Reynolds number, the correlation

coefficient will be a function of both Reynolds number and the

time step taken in the numerical computations.

Data on the integral time scale of turbulence near the outer

edge of the viscous sublayer (Y = 40 to 50) have been obtained

from the experiments of Comte-Bellot (1963), Fulachier (1972),

Elena (1977), and Hofbauer (1978). Their data are shown in

figure 3 as a function of 6+, the boundary layer (or half .

channel) thickness expressed in wall units. The integral time

scale was determined from experimental measurements of

autocorrelation for each velocity component. Each set of

experimental data was taken at a different 6+, and hence

different Reynolds number. These data, together with the

Reynolds number and time step used in numerical calculation,

determine the appropriate correlation coefficient to be used for

each velocity component in generating the random time functions

Ru2 ' Rv3 Rw3"

A typical time step used in the numerical calculations is

AT = N (32)

-25-
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where N is the total number of steps used in the numerical

calculation of one cycle of the small-scale, and N1 is the •

frequency, defined previously. At the location Y = 40, the data

of figure 3 indicate that the integral time scales of the v and w

components are approximately equal at 8 wall units of time while

that of the u component is approximately 42 wall units. The

corresponding values of the correlation coefficient are obtained

from
2wr

NN 1 I t

C= e (33)

which yields values of C from 0.95 to 0.99 for the values of N

and N1 typically used in the numerical calculations. In order to

provide an illustrative calculation and keep computer time within

acceptable bounds, the value of C = 0.95 was used in the

numerical computations for Model 3.

In order to obtain meaningful results for the statistical

quantities, the random sequences must be calculated until a

steady state is reached. The number of steps required for this

is not known a priori. Due to the combination of periodic and

random functions, the total number of steps used must be an

integral number of periods of the small scale components. For

the results discussed herein, the calculations were carried out

until two successive cycles resulted in a negligible change of

the accumulated statistics.
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COMPUTATIONAL RESULTS COMPARED

WITH EXPERIMENT

Law of the Wall - As illustrated in figure 4, the mean

streamwise velocity profile computed for models 1 and 2 agree

well with experiment. For model 3, however, the computed values

of <U> are a little low. Because of the relatively long . "

computer times required when random time functions are used,

systematic variations in the parameters of model 3 were not

explored. It is possible, therefore, that modest changes in

these parameters could bring the computed <U> profiles for model

3 into agreement with experiment comparable to that of model 1

and 2.

Intensity of Turbulence - The computed rms intensity of

streamwise turbulence u' is not greatly different for the three

models (figure 5a). Each model yields peak values of u' higher

than experiment. For models 2 and 3, some irregularities can be

seen near the outer edge of the viscous sublayer (Y between about

35 and 40). This irregularity, as shown later, is manifested in

a more pronounced outer-edge anomaly in the rate of dissipation

and the intensity of streamwise vorticity fluctuations. The

slope of the curve of u'(Y) at Y = 0 is equal to
- < >~2 1/2S = < w- < > ) >I /< T > the fluctuating intensity ofx xw xw w

streamwise wall shear stress. In wall units, computed values of
Sx for the normal mesh are 0.55, 0.47 and 0.50 for models 1, 2,

and 3, respectively. These values are higher than experimental

values which range between 0.24 and 0.49. Runs with finer mesh

intervals did not change appreciably the computed values of S
x

The computed intensity of turbulence v' normal to the wall

is nearly the same for all three computational models (figure - -

5b). Although the experiments indicate higher values of v' near

the wall, this may be due in sizeable part to experimental
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errors, since hot-wire measurements of v' are notoriously

inaccurate near a wall. Most of the experimental data, in fact,

extrapolate erroneously to non-zero values at the wall.

The computational curves of spanwise turbulence intensity w'

(figure 5c) show more variation between the three models.

Although the computed levels of w' are in reasonably good

agreement with experiment for all three models, some irregularity

is exhibited near the outer edge. At the wall, the slopes of the

w' curves, representing the intensity of spanwise shear stress 0
fluctuations, are 0.14 and 0.31 for Models 1 and 2,

respectively. These values were determined from runs with a fine

mesh. Expermental values are about 0.1.

