

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

FWS/OBS-82/11.24 TR EL-82-4 July 1984

Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Atlantic)

1

AMERICAN EEL

by

Michael J. Van Den Avyle Georgia Cooperative Fishery Research Unit School of Forest Resources University of Georgia Athens, GA 30602

> Project Manager Larry Shanks Project Officer Norman Benson National Coastal Ecosystems Team U. S. Fish and Wildlife Service 1010 Gause Boulevard Slidell, LA 70458

This study was performed for Coastal Ecology Group U.S. Army Corps of Engineers Waterways Experiment Station Vicksburg, MS 39180

and

National Coastal Ecosystems Team Division of Biological Services Research and Development Fish and Wildlife Service U.S. Department of the Interior Washington, DC 20240

This series should be referenced as follows:

U.S. Fish and Wildlife Service. 1983-19_. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates. U.S. Fish Wildl. Serv. FWS/OBS-82/11. U.S. Army Corps of Engineers, TR EL-82-4.

This profile should be cited as follows:

Van Den Avyle, M. J. 1984. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic) -- American eel. U.S. Fish Wildl. Serv. FWS/OBS-82/11.24. U.S. Army Corps of Engineers, TR EL-82-4. 20 pp.

PREFACE

This species profile is one of a series on coastal aquatic organisms, principally fish, of sport, commercial, or ecological importance. The profiles are designed to provide coastal managers, engineers, and biologists with a brief comprehensive sketch of the biological characteristics and environmental requirements of the species and to describe how populations of the species may be expected to react to environmental changes caused by coastal development. Each profile has sections on taxonomy, life history, ecological role, environmental requirements, and economic importance, if applicable. A three-ring binder is used for this series so that new profiles can be added as they are prepared. This project is jointly planned and financed by the U.S. Army Corps of Engineers and the U.S. Fish and Wildlife Service.

Suggestions or questions regarding this report should be directed to:

Information Transfer Specialist National Coastal Ecosystems Team U.S. Fish and Wildlife Service NASA-Slidell Computer Complex 1010 Gause Boulevard Slidell, LA 70458

or

U.S. Army Engineer Waterways Experiment Station Attention: WESER Post Office Box 631 Vicksburg, MS 39180

CONTENTS

						Page
PREFACE	•		•	•	•	iii
CONVERSION TABLE	•		•	•	•	v
ACKNOWLEDGMENTS	٠	•••	•	•	•	vi
NOMENCI ATURE/TAXONOMY/RANGE	_					1
MOR PHOLOGY / IDENTIFICATION ALDS	•	•••	•	Ţ	•	ī
REASON FOR INCLUSION IN SERIES	•	•••	•	•	•	2
1 IFE HISTORY	•	• •	•	•	•	3
Snawning	•	• •	•	•	•	4
larval (lentocenhalus) Stage	•	• •	•	•	•	5
Glace Fol Stano	•	• •	•	•	•	5
Flver Stage	•	• •	•	٠	•	6
Vallow Fale and Silver Fale	•	• •	•	•	•	7
	•	• •	•	٠	•	, 0
	•	• •	•	٠	•	0
	•	• •	•	٠	•	11
	•	• •	•	•	•	11
	•	• •	•	٠	٠	12
Salinitu	•	• •	٠	٠	•	12
Discolud Overan	•	• •	٠	٠	•	12
	٠	• •	•	٠	•	13
Raditat Structure	٠	• •	٠	٠	٠	13
	•	• •	٠	٠	٠	13
Contaminants	•	• •	٠	٠	٠	13
chvironmental factors and sex Determination	•	• •	•	٠	•	14
LITERATURE CITED	•	• •	•	•	•	15

CONVERSION FACTORS

Metric to U.S. Customary Multiply <u>By</u> To Obtain 0.03937 inches millimeters (mm) inches 0.3937 centimeters (cm) feet 3.281 meters (m) 0.6214 miles kilometers (km) square meters (m²) 10.76 square feet square kilometers (km²) 0.3861 square miles hectares (ha) 2.471 acres 0.2642 gallons liters (1) cubic meters (m^3) cubic feet 35.31 acre-feet 0.0008110 cubic meters 0.00003527 ounces milligrams (mg) 0.03527 ounces grams (g) pounds kilograms (kg) 2.205 metric tons (t) 2205.0 pounds short tons metric tons 1.102 British thermal units kilocalories (kcal) 3.968 $1.8(C^{\circ}) + 32$ Fahrenheit degrees Celsius degrees U.S. Customary to Metric millimeters inches 25.40 2.54 centimeters inches 0.3048 meters feet (ft) 1.829 meters fa thoms kilometers miles (mi) 1.609 nautical miles (nmi) 1.852 kilometers. square feet (ft²) 0.0929 square meters 0.4047 hectares acres square miles (mi²) 2.590 square kilometers 3.785 liters gallons (gal) cubic feet (ft³) 0.02831 cubic meters acre-feet 1233.0 cubic meters ounces (oz) pounds (lb) 28.35 grams **kilograms** 0.4536 0.9072 metric tons short tons (ton) 0.2520 **kilocalories** British thermal unit (Btu)

Fahrenheit degrees

.

 $0.5556(F^{\circ} - 32)$

Celsius degrees

ACKNOWLEDGMENTS

Dr. Gene Helfman, Earl Bozeman, and Doug Facey, University of Georgia, and Dr. Arnold G. Eversole, Clemson University, reviewed earlier drafts of this Species Profile and provided current information that otherwise could not have been included.

· · · ·

Figure 1. American eel.

AMERICAN EEL

NOMENCLATURE/TAXONOMY/RANGE

Scientific name Anguilla rostrata
Preferred common name American
eel (Figure 1)
Other common names Anguille,
yellow eel, green eel, black eel,
little eel, bronze eel, glass
eel, silver eel, river eel
Class Osteichthyes
Order Anguilliformes
Family Anguillidae

Geographic range: Adults or various developmental stages occur in freshwater rivers, coastal waters, and the open ocean from the southern tip of Greenland, Labrador, and Newfoundland southward along the Atlantic coast of North America, into the Gulf of Mexico as far as Tampico, Mexico, and in Panama, the Greater and Lesser Antilles, and southward to the northern portion of the east coast of South America (Tesch 1977). The species is abundant from Maine to Mexico, is resident

in the Mississippi Valley, and occurs in the West Indies and Bermuda (Figure 2). Bertin (1956) reported the latitudinal range for the American eel as 5° to 62° N. It occurs in warm brackish and freshwater streams, estuaries, and coastal rivers. The American eel sometimes occurs in cold freshwater trout streams in mountainous regions. Adults are occasionally found in landlocked lakes, primarily in the Northeastern United States. Its distribution increased has because of its hardiness and the ease with which it can be transplanted into new habitats.

MORPHOLOGY/IDENTIFICATION AIDS

American eels undergo a series of morphological changes in their life cycle; these characteristics are presented in the LIFE HISTORY section. The following material was summarized primarily from Fahay (1978) and Tesch (1977).

Figure 2. Major rivers that support the American eel in the South Atlantic Bight. Eels also are common in other freshwater tributaries, and in bays and estuaries.

The body is elongate and snakelike (Figure 1). The dorsal and anal fins are confluent with the rudimen-Pectoral fins are tary caudal fin. present, but ventral (pelvic) fins are absent. The body is covered by minute embedded scales (often causing specimens greater than 3 to 5 years of age to appear scaleless). The lateral line is well developed. The mouth is terminal; jaws contain bands of small. pectinate or setiform teeth. A long tooth patch also occurs on the vomer. The number of vertebrae ranges from 103 to 111 but usually is 106 to 108 (Schmidt 1913).

No other anguillid eels occur in North American coastal waters, but the American eel's spawning grounds coincide closely with those of the European eel (Anguilla anguilla). Externally visible traits of the two specimens are similar; however, the European eel has 111-119 vertebrae (mean = 115). (1939) presented comprehensive Ege morphological data for A. rostrata. Some authors have argued that European and American eels should be regarded as geographical variants of the same species, but this is not generally accepted at present (Fahay 1978).

