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ABSTRACT

Work performed under Grant AFOSR-83-0167 is summarized in this re-

port. A review of the original goals is presented, new directions and

ideas are included, and significant accomplishments are listed. This

report covers research completed under funding intended for the first

year of a three-year program. The original grant period was interrupted

at the end of the first year because the principal investigator trans-

ferred from Iowa State University to the University of Texas at Arling-

ton. Papers published with support from this program are listed and in-

cluded as an appendix to this report.
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1. INTRODUCTION

The application of finite-difference methods in numerically solving
partial differential equations governing fluid flow has become increas-
ingly commonplace over the past two decades. Early work was concentrat-
ed on solving simple linearized equations for very simple geometric con-
figurations. As computers became more sophisticated, algorithms were
improved and applications to more complex probleus were attempted. To-
day, most companies and government agencies with interests in fluid dy-
namics have in-house capabilities for solving flow problems using numer-
ical techniques.

Even though complicated problems can be solved, there are still a
number of pacing areas that are crucial in the computational fluid dy-
namics field. One of these areas, mesh generation, is perhaps one of
the most important topics needing further development if continued prog-
ress is to be made. In fact, coordinate system selection and grid gen-
eration are probably the most important topics requiring study if con-
tinued advances in digital simulation of fluid flow around flight
vehicles are to be made.

While a number of problems in grid generation for different geome-
tries can be identified, the placement of grid points in order to ade-
quately resolve a flow and provide a reduction of global error in a nu-
merical calculation is of major interest. Since the solution of a
particular flow is not known a priori, the grid points cannot be placed
in the best positions before the calculation is complete. Consequently,
it is advantageous to adjust the grid point locations in such a way as

to provide the best solution as the computation progresses. This idea




of adaptive grids was the subject of AFOSR Grant-83-0167, "Application
of Adaptive Grids in Solving the Partial Differential Equations Govern-
ing Fluid Flow."

The original proposal for work under this program was based upon ap-
plying the equidistribution concept for generating grids to two- and
three-dimensional problems. The technique applied by Rai and Ander-
sonl"2 was selected as a candidate method. This method was used in ear-
.y experiments in two-dimensions for small amounts of grid adjustment
with good success.

Early in the program, several example calculations were completed for
high values of grid adaption with the Rai and Anderson scheme. For
large adaption rates, severe grid skewness was encountered. The one-di-
mensional method employed by Dwyer et al.2 was also extended to two di-
mensions. Similar examples were tested with this scheme and severe grid
skewness also resulted for large adaption rates. Faced with severe grid
distortion in the multidimensional case, a new way of creating an adap-
tive mesh was needed. Not only must the technique be capable of provid-
ing the desired grid adaption but some positive method of grid skewness
control is necessary. It is now accepted by researchers that any method
for generating an adaptive grid without an active skewness control will
ultimately fail in two or three dimensions.

Faced with this mesh control problem, it was necessary to review the

fundamental concept of equidistribution of a weight function over an

area. This concept was retained as the main idea in the generation of .;Qj:

an adaptive grid. However, it was clear that the relationship between ﬁzfi

the weight function and the mesh skewness must be developed. Research T




on this issue progressed until an explicit formulation relating the an-
gle between mesh lines to the weight function was developed. This also
lead to a simple way of generating an orthogonal grid for two dimen-

sions.




2. SIGNIFICANT MILESTONES ACHIEVED AND STATUS OF RESEARCH
UNDER AFOSR GRANT-83-0167

2.1 Milestones
During the present program, a number of important contributions were

made in the understanding of adaptive grids.

1. 1In an invited review paper presented to ASME,* a number of
methods for creating two-dimensional mesh systems were shown to be
virtually the same. These schemes are based upon the concept of

equidistribution of a weight function over an area.

2. At the same time it was shown that all schemes for generating

an adaptive mesh without an active skewness control will fail.

3. Recently, the direct relationship between the skewness of mesh
lines and the weight function was demonstrated.® This shows how
the grid distortion can be controlled while still providing an

adaptive grid.

2.2 Status

At the time of the termination of this program, the concept of con-

structing a two-dimensional grid based on equidistribution was well es-
tablished. 1In addition, the coupling between grid adaption, skewness, %;;fﬂ
and weight function was well understood. A series of nhumerical experi- T 1
ments is needed to demonstrate that grid adaption and control can both
be attained for two-dimensional grids. This demonstration would pave

the way for practical application to the equations governing fluid flow.
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In reviewing the goals and proposed methodology for attaining the
goals of this program, few changes were required. The necessary changes
in approach were a result of knowledge gained as research results were
obtained. Continued research on adaptive grids using the ideas devel-
oped on this program should provide a practical method that can be ap-

plied to useful problems.
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of grid smoothness is invoked, an approximate expression
for the error terms can be derived in terms of the co-
efficient matrices of the original system and the errors
incurred in forming the first derivatives of the depen-
dent variables. These error expressions are weighted
averages of all the contributions of the governing
equations for the fluid flow problem.

AREAS OF CONTINUED AND FUTURE RESEARCH

A number of problem areas need considerable work
in order to create adaptive grid schemes which are
readily applicable to a wide class of problems. These
areas include the following:

1. Better estimates of numerical error are nec-
essary for use in those adaptive methods which attempt
to reduce the error in the solution.

2. Additional effort must be expended in gaining
an understanding of how points are allocated in dif-
ferent regions for two- and three-dimensional problems
for a given grid adaption scheme.

3. New methods for controlling point motion while
still providing sufficient adaption should be developed
for the various schemes.

4. Application of existing adaptive methods to
three-dimensional problems should be encouraged because
the largest gains in computational efficiency will be
realized in these cases.

Research in adaptive grid schemes has really
received emphasis during approximately the past five
vears. Fresh and innovative ideas are needed for con-
struction of better approaches to the problems in this
area. Researchers should be encouraged to thoroughly
explore any idea that may have an impact on the devel-
opment of new, successful techniques.
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GRID POINT CONTRCL AND GRID ADAPTION

One of the must difficult problems encountered in
using adaptive grids 1s that of qrid point control.
This problem 1s not severe in one-dimensional adaption
but 1s much more acute 1n multidimensional applications.
In the variacional formulation of Ref. 7, grid control
was a consideration in the construction of the method.
The problem remains in selecting the values of X that
are used to provide the contributions due to smoothness,
orthogonality, and adaption. In order to provide suf-
ficient adaption, high grid skewness may be encountered.
Computed results show that a direct trade-off exists
among the various terms in the grid generator. Once
again, the problem of selecting certain parameters
before the solution 1s obtained occurs.

In Dwyer's (8) recent paper, he describes a tech-
nique of predetermining the percentage of mesh points
assigned to grid adaption. In this paper, a one-
dimensional adaption technique was used simjlar to that
in Eq. (29). The weight function used was of the form

w=1+bi%~§ (60)

1

where b is a constant and f is the function which is
monitored and used for adaption. The ratio, R,, is
formed by computing the relative contribution “of the
grid adaption to the computational coordinate and is
given by

max .
I Bt
Ry = b % S (61)
max .
C{ {1+ hl%{;' Jds

1f the ratio R; is held at a fixed value during a cal-
culation and the value of b 1s determined from Eq. (61),
the relative weight placed on adaptivity in the mesh
remains fixed. This mechanism provides some control on
the assignment of mesh points to different areas of
interest in the problem. A similar division can be
used in conjunction with the inverse adaption scheme

of Iy. (24).

Grid point control for other schemes such as that
of Fai and Anderson is achieved by logic built into the
adaption algorithm as opposed to the governing equations.
For example the constant ¥ in the one-dimensional grid
speed equation [Ey. (57)] s continuously adjusted
during the numerical computations to prevent the maximum
grid speed from exceeding a predetermined value. An
additional constraint is placed upon the grid speeds
when the grid points are closer than a specified value.
To prevent excessive stretching, the grid speeds at
those points are attenuated by the factor

2

—l/x&
X = X e
cal

where X,
cal
speed equation.

1s the grid speed computed from the grid

This prevents grid speeds from being
excessively large in regions where point density is high
and provides good control of the grid point motion.

Another question closely associated with grid point
control is that of attempting to define appropriate
functions to use in the adaption process. For example,

what is the best choice of the weighting function in the
varjational schemes and what is the best choice for e

in Eq. (57)? This question is not easily answered even
when a single scalar equation is used.

In viscous problems, resolution of viscous regions
is probably best accomplished by keeping the cell
Reynolds number less than one. This provides a well
defined viscous layer where first-order upwind schemes
will not produce large artificial diffusion and an
oscillation free solution will be obtained when higher-
order schemes are used. In principle, any function
which would permit clustering, such as gradient infor-
mation should provide adequate adaption. Numerous
researchers have used second derivative information.

In Ref. 8 a nonlinear combination of first and second
derivatives has been used while second derivatives have
also been used in Refs. 5 and 21. White (28) has used
curvature of the solution for the clustering function
and has shown good results for a scalar equation. It
should be noted that a second derivative clustering
function can be viewed as a first approximation to the
curvature.

For each grid adaption scheme and each problem, the
choice of a grid adaption function may be different.
For example, the choice of gradient alone for the weight
function w. in Eq. (22) would not be satisfactory.
Methods based upon this expression would produce grids
with no mesh points in uniform regions. On the other
hand, gradient may work well in the two-dimensional
application of Eq. (18) because measures of grid smooth-
ness and orthogonality are also included.

As previously noted, the lowest-order error term
of the modified partial differential equation was used
to drive the grid in Refs. 20, 21, and 22. This exrror
term involves a third derjvative assuming a second-order
method is used. Numerical evaluation of the third
derivative (or any higher-order derivative) is generally
very noisy. As a result, data used to evaluate deriv-
atives is smoothed to prevent feedback into the grid
motion. If the assumption of & very smooth grid is
made, the error can frequently be approximated with
lower-order derivatives.

When systems of equations are solved or physical
problems are studied where the resolution of more than
one physical event is necessary, additional difficulties
are encountered. In Ref. 8, the problem of flame propa-
gation about a spherical particle in the presence of a
low Reynolds number Stokes flow was studied. In this
case, resolution of both the viscous regions and the
laminar flame zone is desired. The grid adaption func-
tions should include contributions which would resolve
both the flame front and the viscous region. In this
case, the problem was solved on two grids and the solu-
tion was determined by interpolating between them. The
two grids showing details of each region are shown in
Figs. 19 and 20.

A one-dimensional inviscid shock tube problem was
studied in Ref. 16. 1In this example, a reduction of
the truncation error in the modified differential equa-
tion was desired. An adaptive grid was used and the
grid driving function (w. ) was selected to be a linear
combination of the error terms from each of the governing
equations. A more analytical approach to the deriva-
tion of the function used to drive the adaptive grid
was taken in Ref. 5. The Euler equations in multidimen-
sional space were under study and expressions for the
error terms in Eq. (58) were needed. When the assumption




a rectangle in computational space. Since the grid is
three sided in physical space, a geometric singularity
is shown on the shock wave. It should be remembered
that the grid point locations for this scheme are com-
puted by integrating the grid speeds instead of solving
the steady grid equation.

Hindman and Spencer (15) have continued this ap-
proach and have considered the one-dimensional grid
equation

(54)

Again, the grid speeds arc established by differentiating
this e€Xprussion with respect to 1. The P function was
selected {(at least for one case) so that Eq. (51) was

consistent with Eq. (42). The form for P becomes
ag, 1
P=1+q;-2— (55)
€

Figure 14 shows the time history of the grid motion when
the inviscid Burgers' equation is solved using a single
discontinuity for initial conditions. MacCormack's
scheme was used to integrate both the equations of
motion and the grid speeds. ‘The main result of interest
in this figure is that the grid tends to relax as time
increases. This can be avoided by solving the steady
grid equation after a predetermined number of steps and
interpolating the solution on the new grid.

Rai and Anderson (20,21,22) and Anderson and Rai
(3,4,5) have constructed an adaptive grid scheme using
a different approach from those discussed above. This
method also determines the grid speed and the grid
point locations are established by integration. A
much simpler grid speed expression than that used in
Ref. 14 was developed. The method is based upon an
attraction model. It is assumed that the best grid for
a given problem is one where the solution error at
every point reaches a constant value. In creating this
grid, more points are needed in regions where the error
is larger than the average and fewer points are needed
in regions where the local error is smaller than the
average value. This leads directly to the idea of
assocliating a capacity to induce velocity with the local
error at each point. For two points, A and B, the grid
speed induced at point B due to an error at point A is
written

v (56)

where ¢ represents the local error, av indicates average
value over all points, ryp is the distance from A to B
in computational space, K is a proportionality constant,
and n is a power which controls the attenuation of the
attraction with distance. For a one-dimensional problem,
the grid speed in physical space becomes

- ! j - -
x = e N ([eix [L'av)_ il (,eli Ielav)
1, & LG n . n
i = =1 PR
3j xj i=j+1 ri,j i tl,]

(s7)

Grid peoint positions produced by integrating Eq. (57)
must not cross. In this scheme, grid points do not

cross for sufficiently small time steps because the local
value of the error will be less than the average value

if points are very close together. This creates a sign
switch on the grid speed (repulsion). As points approach
each other the term Ex becomes very large which makes
further movement of the grid points very difficult. The
constant, K, in Eq. (57) is adjusted to scale the grid
speed to a predetermined maximum value during the calcu-
lations.

The driving function used to establish grid point
motion using this scheme (|e| - Je| ) can be based on
error or the gradient of any flow variable or any other
function which provides the desired attraction. A num-
ber of error measures were used to drive the grids in
Refs. 5 and 21. 1In general, the form of the error was
established by using an approximation to the lowest-
order error term of the modified partial differential
equation. Thompson (24) suggests that the grid solution
obtained using Eq. (57) is equivalent to solving a
variational problem by an iterative approach. In this
case, the variation of lel - lejay is minimized over the
field. This corresponds to the weight function vy in
Eq. (22).

In order to provide a smooth grid at the boundaries,
a reflection at the boundaries in the computational
domain was used. For example, at the right-hand bound-
ary, § = 1 and £, = 0. However, if this condition is

explicitly used, sometimes the grid will not be smooth
near this boundary. If a series of points are reflected
and have an error measure assigned to them in such a way
that (££)E = 0 when computed from the grid equation,

=1

the boundary region will have a very smooth grid. The
influence of this reflection is in the value of n, along
the boundary. This value and the resulting point ioca-
tions are very sensitive to boundary point treatment.

Figure 15 shows the converged adaptive grid gener-
ated for the supersonic blunt body problem in two
dimensions. Figure 16 shows the difference between the
total enthalpy at the cylinder surface as computed from
the numerical sclution and the free stream value. Since
this is an inviscid calculation, this is a measure of
the solution accuracy. Error in total enthalpy is
significantly reduced when an adaptive grid is used.

