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ABSTRACT

Work performed under Grant AFOSR-83-0167 is summarized in this re-

port. A review of the original goals is presented, new directions and

ideas are included, and significant accomplishments are listed. This

report covers research completed under funding intended for the first

year of a three-year program. The original grant period was interrupted

at the end of the first year because the principal investigator trans-

ferred from Iowa State University to the University of Texas at Arling-

ton. Papers published with support from this program are listed and in-

cluded as an appendix to this report.
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1. INTRODUCTION

The application of finite-difference methods in numerically solving

partial differential equations governing fluid flow has become increas-

ingly commonplace over the past two decades. Early work was concentrat-

ed on solving simple linearized equations for very simple geometric con-

figurations. As computers became more sophisticated, algorithms were

improved and applications to more complex problts were attempted. To-

day, most companies and government agencies with interests in fluid dy-

namics have in-house capabilities for solving flow problems using numer-

ical techniques.

Even though complicated problems can be solved, there are still a

number of pacing areas that are crucial in the computational fluid dy-

namics field. One of these areas, mesh generation, is perhaps one of

the most important topics needing further development if continued prog-

ress is to be made. In fact, coordinate system selection and grid gen-

eration are probably the most important topics requiring study if con-

tinued advances in digital simulation of fluid flow around flight

vehicles are to be made.

While a number of problems in grid generation for different geome-

tries can be identified, the placement of grid points in order to ade-

quately resolve a flow and provide a reduction of global error in a nu-

merical calculation is of major interest. Since the solution of a

particular flow is not known a priori, the grid points cannot be placed

in the best positions before the calculation is complete. Consequently,

it is advantageous to adjust the grid point locations in such a way as

to provide the best solution as the computation progresses. This idea .

~ * .*..d.... * . -... . . . -'



of adaptive grids was the subject of AFOSR Grant-83-0167, "Application

of Adaptive Grids in Solving the Partial Differential Equations Govern-

ing Fluid Flow."

The original proposal for work under this program was based upon ap-

plying the equidistribution concept for generating grids to two- and

three-dimensional problems. The technique applied by Rai and Ander-

s01 1-2 was selected as a candidate method. This method was used in ear-

.y experiments in two-dimensions for small amounts of grid adjustment

with good success.

Early in the program, several example calculations were completed for

high values of grid adaption with the Rai and Anderson scheme. For

large adaption rates, severe grid skewness was encountered. The one-di-

mensional method employed by Dwyer et al.3 was also extended to two di-

mensions. Similar examples were tested with this scheme and severe grid

skewness also resulted for large adaption rates. Faced with severe grid

distortion in the multidimensional case, a new way of creating an adap-

tive mesh was needed. Not only must the technique be capable of provid-

ing the desired grid adaption but some positive method of grid skewness

control is necessary. It is now accepted by researchers that any method

for generating an adaptive grid without an active skewness control will

ultimately fail in two or three dimensions.

Faced with this mesh control problem, it was necessary to review the

fundamental concept of equidistribution of a weight function over an

area. This concept was retained as the main idea in the generation of

an adaptive grid. However, it was clear that the relationship between

the weight function and the mesh skewness must be developed. Research

-2-



on this issue progressed until an explicit formulation relating the an-

gle between mesh lines to the weight function was developed. This also

lead to a simple way of generating an orthogonal grid for two dimen-

sions.

-3-
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2. SIGNIFICANT MILESTONES ACHIEVED AND STATUS OF RESEARCH
UNDER AFOSR GRANT-83-0167

2.1 Milestones

During the present program, a number of important contributions were

made in the understanding of adaptive grids.

1. In an invited review paper presented to ASME, 4 a number of

methods for creating two-dimensional mesh systems were shown to be

virtually the same. These schemes are based upon the concept of

equidistribution of a weight function over an area.

2. At the same time it was shown that all schemes for generating

an adaptive mesh without an active skewness control will fail.

3. Recently, the direct relationship between the skewness of mesh

lines and the weight function was demonstrated.5 This shows how

the grid distortion can be controlled while still providing an

adaptive grid.

2.2 Status

At the time of the termination of this program, the concept of con-

structing a two-dimensional grid based on equidistribution was well es-

tablished. In addition, the coupling between grid adaption, skewness, ",

and weight function was well understood. A series of numerical experi-

ments is needed to demonstrate that grid adaption and control can both

be attained for two-dimensional grids. This demonstration would pave

the way for practical application to the equations governing fluid flow.

-4-
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In reviewing the goals and proposed methodology for attaining the

goals of this program, few changes were required. The necessary changes

in approach were a result of knowledge gained as research results were

obtained. Continued research on adaptive grids using the ideas devel-

oped on this program should provide a practical method that can be ap-

plied to useful problems.

5-
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GRID POINT CONTROL AND CID ADAPTION what is the best choice of the weighting function in the
variational schemes and what is the best choice for e

One of the must difficult problems encountered in in Eq. (57)? This question is not easily answered even

using adaptive 9xi'r i . that of gIrid point control, when a single scalar equation is used.

This problem is not severe in one-dimensional adaption

but is much more acute in multidimensional applications. In viscous problems, resolution of viscous regions

In the variacional formulation of Ref. 7, grid control is probably best accomplished by keeping the cell

was a consideration in the constrt.ction of the method. Reynolds number less than one. This provides a well

The problem remains in selecting the values of X that defined viscous layer where first-order upwind schemes

are used to provide the contributions due to smoothness, will not produce large artificial diffusion and an

orthoqonality, and adaption. In order to provide suf- oscillation free solution will be obtained when higher-
ficient adaption, high grid skewness may be encountered. order schemes are used. In principle, any function
C et adapt which would permit clustering, such as gradient infor-

Computed results show that a direct trade-off exists
among the various term. in the grid generator. Once a hd t au

researchers have used second derivative information.again, the problem of selecting certain parametersreerhshaeudscodeiatvinrain."
beain, the polemi o tingd ceri In Ref. 8 a nonlinear combination of first and second
before tze solution is obtained occurs, derivatives has been used while second derivatives have

also been used in Refs. 5 and 21. White (28) has used
In Dwyer's (8) recent paper, he describes a tech- curvature of the solution for the clustering function

nique of predetermining the percentage of mesh points and has shown good results for a scalar equation. It
assigned to grid adaption. In this paper, a one- should be noted that a second derivative clustering
dimensional adaption technique was used similar to that function can be viewed as a first approximation to the
in Eq. (29). The weight function used was of the form curvature.

w =1+ b (60) For each grid adaption scheme and each problem, thewI  1 +b (0
choice of a grid adaption function may be different.

For example, the choice of gradient alone for the weight
whe e b is a contant and f is the function which is function w1 in Eq. (22) would not be satisfactory.
monitored and used for adaption. The ratio, R1 , is Methods based upon this expression would produce grids
formed by computing the relative contribution of the with no mesh points in uniform regions. On the other
grid adaption to the computational coordinate and is hand, gradient may work well in the two-dimensional
given by application of Eq. (18) because measures of grid smooth-

" maxness and orthogonality are also included.
Smax

o__ Ids
P 1 b o (61) As previously noted, the lowest-order error term

Smax of the modified partial differential equation was used

I+ bfds to drive the grid in Refs. 20, 21, and 22. This error
o 5 term involves a third derivative assuming a second-order .

method is used. Numerical evaluation of the third
If the ratio 1 is held at a fixed value during a cal- derivative (or any higher-order derivative) is generally
culation and the value of b is determined from Eq. (61), vrnos. Aareutdtaudtovlaedey

thereatie eigt lacd n aapiviy n te es very noisy. As a result, data used to evaluate deriv-
the relative weight placed on adaptivity in the mesh atives is smoothed to prevent feedback into the grid
remains fixed. This mechanism provides some control on motion, If the assumption of a very smooth grid is
the assignment of mesh points to different areas of made, the error can frequently be approximated with
interest in the problem. A similar division can be lower-order derivatives.
used in conjunction with the inverse adaption scheme
of E~q. (24). .

When systems of equations are solved or physical

Grid point control for other schemes such as that problems are studied where the resolution of more than
of Pai and Anderson is achieved by logic built into the one physical event is necessary, additional difficulties
adaption algorithm as opposed to the governing equations. are encountered. In Ref. 8, the problem of flame props-
For example the constant Y in the one-dimensional grid gation about a spherical particle in the presence of a
speed equation [Eq. (57) is continuously adjusted low Reynolds number Stokes flow was studied. In this
during the numerical computations to prevent the maximum case, resolution of both the viscous regions and the
grid s teed from exceeding a predetermined value. An laminar flame zone is desired. The grid adaption func-
additional constraint is placed upon the grid speeds tions should include contributions which would resolve
when the grid points are closer than a specified value, both the flame front and the viscous region. In this
To prevent excessive stretching, the grid speeds at case, the problem was solved on two grids and the solu-
those points are attenuated by the factor tion was determined by interpolating between them. The

2 two grids showing details of each region are shown in

-1/x. Figs. 19 and 20.
X =x e

Ical A one-dimensional inviscid shock tube problem was
studied in Ref. 16. In this example, a reduction of

wiier, x is the grid sfjeed computed from the grid the truncation error in the modified differential equa-
eai  tion was desired. An adaptive grid was used and the

speed equation. This prevents grid speeds from being grid driving function (w ) was selected to be a linear
excessively large in regions where point density is high combination of the error terms from each of the governing
and provides good control of the grid point motion, equations. A more analytical approach to the deriva-

tion of the function used to drive the adaptive grid

Another question closely associated with grid point was taken in Ref. 5. The Euler equations in multidimen-

control is that of attempting to define appropriate sional space were under study and expressions for the

functions to use in the adaption process. For example, error terms in Eq. (58) were needed. When the assumption

. . °



a rectangle in computational space. Since the grid is Grid point positions produced by integrating Eq. (57)
three sided in physical space, a geometric singularity must not cross. In this scheme, grid points do not
is shown on the shock wave. It should be remembered cross for sufficiently small time steps because the local
that the grid point locations for this scheme are com- value of the error will be less than the average value
puted by integrating the grid speeds instead of solving if points are very close together. This creates a sign
the steady grid equation. switch on the grid speed (repulsion). As points approach

each other the term , becomes very large which makes
Hindman and Spencer (15) have continued this ap- further movement of the grid points very difficult. Theproach and have considered the one-dimensional grid constant, K, in Eq. (57) is adjusted to scale the grid

equation speed to a predetermined maximum value during the calcu-
3 lations.

x + P - 0 (54)
The driving function used to establish grid point

Again, the grid speeds art established by differentiating motion using this scheme (lei - lel av) can be based on
thif; exprssion with respect to T. The p function was error or the gradient of any flow variable or any other
selected iat least for one case) so that Eq. (51) was function which provides the desired attraction. A num-
consistent with Eq. (42). "hne form for P becomes her of error measures were used to drive the grids in

Refs. 5 and 21. In general, the form of the error was
established by using an approximation to the lowest-

ag1 1 order error term of the modified partial differentialp + - (55)
x2 equation. Thompson (24) suggests that the grid solution

obtained using Eq. (57) is equivalent to solving a

variational problem by an iterative approach. In this

Figure 14 shows the time history of the grid motion when case, the variation of le1 - Jelav is minimized over the

the inviscid Burgers' equation is solved using a single field. This corresponds to the weight function w1 in

discontinuity for initial conditions. MacCormack's Eq. (22).

scheme was used to integrate both the equations of
motion and the grid speeds. The main result of interest In order to provide a smooth grid at the boundaries,
in this figure is that the grid tends to relax as time a reflection at the boundaries in the computational

increases. This can be avoided by solving the steady domain was used. For example, at the right-hand bound-
grid equation after a predetermined number of steps and ary, & - 1 and &t . 0. However, if this condition is
interpolating the solution on the new grid. explicitly used, sometimes the grid will not be smooth

near this boundary. If a series of points are reflected
Rai and Anderson (20,21,22) and Anderson and R and have an error measure assigned to them in such a way

(3,4,S) have constructed an adaptive grid scheme using that 0 when computed from the grid equation,
a different approach from those discussed above. This
method also determines the grid speed and the grid the boundary region will have a very smooth grid. The "-meitoainso d ete esthbligrid spee nthe id Ainfluence of this reflection is in the value of nt alongpoint locations are established by integration. A the boundary. This value and the resulting pOint l~ca-

much simpler grid speed expression than that used in tion ar y sstie t ndaryspoin temnt.
Ref.14 as eveoped Th mehodis bsedupo antions are very sensitive to boundary point treatment.Ref. 14 was developed. The method is based upon an

attraction model. It is assumed that the best grid for
a given problem is one where the solution error at Figure 15 shows the converged adaptive grid gener-
every point reaches a constant value. In creating this ated for the supersonic blunt body problem in twodimensions. Figure 16 shows the difference between the.'
grid, more points are needed in regions where the error talenthans y atgte c n s u rfa ce o te fro
is larger than the average and fewer points are needed total enthalpy at the cylinder surface as computed fromin regions where the local error is smaller than the the numerical solution and the free stream value. Since"average value. 7ets leads directly to the idea of this is an inviscid calculation, this is a measure of

avrgevle. Tislas ietl o h de fthe solution accuracy. Error in total enthalpy is .
associating a capacity to induce velocity with the local sninlycrecd En an adaiengrid is
error at each point. For two points, A and B, the grid s-
speed induced at point B due to an error at point A is A technique for aligning a grid with a high gradi-
written ent region is presented in Refs. 5 and 22. This tech-

nique was developed for use with shock capturing methods.
It is well known that shock aligned coordinate systems

leIA - lelav permit much better computation of shocks with these
V = a (56) methods because the flux terms are then continuousBA n across the shocks. Shock alignment is accomplished by

BA creating a grid speed in a two-dimensional problem along
only one of the coordinates. This grid speed is propor-where e represents the local error, av indicates average tional to the product of the gradient of some property

value over all points, rBA is the distance from A to B of the solution (density, pressure) along both the , and
in computational space, K is a proportionality constant, n directions. The result is an effective rotation of
and n is a power which controls the attenuation of the the coordinate line segments in such a way as to line up
attraction with distance. For a one-dimensional problem, with level surfaces of h, Again, only movement in one
the grid speed in physical space becomes coordinate direction is necessary in a two-dimensional

problem. Figure 17 shows the converged grid for an """"
N (~I~ -~ )j-l lel - Ii ) oblique shock and the pressure distribution for bothav---- shock capturing on a uniform grid and an aligning gridr il rn ] is shown in Fig. 18. The quality of the solution is .-

S1i=j~l , i"j dr~zatically improved when the aligning grid is used.