No data are available that conclusively point to geographic variations in morphology, and no subpopulations have been distinguished. and Williams (1978) noted Koehn protein differences among juvenile eels collected from different locations along the Atlantic seaboard, but they concluded that the differences were due to variations in selective pressures among environments in which growth occurred.

REASON FOR INCLUSION IN SERIES

The American eel supports valuable commercial and limited recreational fisheries throughout most of its range. Harvested adults often are shipped alive or frozen to Europe where they frequently are smoked before marketing, and a fishery for elvers (immature eels typically less than 60 mm long) has recently begun in the South Atlantic Bight. Elvers are shipped to Japan where they are cultured in ponds. Pond rearing of eels in the United States is in a developmental stage, and there is a potential for development and expansion of an eel culture industry.

The American eel is an important prey species of larger marine and freshwater fishes and is a predator on a variety of other animals including commercially important crabs and clams. Eels contribute to the loss of nutrients from freshwater rivers and lakes because of their great organic intake, large numbers, lengthy stay in freshwater, and subsequent migration to sea (Barila and Stauffer 1980). Alteration of river flow into estuaries could affect upstream migration of immature eels.

LIFE HISTORY

The life cycle of the American eel includes oceanic, estuarine, and riverine phases (Figure 3). Many details of its life history are only generally understood or have been inferred from knowledge of the congeneric European eel. Little has been reported on eel life history in rivers along the South Atlantic Bight; much of the information presented below is based on work in Middle and North Atlantic areas of the United States and Canada.

Different stages of the eel's life cycle are known by a variety of common names that are used throughout the scientific literature. The larvae are called leptocephali (sing. = leptocephalus); they first metamorphose into unpigmented "glass eels" that gradually develop pigmentation and are then called elvers. Elvers migrate into freshwater where they remain several (sometimes many) years and are called yellow eels. Yellow

Figure 3. Diagrammatic representation of the American eel's life history.

eels may be sexually undifferentiated (gonads contain no definable gametes), hermaphroditic (oogonia and spermatogonia present), or sexually differentiated (females with oogonia; males with spermatogonia present), but none of these stages are capable of reproduction and, hence, all yellow eels are immature. Maturation is accompanied by changes in body color and morphology; maturing eels migrate downriver and through the ocean to the spawning grounds and are known as "bronze eels" or "silver eels." Details of life history for these stages are provided below.

Spawning

The American eel is catadromous. It spawns in the sea but spends most of its life in rivers, freshwater lakes, and sometimes estuaries. After maturity it returns to the sea (Figure 3). The age at maturity has not been well defined; Fahay (1978) reported that maturation occurred beyond age III for males and at age IV-VII for females from northerly populations, but recent data suggest that maturation is more rapid in populations along the South Atlantic Bight. Helfman and Bozeman (unpublished MS.¹) collected sexually differentiated males and females at age III^2 in the Altamaha River, Georgia, and concluded that females there may have matured at earlier ages and smaller sizes than eels in northern areas whereas males matured at the same age and size as Hansen and Eversole northern eels. (in press) and Harrell and Lovacano (1980) collected differentiated males and females as young as age II and III, respectively, in the Cooper River, South Carolina.

Prior to seaward migration in the fall, maturing eels begin a metamorphosis into the silver eel stage, as described in the Yellow and Silver Eels section.

Eels migrating from Chesapeake Bay are in a more advanced state of metamorphosis than those migrating from Canadian waters; this supposedly enables eels to reach the southr spawning grounds in relatively sir stages of maturity (Wenner and ML ick 1974). The difference in the extent of metamorphosis between migratin eels from Canada and Chesapeake Bay suggests that migrating eels in South Atlantic rivers could be even further developed than those in Chesapeake Bay at the outset of migrations. Helfman and Bozeman (unpublished MS.¹) concluded that reproductive migrations from the Altamaha River, Georgia, occurred during late winter or early spring, but Hansen and Eversole (in press) and Michener (1980) indicated that migrations occurred during the fall in the Cooper River, South Carolina.

¹Population attributes of American eels in a Georgia river. G. S. Helfman and E. L. Bozeman, Department of Zoology and Institute of Ecology, University of Georgia, Athens, GA 30602. Submitted to Trans. Am. Fish. Soc.

²In this case, age is the number of years spent in freshwater (see the GROWTH CHARACTERISTICS section for aging methods).

Few details are known about the oceanic spawning migration of the American eel. The first collections of adults in offshore waters were reported by Wenner (1973) in the open ocean southeast of Cape Cod, Massachusetts, east of Assateague Island, North Carolina, and southeast of Chesapeake Bay. The means by which eels navigate to spawning grounds are poorly understood. Miles (1968) concluded that the eel was capable of noncelestial orientation (southward), and Rommel and Stasko (1973) indicated that eels may use geoelectric fields generated by ocean currents to navi-Robins et al. (1979) photogate. graphed two adult Anguilla eels on the floor of the Atlantic Ocean in the Bahamas at depths of about 2000 m, and although it was impossible to determine if the specimens were European or American eels, the authors believed them to be prespawning A. rostrata.

Stasko and Rommel (1977) tracked five migrating eels in the lower St. Croix River Estuary, New Brunswick, Canada, and found that one eel moved 25 km in 20 hr and another moved 38 km in 40 hr. Eels they studied showed considerable vertical movements in the water column; behavior did not change with diel or tidal cycles. Silver European eels traveled at 44 km per day when migrating to spawn (Tesch 1977). Edel (1976) believed that the depth at which American eels migrate in the ocean varied with light intensity so that swimming depth would vary with turbidity of the water.

Spawning by American eels has never been directly observed, and spawning areas have been delineated on the basis of collections of larvae. Spawning apparently occurs in the Sargasso Sea as early as January or February and may continue into August. Tesch (1977) summarized work by Schmidt (1923), Vladykov (1964), Smith (1968), and Vladykov and March (1975), and showed a spawning zone south of Bermuda and north of the Bahamas that is centered at about 25° N and 69° W. The youngest stages of American eel larvae coexist with European eel larvae, but American eel larvae predominate west of 62° W and south of 24° N (Fahay 1978). Fahay also reported that <u>A. rostrata</u> larvae have not been found east of 50° W.

The depth at which spawning occurs is not known, but Taning (1938) reported that larvae collected near Bermuda occurred only at depths between 550 and 2200 m. Egg diameter of A. rostrata is about 1.1 mm (Tesch 1977). Incubation periods of American eel eggs are not known.

Fecundity is 10 to 20 million eggs per female (Vladykov 1955, cited by Fahay 1978; Eales 1968). Relationships between eel size and fecundity for 21 eels were reported by Wenner and Musick (1974) as:

log F = -4.29514 + 3.74418 log TL, or log F = 3.2290 + 1.1157 log W;

Where F = number of eggs per female, TL = total length, mm, and W = total weight, g.

Adult eels presumably die after spawning. None have been observed to migrate up rivers, and occurrences of spent eels have not been reported.

Larval (Leptocephalus) Stage

Hatching occurs from February through August (Vladykov and March 1975; Fahay 1978), and the larval stage lasts about 1 year or perhaps longer. The body is lanceolate in shape, sharply pointed at both ends, and deepest at the middle (see Tesch [1977] or Fahay [1978] for illustrations). The size at hatching has not been described, but Schmidt (1925) collected 7- to 8-mm larvae in February. The smallest larvae collected by Vladykov and March (1975) and Smith (1968) were 12 mm and 17 mm, respectively.

- Vladykov, V. D. 1955. Eel fishes of Quebec. Quebec Dep. of Fish. Album No. 6:1-12.
- Vladykov, V. D. 1964. Quest for the true breeding area of the American eel (<u>Anguilla rostrata</u> LeSueur). J. Fish. Res. Board Can. 21:1523-1530.
- Vladykov, V. D. 1966. Remarks on the American eel (Anguilla rostrata Sizes of LeSueur). elvers entering streams; the relative abundance of adult males and females; and present economic importance of eels in North America. Verh. Int. Verein. Theor. Angew. Limnol. 16:1007-1017.
- Vladykov, V. D. 1973. Macrophthalmia in the American eel (<u>Anguilla</u> <u>rostrata</u>). J. Fish. Res. Board Can. 30:689-693.