A technique for aligning a grid with a high gradi-
ent region is presented in Refs. 5 and 22. This tech-
nique was developed for use with shock capturing methods.
It is well known that shock aligned coordinate systems
permit much better computation of shocks with these
methods because the flux terms are then continuous
across the shocks. Shock alignment is accomplished by
creating a grid speed in a two-dimensional problem along
only one of the coordinates. This grid speed is propor-
tional to the product of the gradient of gome property
of the solution (density, pressure) along both the £ and
N directions. The result is an effective rotation of
the coordinate line segments in such a way as to line up
with level surfaces of h, Again, only movement in cne
coordinate direction is necessary in a two-dimensional
problem. Figure 17 shows the converged grid for an
oblique shock and the pressure distribution for both
shock capturing on a uniform grid and an aligning grid
is shown in Fig. 18. The quality of the solution is
dramatically improved when the aligning grid is used.




where it is assumed that

|9€lA€ -29g >0

In regions where this is not true, any positive value
of a satisfies the condition on grid crossing.

In Ref. 17 an adaptive grid generation scheme is
proposed which for one-dimensional problems is of the
form

Xee + ATFXE =0 (44)

where A is a positive constant and T is some nonnegative
function of the solution. In the context of Eq. (22),
this can be interpreted as a scheme which is similar to
either Dwyer's or Gnoffo's method with the weight func-
tion defined as

£
i AT€x€d£
v = e (45)

The two-~dimensional formulation of Eq. (44) is of the
form

v As,
(46)

vn = BT,

The equations which are solved in the computational
domain are
2
ax -2 + yx_+ J [AS.x. + BT x 4}
€€ Bx&n n [EE nn]:
(47}

2
QYEE - ZBYEH + yynn + J [Asﬁyi + BTnyn] =0

where the coefficients a, 8, and y are functions of the
metrics, and S and T are the grid adaption functions.
As in the one-dimensional case, an estimate of the up-
per limit for A and B can be established by requiring
that grid lines be noncrossing. These estimates are

A< 2/(v[s [a8)
’ (48)

B < 2/(a{-r"{An)

The potential flow about a cylinder was computed
in Ref. 17 as an example using the adaptive grid scheme
in Eq. (46). Figure 11 shows the error between the
exact and computed solutions for the surface potential
for a nonadaptive conformal grid and an adaptive grid.
In general, an adaptive grid provides solutions which
exhibit lower error. 1In this case the S and T functions
were defined as

S = (¢'X)E’{

T= (¢ - x)nn

and ¢ is the disturbance potential.

All of the methods discussed thus far have relied
upon solving a steady grid equation to determine the
grid point location. The grid speed is determined by
using a backward difference using the computed mesh
point location and the previously known positions.
Hindman et al. (14) developed a technique of computing
the grid speed directly from the grid generator. The
ides is to evaluate the time derivative of the steady
grid generation equation and solve this equation for the
grid speeds. In principle, this idea is applicable to
the methods for creating an adaptive grid presented
above.

If the Thompson scheme is used as a starting point,

the equations which determine the mapping relating
physical and computational space are

VZE-P
Pn=9

In the computational domain these equations become

(49)

G{x] =0
(50)
Glyl = o0
whexe the operator G is defined by
2 2 2

3 el 9 2f 3
Ge=q-— - 28 +——+J[p——+Q—— (51)

852 969N 8n2 ¢ an

and o, B, and Y are the usual functions of the metrics.
Solution of Eq. (46) provides the grid point locations
at any time, The grid point speeds of boundary points
are usually obtained from shock relations or other
expressions which must be satisfied. The interior grid
speeds (x;, y;) could be obtained from backward diffex-
ences as noted previously, but a better approach may be
to differentiate Eqs. (50) with respect to T. This
yields a system of equations of the form

1% =2 (52)
where
T
2= (xT. y1>
and
> 2 T
r= -3 ‘PTXC + QTXn' PTyE + ern) (53)

The solution of Egq. (52) yields the interior point grid
speed necessary to advance the governing equations of
the fluid flow problem. If P and Q are selected tc be
functions of the solution of.the flow equations, the
grid adjusts adaptively through the time derivatives of
these terms. The boundary grid point speeds influence
the interior solution through the boundary conditions
on the system of equations.

In Ref. 14, the P and Q functions were set egual
to zero providing grid and grid speed solutions which
did not adapt to internal flow changes but only to the
boundary motion. Figure 12 shows the geometry of the
grid produced for solving the problem of a planar shock
wave passing over an inclined ramp. Figure 13 shows the
grid used to solve for the inviscid supersonic flow over
an ogive. This grid in physical space is mapped into
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Replacing the derivative with respect to s in Eq. (31)
results in the expression

(xz+yz)(x

£ = (32)

Yn
7 3
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13
2 2 3 3 s
[(xn+yn) 5T - (xExn + ygyn) Tn][—wl] =0 (33)

This expression can be expanded and becomes a second-~
order d.fferential equation in x and y. The companion
relationship along constant § surfaces can be derived
in the same manner.

The inverse relationship corresponding to Eq. (29)
may be written
IE
o
max £
max 1 at

"

|~

ag

%

1 (34)

C

The differential equation satisfied by $ corresponding

to Eq. (30) is
?_ (w.s
5 (0Sg) = 0 (35)
or
SghE _
Sgg * w, (36)

In this case, the partial differential equation
which must be satisfied is easily recovered using the
fact that

2 2
SC- x£+y€ (37)
The governing expression becomes
w
2,2 "1
-2 2
XeXee * Ye¥eg + (x£+y£) . (38)

While the author has not carried out the algebraic
manipulations (lazy) required in Eq. (33), it is not

apparent that the result would be equivalent to Eq. (38).

It should be noted that Eq. (38} is the expression
which is valid along an n = constant surface. The
companion expression valid along a constant { surface
may be written directly as

Y.y (39)

w
2,2 2n
+ + 0
nn (xn y ) a0 "

v

It is of interest to consider the grid adaption
scheme resulting from the simultaneous solution of Egs.
(38) and (39) and some examples were studied. The

weight functions w; and w, were selected to be of the
form

x_X +
nnn

w, =1+ a[ugl (40a)

1

wy= 14 biunl {(40b)

and the grid adaption was implemented for a specified
function u(x,y) on a grid which is 21 x 21 in dimension.

Fiqure 6 shows the results for specifying u(x,y)
to be a function of x only. As expected, the grid
adjusts only in the x direction and no changes occur
along the y coordinate. The clustering is achieved
using u(x,y) = 1 for x < 9 and u(x,y) = 0 for x > 11.
The function, u(x,y), was selected to decrease linearly
from one to zero from x = 9 to x = 11. The two bands
of clustering which appear in Fig. 6 are due to aver-
aging used on the grid point calculation. The aver-
aging gives the effect of using a second derivative for
clustering in this case. If no averaging is used, the
grid clusters between x = 9 and x = 11 where the deriv-
ative Ju/@x attains a maximum.

Figure 7 shows the grid resulting from applying
the adaption routine for a u(x,y) which varies linearly
from one to zero but this variation occurs about the
symmetric straight line

y = 2.5x -~ 15

passing through the domain. The value of u is taken to
be either zero or one outside this small two-unit wide
region. 1In Fig. 7, b = 0 and the attraction is only
along the N = constant surfaces. In this case, we see
that the adaption in the N direction also creates a
contraction along the § = constant lines. This is a
result of the coupling between the two directions. A
case which includes adaption in both directions is
shown in Fig. 8. Additional cases with the correspon-
ding u(x,y) are shown in Figs. 9 and 10. The function,
u(x,y), was set equal to one above and zero below a
sinusoidal surface which shows up very well in these
grid plots. This function again decreased from one to
zero over a two Ay interval in the y direction. The
grid distortion problems inherent with this scheme are
apparent in these results., Notice that the grid becomes
distorted all along the dividing surface of u(x,y) but
is much worse where the sine wave slope is roughly at
equal angles to the x and y axes. At points in this
neighborhood, clustering along both directions creates
severe strain of the area elements and leads to the
distortion shown in Figs. 9 and 10.

The adaption process works well for thege cases,
but it is difficult to estimate the proper values of
a and b unless some numerical experiments are performed.
It should be noted that the definition of the transfor-
mation implies that arbitrarily large values of a and b
can be used. Due to the discretization of the differ-
ential equation, the clustering constants a and b can
not be arbitrarily large, Mastin and Thompson (17) have
shown that for a one-dimensional problem

Ixgel < 21xglrot (a1)
in order to prevent the grid lines from crossing. For
the differential equation

ag,.x

b .
xCE + T5 e 0 (42)
this leads to a bound for the constant, a, which may be
written

(43)
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Many applications require grid adaption in only
one dimension. For this reason, it is worthwhile to
consider minimizing the functional, Iv' defined in
Eq. (14) specialized to one dimension.

I, = fwxgdx (19)

The Euler-lagrange equation may be written

(-t )(82) -

In this case, a first integral may be directly written
as

wxz = constant = Cl (21)

or

Y w xg =C (22)

= wlxﬁ
This expression states that the product of the mesh
spacing and the weight function, w;, should remain con-
stant in physical space. Eguation (22) may be inte-
grated to obtain the expression for either the physical
coordinate in terms of the computational coordinate or
vice versa. Let x = 0 when £ = 0 and x = xp,, when

£ = Emax- If Eq. (22) is integrated and the computa-
tional coordinate is determined,

X
w.dx
['w

3 (23)
max / max

£E=¢
wldx
o

and if the physical coordinate is evaluated one obtains
the equation

XK F———— (24)

Equation (23) is exactly the expression used by
Dwyer {8) and Dwyer et al. (9,10). Many of the appli-
cations of this law for grid adjustment have been in
combustion and heat or mass transfer and the results
have been very good. 1In Dwyer's formulation, the
weighting function w. was selected to be a linear com-
bination of derivatives of temperature or some other
pertinent variable of interest, i.e.

2
ar 3°T
w-1+ag=1+a|—,+bl——|] (25)
1 [Z)x ax2

The results of applying Eq. (23) with the weighting
function of Eq. (25) with b = 0 from Ref. 10 is shown
in Figs. 4 and 5. 1In this problem, the equation for
unsteady heat conduction was solved on the domain shown
with the temperature gset equal to zero everywhere. At
t = 0, the temperature was raised impulsively to a con-
stant value on the lower boundary and held at a fixed
value. Figure 4 shows the isotherms and the grid at an
early time showing the high temperature gradients near
the lower boundary. As time increases, the heat flow
into the domain can be observed in both the isotherms
and the grid geametry of Fig. 5.
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Equation (24) is the integral form of the discrete
adaptive grid scheme proposed by Gnoffo (12,13). Gnoffo
has used this adaptive grid generator while solving the
Navier-Stokes equations with a weight function based
upon monitoring either Mach number or velocity gradient,
i.e.

w - 1+ ag (26)
vwhere
aM
- |2 7
y = |5 @n
or
av
9= g (28)

Calculations of the flow over the Viking Aeroshell
vehicle using this scheme are presented in Ref. 13.
Good results were obtained in the cases reported and
sufficient grid adaption was used to adequately resolve
the viscous layer.

The adaptive grid calculations cited from Refs. 10
and 13 are for adaption along either a constant £ line
or a constant N line. These one~dimensional calcula-
tions can be achieved using either Eq. (23) or Eq. (24)
if x is replaced by S where S is arc lenqth along either
constant £ or constant N lines. In addition, S can
only depend upon one computational coordinate. For
instance, if S represents arc length along a constant
n line, then S is assumed to only be a function of .

In this case, the Dwyer method and Gnoffo's approach are
identical. However, if arc length along { or n surfaces
in physical space is considered to depend upon both
coordinates, these methods are not the same.

In particular, suppose the analog of Eq. (23) along
an N = constant surface is written

S
f wlds
Eo by = 129)
f nax w ds
1
o

If a derivative is taken with respect to S, this expres-
sion becomes

—_— - —— (30)
w

where the right-hand side only depends upon the arc
measure along the congtant § surfaces. Differentiating
again yields

o (ae) -0

w
£ - -8 1s (31)

The identity relating Es and the usual coordinate
metrics is

AT S At hrintiary




ADAPTIVE GRID SCHEMES

Brackbill and Saltzman (6,7) and Saltzman and
Brackbill (23) have extended Winslow's method (29) for
generating a computational mesh to include grid adaption.
In this approach, a variational technique is used to
minimize a linear combination of a measure of grid
smoothness, orthogonality, and volume (area) variation.
The smoothness is measured by integrating the change
of the computational coordinates over the physical
domain angd for two-dimensions may be written

1= [ 1e? + om?lav ™
D

where dV represents differential volume in physical
space and D denotes the physical domain. The smoothest
mapping between the physical and computational domains
is obtained by minimizing I_ alone. The result is
that Laplace's equation for the computational coordi-
nates, £ and n, must be solved to determine the trans-
formation.

The transformation which minimizes Ig is obtained
by solving the Euler-lLagrange equations. Equation (7)
is first written as an integral in computational space
using the identities

b = yn/J ' Ey = -xn/J ;N = -yE/J ' ny = xg/a (8)

J=x -x (9)

£¥n T *nfg

Equation (7) then becomes
2 2 2 2
+ + + ata
(xg X+ ¥ Yn) £dn
-3 J

D)

(10)

where D, indicates integration over the computational
domain.” The Euler-Lagrange equations for this varia-
tional problem are

X2+x24' 2+ 2
a3 s 3 3 \ (Xt Yerta)
3x df Ix Bnaxn J

x2 + xz + yz + yz
(a_-a_a__a__a_) £1 M Y ) aa

1f the indicated differentiations are carried out in
Egs. (11) and (12), the familiar form of the LaPlace
grid generator in the computational domain is obtained.

In addition to a smoothness requirement, control
of mesh skewness is obtained if a measure of grid
orthogonality is included. This orthogonality mesasure
1s provided by the integral

1= [ (vg - ymislay (13)
° b

or in computational space

2
1 - !j)j (xpx, + ypy,) dé€an (14)
1

The grid adaption is provided by minimizing a weighted
average of the volume variation over the field and an
appropriate integral is

1= [ wiav (15)
v
D
or
2
1, = [wiav (16)
b

whexre W is the weighting function which produces the grid
adaption. Clearly, an adaptive system is obtained if
the product of a positive weight function and the cell
area is held at a fixed value over the physical domain.

In order to incorporate smoothness, orthogonality
and adaption in the grid generator, the linear combina-
tion of the integrals given in Eqs. (10}, (14), and (16)
ia written as

I - 1s + Avxv + AoIo (17)

If the BEuler-Lagrange equations for minimizing Bq. (17)
are derived, they are of the form

2
J" aw
byXeg + DpXep * PyXpn * ) Ypr * %0 * 33 T " 2w 5x

(18a)

J° 3w
33%mn * C1¥ee * S2¥en * S3¥nn T 2w By
(18b)

llxgg + lzxgn +

where the a;, bi' and c; are functions of the weighting
coefficients, ) "and A .and the metric coefficients of

the transformation. The values of a;, b;, and c; are
given in Ref. 7 and are not repeated here. The mesh
which is generated when Eqs. (18) are solved can bu:
varied by adjusting the weighting coefficients. For
example, a large value of Av will provide more adaption
in the grid with less emphasis on orthogonality and
smoothness.