(57)
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where it is assumed that All of the methods discussed thus far have relied
upon solving a steady grid equation to determine the

Jg&JAC - 2g > 0 grid point location. The grid speed is determined by
using a backward difference using the computed mesh

point location and the previously known positions.
In regions where this is not true, any positive value Hindman et al. (14) developed a technique of computing
of a satisfies the condition on grid crossing. the grid speed directly from the grid generator. The

idea is to evaluate the time derivative of the steady
In Ref. 17 an adaptive grid generation scheme is grid generation equation and solve this equation for the

proposed which for one-dimensional problems is of the grid speeds. In principle, this idea is applicable to
form the methods for creating an adaptive grid presented

above.

x +AT x = 0 (44)
F If the Thompson scheme is used as a starting point, . .

the equations which determine the mapping relatingwhere A is a positive constant and T is some nonnegative physical and computational space are
function of the solution. In the context of Eq. (22),
this can be interpreted as a scheme which is similar to
either Dwyer's or Gnoffo's method with the weight func- 2 . p
tion defined as (49)

fAT x dE
0 Ax In the computational domain these equations become

w , = e (4 5 ) G xGfxJ = 0
(50)

The two-dimensional formulation of Eq. (44) is of the G[y] - 0

form

V2 AS where the operator G is defined by

(46)a 2  a 2

V
2

= BT( G -- 28-' +-- + J2[P L+ Q (51)n 3C 2  a _nT, 2  n

The equations which are solved in the computational and C, 8, and 'Y are the usual functions of the metrics.
domain are Solution of Eq. (46) provides the grid point locations

2 at any time. The grid point speeds of boundary points
O X -2ax + Yx + J (AS x + BTx 1 0 are usually obtained from shock relations or other

i(47) expressions which must be satisfied. The interior grid

2 speeds (x.,, y.) could be obtained from backward differ-
ay - 26y + 'yy + [ASy + BTy 0 ences as noted previously, but a better approach may be

to differentiate Eqs. (50) with respect to 1. This
yields a system of equations of the form

where the coefficients a, B, and 7 are functions of the [M] - (32)
metrics, and S and T are the grid adaption functions.
As in the one-dimensional case, an estimate of the up- where
per limit for A and B can be established by requiring
that grid lines be noncrossing. These estimates are = , y T

and
A 2/(YIS!Ar .)

(48) _" -J (P x + Q x, P y + Qytl)T (53)
B 2/(ao Trl Jrl) I "" T

The solution of Eq. (52) yields the interior point grid
The potential flow about a cylinder was computed speed necessary to advance the governing equations of

in Ref. 17 as an example using the adaptive grid scheme the fluid flow problem. If P and Q are selected tc be
in Eq. (46). Figure 11 shows the error between the functions of the solution of.the flow equations, the
exact and computed solutions for the surface potential grid adjusts adaptively through the time derivatives of
for a nonadaptive conformal grid and an adaptive grid. these terms. The boundary grid point speeds influence
In general, an adaptive grid provides solutions which the interior solution through the boundary conditions
exhibit lower error. In this case the S and T functions on the system of equations.
were defined as

In Ref. 14, the P and Q functions were set equal
S = (0 - x)U to zero providing grid and grid speed solutions which

did not adapt to internal flow changes but only to the
T = ( - x) boundary motion. Figure 12 shows the geometry of the

fltI grid produced for solving the problem of a planar shock
and 0 is the disturbance potential, wave passing over an inclined ramp. Figure 13 shows the

grid used to solve for the inviscid supersonic flow over
an ogive. This grid in physical space is mapped into

7 ..
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and the grid adaption was implemented for a specified

2 2 x 2 - (x x + Y y function u(x,y) on a grid which is 21 x 21 in dimension.&S 2 x 2 n ](32 ) ". .

s + 2 2 "Figure 6 shOws the results for specifying u(x,y)
Tn + Y& to be a function of x only. As expected, the grid

adjusts only in the x direction and no changes occur

Replacing the derivative with respect to a in Eq. (31) along the y coordinate. The clustering is achieved

results in the expression using u(x,y) - 1 for x < 9 and u(x,y) - 0 for x > 11.

The function, u(x,y), was selected to decrease linearly

2 2s from one to zero from x - 9 to x - 11. The two bands

(x+y) - (x x + y - 0 (33) of clustering which appear in Fig. 6 are due to aver-

aging used on the grid point calculation. The aver-
aging gives the effect of using a second derivative for

This expression can be expanded and becomes a second- clustering in this case. If no averaging is used, the

order dMfferential equation in x and y. The companion grid clusters between x - 9 and x - 11 where the deriv-

relationship along constant & surfaces can be derived ative 3u/3x attains a maximum.

in the same manner.
Figure 7 shows the grid resulting from applying

The inverse relationship corresponding to Eq. (29) the adaption routine for a u(x,y) which varies linearly

may be written from one to zero but this variation occurs about the

C I symmetric straight line

s =  s 134) y - 2.Sx - 15
max f max - d, passing through the domain. The value of u is taken to

o w"I be either zero or one outside this small two-unit wide
region. In Fig. 7, b - 0 and the attraction is only

The differential equation satisfied by S corresponding along the n - constant surfaces. In this case, we see

to Eq. (30) is that the adaption in the n direction also creates a
contraction along the - constant lines. This is a
result of the coupling between the two directions. A

- (Wl S ) 0 (35) case which includes adaption in both directions is

shown in Fig. 8. Additional cases with the correspon-
or ding u(x,y) are shown in Figs. 9 and 10. The function,

u(x,y), was set equal to one above and zero below a

w 0 (36) sinusoidal surface which shows up very well in these
w (36) grid plots. This function again decreased from one to

zero over a two Ay interval in the y direction. The

In this case, the partial differential equation grid distortion problems inherent with this scheme are

which must be satisfied is easily recovered using the apparent in these results. Notice that the grid becomes

fact that distorted all along the dividing surface of u(x,y) but
is much worse where the sine wave slope is roughly at

2 -27 equal angles to the x and y axes. At points in this

V =  +y( neighborhood, clustering along both directions creates
severe strain of the area elements and leads to the

The governing expression becomes distortion shown in Figs. 9 and 10.

2 2 Wl The adaption process works well for these cases,
& + 1 (xb+u) i -03 bt it is difficult to estimate the proper values of

a and b unless some numerical experiments are performed.

While the author has not carried out the algebraic It should be noted that the definition of the transfor-

manipulations (lazy) required in Eq. (33), it is not mation implies that arbitrarily large values of a and b

apparent that the result would be equivalent to Eq. (38). can be used. Due to the discretization of the differ-
ential equation, the clustering constants a and b can

It should be noted that Eq. (38) is the expression not be arbitrarily large. Mactin and Thompson (17) have

which is valid along an n 
= constant surface. The shown that for a one-dimensional problem

companion expression valid along a constant C surface
may be written directly as Ix I ( 21x I/A t (41)

in order to prevent the grid lines from crossing. For

xx + yny + (X2+yn) W - 0 (39) the differential equation

It is of interest to consider the grid adaption ag X
scheme resulting from the simultaneous solution of Eqs. x + -a 0 (42)

(38) and (39) and some examples were studied. The
weight functions wI and w2 were selected to be of the this leads to a bound for the constant, a, which may be

form written

w 1 + alu I (40a) 2 (43)
- 2g

W- 1 + blu (40b)
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Many applications require grid adaption in only Equation (24) is the integral form of the discrete

one dimension. For this reason, it is worthwhile to adaptive grid scheme proposed by Gnoffo (12,13). Gnoffo

consider minimizing the functional, Iv, defined in has used this adaptive grid generator while solving the

Eq. (14) specialized to one dimension. Navier-Stokes equations with a weight function based
upon monitoring either ach number or velocity gradient,

IV f wxex (19) i...
w 1  1 + ag (26)

The Euler-Lagrange equation may be written

where( d .o /ow:-:):::
a& .~jI- -O (20) y- I (27)

In this case, a first integral may be directly written or

as
2g IdI (28)

wx - constant C1  (21) "

or Calculations of the flow over the Viking Aeroshell
vehicle using this scheme are presented in Ref. 13.

/ = wX = C (22) Good results were obtained in the cases reported and
sufficient grid adaption was used to adequately resolve

This expression states that the product of the mesh 
the viscous layer.

spacing and the weight function, wl, should remain con- The adaptive grid calculations cited from Refs. 10
stant in physical space. Equation (22) may be inte- and 13 are for adaption along either a constant & line
grated to obtain the expression for either the physical or a constant n line. These one-dimensional calcula-
coordinate in terms of the computational coordinate or tions can be achieved using either Eq. (23) or Eq. (24)

vice versa. Let x ( 0 when tg 0 and x = xm u when if x is replaced by S where S is arc length along either

tomax- If Eq. (22) is integrated and the computa- constant & or constant n lines. In addition, S can
tional coordinate is determined, only depend upon one computational coordinate. For

x instance, if S represents arc length along a constant
Wldx n line, then S is assumed to only be a function of .

o xMax (23) In this case, the Dwyer method and Gnoffo's approach are
f W1dx identical. However, if arc length along & or n surfaces
o in physical space is considered to depend upon both

coordinates, these methods are not the same.
and if the physical coordinate is evaluated one obtains
the equation In particular, suppose the analog of Eq. (23) along

I 1 dC an TI constant surface is written
0 sx x . (24) f" ,lds °..

x m a x m a 10

ooma w dC 0ma 129)

0 1' ma Smax
f wds
0

Equation (23) is exactly the expression used by
Dwyer (8) and Dwyer et al. (9,10). Many of the appli- If a derivative is taken with respect to S, this expres-
cations of this law for grid adjustment have been in sion becames
combustion and heat or mass transfer and the results
have been very good. In Dwyer's formulation, the
weighting function w1 was selected to be a linear com- l S (30)
bination of derivatives of temperature or some other .1  max
pertinent variable of interest, i.e. f w 1 dS

0

=1 ag 1 a i +, b2TI (25) where the right-hand saide only depends upon the arc
W, 1 + ag + 1 + a + bla'TJ (25) D fe e t a ig.-.'

a x measure along the constant & surfaces. Differentiating
again yields

The results of applying Eq. (23) with the weighting aI s'
function of Eq. (25) with b = 0 from Ref. 10 is shown r kw) 0w

in Figs. 4 and S. In this problem, the equation for
unsteady heat conduction was solved on the domain shown or
with the temperature set equal to zero everywhere. At
t - 0, the temperature was raised impulsively to a con- le (31)
stant value on the lower boundary and held at a fixed $ w1 --
value. Figure 4 shows the isotherms and the grid at an
early time showing the high temperature gradients near The identity relating s and the usual coordinate
the lower boundary. As time increases, the heat flow metrics is
into the domain can be observed in both the isotherms
and the grid geometry of Fig. 5.
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ADAPTIVE GRID SCHEMES
The grid adaption is provided by minimizing a weighted

Brackbill and Saltzman (6,7) and Saltzm a d ~average of the volume variation over the field and an

Brackbill (23) have extended Winslow's method (29) for appropriate integral is
generating a computational mesh to include grid adption.
In this approach, a variational technique is used to - I wJdV (15)
minimize a linear combination of a measure of grid D
smoothness, orthogonality, and volume (area) variation.
The smoothness is measured by integrating the change or
of the computational coordinates over the physical 1 2 '1
domain and for two-dimensions may be written v wi dv (16)

f(V&)2 + )2 dv where w is the weighting function which produces the grid

D adaption. Clearly, an adaptive system is obtained if
D the product of a positive weight function and the cell

where dV represents differential volume in physical area is held at a fixed value over the physical domain.

space and D denotes the physical domain. The smoothest In order to incorporate smoothness, orthogonality
mapping between the physical and computational domains and adaption in the grid generator, the linear combina-
is obtained by minimizing Is alone. The result isthatLapacesequtionforthecomptatonalcoodi- tion of the integrals given in Eqs. (10), (14), and (16)that Laplace's equation for the computational coordi-

nates, & and n, must be solved to determine the trans- is written as

formation. it . I a + A oI +I + I +AII (17)

The transformation which minimizes I is obtained
by solving the Euler-Lagrange equations. Equation (7) If the Euler-Lagrange equations for minimizing Eq. (17)
is first written as an integral in computational space are derived, they are of the form
using the identities

2Ti=
Y/ ' x Jq -Y /3 

, qy-x/ 8) blx bx + +x b~q +aY.+a2 JaaYn w .
J aw*X y i- nX -yV nT-x&/J 8 b +b bX +ayE+a

nI. ~ xJ y lXE 2'&n + 3 -i yn+ 3n w3

(18a)
J=x~ y n -Xy (9)

atxO + a 2x r + a 3 xnn + c1YE + c2Yn + cy =" 2w a-y--

Equation (7) then becomes (18b) ". 3i '

2 2~ 2 2 8b
(x+x +y+ y )d~dn

1. f Ti (10) where the ai, bi , and c i are functions of the weighting
s J J coefficients, v and Aland the metric coefficients of

Dl the transformation. The values of ai, bi, and c i are

given in Ref. 7 and are not repeated here. The mesh
where D indicates integration over the computational which is generated when Eqs. (18) are solved can bi-
domain. The Euler-Lagrange equations for this varia- varied by adjusting the weighting coefficients. For
tional problem are example, a large value of A will provide more adaptionv

in the grid with less emphasis on orthogonality and
/2 2 2 2sothness.Sx + xn, + yC + y n .

x x an ax j 0(i) Figures 2 and 3 show the pressure contours and the
adaptive grid for the inviscid supersonic flow over a

and forward facing step. The similarity between the pres-
sure contours and the mesh is quite good. In this case,

/ 2 2 2 the weight function for grid adaption was taken to be
X F +~ x~ 4l Y + the square of the magnitude of the pressure gradient

a ac an ayn J divided by the pressure. If one is interested in
tracking a shock, this is a reasonable choice. Strictly
speaking, the shock wave in an inviscid flow is a dis-

If the indicated differentiations are carried Out in continuity and even with grid adaption, the shock
Eqs. (11) and (12), the familiar form of the Laplace mathematically still should occur between two grid
grid generator in the computational domain is obtained, points. Of course, the shock is given a pseudo-vi:scous

profile through the introduction of artificial viscosity
In addition to a smoothness requirement, control either by smoothing the data or by the form of the algo-

of mesh skewness is obtained if a measure of grid rithm. In this case a flux-corrected transport scheme
orthogonality is included. This orthogonality measure was used. This provides a smooth shock profile in the
is provided by the integral solution.

I - V n 2 J3dv (13) The extension of the variational approach to three-

* 0 .~r) d (3 dimensional problems is straightforward. Additional
terms must be added to include the third dimension but

or in computational space conceptionally the approach is the same. Saltzman andr iBrackbill (23) have presented several examples of three-

- 4 (x ) 2 d~d (14) dimensional adaptive grid calculations and include mesh
r~ II Y d' d ' generation for a wing-fuselage junction.