Reynolds Stress - The computed distributions of <uv> as

might be expected, show similar results to those for

<U(Y)>. This is illustrated in figure 6a. For models 1 and 2

the Reynolds stress computations agree very well with experiment,

but for model 3 the computed values are somewhat low. In the

case of model 1 the parameters Ow2 and *u2 were determined by --

computer trial to provide good agreement with Reynolds Stress -- '--

measurements; and in the case of model 2, the parameters *-

*w3 and *2 were determined likewise; but, for model 3 these

parameters do not appear. The parameters 01and yI, however,

were found in models 1 and 2 to affect <uv> significantly, and

presumably could be adjusted in Model 3 to provide better

agreement with experiment for both <uv> and <U(y)>. Primarily

because of the long computer times required for model 3, however,

such parameter adjustments were not investigated.

The computed rms fluctuations in Reynolds Stress as shown in

figure 6b also differ relatively little between the three

models. Considering that the experimental data scatter widely -

because of the inherent difficulty of such measurements very near

a wall - the agreement between computation and experiment is

reasonably good.
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It is to be noted that in the outer region of the viscous -

sublayer, the rms fluctuations in uv are about twice the mean

value uv, for both computation and experiment.

Skewness and Flatness Factor - Distributions of skewness

and flatness factor for the streamwise velocity fluctuations are

presented in figure 7. Near the wall, both skewness and flatness

are low for Model 1 with its simple harmonic boundary conditions

on velocity. For model 2, which simulates more realistically the

intermittent character of burst events, these factors are in much

better agreement with experiment near the wall, as might be

expected. In the case of model 3 with randomly generated time

functions, the skewness and flatness of u' are considerably

greater than for model 2 and the experimental data. The reason

for this is uncertain. A possible cause may be that these higher

order statistics may require larger computation times to reach

steady conditions than do the lower order statistics such as u',

v', etc.

Similar characteristics are exhibted by the skewness and

flatness factor for the fluctuating Reynolds stress (figure 8a

and 8b). Here again, the flatness factor for model 2, agrees

better with experiment than does model 1. Computations were not

made of the Reynolds Stress skewness and flatness for model 3.

Correlation Coefficient Ruv As shown in figure 9, all three

models yield values of Ruv between about 0.4 and 0.5 in the outer

three-fourths of the viscous sublayer. The computations for

models 3 and 2 exhibit very similar trends, indicating that the

use of random time functions in place of periodic ones has only a

small effect on the u-v correlation. Experimental data scatter

widely below about Y of 10, with one data set (Eckelmann 1974)

suggesting increasing values of Ruv as the wall is approached,

whereas another set (Kutateladze 1977) indicates strongly
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decreasing values. Considering the wide scatter of these

experimental data, all three models yield acceptable computations 0

of Ruv.

Dissipation and Streamwise Vorticity Fluctuation - These

two quantities illustrated in figure 10 reveal most clearly the

existence of an anomaly in all three models near the outer edge

of the viscous sublayer. Both the rate of turbulence dissipation

c, and the rms intensity of fluctuating streamwise vorticity

', exhibit anomaloulsy high values in the outer region between

about Y = 35 and Y = 40. Since e and 2x reflect the magnitude

of velocity gradients, it is clear that all three models produce

a region near the outer edge in which velocity gradients are

large and vary rapidly with Y. Such a region is of the "Stokes-

Layer" type. It is believed due to some unrealistic or

artificial aspect of the velocity boundary conditions imposed at

Y = 40, to which the Navier-Stokes equations make rapid

adjustment, leaving most of the turbulence characteristics below

Y of about 35 in reasonable accord with reality.