Pigures 2 and 3 show the pressure contours and the
adaptive grid for the inviscid supersonic flow over a
forward facing step. The similarity between the pres-
sure contours and the mesh is quite good. 1In this case,
the weight function for grid adaption was taken to be
the square of the magnitude of the pressure gradient
djvided by the pressure. If one is interested in
tracking a shock, this is a reasonable choice. Strictly
speaking, the shock wave in an inviscid flow is a dis-
continuity and even with grid adaption, the shock
mathematically still should occur between two grid
points. Of course, the shock is given a pseudo-viicous
profile through the introduction of artificial viscosity
either by smoothing the data or by the form of the algo-
rithm. In this case a flux-corrected transport scheme
was used. This provides a smooth shock profile in the
solution.

The extension of the varjational approach to three-
dimensional problems is straightforward. padditional
terms must be added to include the third dimension but
conceptionally the approach is the same. Saltzman and
Brackbill (23) have presented several examples of three-
dimensional adaptive grid calculations and include mesh
genexration for a wing-fuselage junction.
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another good reason for using an adaptive grid. Of
course, the ideas of resolving regions of rapid change

in dependent variable and reducing error are not mutually

exclusive. The largest numerical errors are usually
found in regions where the solution is changing most
rapidly.

The idea of an adaptive grid implies th. . the
solution of a partial differential equation is being
computed using some sort of iterative or marching
technique For hyperbolic or parabolic problems, the
solution is computed by advancing in space or time and
adjusting the grid as the solution progresses. For
elliptic problems, a relax.tion procedure provides
intermediate results which are used to adjust the grid
point positions. A simple linear equation can be used
to illustrate some of the considerations that must be
made in employing a solution adaptive grid.

When a partial differential equation is transformed
from physical to computational space, the metrics of the
transformation and the grid speeds appear in the equa-
tion. These additional terms must be evaluated in order
to solve the differential equation written in computa-
tional coordinates. As an example, the firat-order wave
equation may be written

Myl g (1)

where u(t,x) is the unknown dependent variable and ¢ is
a constant wave speed. For this one-dimensional example,
let the transformation relating the physical and compu-
tational domains be written

1=t
(2)

& £(x,y)

where 1 and § are coordinates in the computational
domain. Transforming the wave equation into computa-
tional coordinates vields

du 2
ar t by teb)E =0 3

The terms Cx and gt may be replaced by the expressions

£ = -xT/xE 4)

and

£ = 1/xC (5)

x
The original expression may then be written

(x_ ~c)

o du 0 (6)
1 xé 3¢

When a solution of Eq. (6) is computed using a fixed
grid, the metric coefficient, xr is determined from the
grid geometry which is established at the beginning of
the calculations. This term does not change so long as
a fixed mesh is used. The grid speed in physical
space, x_ is zero in this case. When an adaptive grid
is used, the grid speed is nonzero because the grid
changes as the calculation proceeds and the metric
coefficient also changes each time the grid is altered.

=
c
Q

f

ar

The metric represents the ratio of arc lengths in
the physical and computational planes and the grid speed
provides the dynamic coupling of the moving grid with
the evolving solution of the differential equation.

Any method for constructing an adaptive grid must pro-
vide a means of estimating these terms since they
explicitly appear in the transformed differential equa-
tion. Exceptions to this can be cited. In problems
where a time-asymptotic solution is computed, the grid
can be fixed and the grid speed term set equal to zero.
After a predetermined number of iterations, the compu-
tational mesh is adjusted and the iteration process is
resumed. This regridding procedure is equivalent to
solving a sequence of initial boundary value problems.
Other exceptions include cases where the solution
changes by an extremely small amount over a single
iteration and the grid speed is set equal to Zerc in
the governing differential equation. However, both the
grid speed and metric term should be included in the
general case.

Maptive grid methods can be divided into two
categories. In the first category, some law relating
the grid points in the physical and computational domain
is used to establish new physical grid point locations
(x's) at the end of each time step. The grid speed term
is estimated for the next integration step by using a
simple backward difference. The second class of schemes
relies on directly establishing the grid speed by some
rule. The grid speed is integrated along with the dif-
ferential equation and the new grid point positions are
established. From this information, the metrics are
computed by evaluating the ratio of arc lengths in the
physical and computational domains.

There are advantages and disadvantages to both
approaches for generating an adaptive grid. Methods
which directly generate the new coordinates through a
defined mapping are conceptually easy to apply. Since
the grid point locations are established through the
use of a steady grid equation, the grid speeds are most
easily determined by using a backward difference. This
difference is usually first order in time and more
accurate dynamic coupling of the grid motion and the
partial differential may be desirable. Some grid point
location schemes initially developed for one-dimensional
applications are difficult to extend to two- or three-
dimensional problems. Techniques which directly deter-
mine grid speed from some grid speed law are easily used
in multidimensional applications because grid point
location is determined by a simple integration. The

major disadvantage is that physical laws which relate
grid speed and grid adaption may be difficult to formu-
late and the success of the method depends upon the
ingenuity used in constructing this law. For these
schemes, point control is also a problem.

A number of adaptive grid generation schemes in
both classes have been developed. These methods have
been used with success on a variety of problems. 1Ia
the following sections, a number of the most successful
schemes from both categories are reviewed. In this
discussion, the problem of constructing an adaptive
grid is viewed as one of allocation. How should a fixed
number of grid points be distributed to improve the
quality of a numerical solution? This distribution
of mesh points is influenced by both motion of the
boundaries and solution changes on the interior of the
physical domain. The main focus of interest in this
paper is on grid point motion caused by solution changes
on the interior.
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ABSTRACT

A number of techniques of constructing adaptive
mesh generators for use in solving partial differential
equations are reviewed in this paper. Techniques
reviewed include methods based on steady grid genera-
tion schemes and those which are explicitly designed
to determine grid speeds in a time-dependent or space-
marching problem. Results for candidate methods are
included and suggestions for areas of future research

are suggested.

INTRODUCTION

The numerical solution of the partial differential
equations governing both internal and external flows has
reached a high state of development during the past
fifteen years. Numerical methods for solving the Adif-
ferent types of equations have been available for much
longer. However, the ability to treat complex geometries
common to most physical problems has only recently been
acquired. 1In fact, the pacing item in advancing numer-
ical procedures for solving fluid flow and heat transfer
problems has been the development of general techniques
for numerically constructing mesh systems which are
bourdary conforming.

The construction of a suitable grid is the first
task that must be completed when the numerical solution
of a system of partial differential equations is desired.
Once the grid is generated, the system of equations is
discretized and the resulting system of algebraic equa-
tions is solved. This solution yields the values of
the dependent variables at each of the mesh points. The
solution of the governing equations is completed in a
computational domain which is selected to be rectangular
shaped for simplicity. The physical and computational
domains are related through a mapping as schematically
illustrated in Fig. 1 for a two-dimensional case. The
problem of numerical grid generation is concerned with
techniques for establishing this relationship between
physical and computatjonal space. Thompson (24) and
Thompson et al. (27) have presented a comprehensive
review of the state of the art in numerical grid gener-~
ation.

In solving partial differential equations using
numerical methods, the selection of the locations of
the mesh points is important in establishing the quality
of the solution. These grid point positions are gener-
ally determined initially and remain fixed throughout
the calculation. In order to determine the best grid
point locations, an a priori knowledge of the solution
of the physical problem is desirable. Unfortunately,
this knowledge iz unavailable and only the general
features of the solution may be initially understood.

For example, flow over a body must be computed with a
grid employing a sufficient number of points in the
viscous regions to resolve the salient features of 'the
flow. In this case, a grid may be constructed using a
compression mapping in order to provide a large number
of points in the viscous layer near the body. High
mesh densities are desirable in regions where large
gradients exist. Since the exact location and size of
these regions is initially unknown, the construction of
a suitable grid in the general case is difficult and
some meane of incorporating information from the solu~
tion in locating the grid points is needed.

The concept of a solution adaptive grid is appealing
for a number of reasons. In many problems, multiple
length scales appear and a grid which resolves a prysical
process scaled to one significant length can't resolve
events which occur on a scale less than the size of the
smallest cell or mesh increment. A typical example is
again provided by the flow of a viscous fluid over a body.
The inner flow near the body in the boundary layer will
be resolved in sufficient detail to be of use only if
very small grid spacing is used. If mesh spacing is
used with the minimum size determined by that required
to resolve the outer inviscid flow, the detail of the
boundary layer is completely lost. Heat transfer and
skin friction data obtained from such a calculation are
completely meaningless. With the use of an adaptive
grid, the physical behavior of the fluid in both re-
gions can be adequately established using the same set
of governing equations. The different length scales in
the problem are accommodated by a variable mesh size.

In & sense, this approach is analogous to classical
methods which require a solution of the inner and outer
flow with appropriate matching conditions. Two sets of
governing equations must be solved while numerically, a
single set of governing equatjons is solved, but the
grid position problem must also be treated.

When a part):’ differential equation is discretized,
errors are present in the camputed solution. If the
wmesh points are adjusted during the calculation to
reduce some measure of the local or global error, the
quality of the solution will be improved. This is
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ABSTRACT

Methods for constructing adaptive grids in
more than one dimension have been developed.
These methods are usually based upon the idea of
equidistribution of a weight function over a grid.
Unfortunately, for large grid adaption rates, se-
vere skewing occurs in the mesh. Two techniques
for generating an orthogonal adaptive grid are de-
veloped and results of applying both schemes to
some simple functional examples are presented for
the two-dimensional case. Extension to three di-
mensions is discussed and advantages and disadvan-
tages of the methods are identified.

INTRODUCTION

Grid generation has always been a problem of
major concern in the numerical solution of partial
differential equations. During the past ten
years, satisfactory methods for generating body-
fitted mesh systems have evolved and have been
used with great success on a variety of problems.
More recently, a great amount of interest has cen-
tered on the development of dynamically adaptive
mesh systems which evolve with the solution of the
PDE. Adaptive grid schemes are attractive and are
desirable for a number of reasons. These reasons
have been discussed in detail by a number of au-
thors.!*?

Adaptive schemes in one dimension have been
developed and applied by many including Gnoffo,’
Dwyer et al.,* and Rai and Anderson.® Basically,
these one-dimensional schemes all rely upon equi-
distribution of a weight function over a mesh,
i.e.,

wX

£ = c )

where w is some positive weighting function, x£ is

the metric of the transformation from physical to
computational space, and C is a constant. Using
this law, points can be distributed to satisfy any
requirement built into the weight function. This
expression [Eq. (1)] was solved for either x or
by Dwyer and Gnoffo using a direct integration.
Rai and Anderson used an iterative residual ap-
proach to obtain the same result.
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The extension of the equidistribution idea to
more than one dimension is desirable since most
gains from dynamically adaptive grids will un-
doubtedly be in multidimensional applications. A
logical place to start the extension to two dimen-
sions is to construct a two-coordinate, indepen-
dent scheme using the direct integral of the equi-
distribution law given in Eq. (1). Anderson® has
reported such an extension and has applied this to
simple functions to study the adaption process.

The main difficulty with this approach is that
high grid skewness occurs even for moderate grid
adaption. In other multidimensional studies, Rai
and Anderson applied their scheme to a number of -
examples. The grid adaption employed in these ex-
amples was not sufficiently large to induce skew-
ness problems.

The problem of controlling grid distortion in
constructing adaptive grids for multidimensional
applications must be addressed. Methods formulat-
ed without & direct means of grid skewness control
are not viable in applications where dense point .
clustering is desired. The grid distortion prob- '
lem is avoided if grid orthogonality is enforced
when a mesh is generated. In this paper, two
schemes for constructing an adaptive, orthogonal
mesh are presented. While these methods are still
in the exploratory/development stage, the prelimi-
nary results are promising.

PROBLEM REVIEW

In order to understand the difficulty of con-
structing a multidimensional adaptive grid, it is
necessary to review the equidistribution concept
and show some typical results. The most easily -
understood multidimensional scheme employs inde-
pendent grid point adaption along the constant
computational coordinate surfaces in physical
space.

Let ({,n) represent the computational coordi-
nates and (x,y) be coordinates in the physical do-
main. If § represents arc length along a constant o
n surface in physical space, a simple equidistri- :
bution law controlling point motion along this
surface may be written.

Sgwl = cl(n) (2)

where vy is a positive weight function which de-

pends upon the solution of the PDE system under
consideration and <y is a function of the computa-

tional coordinate, n. This equation can be solved
to obtain the integral for arc length




h 2

13
[ o
W
0 1
S/Smax - — (3)
“{ max
= df
Y1
0

If N represencs arz length along the § equal con-
stant surface, rhe companion equation with weight
{unction w, is

L
v,

N/ L. (&)

c;*"‘?j k"‘\
E
*®

The physical coordinates (x,y) can be recov-
ered from Eqs. (3) and (4). These coordinates can
also be computed directly from differential equa-

tions. Since
= 2 2.1/2 5
SE [XE + YE,I (5)
and
A 2 2,1/2
Ny =[x+ yd (6)

governing differential equations for (x,y) can be
obtained from the equidistribution laws along §
and n equal constant surfaces. For example, dif-
ferentiating Eq. (2) and employing Eq. (5) yields
the expression

X, X

£Xeg + (x + yC 3€(£"" ) =0

(€)]

The companion expression along a constant { sur-
face may be written (see Ref. 2).

2
+ (x”

* VeV

2,3
) 3;((nw2) =0
(8)

Typical results of applying this independent
equidistribution concept along constant § and n

+yy

X X
nonn nonn

surfaces are shown in Figs. 1 and 2. The weight
functions were of the form
vy =1+ A|3“l
9)

w, = 1 4+ Bi

2 |'\”‘

where A and B are constants which determine the
magnitude of the adaption desired. The shock-~like
discontinuity in Fig. 1 is typical of many func-
tions where rapid changes occur along one primary
coordinate. The choice of a sinusoidal shaped
surface in Fig. 2 provides functional changes in
both directions and leads to adaption along both
families of coordinate surfaces. At lower values
of the adaption constants, A and B, distortion is
relatively low. However, it is clear that signif-
icant distortion occurs in both cases shown. One
would not expect to obtain good results if a dif-
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ferential equation was solved with a numerical
wethod using these grids. Sowe means of control-
ling the grid skewness must be incorporated in the
mesh generator.