Dl

_7 O. . . .



another good reason for using an adaptive grid. Of The metric represents the ratio of arc lengths in
course, the ideas of resolving regions of rapid change the physical and computational planes and the grid speed
in dependent variable and reducing error are not mutually provides the dynamic coupling of the moving grid with
exclusive. The largest numerical errors are usually the evolving solution of the differential equation.
found in regions where the solution is changing mosat Any method for constructing an adaptive grid must pro-
rapidly. vide a means of estimating these terms since they

explicitly appear in the transformed differential equa-
The idea of an adaptive grid implies th. - the tion. Exceptions to this can be cited. In problems

solution of a partial differential equation is being where a time-asymptotic solution is computed, the grid
computed using some sort of iterative or marching can be fixed and the grid speed term set equal to zero.
technique For hyperbolic or parabolic problems, the After a predetermined number of iterations, the comu-
solution is computed by advancing in space or time and tational mesh is adjusted and the iteration process is
adjusting the grid as the solution progresses. For resumed. This regridding procedure is equivalent to
elliptic problems, a relax-tion procedure provides solving a sequence of initial boundary value problems.
intermediate results which are used to adjust the grid Other exceptions include cases where the solution
point positions. A simple linear equation can be used changes by an extremely small amount over a single
to illustrate some of the considerations that must be iteration and the grid speed is set equal to zero in
made in employing a solution adaptive grid. the governing differential equation. However, both the

grid speed and metric term should be included in the

When a partial differential equation is transformed general case.

from physical to computational space, the metrics of the Adaptive grid methods can be divided into two
transformation and the grid speeds appear in the equa- categories. In the first category, some law relating

tion. These additional terms must be evaluated in order tegri s In the phrscaleandcomputationlain
to slvethediferenialequtio writenin ompta- the grid points in the physical and computational domain

to solve the differential equation written in compute- is used to establish new physical grid point locations
tional coordinates. As an example, the first-order wave (x's) at the end of each time step. The grid speed term
equation may be written

is estimated for the next integration step by using a

au all simple backward difference. The second class of schemes

at + c ax = 0 (1) relies on directly establishing the grid speed by some
rule. The grid speed is integrated along with the dif-

where u(tx) is the unknown dependent variable and c is ferential equation and the new grid point positions are

a constant wave speed. For this one-dimensional example, established. From this information, the metrics are

let the transformation relating the physical and compu- physical and computational domains.
tational domains be written

t There are advantages and disadvantages to both

(2) approaches for generating an adaptive grid. Methods

= F(xy) which directly generate the new coordinates through a
defined mapping are conceptually easy to apply. Since

where I and F are coordinates in the computational the grid point locations are established through the

domain. Transforming the wave equation into computa- use of a steady grid equation, the grid speeds are most

tional coordinates hields easily determined by using a backward difference. this
difference is usually first order in time and more

_)u * u =accurate dynamic coupling of the grid motion and the

5- t x(3) partial differential may be desirable. Some grid point
location schemes initially developed for one-dimensional

The terms x and C may be replaced by the expressions applications are difficult to extend to two- or three-
dimensional problems. Techniques which directly deter-
mine grid speed from some grid speed law are easily used

t w -x /x F(4) in multidimensional applications because grid point
location is determined by a simple integration. The

and major disadvantage is that physical laws which relate

grid speed and grid adaption may be difficult to formu-
= l/xF (5) late and the success of the method depends upon the

ingenuity used in constructing this law. For these
The original expression may then be written schemes, point control is also a problem.

u (xT - ci 0 A number of adaptive grid generation schemes in
d x0 (6) both classes have been developed. These methods have

been used with success on a variety of problems. In
When a solution of Eq. (6) is computed using a fixed the following sections, a number of the most successful
grid, the metric coefficient, % is determined from the schemes from both categories are reviewed. In this
grid geometry which is established at the beginning of discussion, the problem of constructing an adaptive
the calculations. This term does not change so long as grid is viewed as one of allocation. How should a fixed
a fixed mesh is used. The grid speed in physical number of grid points be distributed to improve the
space, xr is zero in this case. When an adaptive grid quality of a numerical solution? This distribution
is used, the grid speed is nonzero because the grid of mesh points is influenced by both motion of the
changes as the calculation proceeds and the metric boundaries and solution changes on the interior of the

coefficient also changes each time the grid is altered, physical domain. The main focus of interest in this
paper is on grid point motion caused by solution changes
on the interior.

..........................................
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ABSTRACT

A number of techniques of constructing adaptive
mesh generators for use in solving partial differential
equations are reviewed in this paper. Techniques
reviewed include methods based on steady grid genera-
tion schemes and those which are explicitly designed
to determine grid speeds in a time-dependent or space-
marching problem. Results for candidate methods are
included and suggeetic=ns for areas of future research
are suggested.

INTRODUCTION For example, flow over a body must be computed with a
grid employing a sufficient number of points in the

The numerical solution of the partial differential viscous regions to resolve the salient features of'the
equations governing both internal and external flows has flow. In this case, a grid may be constructed using a
reached a high state of development during the past compression mapping in order to provide a large number

. fifteen years. Numerical methods for solving the dif- of points in the viscous layer near the body. High
ferent types of equations have been available for much mesh densities are desirable in regions where large
longer. However, the ability to treat complex geometries gradients exist. Since the exact location and size of
common to most physical problems has only recently been these regions is initially unknown, the construction of
acquired. In fact, the pacing item in advancing numer- a suitable grid in the general case is difficult and
ical procedures for solving fluid flow and heat transfer some means of incorporating information from the solu-
problems has been the development of general techniques tion in locating the grid points is needed.
for numerically constructing mesh systems which are
boundary conforming. The concept of a solution adaptive grid is appealing

for a number of reasons. In many problems, multipleThe construction of a suitable grid is the first length scales appear and a grid which resolves a physical
task that must be completed when the numerical solution process scaled to one significant length can't resolve
of a system of partial differential equations is desired, events which occur on a scale less than the size of the
Once the grid is generated, the system of equations is smallest cell or mesh increment. A typical example is
discretized and the resulting system of algebraic equa- again provided by the flow of a viscous fluid over a body.
tions is solved. This solution yields the values of The inner flow near the body in the boundary layer will
the dependent variables at each of the mesh points. The be resolved in sufficient detail to be of use only if
solution of the governing equations is completed in a very small grid spacing is used. If mesh spacing is
computational domain which is selected to be rectangular used with the minimum size determined by that required
shaped for simplicity. The physical and computational to resolve the outer inviscid flow, the detail of the
domains are related through a mapping as schematically boundary layer is completely lost. Heat transfer and

. illustrated in Fig. I for a two-dimensional case. The skin friction data obtained from such a calculation are
problem of numerical grid generation is concerned with completely meaningless. With the use of an adaptive
techniques for establishing this relationship between grid, the physical behavior of the fluid in both re-

- physical and computational space. Thompson (24) and gins can be adequately established using the sam set
"- Thompson et al. (27) have presented a comprehensive of governing equations. The different length scales in
. review of the state of the art in numerical grid gener- the problem are accommodated by a variable mesh size.

atio-. In a sense, this approach is analogous to classical
In smethods which require a solution of the inner and outer
In solving partial differential equations using flow with appropriate tiatching conditions. Two sets of"' numerical methods, the selection of the locations of governing equations must be solved while numerically, a

" the mesh points is important in establishiing the quality single set of governing equations is solved, but the
of the iolution. These grid point positions are gener- grid position problem must also be treated.
ally determined initially and remain fixed throughout
the calculation. In order to determine the best grid When a parti.,' differential equation is discretized,
point locations, an a priori knowledge of the solution errors are present in the computed solution. If the
of the physical problem is desirable. Unfortunately, esh points are ad)usted during the calculation to
this knowledge is unavailable and only the general reduce s measure of the local or global error, the
features of the solution may be initially understood, quality of the solution will be improved. This is
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TWO APPROACHES TOWARD GENERATING
ORTHOGONAL ADAPTIVE GRIDS

Dale A. Anderson and N. Rajendran
Iowa State University

Ames, Iowa 50011

ABSTRACT The extension of the equidistribution idea to
more than one dimension is desirable since most

Methods for constructing adaptive grids in gains from dynamically adaptive grids will un-
more than one dimension have been developed. doubtedly be in multidimensional applications. A
These methods are usually based upon the idea of logical place to start the extension to two dimen-
equidistribution of a weight function over a grid. sions is to construct a two-coordinate, indepen-
Unfortunately, for large grid adaption rates, se- dent scheme using the direct integral of the equi-
vere skewing occurs in the mesh. Two techniques distribution law given in Eq. (1). Anderson2 has
for generating an orthogonal adaptive grid are de- reported such an extension and has applied this to
veloped and results of applying both schemes to simple functions to study the adaption process.
some simple functional examples are presented for
the two-dimensional case. Extension to three di- The main difficulty with this approach is that
mensions is discussed and advantages and disadvan- high grid skewness occurs even for moderate grid
tages of the methods are identified, adaption. In other multidimensional studies, Rai

and Anderson applied their scheme to a number of
examples. The grid adaption employed in these ex-
amples was not sufficiently large to induce skew-

INTRODUCTION ness problems.

Grid generation has always been a problem of The problem of controlling grid distortion in
major concern in the numerical solution of partial constructing adaptive grids for multidimensional
differential equations. During the past ten applications must be addressed. Methods formulat-
years, satisfactory methods for generating body- ed without a direct means of grid skewness control
fitted mesh systems have evolved and have been are not viable in applications where dense point
used with great success on a variety of problems. clustering is desired. The grid distortion prob-
More recently, a great amount of interest has cen- lem is avoided if grid orthogonality is enforced
tered on the development of dynamically adaptive when a mesh is generated. In this paper, two
mesh systems which evolve with the solution of the schemes for constructing an adaptive, orthogonal
PDE. Adaptive grid schemes are attractive and are mesh are presented. While these methods are still
desirable for a number of reasons. These reasons in the exploratory/development stage, the prelimi-
have been discussed in detail by a number of au- nary results are promising.
thors. "' 2

Adaptive schemes in one dimension have been
* developed and applied by many including Gnoffo,' PROBLEM REVIEW

Dwyer et al.,' and Rai and Anderson.' Basically,
these one-dimensional schemes all rely upon equi- In order to understand the difficulty of con-
distribution of a weight function over a mesh, structing a multidimensional adaptive grid, it is
i.e., necessary to review the equidistribution concept

and show some typical results. The most easily
wx& = C (1) understood multidimensional scheme employs inde-

pendent grid point adaption along the constant
where w is some positive weighting function, x is computational coordinate surfaces in physical

the metric of the transformation from physical to space.
... computational space, and C is a constant. Using Iet ( ,,: represent the computational coordi-

this law, points can be distributed to satisfy any nates and (x,y) be coordinates in the physical do-
requirement built into the weight function. This main. If S represents arc length along a constant
expression [Eq. (1)1 was solved for either x or C surface in physical space, a simple equidistri-
by Dwyer and Gnoffo using a direct integration. bution law controlling point motion along thisri-
Rai and Anderson used an iterative residual ap- surface may be written.
proach to obtain the same result.

S~~~ W.. 0).2

• Professor, Department of Aerospace Engineering.S,.',(
Director, Computational Fluid Dynamics Institute. where wI is a positive weight function which de-
Member AIAA. pends upon the solution of the PDE system under
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ferential equation was solved with a numerical

0! dE method using these grids. Some means of control-
W1  ling the grid skewness must be incorporated in the

S/Smax  " 
(3) mesh generator.

maxd

f Hethod OTI

If N represents ar length along the Pequal con- The grid skewness at each point in a mesh isI f N r ep r s e n s a r l e g t h l o n th e e u al o n - e a s i ly e v a lu a t e d b y c o m p u t in g t h e an g l e o f in t e r - -' -
stant surface, t!.e companion equation with weight .sio eten cotn t and s f n-
function w2 is :action between constant & and n surfaces. Con-

2 ider the intersection of Z and n equal costant

lines in physical space (see Fig. 3). If i is

dj the unit vector along the n equal constant curve
2 and i is the unit vector along the t equal con-

Sx (stant curve, the cross product of these unit vec-
a maxi dr tors may be written

w 2  1 X I sine (10)

where
The physical coordinates (x,y) can 

be recov-

ered from Eqs. (3) and (4). These coordinates can
also be computed directly from differential equa- ix (l)

tions. Since ; -

= [x2 + y21
112  (5) and

and ix + jy

N Ix2 + y2 1/2 (6) n 2 li2n)x + y . .

governing differential equations for (x,y) can be
obtained from the equidistribution laws along t
and n equal constant surfaces. For example, dif- Performing the indicated operations, Eq. (10) may
ferentiating Eq. (2) and employing Eq. (5) yields be written
the expression

J = SC N sine (12)
xy) L-(tnw )  o

xux + u 5 (xe. +where S is the intersection angle between & and Yi

(7) equal constant curves and J is the Jacobian of the

The companion expression along a constant Z sur- transformation
face may be written (see Ref. 2).

jmax y -xy (13)
2 + 2) L tnn0X + yy) + (x + y) -(enw 2 The intersection angle is easily monitored by com-

(8) puting sine through Eq. (12). In fact, the angle

Typical results of applying this independent S is directly influenced by the choice of weight
equidistribution concept along constant t and 1 functions. If the equidistribution laws for S

where A and B are c:onstants which determine the (S) is all that is necessary. Since the arc ele-
suraite ae shon ain gsIrnd. The wegh t ndments along the S direction are calculated tde-

discontinuity in Fig. 1 is typical of many func-
o  

thatdgridydistortio is covntrole by. 3.s oengtions where rapid changes occur along one primary thetrds tion geint e b) eeif
coordinate. The choice of a sinusoidal shaped

surface in Fig. 2 provides functional changes in B is specified, the constant c2 and the weight., -
both directions and leads to adaption along both function w cannoto ine
families of coordinate surfaces. At lower values 2 e ine e nel e. Since
of the adaption constants, A end B, distortion is Cc/w1 and B are given,
relatively low. However, it is clear that signif-
icant distortion occurs in both c oses shown. One Jist/ri  ""b l

would not expect to obtain good results if a dif- Ni s c2 w2  t nsan t (15)

su f c ,n F

both d

familiesofcoordinatesurfaces.Ata...e..s..... ..

~ ~ ~~ o th adp.o consants A and 8,- distrtio is - c. 1- /w I-- and 0- 7 - are given, 
"

,.. . ."., " .



and = sine (19)

n J(wl/cl) or
N 0 sine dq (16) (ixt + jyZ + kz) (ix + jyl + kz )I

The constant c1 is of the form S N sinO (20)

5 The angle between the normal to the plane formed

max (17) by the unit vectors i and i and the unit vector
ax I can be monitored by forming the box product

w 1  (it ,Ix)" :sin# (21)

It is interesting to note that the length scale This expression reduces to
provided through c2 does not appear in Eq. (16).