- Vladykov, V. D., and H. March. 1975. Distribution of leptochephali of the two species of <u>Anguilla</u> in the western North Atlantic based on collections made between 1933 and 1968. Syllogeus 6:1-38.
- Wenner, C. A. 1973. Occurrence of American eels, <u>Anguilla rostrata</u>, in water overlying the eastern North American Continental Shelf. J. Fish. Res. Board Can. 30:1752-1755.
- Wenner, C. A., and J. A. Musick. 1974. Fecundity and gonad observation of the American eel, <u>Anguilla</u> <u>rostrata</u>, migrating from Chesapeake Bay, Virginia. J. Fish. Res. Board Can. 31:1387-1391.
- Wenner, C. A., and J. A. Musick. 1975. Food habits and seasonal abundance of the American eel, <u>Anguilla rostrata</u>, from the lower Chesapeake Bay. Chesapeake Sci. 16:62-66.

larval Atlantic menhaden at Indian River Inlet, Delaware, 1958-61. Pages 78-117 <u>in</u> A. L. Pacheco, ed. Proceedings of a workshop on egg, larval, and juvenile stages of fish in Atlantic coast estuaries. Middle Atlantic Coastal Fisheries Center Tech. Publ. No. 1.

- Parsons, J., K. U. Vickers, and Y. Warden. 1977. Relationship between elver recruitment and changes in the sex ratio of silver eels <u>Anguilla anguilla</u> L. migrating from Lough Neagh, Northern Ireland. J. Fish. Biol. 10:211-229.
- Poluhowich, J. J. 1972. Adaptive significance of eel multiple hemoglobins. Physiol. Zool. 45:215-222.
- Robins, C. R., D. M. Cohen, and C. H. Robins. 1979. The eels, <u>Anguilla</u> and <u>Histiobranchus</u>, photographed on the floor of the Atlantic in the Bahamas. Bull. Mar. Sci. 29:401-405.
- Rommel, S. A., Jr., and A. B. Stasko. 1973. Electronavigation by eels. Sea Frontiers 19:219-223.
- Schmidt, J. 1913. First report on eel investigations 1913. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 18:1-30.
- Schmidt, J. 1923. The breeding places of the eel. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 211:179-208.
- Schmidt, J. 1925. The breeding places of the eel. Smithson. Inst. Annu. Rep. for 1924:279-316.
- Seymour, N. R. 1974. Great blackbanded gulls feeding on live eels. Can. Field-Nat. 88:352-353.
- Sheldon, W. W. 1974. Elvers in Maine; techniques of locating, catching,

and holding. Maine Dep. Mar. Resour. 27 pp.

- Sinha, V. R. P., and J. W. Jones. 1967. On the food of the freshwater eels and their feeding relationship with salmonids. J. Zool. (Lond.) 153:119-137.
- Smith, D. G. 1968. The occurrence of larvae of the American eel, <u>Anguilla rostrata</u>, in the Straits of Florida and nearby areas. Bull. Mar. Sci. 18:280-293.
- Smith, M. W., and J. W. Saunders. 1955. The American eel in certain fresh waters of the Maritime Provinces of Canada. J. Fish. Res. board Can. 12:238-269.
- Sparre, P. 1979. Some necessary adjustments for using the common methods in eel assessment. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 174:41-44.
- Stasko, A. B., and S. A. Rommel, Jr. 1977. Ultrasonic tracking of Atlantic salmon and eels. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 179:36-40.
- Sykes, D. P. 1981. Migration and development of young American eels, <u>Anguilla</u> <u>rostrata</u>, in coastal North Carolina. N.C. State Univ. Sea Grant Working Pap. 81-5, Raleigh. 34 pp.
- Taning, A. V. 1938. Deep-sea fishes of the Bermuda Oceanographic Expedition. Family Anguillidae. Zoologica (N. Y.) 23:313-318.
- Tesch, F. W. 1977. The eel. J. Greenwood, translator. Chapman and Hall, London. 422 pp.
- Topp, R., and R. Raulerson. 1973. Elver investigations in the southeast. U.S. Natl. Mar. Fish. Serv. Mar. Fish. Rev. 35:45-47.

- Hornberger, M. L. 1978. Coastal Plains American eel study. Pages 42-50 in Progress report for October 1977 through January 1978. S.C. Wildl. Mar. Res. Dep., Charleston.
- Hornberger, M. L., J. S. Tuten, A. Eversole, J. Crane, R. Hansen, and M. Hinton. 1978. American eel investigations. Completion report for March 1977-July 1978. S.C. Wildl. Mar. Res. Dep., Charleston, and Clemson Univ., Clemson. 311 pp.
- Hulet, W. H., J. Fischer, and B. Rietberg. 1972. Electrolyte composition of anguilliform leptocephali from the Straits of Florida. Bull. Mar. Sci. 22:432-448.
- Hurley, D. A. 1972. The American eel (Anguilla rostrata) in eastern Lake Ontario. J. Fish. Res. Board Can. 29:535-543.
- Jeffries, H. P. 1960. Winter occurrences of <u>Anguilla rostrata</u> elvers in New England and Middle Atlantic estuaries. Limnol. Oceanogr. 5:338-340.
- Johnson, J. S. 1974. Sex distribution and age studies of <u>Anguilla</u> <u>rostrata</u> (American eel) in fresh waters of the Delaware River. M.S. Thesis. East Stroudsburg State College, East Stroudsburg, Pa. 57 pp.
- Keefe, S. G. 1982. The American eel (<u>Anguilla rostrata</u>) fishery in the commercial waters of North Carolina. Pages 50-51 in K. H. Loftus, ed. Proceedings of the 1980 North American eel conference. Ontario Fish. Tech. Rep. Ser. No. 4, Ontario Ministry of Nat. Resour., Toronto. 97 pp.
- Kleckner, R. C., and W. H. Kruger. 1981. Changes in swim bladder retial morphology in Anguilla

rostrata during premigration metamorphosis. J. Fish Biol. 18:569-577.

- Koehn, R. K., and G. C. Williams. 1978. Genetic differentiation without isolation in the American eel, <u>Anguilla rostrata</u>. II. Temporal stability of geographic patterns. Evolution 32:624-637.
- Komourdjian, M. P., W. C. Hulbert, J. C. Fenwick, and T. W. Moon. 1977. Description and first occurrence of <u>Myxidium zealandicum</u> (Protozoa: Myxosporidia) in the North American eel <u>Anguilla rostrata</u> LeSueur. Can. J. Zool. 55:52-59.
- Marcy, B. C., Jr. 1973. Vulnerability and survival of young Connecticut River fish entrained at a nuclear power plant. J. Fish. Res. Board Can. 30:1195-1203.
- McCord, J. W. 1977. Food habits and elver migration of American eel, <u>Anguilla</u> rostrata, (LeSueur), in Cooper River, South Carolina. M.S. Thesis. Clemson University, Clemson, S.C. 47 pp.
- Michener, W. K. 1980. Age, growth, and sex ratio of the American eel, <u>Anguilla rostrata</u> (LeSueur), from Charleston Harbor, South Carolina. M.S. Thesis. Clemson University, Clemson, S.C. 49 pp.
- Miles, S. G. 1968. Laboratory experiments on the orientation of the adult American eel, <u>Anguilla</u> rostrata. J. Fish. Res. Board Can. 25:2143-2155.
- Ogden, J. C. 1970. Relative abundance, food habits, and age of the American eel, <u>Anguilla</u> <u>rostrata</u> (LeSueur), in certain New Jersey streams. Trans. Am. Fish. Soc. 99:54-59.
- Pacheco, A. L., and G. C. Grant. 1973. Immature fishes associated with