Method OT1

The grid skewness at each point in a mesh is
easily evaluated by computing the angle of inter-
section between constant { and n surfaces. Con-
sider the intersection of § and n equal constant
lines in physical space (see Fig. 3). 1If 1£ is

the unit vector along the n equal constant curve
and in is the unit vector along the { equal con-

stant curve, the cross product of these unit vec-
tors may be written

l{z x inl = sing (10)
where
n ix, + jy
15 —id (lla)
x2 . 2
£ v Y%
and
~ ix_ + jy
1n - (11b)
x2 + 2
n ¥ ¥

Performing the indicated operations, Eq. (10) may
be written
in®

J= Sans n (12)
where 0 is the intersection angle between { and n
equal constant curves and J is the Jacobian of the
transformation

J = xzyn - XY (13)
The intersection angle is easily monitored by com-
puting sin® through Eq. (12). 1In fact, the angle
8 is directly influenced by the choice of weight
functions. If the equidistribution laws for Sg

and N'| are substituted into Eq. (12), the result
is

clcz/wlw2 = J/sinb (14)

Assume that grid adaption along one coordinate
(S) is all that is necessary. Since the arc ele-
ments along the S direction are calculated inde-
pendently, the arc is given by Eq. (3). Suppose
that grid distortion is controlled by sslecting
the intersection angle, 8 in Eq. (14). However if

0 is specified, the constant <, and the weight

function w, cannot be independently chosen. Since
cl/w1 and B are given,
J(w. /c.)
- - -*——1—‘_.1_
My = /%2 " ~5ims (15)
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The constant ¢, is of the form

1
s (m)
¢ = £(n) = —E—— an
max 1
w %
1

0

It is interesting to note that the length scale
provided through <, does not appear in Eq. (16).

This shows that the value of N computed at a given
point is not scaled as in Eq. (4). The absence of
a normalizing length scale in Eq. (16) indicates
that the system of PDEs governing this scheme is
hyperbolic. The solution of such a problem must
be computed in the computational domain by speci-
fying initial data at n = 0 (N = 0), and marching
the solution outward to Mrax’ The outer boundary

in physical space corresponding to Max must float

and is determined as part of the solution.

Figure 4 shows a solution for the same shock-
like function employed in Fig. 1 in the physical
domain. In this case, the angle 6, has been se-
lected to be S0 degrees so an orthogonal mesh is
created. The grid is 21 x 21 and the weight func-

tion v, is given in Eq. (9). Again the outer

boundary is free and the solution determines the
final shape. Both the orthogonality and the
floating outer boundary are apparent in these
results.

Figure 5 shows the orthogonal grid generated
using the sinusoidal function of Fig. 2. The re-
sulting grid shows no evidence of skewing although
the distorted outer boundary is again apparent.

In almost all calculations involving dynamically
adapting mesh systems, the grid point speeds, lo-
cations, or the forcing functions are smoothed.

In computing adaptive grids with OT1l, it was ob-
served that adding smoothing relaxed the orthogo-
nality condition. Thus, no smoothing was employed
in computing the results for method OT1.

The results for the orthogonal calculations
shown are very good. In applications where adap-
tion is one dimension is desirable and a free out-
er boundary is not a problem, this is a viable ap-
proach for generating an adaptive grid. Can this
scheme be extended to three dimensions?

In three dimensions, the applicable equidis-
tribuion laws would be of the form

S£ = cl/wl (18a)
Nn = cz/wz (18b)
Hg = Cqfvg (18¢c)

where S, N, and M are arc lengths along the compu-
tational coordinate surfaces. The angle between
the £ and n directions can again be controlled by
noting that

|3£ x Inl = gin® (19)
or

1(1x£ + jyZ + kzz) x (1xn +iy, + kz")l

= SzN“sinO (20)

The angle between the norma) to the plane formed
by the unit vectors iz and 1n and the unit vector
ic can be monitored by forming the box product

(iC x in)' iC

This expression reduces to

= sin¢ 21

SENHHC = J/sin8 (22)

If it is assumed that the adaption is in the § di-
rection, the quantity SE is prescribed by the

equidistribution law. Equations (20) and (22)
provide the additional expressions for the quanti-
ties N“ and HC' This formulation is similar to

the two-dimensional case. While the linearization
and classification of the system for three dimen-
sions has not been done, it is reasonable to ex-
pect that the grid would be computed on an open
domain. The governing equations are probably hy-
perbolic due to the similarity to the two-dimen-
sional case. An orthogonal grid can be generated
with adaption in one direction if ¢ and 8 are both
taken to be 90 degrees.

Method 0T2

The method presented above is most attractive
for generating adaptive grids for those problems
where grid adaption is necessary in only one di-
rection. However, it seems more appropriate to
employ an equidistribution law based on cell area
or volume rather than arc length when problems in
more than one dimension are considered. In a re-
cent paper, Anderson® has introduced such an idea
where the equidistribution law is

Jw = Ap(t)/AC (23)
In this expression, w is a positive measure of the
solution and is the weight function, J is the Ja-
cobian, Ap(t) is the physical domain integral
Ap(t) = & wdxdy (26)

and Ac is the area of the computational domain.

This equidistribution law is incorporated in an
area continuity equation

9x dy A (t)
T T_39 )
> T 3y ot [ln( w )] (25)

where (x‘, y‘) are the grid speeds. If an orthog-

onal grid is desired, the time derivative of the
orthogonal condition

3/ [x‘x“ + yiyn] =0 (26)
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completes the set for the unknowns (xx. yt). If

the initial grid is orthogonal, the final grid
will be orthogonal. After the grid speeds have
been determined, the grid point locations are ob-
tained by integration with respect for t.

The system of Eqs. (25) and (26) is hyperbolic
and the grid speeds are determined by marching the
solution outward away from the initial data sur-
face at n = 0. Boundary conditions can be en-

forced at £ = 0 and § = imax‘ The outer boundary

is free to float as determined by the integration
of the grid speeds. MNotice that this system is
weakly elliptic through the source term of Eq.
(25). For the results shown in Figs. 6 and 7, the
outer boundary was held at a fixed position and
the last grid line computed in the hyperbolic

marching scheme was at Mpax - An. The source term

was computed on a domain with fixed boundaries.
The results show that this grid is also adaptive
and orthogonal. In this case the weight function
was selected to be of the form

w=1+ lvg_“um (27)

The resuits in Figs. 6 and 7 for the shock and
sine function are computed with grid adaption
based upon an area equidistribution. While some
similarities exist between the results obtained
using OT1 and OT2, the grids produced do show some
differences. One of the problems noted when em-
ploying OT2 is that grid adaption is always accom-
plished at the expense of available cell area at a
greater value of n. Since the grid equations are
hyperbolic, the area equidistribution law always
necessitates the borrowing of area at large n.
Consequently, the adjustment of the mesh is slow
since the source term of Eq. (25) is the only
means for providing an upstream influence.

For two-dimensional problems, the grid pro-
duced by either method OT1 or OT2 are satisfactory
for the cases considered. The extension of 0T2 to
three dimensions can be accomplished in a
straightforward manner. The orthogonality condi-
tion, Fq. (26), must be altered to include the
term 2,2 . In addition, another condition is nec-

£%n
essary to provide the proper cell orientation.
This relationship is supplied by

d/ ot - N2 = 28
3l (J \nﬂc) 0 (28)

s
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This last expression provides another PDE for the
grid speeds in three dimensions.

It is interesting to note that one can derive
the relationship between the area weight function,

w, and the one-dimensional functions L and Wy

For the orthogonal grids considered, the two-di-
mensional result is

SENH =] = clcz/wlwz = Ap(t)/wAc (29)

Since c W, is selected and c2/w2 is determined by
orthogonality, the corresponding w for the area
equidistribution case can be directly computed
from tq. (29).
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SUMMARY AND CONCLUSIONS

Two schemes for producing adaptive, orthogonal
grids have been presented. The first is based
upon one-dimensional equidistribution and provides
adaption along only one coordinate. The other co-
ordinate locatjion is determined by the orthogonal-
ity constraint. The second method employs the
concept of equidistribution over an area or volume
to generate a single PDE for the grid speeds or
point locations. Additional expressions are ob-
tained from the orthogonality conditions.

Both schemes produce systems of hyperbolic
partial differential equations. This is expected
since even in the general, nonadaptive case, or-
thogonal grids cannot be obtained on a closed do-
main when Dirichlet boundary conditions are used
in solving the governing PDEs.

Method OT1 can be implemented by solving for
arc lengths along constant § and n surfaces and
then computing the corresponding values of x and
y. However, an alternative approach is to compute
X and y directly from the governing PDEs.

Method OT2 was formulated using grid speeds.
However, a steady formulation may also be used.
With this approach, the governing linearized PDEs
must be solved by marching outward away from an
initial data surface. In this case, the x and y
coordinates are obtained instead of the grid
speeds. The steady formulation of method OT2 is
exactly the adaptive counterpart of the grid gen-
eration scheme presented by Steger and Sorenson.’

Both schemes provide reasonable results for
the simple test problems illustrated here. Addi-
tional work is needed in evaluating the applica-
bility of these ideas to actual flow problems.
Studies coupling the orthogonal generators with
the flow equations will commence in the near fu-
ture.
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for shock-like function (see Fig. 1),
A= 3.0
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v = backward difference or gradient operator
A :
ABSTRACT 4 = forward difference or increment (as in
i tive grid era- AL, At)
. An approach to iOPuLlO“ adaptive gri gen 2 = Laplacian operator in x,y domain
tion for use with finite difference techniques, v? - Lanlaci operator in £.1 domain
previously demonstrated on model problems in one En = Laplacian op ’
space dimension, bas been extended to multidimen- Matri
i g i s atrices
sional problems. The method is based on the popu- _ . o 4 speed cqua-
lar ciliptic steady grid generators, but is "dy- (A] = ‘;"i‘:':n““e“t matrix in grid speed eq
namically” adaptive in the sense that a grid is _ o o ) a-
maintained at all times satisfying the steady grid {B] = i?etf1CIen‘ matrix in grid speed equ
i ion- :ndent source term. 10l . .
taw driven by a solution-dependent source ter [Pu] = Jacobian matrix of derivatives of P with
i i - respect to u
Testing has been carried out on Burgers' equa _ ¢ . . ith
tion in one and two space dimensions. Results ap- [Qu]} = Jacob1iﬁt$?::1x of derivatives of Q wit
i invisci - respec
pear encouraging both for inviscid wave propaga ~ ) ‘
tion cases and viscous boundary layer cases, (s} = i?°°‘h1“8 operator expressed in matrix
suggesting that application to practical flow orm
problems is now possible. In the course of the
work, obstacles relating to grid correction, Subscript_s 4 ) indi
smoothing of the solution, and elliptic equation i,] = row and °°'“:§ ndices
solvers have heen largely overcome. Concern re- k,1 : summ?t;o:.;2 meia )
mains, however, about grid skewness, boundary lay- X,¥,2 = Partfﬂl d%fferent%at}on
er resolution and thie need for implicit integra- £yt = partial ditferentiation
tion methods.  Also, the method in 3-D is expected 5 (ot
r o and i : ter resources, uperscripts
to be very demanding of computer re > = smoothed quantities
~ = simplified forms
NOMENCLATURE
. INTRODUCTION
a = clustering constant
c.d i :3;:r?ssz:rror Methods for generating fixed finite difference
e = - : ‘ : . .
f.g = flux vectors in governing equation grids around two-dimensional erf?lls and other
F' = function describing surface (F=0) geometries have evolved to the point where such
G = orid gpppdq\g = (x »y ) grids are routinely employed. Often these grids
! & ) B ¢ 7 are generated by an elliptic partial differential
J = Jacobian of transtormation equation relating the physical and the computa-
. , . tional domains! (see Chapter 10). The need for
=t ant J(Pr, + ( ° r k
k he quantity J( s an) developing a class of solution-adaptive methods
P.Q = grid clustering (forcing) tunctions may arise from: (1) boundary motion in unsteady
I'4 = position vector = (x,y) flow problems; (2) moving shock problems; (3)
R = residual of steady grid equation time-marching to a steady state, where regions re-
< distauce along surface Quiring high resolution are not known in advance;
t = time (4) space-marching problems (e.g. parabolized Nav-
u = model dependent flow variable ier-Stokes), where a grid must be generated in
w = positive measure of solution gradient each transverse plane moving downstream.
(x,y} = physical coordinates
a,B,¥ = ¢oetfficients arising from transformation It is natural to suppose that the steady )
of Laplacian (static) grid generators might be extended to the - ]
&.m = computational coordinates dynamic case. This can be accomplished by differ- 1
A = damping ronstant entiating the elliptic p.d.e. with respect to time
u = viscosity coefficient to yield the so-called grid speed equation de-
1 S computational time scribing point motion. Grid speeds are then inte- B
w = smoothing constant grated in time simultaneously with the solution to - i

the governing equation at the new locations. Such b
an approach was tested by Hindman, Kutler, and An- 1
derson? on an Euler-equation solver in two dimen- B
sions for the case of arbitrary boundaries but no o
interior grid clustering, and more recently by

Hindman and Spencer® on Burgers' equation in one

dimension with a source term for clustering.
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The present work is a refinement of Hindman's
1-D method, followed by an extension to multidi~

mensional problems. [t should be stressed that

the maiu focus of this study has been on method

development rather than application, hence only

simple geometries have been considered. As will
be discussed later, application to practical 1-D
and - problems now appears possible,

Keaders who are interested in a more complete
introduction to adaptive grid methods, or who wish
to study alternate approaches, should consult the
recent survey papers by Anderson.* ™’

METHOD

In order to efficient]ly summarize the method,
a table of equations is provided (Table 1).
Please refer to this table while reviewing the
following comments. Also refer to the block dia-
gram of the "system” tormed by the grid and the
model flow variable (Fig. 1).

Doman

The generalized transformation mapping the
physical space into the computational space is as
given by Eq. set (1), The purpose of the trans-
formation is to allow a uniform rectangular grid
to be used for computation, while the physical
grid conforms to boundary shapes and is clustered
where high resolution is nceded. As a result of
the mapping, derivatives must be transformed ac-
cording to Eq. set (2).

Steady Grid Law

A specific form ot the above mentioned trans-
formation is obtained by solving a Poisson equa-
tion (Eg. 3a), an idea developed by Winslow and
Thompson for the time-invariant case. To solve
for the (x,y) point locitions, the role of depen-
dent and independent variables must be inter-
changed, yielding in 2-D a coupled set of two non-

linear eiliptic partial differential equations
(Eq. 3b). The forcing tunctions Pix,y,n) and
Q(x,y,u) are carefully chosen to provide adequate

clustering without grid crossing or overlap.

Clustering Function

A rationale for choosing P(x,u) in 1-D is pro-
vided by the integral grid law cited (Eq. 4),
where the function w(up is a4 positive measure of
solution gradient Ditferentiation twice with re-
spect Lo § reveals that this form is equivalent to
the P-function selected (Eq. 5). It is clear that
x will always be a monotonically increasing func-
tion of §, hence grid crossing cannot occur (ex-

cept due to numerical effects). The clustering
ronstant controls the amonnt of asdaption, from
none (4 = ) up to o large amount (a --> ). The
possibility of using a different zlustering func-
tion will be discunsed Tater In 2-D, P and Q are

obtained by a logical extension of the 1-D form.