This shows that the value of N computed at a given S N J = 3/sinG (22)
point is not scaled as in jq. (4). The absence of 6

a normalizing length scale in Eq. (16) indicates If it is assumed that the adaption is in the & di-
that the system of PDEs governing this scheme is rection, the quantity S is prescribed by the
hyperbolic. The solution of such a problem must

be computed in the computational domain by speci- equidistribution law. Equations (20) and (22)

fying initial data at q = 0 (N = 0), and marching provide the additional expressions for the quanti-

the solution outward to Ima x . The outer boundary ties N and H . This formulation is similar to

in physical space corresponding to n must float the two-dimensional case. While the linearization
and classification of the system for three dimen-

and is determined as part of the solution. sions has not been done, it is reasonable to ex-
pect that the grid would be computed on an open

Figure 4 shows a solution for the same shock- domain. The governing equations are probably by-
like function employed in Fig. I in the physical perbolic due to the similarity to the two-dimen- .'-

domain. In this case, the angle 0, has been se- sional case. An orthogonal grid can be generated
lected to be 90 degrees so an orthogonal mesh is with adaption in one direction if * and 8 are both
created. The grid is 21 x 21 and the weight func- taken to be 90 degrees.
tion wI is given in Eq. (9). Again the outer

boundary is free and the solution determines the
final shape. Both the orthogonality and the M "
floating outer boundary are apparent in these Method 0T2
results. The method presented above is most attractive ..-

for generating adaptive grids for those problems
Figure 5 shows the orthogonal grid generated where grid adaption is necessary in only one di-

using the sinusoidal function of Fig. 2. The re- rection. However, it seems more appropriate to
suiting grid shows no evidence of skewing although employ an equidistribution law based on cell area

the distorted outer boundary is again apparent. or volume rather than arc length when problems in
In almost all calculations involving dynamically more than one dimension are considered. In a re-
adapting mesh systems, the grid point speeds, 1o- cent paper, Anderson' has introduced such an idea
cations, or the forcing functions are smoothed, where the equidistribution law is

In computing adaptive grids with OTI, it was ob-
served that adding smoothing relaxed the orthogo- Jw = A (t)/A c  (23)

nality condition. Thus, no smoothing was employed p c(
in computing the results for method OTI. In this expression, w is a positive measure of the

solution and is the weight function, J is the Ja-
The results for the orthogonal calculations cobian, A (t) is the physical domain integral

shown are very good. In applications where adap- P
tion is one dimension is desirable and a free out- A (t) a JV wdxdy (24)
er boundary is not a problem, this is a viable ap- P
proach for generating an adaptive grid. Can this and A is the area of the computational domain.
scheme be extended to three dimensions? c

This equidistribution law is incorporated in an
In three dimensions, the applicable equidis- area continuity equation

tribuion laws would be of the form
ax y A (t)1 1

S= Cl/W (18a) + - a- (25)

Nn  c2/w2  (18b)

M = c3/w3  (18c) where (xT, yl) are the grid speeds. If an orthog-

onal grid is desired, the time derivative of the
where S, N, and M are arc lengths along the compu- orthogonal condition
tational coordinatA surfaces. The angle between
the & and I directions can again be controlled by
noting that 8/a [X x + y&y] : 0 (26)
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completes the set for the unknowns (xT. YT If SUMMARY AND CONCLUSIONS

the initial grid is orthogonal, the final grid Two schemes for producing adaptive, orthogonal
been determined, the grid point locations are ob- grids have been presented. The first is based

upon one-dimensional equidistribution and provides
tained by integration with respect for T. adaption along only one coordinate. The other co-

ordinate location is determined by the orthogonal-
The system of Eqs. (25) and (26) is hyperbolic ity constraint. The second method employs the

and the grid speeds are determined by marching the concept of equidistribution over an area or volume
solution outward away from the initial data sur- to generate a single PDE for the grid speeds or
face at n = 0. Boundary conditions can be en- point locations. Additional expressions are ob-
forced at F = 0 and = a The outer boundary taned from the orthogonality conditions.

is free to float as determined by the integration
of the grid speeds. Notice that this system is Both schemes produce systems of hyperbolic

weakly elliptic through the source term of Eq. partial differential equations. This is expected

(25). For the results shown in Figs. 6 and 7, the since even in the general, nonadaptive case, or-

outer boundary was held at a fixed position and thogonal grids cannot be obtained on a closed do-

the last grid line computed in the hyperbolic main when Dirichlet boundary conditions are used

marching scheme was at ni - An. The source term in solving the governing PDEs.

was computed on a domain with fixed boundaries. Method OTl can be implemented by solving for
The results show that this grid is also adaptive arc lengths along constant & and t surfaces and
and orthogonal. In this case the weight function then computing the corresponding values of x and
was selected to be of the form y. However, an alternative approach is to compute

x and y directly from the governing PDEs.w = 1 + IV ,UlA (27)

Method OT2 was formulated using grid speeds.
The results in Figs. 6 and 7 for the shock and However, a steady formulation may also be used.

sine function are computed with grid adaption With this approach, the governing linearized PDEs
based upon an area equidistribution. While some must be solved by marching outward away from an
similarities exist between the results obtained initial data surface. In this case, the x and y
using OTI and OT2, the grids produced do show some coordinates are obtained instead of the grid
differences. One of the problems noted when em- coord s re stay insteao of th gri

ploying OT2 is that grid adaption is always accom- speeds. The steady formulation of method T2 is

plished at the expense of available cell area at a exactly the adaptive counterpart of the grid gen-eration scheme presented by Stager and Sorenson.
1

greater value of n. Since the grid equations are

hyperbolic, the area equidistribution law always
necessitates the borrowing of area at large n.
Consequently, the adjustment of the mesh is slow the simple test problems illustrated here. Addi-
since the source term of Eq. (25) is the only tional work is needed in evaluating the applica-
means for providing an upstream influence bility of these ideas to actual flow problems.

Studies coupling the orthogonal generators with

For two-dimensional problems, the grid pro- the flow equations will commence in the near fu-

duced by either method OTI or OT2 are satisfactory ture.

for the cases considered. The extension of O(2 to
three dimensions can be accomplished in a
straightforward manner. The orthogonality condi-
tion, Eq. (26), must be altered to include the ACKNOWLEDGEMENTS
term z z. In addition, another condition is nec-

& T1*This work was supported with funds made avail-
essary to provide the proper cell orientation, able under U.S. Army contract DAAKlI-82-R-0123 and
This relationship is supplied by under Air Force Office of Scientific Research

grant AFOSR-83-0167.

(J- SN ) = 0 (28)

This last expression provides another PDE for the
grid speeds in three dimensions.
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distribution, A - 2, B- 3 -t-''I

u(X,v) - 0 0 < y < 9. + 4sin( 2ft)

-
21
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DEVELOPMENT OF A DYNAMICALLY ADAPTIVE GRID
METHOD FOR MULTIDIMENSIONAL PROBLEMS

J. Eric Holcomb and Richard G. Hindman

Iowa State University
Ames, Iowa 50011

ABSTRACT 9 = backward difference or gradient operator
A = forward difference or increment (as in

An approach to solution adaptive grid genera- 2 A&, At)
tion for use with finite difference techniques, V = Laplacian operator in x,y domainV2
previously demonstrated on model problems in one V = Laplacian operator in Cq domain
space dimens ion, has been extended to multidimen-
sional problems. The method is based on the popu- Matrices
lar elliptic steady grid generators, but is "dy- [A) = coefficient matrix in grid speed equa-
nami ally" adaptive in the sense that a grid is tion
maintained at all times satisfying the steady grid (B] = coefficient matrix in grid speed equa-
law driven by a solution-dependent source term. tion

[Pu] = Jacobian matrix of derivatives of P with
Testing has been carried out on Burgers' equa- respect to u

tioi in one and two space dimensions. Results ap- [Qu] = Jacobian matrix of derivatives of Q with
pear encouraging both for inviscid wave propaga- respect to u
tio cases and viscous boundary layer cases, IS] = Smoothing operator expressed in matrix
suggeSting that application to practical flow form
problems is now possible. In the course of the
work, obstacles relating to grid correction, Subscripts
smoothing of the solution, and elliptic equation i,j = row and column indices
solvers have been largely overcome. Concern re- k,l = summation indices
mains, however, about grid skewness, boundary lay- x,y,z = partial differentiation
er re.olution and the need for implicit integra- 4,Tn,y = partial differentiation
tion methods. Also, the method in 3-D is expected
to be v,'ry lemaiding of computer resources. Superscripts

= smoothed quantities - -

- = simplified forms

NOMENCLATURE

a = clustering constant INTRODUCTION
cd = wave speeds
e = numerical error Methods for generating fixed finite difference
f,g = flux vectors in governing equation grids around two-dimensional airfoils and other
F = function describing surface (F=O) geometries have evolved to the point where such
G = grid speeds r = (x .y) grids are routinely employed. Often these gridsare generated by an elliptic partial differential
.l Jacobian of transformation equation relating the physical and the compute-

the quantity J(P, + Qr tional domains' (see Chapter 10). The need for
& ideveloping a class of solution-adaptive methods

P, grid clustering (forcing) functions may arise from: (1) boundary motion in unsteady
r = position vector z (x,y) flow problems; (2) moving shock problems; (3)
R = residual of steady grid equation time-marching to a steady state, where regions re-

Sdistace ilong s ,rface quiring high resolution are not known in advance;
t = time (4) space-marching problems (e.g. parabolized Nay-
ui = model deperidernt flw variable ier-Stokes), where a grid must be generated in
w = positive measture of solution gradient each transverse plane moving downstream.
(x,y) physical coordinates

oefi(jTiets arising from transformation It is natural to suppose that the steady
of Laplacian (static) grid generators might be extended to the

(&,ni ,omputational coordinates dynamic case. This can be accomplished by differ-
: damping .onstnt entiating the elliptic p.d.e. with respect to time

It viscosity coefficient to yield the so-called grid speed equation de-
- ,mput:t ion;l t ime scribing point motion. Grid speeds are then inte-

w smoothing constant grated in time simultaneously with the solution to
the governing equation at the new locations. Such

Dan approach was tested by Hindman, Kutler, and An-
R eerch assistant, Department of Aerospace En- derson' on an Euler-equation solver in two dimen-gine.ering. Studumr member AIAA. sions for the case of arbitrary boundaries but no

As s t,it prote'.or. Computational Fluid Dynam- interior grid clustering, and more recently by
est I ituite M'd Dlpartm,,nt of Aerospace Engi- Hindman and Spencer" on Burgers' equation in one

n,-erog. Member AIAA. dimension with a source term for clustering.

COplyr hlt Anmerim InllllIe of Areousliks @ad"
AiIreuulik'. Ise.. 1"4. All rights rewrved. 1
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The present work is a refinement of Hindman's Simplified forms of the grid equations (Eqs.
I-D method, followed by an extension to multidi- 6, 7b) resulting from the cancellation of (xe)
mensional problems. It should be stressed that factors were used in I-D. As a result, the equa-
the main focus of this study has been on method tions are linearized and may be solved directly.
development rather than application, hence only In 2-D, P and Q can still be split into a factor
simple geometries have been considered. As will involving only u and one involving only x and y.
be discussed later, application to practical I-D
and 2-1) problems now appears possible.

Headers who are interested in a more complete Grid Speed Equation
introduction to adaptive grid methods, or who wish
to study alternate approaches, should consult the This equation (Eq. 7a,b) describing the rates
recent survey papers by Anderson. '

-  
of point motion (x ,yT) is derived by differenti-

ating the steady grid law with respect to time
(i). Grid speeds would be zero (with no boundary

.ETttOD motion) except for the fact that changes in the
solution cause the clustering functions to vary.

In order to efficiently summarize the method, Thus it is very important that accurate represen-

a table of equations is provided (Table 1). tations for P and Q be obtained. In the present

Please rofer to this table while reviewing the work, this is done by taking analytical deriva-
following comments. Also refer to the block dia- tives (Table 3). Usually P and Q depend only on
gram of the "system" formed by the grid and the x,y, and u at the center point of the finite dif-
model flow variable (Fig. 1). ference molecule and its immediate neighbors,

which simplifies the calculation of P and Q .

Even so, substantial amounts of computation and

D)omain storage are required, suggesting that it may be
better to obtain these quantities by backward dif-

Tle generalized transformation mapping the ferencing in time as part of an iterative process
physi,eal spa(e to tre comotational space i as for solving the grid speed equation.

given by Eq set (1). The tparpuse of the trans-
format ion is to a1low a uiiform recrtangular grid
to he used for computation, while the physical
grid conforms to boundary shapes and is clustered Governing Equation

where high resolution is needed. As a result of The p.d.e. governing the physical process is
the mapping, derivatives must be transformed ac- cast into conservation law form (Eq. 8a), then
cording to Eq. set (2). transformed to computational space, including

terms due to grid point motion (Eq. 8b). For
Burgers' equation (Eqs. 8c,d) the flux vectors f

Steady Grid Law and g take the scalar form f = g = u
2 
/2. Linear-

ized expressions f = cu and g = du were used for
A specific form of the above mentioned trans- simplicity in 2-D. In the case of the Navier-

formation is obtained by solving a Poisson equa- Stokes or Euler equations, u, f, and g form a set
tion (Eq. 3a), all idea developed by Winslow and of vector quantities, but only one element of u
Thompson for the time-invariant case. To solve (say the density) need be selected to drive the
for th- (x,y) point loati onts, the role of depen- grid. All flux derivative terms for the inviscid
dent and independent variables mnist be inter- problem were evaluated by upwind differencing,
changed, yielding inn 2-ID a couplod set of two non- analogous to the flux splitting class of methods
linear tlliptic partial diff,.rential equations applied to the Euler equations.
(Eq. fl,). The for.ing iictcl ons l'(x,y,n) and
Q(x,y,u) are carefully chosen to provide adequate A special problem is presented by the viscous
clusterinig without grid crossting or overlap. Burgers' equation in that upwind differencing on

the convective terms generates excessive dissipa-
tion and hence large errors in the steady-state
solution. This may be overcome by using a cen-

Clust, n&lig Vuict lon trally-differenced scheme, however grid size is
then restriced to satisfy a mesh Reynolds number

A rat ionale for choosing P(x,u) in I-D is pro- constraint. The third-order upwind correction
vided by the integral grid law cited (Eq. 4), proposed by Leonardii was found to be successful
where the lunction w(ul is a positive measure of in one dimension. (Also see results section.)
solut lotl gradient l fitterit iation twice with re-
spe(t to 4 reveals that this form is equivalent to
the P-function selected (Eq. 5). It is clear that
x will always be a monotonically increasing func- ALGORITHM
tion of &, hence grid crossing cannot or-cur (ex-
cept di. to numric:al effrts). The clustering The computer program written for this study
_'onstnit -ontrols thv amounit of idaption, from executes the steps that follow with the explana-
none (a i Q) tp to i large imorit (a -- ' -). The tion tailored for the 2-Dl case. The physical do-
possibility of Isrig A difterolt :-lustering func- main in 2-D is the unit square.
tnon will k- lns.rj ,ed i it,r It, 2-I), 1' and Q are
obtainod fr a ig I ,xt,,,.ion of the 1-D form.