Inasmuch as dissipation rate is a quantity often used in

Reynolds-average modeling to determine the important length scale

of turbulence, an effort was undertaken to vary the model

parameters and eliminate, if possible, this undesirable

anomaly. Systematic variations were made in the parameters

ai 81' li' Nip Nu2' Nv 3 ' Nw 3 ' Owl' u2'w2Iw3 ' X,M, and (Y)e"

While some of these variations altered somewhat the high value

of c at the outer edge, none eliminated or reduced it by more

than a factor of about 2. In addition, phase angles in spanwise

space and in time for the intermediate-scale component of model 2

were introduced and varied; but without any essential effect on

the anomaly. Moreover, the spanwise profiles of velocity were

altered from sin C to sin P , with p being a power greater or

less than one, and still the anomaly remained. When runs were
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nade with only the small-scale eddy components present, and

without any large or intermediate scale components, it was found

that the anomaly still existed. On the other hand, it was not

Dresent when only the large-scale components of velocity were

ised. We conclude, therefore, that the outer-edge anomaly is a

:onsequence of some unrealistic aspect in the structure of the

velocity boundary conditions for the small-scale eddies which

produce the Reynolds Stress in all three models.

It may be noted that the Stokes-layer anomaly at the outer

edge is not attributed to the approximation of 2.5D flow. In

principle, the velocity fields computed at Y of 30, say, could

have been used as outer-edge boundary conditions imposed at

Ye = 30, and identical results would have been produced below Y

of 30 without an anomaly. A cursory examination of the velocity

fields at Y = 30, however, showed them to be rather complex.

More detailed study of such fields, however, might provide a

guide as to how the small-scale eddy velocity components could

properly be constructed without producing an anomaly at the outer

edge.

NEAR-WALL LIMITING BEHAVIOUR OF TURBULENCE

Experimental techniques have not been able to determine the

limiting behaviour of turbulence very near a wall. As a

consequence, several different ideas have been advocated. Over

thirty years ago, Reichardt (1951) concluded that for streamwise

inhomogeneous flows, u' would be proportional to y, v' to y2 , and

uv to y3 , as y approaches zero; but that for streamwise

homogeneous flows uv would be proportional to y4 . Elrod (1957)

arrived at the same conclusion. The widely used and highly

successful damping-factor model of Van Driest (1956) corresponds
- 4also to uv y y.. Some support for this appeared to be

provided by the theoretical results of Ohji (1967) for

homogeneous flows which also yield near the wall
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- 4uv y , together with Ruv y, and (R )w = 0. A review of

the differing views on the y3 versus y4 controversy has been

given by Hinze (1975).

Numerical computations from the Navier-Stokes equations

offer a means of resolving this issue. Towards this end 0

computations with very fine meshes and small Courant numbers have

been made for models 1 and 2 for the case of zero pressure

gradient. (Considerations of computer time precluded doing this

for model 3.) In the y direction 60 points were used across the S

viscous sublayer, with clustering near the wall and with the

closest point at Y = .018. In the z direction 64 points were

used evenly spaced spanwise. Due presumably to a numerical

truncation error at the wall boundary, the wall turbulence values S

were not precisely zero (ranging from 10- 1 2 for <uv> to 10-4 for

w') and were subtracted out in order for the turbulence to be

precisely zero at the wall. The results are shown as log-log

plots in figures 11 and 12 for the range of Y between .01 and S

10. The limiting near-wall behavior in each model is clearly

u y, v' - y2 , w' y,<uv>- y3 , and (R )= constant 0. The

constants of proportionality, of course, differ between the two

models: Ruv near the wall, for example, approaches 0.34 for S

model 1, and 0.21 for model 2. But the limiting power law

exponents are precisely the same for the two models. It is

noteworthy that the range of validity of the limiting power laws

is quite different for different turbulence quantities: S

u'- y out to Y of about 3 or 4, while v'- y2 and Ruv =

constant out to Y of only about 0.3.

In general, the near-wall limiting behavior extends to Y of S

about 0.3. Between 0.3 < Y < 3 , Ruv, v', and w', especially for

model 2, depart considerably from their respective limiting near-

wall power laws.
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3,

positive correlation between u and aw/az, and this requires a y

variation to conserve mass. Since these fundamental coherent.•

motions have been observed in flows with streamwise pressure

gradient as well as without, in streamwise homogeneous as well as

inhomogeneous flows and over curved as well as flat surfaces, the "
y3 variation is concluded to be rather general. The constant of 0

proportionality, of course, may depend upon pressure gradient and

curvature.

