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Boundary Crossing Probabilities and Statistical Applications

David Siegmund

Stanford Univerlaty

Abstract

This paper surveys recent results involving boundary crossing probabilities and related

statistical applications. The first part is concerned with problems of sequential analysis, es-

pecially repeated significance tests and their application to sequential clinical trials involving

survival data. The second part develops the probability theory motivated by the problems of

Part 1. A method for computing first passage distributions of Brownian motion to linear bound-

aries is introduced and then modified to handle problems in discrete time and those involving

nonlinear boundaries. The third part is concerned with fixed sample statistical problems, es-

pecially change-point problems, which involve boundary crossing probabilities. Examples are

given of problems for which the methods of Part 2 appear adequate and of problems which

require new methods.
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Boundary Crossing Probabilities and Statistical Applications

David Slegmund

Stanford University

0. Introduction

Let X(t), t = 1,2,... or 0 < t < oo, be a stochastic process and let c(t) be con-

stants. The general subject of this paper is approximate computation of boundary crossing

probabilities of the form

(0.1) P(X(t) c(t) for some m _ t . m}

or "

(0.2) P(X(t) _ c(t) for some m _ t < m X(m) = f)

and statistical applications of the resulting approximations.

The grandfather of all such problems in statistics is to determine the distribution of

the one sample Kolmogorov-Smirnov statistic, which is of the form (0.1) with X(t) the

difference between the empirical and true distribution function of a random sample and

c(t) identically constant. The limiting distribution of this statistic is of the form (0.2)

with X(t) a Brownian motion process, c(t) identically constant, and f 0. The principal

contemporary motivation for studying such problems comes from sequential analysis, which

is the context in which many of the results discussed below first arose.

The paper is divided into three parts. The first is concerned with a class of problems

in sequential analysis which lead naturally to problems of the form (0.1) and (0.2). The

discussion in Part 1 is restricted to statistical issues. We shall in effect assume that we

can compute without difficulty various boundary crossing probabilities that arise. How-

ever, these problems motivate the second part of the paper, which is concerned with the

mathematical problem of approximation of boundary crossing probabilities. The third part

discusses a number of non-sequential statistical problems which also lead to boundary cross-

ing probabilities, some of which are essentially already solved in Part 2, and some of which



require the development of new methods. Particular attention is given to so-called 'change

point" problems. The results here are in some respects less complete and outline a program

* for future research.

Because the subject of boundary crossing probabilities is quite technical, to convey the

main ideas the following discussion is frequently heuristic and restricted to special cases.

References are given to mathematically rigorous treatments. I have written a monograph

on sequential analysis (Siegmund, 1985), which describes in substantially more detail most

-of the results of Parts Iand 2.

1. Sequential Analysis

The primary impetus for the development of sequential analysis during the 1940's was

a desire for more effcient methods of sampling inspection. Recent developments have been

motivated at least in part by ethical considerations in the design of clinical trials.

- 1.1 Repeated Significance Tests for Normal Data

We shall consider in detail the following very simple model of a clinical trial. In order

* to compare two treatments, A and B, patients arrive sequentially and are paired, with one

patient in each pair receiving treatment A and the other treatment B. Let ai (be) denote

the (immediate) response of the patient in the ith pair who receives treatment A (B), and

let xi = ai - bi. Assume that ZI, Z2," are independent and normally distributed random

variables with mean p and known variance, which without loss of generality can be' assumed

equal to 1. Our primary goal is to test the hypothesis of no treatment effect, Ho 0,

* against the alternative HI : ja 0. Of course the standard fixed sample size test (at level

.06) based on a sample of size n is to compute S" = xl+.. +z.r and reject Ho if IS.I 2: ben1/2

* (V = 1.96).

If p is considerably different from 0, indicating that one of the two treatments is

* considerably superior to the other, it is desirable to ascertain this fact with a minimum

* amount of experimentation, so that all future patients can receive the (apparently) superior

* treatment. On the other hand if is is about equal to 0, there is no ethical mandate (although
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there may be a financial one) to stop sampling as soon as possible. A sequential test designed

to stop sampling as soon as it is apparent that H, is true while behaving like a fixed sample

test if Ho appears to be true is the so-called repeated significance test, defined as follows

(cf. Armitage, 1975).

Given ,o, m, and b > 0, define the stopping rule

(1.1) T = inf (n :n _ , IS.I W '/2).

Stop sampling at min(T, m) and reject Ho if and only if T < m. The power of this test is

(1.2) PO(T < m} = (, ( IS.I _> M/2) .

Its expected sample size is

(1.3) E,[min(T, mJ,

which we anticipate will be small when 1#1 > 0 and about equal to m when p W 0.

Renmrk: Note that the stopping rule (1.1) can be written

T=inf{n:nmo, S./2nb_/2},

or

(1.4) T = inf(n: n_ mo, A. t a},

where A. is the log likelihood ratio statistic for testing p = 0 against p # 0, and a = b2/2.

This observation is very helpful in adapting the results developed here to different situations.

For example, if we drop the hypothesis that the variance of the z's is known, (.4) becomes

T = inf{n : > mo, (n/2)log(1+2./.) _>.,

where . -1 z and v2 = n- 1 E- (z - .)2. Much of the theory developed for tests

based on (1.1) in normal families can be adapted to tests defined by (1.4) in multiparameter

exponential famliles (Woodroofe, 1978, Lalley, 1983, Hu, 1985).

In large multi-center clinical trials it does not appear feasible to monitor the accumu-

lating data continuously,so it is convenient to consider also "group" repeated significance

3



tests, in which we suppose that each 'observation" zi is actually the sum of several, say
.- "

k, observations which constitute the ith group. This does not affect the theoretical de-

velopments that follow, since zi is still normally distributed (and may be approximately

normally distributed even if the individual observations are not), but it does mean that a

small value of the parameter m can represent a large sample size if the group size k is large.

Also, for a group sequential test with group size k the "real' expected sample size is k

times the quantity in (1.3). As we shall see below, the group size k typically does not have

a significant effect on the operating characteristics of a sequential test. See also Pocock

(1977).

Before presenting a numerical example, it is convenient to introduce a modification of

the repeated significance test defined above, which does have an important impact on its

operating characteristics. As Table I below illustrates, a repeated significance test can have

a much smaller expected sample size for large pj than a fixed sample test of sample size m,

but the price it pays is a considerable loss of power. To recapture most of this lost power

at a relatively small increase in the expected sample size, consider the following family of

tests which interpolate between fixed sample tests and repeated significance tests. Given

0 < c < b, let T be defined by (1.1). Stop sampling at min(T, m) and reject Ho if either

T:5 m or T > m and IS. 12! ml/ 2. The power of this test is

P,{T 5 ml + P,{T > m, IS.I > em/2)

= P,{IS.I _ em) + P{T <n, IS.I < em'/).

Of course the value of b must now be somewhat larger than previously if the overall sig-

*. nificance level is to be unchanged, but by taking c only slightly larger than the rejection

level of a fixed sample test, one makes the power essentially equal to the first term on the

right hand side of (1.5), which in this case is about the same as for the fixed sample test.