2
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1. Establish input data: (a) initial distribution Smoothing
of u as a function of (x,y) or (&,n); (b) cluster-
ing constant, smoothing constant, and grid damping There are at least three reasons why smoothing
constant (see below for explanation of smoothing of the solution, u, might be necessary: (a) to
and damping); (c) time step limits and wave speeds suppress oscillations ("wiggles") associated with
if applicable; (d) iteration limits, tolerances, certain methods of integrating the governing equa-
and over-relaxation factors; (e) number of steps tion; (b) to avoid grid crossing that may occur
to be computed and/or steady-state convergence due to numerical effects when the forcing func-
criterion; (f) initialization of (x,y) to uniform tions become large; (c) to allow the derivatives
grid, and xt and y, to zero. P T and Q to be computed analytically, even near a

2. Solve steady grid generator for initial grid. discontinuity in u. For the present algorithm
Gass-Seidel point only the last two reasons apply, since integrationA Gass-eidl pintiterative process is em-sheeaeseetdoavioslainsnu.""

ployed, updating x,y.P.Q and related quantities schemes are selected to avoid oscillations in u.

during teach sweep through the grid. Over-relaxa- Therefore, smoothing is needed only for the pur-

ties generally possible and speeds convergence pose of grid calculations, an important distinc-
considerably. boundaries of the 2-1 domain are tion because the undesirable effects of artificial

treated by applying the I-D steady grid law. The smoothing-induced diffusion and dispersion are

for:ing functions P' and Q may be calculated in ad- avoided when integrating the governing equation.

vance if u is initially specified as a function of
(&,n). otherwise utx,y) must be corrected by in- To understand the nature of problem (b), con-
terpnl)Iatol or other means, and T and - recalcu- sider the simplified grid equation, x + x P(u)

lated as (x,y) change at a point. 0. It is easily seen that discretization by cen-

tral differencing on x, and x, will cause grid

crossing if abs(P) > 2, even though the exact
mathematical solution does not exhibit this prop-

3. Cal.uilate the transtormation metri(.s erty. However, by applying a smoothing operator,
(x , Xy, 1 ). the coeffi,.iouts a, 0, 3, and the one can always prevent the forcing function from

lacohiai J. Also calculat,, the -officient matri- becoming too large and also insure that sufficient

ces A nd B in the grid sp,,*d uequation (Table 2) smoothness exist to compute Pt and 0 .

and tilt- residuals R
x 

and R
y of the steady grid Table 4 presents 1-D and 2-D versions of the

gel ito i. smoothing operator. Since both (Pul and IS] are

4. S )IV the grid sp,-ed gqiuation: (a) calculate tridiagonal in 1-D, the grid speed equation (con-
Lth, -,,>L ,,olz,,ro i'.nd qtuantitvs at each taining P ) becomes pentadiagonal, requiring 2.5

times as much computation to solve as the standardi l' ;ib,.r lop IS icaliii.}tut, which depends Thomas algorithm for tridiagonal systems. In 2-D,

up( 'xtV1 til I, lix Ventot , 'and the viscous the equations are solved iteratively and one need

tims it piles.nt (i updIt,- the foundary grid only smooth u before updating the grid speeds on

Sp..... tby i ii., luxaiti -,ume alt ing on the each step. For the viscous Burgers' equation, no
i-1) ii u-Pli i-quit 1n; (d) updait, tin' interior smoothing is required if the starting solution is
grid I ..... by In I jt,.nI.titI ,ion Iiie re- smooth. In practice, such an initial condition

ifit. I,- -imnut h y t - o may be obtained by solving V u = 0, provided;110l it. t kv l" x'{eq-1,t (11 fil ad woop'[s lit I tie0

I-dlI lon mpcilta. tile '-,.mutirn; (e- exit loop that one is not interested in transient behaviors
. .r. associated with other possible initial conditions.

S.' .. , [I niler-u. I <Xat iq a. most I.- used to
.it 've r,; vu-rg-nu e, -s p'.i. i]i lv f'l large cluster-

Ingl u JLtTInt. It s um1 a0.- it no ilnc Ilde the de- Grid Correction
1,, u (xl yl I imp I,- itly in the relax-

I 1The grid speed equation may ie written in the
.at u .,r . wi,r'r ti sii, .. form dR/dy = (. where R is the ri-sidual of tie

1 I ,i IT ,"lh-W (.oiut o ,.iid gtid lhuLat ions steady grid generator. Such n form is neutrally
(,I) I,--, .i-Ilrt,- I fon -,vrged grid speeds; (b) stable, that is errors in integration will neither

I be amplified nor damped out. An obvious fix is to

estfisllh IlloWhl,- tLim. stop size ,limited by an add a damping term, dR/dt + XR = 0, where the
iumvisrnId Cl'I,-type cuoditloni ,ind by a viscous term damping constant X may be chosen as large as I/At
con(litiot). (c) prtnorm first-ord-r explicit inte- for stability with an explicit integration scheme.
gratou to get new value, tor x,y, and u; (d) up- The resulting grid correction method is both ef-
dat. th,, functions I d ) at the new time level. fective and much simpler than previous methods

(involving a new solution to the steady grid equa-
Exit I ...,, if request,,d number of time steps have tion while holding u fixed in either physical or
been ompleted, or if solution his reached a computational space).
steady state.

Boundary Conditions
SIIAI, CInCEHNS

Dirichlet boundary data can be specified by
,\Ilrrngih th. .lgrrithm is quite straightfor- fixing (x,y) at points along a &=const or J=const

winrd, . nw ST.pedi) points ,o-cut to be,uddressed: boundary. Unfortunately, this does not allow for

3
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grid adaptation on the boundary. A better idea is grid method, there is still roam for improvement.
to use the 1-1) gr id methodl to treat the bounda- Convergence required between 100 and 500 time
r I vs .lasy appiicaiott of the i-1) method is pos- steps, pointing out the severe stability restric-
sible for straight, boundaries (as considered tions for explicit methods applied to viscous
here). however, for curved boundaries, a more gen- problems.

eralfor mus bt use, ,4& 8C ~u)= 0,whee sAs a final point, a brief experiment with the
i, lb.- list alce ahmig t- u t iurfav. lIII Lile gr id method of Leonard to difference the Ui term was
sp e'd equat ion the* general boundary condition is X
G -VF= -aF/3t , where G is the vector (x,*y I) of conducted, yielding excellent results (Table Sg~h)

gri seosandF~~yt)= 0 describes a oig which seem to verify the claimed third-order spa-

surface in 2-D. A cerre tiion step will probably differecesac o the conetiode tersee uedtrin

he necessary for urv--d boiiuidar es since the con- botherthes o-nd the 2-onvciscoues cae. uedi

dition stated IS first-order.bohteIDadhe2Dvsusce.

Two-Dimensional Inviscid
Differeic iuug

As pointed out above, exclusive use of central Solutions to ut + cu i + duo = 0 were computed
diffe-reivcing in solving thu- grid equations may re- with wave speeds c = d =1, an initial condition
suit ii numerical difficulties. A niove'l idea to of a 1 - 1/2 - 0 discontinuity along the main di-
replaie Ltu usua,'l ar ithait ii. nivau difference," agonal, and a 16x16 grid on the unit square. In-
x = Vx + x/A with a "ge-ometri. mean differ- flow boundaries were treated hy simulating an in-

elc, V~ , Vx~x/A& was tested and foiud to finite domain with a diagonal wave, while the
outflow boundaries agaihi reqired no spvcial

yiu slo i -It. it. I-0 ( ilcuhiing thei 1I-1 treatment. Griid plots, including lines of con-
wavs- ;ioi,ii iott puuIsireinti). However, the stant ui, are presented for successive time steps

as d sctieu for getuera I use because exten- (Figs. 3a-d) for a test run with a clustering con-
iun to higher lumenusicuuu is diftiILUt - One prob- stant of a = 10. Good tracking of the wave was -

lem is that Vx ,inid Ax may I,., of opposite sign. obtained, and wave speed errors were small. Clus-
Also, tie geom-t ii differerice opierator is nonili- tering at the discontinuity produced skewed grid
near, itil the comuput t ion ti me required to take cells that may or may not be desirable in more
square loots iecomes signit icatit iii 2-D. general problems. Dissipation in the solution u

did occur to a significant ex;.nt as time pro-
gressed, causing the clustering of the grid to di-
minish. Numerically, some problems were experi-

RFSU[lXS ANI) DISCUSSION enced when the wave intersected the corners,.
forcing the use of a small first time step.

Ol,- - 1) 1 oti I 0 I is\ i s,_ d
Two-Di.mensional Viscous

Adijpt i gr Il d i i t i ils t1o iit +1 Llt 0 were
onlt iil or he o tiiiuiiid t in o a -0 is-Steady-state solutions to u~ + u + u=

'Cuntiilitiv oil ini 11 point grid cuiverinug the inter- lU(U 
4
u yy) were computed on a 16x16 grid with a

vI I I . Tbv .fmt liouridliry was fixed at u0 1, viscosity coefficient of v 0.10. The boundary
wii It(,I riglit bouiuiary required ie special conditions were u(x,0) = ub(x)/ub(0),
tr-itrin dtie to the' use of iipw'md di tierencing.b b
H-.ilts it-- prucirimil ill the form of a grid time u(0,y) = ub (Y)/u (0) , te(x, 1) = u(l ,y) = 0, where
JisL-v plot (igs :- l It (.,i itbe seen that the function u is eie
Lit gr id t rikeul Lte Wave 11111t-0 well anid main- b sdfndby ub(s)

t' .1- le.1"oilllIlmtgrou of cluistering. Wave I - exp[(s-l)/uJ. The initial distribution of u

s iimn viors (coin 1 ared to the exact speed of 1/2) was obtained as indicated in the preceding
wv- iciIat-I anid found iot to exceed 2%. Prob- "Smoothing" section. An exact time-invariant so-

2.less w~ith lissipationl i it were [lint experienced, lotion, u(x,y) = u Wxu()/uOl , is presented
part lv sirill the nonlIinlear nature (if Burgers'b by/u()

equat ion -. iiisivs puofi h's heiving a negative slope by Anderson and Rai. 12 The computed results show
to %.L.CPl-ll. maximum deviations from this solution of 0.019.-

(uniform square grid), 0.016 (a = 10), and 0.014
(a = 20). Resolution of the boundary layer was
judged to be adequate but not ideal. Convergence

iii~i.. cii ~.oi ~required up to 400 time steps.

Stieltv-st~le olit ios iii it + uu pu were
t x xx

i.emputeml ohl a -1 pin t g r id for the hounudary con -

dlit ions ilO) I aiil i I1I) ~ '.The in itial dis- Clustering

t-ibiutoj iiii it iiw.s it ramp tin(.t ion given by
-x heuK11Ls fir vi'iisity coefficients of A major concern in adaptive grid work is that

p .ii ,05mrd ui = 0 10 irf pre-sented III Tables 5 of obtaining adequate resolution of the physical
a-f Ind onmparel "itii the ,Xal-t small Viscosity domain with as few total grid points as possible.
.. oci! lin,..x tiilullt(-Xi/2u). Although the The clustering function used in this study is de-
adii- i%- grid methoo does provide better boundary rived from an equidistribution law based on the
ayer n# Noliitil itri aci.iraicV thin a fixed uniform solution gradient u and should provide reason-
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ible control over grid point locations. Nonethe- FUTURE WORK
less, it has alre.,dy been iemons rated that dis-
:retization effects and smoothing play a crucial Future work should center around the following
7ole in determining the grid. Also, results from subjects already discussed: (a) implicit integra-
.he boundary layer cases show that achieving suf- tion methods; (b) curved or time-varying bounda-
ficient resolution of viscous flow profiles is not ries; (c) application to the Euler, Parabolized

!asy. ['or these viscous problems, it is likely Navier-Stokes, or full Navier-Stokes equations;
that the solution gradient in physical space, (d) further investigation of clustering functions.

Ix = xit should be used to drive the grid rath-

ar Lan uk . Suh a modi I icat ion increases the

-omploxity ot the functions P, Q and their deriva- ACKNOWLEDGEMENT
Lives I rd Q, . In any event, it seems that ex- .The authors gratefully acknowledge support of ""

p.-, i.ntii.g with alternate grid driving functions this work by the National Aeronautics and Space
auil gorid gonerrtjon _onlce'pts is desirable. Administration under training grant NGT

016-002-801, by the Air Force Office of Scientific
Research under grant AFOSR-83-0167, and by the Ae-
rospace Engineering Department and Engineering Re-

Computational Considerations search Institute at Iowa State University.
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T,(ode employed hevreiti has been extensively ing Tassa's" Navier-Stokes code. The Euler equa-
ypI!.d to 'lilt ernt Hlow probloms, incluiding two- tions were selected rather than the full Navier-
imint oii,i ho, wive lotiridary l ayer interact ion Stokes equations to reduce the starting grid
%,,t' ai Il~t pit. r insoi~c turibulent afterbody dimensional requirements, thus permitting the

tiow", turbulent inid ini's'id transonic flow over adaption routine to he tested on a less complicat-
iiiills', and it,rs"er " . Turbulonce models in ed mesh. With the flow conditions selected, M

tlie-ximples above are ilg(-braic, since completely 0.75 and a = 2 degrees, a shock wave forms near
..atlsi~tilry multi-eqiututi models for flows with the upper-surface midchord of the airfoil.