It is noted that the limiting power laws for several of the 0

turbulence quantities, are accurate only for Y less than about

0.3. This is a surprisingly small domain. In the range 0.3 < Y

< 3, power laws are still a good approximation, but the exponents. . "

change a little: to less than one for w', less than 2 for v', and S

to slightly greater than 3 for uv. The u-v correlation varies

considerably over this range.

The several applications made to Reynolds-average turbulence "

modeling are illustrative of the way in which time-dependent -

Navier-Stokes computations can be used to strengthen practical

methods of turbulence computation. A number of uncertain

elements still exist in the important c- transport equation -

which is commonly used to determine the length scale of

turbulence. They could be resolved with improved computational

models that are more accurate for dissipation than the present

models.

The observed limiting behavior of various turbulence .

quantities near a wall, as reflected in the exponent of their . -

limiting power-law behavior, is summarized as follows: -

-41-
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7 1

CONCLUDING REMARKS

Three different computational models for incompressible

viscous sublayer turbulence have been investigated. They are

characterized by different velocity boundary conditions imposed

on the time-dependent Navier-Stokes equations at the outer edge 0

of the viscous sublayer. Although these boundary conditions

differ significantly, they yield surprisingly similar results for

most of the turbulence quantities. All models, for example,

yield reasonably realistic computations of mean streamwise

velocity, Reynolds stress, u-v correlation coefficient, and of

the fluctuating intensities of velocity and Reynolds Stress.

Relative to model 1, which is the simplest, the principal merit

of model 2 is that it yields more realistic values for the S

skewness and flatness factors near the wall. Model 3, which

requires much more computation time than either model 1 or 2,

does not appear to yield significant improvement over model 2,and

relatively little over model 1.

All three models exhibit near the outer edge of the viscous

sublayer a thin region in which velocity gradients vary rapidly

from anomalously high values at the outer edge (Y = 40) to .

reasonably realistic values at Y values of about 30 to 35. In

this thin, Stokes-layer region, both the rate of turbulent energy

dissipation and the rms fluctuations in streamwise vorticity are

anomalously high. This is the principal shortcoming of the

models. The outer-edge anomaly is attributed to some unrealistic

aspect about the small-scale eddy structure in the boundary

conditions. -

The limiting third-power variation of Reynolds stress near a

wall is concluded to be very general because of the physical

explanation underlying it. In essence, organized sweep and

ejection motions that produce Reynolds stress also produce

-40-
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c = - y a!R/3yw

-)w 2 "
-Wj; ayw a

cw -2k - c

As illustrated in figure 15, the quantity ( - y ) is very
ay+

nearly constant near the wall. It is equal to the wall

dissipation (E+) within 0.1 percent up to about Y = 0.6, and

within 1 percent up to about Y = 1.3. The quantity ac/ay is ..0
nearly constant up to about Y = 0.3. The quantity 2k-c in the

numerical computations is equal to the wall dissipation within 1 -

percent out to about Y = 0.8. For some numerical algorithms, a

boundary condition involving only a first derivative, or no

derivative, is preferable to one involving a second derivative.

The fourth equation listed above probably provides the simplest

wall boundary condition for use in the e transport equation.

-0
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2 3
u = aly + a 2 y + 0 (y

w = bly + b 2 y 2 + 0 (y 3 )

2 3c2y + 0 (y)

where the coefficients a,, a2 , bl, b2 , and c2 are functions of x,

z, and t. Hence,2 = 2 2  2. -. °
2k/y 2  (a I + ;1 ) + 2(ala 2 + blb 2 )y + O(y2). Disregarding the

very small contribution of spanwise derivatives to c, we have

2 2 2
+ + (a, + 2a2 y) + (bl+ 2b 2 y)2+ 0(y)

= (a1 + b I ) + 4 (ala2 + blb 2 )y + 0(y 2 )