- Eldred, B. 1971. First records of Anguilla rostrata larvae in the Gulf of Mexico and Yucatan Straits. Fla. Dep. Nat. Resour., Mar. Res. Lab. Leafl. Ser. 4:1-3.
- Facey, D. E., and G. W. LaBar. 1981. Biology of American eels in Lake Champlain, Vermont. Trans. Am. Fish. Soc. 110:396-402.
- Fahay, M. P. 1978. Biological and fisheries data on American eel, <u>Anguilla rostrata</u> (LeSueur). U. S. Dep. Commer. Natl. Mar. Fish. Serv. Tech. Ser. Rep. No. 17, Northeast Fisheries Center, Highlands, N.J. 82 pp.
- Ford, T., and E. Mercer. 1979. Population density, size distribution, and home range of the American eel (<u>Anguilla rostrata</u>) in the Great Sippewissett salt marsh. (Summary only.) Biol. Bull. 157:368.
- Gray, R. W., and C. W. Andrews. 1971. Age and growth of the American eel (<u>Anguilla rostrata</u> (LeSueur)) in Newfoundland waters. Can. J. Zool. 49:121-128.
- Hanek, G., and K. Molnar. 1974. Parasites of freshwater and anadromous fishes from Matamek River system, Quebec. J. Fish. Res. Board Can. 31:1135-1139.
- Hansen, R. A. 1979. Age, growth, and sex ratio of the American eel, <u>Anguilla rostrata</u> (LeSueur), in brackish water portions of Cooper River, South Carolina. M.S. Thesis. Clemson University, Clemson, S.C. 45 pp.
- Hansen, R. A., and A. G. Eversole. In press. Age, growth, and sex ratio of the American eel in brackish water portions of the Cooper River, South Carolina. Trans. Am. Fish. Soc.

- Harrell, R. M. 1977. Age, growth, and sex ratio of the American eel, <u>Anguilla rostrata</u> (LeSueur), in the Cooper River, South Carolina. M.S. Thesis. Clemson University, Clemson, S.C. 55 pp.
- Harrell, R. M., and H. A. Loyacano, Jr. 1980. Age, growth and sex ratio of the American eel in the Cooper River, South Carolina. Proc. Annu. Conf. Southeast. Assoc. Fish. Wildl. Agen. 34:349-359.
- Helfman, G. S., D. L. Stoneburner, E. L. Bozeman, P. A. Christian, and R. Whalen. 1983. Ultrasonic telemetry of American eel movements in a tidal creek. Trans. Am. Fish. Soc. 112:105-110.
- Hill, L. J. 1969. Reactions of the American eel to dissolved oxygen tensions. Tex. J. Sci. 20:305-313.
- Hinton, M. J., and A. G. Eversole. 1978. Toxicity of ten commonly used chemicals to American eels. Proc. Annu. Conf. Southeast. Assoc. Fish. Wildl. Agen. 32:599-604.
- Hinton, M. J., and A. G. Eversole. 1979. Toxicity of ten chemicals commonly used in aquaculture to the black eel stage of the American eel. Proc. World Maricult. Soc. 10:554-560.
- Hinton, M. J., and A. G. Eversole. 1980. Toxicity and tolerance studies with yellow-phase eels. Prog. Fish-Cult. 42:201-203.
- Holmberg, B., and R. L. Saunders. 1979. The effects of pentachlorophenol on swimming performance and oxygen consumption in the American eel (<u>Anguilla</u> <u>rostrata</u>). Rapp. P.-V. Reun. Cons. Int. Explor. Mer 174:144-149.

LITERATURE CITED

- Barila, F. Y., and J. R. Stauffer, Jr. 1980. Temperature behavioral responses of the American eel, <u>Anguilla rostrata</u> (LeSueur), from Maryland. Hydrobiologia 74:49-51.
- Beatty, D. D. 1975. Visual pigments of the American eel, <u>Anguilla</u> <u>rostrata</u>. Vision Res. 15:771-776.
- Bertin, L. 1956. Eels: a biological study. Cleaver-Hume Press Ltd., London. 197 pp.
- Bieder, R. C. 1971. Age and growth of the American eel, <u>Anguilla</u> <u>rostrata</u> (LeSueur), in Rhode Island. M.S. Thesis. University of Rhode Island, Kingston, R.I. 39 pp.
- Bigelow, H. B., and W. C. Schroeder. 1953. Fishes of the Gulf of Maine. U.S. Fish Wildl. Serv. Fish. Bul. 53. 577 pp.
- Crane, J. S., and A. G. Eversole. 1980. Ectoparasitic fauna of glass eel and elver stages of American eel (<u>Anguilla rostrata</u>). Proc. World. Maricult. Soc. 11:275-280.
- Crane, J. S., and A. G. Eversole. In press. Helminth parasites of American eels from brackish water. Proc. Annu. Conf. Southeast. Assoc. Fish Wildl. Agen. 35:357-366.
- Deelder, C. L. 1958. On the behavior of elvers (<u>Anguilla</u> <u>vulgaris</u> Turt.) migrating from the sea

into fresh water. J. Conserv. 24:135-146.

- Dolan, J. A., and G. Power. 1977. Sex ratio of American eels, <u>Anguilla</u> <u>rostrata</u>, from the Matamek River system, Quebec, with remarks on problems in sexual identification. J. Fish. Res. Board Can. 34:294-299.
- Eales, J. G. 1968. The eel fisheries of eastern Canada. Bull. Fish. Res. Board Can. 166. 79 pp.
- Easley, J. E., Jr., and J. N. Freund. 1977. An economic analysis of eel farming in North Carolina. N.C. State Univ. Sea Grant Publ. UNC-SG-77-16, Raleigh. 21 pp.
- Edel, R. K. 1976. Activity rhythms of maturing American eels (Anguilla rostrata). Mar. Biol. 36:283-289.
- Edel, R. K. 1979. Locomotor activity of female silver eels (<u>Anguilla</u> <u>rostrata</u>) in response to shelter and unnatural photoperiods. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 174:98-103.
- Ege, V. 1939. A revision of the genus Anguilla Shaw: a systematic, phylogenetic and geographical study. Dana Rep. Carlsberg Found. No. 16. 256 pp.
- Egusa, S. 1979. Notes on the culture of the European eel (<u>Anguilla</u> <u>anguilla</u> L.) in Japanese eelfarming ponds. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 174:51-58.

developed in the youngest life stages. It is possible that male eels prefer higher salinities than females and move downstream to coastal areas after they are differentiated, but this pattern has not been behavioral observed and it would not explain the latitudinal trend. Koehn and Williams (1978) reported that eels throughout the species' range are part of the same spawning stock. They concluded that differences in protein characteristics in yellow eels from different drainages along the Atlantic coast reflected differences. environmental This suggests that latitudinal variations in the sex ratio are not genetically determined but could be due to variations of environmental factors. Some of the environmental factors that could be involved include food quality and population density (Fahay 1978). Parsons et al. (1977) believed that stocking of European eel elvers into Lough Neagh, Northern Ireland, led to a higher population density and a marked increase in the proportion of male eels that subsequently emigrated the lake. Similarly, Egusa (1979) indicated that A. anguilla elvers grown in Japanese ponds under crowded conditions produced males predominantly, suggesting that variations in the sex ratio of American eel populations may be related to population density. Salinity apparently is

not an important sex determinant; sex

ratios were similar in the freshwater

and brackish culture ponds studied by

Work done by Hinton and Eversole (1978, 1979, 1980) on toxicity of aquaculture chemicals to various life stages of eels suggests that tolerance to chemicals increases with size or age.

Environmental Factors and Sex Determination

There is limited evidence which suggests that the gender of American eels is determined to some extent by environmental factors. Fahay (1978) stated that the sex of the European eel can be environmentally influenced, but indicated that the factors responsible could only be speculated upon. The long developmental period in fresh- or brackish waters in combination with juvenile hermaphroditism (see the LIFE HISTORY section) provides a setting in which environmental factors could regulate the gender of eels.

Female American eels predominate in upstream freshwater areas as well as in northerly stocks, but there is no direct evidence of mechanisms that lead to these patterns. One possible explanation is that male leptocephali and elvers do not migrate as far as females (and hence remain in southerly or downstream areas [Fahay 1978]). But because eels do not mature until they have lived 3 yr (males) to 7 yr (females) or longer in freshwater, it is unlikely that physiological systems capable of causing sex-related differences in migratory patterns would be

from

Egusa.

fact that the species occurs throughout a gradient of strictly fresh to brackish waters. Leptocephali are in near-ionic equilibrium with sea water (Hulet et al. 1972).