Simplified forms of the grid equations (Egs.
6, 7b) resulting from the cancellation of (XC)

factors were used in 1-D. As a result, the equa-
tions are linearized and may be solved directly.
In 2-D, P and Q can still be split into a factor
involving only u and one involving only x and y.

Grid Speed Equation

This equation (Eq. 7a,b) describing the rates
of point motion (xx,y‘) is derived by differenti-

ating the steady grid law with respect to time
(t). OGrid speeds would be zero (with no boundary
motion) except for the fact that changes in the
solution cause the clustering functions to vary.
Thus it is very important that accurate represen-
tations for Pr and QT be obtained. In the present

work, this is done by taking analytical deriva-
tives (Table 3). Usually P and Q depend only on
Xx,y, and u at the center point of the finite dif-
ference molecule and its immediate neighbors,
which simplifies the calculation of Pt and Qr'

Even so, substantial amounts of computation and
storage are required, suggesting that it may be
better to obtain these quantities by backward dif-
ferencing in time as part of an iterative process
for solving the grid speed equation.

Governing Equation

The p.d.e. governing the physical process is
cast into conservation law form (Eq. 8a), then
transformed to computational space, including
terms due to grid point motion (Eq. 8b). For
Burgers' equation (Eqs. 8¢,d) the flux vectors f

and g take the scalar form f = g = u2/2. Linear-
ized expressions f = cu and g = du were used for
simplicity in 2-D. In the case of the Navier-
Stokes or Euler equations, u, f, and g form a set
of vector quantities, but only one element of u
(say the density) need be selected to drive the
grid. All flux derivative terms for the inviscid
problem were evaluated by upwind differencing,
analogous to the flux splitting class of methods
applied to the Euler equations.

A special problem is presented by the viscous
Burgers' equation in that upwind differencing on
the convective terms generates excessive dissipa-
tion and hence large errors in the -teady-state
solution. This may be overcome by using a cen-
trally-differenced scheme, however grid size is
then restriced to satisfy a mesh Reynolds number
constraint. The third-order upwind correction
proposed by Leonard'' was found to be successful
in one dimension. (Also see results section.)

ALGORITHM

The computer program written for this study
executes the steps that follow with the explana-
tion tailored for the 2-D case. The physical do-
main in 2-D is the unit square.




1. Establish input data: (a) initial distribution
of u as a function of (x,y) or ({,n); (b) cluster-
ing coustant, smoothing coustant, and grid damping
constant (see below for explanation of smoothing
and damping); (c) time step limits and wave speeds
if applicable; (d) iteration limits, tolerances,
and over-relaxation factors; (e) number of steps
to be computed and/or steady-state convergence
criterion; (f) initialization of (x,y) to uniform
grid, and X and y, to zero.

2. Solve steady grid generator for initial grid.
A Gauss-Seidel point iterative process is em-
ployed, updating x,y.P,Q and related quantities
during cach sweep through the grid. Over-relaxa-
tion is generally possible and speeds convergence
considerably. Boundaries of the 2-D domain are
treated by applying the 1-D steady grid law. The
forcing functions ¥ and Q may be calculated in ad-
vance it u is initially specified as a function of
(£.n). otherwise ulx,y) must be corrected by in-
terpolation or other means, and P and 6 recalcu-
lated as (x,y) change at a point.

Begin loop

3. Calunlate the transtormation metrics
(xg,xn,yg.yn). the coefficients a, B, ¥, and the

Jacobian J. Also calculate the coefficient matri-
ces A and B in the grid speed equation (Table 2)

and the residuals R and kY of the steady grid
generalorn .,

4. Solve the grad speed equation:  (a) calculate
the wix nonzero P“ and Q” ynantities at each

point, begin loop (hy caleufate " which depends
upon (xr.y‘). the tlux vectors, and the viscous

terms tt present; (o3 update the boundary grid
speeds by o dine relaxation scheme acting on the
-0 grad speed equaton;, (d) update the interior
grid speeds by an alternating divection line re-
Taxat ion svheme, whereby sweeps in the £-direction
apdate the x-equation and sweeps in the

a-dires Cron update the y-equation; {e) exit loop
P e raed

Notes {nder-relaxation must be used to

achreve convergenoen, especiaglly to large cluster-
ing constants. It s important to anclude the de-
prodence of upoom (x‘,y‘) implicitly in the relax-
atyon oo heene wherever poasibiloe,

il Vhtan new flow solution and grid locations:
(a) ve-ralenlate n, for converged grid speeds; (b)

establish allowable Lime step si1ze (limited by an
inviscrd CFh-type condition and by a viscous term
condition);, (c) perform first-order explicit inte-
gration to get new valnes tor x,y, and u; (d) up-
date the functions i© and /) at the new time level.

Exit loop if requested number of time steps have

been completed, or 1f solution has reached a
steady state.

SPECTAL CONCERNS

Although the algorithm s guite straightfor-
ward, 4 tew specidl points need to be addressed:

Smoothing

There are at least three reasons why smoothing
of the solution, u, might be necessary: (a) to
suppress oscillations ("wiggles") associated with
certain methods of integrating the governing equa-
tion; (b) to avoid grid crossing that may occur
due to numerical effects when the forcing func-
tions become large; (c) to allow the derivatives
Pr and Qx to be computed analytically, even near a

discontinuity in u. For the present algorithm
only the last two reasons apply, since integration
schemes are selected to avoid oscillations in u.
Therefore, smoothing is needed only for the pur-
pose of grid calculations, an important distinc-
tion because the undesirable effects of artificial
smoothing-induced diffusion and dispersion are
avoided when integrating the governing equation.

To understand the nature of problem (b), con-
sider the simplified grid equation, XEE + xEP(u) =

0. It is easily seen that discretization by cen-
tral differencing on XCE and xE will cause grid

crossing if abs(P) > 2, even though the exact
mathematical solution does not exhibit this prop-
erty. However, by applying a smoothing operator,
one can always prevent the forcing function from
becoming too large and also insure that sufficient
smoothness exist to compute P‘ and Q‘.

Table 4 presents 1-D and 2-D versions of the
smoothing operator. Since both (Pu] and [S] are

tridiagonal in 1-D, the grid speed equation (con-
taining Pt) becomes pentadiagonal, requiring 2.5

times as much computation to solve as the standard
Thomas algorithm for tridiagonal systems. In 2-D,
the equations are solved iteratively and one need
only smooth u, before updating the grid speeds on

each step. For the viscous Burgers' equation, no
smoothing is required if the starting solution is
smooth. In practice, such an initial condition

may be obtained by solving Vz u = 0, provided

&n
that one is not interested in transient behaviors
associated with other possible initial conditions.

Grid Correction

The grid speed cquation may be written in the
form dR/dy = 0, where R is the residual of the
steady grid generator. Such a form js neutrally
stable, that is errors in integration will neither
be amplified nor damped out. An obvious fix is to
add a damping term, dR/dt + AR = 0, where the
damping constant X\ may be chosen as large as 1/At
for stability with an explicit integration scheme.
The resulting grid correction method is both ef-
fective and much simpler than previous methods
(involving a new solution to the steady grid equa-
tion while holding u fixed in either physical or
computational space).

Boundary Conditions

Dirichlet boundary data can be specified by
fixing (x,y) at points along a {=const or n=const
boundary. Unfortunately, this does not allow for

ARy atar aan s




grid adaptation on the boundary. A better idea is
to use the 1-D grid method to treat the bounda-
ries.  hasy applicatiou of the 1-D method is pos-
sible tor straight boundaries (as considered
here), however, for curved boundaries, a more gen-
eral form must be used, 555 + szP(u) = 0, where s

is the distance along the surface.  In the grid
spead equation the general boundary condition is
G+« 9VF = -3F/3t, where G is the vector (x‘.yt) of

grid speeds, and F(x,y,t) = 0 describes a moving
surface in 2-D. A correction step will probably
be necessary for curved bounddaries since the con-
dition stated 1s first-order.

Differencing

As pointed out above, exclusive use of central
differencing an solving the grid equations may re-
sult in numerical difficulties. A novel idea to
replace the usual "arithmetic mean difference,”

Xy = (Ve + 8x) /288 with o "grometric mean differ-
ence x =/ UxAx/AL wan tested and found to
yieid excelteat resatts oy -0 Cincluding the 1-D

wave propagdlion results presented).  However, the
1dea was daiscarded for general use because exten-
sion wo higher dimensions is difticult. One prob-
lem 1~ that Yx and Ax may be of opposite sign.
Also, the geometric difference operator is nonli-
near, and the computition time required to take
squilre 100ts becomes significant in 2-D.

RESULTS AND DISCUSSION

One-thmensionsl Inviscid

Adaptive grid solutions 1o v + uu = 0 were

computed for the initial condition of a [-0 dis-
continty on an 11 point grid covering the inter-
val (s, 11, The left boundary was fixed at u = 1,
while the right boundary required no special
tredtment due to the use of upwind differencing.
Kesults are presented in the form of a grid time
history plot (Figs. 2a,b). It can be seen that
the grid trdacked the wave quite well and main-
tarned a reasonable degree of clustering. Wave
speed errors (compared to the exact speed of 1/2)

were calenlated and found not to exceed 2%. Prob-
lems with dissipation in u were not experienced,
partly since the nonlinear nature of Burgers'
equat 1ot causes profiles having 4 negative slope
to steepen,

One~inmensional Viscous

Steadv-state solutions to ”L + uux = uu were

XX
computed on a 21 puint grid for the boundary con-
ditions w(0) - 1 and u(l) = 6. The initial dis-
tribution of v was 4 ramp tunction given by
utx) = 1-x Resnults for viscosity coefficients of
w=u 05 and u = 010 are presented in Tables 5
a-f and (ompared with the exact small viscosity
solutton, wig) = tanh((1-x1/2u). Although the

adaptive grid method does provide better boundary
layer resolution and accuracy than a fixed uniform

grid method, there is still room for improvement.
Convergence required between 100 and 500 time
steps, pointing out the severe stability restric-
tions for explicit methods applied to viscous
problems.

As a final point, a briefl experiment with the
method of Leonard to difference the uy term was

conducted, yielding excellent results (Table 5g.,h)
which seem to verify the claimed third-order spa-
tial accuracy of the method. Otherwise, central
differences on the convective terms were used in
both the 1-D and the 2-D viscous cases.

Two-Dimensional Inviscid

Solutions to u *cu + duy = 0 were computed

with wave speeds ¢ = d = 1, an initial condition
of a1l - 1/2 - 0 discontinuity along the main di-
agonal, and a 16x16 grid on the unit square. In-
flow boundaries were treated by simulating an in-
finite domain with a diagonal wave, while the
outflow boundaries again required no special
treatment. Grid plots, including lines of cou-
stant u, are presented for successive time steps
(Figs. 3a-d) for a test run with a clustering con-
stant of 8 = 10. Good tracking of the wave was
obtained, and wave speed errors were small. Clus-
tering at the discontinuity produced skewed grid
cells that may or may not be desirable in more
general problems. Dissipation in the solution u
did occur to a significant ex:.2nt as time pro-
gressed, causing the clustering of the grid to di-
minish. Numerically, some problems were experi-
enced when the wave intersected the corners,
forcing the use of a small first time step.

Two-Dimensional Viacous

Steady-state solutions to u, +u +uy =

+ . .
u(uxx uyy) were computed on a 16x16 grid with a

viscosity coefficient of u = 0.10. The boundary
conditions were u(x,0) = ub(x)/ub(O),

u(0,y) = u (y)/u (0), u(x,1) = u(l,y) = 0, where
the function ub is defined by ub(s) =

1 - exp[(s-1)}/u]. The initial distribution of u
was obtained as indicated in the preceding
"Smoothing" section. An exact time-invariant so-

lution, u(x,y) = ub(x)ub(y)/[ub(o)]z, is presented

by Anderson and Rai.'? The computed results show

maximum deviations from this solution of 0.019
(uniform square grid), 0.016 (a = 10), and 0.0l4
(a = 20). Resolution of the boundary layer was
judged to be adequate but not ideal. Convergence
required up to 400 time steps.

Clustering

A major concern in adaptive grid work is that
of obtaining adequate resolution of the physical
domain with as few total grid points as possible.
The clustering function used in this study is de-
rived from an equidistribution law based on the
solutjon gradient uz. and should provide reason-




tble control over grid point locations. Nonethe-
less, it has alreaudy been demonstrated that dis-
:retization effects and smoothing play a crucial
role in determining the grid. Also, results from
.he boundary layer cases show that achieving suf-
ficient resolution of viscous flow profiles is not
rasy.  FPor these viscous problems, it is likely
that the solution gradient in physical space,

e T Mg/ should be used to drive the grid rath-

£ g
er than uLA Such a modification increases the
complexity ot the tunctions P, Q and their deriva-
Lives l’T and QKA In any event, it seems that ex-

perimenting with alternate grid draving functions
ana grid generation concepts is desirable.

Computational Considerations

In one dimension the present method is effi-
cient in terms of both computation time and stor-
age, oven for large grids. Also, direct solution
of the simplified grid and grid speed equations is
possible in 1-D

On the other hiand, stepping up Lo two dimen-
sions greatly increases time and storage require-
ments. Direct solutions are no longer practical,

$0 1terative methods must be employed. The number
of iterative cycles required to converge the grid
speed cquation may range from only one, if the
flow solution is not changing much from step to
step, up to 30 or 40 (on a l16xlb grid) starting
from x o Ty,= 0 at all points. Over 40 2-D ar-

rays ueed to be stored in order to avoid recalcu-
lating various quantities. Since explicit inte-
gration tn 2-D is severely limited by small time
steps, it appedrs certain that implicit schemes
will have to be developed for adaptive grid work,
as they already have been for fixed-grid PNS cal-
culations.

There appears to be lhittle theorevical diffi-
culty in extending the prescut adaptive grid for-
milation to a third dimension, but this might only

be proactical now tor moderate grid size problems
run ou a4 machine in the supercomputer class. Al-
though adaptive grids will alwavs be more compli-
cated Lo use than fixed grids, the extra work is
often justafied by improved solutijon accuracy for

a given number of grid points (hence perhaps an
overall savings to achieve the same accuracy lev-
el).