See Figure I and Table 2 below. This modification of the repeated significance test was

suggested independently, with varying motivation, by Haybittle (1971), Peto, et al. (1976),

and Siegmund (1978).

Tables 1-3 contain numerical examples. The power function has been approximated

according to the suggestions in Part 2 of this paper. For comparison, results obtained by

4
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Pocock (1977) by iterative numerical integration are included in parentheses, when available.

Approximations to the expected sample size are computed according to the suggestion of

Siegmund (1985, equation (4.42)), which is not discussed here. Those cells which contain an

asterisk are combinations of b, m, and p for which the approximation to the expected sample

size is poor. Table I is concerned with a repeated significance test having power function

given by (1.2). It is easy to see that there is a substantial savings in the expected sample

size when IpJ > 0 compared to a fixed sample test taking m observations. To document the

loss of power of the repeated significance test, the power of a fixed sample tfft taking m

observations is also included in the table. Table 2 is concerned with a modified test having

power function given by (1.5). Now there is essentially no loss of power, but still a quite

considerable savings in the expected sample size. In order to compare Table 3 with Table 2,

one should think of Table 2 as defining a group sequential test with k = 10 observations per

group. Then the values given for p in the two tables are comparable (i.e. a value in Table 3

equals the corresponding value in Table 2 divided by k1/ 2 = 3.16); and the expected sample

sizes are comparable if one multiplies the entries in Table 2 by k = 10. To the accuracy

of the approximations used, the group test has the same power function and just a slightly

larger expected sample size than the test which inspects the data continuously.

Table I

Repeated Significance Test

6 2.413, MO=1, m=5, a-W.049(.05)

p Power (1.2) E,(T A m) Power of Fixed

Sample Test

2.071 .99 (.99) 1.93 (2.05) 1.00

1.759 .95 (.96) 2.43 (2.53) .98

1.592 .91 (.90) 2.76 (2.84) .95

1.311 .76 (.75) 3.35 (3.41) .83

.994 .52 (.50) 4.02 (4.04) .60

Parenthetical entries from Pocock (1977)

,-6

- - o6
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Table 2

Modified Repeated Significance Test

b = 2.7, c = 2.04, mo = 1, m = 5, a - .0504

A Power (1.5) E,(T A m) P.{T5 _m}

2.071 1.00 2.26 .98

1.759 .97 2.83 .91

1.592 .94 3.18 .84

1.311 .82 3.76 .66

.994 .59 * .40

Table 3

Modified Repeated Significance Test

b = 2.91, c = 2.05, mn = 10, m = 50, a 91 .0503

p Power E,(T A m) P,(T <_ m)

.655 1.00 19 .97

.556 .97 25 .89

.503 .94 29 .81

.415 .82 35 .62

.314 .59 * .36

Remark 1.6. It is easy to devise other tests which behave about the same as the modified

repeated significance test discussed here. One possibility, suggested independently by Miller

(1970), Samuel-Cahn (1974), and O'Brien and Fleming (1979), is to stop at min(N, m),

where N = min{n : IS.I _> B), and to reject H0 : p = 0 if N < m. While the properties

of these tests are similar to those of the modified repeated significance tests defined above,

they appear to have some disadvantages. For example, their overall significance level is more

sensitive to the choice of m, which makes them less flexible in adjusting to an unanticipated

change in the maximum sample size once an experiment has begun. See Siegmund (1985).
r

A modified repeated significance test is designed to produce a fixed sample size m

unless there is a substantial treatment effect as measured by the parameter of primary

7
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interest, p. We assume that if I1 is large, the preference for one treatment is so strong that

other considerations are essentially irrelevant. However, there typically are other measures

of treatment effect which one wants to explore, especially if p - 0; but because of their

secondary importance they do not enter into the definition of the stopping rule. There are

undoubtedly also cases where if pu is close to 0, one would like to terminate the experiment

as soon as possible because of economic considerations.

One can easily obtain reasonable tests which provide for early termination when H0

': appears to be true by splicing together 'one-sided" tests. For example, we consider initially

a modified repeated significance test of H0 : is = 0 against H, : > 0 defined by the

stopping time

T, = inf(n : n > mol, S, > binll}

* with rejection of Ho if T, _ m or T, > m and Sm > Mi/2. Now consider adding a lower

stopping boundary

(1.7) T2 = inf{n : n > m02, S- :_ -b2nVl2 + 6n) (6 > 0),

- and define a new test which stops sampling at T, AT2 Am with rejection of H0 if T, T2 Am

*- ' or Ti A T2 > m and S. >- cmil2 . (Here we are assuming that -b&m1/2 + Sm < cml/.)

_ Presumably 6 is chosen to be a positive treatment effect which it is important to detect.

Since one hopes to accomplish something different with T2 than with T, there-s no obvious

reason that the lower boundary should have the same shape as the upper boundary, or if it

has, that b, and b, should have any particular relation. Nevertheless, for the convenience

0 of this theoretical discussion, we assume that mo 0 = Mo and b =b2 b, say.

The power of this test is

S(1.) P,{T 5 2 m) + P,{ T AT2 > m, S. > m/2),

which is difficult to compute exactly, but which usually is easily approximated by results

developed to deal with (1.5). One approximation to (1.8) is

p
:: (1.9) P,{S. > cm /2} + P,(T1 <in, Sm <cemil2} - P,(T2 <in, Sm _> cm'/t).

• . .. ... . r; .l ; " ..''-; . ." i ? ..L ; .'; 'L '';'...."'''..
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It may be shown that the difference between (1.8) and (1.9) is

P,. (2' < T2 < m, S. : eM1/2} - Pp{T 2 < TL <in, S" < cmL/2},

which involves sample paths which first cross one stopping boundary, then the other, and

have partially crossed the continuation region again by time mn. These probabilities are

usually insignificantly small unless mn is close to the point where the upper and lower

boundaries meet, in which case m can probably be reduced without adversely affecting

the overall properties of the test (cf. Anderson, 1960). For the somewhat simpler case

of a truncated sequential probability ratio test, Siegmund (1985, 111.6) shows that the

corresponding approximation is a good one.---

For a numerical example consider the test of Table 2, which has a significance level of

* about .025 as a one-sided test against H: > >0.1If we now introduce a lower stopping

boundary (1.7) with 6 = 1.759 and decrease c slightly to 2.02, the approximation (1.9)

indicates that the significance level of the new test is again about .025 and the power at -

is = 1.759 is still .97. At ja = .994 the power is about .58, so introduction of the lower

stopping boundary appears to lead to a negligible loss of power. On the other hand, the
expected sample size when pu = 0 is roughly the same as the expected sample size in Table

2 for is = 1.759, or about 2.8. This is a considerable reduction from the expected sample

size of a repeated significance test, Which is just slightly less than the Maximum sample

size, mn = 5.