Dissolved Oxygen

Dissolved oxygen requirements have not been thoroughly documented, but eels generally will select water with high oxygen tension (Hill 1969). Commercial shipping of live eels indicates that they are especially hardy. Elvers can be packed densely and shipped alive by being dampened but not covered with water because they can absorb 60% of required oxygen through their skin (Sheldon 1974, cited by Fahay 1978). Tesch (1977) stated:

> "The capacity of the adult eel to survive in both air and water is associated with its ability to use both branchial and cutaneous modes of respiratory gas exchange. The eel survives better in air than in poorly oxygenated or polluted water"

Habitat Structure

Postlarval eels tend to be bottom dwellers and hide in burrows, tubes, snags, plant masses, other types of shelter, or the substrate itself (Fahay 1978). This behavior is reflected in their food habits, protects them from predators, and influences commercial fishing techniques. Few other freshwater fishes display similar habitat use; therefore, interspecific competition for living space may be limited. The presence of soft, undisturbed bottom sediments is important to migrating elvers as shelter (see the Elver Stage section). Edel (1979) indicated that eels in his experimental systems were less active when shelter was present than when it was absent. Vladykov (1955, cited by Fahay 1978) reported that adult eels in northern habitats lie dormant in the bottom mud during winter.

Ford and Mercer (1979) used markrecapture methods to obtain a population estimate of 350 yellow eels in a 600-m section of a marsh creek in a Massachusetts estuary. They studied the behavior of yellow eels and found that eels shorter than 30 cm predominated in narrow, soft-bottomed, upper marsh creeks whereas those longer than 30 cm predominated in wider, lower marsh creeks having mud and sand bottoms. Most eels had relatively small home ranges and rarely moved more than 100 m from the point at which they were initially caught. The authors believed that large eels may establish territories in lower marsh areas and thereby restrict smaller eels to smaller high marsh creeks.

River and Tidal Currents

The elver's nocturnal activity patterns and reliance on tides and river currents for upstream movement are presented in the LIFE HISTORY section.

Movements of yellow eels in a tidal creek in Georgia were affected by tides and time of day (Helfman et al. 1983). Daytime movements of eight telemetered eels were restricted to the main creek channel, but at night the fish were near the mouths of feeder creeks at low tide or in flooded marsh areas during high tide. Helfman et al. (1983) termed this movement "a nocturnal activity pattern modified by tidal flow." They suggested that movements onto the marsh at night may have been foraging trips.

Contaminants

Little work has been done on American eels regarding toxic effects of pollutants or tolerance limits. Tolerance would be expected to vary with developmental phase, and the eel's long residence in freshwater rivers could lead to repeated doses of toxicants and accumulation to toxic levels (Holmberg and Saunders 1979). fish eaten were bottom dwellers, reflecting the eels' tendency to remain near the bottom. Fahay (1978) concluded that eels depend more on scent than sight to obtain food.

Little has been published about predation on eels. Hornberger et al. (1978) reported that elvers and small yellow eels were eaten by largemouth (Micropterus salmoides) and bass striped bass (Morone saxatilis) in the Cooper River, South Carolina, but eels never were a major component of these predators' diets. Leptocephali, glass eels, elvers, and small yellow eels probably are consumed by a variety of other predatory fishes; grown eels are eaten by other species of eels and by gulls, bald eagles, and other fish-eating birds (Sinha and Jones 1967; Seymour 1974).

Crane and Eversole (1980) found no parasites on glass eels migrating into the Cooper River, South Carolina, but four genera of protozoans (Trichodina, Ichthyophthirius, Myxidium, and Myxobolus) and one species of monogenetic trematode (Gyrodactylus anguillae) were found on elvers. Crane and Eversole (in press) reported that 214 of 218 yellow eels collected from brackish waters of the Cooper River, South Carolina, were parasitized by one or more of 22 helminth species. Parasites of American eels in Quebec included protozoans, tremanematodes, cestodes, todes. and copepods (Hanek and Molnar 1974). The myxosporidian protozoan, Myxidium zelandicum, has been found in the kidneys and on the gills of A. rostrata (Komourdjian et al. 1977).

ENVIRONMENTAL REQUIREMENTS

Temperature

The eel's broad geographic range and diverse habitats suggest flexible temperature requirements. Elvers and yellow eels live in waters ranging from cold, high-elevation or highlatitude freshwater streams and lakes to warm, brackish coastal bays and estuaries in the Gulf of Mexico. Jeffries (1960) found elvers at temperatures as low as -0.8° C.

Barila and Stauffer (1980) acclimated yellow eels to a range of temperatures between 6° C and 30° C and then measured preferred tempera-Although preferred temperatures. tures tended to increase with increased acclimation temperature, differences among groups were nonsignificant, and the authors reported a final temperature preference of 16.7° C. They also reported that feeding ceased at temperatures below 14° C. Marcy (1973) reported that American eels survived passage through the cooling system of a nuclear power plant, during which they were exposed to elevated temperatures for 1-1.5 hr. Poluhowich (1972) suggested that the American eel's multiple types of hemoglobins serve to maintain a relatively constant blood oxygen affinity when the eel is exposed to temperature changes.

Salinity

The mechanisms by which glass eels or elvers orient during their shoreward migration have not been described, but their movements probably are keyed to salinity gradients after they reach coastal waters. European glass eels and elvers become positively rheotactic when they first encounter freshwater that is mixed with seawater (Tesch 1977); thus salinity as well as the current itself may provide the gradient for shoreward orientation. Alterations of patterns or magnitudes of freshwater inflows to bays or estuaries could alter salinity regimes and thereby affect the number, timing, and spatial patterns of upstream migrations by elvers.

As with temperature, salinity requirements of postlarval eels can be generally inferred as "broad" from the

The feasibility of commercial grow-out operations in North Carolina was assessed by Easley and Freund (1977). Interest in culturing was stimulated by rising prices noted above during the late 1960's and early 1970's, but considerable refinement of techniques is needed. Development of eel aquaculture has focused on methods for collecting elvers and on physical features of grow-out systems. Hormone injections can be used to induce maturation of female American eels (Edel 1976), but proper spawning conditions are unknown, and eel culture remains dependent on capturing wild Hinton and Eversole (1978. elvers. 1979, 1980) evaluated the toxic effects of chemicals commonly used in aquaculture to glass eels (mean length of 55 mm), elvers (mean length of 97 mm), and yellow eels collected from South Carolina rivers.

The South Atlantic States have few, if any, restrictions specifically designed to regulate yellow or silver eel harvest, but fisheries for yellow eels often have been nonexistent or minimal because of prohibitions against using traps in freshwaters (as mentioned above for Georgia). Such restrictions generally are intended to prevent incidental catches of sport fishes. Mouth diameter and wire mesh sizes of traps are regulated in some areas to reduce catches of other (e.g., Hornberger et al. species 1978). Elver fishing is illegal in Georgia.

Estimates of density, mortality, or other vital statistics of eel stocks generally have not been reported, and factors regulating survival or stock size have not been evaluated. Helfman (unpublished MS.4) suggested that the eel's long life in freshwaters may make the stocks prone to overharvest. (1982) local Keefe suggested that recent declines in catch per unit effort of eels in North Carolina indicated overharvest. Because all American eels spawn in the Sargasso Sea and there apparently are

no genetically distinct stocks or subpopulations (Koehn and Williams 1978), overharvest in one region could affect recruitment in other regions. Nevertheless, some management policies allow or encourage local heavy exploitation of migrating silver eels or elvers under the assumption that the numbers of elvers returning in later years will be maintained by escapement of spawning stock from other areas.

No major sport fishery for American eels exists in coastal rivers of the South Atlantic Bight, but the species is caught incidentally by anglers in estuaries and rivers.