As previously mentioned, 1t gppears that the
present method has advanced to the point where ap-
plication to solving a seot of vector equations is

now possible.  For inviscid problems, an explicit
predictor/corrector method? or a split flux dif-
fereoncing method might be ooccessfully employed to
integrite the governing equations. o the viscous
case, Lo biss ob non-iterat ive, amplicit, approxi-

mate {actorization methods already exist for solv-
1ng the PNS eqrations in generalized coordinates®

(s Uaapter By However, snteraction between the
grid and tlow dynamics will force a new look at
these implicit schemes for adaptave grid calcula-
tions

FUTURE WORK

Future work should center around the following
subjects already discussed: (a) implicit integra-
tion methods; (b) curved or time-varying bounda-
ries; (c) application to the Euler, Parabolized
Navier-Stokes, or full Navier-Stokes equations;
(d) further investigation of clustering functions.
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The code employed lierein has been extensively
pplred to ditterent tlow problems, including two-
fimenstonal shocs wave boundary layer interaction
wer a flat plate®, transonic turbulent afterbody
fiow?, turbulent und i1nviscid transonic flow over
nrtoils!?, and others? ' Turbulence models in
the examples above are algebraic, since completely
satistactory multi-equation models for flows with
jarae separated regions are not yet available!?.
e variety of tlow problems solved with this code
prove its reliability, making 1t a viable scheme
to use with this adaptive grid routine.

INTTIAL GKiD GENERATION

Siace an equidistribution adaptive grid rou-
tine 1s net a4 grid generation routine as well, an
initral Sstarting grid mist be created by some oth-
er means before a solution is run. With adaption
aviailable an only one coordinate in the proposed
scheme, the optimai starting mesh for this routine
wouid be one which hias a sufficient point distri-
butiocn in the remaining computational direction.

Thomas and Middlecots!® have introduced a
method of grid generation based on earlier tech-
niques which allows for g priory grid point clus-
tering tnoat least one computational dirvection.
The techingue follows the well-known method of
Thompson, Thames and Mastin'’, whereby au elliptic
system o two equations of the torm

xx T C = P(4,n)
Yy (19)

+ = Fyn

nXX "\yy Q(L,n)
is solved. By interchanging the roles ot the de-~

peodent (§.n) and tndependent (x,y) coordinates in
this equiation, a quasilinear elliptic system of
equitions is obtamned, which is then solved by fi-
nite difterences Thomas and Middlecoff have ob~
tained analytical expressions tor the weighting
functions Poand Q which will cluster points on the
interior of the grid to the same degree as the
specitied point distribution on the grid bound-

AT Pees

The test prad described earlier (Figure 2) as
well aw a1l subsequent grids were generated by a
solver based on this technigue.  In Figure 2, rel-
atively high values for -"L were specified on the

grid's inner boundary (n=1;, at the leading edge
(65101 and at both sides ot the trailing edge
t§=21 and £=81). The influence trom the inner
bonndary is seen in the point distributions for
RFconstant curves turther from the body. More im-
portant, though, is the point distribution in the
nodirention, which does ot chdnge with adaption.
The Lagh grid clustering in the  direction near
the body seen in Figure ! is necessary to resolve
the large solution gradients existing near the
body . With a4 sufficient ¢ lusteriug 1n the
r=direction, the adaptive grid solver is then used

o shiptavely cluster points in the §-direction.

NUMERTCAL RESULTS

NACAOLT? Airfor]l Resnles

The myjority of the numerical results of this
sturdy were obtained for transonic tlow past an
NACANLT2 aarrfoil The anitial grid emploved was
again the C=type 2-D test grid ot Fignre 2, and
on this grid, the Euier eqnations were solved us-

ing Tassa's'® Navier-Stokes code. The Euler equa-
tions were selected rather than the full Navier-
Stokes equations to reduce the starting grid
dimensional requirements, thus permitting the
adaption routine to be tested on a less complicat-

ed mesh. With the flow conditions selected, M- =

0.75 and a = 2 degrees, a shock wave forms near
the upper-surface midchord of the airfoil.

A steady-state solution was run using a vari-
able time step integration procedure on tie {i-ed
grid. The numerical solution was found to on-
verge after only a few hundred time steps, result-
ing in the density contour field of Figure 3a,
which gives no indication of a shock wave, due to
the sparsity of grid points (8x=0.6) in the antic-
ipated shock region.

A new solution was then formed, starting the
flow impulsively from free stream conditions on
the initial grid, and then passing control to the
adaptive grid routine after every 20 time integra-
tion steps, again using a variable time integra-
tion procedure. For this case, minimum grid spac-
ing along each n=constant curve was set at 0.003
chords (Asmin=0.003). the initial weighting con-

stant A (equation (10)) was set at 10, and both
functions fz and f3 were turned off, allowing for

adaption based purecly on density gradients. Fig-
ures 8a and 9a depict the converged grid and den-
sity fieild for this test case. On the newly
adapted grid, the numerical density field reveals
a shock wave. The point density in the adapted
grid has increased near the shock region, but
still is not exceptionally high. As a result, the
shock remains somewhat smeared, albeit over a
smaller region than with the initial grid.

To investigate the convergence of this adap-
tive grid algorithm, it was interesting to follow,
among other variables, the current value of the
constant A, the actual minimum grid spacing in the
adaptive coordinate direction, and the maximum
distance any point moved between adaption sweeps,

Axmax' The adaptive grid was considered converged

when the first two of these three parameters ap-
proached a constant value, and the last parameter
went to zero. The convergence history of the

adaptive grid test case above is shown in Figure
7. These particular values of the adaptive vari-
ables (A, B, Asmin, ote.) are seen to provide an

adaptive grid which converges quickly and smooth-
ly. Note that the converged minimum grid spacing
E:R (s(§+1)-s(£)) is equal to 0.003, precisely the
value of Asmin chosen at the onset of the problem.

Note also that Axmax reaches a peak value after

threc adaptive sweeps (60 integration steps), and

not immediately, as one might expect. This is due
to the grid relaxation technique defined by equa-

tion (18), which prohibits large grid point move-

ment in the early numerical development of the so-
lution.

In order to increase the shock region resolu-
tion even further, it was logical to reduce the
Asmin selected in the adaption routine, thus in-

creasing the final A weighting constant and like-
wise increasing point density in the areas of high
fluid density gradients. Figures 8b and 9b show
the converged adapted grid and density contour
distribution corresponding to a Asmin equal to

e
At .
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laptive Algorithm

2e uumerical algorithm used to obtain the adap-
ive grid point distribution governed by equation
3b) 1~ reasonably straightforward, essentially
snsisting of two rather large programming loops,
ne within another. The outer loop controls which
= constant surface is being adapted, increasing
rom n=! to e The inner loop is iterative,

nd has a convergence criterion which must be sat-
sfied for the current § = constant curve before
he n index is incremented on the outer loop. The
nner convergence loop works as follows: Equation
9b) 1~ integrated numerically to obtain a new
oint distribution £(s). With this vector and

1th pis), x(sj and y(s), an interpolation scheme
s applicd to caleulate the newly adapted vectors

name ly snew([’)‘ pnew(z)' xnew(g) and ynew(z)'

he new weighting function F(s) (equation (10)) is
alculated from the new vectors, and equation (9b)
s once again integrated. This process is contin-
jed until the L, norm of the As vector, defined as

2
£2
2 (£))2
=,’1 (S sold (16)

= new'®) =

falls helow a specified tolerance. When the con-
sergenc e criterion is met, control is passed to
the vuter loop, and the couvergence loop is ap-
plied to the next n = constant curve.

At this point, several comments about the al-
gorithm are in order.

l. Due to inherent truncation errors, finite dif-
ference approximations of the streamwise density
gradients needed in function f) are not suffi-

ciently smooth. To eliminate this problem, it is
necessary to apply several sweeps of explicit sec-
ond order smoothing of the form

k+1 2, k
T t=[1+ ALP V']p. . 17
o535 { i3 ()
to the local density field before the grid is
adapted, where OSALPS0.25 from stability consider-
ations.

2. By adjusting the value of the constant A in

equation (10) after each call to the adaption rou-
tine, it is possible to specify a time-asymptotic
minimum distance between adjacent grid points on a

given s-curve, called Asm. This constraint is

in

needed to keep points from clustering too closely
across a shock, which causes numerical problems,
as explained later.

3. In many cases, particularly in the early de-
velopment of a flowfield from an impulsive start,
numerical difficulties may arise if the grid
points are moved too drastically in one adaptive
sweep. It is useful to under-relax the calculated
point disiribution s() according to

S(6) = s_)4(6)+ RELMIN | s, (€) sold(a)}

(18)
where s(&) i+ the final arc-length function,

%01d(f) is the current s function, and s“ew(l) is

the final s function obtained from the inner con-
vergence loop for a given n = constant line. By
choosing a small value for RELMIN initially, and
by increasing it gradually to 1 after several
adaptive sweeps, changes in the grid point hetween
adaptions are sufficiently small to prevent solu-
tion instabilities.

4. It is important also to mention that in the
present formulation of the adaptive algorithm,
temporal metric terms (grid speecds) in the trans-
formed equations governing the flow are set equal
to zero. As a result, once the grid is updated
through adaption, the corresponding solution vec-
tor ( e.g, (p,u,v,e) ) must also be updated. This
is done through interpolation from the current
grid and solution vector. Since the grid speeds
are neglected, it is difficult to determine if a
time accurate solution can be obtained with this
adaptive scheme. In light of this, only steady-
state solutions are examined in this paper.

This algorithm is designed to supplement an
existing aerodynamic solver, ideally linked to the
main program as a single subroutine. Alterations
needed to implement the adaptive routine affected
only two per cent of the total programming lines
in the Navier-Stokes/Fuler code described next,
and it is not anticipated to be much higher for
most other codes.

AERODYNAMIC SOLVER

All numerical flowfield results in this study
were obtained from a finite difference code devel-
oped by Tassa’, which solves the unsteady
2-dimensional Reynolds averaged Navier-Stokes
equations written in conservation form on a gener-
al non-orthogonal curvilinear coordinate system'®.
Flow variables and physical directions are non-di-
mensionalized so that the four governing P.D.E.s
and the equation of state P = pRT, included for
closure of the system, become normalized. This
allows the characteristic parameters of the flow,
such as Reynolds number, to be varied independent-
ly.

The resulting parabolic system of equations is
solved numerically through a modified form of the
Briley-McDonald Alternating Direction Implicit
scheme’®. Whereas the Briley and McDonald dual
time level scheme represents all but the energy
equation in conservation form, Tassa's modified
three time level scheme writes even the enargy
equation in conservation form. Non-linear terms
in these equations are linearized by using Taylor
series expansions at the known time level. By
representing the dependent variables p, u, v and e
as the sum of values at the known time level and
an incremental value, a linear matrix equation is
obtained in terms of the unknown incremental val-
ues. The Douglas-Gunn'? procedure for generating
ADI schemes is then applied to the new system of
equations, splitting the matrix equation into a
system of two one-dimensional matrix operators.
After discretizing the spatial operators using
second-order formulas, the incremental solution
vector is found by block elimination techniques.
Tassa and Schuster'® have found it necessary to
add artificial dissipation near regions of severe
pressure gradients such as shocks, to suppress
high frequency components. In addition, fourth-
order dissipation is added to the dependent vari-
ables in the Euler equations in order to reduce
the overshoot of pressure across the shock.
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The deusity gradient is sclected with the case of
transonic flow in mind. Across a shock, density
changes rapidly iu a physical sense, and for the
Fuler ecquations, discontinuously in a mathematical
I1f the streamwise direction of flow and
the ~-curves (n = constant loci) are nearly
aligned in space, then 3p/3s will be relatively
high in the shock region, forcing the grid points
Lo move towards the shock location.  For the test
solution previously mentioned, this s indeed the
Case as evidenced by the adaptive grid of Figure
3b. Note that along each n = constant line, the
areas of higher grid point clustering are at the
airforl leading edge and in the shock region.
This 1s as expected, since jt is in exactly these
regions where a large streamwise density gradient
is observed (Figure 3a)

SelsNe .

In order to preserve the shape of the s-curves
while using adaption, it is important to retain at
least a minimum number ot grid points in the re-
gtons of high arc curvatnre, particularly along
the boundaries of the physical domain, where al-
tering the boundary will likewise after the prob-
lem under consideration. For this reason, 12(5)

is delined as

XeYer T Ye¥Xgg
fyls) = B = B{K| (12)

| (2 y2) 32

where Koas the mithemdatical detinition of the cur-
vature of s (parameterized by £), and B is again a
positive coustant, used to control the degree of
clustering based on grid curvature.  Observe that
if the spatial density gradients are negligible
and it both fune tions 1,45y and I‘(h) are set

egual to zero, then the tight hand side of equa-
tion ' 10} approdaches unity With this weighting
tunction, grid points are spaced gt equal incre-
ments sn the s=direction aiong cach 0= constant
Surlace, Compared with the
test graod of Figure o) tie grid an Figure 4 has
pooc resolation gt the feading odge, and hence,

Aas shown n Fagare &

the true girforl shape 1o oot sufficiently de-
fatved Furthermore . Sance the <hope of oach n =
comstant curve v algebrar gty detiged by curves
tit through the grid points, few points in regions
of high are curvature might eventually alter the
shape of the atrforl gfter several adaptive
sweeps. Fortuunately, by clustering points in
these high curvature regions, this problem can be
avorted. Figure 5 depicts the same test grd with

points redistributed  acrording to function f2 for

popomiig. value of the constant K On this grid,
the <lope of the n 2 constant curves gear the
leading edge are preserved,

Another notireable ditterence between Figures
Soand &oas in the grid speroang near the boundaries
ot the adaptive domain.  The elliptic properties
of the original grid generator ansure that grid
spacing changes smoothly thronghout the mesh
However, since the adaptive grid algorithm redis-

tributes points within the adaptive domain with no

regard to the points outside the domain, there is
no guarantee that grid spacing is continuous
across the boundary. Figure 4 illustrates this
fact. Along the {1 and &2 lines, where grid spac-

ing in the § direction varies rapidly, the accura-
cy of the finite difference equations may be inad-
equate. For example, at any point along the arc,
a finite difference equation with second-order
truncation error on a uniformly spaced grid will
decay to first order accuracy on a non-uniform
grid whenever the grid spacing on both sides of
the point differ greatly- that is, when

As [<<lor As+ >>1

as” As
To remedy this spacing problem, a third weighting
function is introduced, defined as

S
£ = *(s= )e—g<smax>
3{s)= DL _(s=s . 13)

s -8
-g( max )
- - D20, g=50
+ Cg(s-O)e Smax 4

where the asterisk refers to the value of ES eval-

uated outside of the adaptive boundary. This
function is chosen since, for a large enough value
ot g (=50},

f.(s

. *
35 nax V1, £500) = DIE1(0))

- =
) # DIE (spay

and

f3(s) = g for G<< s<< S o (14a,b)

Differentiating equation (9b) whith respect to s
yields

fsmax

F(s) = £, JOE(s)ids = E5(C)  as)
( Ep=fy )

Provided that both grid curvature and density gra-

dients are negligible at the adaptive domain

boundaries, it can be shown that by choosing the

constant D = C]/A, grid spacing ({S) will be con-

tinuous across the boundary of D . As a

adapt ive
result, the order of the solution truncation error
near the boundury shonld not decrease (still

o(sz) ) appreciably.