In recent years various authors have attempted to define attained significance levels,

or p-values, and confidence sets relative to sequential tests. Both of these concepts require

that the possible outcomes be ordered so that one knows what it means tur say that one

outcome is more extreme than another. For example, suppose that we use the stopping rule

4 (1.1) and the test terminates at T = n E (mo, m]. It seems reasonable to say that a more

extreme result would be a sample outcome which terminates at this or a smaller value of T

and hence to define the (two-sided) attained significance level of the observed result to be

Po{T :5 n). By similar reasoning, one can define a confidence interval for it. For a lower

(I - a) 100% confidence bound, if T =n E (ino, mn] and ST > 0, we can take for a bound



that value p, which satisfies

P,.T5 n, ST > 0) a.

The bound is defined similarly if T = -o, T > m, etc.

For b = 2.413 as in Table 1, the attained significance of T = 2 according to the

preceding definition is about .027. Thus, in spite of the dramatic action of stopping the test

after 40% of its projected duration the evidence against Ho as measured by the p-value is by

no means dramatic. The situation is somewhat different for a modified repeated significance

test if b is taken sufficiently large. For b = 2.71 as in Table 2, P.(T 5 2) V .012; and the

attained significance of any result which terminates the test before time m = 5 is bounded

by Po{T < 5) LM .023. Of course, it would defeat the purpose of using a sequential test if

one insisted that the p-value be extremely small before stopping the experiment.

It seems difficult to give a persuasive theoretical justification for the definitions sug-

gested here, and hence the principal argument in support of them is that several authors

have independently arrived at essentially the same definitions. Berk and Brown (1978)

discuss different alternatives. One is to order sample outcomes according to-the value of

STAm/T A m. If one neglects excess over the stopping boundary, this definition is equivalent

to the one suggested above. However, it has the advantage that it generalizes directly to

the case in which additional data become available after the experiment has terminated.

Usually these data are a small part of the total sample and have an insignificant effect on

the analysis. See Samuel-Cahn and Wax (1985) for an interesting example to the contrary.

Siegmund (1985) contains additional references and a more complete discussion.

1.2 Sequential Survival Analysis

The discussion of the preceding section is extremely simplified, and to see how it pro-

vides considerable insight for more realistic models, we consider next the possibility of using

sequential methods in clinical trials involving survival data, analyzed by the proportional

hazards model (Cox, 1972). The notation is unavoidably complicated.

Suppose that patients arrive (are born) at times VI, V2,'. Associated with the ith

patient is a triple (i, zi, e), where zi is a covariate, z is the length of survival (age at death),

10
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and c, denotes the time of censoring after arrival. The assumption of the proportional

hazards model is that

P{+z E I.ss + da) I i, zi 2_ s) -dAi(s) -exp(Pzx)\(s)ds,

for some unknown parameter P and base line hazard function A. Also let R(t, a) = {s : <

t - 8, zi A c _> 8) denote those patients who are at risk at time t and whose age (measured

from arrival) is at least s. Let

N(t, ) :{(y + zi _< t, Z : <_Cj, z3 < 8}

be the indicator that the ith patient arrived and died before time t, died at an age 5 8,

and was not censored at the epoch of death. Cox (1972, 1975) suggested that this model

be analyzed by applying likelihood methods to the log "partialP likelihood function

=~t 0) Gz log L eXp(PZA] Ni(t, d8).-

In particular, consider the score process £(t, P),-- O(t, )/8P, or more genirilly, the two

parameter process

(1.10) 4t,e, P) = J {zj{- pp(t, u)}N,(t, du)

with

YrjeR(IN) zi eXP(Oz)p(t, ) = IER,) exp(Pxz)

It is easy to see that (t, P) = 4t, t, 9). The score process can be used directly to test the

hypothesis H0 : P = PO, and its zeroes yield partial maximum likelihood estimators of P.

The asymptotic distribution theory used for probability calculations is based on the fact

that under mild regularity conditions

I(,,p)l{-i(t, P)}' /2

has asymptotically a standard normal distribution. (Here (t, P) is the second derivative of

the log partial likelihood with respect to P.) See Cox (1975) for an informal treatment and

Gill (1980) for a sophisticated discussion based on martingale theory.

11
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The appropriate generalization for purposes of sequential analysis is that (t, p), when

plotted against - (t,P) as the 'time' parameter, behaves like standard Brownian motion.

By virtue of the Taylor series expansion

At, PO) = A(t,p) + (P - Po){-et, Po)) + o(P - Po),

we see that for f close to fo, the test statistic At,po) plotted against (-I(t,io)) as time

behaves like Brownian motion with drift P - f. when P is the true value of the parameter.

See Figure 2.

t (tB o)-

y =bxII

Formulating precisely and proving the claims of the preceding paragraph are a sub-

stantial undertaking, which is not attempted here. Sellke and Siegmund (1983) give a fairly

complete discussion under the additional assumption that the triples (z4,;, ) are indepen-

12



dently and identically distributed. A still more difficult argument is required if, as seems

desirable, one treats the z's and c's as ancillary and conditions on their values (Sellke, 1985).

The reason that it is much more difficult to study the score function as a process in t

than marginally for fixed t is briefly the following. By rewriting (1.10) as

=4 0 -p't )}N.t, u - I(i E R(t, u))dA4(u)],

one can easily show that (1.10) is a martingale in * for each fixed t. Hence martingale central

limit theory is tailor-made to study the behavior of (1.10) as a process in s and in particular

its marginal distribution for. = t. However, (1.10) with . = t is not in general a martingale

in t (although it is in the degenerate cawe that all arrival times vi are the same). Seilke

and Siegmund (1983) show that tt, , P) can, however, be approximated by a martingale

unifotinly in t; and they then apply martingale central limit theory to this approximating

martingale. SelLke (1985) observes and exploits the fact that for tj < t2 < ts-< t4

4t,, - ,.,t3,A) and E(t2 ,°,P)-

are orthogonal martingales in s.

It is customary for data monitoring committees to meet at roughly equal intervals of

real time (e.g. every six months). According to the central limit theory discussed above,

if one proposed to apply the methods developed in the preceding section, intervals of time

should not be measured by equal calendar intervals, but by equal intervals of increase

in the observed Fisher information, {-Et,p)}. Siegmund (1985) describes a Monte Carlo

experiment, which among other things indicates that this discrepancy may not be important

- at least if the arrival and censoring mechanisms are not too erratic.

1.3 Example.

L A sequential clinical trial which has recently been described in considerable detail

in the medical-statistical literature is the randomized trial of propranolol conducted by

the P-Blocker Heart Attack Trial Research Group (cf. BHAT, 1982, and DeMets, Hardy,

Friedman, and Lan, 1984). Over a period of about twenty-seven months 3837 victims of

acute myocardial infarction were randomized to a placebo group (1921) or a treatment

13
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group (1916). The principal endpoint was a survival time, which was assumed to follow a

proportional hazards model.

The data monitoring committee planned reviews of the results to date at t = 1, 1.5,

2, 2.5, 3, 3.5, and 4 years. It was assumed that these would correspond to seven reviews

at approximately equally spaced increments of increase in the observed Fisher'information.