;,ii. -.pjitu- r-g ioins ilre nt yet ava i table".
11,ut lu-ty of t liiw piohh-m, so lvii with this code A steady-state solution was run using a varj-

I)lo%.. it.. relI i bilI i ty, mriikiiig it a vi at) lP scheme able time step integration procedure on te Ii 'ePd - .

to use with this adaptiv, grid routine, grid. The numerical solution was found to on-
verge after only a few hundred time steps, result-

INITIAL (,kill G;ENERATIO)N ing in the density contour field of Figure 3a,
which gives no indication of a shock wave, due to

i n*, t eqiiuiistribiut ioii adapt ive grid rou- the sparsity of grid points (Ax=0.6) in the antic-
t no is Tilt i. grid gelierat ion rout mne as well, an iae hc ein
nii t il .. t-rtin grui 111L be cruaLtd by some oth- iae hc ein
or mais biefore .i S01lutioli is ruin1. With adaption A new solution was then formed, starting the
AViu~llhi' iii 0tilV ()tti' Colriliil[i iii the proposed flow impulsively from free stream conditions on
schunue. the optimai starting mesh for this routine the initial grid, and then passing control to the
woi,;d bi otie wliicl, hivs a suiffmiiett pioint distri- adaptive grid routine after every 20 time integra-
bin. ii Oin thu ri'mainilng lomputalttua lid irect ion. t ion steps, again using a variable time integra-

~' hae ittrodtnedtion procedure, For this case, minimum grid spac-
'hl'im,is andi Nlul 'oft t a, ntoue a ing along each flconstant curve was set at 0.003

methiodl of gr id gortirat ion based ott earlier tech- chords (Asm =0.003) , the initial weighting con-
T~i,'bwichii alws tot . priori gridl point clus- mill

trTi,'u iil at 1 ia:. L oth' t,,nhilit Ot iont Iiiirect ion. stant A (equat iou 1 (10)) was set at 10, and both
TIl t-l,l~i illO fol low,% the well-kijowii method of funct ions f 2an11d f 3were turned off, allowing for
Tholoii,ri Thimos mjd Most in" , wheuroby At ellIiptic adaption based purely oni denisity gradients. Fig-
syst(. ol i two7 eIl it ils of tho. Iin ures 8A and 9a depict the cotnverged grid and den-

sity field for this test case. On the newly
=p(;7,r) adapted grid, the numerical density field reveals

'x Y(19) a shock wave. The potint density in the adapted
rlx+ v grid has increased near the shock region, but

still is not exceptionally high. As a result, the
shock remains somewhat smeared, albeit over a

is lvi. liv iiith'iiigtin ile of the de- smaller region than with the inti al grid.
pu"Ii itii (&, n ) itid t riule-ieiirleit fx .y coori irates in
ttl,i, uiiit oti la ~si Iiiie-nr el Iliptic- system of To investigate the convergence of this adap-
equit toti, is oi iilwli iIi is I bet solved by fil- tive grid algorithm, it was interesting to follow,
71 it' ilf fv,iTies 'flolils jtnd i ilwltecoff have oh- among other variables, the current value of the
tairil iulilyliol (xpri-stoils tot the weighting constant A, the actual minimum grid spacing in the
fitin I oil:. P anid Q which will c Inst-ir poitnts on the adaptive coordinate direction, anid the maximum

,Itturru ilii. griii to tiii.- same! degree as the distance any point moved between adaption sweeps,
5fei, iti p initt diiii rt tion otil th gr id bouii- Ax . The adaptlyve grid was (.onsiidered converged
al i.... max

when the first two of these three parameters ap-
.TI-lt gri ilv hscri iii ua irl 'igliri-) as proached a constanit va liue, atid the last parameter

we,1 i, ill Iihusenftit gr iris wvf getuerated by a went to zero. The convergence history of the
Slilk'r 111'SIl Oil Iuis iu iiiqi ]it Figure 2, rv I - adapt ive grid test case above is shown in Figure
a t it %y h i gh valIues f or ,were i t ii fed on the 7. These part icular values of thle adaptive vari-

ables (A, B, Asm .tc.) are seen to provide an
giil' s ilier tioiitiiry (i nl j i t the, leading edge mn

(&,i, ) :itiu it both sides of the trailI itig edge adaptive grid which i.onverges quickly and smooth-
(&--'I iil &=hll. The. infllietiicv from the inner ly. Note that the converged minimum grid spacing
bouind try is spoil in the p11 nt di st r ibut ions for m

ri~i~lit ot cut-e iitfi.i fom ii ody. Mor im ~ ((~I-s( I)is equal to 0.003, precisely the
value of As ,chosen at the onset of the problem.

11 itl, thioughi, is ilii 1-itit list ributtiut in the min
n Ii.. i i. h do- rii' ot .li.'tg, w ith adapt ion. Note also that Ax reaches a peak value after

tin I.- g~ bvsoin ulsFiii 11,TIIS to th friirearlv three adaptive sweeps (6(0 integration steps), and
tI.liotv eenin Ig~re2 i: terisar toreslve not immediately, as one might expect. This is due

t' h r, soliutioni gradwuuts existing near the to the grid relaxation technique defined by equa-
boduty. ~it hi .1slifftint ,I Listevriig itn the tion (18), which prohibits large grid point move-

r d iro.t ~n hei~pt v 4ri d,, 1% ri sthn ued ment in the early inumerical development of the so-

N 1:1 K I C Al 1.H F '1;'
In order to increase the shock region resolu-

tion even further, it was logical to reduce the
NACn~nI AihiilihenulsAs mi selected in the adaption routine, thus in-

imii for i tv of the iiumr ij aI results of this creasing the final A weighting constant and like-
sttiN ,re oubtinted for trotusoric itfIlow past an wise increasing point density ini the areas of high
NACAnIn,12 a trftoil Iihe itit i gIAr nl emplIoyed was fluid density gradients. Figures 8bh and 9b show

liitheP- ~- *) test gr id of Figrire 2, and the converged adapted grid and density contour
Oii this At id. th- Kiler eunlions were solved its- distribution correspotnding to a As in equal to
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laptive Algorithm the final a function obtained from the inner con-

vergence loop for a given n = constant line. By

ie numerical algorithm used to obtain the adap- choosing a small value for RELMIN initially, and

ive grid point distribution governed by equation by increasing it gradually to I after several

41) 1, reasonably straightforward, essentially adaptive sweeps, changes in the grid point between

nslsting of two rather large programming loops, adoptions are sufficiently small to prevent solu-

ne within another. The outer loop controls which tion instabilities.

= constant surface is being adapted, increasing

rom n=l to n=nmax . The inner loop is iterative, 4. It is important also to mention that in the
present formulation of the adaptive algorithm,

nd has a convergence criterion which must be sat- tep orti tr (hridspids inrth n

sfied for the current n = constant curve before temporal metric terms (grid speeds) in the trans-

he q index is incremented on the outer loop. The formed equations governing the flow are set equal
to zero. As a result, once the grid is updated

nnier convergence loop works as follows: Equation through adaption, the corresponding solution vec-

9b) , integrated numerically to obtain a new tor ( e.g, (p,u,v,e)) must also he updated. This

o t ltril, tion (s). With this ve ctor and is done through interpolation from tle current

lt p , Xs) ant y(s), an interpolation scheme grid and solution vector. Since the grid speeds

s applI Id to calclulate the newly adapted vectors are neglected, it is difficult to determine if a

ew new xnew() and time accurate solution can be obtained with this

'he ,ww weighting flunction F(s) (equation (10)) is adaptive scheme. In light of this, only steady-

alculated from the new Vectors, and equation (9b) state solutions are examined in this paper.

s on, again integrated. This process is contin-
ed ,nt i the L2 norm of thu As vector, defined as

t 2 This algorithm is designed to supplement an

E2 existing aerodynamic solver, ideally linked to the
main program as a single subroutine. Alterations

r- 2 needed to implement the adaptive routine affected

= (new old (16) only two per cent of the total programming lines
1 "in the Navier-Stokes/Euler code described next,

falls he low a specified tulraoce. When the con- and it is not anticipated to be much higher for

,erge.i, (riterion is met, (.otrol is passed to most other codes.

the outor loop, and the conVergecLe loop is ap-
plied to the next i 

= constant curve. AERODYNAMIC SOLVER

All numerical flowfield results in this study
At this point, several comments about the al- were obtained from a finite difference code devel-

goritim are in order. oped by Tassa, which solves the unsteady

2-dimensional Reynolds averaged Navier-Stokes

equations written in conservation form on a gener-
I. lne to inherent truncation errors, finite dif- al non-orthogonal curvilinear coordinate system". -

ference afpproximations of the streamwise density Flow variables and physical directions are non-di-

gradients needed in function f are not suffi- mensionalized so that the four governing P.D.E.s

ciently smooth. To eliminate this problem, it is and the equation of state P = pRT, included for

necessary to apply several sweeps of explicit sec- closure of the system, become normalized. This

ond order smoothing of the form allows the characteristic parameters of the flow,

such as Reynolds number, to be varied independent-

k+1 2 k ly.k~ffil+ ALP V p.(17) -

ij A 1ij The resulting parabolic system of equations is
solved numerically through a modified form of the

to te local density field before the grid is Briley-McDonald Alternating Direction Implicit

adapted, where 0ALPS0.25 from stability consider- scheme". Whereas the Briley and McDonald dual

ations. time level scheme represents all but the energy

equation in conservation form, Tassa's modified

2. By ,nijusting the value of the constant A in three time level scheme writes even the energy

equation (10) after each call to the adaption rou- equation in conservation form. Non-linear terms

tine, it is possible to specify a time-asymptotic in these equations are linearized by using Taylor

minimum distance between adjacent grid points on a series expansions at the known time level. By

giv-n -curve, called s.in  This constraint is representing the dependent variables p. u, v and e -

need,.l to keep points from clustering too closely as the sum of values at the known time level and

across a shock, wbich causes numerical problems, an incremental value, a linear matrix equation is

as explained later, obtained in terms of the unknown incremental val-
ues. The Douglas-Gunn

12 
procedure for generating

3. In many cases, particularly in the early die- ADI schemes is then applied to the new system of

velopmont of a flowfield from an impulsive start, equations, splitting the matrix equation into a

numerical difficulties may arise if the grid system of two one-dimensional matrix operators.

points are moved too drastically in one adaptive After discretizing the spatial operators using

sweep. It is useful to under-relax the calculated second-order formulas, the incremental solution

point lisi ribution s(&) ac,.ording to vector is found by block elimination techniques.
Tassa and Schuster" have found it necessary to

s ) = aold(U)+ RELMIN Snew( ) - Sold( ) add artificial dissipation near regions of severe

pressure gradients such as shocks, to suppress
(18) high frequency components. In addition, fourth-

where s( ) i, the final arc-length function, order dissipation is added to the dependent vari-
s ables In the Euler equations in order to reduce
oldil is the current s fm,,ction, al sew() is the overshoot of pressure across the shock.

5
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1 regard to the points outside the domain, there is

V- 2I no guarantee that grid spacing is continuous
f x +) - YrI=I2~4 2 (1 across the boundary. Figure 4 illustrates this
I1W 13sI d I I C, & fact. Along the & and & 2 lines, where grid spac-

The ielisy gradient is selected with the case of iog in the 4 direction varies rapidly, the accura-
tranoni flo inmin. A(ros a ockdenity cy of the finite difference equations may be inad-

changes rapidly in a physical sense, and for the eut.Freape taypitaogteac

Euler eqiuat ions. discontinuously ini a mathematical a finite difference equation with second-order
SVII . f th S~painisedire~io of lowand truncation error on a uniformly spaced grid will

thei,'.cufrtes(= straSt~t dirci ore nealwan decay to first order accuracy on a non-uniform.
thv~c uves lf onsant ociI ar nerlygrid whenever the grid spacing on both sides of

aligned tin space, then ap/as will be relatively the point differ gral- that is, when
high in) thei shicku regiovi. forin g tit, grid point s ++
iti ilevi' toiwaurds tii' Shock loicat ion. 'or tie test ~ <r~ >

S.oliit isi pret'ioiiSly Melitiilel, this is iiideed the As As
iisi' e i, tv iditciiil by tlit iidapivl' gri oI(f F~igure To remedy this spacing problem, a third we igliting
31fi - 'ot, thdt a lg eaiCh Ti = iist'fiit line, the fnto sitouedfnda
ai':is iii lighoi ;,ridi p0 iii ci tistu g are at the fntini nrdcd~dfnda

rtoi:l 1,had ing -igi and li the shock region. S

This IS aS expectedl, sincet it is iii exactly these f sW= De smax) (3
regionis where aI large stredarwisi density gradient 3 ~s 'max)(3
is obiserved ffi goret 3a)I

lit nilder to preserve itle shap~e of1 the s-curves
Wili Iii' 141iiig Idat IOu, it is eIiiioi tauit to retain at gkS -)l D 0, g=5 0
leasL I iinii iiumber ot grid iolitS li the re- + s-Oe max-
gioniS nf It igli a rc i' urvaiire I(, ptr t Iciu larlIy alIonig3
Lh(- lbiiil r11 i e'S of t lii- 'hiys ii alI ifoti it , where al1 -
te(r I gIA lit, hoiidai v w i I I I 1,e fi isi. II ter the hiroh- where the asterisk refers to the value of &, eval -

Iemwi iiliifir oins i doerit I o. Fur thiis reasiin, f s uated outside of the adaptive boundary. This
isIi dvi ii,!d as function is choseii since , for a large enough value

of g(O)
- yi:,x

f, s) = B -BIKI (12)

2X + 2? 3/ max S max 3 f()s

and

wherie K is Ilhiif.itiii'lllt -(itI di itiion of the c ur- f (s) "a for O" << ax (14a,b)
vat ii riof S ( pairimiorri ,!-i by &), and B is again a 3ma

005 itivi' -oiistinl usei to ciontrol the degree of
c astivrlig had Oil gridl (Iirvailur' Obse-rve that Differentiating equation (9b) whith respect to s
if tfii ,patial ifi'ui~ity gi ilieiits ire ne'gligible yields
iid it foth fill ties. I is) aiii I Is) are set Ffs max (

oii!to) zero. thi'u t-'i i git haydl side, of equa- F B ~~sS (C (15)
t ionl ,~ 1 aprii-Ichs iii) I t y WitI itis w.eight ing ( 2 1)
I imioi, gr if p..eILit,, ati e)~i'~ iqual Iiriire- Provided that hoth gr id curvature and denisity gra-
MI'Ilt '[I. lii' s-,lii 't lo I ug v i = inistant dients are negligible at the adaptive domain

!i I' , ;is sliowi, i I ll !I,. , i mhlirivi with the houndaries, it can be Shown that hy choosing the
ti".,t 41 Ii of Vli i- tio' At id tit Figuire 4 has constant D = C /A, gridl spaciiig (&,) will be con-

I- , n il I t I i -I- .111 i . ' ii;ule n hence, I5 , -
Iii It, t 1 1 o i I I' pt, I' Il ,-tS;Ilf I I lin tIy (je- tinuous across the huinidary of I)t aplt Iv(''* As a

I no I Iiti'rii iiiinc tli' -Ii p it(of i qiliI result , the order oif the soluiit i trillicat iof error
ttm .1 mt , iir%-i I' li lii it iy 1,i1 befy i.iirves near the hoidaiiry shouild iiot dhecreiase (St ill
fit thlrigil lii' A, if piilt ,. poi' t 'i lit I re'gionis 2
lf high, it(. ( irvit ie iiglit i''it il alter the o(Ax ))appreciably.