2 2 2 2

from which it follows that Cw -  k/ay (a + b) and that

near the wall (c - w) varies linearly with y. It also readily

follows from manipulation of the above equations that the rms

streamwise and spanwise vorticity vary similarly, e.g.,

- Q) -y and (Q -z -w)  y; but that the rms normal

vorticity a' y since a' = 0.
y yw

With C _(a 2 + b 1 b 2 ), and k 2k/y 2 , it follows that the

first two terms in the near-wall expansion are

E = w + 4 Cy

2k - + 2 Cy2 - w"-.
y

Since ak/ay = 2C, four alternate near-wall limiting equations

for dissipation follow from these two equations. These four

equations are valid within the small but finite Y range of

limiting near-wall behavior.

Lw =a 2 k/ y 2

-38-
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By way of comparison, the corresponding results for the present

computational models are:

Computational Model _(Uv)+/Y3 near wall

-o. 10

Model 1 .0007

Model 2 .0005 "

Of the two damping factors that yield the correct near-wall

behavior, the one based on oscillating shear flow yields values

of (_-)+/y3 closer to the computational models.

.60

Wall Boundary Condition for Dissipation

In k-E models, as well as in Reynolds stress models of

turbulence, it is necessary to impose a boundary condition on the .

mean homogeneous dissipation c at the wall. As summarized by

Patel et. al. (1981), three different boundary conditions have

been employed in the past:
2 2w =0, (a /ay)w = 0, and (C)w = (a k/ay )w' where .0

2k (u2+ w2+ v 2 ) . As a test of the first two of these,

the near-wall behaviour in models 1 and 2 of the mean value e of

the computed space and time-dependent turbulence dissipation

2 aw2 av2 au2 2 2
[ + + () + (au) + .a) + (aw)

is shown in figure 15 in wall variables. It is clear that

w = 0 is incorrect (as is well known), and that (ae/ay)w  0 is

also incorrect. That the third boundary condition is a correct . -

one, follows directly from the limiting near wall behavior of u'

and w'. Moreover an alternate boundary condition for e that
2 2does not involve a k/3y2, but only a first derivative, can also _

be derived. We have
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0

Still a different damping factor is obtained from the

analogy of oscillating shear flow over an infinite stationary 0

wall (Chapman and Kuhn, 1981). This type of flow seems more

analogous to real flows than does the Stokes flow of an

oscillating plate under a stationary fluid. In oscillating shear flow

the u fluctuations are damped as D = (1 - 2cosn e- n + e -2 ,.
where n Y/Ao, and A is a constant. This damping factor

applied to Reynolds Stress also yields the correct cubic power-
2 3law behaviour near a wall, -(uv)+ k Y A

In each case the constants A, Aop, and A are determined

through a quadrature (Van Driest, 1956) in which it is required

that the logarithmic law of the wall for U(Y) is satisfied.

Using 5.6 + 5.75 logY for the logarithmic region, the constants- -

that fit this turn out to be A = 27.8, A = 71.2, andop
A = 111. As illustrated in figure 14, the resulting

U(Y) profiles are nearly the same for all three damping

factors. As far as U(Y) and momentum decrements are concerned,

therefore, it would make relatively little difference which

damping factor is used.

Although the different damping factors yield similar results .

for U, they yield very different results for uv near a wall.

For applications involving heat transfer in fluids with high

Prandtl number, or diffusion in fluids with high Schmidt number,

the near-wall values of uv are of central importance. The three S

different damping factors, when used in the simple eddy-viscosity ---

(mixing-length) model of turbulence, yield the following results - .

for Reynolds stress near a wall:

3S
Damping Factor -(uv) /Y near wall . -

Dvd, Van Driest .0002 Y

DOp, oscillating plate flow .0022

Dos, oscillating shear flow .0014

-36-
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APPLICATIONS TO REYNOLDS AVERAGE

TURBULENCE MODELING -

The limiting behaviour of turbulence near a wall as defined

by the computational models can be applied to strengthen certain

aspects of Reynolds average turbulence modeling. Two examples 9

illustrating this are outlined in the paragraphs which follow.