The stopping rule used in this experiment was defined by parallel straight lines as in Remark

1.6, but for illustrating the theory developed here, we shall consider a repeated significance

test. (For a discussion of the various factors in addition to the 'stopping rule' which went

into the actual decision to terminate the experiment, see DeMets et a., 1984.)

Let tn denote the time of the nth planned inspection, n = 1, 2, .-. , 7, and consider the

stopping rule

(1.11) T = inf(t n > no, I 2(t,,o)l _ iQ.t,)]' 2 ).

To test the hypothesis He: O = 0 of no treatment elect, stop sampling at min(T, ty) and

reject H0 if either T < t 7 or T > t7 and I(t 7, 0)J 2! c[-t 7 ,0] 1/ 2. The normal approximation

described above indicates that mo = 2, m = 7, b = 2.65, and c = 2.05 yield a .05 level test

having a power function very close to that of the sequential design used in BHAT (1982).

The power function and approximate expected sample size for this test in the approximating

normal model are given in Table 4.

Table 4

Repeated Significance Test for Normal Data

b = 2.65, c 2.05, me = 2, m =7
p Power Expected

Sample Size

1.50 .97 3.59

1.25 .90 4.47

.75 .50

.00 .05

To relate the power as a function of the normal mean i to the parameter ., it is

14
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necessary to make some assumptions about the rate of increase of -e4t, 0). For the simple

model we have discussed, if the censoring mechanism does not depend on the covariate,

it is easy to see that for 0 close to 0 each death yields on the average ab-out I unit of

information. In the 3.5 years before this experiment was terminated there were 318 deaths

for an accumulation of approximately 79.5 units of information, or an average of 13.3 units

per inspection period. This means that a value of # in Table 4 corresponds roughly to a

value of ;&/ p(13.3) /. In particular the row for is = 1.25 in Table 4 corresponds to

Sabout equal to .34. (The discussion of sample size selection in BHAT, 1981, shows the

expectation before the experiment began of a somewhat more rapid rate of accumulation

of information, hence greater power, than actually occurred.)

Similarly, the expected sample size in Table 4 multiplied by an average rate of accumu-

lation of information gives the expected information until termination of the experiment.

6 This in itself may not be as meaningful as, for example, the expected number of deaths or

the expected real time of the experiment. If we use the approximation that information

equals one fourth the number of deaths, then expected information is directly proportional

to a more meaningful quantity. Without much stronger modeling assumptions, involving

the arrival rate and the baseline hazard function, there is no relation between expected

information and expected real time for the experiment. Qualitatively, information accumu-

lates more slowly early in the experiment, so a reduction in expected information of 50%

compared to, say, a fixed sample test, invariably means a smaller reduction in the expected

time of the experiment.

The observed values of i/(-)1 2 at 1,15 . years were respectively 1.68, 2.24,

2.37, 2.30, 2.34, 2.82 (DeMets, et al., 1984). For the test actually used and also for the

repeated significance test suggested above, these data lead to termination of the experiment

at t = 3.5 years, or six months before the final planned inspection. (A more detailed analysis

14 using a number of covariates gave the value 3.05 for the corresponding normalized statistic,

which is reasonably consistent with the 2.82 of the simplest possible model. See BHAT,

1982.) The values of t4t, 0) and -(t, 0) are not given separately, so it is not possible to *
* plot t against -t as in Figure 2. This is unfortunate because such a plot would allow one

to check whether inspections indeed occur at approximately equal increments of increase of
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information; and much more importantly, since the plot should be approximately a straight

line with slope P, it would give a visual estimate of P and a visual goodnesof fit test of

the proportional hazards model. See Siegmund (1985) for a hypothetical reconstruction of

-f based on the assumption that each death contributes one fourth unit of information and

calculation of a confidence interval for 6.

According to the definition of attained significance given in Section 1.1, the two-sided

p-value of T = 6 in the approximating normal model is P{T _< 6} - .023. The attained

level announced in BHAT (1982) is .01, which seems to be too small - even if one takes into

account the different stopping rule and the possibility of slight variations in the definition

of the p-value.

2. Boundary Crossing Probabitles

2.1 Introduction and Asymptotic Normalluation

In this section we consider the mathematical problem of calculating approximately

probabilities like (1.5).

Let zx2, " be independent and identically distributed, and set S. - zs + -'- + zn.

Let c(n), n 1, 2,--- be constants and mo< m positive integers. Define the stopping time

T = infn n 2 mo, S. > c(n)},

and consider the problem of evaluating

(2.1) P(TS _m)

or

(2.2) P(T < miS ).

Since P(T _ m) = P(S,, > e(m)) + J. ) P(T < m I Sm = }P(S,. e dC), and since

the distribution of S. is comparatively easy to evaluate, at least approximately, a good

approximation to (2.2) usually yields a good approximation to (2.1). Similarly, evaluation

16
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of (2.2) is frequently the principle ingredient in calculating (1.5). Hence our focus in what

follows is on developing approximations to (2.2), which occasionally is of interest in itself.

Since (2.2) can only rarely be evaluated exactly, it is convenient to imbed our problem

in a sequence of problems and seek an asymptotic approximation. The actual calculations

are preceded by some remarks about the two most obvious asymptotic formulations.

In problems scaled for large deviations, we consider the asymptotic evaluation as

m --. oo of probabilities of the form

p() = P(S. > m (n/m) for some mo _< < Is. , (I Smo).

Since the boundary m e(n/m) is O(m 1 2) standard deviations away from the (conditional)

mean path of S., these probabilities typically converge to zero, and a reasonable approx-

imation would be of the form p(m) -.. q(m) for some easily evaluated analytic expression

q(m).

An alternative, the ordinary deviation or diffusion scaling, suggests consideration of

p'(m) = P{ S k ml/2c(n/m) for some m < n < m I S. = f) ( = m1 lfto).

Now the mean path of So is 0(1) standard deviations from the boundary ml/2c(n/m), so

typically if tno/M -. to

p'(m) -. p: P{W(t) _ c(9) for some to _ t < 1 I W() = Co},

where W(t), 0 :5 t < co, is a Brownian motion process. The approximation of p'(m) by p is

often not particularly good, but it can be improved by finding an expansion of the form

p'(m) = p + p, M-/2 + o(M-1/2),

which has been called a corrected diffusion approximation (cf. Siegmund, 1984, and refer-

ences cited there).

Typically, large deviation approximations are more easily obtained than corrected

diffusion approximations. This is especially true for nonlinear boundaries, C(n). See Hogan

(1984) for the first corrected diffusion approximations in a nonlinear case. Occasionally it

is possible to write a single approximation which is applicable to both cases. When this is

L.



so, that approximation is usually a very good one. Except for a few remarks, only large

deviation scaling is considered in what follows.