Sw' i.i Fort iliit, ely. biy lust i ng pilnts in Function f 3Is) is wised to create the adapt ive
tfii'Si IIIAI th vti i .gis i I proi I im iall he grids in Figuies 6a anid 61). The first of these

aI 1L1,i. Fri gulre ' ' iir iS tie silti' test gr iii with grids has a weight i hg fuinct ian equal to f3 (s)
po1111. rilist rlibilt'i ;, idiiig tII fiiriotto f for3

2 alone, producing a grid withI equal spacing along
oI ti" it., I" ~'itnit H lii this grid, each s-rcurvp everywhere except near the boundary

II.. J' oif t it, 'I -c 'oJSt dll i t ii l1% ea r thie of D) Bothi functions f and f are used
I ei- -ig ei 'ire hiee~ladapt ive ' 2 3

to create Figure 6
bi, which has clustering near the

Aiiotlier niot' il .tle it Ii 1,i-iv e lietweCi Vigures leading edge as we]l as equal grid spacing through
ii.iu uliegrii 5'i~114 Ii'i Ii liiiiifl ~ the bouiidary. Indeed, it is a combination of all

(Ii I )Wi Jdilpt. Is, .' "li l. il'II t i'pro~pvrt i es three weight intg funict inns that will produce the
of t, ili' uiguP grAtidL gtiil- .itor unsure that grid most desirable adaptive grid.

spAIilig i-1i,119igi'-s1011 LI lif iigl lt the melsh
lioweir. sin,, the, .uip;t iu' gnud algorithm ritdis-

It, i1Ws m,1ints with1111 tii'- oduijo iv' ihnmiii with no

4
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Consider first a positive weighting function For a general weighting function F(s), neither

w--w(), associated with some partial differential of equations (9) can be nemerically integrated di-

equatioi, chosen so that w increases as the grid rectly. The integrands on the right hand side of

poinL density ( &s ) needed to approximate the so- each equation Ire functions of the grid point dis-

tributions s(&) and &(s). which appear also on the

lution to the partial differential equation to left hand side of each equation. To solve the

some fixed error also increases. Saltzman' has equations, then, an indirect method, such as an

shown, through a variational approach, that by iterative updating procedure, must be employed.

minimizing the integral Although equation (9a) may appear to be a better

choice than (9b) for numerical integration, on the
[Smax basis of iterative convergence speeds this was not

I(s) W(s)S d& (5) the case. Rather, the number of iterations needed

I jWss) ~ for convergence of (9b) was as much as an order of

0 magnitude less than the number needed for conver-

gence of (9a), and because of this, equation (9b)

the error due to solution approximation is also was used exclusively in this work. This differ-

minimized. The Euler-Lagrange equation corre- ence in convergence speeds was due in part to the

sponding to this integral is now form of the weighting function F(s) used, de-

scribed below.

s )(W s ) - 0 (6) Weighting Function

The weighting function chosen for this study

whith reduces to the condition that is of the form

W() s = constant, (7a) F(s) = I + A(f 1 (s) + + f 3 (s)) (10)

or, with s as the indepenint variable, where A is a positive constant and f1(s), f2 (s),

W(s) / = constant (7b) and f3 (s) are each non-negative 
functions. In- - -

s cluding the constant, 1, in F(s) allows A to con-
trol the degree of grid clustering, and insures

since s is assumed to be a fun,tio t of only. that F(s) will not approach zero (&s40), which isReplacing v'-CT-) with F(F,) for the sake of convent- 5".-

ience, and assuming that the A& between adjacent not feasible.

grid points along each s-curve is equal to one,

equation (7a) can be approximated by forward-dif- To illustrate the utility of each of these

ferences as F(4)As=constant, where As three functions fl, f2 and f3' a test grid was

=s(C+l)-s( ). This states that the product of the generated, the inner detail of which is presented

weighting function and the grid spacing is euly in Figure 2. The inner boundary of this C-type
distributed along the s-curve. Anderson et al.$ grid (1 

= 1 surface) is an NACAOOI2 airfoil, with

have for this reason named adaptive grid methods 61 points wrapped counter-clockwise around the

gov,,rd by equat ion (7) equidisLribution schemes, surface, and 42 more points, ranging from %.S2-
Now. te. boundary :onditions for (7a) and (7b) and 81<4SI01, distributed downstream of the trail-

aLong eiach s-curve are ing edge. The adaptive domain, Ddai, is

=( 0 buddadaptive'
1(-A. (8a) bounded by two q=constant lines emanating from the

s trailing edge (&1=21,&2=81). The adaptive coordi-

max nate chosen is &, meaning that s(E) functions will
and be redistributed along each of the 21 nearly con-

centric n=constant curves. The dimensions of the
0 1 (8b) adaptive and total domains are then 61 x 21 and

(Smax) = 2 101 x 21, respectively. On this grid, a converged
2-D conservative variable Euler equation solution

The corresponding solutions to equations (7a) and was generated for a Mach number H =0.75 and angle

(7hi are then foiiiid to he of attack a =2.0 degrees. These flow conditions

are known to produce a shock Just upstream of the

I /F( ) d upper surface midchord on a grid with sufficient
X point density in the shock region. On this test

I- (9a) grid, however, the shock region point density is
1sparse, and the shock is smeared across several

I1/F( ) d grid points, as shown in Figure 3a, which pictures

curves of constant fluid density. The methods
used to generate both the initial grid and the

and initial solution are described later in this pa-

per.

F()ds (9) The most important term in the weighting func-

I -b tion is f1 (s), defined as the first partial deriv-

2F(s) ds ative of fluid density with respect to arclength
0 s. Numerically, this derivative is easily calcu-

lated by noting that

respct ively.

3.-
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minimizing the integral, additional P.D.E.s must or inversely as
be solved. Nevertheless, the fact that these [ ]
tech niques are based on a firm mathematical foun- d& Yn -x dx
dation should eventually make them more popular - (2b)
than ad hoc procedures. dri 1 Y X dy

Olr, particular type of variational ndaptive
grid, previously ,emloyel by hauth l wyer' and Guof- where J = xy-x y , the .lJacohin of the mapping.

fo. is partir:ularly attrative it adrpLion is The major advantage of employing coputational co-
neded inn only on, computat ioual Loordinalte. This ordinates is that through equations (2a) and (2b),
technique is referred to as in equidistributlon the P.D.E.s governing the flow can be transformed
adaptive grid scheme, and is the type of grid so the independent variables are now t and i.
scheme extensively studied in this work. The This reduces the complexity of the finite-differ-
scheme, which is formulated and explained in some ence equations, since the computational grid on
detail in the next section, is an ideal technique which they are solved is both equally spaced and
for use with transonic airfoil problems, where non-moving.
grid point adaption is usually only needed in the
streamwise direction of flow. The complete grid region in the physical plane

will be known as the total domain, D total and is

mathematically defined as

ADAPTIVE GRID SCHEME D oa X x x(En) l< <max

Mathematical Formulation 
= y(Er) 1r&5max

Whell finite-diflerence techluuique:, are used to

obLainl the solutions to the partial differential (3)
equalions governing fluid flows, a finite number
of points in physical space must first be select- The ranges on the computational coordinates are
ed. These points comprise the grid, or mesh, at chosen for convenience only. Either past experi-
which the solution to the discretized versions of ence or intuition may determine that inadequacies
tie P.D.E.s (the finite difference equations) are in grid point spacing prevent the discretized
to be calculated. In two dimensions, the physical P.D.E.s from approximating the governing equations
location of each grid point can be defined by its of motion to a desired degree. In general, only a
two Cartesian coordinates, (x,y). Mesh points can subregion of the total domain will have an inade-
alternatively be defined by two coordinates & and quate grid point distribution, so only the grid
i, chosen so that the grid points in the x-y phys- points in this region, called Dadaptive' and de-

ical plane become equally spaced and fixed in time fined as
in the 4-n computational plaue. For simplicity, 4
and n are integer valued, usually set equal to 1. D m x( ,rt) -
The computational coordinates of each point are Dadaptive 2
then associated with a storage location in a two- "
dimensional array. The representation in either y y( ,n) 1- max
the compttational or physical plane uniquely de-
fines a given f.esh poirt. (4)

Now, the comlutationIal plane and the physical will need to be redistributed. Dadaptive' as the
plr11W ar,' mathematically related through the vec- name suggests, is then the domain in which the
trr-valued mapping adaptive transformation will be applied. Schemat-

ically, Dadaptive is the shaded area of Figure 1.

(1a) ,)Note that since Dadaptive S D total, the cases
= (is) where either C1=l or &2=cmax are certainly allowa-

y y(I,n) ble.

whih i% schematically represented in Figure 1.
Provide , that this transformation is both one-to- Now let s(t) be the arclength along an
one and onto, the inverse mapping also exists, and A=constant surface in Dadaptive such that
is d-lin)d as s=l)=O and sU=C2)=Sm , and observe that

1(x,y) s(4)<s(&+l) for all 1t1l< < 2 . Calculation of

(Ib) a new s(&) function for each u=constant surface

n n(x,y) will result in a redistribution of the points
along the s-curve. Since the points are free to
move only along constant surfaces and not along-

In diff,-,ontial notation, this transformation can t=constant surfaces, the selection of the adaptive
be wrItten as coordinate (4 in this case) is not a trivial mat-

r ter, but is dependent on the type of flow being
dx x& XrJ dr modeled. Fortunately, in many cases, particularly

I (2a) those with well-defined regions of large solution
y I Ygradients, the correct adapting coordinate is io-

dy y yq do mediately apparent. The problem now becomes one
of determining the new s(t) function for each
naconstant curve.

2
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ABS1RACT tered only in the anticipated regions of large
solution gradients. This, however, requires an a

A dynamically adaptive grid scheme based on priori knowledge of the flow field, which many

equidistribution in one computational coordinate times is riot available.

is applied for the first time to inviscid transon-
ic flow numerically solved on C-type airfoil A better suggestion is to use a dynamically

grids. Steady-state solutions are obtained for adaptive grid, i.e., one which continually adjusts

NACAO012 and RAE2822 airfoils using both fixed and the point distribution within the mesh as the flow

solution adaptive grids, and results for both solution is advanced in time. An ideal adaptive

grids are compared with previous numerical and ex- mesh scheme would be one which readjusts the grid
perimental data. The adaptive grid algorithm is points so that the local truncation errors of the
seen to resolve details of the flow field near the discretized equations of motion are reduced to a

upper-surface midchord shock not seen in the fixed minimum, constant value throughout the mesh. Such
grid solution, thus eliminating the need for a a scheme would require analytical or approximate
priori grid point clustering in the region of the expressions for the local truncation error. Un-
anticipated shock. In addition, problems inherent fortunately, except for the most basic equations
to schemes of this type are discussed, and sugges- of fluid motion, expressions for the truncation
tions for further study are Also made. error of the associated finite difference equa-

tions are extremely difficult or impossible to
calculate. Therefore, when truncation errors are
not available, grid point adaption ahould be driv-
en by some other mathematical or physical relation

INTRODUCTION which will still improve the overall accuracy of
the finite difference equations of motion. For

"1"1,! gn'ration of compotational meshes for use most adaptive grid schemes, this is indeed the
in soliting discretized systems of partil differ- case, although the means nwed to reach this and
ential ',quaLions (P.I.E.s) is presently a subject differ greatly.

of intense research. In most cases, a grid is
generated by either algebraic, complex variable, Andersoni has separated existing grid tech-
or differential equation methods before any numer- niques into two distinct categories. In the first
ical solutions are calculated, with the resultant of these 'wo categories, a mathematical law defin-
mesh being used for all subsequent computations. ing the speed of the grid points is postulated,
A major pitfall of this accepted technique lies in and the new grid point locations are obtained by
the fact that the mesh point distribution often integrating in time. Although calculating grid
proves to be inadequate for approximating the point locations from the grid speeds is straight-
problem under consideration. forward, formulating grid speed laws based on

sound physical reasoning is not. In fact, a fair
When the P.D.E.s governing certain fluid flows amount of ingenuity is often necessary. For exam-

are di%,.retized and solved on an insufficient ple, in a technique developed by Rai and Ander-
mesh. it is possible that certain high gradient son', grid speeds are calculated from an attrac-
phenomena of the flow field will not be captured, tion model. In this model, every two grid points
due to the sparsity of grid points in the high induce on each other a small velocity which is de-
gradient regions. For example, boundary layer, pendent both on the distance between the two
free shear layer, and captured shock regions points and the other point's deviation from the
(flows with multiple length scales) all require average solution error. The grid speed at each
locally high grid resolution for the solution to point is then set equal to the sum of all of the
be approximated to a given degree ot accuracy. velocities induced by every other point in the
This problem might be alleviated by using a grid grid. A survey of adaptive grid schemes based on
with high resolution throughout, but the added grid speed laws is given in reference 3.
computer storage and time demands make this im-
practical. Alternatively, points could be clue- In the second of these two categories, grid

points are moved to new locations through speci-
fied mathematical mappings, and then the grid

Research assistant, Department of Aerospace speeds needed in the equations of motion are cal-
Engineering. Student member AIAA. culated from backward differences. Among the

Staff scientist. Associate fellow AIAA. techniques falling into this class are variationalm ethods, developed extensively by Brackbill' and
Professor, Department of Aerospace Engineering S.ltzman'. In variational methods, an integral
and Computational Fluid Dynamics Institute. contaiuing a measure of some grid parameter, such
member AIAA. as orthogonality or smoothness, is minimized. One

C)A..teeAnuffefmffeoEU~rtkIS disadvantage of variational methods is that by
Asmeemoks. Io.. 1"4. AN fMi rem ..d.
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Table 5. One-dimensional viscous Burgers' equation. Numerical results for boundary layer.

(a) p = 0.05, a = 0.0 (e) w - 0.10, a - 10.0
step 200, time 5.00 step - 400, time = 3.43

x u error N x u error
15 0.7388 0.8687 0.0056
16 0.7887 0.7906 0.0064
17 0.8360 0.6816 0.0066

11 0.8000 0.9756 0.0116 18 0.8803 0.5419 0.0060
18 0.8500 0.9286 0.0234 19 0.9219 0.3765 0.0045
[9 0.9000 0.8000 0.0384 20 0.9614 0.1929 0.0024
20 0.9500 0.5000 0.0379 21 1.0000 0.0000 0.0000
21 1.0000 0.0000 0.0000 Integrated error = 0.00224
integrated error 0.00601

(f) i = 0.10, a = 20.0

(h) 0.05. a 10)0 step - 500 time = 3.53
step = 300, tlime 1. _

N x u error
N x u error 15 0.7624 0.8354 0.0054
17 .8516 0.',060 0.0156 16 0.8098 0.7460 0.0058
1,x 0.9027 o. 1,Sf, 0.0188 17 0.8532 0.6310 0.0056
1q 0.911/' (I. IrS,,, 0. 01 4 i8 0. 89.J) 0.49 16 0.0048
20 ((.9710) 0.29I1 0.0094 19 0.9302 0.3389 0.0035
21 1 .0000 0.0000 0.0000 20 0.9656 0.1724 0.0018
l,1Itegrated vrror - 0.00329 21 1.0000 0.0000 0.0000

Integrated error = 0.00204

st = MO. I ii. I .II 2 (g) Leonard 3rd-order differencing
_ = 0.05, a = 5.0
step = 100, time 

= 
3.21

N xerror
I1/ 0.8815 0.8441 0.0153
18 0.9186 0.0871 0.0154 N x u error
19 .,)48,4 0.48 2 0.0122 8 0.7810 0.9789 0.0037
20 0.9753 0.2490 0.0067 9 0.8826 0.8394 0.0137
21 1 .0000 0.0000 0.0000 10 0.9501 0.4867 0.0251
nli,.;-ritVd error 0.00289 11 1.0000 0.0000 0.0000

Integrated error = 0.00312

t - (1, tiix 3.11 (h) Leonard 3rd-order differencing

0 0.05, a = 5.0

error step = 200, time = 2.66

I , . i(jloiJ (.(20 (9 0.0057 "" " ""
I, U). IO, 0.8")/ 0.0074 N
18 014.0)I0 I. //lM O.0090 16 0.7846 0.9728 -0.0006
[1 0. (W, 1 (, ',8/Oh 0.0085 17 0.8364 0.9269 -0.000-

)( O I '1.' '0(0 o.005] 18 0.8858 0.8177 0.0025
2 1 0. 0l11 0 .0 ()0 0 0.000 19 0.9292 0.6157 0.0061

t, ', (1 rr,,r1 II. (0.(021 (.000(20 0.9663 0.3306 0.0054
21 1.0000 0.0000 0.0000

integrated error = 0.00047
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Table 3. Finite difference calculation of P and Q

Note: Examples given for calculation of P .Expressions for Q are similar.