ECOLOGICAL ROLE

Yellow eels are nocturnal and a significant portion of their feeding occurs at night. The diet is diverse and generally includes nearly all types of aquatic fauna that occupy the Eels swallow some same habitats. types of prey whole, but they also can tear pieces away from larger dead fish, crabs, or other items. Eels in freshwater feed on insects, worms, crayfish and other crustaceans, frogs, and fish whereas elvers in saltwater are planktivorous. Elvers collected from the Cooper River, South Carolina. insects consumed aquatic (mainly chironomid larvae and adults), cladocerans, amphipods, and fish parts (McCord 1977). The diet of yellow eels from the Cooper River varied with eel size and season. Intermediate size classes contained more types of food than elvers or maturing eels; fish occurred in the diet primarily in winter and spring whereas insects and mollusks were eaten from spring through fall. Crustaceans, bivalves, and polychaetes were the major prey of eels in lower Chesapeake Bay; blue crabs and soft clams were significant prey (Wenner and Musick 1975). Eels shorter than 40 cm in New Jersey streams mainly ate aquatic insects whereas larger eels fed mostly on fish and crustaceans (Ogden 1970). Most fishermen and secondarily provided bait used in blue crab (<u>Callinectes</u> <u>sapidus</u>) traps. A larger commercial fishery for eels in the region is developing, and glass eels, elvers, yellow eels, and silver eels are exploited. Techniques for capturing and growing elvers to marketable sizes are being developed (Easley and Freund 1977).

The European market has been the major outlet of U.S. yellow and silver eel landings (Fahay 1978). Eels are hardy and can be densely packed and shipped alive if they are kept moist, cool, and supplied with oxygen. Live eels are preferred in Europe, but many are shipped frozen.

Commercial fishermen use a variety of methods, including lift nets, drift nets, traps, weirs, otter trawls, pound nets, fyke nets, spears, handlines, eel pots, haul seines, and gill nets (Fahay 1978). The fyke net is the major gear used in North Carolina to exploit eels that are moving seaward in late summer or early fall to begin their spawning migration. Yellow eels in fresh- or brackish waters are primarily taken with baited traps or eel pots.

Fahay (1978) summarized catch statistics along the Atlantic coast for 1955-73. Landings from the Middle Atlantic (New Jersey-Virginia) consistently exceeded those from the North Atlantic and South Atlantic States, but landings from Southern States increased in the late 1960's and early 1955-64, the South 1970's. For Atlantic harvest averaged about 37,000 kg annually, and for 1965-73, annual landings were about 630,000 kg. The value of these landings ranged from \$8,000 to \$83,000 annually for 1965-73.

Eel harvest and value in North Carolina dramatically increased in the 1960's and 1970's (Easley and Freund 1977). For 1960-70, average annual landings were 17,800 kg valued at \$0.11/kg; in 1972-73, the price rose to \$0.35/kg; and in 1973-76, landings averaged 151,200 kg at a price of \$0.92/kg. Catch value ranged from \$0.95 to \$1.85/kg and harvest averaged 285,000 kg for 1977-79 (Keefe 1982). The bulk of the North Carolina landings is taken from northeastern coastal areas.

In Georgia, commercial fishing for eels in freshwater was effectively prohibited prior to 1980 because of restrictions against using traps in inland waters. Harvest in 1979 was about 3,900 kg (Helfman, unpublished MS⁴). After a freshwater trap fishery was allowed in 1980, harvest was 50,000 kg, but landings in 1981 and 1982 were 5,500 kg and 16,800 kg, respectively. The 1982 catch was valued at \$35,000 or \$2.08/kg.

A fishery for European eel elvers began in Europe during the late 1960's to supply Japan's demand for young eels to use in pond aquaculture. Experimental work on techniques for capturing migrating American eel elvers has been done in the St. Johns River, Florida (Topp and Raulerson Elvers were packed live in 1973). boxes and shipped to Japan, where paid for local Anguilla prices japonica elvers were \$7/kg in 1965-68, \$300/kg in 1969, and \$330 to \$925/kg in 1971-73 (Fahay 1978; Egusa 1979). Prices paid for European eel elvers in Japan initially were equivalent to those paid for local elvers, but European eels were inferior in the pond culture systems (poor growth and disease problems); in 1973, the Japanese paid only \$30 to \$50/kg for (Equsa 1979). European elvers Accounts of American eel performance in Japanese eel culture were not located.

⁴Development and expansion of the fishery for American eels in Georgia. G.S. Helfman, Department of Zoology, University of Georgia, Athens, GA. 30602. Project summary, University of Georgia Sea Grant Program, 1983.

fifth year of life and the scales formed annual rings in subsequent winters (Smith and Saunders 1955). Thus, in northerly areas, age in years generally will be the number of scale rings plus three. The eel, however, continues to form scales as it grows, leading to a situation in which different scales from the same fish can give different ages (Smith and Saunders 1955).

Growth rates within year classes are highly variable, leading to considerable variation in length at age and poor predictability of age from size. Lengths of eels at various ages in northerly populations are summa-rized in Table 1. Few growth data for eels in South Atlantic States have been reported. Harrell and Loyacano (1980) reported that eels in the Cooper River grew 45 to 52 mm per year for ages II-XVI. Helfman and Bozeman (unpublished MS.³) tagged yellow eels in a Georgia estuary and used recapture data to estimate growth rates. There was a slow-growth period during November through February when the fish grew an average of 0.025 mm per They grew more rapidly during day. the rest of the year, gaining an average of 0.220 mm per day. These rates produced an average annual length increase of 57 to 63 mm.

Maximum age of yellow eels collected from northern rivers has been reported to be 15 to 20 years (Fahay 1978). Landlocked eels liberated as elvers in Sherman Lake, Michigan, lived 35 to 40 years (Vladykov 1973). Accuracy of estimates of the age at maturity may be affected by problems with aging techniques.

COMMERCIAL AND SPORT FISHERIES

Prior to the 1970's, the eel fishery in the South Atlantic Bight primarily provided live bait to sport

			lotal length (cm)	at various	locations			
Age (yr)	Bill's Lake New Brunswick ^a	Crecy Lake New Brunswick ^a	Newfound1and ^b	Lake Ontario ^c	New Jerseyd	Rhode Island ^e	Delaware Riverf	South Carolina ^g
1							12-16	20-31
ii I							14-25	21-50
iin	20-26	20-22		12			18-28	22-59
iv	22-38	21-27		17	29-32	27-46	24-32	28-62
ŵ.	26-48	25-35		22-37		28-51	26-34	32-66
Тv	24-51	29-42		22-47	41-67	28-51	28-42	31-68
vit	34-56	30-52		22-47	36-67	29-58	29-43	42-74
VIII	38-57	32-55		22-47	44-70	33-64	35-47	40-69
5 8	38-57	34-59	53-62	32-52	37-74	38-62	35-50	44-73
¥	49-57	42-56	60-65	37-62	44-86	37-65	40-52	53-67
Ŷı			58-69	37-62	63-90	46-65	45-54	65-69
ŶĨı			58-72	37-62	67-94		43-64	65-74
Ŷi i r			68-76	47-62	68-98			
YTV			72-80	47-67	78-97		56-59	83
ŶV V			79-87	47-62	78-104			79
ŶŶ			88	47-62	77-100			
vvr r			92	47-72	95-99			
AVE1			93	62-72				
V1V				87				

Table 1. Lengths of American eels at various ages.

Bosmith and Saunders 1955. Gray and Andrews 1971. CHurley 1972. Ogden 1970.

Bieder 1971

hnson 1974

data combined from Harrell 1977, Hansen 1979, and Michener 1980.

be a result of incorrect sexing, selectivity of sampling gear and the possible exclusion of smaller males, and the assumption that characteristics for the American eel would parallel those of the European eel. The gender of adult eels is not externally apparent, and gonadal tissues should be examined histologically to avoid errors in sex determination (Dolan and Power 1977; Facey and LaBar 1981).

Age at maturity and other aspects of reproduction are described in the Spawning section. Sexual differentiation does not occur until eels reach about 200 mm in length (Fahay 1978). Prior to completion of the differentiation process, some eels possess gonads containing male and female hermaphroditism: gametes (juvenile) Tesch 1977), but after gender is established, it does not change (Fahay 1978). Helfman and Bozeman (unpublished MS.³) reported that differentiated and undifferentiated yellow eels in the Altamaha River, Georgia, overlapped considerably in size: undifferentiated eels were as large as 363 mm at age VII; differentiated males were as small as 209 mm at age III; differentiated females were as small as 186 mm at age III; and hermaphrodites, which constituted less than 1% of the collections, ranged from 267 to 328 mm at ages IV to V. Hansen and Eversole (in press) reported similar overlap in size and age of differentiated and undifferentiated eels in the Cooper River, South Carolina.