Numerous methods have been invented for approximating boundary crossing proba-

bilities (e.g. Borovkov, 1962, Woodroofe, 1976b, Lai and Siegmund, 1977, Daniels, 1974,

Jennen and Lerche, 1981, Durbin, 1981). The method described below has the virtues that

it is essentially the same in both discrete and continuous time, it is fairly general, and it

yields exact results in most of the simple situations where exact results can be obtained.

Our starting point is a derivation of the standard reflection principle for Brownian mo-

tion. The argument is then incrementally modified to deal with problems in discrete time

and problems involving nonlinear boundaries. Woodroofe (1982) contains an exposition of

alternative methods supported by complete proofs.

2.2 Reflection Principle for Brownian Motion

Let W(t), 0 5 t < oo, be Brownian motion with drift j and unit scale parameter, and

let 7(t) denote the u-field of events defined by W(s), 0 :5 a :5 t. It will be convenient to

use the notation

Plw}(A) = P1{A I W(m) = e} (A E 1(m)).

By the sufficiency of W(m), this conditional probability does not depend on p. For all

96 C2 and t < m, the probabilities P-) and P(m} when restricted to 1(t) are mutually

absolutely continuous; and a straightforward calculation shows that the likelihood ratio of

W(s), a 5 t, under P', relative to P )sCa s

(2.3) L('(t, W (t); fl, f2) =exp {[C- W(lt) t ( -.~ GSI In -0

The following is a version of Wald's likelihood ratio identity, which can be proved by stan-

dard martingale arguments.

Proposition 2.4. For any f, 96 f2, m > 0, stopping time T and event A E 7(T)

P(})(An (T < in))= R '[(1) (T, W(T); fl,f); Afn {T <mlJ,

where t(m) is given by (2.3).

18
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Let b > 0, -o < i < oo, and define

r = inf{t: W(t) -a + t}.

Let = b+ v"m, and let f2 = 2(b +im) - f be f "reflected' about b + im. See Figure

3. Since W(r) = b + r/r on {r < m), and P <in) = 1, from Proposition 2.4 and

simple algebra one obtains the well-known result

(2.5) P(-{, < in) = exp[-26(b + im - )/m I .

Siegmund and Yuh (1982) show how a slightly more sophisticated version of this ar-

gument yields Anderson's (1960) results.

2.3 Correction for Discrete Time

Consider now the same problem in discrete time, so

r =inf(n: S. > 6 + qn),

where S. = z-+. -+z., and under Pp the z's are independent normally distributed random

variables with mean is and variance 1. Now the preceding argument yields

P )(r < in) exp[2b(b + vm- C)/ml

(2)= E )[exp{-2(b + vim - C)[S, - b - rr]/(m - r)}; r < ml,

where C2 = 2(b + rim) - f.

To analyze the right hand side of (2.6) asymptotically, suppose that b = fm and

C = mfo for some fixed r > 0 and C. < f + qi. Since the P(")-deviations of S. from its

expectations, [2(f + qi) - Coin, are of order W/2, a law of large numbers argument shows

that with probability approaching 1, S. crosses the line Cm + vin near where its line of drift

does, so for any e > 0

(2.7) .im I '){Im-'r - f(j2 + q - o)-' > e) 0.

See Figure 3. It follows that the right hand side of (2.6) has the same asymptotic behavior

as

kw)[exp{-2(2f + v - o)(S, - fm - vri); r < m.

19
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If this expectation were with respect to the unconditional probability with the same

drift, P2(,+,)-.{, one could apply the renewal theorem in the manner which Feller (1972,

Chapter XII) uses to derive Cramir's estimate for the probability of ruin, and hence evaluate

(2.8) in the limit as m -- oo. Specifically, observe that for a random walk n, n 2,.

with non-negative drift 9 = 51 and for

f inf (ns S . a)' ,

S - a can be regarded as the residual lifetime in a renewal process defined by &,*, where

f+= inf{n . ,, > 0). Hence if S1 is nonarithmetic the renewal theorem implies that as

G-" OO --

(2.8) P{S, - a_< z) -- [(sr)-' P(Sr > d.

See Feller (1972, Chapters XI and XII). For a discussion which is oriented towards the

present application, see Siegmund (1985, Chapter VIII).

During the relatively short time interval in which according to (2.7) r falls with probs-

20
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bility close to one, the increments to the conditional PO') process S. and the unconditional

P2c+,-( process both behave essentially the same, so the P(') and P(f+q). limiting

distributions of Sr - Cm - qr are the same, and are given by (2.8) with S, = S. - tin.

One simple way to make this argument precise is to obtain a slightly different version of

(2.6) by using Wald's likelihood ratio identity to differentiate A") with respect to P2ic+q)-fo

instead of P('). Let # 2 = 2(+vi)-fo. An easy calculation shows that the likelihood

ratio of ZX,'", z, under P m) relative to Pv, is

exp [-2 (Sn - ;&2n) 2/(M - n)] / i n1)/

so the right hand side of (2.6) equals

E., [exp{ - 2(c + q - fo)(S, - b - vir)/ I -
(2.9)1 M

(29)- (Sr -**2) 2/(m -r)}/( r ~)1/2; r < in].

The asymptotic marginal distribution of the random variables appearing in (2.9) are

easily determined. Under P,,,, rim converges in probability to the same limit as in (2.7);

the renewal theorem applies as in (2.8) with S . , - n - b; and by an easy application of

Anscombe's theorem, (Sr - p;2r)/rTI/ is asymptotically standard normal. Also by Lemma

2.16 below, S, - nr - b and (S, - #2r)/r1/2 are asymptotically independent. Thus we have

all the ingredients to evaluate (2.9). From (2.8) and some calculation one sees that the limit

of (2.9) is v[2(2C + ti - Co)], where for p> 0 and r+ = inf{n : S. > 0}

(2.10) V(P) = [1 - B,/ 2 eXp(-p Sr,)]/p E, 2/(S,+).

Hence by (2.6)

(2.11) P(') (r < m) - v[2(2C + q - ,o)] exp[-2mC(C + ,' - ,o)]

(b = mC, f = mi0, C > 0, Co < f + qi). Random walk theory (cf. Feller, 1972, Chapter XVIII

or Siegmund, 1985, Chapter VIII) permits one to obtain a numerically calculable expression

for (2.10), to wit

(2.12) 2j() = 2p-exp -2 G -I* ( n.. 1 /2)

21



where 9 is the standard normal distribution function. For many purposes it suffices to use

| .the approximation

* (2.13) v() = eXp(-pp) + o(p2) (p -. 0),

where

( ) 6 Sr2-2 Eo(S,+) = - f ' 2 log[2-2(l - eXp(- 2/2))Id.A:: ~ ~~(.14) P= E +2s~,)=--

L .583.

n Partial justification for (2.13) comes from a Taylor series expansion of (2.10) to obtain

(2.15) v(p,) = I - is Ep(S,)/2 E,/,2(S,) +.

* This is easily turned into a proof of (2.13) with an error o(p). That the error is actually

o(p2) and that p has the value given in (2.14) are more difficult to prove. See Siegmund

, "(1985, Chapter X) for details.