General form

p P(X,y.u)

P ( IIi /) k.1 )u, + (fP l ax k )x I + (aP laJ/3yk. )YI

1.1 k. 'k.I b l~ ~ k,l l k,l

where summation an the indices k~l is implied.

Specific form

P(x,yu) - P(u)/'Y(x,y)

P T -P 4- Y2 +T T/y

Y, aa(x 2 + y2= 2( X.X IY~

P O u )u as above.Ti,j k,I I
i.j k,1.

For P=(2au, u j)/(1 + au 2) with central differencing,

P /:u 1  p(2Vuii
1 + P' i~j i

i,j i-1j 'ii

(1P P~ /u =~ -p(2Au -P u
(Pi,j /' i+lj p2u i,j ju j

2
where p =a/(l +'auF

kable 4. Smoothing operator

=[Sjb

[P = JISJu, QT O= is

[S] is derived from a finite difference representation of

U u +- I (1-D)

Ui u+ (u +u ) (2-D)
8nnl

tn l-U, [SI is a two-dimensional array. [S] is always constant.
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Table 1. (Cont.)

1-D equations 2-D equations

8. Governing equation

(a) General conservative form

Ut+ 4fx viscous terms u +f + g -viscous terms

uT+ Cu E, (Cf u T + &u &4+fluT + &xf & +nxf

=viscous terms + & -9 i + - viscous terms

(b) Burgers' equation

u+ uu . wu ut + cu + du 11V 2u

u T + (t+ u)U& V 2u U T + & + c& ty)

+ +(n + cl + dn )u 1jV 2u
t x nf

2 2 2
See equation set (2) for V .Note that V & P and V nl-Q

'Table 2. Coefficient matrices [A] and [B] in 2-D grid speed equation

(A] [ a~ a2 (B (b b2

ret (x~y)" and k = J(Pr + Qr r)

a, 2 (-x~rr , + n +x~ , +yk) b -yr k)

a 2(-y r + r k) b 2( r + r xk

10



Table 1. (Cont.)

K -D equations 2-D equations

3. Steady grid equation

(a) V (~u (a) V M(,n.u) V vn W (,rj~u)

(b) x,,+ x (x,u) .0 (b) - 20r C + yr nn+ J (Pr~ + Qjr -o0

where:

r (X.Y) rn + Yn'
it X2+ 2 Y x2 +y2

rj n r

4. Integral grid law

x
H [ + aw(s)lds

0 1 -- max
f 1+ aw(s)Jds

0

5. Clustering function

aw, awg

awu =-2 -- P(x,y.U) - w
xii + a) yl+a 1

where:

w 1 (u) u ~ w2 (u) 2n

a~y defined in (3).

6. Simplified grid equation/clustering function

P(X,U) =P(u)/X..(,,)- ~)YXY

x.. + XP(U) 0 Q(x,y.u) - Mu/cl(x.y)

substitute into (3b).

7. Grid speed equation

2
(a) (x T + 3xi.P (x )(a) t(r T) -2a~ T)& + rTnt

+ x P =0 + [AI(r) + [BI(r)

- 2
(b) () + P(XT), + X P - + 3 (P Ir + Q Tr n

See (Al and (B] in Table 2.

See P.Q in Table 3.

9
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(a) Fig. 4 Two-dimensional viscous Burgers' equation (b)

converged grid plot.
(a) a 1 10.0, steps - 300, time - 1.90
(b) a = 20.0, steps - 400, time - 1.98

Table 1. Summary of equations

1-1) equations 2-D equations

1. Coordinate transformation

,(x,t) , = (x.Y,t)

I= t = n(x,y,t)

T t

2. Transformation of derivatives

t ,2 Ft :)2 ) Vat I.)a Et n .2
/,)x 0 La FIiF /ax 0 n a/ac

L3 0/ y o ri L a/nJ

2 (2 2 22
"x + ( x + n) + 2(& n) + (C n )

2 2 IL + (V2&. + (V2n L

where:

t t xXT x - Y nt -xTx - I "

1f y 5 ; --- x

'x Y&T 'y~f

1 1
c= NY

%-y ~%



(a) (b)

(c) (d)

Fig. 3 Two-dimensional inviscid, Burgers' equation
grid plot (a -. 10.0, w - 1.0. A -20.0).

(a) steps - 0, time - 0.00
'b) steps - 5, time - 0.05
(c) steps - 10. time - 0.10
(d) steps - 15. time - 0.15

Note: Dashed lines define boundary of wave
and center of wave.
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Paper 83-0451, Jan. 1983.
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(a) (b)
Fig. 2 One-dimensional inviecid Burgers' equation

grid time history plot.
(a) a - 5.0, w -1.0. X~ 0
(b) a - 10. wi 1.0. A~ 0
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0.0025. As expected, the shock region in these Compared with the fixed grid solution of Figure
figures is better resolved than in the previous lOa, however, the adaptive grid solutions of Fig-
figures, corresponding to a As . of 0.0030. One ures lOb-10d more clearly resolve the upper sur-Mtn face midchord shock wave.
striking difference between these two cases is
near the trailing edge wake area. The adaptive
boundary derivative matching term f3 is included RAE2822 Airfoil Results

in the weighting function F(s) in Figures 8a and
9a, but is not included in Figures 8b and 9b. To further validate the adaption grid scheme,
With f turned on (Figure 8b), the large density it is desirable to compare numerical adaptive grid

3 results with empirical data. Consequently, numer-
solution errors (and presumably all other solution ical solutions were obtained for flow conditions
errors) present in the trailing edge zone of Fig- equivalent to those presented in an empirical
ure 8a appear to reduce to the level of the origi- study by Cook et al.". In that experiment, ex-
nal fixed grid solution (Figure 3a). A disadvan- tensive boundary layer, wake and pressure measure-
tage of function f3 can be seen in the adapted ments were made for transonic flow past an RAE2822

grid of Figure 8b, however. The addition of f airfoil. The particular case selected for numeri-
3 cal comparison corresponded to turbulent steady

into F(s) seems to shear the cells upstream of the flow, with a Mach number M =.73, an angle of at-
trailing edge (i.e., near the boundaries of the tack e3.19

0 
and a Reynolds number equal to 6.52

adaptive domain), more prominently on the lower million. Experimentally, the boundary layer was
surface of the airfoil. Perhaps this can be cor- tripped at a distance of 0.03 chord lengths down-
rected by using a modified form of the function stream of the leading edge. Under these condi-
f 3tions, the boundary layer did not separate from

In an attempt to validate both the location the airfoil, and a weak midchord shock formed on
the airfoil upper surface. Considering these

and strength of the shocks predicted on the adapt- facts and the high Reynolds number of the flow, it
ed grids of Figure 8, the resulting Cp-curves from was reasonable to assume that the flow could be
these grids were compared with data recently gen- modeled by an inviscid approximation.
crated by Coakley"'. Coakley has applied an im-
plicit se(ond-order upwind scheme to the Euler For this reason, numerical solutions were
equations for identical flow conditions past the again generated from Tassa's Navier-Stokes code in
NACAO012 airfoil. The C-type grid used in that the Euler mode. Except for the angle of attack,
study was of nearly the same dimensions as the which was reduced to a=2.57

0 
from a wall interfer-

test grid of this study, although grid point clus- ence correction formula suggested by Cook et al.,
tering near the shock region was slightly higher and except for the Reynolds number, flow condi-
on Coakley's grid. tions used were identical to those if the experi-

ment. The inner detail of the initial grid used
Due to the differences of the finite differ- for these results is presented in "igure lla.

ence structures employed in each method, it was Only the steady-state solution was of interest, so
anticipated that an implicit upwind scheme would the solution was advanced from impulsive free
better resolve a shock than an ADI-type scheme on stream conditions using variable time steps, and

* similar grids. The curves in Figure 10a show this was seen to converge after several hundred inte-
to he the case. As expected, a well-defined shock grations. The density contours for this case,
is observed in Coakley's data, but not in the data presented in Figure 12a, give no indication of any
from the original grid. The Cp-curves correspond- shock formation. With hopes of defining a shock,
ing to the adaptive grids of Figure 8, however, the flow field was solved again i..om an impulsive
more closely resemble the data from the upwind
scheme. In fact, in Figure 10c, (Asmin = 0.0025), start, this time with the adaptive grid solver em-

ployed after every 20 iterations. The minimum
the Cp-curves match remarkaly well, particularly spacing constraint was set at s. =0.005, and
in shock locations, which differ by as little as bohfntin n fwr undof h

two per cent. There is also good Cp agreement in both functions f2 and f3 were turned off. The

Figure lOc downstream of the shock and on the low- converged adaptive grid for this case is shown in
ar airfoil surface. Figure llb. The large Asmin constraint selected

The most disconcerting region of the adaptive here prohibits grid point clustering to the degree

grid Cp curve spans from the leading edge to the seen in previous NACA0012 cases. Nevertheless,

shock on the upper surface. The discrepancy in Cp aside from the leading edge region, the highest

values indicates that the adaptive grid Euler flow point density appears to be just downstream of the
above the airfoil does not accelerate to the Mach upper surface midchord region. As before, this
number realized with the upwind scheme. Assuming high clustering region corresponds to a shock
that this problem was due to truncation errors in- wave, seen in Figure 12b.

duced by insufficient point clustering at the
leading edge, an additional adaptive grid run was The numerical and experimental results of this
made, with Asmin = 0.0025, and with function f flow are presented together in Figure 13. The

first of these figures compares empirical surface
Adaption to grid curvature was included to bring pressures with numerical surface pressures ob-
more points to the leading edge. As seen in Fig- tained on the original grid. Outside the first 20
ure 10d, with higher leading edge clustering, the per cent of the airfoil, the empirical and numeri-
Cp curve more closely matches Coakley's data, al- cal curves do not compare very well. Figure 13b
though there is an overshoot in pressure just be- compares the experimental data with the solution
fore the shock on the newly adapted grid. Note obtained on the adapted grid of Figure 12. The Cp
also the difference in the trailing edge Cp curves curves compare very well along the entire lower
of Figure lOr and lod. This is attrihbitable to surface of the airfoil. In addition, the loca-
function f which is used only in Figure 10c. tions of the shock are in very near agreement. As

7
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Th, practicality of a I-dimensional adaptive Based on Grid Speeds." AIAA 83-1931.
grid scheme applied to a 2-dimensional transonic Presented at the AIAA 6th Computational
airfoil problem has been demonstrated in this Fluid Dynamics Conference, Danvers,
work. Advantages of a l- scheme are numerous. Massachusetts, July, 1983.
Besides being easy to formulate and easy to under-
stand, this algorithm can be attached to an exis- 4. J. U. Brackbill. "Coordinate System
tent code with relatively few problems. Addition- Control: Adaptive Meshes." Symposium on the
ally. the added computational effort needed for Numerical Generation of Curvilinear
the schnme is minor. One run through the adaption Coordinate Systems and use in the Numerical
subroutine took less CPU time thai, one half of one Solution of Partial Differential Equations,
tim' integrationi st.vp. With the adaptive rontine Nashville, Tennessee, 1982.
utiIi zedl after "very 21) to 301 iit.,gratioll steps,
the increase in CPU time was only about. two per 5. J. Saltzman. "A Variational Method for
cent. Furthermore, solution convergence rates Generating Multidimensional Adaptive Grids."
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when a solution was run with a fixed At time step. Computing Laboratory, New York University,

February, 1982.
Unfortunately, there also disadvantages of a

I-D adaption scheme oil a 2-D problem. The fore- 6. H. A. Dwyer. "Grid Adaption for Problems
most problem is that in the equidistribution for- with Separation, Cell Reynolds Number,
mulation, the final grid point spacing along one il Shock-Boundary Layer Interaction, and
* constant curve is almost totally independent of Accuracy." AIAA 83-0449. Presented at the
the adaptive distribuition of every other curve. AIAA 21st Aerospace Sciences Meeting, Reno,
As a result, grid intersections are rarely orthog- Nevada, January, 1983.
onal, and sometimes become so skewed that the so-
lution diverges. Grid skewness is evident in Fig- 7. P. A. Gnoffo. "A Vectorized, Finite-Volume
ure 3b, and to some extent, in Figure 8a. Near Adaptive Grid Algorithm Applied to Planetary
the airfoil leading edge, where arc curvature is Entry Problems." AIAA 82-1018. Presented
at its highest, skewness often became a problem. at the AIAA/ASME 3rd Joint Thermophysics,
With the skewness came large solution errors, Fluids, Plasma and Heat Transfer Conference,
which induced even more skewness, due to the form St. Louis, Missouri, January, 1981.
of the selected weighting function F(s). It was
almost always necessary to use conservative 8. D. A. Anderson, J. C. Tannehill and R. H.

* (large) values of As . to insure a convergent Pletcher. Computational Fluid Mechanics and

adaptive grid. Because of this inherent skewness Heat Transfer. Hemisphere Publishing
problem, a technique which enforces orthogonality Company, New York, New York, 1984.
at the grid intersection would be highly desira-
ble. 9. Y. Tassa. "An Implicit Method for Solving

the Navier-Stokes Equations with Application
Finally, as mentioned earlier, grid speeds in to Shock Boundary Layer Interaction."

the transformed eqfiations of motion were set equal Lockheed Georgia Report LG79RRO0l, 1979.
to zero in this study, and as a result, the solu-
tion vector was interpolited after each adaptive 10. J. L. Stager. "Implicit Finite Difference
sweep. Neglecting grid speeds prevented time-ac- Simulation of Flow About Arbitrary
curate solutions from being obtained, however. If Geometries with Application to Airfoils."
the grid speeds were indeed cal,.ulated from back- AIAA 77-665. Presented at the AIAA 10th
ward differences and included in the equations of Fluid and Plasmadynamics Conference,
motion, time accurate convergence rate studies Albuquerque, New Mexico, June, 1977.
could be made, and the true effect of the adaptive

scheme on total computational time could be

detotrmined.
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L Fig 8 NACA0012 airfoil adaptive grids m

a, As 0,03 b. As -0.0025

in min

g 9\ NAA01 airfoil densit cotor
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a. Original grid b Asmin 0.0

Fig. 11 RAE2822 airfoil grids
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a. Original grid b. Asmin -0.005

Fig,, 12 RAE2822 airfoil density contours
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