Yellow eels begin to metamorphose into silver eels in the fall prior to seaward migration. The metamorphosis includes: (1) color change (to a metallic, bronze-black sheen; pectoral fins change from yellow-green to black); (2) fattening of the body; (3) thickening of the skin; (4) enlargement of the eyes (macrophthalmia) and changes in visual pigments in the eye in preparation for migrating at dark ocean depths (Vladykov 1973; Beatty 1975); (5) increased length of capillaries in the rete in the swim bladder, which also may be an indication of migrating at great depths (Kleckner and Kruger 1981); and (6) degeneration of the digestive tract. Silver (metamorphosed) eels appear to be better adapted to swimming than yellow eels (Holmberg and Saunders 1979). Presumably, ovaries mature fully only after the migrating female reaches saltwater (Fahay 1978).

GROWTH CHARACTERISTICS

Larvae typically reach 40 to 70 mm after 1 year of growth; Hornberger et al. (1978) collected glass eels from the Cooper River, South Carolina, from January through April that averaged 55 mm in length and ranged from 45 to 65 mm (see the Larval Stage section for arowth within the first year). The metamorphosis into elvers is accompanied by a decrease in length and weight due to reduction in water content of the body. Elvers grow slowly and reach about 127 mm after the first year in freshwater (Bigelow and Schroeder 1953). Yellow eels typically grow slowly but can achieve weights up to 6.8 kg; females caught from the St. Lawrence River range from 960 to 1270 mm long and 0.9 to 4.5 kg (Fahay 1978). Females typically grow to a larger size than males.

Eels have been aged from otoliths and scales. Otoliths in eels consist of a translucent nucleus (formed at sea) surrounded by broad opaque summer zones and narrow translucent winter zones (Harrell and Loyacano 1980). Harrell and Loyacano (1980) used otoliths to age American eels from the Cooper River in South Carolina. Distinct annuli were present in 410 of 415 otoliths examined; the opaque ring first appeared in May and the translucent zone was first evident in Novem-The third opaque ring correber. sponds to the eel's first growing season in freshwater. Eels in Canadian waters formed their first scales at 160 to 200 mm during their third to "early" arrivals may be the earliest spawned individuals or a segment of the main body of leptocephali that is moved northward more quickly by localized water currents. Alternatively, these elvers may be "late" arrivals produced from leptocephali that did not metamorphose during the previous winter/spring.

Elvers occupy freshwater-saltwater transition areas before ascendina rivers. During this period, elvers are active at night and burrow or rest in deep water during the day (Deelder 1958). This nocturnal behavioral pattern causes the elvers to be transported upstream by flood tides that occur at night, and they drift back down during ebb (Fahay (1973) Pacheco and Grant 1978). reported similar patterns for elvers at the mouth of the Indian River, Delaware, and Tesch (1977) noted equivalent behavior by European eel elvers. He also indicated that A. anguilla elvers orient to river currents for upstream movement, and if the current becomes too weak or too strong (velocities not specified), eels may move into backwater areas, severely delaying upstream progress. Basic similarities in behavior of European and American eel elvers suggest that A. rostrata elvers would be similarly affected by extremely fast or slow river currents.

Fahay (1978) stated that as upstream migration to freshwater streams begins, males tend to stay in brackish water while females move into fresher water, but this is based on observed distribution patterns of older eels rather than direct observation of elver behavior. When elvers cease their migration, they begin a growth and differentiation period in which they are called yellow eels.

Yellow and Silver Eels

Many authors (e.g., Bigelow and Schroeder 1953; Vladykov 1966) have stated that yellow eel females occur

primarily in freshwaters whereas males are generally found in salt- or brackish waters. Dolan and Power (1977), however, concluded that an extensive review of literature did not support female-freshwater, male-saltthis water" theory. Recent studies continue to be inconsistent. Helfman and Bozeman (unpublished ${\rm MS}^3$) found that females represented 94% of the sexuallv differentiated yellow eels collected from freshwater areas of the Altamaha River in Georgia and 64% of the differentiated yellow eels in estuarine areas. However, collections of eels from the Cooper River, South Carolina, showed a minor variation of sex ratio from fresh- to saltwater. Females contributed 97%, 95%, and 93% of the differentiated eels collected from fresh-, brackish-, and saltwater areas, respectively (Harrell and Loyacano 1980; Michener 1980; Hansen and Eversole, in press).

In addition to the freshwatersaltwater variation in the sex ratio. a geographic variation in the distribution of the sexes has been hypothesized. Vladykov (1966) stated that male eels predominate in middle and southern Atlantic populations (New Jersey to Florida) whereas females predominate from New York to Newfoundland. Work in the Cooper River, South Carolina, and the Altamaha River, Georgia (described in the preceding paragraph), however, does not support this hypothesis. Vladykov believed that a latitudinal change in sex composition was related to the sizedifferences in elvers along the coast, and he said that smaller elvers entering southern streams supposedly become males whereas the larger elvers entering northern systems probably develop into females (see the ENVIRON-MENTAL REQUIREMENTS section for with alternate explanations). As freshwater-saltwater variations in the sex ratio, Dolan and Power (1977) suggested that latitudinal variations were not well documented. They stated that the apparent geographic distribution of sex in the American eel could During the leptocephalus stage, the larvae grow and are transported by ocean currents. Larvae collected by Schmidt (1925) were 7 to 8 mm long in February, 20 to 25 mm in April, 30 to 35 mm in June, 40 mm in July, 50 to 55 mm in September, and 60 to 65 mm by the end of the first year of life. The longest leptocephalus collected by Vladykov and March (1975) was 69 mm.

Vladykov and March (1975) suggested that larval <u>A</u>. rostrata may spend more than 1 year in the sea. Limited evidence also suggests that some eels remain in the leptocephalus stage for more than 1 year. Smith (1968) reported a 50-mm leptocephalus near the spawning grounds during April. This larva was too long to have been spawned in the immediate season (Fahay 1978).

The Northern Equatorial Current and the Gulf Stream transport larvae northward along the eastern seaboard of North America. Sampling has shown that larvae are abundant in the Florida Straits and in the area between Bermuda and the Bahamas from April through August (Smith 1968), and Eldred (1971) found A. rostrata leptocephali in the Gulf of Mexico and Yucatan Straits, but mechanisms by which the larvae are dispersed into the Gulf of Mexico and southward to the coast of South America have not been determined.

Glass Eel Stage

During the pelagic phase, leptocephali reach a size and physiological state at which they begin to metamorphose. The early stages of this transition involve: (1) shrinkage in size and weight, primarily due to a reduction in water content; (2) changes in the configuration of the head and jaws; and (3) accelerated development of the digestive system (Fahay 1978). After these changes occur, the eels are similar in overall morphology to yellow eels, but they lack external pigmentation and are called "glass eels." Glass eels actively migrate toward land and freshwater, and as they approach coastal areas, external pigmentation develops and the body becomes uniformly dark brown. At this stage, metamorphosis is complete and the eel is now called an elver.

Elver Stage

Most elvers move into coastal areas, estuaries, and up freshwater rivers in the late winter or early spring. Vladykov (1966) suggested that elvers generally arrive in southern estuaries earlier and at smaller sizes than in the north, but catch records indicate considerable overlap in the timing of shoreward movements along the Atlantic coast. Such movements have occurred during April in Narragansett Bay and near Washington, D.C.; February and March in Delaware; January in Long Island Sound and Rhode Island estuaries; off Nova Scotia in April, and the Bay of Fundy in summer (Fahay 1978). In the South Atlantic, migrating elvers have been collected during January in Florida and South Carolina and during January through May, with peak catches in March and April, in North Carolina (Smith 1968; Hornberger 1978, cited by Sykes 1981; Sykes 1981). Elvers moving into South Atlantic estuaries and rivers typically are 46 to 60 mm long. Helfman and Bozeman (unpub-lished MS.³) collected 49- to 56-mm glass eels from the Altamaha River Estuary, Georgia, in late February; daily growth rings on the otoliths showed 250 to 300 days of age.