*To complete the proof of (2.11), we must justify the asymptotic independence of (S, -

/2r)/r I/2 and Sr - rr - b used in evaluating the limit of (2.9). The first person to have

noticed this relation appears to have been Stan (1968).

Lemma 2.16. Let S., n = 12,-.. be a non-arithmetic random walk with drift E(S) =

> 0 and finite variance &2 var(S1 ). Let f f (a) inf n S. a). As a oo, for all

2 z>0,-oo < y < o

.,,{S, -. < z, ( - aji-,)/(a& 2 j-s),/ 2 < u) -" H(z)9(y)

and

P: { -a <a z, (§, - j)/10/ _ } 5 .y H(z)9(y),

"* where H is the distribution function given in (2.8).

Remark. A similar result holds for arithmetic random walks, but the distribution H

is slightly different. A result corresponding to the first relation in Lemma 2.16 holds if

i = 0, but in this case the appropriately normalized f is F/a2, and 9 must be replaced by

24(V-'/ 2) - 1.

22
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Proof of Lemma 2.16. Since by (2.8)

( A _ j)/i'/ 2 - (a - A)/fl/ 0,

the second asymptotic relation follows from the first one. To prove the first one, let n =

n(a, y) =ai - 1 + V(a 2Ai- 3)1/ 2. Then

P(Sr - a :_ z, f > n) E[P{§? - a _< z > n, 9.); f > -1.

Suppose al < a, a - a, -- oo, but a - a- o(a1/2). Then by the central limit theorem

E[P(s, - -a z I+ > n, }; > n, a, -s < a] -< P(al _< 5 < a) 0 .

Also, uniformly on { > n, < a,), by (2.8)

P{S,(o -5 z -= > n, z.=+ ,..) -(a - z) -5 z) H(z).

Hence enceP - a _z, f > n) = H(z)P(f >n, §. <a a} + o(I)

= H(z) P(i > n) + o(1).

The lemma follows from the well-known and easily proved asymptotic normality of f with

the indicated scaling.

Using (2.13), one can rewrite (2.11) in the form

(2.17) pf ) {r < m) - exp{-2(b + p)(b + p + nm - ,)/m).

This last approximation is particularly interesting because it is of the form (2.5) with b

replaced by b + p. Moreover, it follows from (2.81 and (2.13)-(2.15) that p is approximately

the expected excess of the discrete random walk over the boundary, so (2.17) has the

interpretation that to correct for discrete time one can use the Brownian motion result

(2.5) with boundaries displaced by the average amount the discrete time process jumps

over the boundary (cf. Siegmund, 1984 for other results having a similar interpretation).

The approximation (2.17) is also valid as a corrected diffusion approximation, i.e. if

b = ml /2 , 17 - lom - /2, and f f om/ 2, the difference between the two sides of (2.17)

is o(m-1/2 ). This result can be proved along the lines of the argument sketched above;

23
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but the details are more difficult because the P11) distribution of m-r does not become

degenerate as m -- co. See Siegmund (1984).

The accuracy of (2.17) is quite good. For m = 3, b - 1.564, and q =0 Worsley (1983)

has numerically calculated Pm) {r < m} to be .05. The approximation (2.17) yields .0463.

For the corresponding comparison when m = 5, b = 2.165 (m = 10, b = 3.292), (2.17) gives

.0488 (.0496). It is perhaps worth observing that an uncorrected diffusion approximation

is very poor for small m - ranging from .1 to .2 for these examples.

The asymptotic relation (2.11) can be generalized to a large class of random walks

whose distribution can be imbedded in an exponential family (Siegmund, 1982). The ana-

logue of t. given in (2.10) can be computed numerically using results of Woodroofe (1979)

or by an approximation along the lines of (2.13). With some technical improvements the

method also works for a general class of nonlinear boundaries. The key is (2.7), which

suggests that if the boundary is to be crossed at all, it will be crossed close to some dis-

tinguished point. This further suggests that one try to approximate the boundary by its

tangent at this distinguished point, which can be determined as the point through which

the P '} line of drift passes when f2 is appropriately chosen for the linear problem of the

tangent line. Siegmund (1982) discusses the example of repeated significance tests in detail.

2.4 Repeated Significance Tests

For repeated significance tests in exponential families a slightly modified method re-

quires considerably less algebraic detail. We continue to consider the case of normally

distributed observations, and let T be defined by (1.1).

Theorem 2.18. Suppose b -. o, m - o and mo - o in such a way that for fixed

0 <it < Po<o,m - / = , m I =p 0. Let 0 < Ifo < s, and f= m o. Then

PI=){1 < i) < (pop,'")exp(-Im(p4 - fo)]; and for p,/po < Ifoi < js

~<) v(p,/<)p&jf'exp[-+,(p - eo),
where v is given by (2.12).

Corollary 2.19. Suppose that the asymptotic scaling of Theorem 2.18 holds and also
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Cm -1 2  E( /po, p,). Then for # 0
• "" (2.20)I

P,(T < M, IS.I < -"1,- ( -e[-iolm'(p(,- -)1,
IIplml/2 Pf ~ 2r)ep-~Ip

and

(2.21) Po{T < m, IS.I <m12} ,.'. 2b o(b) -Vlz)dZ

where o denotes the standard normal density function and v is given by (2.12)."The relation

(2.21) also holds when e b & (-I 1& ,1); (2.20) and (2.21) hold if m = o(m) as 6 -. co.

Remark. Corollary 2.19 suggests that one approximate (1.5) by using (2.20) or (2.21) as

an approximation for the second term on the right hand side of (1.5). This is in fact the

- approximation used to compute the entries in Tables 1-3. Strictly speaking (2.20) is not a

true asymptotic relation when c = 6, but it usually gives a good approximation and is much

easier to evaluate than the asymptotically "correct" result. See Siegmund (1985, 1X.3) for

a more complete discussion of this point.

Corollary 2.19 follows easily from the theorem, and some simple estimates which are

*. ,omitted here (cf. Siegmund, 1985, IX.3). A proof of Theorem 2.18 follows.

*: Proof of Theorem 2.1S. First observe that in the derivation of (2.5) one could pretend

- . that time flows from m to 0 instead of from 0 to m and 'reflect' the value W(0) = 0 to

W(O) = 2b instead of reflecting W(m) - to W(m) 2 2(b + tim) - . Also recall that in

* the derivation of (2.11) it was convenient to work with the unconditional probability with

* the same drift as A m }.

Let

ri .P( (A) P I S A, SuC) (A IeY.),

and put

P.t1a) (A) - L P(')(A) jo[(A - f)/qm1 2jdA/fm1 2.

* Note that if we regard the process as running backwards from an "initial" value S. ,

then under Pr) it is normal random walk with zero drift.

2.
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!. Let T" ssp~n : n:5 m, Is.1 >: bnl/2), so

P,1)T< m) = Pw)(Tb >m.