Function {3(5) is used to create the adaptive

Lo

grids in Figures 6a and 6b. The first of these
grids has a weighting function equal to f3(s)

alone, producing 4 grid with equal spacing along
cach s-curve everywhere except near the boundary

of Dadaptive' Both functions f2 and 53 are used

to create Figure 6b, which has clustering near the
leading edge as well as equal grid spacing through
the boundary. Indeed, it is a combination of all
three weighting functions that will produce the
most desirable adaptive grid.




GCousider first a4 positive weighting function
w=w(~), associated with some partial differential
equation, chosen so that w increases as the grid
poini density ( £S ) needed to approximate the so-

lution to the partial differential equation to
some fixed error also increases. Saltzman® has
shown, through a variational approach, that by
minimizing the integral

smax
I(s) =/ W(s) ¢ dag (5)

0

the error due to solution approximation is also
minimized. The Euler-Lagrange equation corre-
sponding to this integral is now

<_5__3_3_

3f  ds ags>(w Sg) = 0 (6)
which reduces to the coudition that

W(E)s sg = constant, (7a)

or, with s as the independent variable,

W(s)s / £ = constant (7b)
s

since s is assumed to be a function of § only.
Replacing Yw(E) with F({) for the sake of conven-
ience, and assuming that the Af{ between adjacent
grid points along each s-curve is equal to one,
equation (7a) can be approximated by forward-dif-
ferences as F(f)As=constant, where As

=g (E+1)-5(£). This states that the product of the
weighting function and the grid spacing is equally
distriboted along the s-curve. Anderson et al.*
have for this reason named adaptive grid methods
governed by eguation (7) equidistribution schemes.
Now, the Loundary conditions for (7a) and (7b)
aloug each s-curve are

£ =0

s 1) (8a)
S(CZ) = Smax

and

£ = £

£(0) -1 (8b)
Elspaxt = 62

The corresponding solutions to equations (7a) and
(7b; are then found to be

£
1/F d
s .lgl /F(g) dg

= £2 (9a)
Smax / 1/F (&) dgE
£
and
s
E~E ./r F( d
1 = - s) ds (9b)
£ -~ max
2 61 F(s) ds
0

respectively.

For a general weighting function F(s), neither
of equations (9) can be namerically integrated di-
rectly. The integrands on the right hand side of
each equation dre functions of the grid point dis-
tributions s(f) and §(s). which appear also on the
left hand side of cach equation. To svlve the
equations, then, an indirect method, such as an
jterative updating procedure, must be employed.
Although equation (9a) may appear to be a better
choice than (9b) for numerical integration, on the
basis of iterative convergence speeds this was not
the case. Rather, the number of iterations needed
for convergence of (9b) was as much as an order of
magnitude less than the number needed for conver-
gence of (9a), and because of this, equation (9b)
was used exclusively in this work. This differ-
ence in convergence speeds was due in part to the
form of the weighting function F(s) used, de-
scribed below.

Weighting Function

The weighting function chosen for this study
is of the form

F(s) = 1 + A(fl(s) + fz(s) + f3(s)) (10)

where A is a positive constant and fl(s). fz(s),
and fa(s) are each non-negative functions. In-

cluding the constant, 1, in F(s) allows A to con-
trol the degree of grid clustering, and insures
that F(s) will not approach zero (ES*O), which is

not feasible.

To illustrate the utility of each of these
three functions fl‘ fz and f3. a test grid was

generated, the inner detail of which is presented
in Figure 2. The inner boundary of this C-type
grid (n = 1 surface) is an NACAOO12 airfoil, with
61 points wrapped counter-clockwise around the
surface, and 42 more points, ranging from 1€§S21
and 81<£5101, distributed downstream of the trail-
ing edge. The adaptive domain, Dadaptive’ is

bounded by two n=constant lines emanating from the
trailing edge (£1=2l,£2=81). The adaptive coordi-

nate chosen is £, meaning that s({) functions will
be redistributed along each of the 21 nearly con-
centric n=constant curves. The dimensions of the
adaptive and total domains are then 61 x 21 and

101 x 21, respectively. On this grid, a converged
2-D conservative variable Euler equation solution
was generated for a Mach number M _=0.75 and angle

of attack a =2.0 degrees. These flow conditions
are known to produce a shock just upstream of the
upper surface midchord on a grid with sufficient
point density in the shock region. On this test
grid, however, the shock region point density is
sparse, and the shock is smeared across several
grid points, as shown in Figure 3a, which pictures
curves of constant fluid density. The methods
used to generate both the initial grid and the
initial solution are described later in this pa-
per.

The most important term in the weighting func-
tion is fl(s)‘ defined as the first partial deriv-

ative of fluid density with respect to arclength
s. Numerically, this derivative is easjily calcu-
lated by noting that

Py




minimizing the integral, additional P.D.E.s must
be solved. Nevertheless, the fact that these
technigues are based on a firm mathematical foun-
dation should eventually make them more popular
than ad hoc procedures.

One particular type of variational adaptive
grid, previously employed by both Iwyer® and Cnof-
fo’, is particularly attractive it adaption is
needed inoonly one computational coordinate. This
technigue is referred Lo as an equidistribution
adaptive grid scheme, and is the type of grid
scheme extensively studied in this work. The
scheme, which is formulated and explained in some
detail in the next section, is an ideal technique
for use with transonic airfoil problems, where
grid point adaption is usually only needed in the
streamwise direction of flow.

ADAPTIVE GRID SCHEME

Mathematical Formulation

When linite-diflerence techniques are used to
obtain the solutions to the partial differential
equations governing fluid flows, a finite number
of points in physical space must first be select-
ed. These points comprise the grid, or mesh, at
which the solution to the discretized versions of
the P.D.E.s (the finite difference equations) are
to be calculated. In two dimensions, the physical
location of each grid point can be defined by its
two Cartesian coordinates, (x,y). Mesh points can
alternatively be defined by two coordinates § and
n, chosen so that the grid points in the x-y phys-
ical plane become equally spaced and fixed in time
in the §-n computational plawe. For simplicity, &
and n are integer valued, usually set equal to 1.
The computational coordinates of each point are
then associated with a storage location in a two-
dimensional array. The representation in either
the compntational or physical plane uniquely de-
fines o given mesh poiut.

Now, the computational plane and the physical
plane are mathematically related through the vec-
tor-valued mapping

X x{f,n)
= (1a)
Y Y(Crn)
which is schematically represented in Figure 1.
Provided that this transformation is both one-to-

one and onto, the inverse mapping also exists, and
is detined as

£ E(x,y)
= (1b)
n nix,y)
In daffervential notation, this transformation can
be written as

dx x x da¢
& n
= (28)
) dy i Ye Y dn

n

or inversely as

dg y, X% dx

3

(2b)

G

where J = xcy“-x“yz. the Joncobinu of the mapping.

The major advantage of employing computational co-
ordinates is thaL Lhrough equations (2a) and (2b),
the P.D.E.s governing the flow can be transformed
so the independent variables are now { and n.
This reduces the complexity of the finite-differ-
ence equations, since the computational grid on
which they are solved is both equally spaced and
non-moving.

The complete grid region in the physical plane

will be known as the total domain, Dtotal' and is
mathematically defined as
x = x(E,n) 1<g<§
Dtotal- ! max
Yy = y(E,n) lsnsnmax
3)

The ranges on the computational coordinates are
chosen for convenience only. Either past experi-
ence or intuition may determine that inadequacies
in grid point spacing prevent the discretized
P.D.E.s from approximating the governing equations
of motion to a desired degree. In general, only a
subregion of the total domein will have an inade-
quate grid point distribution, so only the grid

points in this region, called Dadaptive' and de-
fined as
Dadaptive -} %7 x(&en) 515 5552
y = y(§,n) 1SnsSnp.o
)
will need to be redistributed. Dadaptive' as the

name suggests, i{s then the domain in which the
adaptive transformation will be applied. Schemat-
ically, Dudaptive is the shaded area of Figure 1.

Note that since D C

adaptive =
where either Zl-l or £.=f .
ble.

Dtotnl' the cases

x are certainly allowa-

Now let s({) be the arclength along an

=const
n=c ant surface in Dadaptive such that

s(£=El)=0 and s(£=52)=sm‘x, and observe that
s(§)<s({+1) for all {£|E1<E<E2 }. Calculation of

a new s(§) function for each n=constant surface
will result in a redistribution of the points
along the s-curve. Since the points are free to
move only along n=constant surfaces and not along
{=constant surfaces, the selection of the adaptive
coordinate (§{ in this case) is not a trivial mat-
ter, but is dependent on the type of flow being
modeled. Fortunately, in many cases, particularly
those with well-defined regions of large solution
gradients, the correct adapting coordinate is im-
mediately apparent. The problem now becomes one
of determining the new s(£) function for each
n=constant curve.
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AN ADAPTIVE GRID SCHEME APPLIED TO TWO-DIMENSIONAL
AIRFOIL PROBLEVS

.
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Lockheed-Georgia Co., Marietta, Ga.
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ABSTRACT

A dynamically adaptive grid scheme based on
equidistribution in one computational coordinate
is applied for the first time to inviscid transon-
ic flow numerically solved ou C-type airfoil
grids. Steady-state solutions arc obtained for
NACA0012 and RAE2822 airfoils using both fixed and
solution edaptive grids, and results for both
grids are compared with previous numerical and ex-
perimental data. The adaptive grid algorithm is
seen to resolve details of the flow field near the
upper-surface midchord shock not seen in the fixed
grid solution, thus eliminating the need for a
priori grid point clustering in the region of the
anticipated shock. In addition, problems inherent
to schemes of this type are discussed, and sugges-
tions for further study are also made.

INTRODUCTION

The generation of computational meshes for use
in solving discretized systems of partial differ-
enti1al cquations (P.D.E.s) is presently a subject
of intense research. In most cases, & grid is
generated by ecither algebraic, complex variable,
or differential equation methods before any numer-
ical solutions are calculated, with the resultant
mesh being used for all subsequent computations.

A major pitfall of this accepted technique lies in
the fact that the mesh point distribution often
proves Lo be inadequate for approximating the
problem under consideration.

When the P.D.E.s governing certain fluid flows
are discretized and solved on an insufficient
mesh, it is possible that certain high gradient
phenomena of the flow field will not be captured,
due to the sparsity of grid points {n the high
gradient regions. For example, houndary layer,
free shear layer, and captured shock regions
(flows with multiple length scales) all require
locally high grid resolution for the sclution to
be approximated to a given degree ot accuracy.
This problem might be alleviated by using a grid
with high resolution throughout, but the added
computer storage and time demands make this im-
practical. Alternatively, points could be clus-
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tered only in the anticipated regions of large
solution gradients. This, however, requires an a8
priori knowledge of the flow field, which many
times is not available.

A better suggestion is to usc a dynamically
adaptive grid, i.e., one which continually adjusts
the point distribution within the mesh as the flow
solution is advanced in time. An ideal adaptive
mesh scheme would be one which readjusts the grid
points so that the local truncation errors of the
discretized equations of motion are reduced to a
minimum, constant value throughout the mesh. Such
a scheme would raquire analytical or approximate
expressions for the local truncation error. Un-
fortunately, except for the most basic equations
of fluid motion, expressions for the truncation
error of the associated finite difference equa-
tions are extremely difficult or impossible to
calculate. Therefore, when truncation errors are
not available, grid point adaption should be driv-
en by some other mathematical or physical relation
which will still improve the overall accuracy of
the finite difference equations of motion. For
most adaptive grid schomes, this is ‘ndeed the
case, although the means nsed to reach this cnd
differ greatly.

Anderson® has separated existing grid tech-
niques into two distinct categories. In the first
of these :wo categories, s mathematical law defin-
ing the speed of the grid points is postulated,
and the new grid point locations are obrtained by
integrating in time. Although calculating grid
point locations from the grid speeds is straight-
forward, formulating grid speed laws based on
sound physical reasoning is not. In fact, a fair
amount of ingenuily is often necessary. For exsm-
ple, in a technique Jeveloped by Rai and Ander-
son®, grid speeds are calculated from an attrac-
tion model. In this model. every two grid points
induce on each other a small velocity which is de-
pendent both on the distance between the two
points and the other point's deviation from the
average solution error. The grid speed at sach
point is then set equal to the sum of all of the
velocities induced by every other point in the
grid. A survey of adaptive grid schemes based on
grid speed laws is given in reference 3.

In the second of these two categories, grid
points are moved to new locations through speci-
fied mathematical mappings, and then the grid
speeds needed in the equations of motion are cal-
culated from backward differences. Among the
techniques falling into this class are variational
methods, developed extensively by Brackbill® and
Sultzman®. In variational methods, an integral
contaiuing a measure of some 8rid parameter, such
as orthogonality or smoothness, is minimized. One
dissdvantage of variationa) methods is that by
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Table 5.

(a) w =0.05 a=0.0

One-dimensional viscous Burgers' equation.

Numerical results for boundary layer.

(e) u=0.10, a = 10.0

step = 200, time = 5.00 step = 400, time = 3.43
N 2 u error N X u error
. ’ 15  0.7388 0.8687 0.0056
16 0.7887 0.7906 0.0064
. 17 0.8360 0.6816 0.0066
17 ). 8000 0.9756 0.0116 18 0.8803 0.5419 0.0060
18 0.8500 0.9286 0.0234 19 0.9219 0.3765 0.0045
Ly 0.9000 0.8000 0.0384 20 0.9614 0.1929 0.002¢4
20 0.9500 0.5000 0.0379 21 1.0000 0.0000 0.0000
21 1.0000 0.0000 0.0000 Integrated error = 0,00224
Integrated crror = 0.00601
' T e - (f) 4 =0.10, a = 20.0
(b)Y vt =005, a = 10.0 step = 500 cime = 3.53
step = 300, time = 3.39 .
e o ; 7 T N x u error
N x u error 15 0.7624 0.8354 0.0054
17 0.8576 0.9060 0.0156 16 0.8098 0.7460 0.0058
X 0.9027 0, 7686 0.0188 17 0.8532 0.6310 0.0056
ty 0.9 390 the 3560 0.0164 18 0.893) 0.4936 0.0048
20 U471y v.2911 0.0094 19 0.9302 0.338y 0.0035
21 1. 0000 0.0000 0.0000 20 0.9656 0.1724 0.0018
Inteprated error = 0.00329 21 1.0000 0.0000 0.0000
Integrated error = 0,00204
(C) o 20009, g 0.0
step = 300, tiwe - 072 (g) Leonard ird-order differencing
e u=0.05 a-=>5.0
) i step = 100, time = 3.21
N X " error -
1/ 0.8815 0.8443 0.0153
18 .9186 0.6871 0.0154 N X u error
19 ). 9489 U.4832 0.0122 8 0.7810 0.9789 0.0037
20 0.9753 0.2490 0.0067 9 0.8826 0.8394 0.0137
21 1.0000 0.0000 0.0000 10 0.9501 0.4867 0.0251
Inteyrated error = 0,00289 11 1.0000 0.0000 0.0000
Integrated crror = 0.00312
(dy o7 000, g o= 0l
step - 0, time - 3L7% (h) Leonard 3rd-order differencing
R . uw = 0.05 a=>5.0
step = 200, time = 2.66
N A Il vrror
15 TR IR 0.0057 -
16 ty. 7h4h0 SRRV 0.0074
. N X u error
) N (317} . - s s I~arvve
O b oot 16 0786  0.9728  -0.0006
Lo RV, 0 ok 0. 0085 17 0.8364 0.9269 ~0.0001
o 0L 00 30500 0.0051 18 0'885§ 0.8177 0.9025
21 1. 000G 0. 0000 0. 0000 19 0'929% 0'§}57 0.0061
Inteproted vrror = 0,00294 20 0.9663 0.3306 0.0054
ph e 21 1.0000 0.0000 0.0000
Integrated error = 0.00047
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Table 3. Finite difference calculation of PT and QT

Note: FExamples given for calculation of P1. Expressions for Q1 are similar,
General form
P = P(x,y,u)

P = (JPl'i/.)uk'l)uI + (JPl' /axk,l)x1 + (QPi'Jlﬂyk'l)y‘

i) k,! i kyl k,l

where summation on the indices k,1 is implied.