Small numbers of elvers regularly arrive in estuaries in the fall, and Fahay (1978) suggested that these

³Growth rates of American eels in a Georgia estuary. G. S. Helfman and E. L. Bozeman, Department of Zoology and Institute of Ecology, University of Georgia, Athens, GA 30602. Submitted to U.S. Natl. Mar. Fish. Serv. Fish. Bull.

REPORT DOCUMENTA PAGE	FWS/0BS-82/11	24*	MIJ X/	5	
Requirements o	cies Profiles: Life f Coastal Fishes and	Histories and Invertebrates	Environmental (South Atlan-	S. Report Date	July 1984
tic)American	eel		(6.	
Author(s) Michael J. Van	Den Avyle	<u> </u>		8. Performing (Organization Rept. No.
. Performing Organization Georgia Cooper	Name and Address ative Fishery Resear			10. Project/Tas	k/Work Unit No.
School of Fore	st Resources			11. Contract(C)	er Grant(G) No.
Athens, GA 306	02			(C)	
2 Second Organization	Name and Address			(G)	
National Coast	al Ecosystems Team	U.S. Army Cor Waterways Exp	ps of Engineers eriment Station	13. Type of Reg	port & Period Covered
U.S. Departmen	t of the Interior	P.O. Box 631		14.	
Washington, DC	20240	Vicksburg, MS	39180	<u> </u>	·····
*U.S. Army Corp	s of Engineers repor	t No. TR EL-82	-4		
		· · · · · · · · · · · · · · · · · · ·			<u> </u>
with impact as	sessment. The Ameri	can eel, <u>Angui</u>	<u>lla rostrata</u> , i	s an ecolo ator stroa	gically and
with impact as economically i brackish estua eels apparentl larvae northwa shoreward and eels commonly to spawn. Ame that occupy th salinity, and studies of req created by riv cues shoreward inflows to est	sessment. The Ameri mportant catadromous ries, and the open of y spawn in the Sarga rd until the young m moving upstream into remain in freshwater rican eels tend to b e same habitats. Ee other environmental uirements have been er discharges into of migration of juveni uaries and bays coul	can eel, <u>Angu</u> species that cean during va isso Sea, and o netamorphose in o coastal areas o or brackish a pe bottom-dwell els occupy area factors, sugge reported. Sal le eels. Alt d affect upstr	<u>11a rostrata</u> , i occupies freshw rious phases of cean currents t to juveniles ca , estuaries, and reas for 10-12 ers and feed on s having wide ra sting broad tol inity patterns pparently provi eration of patt eam migrations.	s an ecolo ater strea its life ransport t pable of s d rivers. years befo a variety anges of t erance lim and water de the gra erns of fr	agically and ams, rivers, cycle. Adult the developing Developing Developing ore migrating of fauna comperature, its, but few currents adient that reshwater
 With impact as economically i brackish estua eels apparentl larvae northwa shoreward and eels commonly to spawn. Ame that occupy th salinity, and studies of req created by riv cues shoreward inflows to est Document Analysis a. 	sessment. The Ameri mportant catadromous ries, and the open of y spawn in the Sarga rd until the young m moving upstream into remain in freshwater rican eels tend to b e same habitats. Ee other environmental uirements have been er discharges into of migration of juveni uaries and bays coul	can eel, <u>Angu</u> species that ocean during va isso Sea, and o netamorphose in o coastal areas or brackish a factors, sugge reported. Sal coastal areas a factors, sugge reported. Sal ie eels. Alt d affect upstr	<u>lla rostrata</u> , i occupies freshw rious phases of cean currents t to juveniles ca , estuaries, and reas for 10-12 ers and feed on s having wide r sting broad tol inity patterns pparently provi eration of patt eam migrations.	s an ecolo ater strea its life ransport t pable of s d rivers. years befo a variety anges of t erance lim and water de the gra erns of fr	agically and ams, rivers, cycle. Adult the developing Developing Developing ore migrating of fauna comperature, nits, but few currents adient that reshwater
 With impact as economically i brackish estua eels apparentl larvae northwa shoreward and eels commonly to spawn. Ame that occupy th salinity, and studies of req created by riv cues shoreward inflows to est Decument Analysis a. 	sessment. The Ameri mportant catadromous ries, and the open of y spawn in the Sarga rd until the young m moving upstream into remain in freshwater rican eels tend to b e same habitats. Ee other environmental uirements have been er discharges into c migration of juveni uaries and bays coul	can eel, <u>Angu</u> species that cean during va isso Sea, and o netamorphose in o coastal areas o brackish a pe bottom-dwell els occupy area factors, sugge reported. Sal ie eels. Alt d affect upstr	<u>lla rostrata</u> , i occupies freshw rious phases of cean currents t to juveniles ca , estuaries, and reas for 10-12 ers and feed on s having wide r sting broad tol inity patterns pparently provi eration of patt eam migrations.	s an ecolo ater strea its life ransport t pable of s d rivers. years befo a variety anges of t erance lim and water de the gra erns of fr	agically and ams, rivers, cycle. Adult the developing Developing Developing ore migrating y of fauna cemperature, iits, but few currents adient that reshwater
els apparentl brackish estua eels apparentl larvae northwa shoreward and eels commonly to spawn. Ame that occupy th salinity, and studies of req created by riv cues shoreward inflows to est Decument Analysis a. a. Identifiers/Open-Ende c. COSATI Field/Group	sessment. The Ameri mportant catadromous ries, and the open of y spawn in the Sarga rd until the young m moving upstream into remain in freshwater rican eels tend to be e same habitats. Ee other environmental uirements have been er discharges into of migration of juveni uaries and bays coul	can eel, <u>Angu</u> species that cean during va usso Sea, and o netamorphose in coastal areas or brackish a pe bottom-dwell els occupy area factors, sugge reported. Sal coastal areas a le eels. Alt d affect upstr	<u>lla rostrata</u> , i occupies freshw rious phases of cean currents t to juveniles ca , estuaries, am reas for 10-12 ers and feed on s having wide ra sting broad told inity patterns pparently provi eration of patt eam migrations.	s an ecolo ater strea its life ransport t pable of s d rivers. years befo a variety anges of t erance lim and water de the gra erns of fr	In the second se
 c. COSATI Field/Group c. COSATI Field/Group 	sessment. The Ameri mportant catadromous ries, and the open of y spawn in the Sarga rd until the young m moving upstream into remain in freshwater rican eels tend to b e same habitats. Ee other environmental uirements have been er discharges into c migration of juveni uaries and bays coul	can eel, <u>Angu</u> species that cean during va isso Sea, and o netamorphose in o coastal areas o or brackish a factors, sugge reported. Sal coastal areas a le eels. Alt d affect upstr	<u>11a rostrata</u> , i occupies freshw rious phases of cean currents to to juveniles can reas for 10-12 ers and feed on s having wide rasting broad toll inity patterns parently provide eration of patterns eration of patterns. 19. Security Class (This Unclassifie)	s an ecolo ater strea its life ransport t pable of s d rivers. years befo a variety anges of t erance lim and water de the gra erns of fr	21. No. of Pages 19 21. No. of Pages 19 21. No. of Pages 19 21. No. of Pages
 c. COBATI Field/Group c. COBATI Field/Group c. COBATI Field/Group 	sessment. The Ameri mportant catadromous ries, and the open of y spawn in the Sarga rd until the young m moving upstream into remain in freshwater rican eels tend to be e same habitats. Ee other environmental uirements have been er discharges into of migration of juveni uaries and bays coul	can eel, <u>Angu</u> species that cean during va usso Sea, and o netamorphose in coastal areas or brackish a pe bottom-dwell els occupy area factors, sugge reported. Sal coastal areas a le eels. Alt d affect upstr trata	11a rostrata, i occupies freshw rious phases of cean currents t to juveniles ca , estuaries, am reas for 10-12 ers and feed on s having wide ra sting broad told inity patterns pparently provi- eration of patt eam migrations. 19. Security Class (This Unclassifie (Inclassifie)	s an ecolo ater strea its life ransport t pable of s d rivers. years befo a variety anges of t erance lim and water de the gra erns of fr	21. No. of Pages 19 22. Price

.

i T