It is easy to see that the likelihood ratio of x,+,".,z, under PAW relative to p(, is

r*'- l (m - n, S. - C; A - C, -C), where L(m) is given by (2.3). This simplifies IQ

,- exp[AS./n - A2 /2n Af/r + 0/2m].

* "Hence by a straightforward integration one sees that the likelihood ratio of z.+,', z.

Sunder P(') relative to P(m) is

(2.22) exp[AS./n - A/2r& - ACr + J2~[A-C/h2dA/m/

= (n/m)I / exp[S./2n - f 2/2m].

Since T is a stopping time for the process running backwards from time m to time 0,

Wald's likelihood ratio identity yields the representation

P(,)(T < m = = P (o,}T" >- mo)

(2.23) = tB ){(m/T')h/exp[-$T2./2T" + C2/2m]; T M0 1

: 2  f /M)]B,){(m/T)i/2exp[-2(ST - b2)J; V 2 mo),
where t("' denotes expectation with respect to

4 C

The inequality in Theorem 2.18 is an immediate consequence of (2.23). To prove the

asymptotic relation, it remains to evaluate asymptotically the expectation in (2.23).

Observe that the i(m) joint distribution of (T*, ST-) is the same as the P joint dis-

tribution of (m - r', C + S,), where

r" =inf (: IC + S.1I ! (m - n)/"}.

Hence the expectation on the right hand side of (2.23) equals

(2.24) Eo{(1 - rl/M)-1/2exp[_-(f + Sr.) 2 /(M- r') - b2)]; r" < M- MO).

An easy law of large numbers argument shows that as m -. oo

(2.25) , -'r" - (o/,)
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in probability, and in particular

(2.26) Po{r m- mo}- I for If01 > .&/ o
~0 for If01 < #,I/po.

If we were dealing with Brownian motion, for which there would be no excess over the

boundary, this would complete the argument. For the discrete time process, after using

(2.25) and (2.26) in (2.24), it suffices to show that

(2.27) lim Bo {exp [-I(,-+ Sr-) 2 /(m - r')- m] }_ p2

which requires a renewal theorem (cf. (2.8)) for nonlinear functions of a random walk.

To verify (2.27) observe that r" can be expressed

(2.28) r" = inf {n:n 1 ,lw -n+S + m-l._ 1_ f

If the term involving S2 did not appear in this expression, the renewal theorem would give

us the limiting distribution of the excess over the boundary. Because of (2.25) It seems

plausible that in the relatively small interval of time into which r" falls with probability

close to one, the quadratic term m-1 S2 is effectively constant and hence has no effect on this

limiting distribution. Lai and Siegmund (1977) describe a general class of processes which

can be decomposed into the sum of a random walk and a term which varies sufficiently slowly

that the limiting distribution of excess over the boundary is determined by theandom walk

alone via (2.8). Lai and Siegmund's result is not directly applicable here, but their method

is. See Appendix 2 for an informal discussion of nonlinear renewal theory. The consequence

is that

.w i t 1 rs e ltn + '-1 ---" - 1 f ; (4-f2:X H(z),

2i ~ 2te 2'

where H(z) is the limiting distribution as given in (2.8) for a random walk S. having

normally distributed increments with mean 1 -1 and variance 1. With te aid of (2.25)

it is easy to convert this limiting result to

limPo {(m - r'(mfo + Sr.)' - /m < z} )

27
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A trivial change of variable yields (2.27) with the same function v that appears in (2.11)

as the limit of (2.9).

The method described above generalizes in a straightforward fashion to repeated sig-

nilcance tests in one parameter exponential families. For the much more difficult multipa-

rameter case, see Woodroofe (1978) and Lalley (1983). Hu (1985) shows that the present

method leads to simplifications and new results in the multiparameter case, especially when

there is some invariance present.

In the case of Brownian motion the preceding argument can easily be sharpened to yield

a second order term in an asymptotic expansion of P "}{T < m) or P,(T < m, IW(m)l <

cM1/2). When there is no excess over the boundary the only approximation involved in

the preceding argument is that of replacing (1 - r'/m)- /2 by its limit as given by (2.25).

To obtain the next order of approximation, it is only necessary to expand (1 - /'fn)-1/2

in a Taylor series and analyze its central limit behavior. Although simple in principle, the

calculation is quite complicated in detail because one must consider three cases: Co close to

the endpoints of the interval (P?/po, i1) and Co in the interior of this interval. Siegmund

(1985) shows under the conditions of Corollary 2.19, for T defined by (1.1) with Brownian

motion W(t) instead of Sn, for j4/po < -1 -i

Po{T < m, IW(m)l < cml / 2} = (6- -)p(b) log(mc 2 /mob2)(2.29) + b'l(b)[3 - ( '1)2] +

Miller and Siegmund (1982) discuss the history of the special case c = 6 of (2.29),

which has been given incorrectly several times in the literature.

Using methods introduced by Woodroofe (1976b, 1982), Woodroofe and Takahashi

(1982) obtain the comparable approximation for Po(T < m} in the discrete case. The result

is quite complicated and does not appear to yield generally more accurate approximations

than the one suggested here (i.e. the sum of (2.18) with i b and Po(IS , _ 6m / 2] 
-

2[1 - 4(6)1).
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3. Other Boundary Crossing Problems

In Part 3 we consider a number of somewhat related (fixed sample) statistical prob-

lems which involve boundary crosing probabilities. For historical reasons the Kolmogorov-

Smirnov and Anderson-Darling statistics are discussed briefly in Section 3.1. Section 3.2

is concerned with the mathematically similar but conceptually different problem of max-

imum X2 statistics. Sections 3.3-3.6 on change point problems are the primary focus of

the chapter. (These sections can be read independently of the first two.) As we shall

see, the methods of Part 2 occasionally deliver an appropriate approximation immediately,

sometimes additional work is required, and sometimes completely new methods are needtA.

3.1 Kolmogorov-Smirnov and Anderson-Darling Statistics

Let ul, u2,.. be independent and uniform on 10, 11, and let
*

n-F,(z) =

be the empirical distribution function. As stated in the introduction, essentially the first

boundary crossing problem in statistics is that of finding the distribution of the one-sample

Kolmogorov-Smirnov statistic,

suplz- F(z)].

The distribution can be evaluated exactly (e.g. Birnbaum and Tingey, 1951), but the result

is quite complicated. From the representation of the uniform order statistics as Wk/Wn+i,

k - 1,2,---, n, where Wk = g' +"" + - V with Vi, ," - independent standard exponential,

it follows that

P(sup[z - Fn(z)] > c) P( max [Wi - J1 nc - I I W.+, - (n + 1) = -1).-- ISj~n -

The methods of Part 2 yield a large deviation and a corrected diffusion approximation, both

of which are very accurate. See Siegmund (1982), Yuh (1982), and Siegmund (1984). Of

course, the limiting distribution is given by (2.5) with C = 0, m = 1, and b = nl/ 2, but it

is not a particularly good approximation for small n.