Specific form
P(x,y,u) = B(u)/v(x,y)

- 2 -
P = -PYT/Y + P /Y

Y, = a/aT<x§ + yg) = z(x,;xTE + ’5’15)

- - (W
P ( Pi'j/gu

T )u1 as above.
iuj

k.l k,1

For P = (Zau{uFf)/(l + auﬁ) with central differencing,

P, /du

1,3/ 701,57 T PV Ry qug D

R

OFy3/0uy,5) = '“P“,i,J

(OB, ,/ou

1,301, y) = P20y - P

where p = a/(1 +'au? )
1,3

lable 4. Smoothing operator

u = [Sju
P = T Q = Qd)
Po= P iIS)u, Q. = (Qz1(s]u,

[8] is derived from a finite difference representation of

u=u+ % ug, (1-D)

>

- b
u=u+ Fl (uﬁﬁ + unn) (2-D)

in 1-D, {S] is a two-dimensional array. (S] is always constant.
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Table 1.

(Cont.)

1-D equations

2-D equations

8. Governing equation

(a)

(b)

General conservative form

u, + £ = viscous terms
t b

u + Ctuﬁ + fog

= viscous terms

Burgers' equation

u, + us = du
u_ + (£ +uf dup = V2u
1 t %' u

-

u + £ + g = viscous terms
t x y

u + CtuC + ﬂtun + Exfi + nxfn

+ +n = vigscous terms
by8e + By

2
u, +cu + duy uWu
u, + (Et + cEx + dEy)uE

2
+ =
+ (nt + cnx dny)un uVu

See equation set (2) for Vz. Note that VZE = P and Vzn = Q.

Table 2.

Coefficient matrices [A] and [B] in 2-D grid speed equation

(Al = (3, a,]

{B] = [bl' bzl

- T » -> -»>
Let r = (x,y) and k = J(Pr{ + an)

.
3
>

i)

2(-x r. +xr +yk)
= -X r X.r
nEn T % T n

2(-y T, +y.r 0
= - T -
InTen T Y0 T

B, - 202y - xglen - vk
1™ 2CqTee ~ XeFepn < YR

> > -+ -+
b2 - Z(ynrgg - ygrgn + xgk)

10
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Table 1. (Cont.)

1-D equations 2-D equations

3. Steady grid equation

(& Vi = P(E,) (a) V%€ = B(E,nou) 5 ¥Pn = Q(E.n,u)
3 -+ e -+ 2,.+ -+
(b) x&: + ng(x,u) 0 (b) ou'&E - ZBrEn + ann + J (Pr£ + an) =0
where:
T = (x )T B = x.x +
i £*n ¥ Ygn
2 2
(1=x"+yn y-xé-fy?’

4. Integral grid law

X
[ 11+ aw(s)]ds

e ———————— f,

i & max

L . [ {1+ aw(s))ds
ﬁ 0

F'. g 5. Clustering function
aw aw
I3 1
[ - Plxyuy = = =% - - P(x,y,u) =
. xf(l + aw) Y+ awl)
aw,
’ where: 2
' ) Qysw) = Gy
. 2
. w(u) = u;
where:
2 2
wl(u) ug wz(u) - u
o,y defined in (3).
- 6. Simplified grid equation/clustering function
P(x,u) = l-’(u)/x? P(x,y,u) = F(u)/Y(x,y)
x., + xPu) =0 Qx,y,u) = Qu)/a(x,y)
Substitute into (3b). " a
7. Grid speed equation
g
2, > ~ ore * )
() xR, () alr)ge = Br)g, + V() - R
. 3 + > . y
- +xP =0 + (Al + (BI(r),
- P Po=0 (Y, +Qr) =0 T
. () (x);; +Plx), + xP = + Tt Q) T

See (A] and {B] in Table 2.

S See PT. Q, in Table 3. ]
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Fig. 4 Two-dimensional viscous Burgers' equation
3 converged grid plot.
] (a) a = 10.0, steps = 300, time = 1.90
(b) a = 20.0, steps = 400, time = 1,98
Table 1. Summary of equations
1-D equations 2~D equations
1. Coordinate transformation o
L= E(x%,t) £ = E(x,y,t) ——
1 =t n = n(x,y,t) .
T=t . B
2. Transformation of derivatives ~“‘
a/ae 1 F,t M 3/at 1 gc N, 3/o1
A ax (U RV =10 £ n a/3g .
33 0 3/9n
y g, n,Jla/an]
+2 2 2
2 207 2p8 2 2 2,37 3 ~
J o e + (v ).)(' v (6 + Ey)agz + 2(€xnx + c’,yﬂy)———acan )
2, 2.2° 2,.2 2.2
+ (nx + ny)a—z- + (V E)a—’ + (v n)sﬁ
n .
where: . ‘
s X1 r‘t = -xTE,x - yTCy; N = =%XN, = yTv'\y .._:
1 1 e
S by "3 by T3 %
= - n = 1 x -
nx K] YC 3ony J %
1= XYy T X
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Fig. 3 Two-dimensional inviscid Burgers' equation

grid plot (a
(a) steps
{b) steps
(c) steps
(d) steps

10.0, w = 1.0, A = 20.0).
0, time = 0.00
S5, time = 0.05
10, time = 0,10
15, time = 0.15

Note: Dashed linea define boundary of wave
and center of wave.
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0.0025. As expected, the shock region in these
figures is better resolved than in the previous
figures, corresponding to a Asmin of 0.0030. One

striking difference between these two cases is
near the trailing edge wake area. The adaptive
boundary derivative matching term f3 is included

in the weighting function F(s) in Figures 8a and
9a, but is not included in Figures 8b and 9b.

With f3 turned on (Figure 8b), the large density

solution errors (and presumably all other solution
errors) present in the trailing edge zone of Fig-
ure 8a appear to reduce to the level of the origi-
nal fixed grid solution (Figure 3a). A disadvan-
tage of function f3 can be seen in the adapted

grid of Figure 8b, however. The addition of f3

into F(s) seems to shear the cells upstream of the
trailing edge (i.e., near the boundaries of the
adaptive domain), more prominently on the lower
surface of the airfoil. Perhaps this can be cor-
rected by using a modified form of the function

f3‘

Iu an attempt to validate both the location
and strength of the shocks predicted on the adapt-
ed grids of Figure 8, the resulting Cp-curves from
these grids were compared with data recently gen-
erated by Coakley'®. Coakley has applied an im-
plicit second-order upwind scheme to the Euler
equations for identical flow conditions past the
NACAOO12 airfoil. The C-type grid used in that
study was of nearly the same dimensions as the
test grid of this study, although grid point clus-
tering near the shock region was slightly higher
on Coakley's grid.

Due to the differences of the finite differ-
ence structures employed in each method, it was
anticipated that an implicit upwind scheme would
better resolve a shock than an ADI-type scheme on
similar grids. The curves in Figure 10a show this
to be the case. As expected, a well-defined shock
is observed in Coakley's data, but not in the data
from the original grid. The Cp-curves correspond-
ing Lo the adaptive grids of Figure 8, however,
more closely resemble the data from the upwind
scheme. In fact, in Figure 10c, (Asmin = 0.0025),

the Cp~curves match remarkably well, particularly
in shock locations, which differ by as little as
two per cent. There is also good Cp agreement in
Figure 10c¢ downstream of the shock and on the low-
er airfoil surface.

The most disconcerting region of the adaptive
grid Cp curve spans from the leading edge to the
shock on the upper surface. The discrepancy in Cp
values indicates that the adaptive grid Euler flow
above the airfoil does not accelerate to the Mach
number realized with the upwind scheme. Assuming
that this problem was due to truncation errors in-
duced by insufficient point clustering at the
leading edge, an additional adaptive grid run was
made, with Asmin = 0.0025, and with function fz.

Adaption to grid curvature was included to bring
more points to the leading edge. As seen in Fig-
ure 10d, with higher leading edge clustering, the
Cp curve more closely matches Coakley's data, al-
though there is an overshoot in pressure just be-
fore the shock on the newly adapted grid. Note
also the difference in the trailing edge Cp curves
of Figure 10ec and 10d. This is attributable to
function f3. whiclh is used only in Figure 10c.

Compared with the fixed grid solution of Figure
10a, however, the adaptive grid solutions of Fig-
ures 10b-10d more clearly resolve the upper sur-
face midchord shock wave.

RAE2822 Airfoil Results

To further validate the adaption grid scheme,
it is desirable to compare numerical adaptive grid
results with empirical data. Consequently, numer-
ical solutions were obtained for flow conditions
equivalent to those presented in an empirical
study by Cook et al.!®. In that experiment, ex-
tensive boundary layer, wake and pressure measure-
ments were made for transonic flow past an RAE2822
airfoil. The particular case selected for numeri-
cal comparison corresponded to turbulent steady
flow, with a Mach number M. =.73, an angle of at-

tack @=3.19° and a Reynolds number equal to 6.52
million. Experimentally, the boundary layer was
tripped at a distance of 0.03 chord lengths down-
stream of the leading edge. Under these condi-
tions, the boundary layer did not separate from
the airfoil, and a weak midchord shock formed on
the airfoil upper surface. Considering these
facts and the high Reynolds number of the flow, it
was reasonable to assume that the flow could be
modeled by an inviscid approximation.

For this reason, numerical solutions were
again generated from Tassa's Navier-Stokes code in
the Euler mode. Except for the angle of attack,
which was reduced to a=2.57° from a wall interfer-
ence correction formula suggested by Cook et al.,
and except for the Reynolds number, flow condi-
tions used were identical to those .f the experi-
ment. The inner detail of the initial grid used
for these results is presented in "igure lla.

Only the steady-state solution was of interest, so
the solution was advanced from impulsive free
stream conditions using variable time steps, and
was seen to converge after several hundred inte-
grations., The density contours for this case,
presented in Figure 12a, give no indication of any
shock formation. With hopes of defining a shock,
the flow field was solved again f.om an impulsive
start, this time with the adaptive grid solver em-
ployed after every 20 iterations. The minimum
spacing constraint was set at Asmin =0.005, and

both functions fz and f3 were turned off. The

converged adaptive grid for this case is shown in
Figure 11b. The large Asmin constraint selected

here prohibits grid point clustering to the degree
seen in previous NACA0Ol2 cases. Nevertheless,
aside from the leading edge region, the highest
point density appears to be just downstream of the
upper surface midchord region. As before, this
high clustering region corresponds to a shock
wave, seen in Figure 12b.

The numerical and experimental results of this
flow are presented together in Figure 13. The
first of these figures compares empirical surface
pressures with numerical surface pressures ob-
tained on the original grid. Outside the first 20
per cont of the airfoil, the empirical and numeri-
cal curves do not compare very well. Figure 13b
compares the experimental data with the solution
obtained on the adapted grid of Figure 12. The Cp
curves compare very well along the entire lower
surface of the airfoil. In addition, the loca-
tions of the shock are in very near agreement. As

v <%
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is often observed, the shock location in the Euler
solution is downstream of the experimental loca-
tion, although the distance here is rather small,
less than 10 per cent of one chord length.

Once again, the largest discrepancy in the Cp
curves is on the airfoil upper surface upstream of
the shock. No attempt was made to run another
case with induced clustering at the leading edge
as was done for the NACA0O12 airfoil in the last
section. One additional source of error may have
been in the effective angle of attack used compu-
tatiounally. 1t is conceivable that better results
would be realized if the lift coefficients CL

rather than the angles of attack are matched in
the numerical and experimental comparisons. De-
spite this one region of poor Cp correlation, the
adaptive grid routine has indeed clustered points
sufficiently to resolve the shock wave seen in the
experimental data but not seen with the fixed
grid.

NISCUSSTON

The practicality of a l-dimensional adaptive
grid scheme applied to a 2-dimensional transonic
airfoil problem has becn demonstrated in this
work. Advantages of a 1-D scheme are numerous.
Besides being easy to formulate and easy Lo under-
stand, this algorithm can be attached to an exis-
tent code with relatively few problems. Addition-
ally. the added computational effort needed for
the schome is minor. One run through the adaption
subroutine took less GPU time than one half of one
time integration step. With the adaptive rontine
utilized after every 20 to 30 integration steps,
the increase in CPU time was only about two per
cent. Furthermore, solulion convergence rates
with and without adaption were nearly the same
when a solution was run with a fixed At time step.

Unfortunately, there also disadvantages of a
1-D adaption scheme on a 2-D problem. The fore-
most problem is that in the equidistribution for-
mulation, the final grid point spacing along one 0
= constant curve is almost totally independent of
the adaptive distribution of every other curve.
As a resnlt, grid intersectjons arc rarely orthog-
onal, and sometimes become so skewed that the so-
lution diverges. Grid skewness is evident in Fig-
ure 3b, and to some extent, in Figure 8a. Near
the airfoil leading ndge, where arc curvature is
at its highest, skewness often became a problem.
With the skewness came large solution errors,
which induced even more skewness, due to the form
of the selected weighting function F(s). It was
almost always necessary to usc conservative

(large) values of Asmin to insure 4 convergent

adaptive grid. Because of this inherent skewness
problem, a technique which enforces orthogonality
at the grid intersection would be highly desira-
ble.

Finally, as mentioned earlier, grid speeds in
the transformed equations of motion were set equal
to zero in this study, and as a result, the solu-
tion vector was interpolated after each adaptive
sweep. Neglecting grid speeds prevented time-ac-
curate solutjons from being obtained, however. If
the grid speeds were indeed calculated from back-
ward differences and included in the equations of
motion, time accurate convergence rate studies
could be made, and the true effect of the adaptive
scheme on total computational time could be
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