One pertains to the damping factors for Reynolds stress in eddy-

viscosity models; and another to the wall boundary condition for

dissipation in k-c models and stress-equation models. .

Damping Factors For Eddy Viscosity Models

In eddy-viscosity (or mixing length) models, the Reynolds 9
2 2stress near a wall is expressed as -(uv)+ = k Y D, where k = 0.4

is the Karman constant, and D is a "damping factor" required to " .

provide a smooth transition between the wall and the logarithmic

region. The most widely used damping factor has been that of Van - S

Driest (1956), namely, Dvd = (I-e-Y/A)2, where A is a constant.
2 4 2Near a wall this yields -(uv)+ = k Y /A2 , unfortunately, an

incorrect limiting behavior. Van Driest obtained his damping .

factor by using Stokes flow of an oscillating plate under a .9

stationary fluid to obtain (1-e-Y /A ) as the damping factor for

u fluctuations; but he further assumed (incorrectly) that the v

fluctuations would be similarly damped, and thus obtained

(I-e-Y/A)2 as the damping factor for Reynolds Stress. 5

It is of interest that the correct near wall behaviour of .

Reynolds stress is obtained if the analogy of oscillating plate

flow is adhered to for v as well as u fluctuations. The .9

incompressible v-velocity field for an infinite plate oscillating .. -

in the y direction is not damped; hence the damping factor for

oscillating plate flow is Dop = (l-eY/Aop), where Aop is a

constant. This yields the correct cubic power-law behaviour near S

a wall, -(uv)+ =k2Y3/A
+ op.

-35- -
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(e.g., along the dashed line in the sketch) is such that u and

3w/az are positively correlated during both of these motions,

and hence produce a y3 term. We conclude from the requirement of

mass conservation, therefore, that the leading y3 term in

Reynolds stess is provided by the sweep and ejection motions near

a wall for streamwise homogenous or inhomogenous flows. Since 9

these structures are present in flows with or without streamwise

pressure gradient, it follows that the limiting uv behavior near

a wall will in general be proportional to y3 . The constant of

proportionality in wall variables is 0.7 x 10- 3 for model 1, and

0.5 x 10 -3 for model 2.

From the above considerations we can now understand how some

previous theories have incorrectly yielded y4 variations for .0

uv . Elrod (1957), for example, obtained the y4 variation for

streamwise homogenous flows through the erroneous assumption that

". by symmetry, u and w (and their derivatives) are

uncorrelated." In the Reynolds Stress producing sweep motions, u

and aw/az are strongly correlated; and this correlation produces

a y3 term. We believe that implicit in the theory of Ohji

(1967), which yielded a y4 variation for uv, is also some

erroneous assumption equivalent to assuming that u anz' aw/az are .0

uncorrelated.

-34- 9
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A simple physical explanation based on mass conservation in

sweep and ejection motions can be given for Reynolds stress -

varying as y3  Very near the wall the leading terms in a Taylor

series expansion for the fluctuating velocities are

u = f(x,z,t)y + ... w = g(x,z,t)y + ...

For mass conservation,

av au a + w +( - + y + . .

ay 5 i z ax az

so that integration yields,

0-v= (_- + 23) 2+
ax az 2+

The leading term in Reynolds stress, upon time averagino, becomes

a f2 3 __l--i f + f ~ ) Y2 + -

- uv= az 2

3which clearly produces a y term in streamwise inhomogenous

flows.

2
In streamwise homogenous flows af ax is zero and

3 - +-
-uv= f -23 Y + u = w u +

az 2 "" az 2

from which it is seen that a leading y3 term will also be present

. if u and a, (each of which is proportional to y) are

positively correlated near the wall. Sweep events primarily and

ejection events secondarily, are the Reynolds-stress producing -

* motions close to a wall. These motions are illustrated in the

* simplified sketch of a sweep and ejection shown in Figure 13.

. . The spanwise distribution of u and w along a given value of y
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Figure 2. Sketch of truncated Fourier series
approximation to rectangular pulse function.
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