* Since the Kolmogorov-Smirnov statistic is insensitive to departures in the tails from

the hypothesized distribution, Anderson and Darling (1952) proposed the goodness of fit
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statistic (two-sided alternative)

(3.1) n,/2 sup {IF,,(z) - z1/[z(1 - z)1' /2) (0 < el < 1 - e2 < 1)

and observed that the asymptotic distribution of (3.1) as n c-. o is that of the random

variable

(3.2) max IWo(t)l/[t(1- t)]1/2,

where Wo(t), 0 _< t _< 1, is a Brownian bridge. It is immediately verified by checking the

covariance function that

(3.3) W(t) = (1 + t)Wo[t/(1 + t)] (0 <t < co)

is a standard (driftless) Brownian motion process, so

(3.4) P( max IWo(t)l/[t(X - t)]'/2 > b = P mlW(t)l }

Hence the asymptotic significance level for the Anderson-Darling statistic equals the signifi-

cance level of a repeated significance test for the drift of Brownian motion. In principle one

can compute (3.4) exactly (e.g. DeLong, 1981), but since the answer is very complicated

and is only a crude approximation to the probability of interest, a good and easily evaluated

approximation seems preferable.

Since for any r > 0, r-1/2 W(rt), 0 : t < co, is again a standard Brownian motion, it

follows that

P{max t- 1/lW(tI > b)

depends only on the ratio vu- , not the actual values of u and v. Consequently by (3.4)
and (2.29) with e = b, as b - oo

P{IWo(t) > bt(1 - t)11/2 for some el _ t _ 1 - C2)

= (b - b-')9(b) log[(1 - C)(1 - ,,)/eC21 + 46-lp(6) + o(-'o(b)).

Comparison of (3.5) with the exact numerical computations of DeLong (1981) show that it

is quite accurate, even when the probability is not close to 0.
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3.2 Maximum X2 Statistics

The random variable (3.2) arises as a limit in distribution in a context which at first

appears to be quite different than the Anderson-Darling statistic.

Suppose that a 2 x 2 table is obtained from a categorical variable A or Ae (not A)

and a dichotomized quantitative variable Y, which divides a population according to low

(Y V t) and high (Y > V) values of Y. See Figure 4.

Y<:t Y>1

A £ I N= +b+ +d

Ae d

Figure 4 .

This situation might arise if A(A) denotes the occurrence (non-occurrence) of some event

or presence (absence) of some disease and Y is a diagnostic predictor of the event or disease.

We seek a cut point V*, which divides the population into low risk and high risk groups.

An apparently common ad hoc procedure for choosing &'* is obtained by the following

reasoning. For a given value of V, one measure of dependence between the categories A and

Y < V is the X2 statistic

N(ad - bc) 2

X- (o+ )(+ d)(. + )(b+d)'

and larger values of X2 indicate a larger degree of dependence. Hence we choose v" to

maximize X2 (subject to keeping some minimal percentage of the total sample in the Y :5 li"

and Y > y' categories). To assess the 'significance" of this predictor, we consider the

distribution of maxy X. under the assumption of independence in the 2 x 2 table for all v.

Let FI(V) = P{Y .5 v A), F2(v) - P(Y 5 I A'). The natural nonparametric

estimators of F and F are

.Ia/(a+b) and P2(y)=cI(c+d).

The hypothesis of independence in the 2 x 2 table for all V is H0 : F, = 2, and P(y) =

(a + e)/N estimates the common distribution function under Ho. In terms of Pa, j2, and
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*-. I, the square root of the maximum X2 statistic is

max xv max I()- i(w)I/ {#(v)-(v) ( 2 ,

where n, = a + b, n2 = c + d. This is the natural definition of a two-sample Anderson-

Darling statistic, which under He converges in law to (3.2) as min(n1 , n2) - oo. See Miller

and Siegmund (1982) for a more complete discussion and numerical examples.

Although the probabilistic aspect of this problem is already solved, natural and simple

generalizations to deal with more than one predictor variable dichotomized, say, by a hy-

perplane seem extremely dincult. See Halpern (1982) for a more precise formulation and
Monte Carlo study.

3.3 Introduction to Change Point Problems

In these final four sections we shall discuss detection and estimation of the time(s) of

an abrupt change in the distribution of a sequence of observations x;,22,.... To simplify

the discussion, assume that the zi are independent and normally disributed with means
0(0 and variance 1. Change point problems appear to have arisen originally in the context

of quality control, where one observes the output of a production process sequentially and

wants to signal any departure of the average output, from some known target value /z.

Outstanding contributions in a long line of papers on sequential detection are Page (1954),

Shiryayev (1963), Lorden (1970), and Pollak (1985, to appear).

In the following we consider only fixed sample problems involving a finite sequence

z, z2, z... The specific problems to be discussed are to test the null hypothesis of no

change Ho :S') - "'" = p(m) against the alternatives of exactly one change,

H, 31 <_ p < in such that #(I)=.=#,)p = #0 9j P, = I (P+ I) = ' =/ (m ) ,

or against the "epidemic' or 'square wave" alternative,

Hs 31 <5 p, < p2 < m such that p(l) #0= ISO/ P} /,

#(,+ ) = . /(e,) = Po + 0, '60+,) = . (,-) = JAO.

We also consider estimation of p by a confidence set when the hypothesis of exactly one
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change is assumed to be true. Typically p.o and 6 =% ~- p. are unknown, but it sometimes

seems reasonable to suppose that a particular value of 6 is a minimum threshold of interest

and hence to regard 6 as known for the purpose of deriving a test statistic.

Examples of change point problems in epidemiology are described by Woisley (1983)

and by Levin and Kline (1984). Here one is interested in testing whether the incidence of a

disease has remained constant over time, and if not, in estimating the time(s) of change(s)

in order to suggest possible causes. Kendall and Kendall (1980) describe an interesting

change point problem in archaeology, and Brown, Durbin, and Evans (1975) give a number

of econometric examples.

In Section 3.4 we consider the likelihood ratio test of no change against the alternative

of exactly one change. A large number of test statistics have been proposed for this problem,

and there is no attempt to compare them here. The main conclusion is that the methods

of Part 2 provide the basic tools to study a number of these tests without resorting to the

numerical or Monte Carlo efforts that have been the basis of earlier studies (e.g. Sen and

Srivastava, 1975).

Section 3.5 is concerned with finding a confidence set for p. In the case where PO and A,

are both known, we compare confidence intervals based on the maximum likelihood estima-

tor 0 and confidence sets (which generally are not intervals) based directly on the likelihood

function. Hinkley (1970, 1972) has mentioned both methods, but he directs his efforts pri-

marily at computational problems and does not compare the two methods quantitatively.

To minimize the computational difficulties and facilitate a simple comparison, we consider

the case of Brownian motion. The likelihood based method appears to be preferable, and

it is extended to the case of unknown nuisance parameters, p. and ;&j.

Section 3.6 is concerned with testing the hypothesis of no change against an epidemic

alternative. Here one encounters processes with a multidimensional indexing set, which

introduce some new problems. The methods of Part 2 can be used in some special cases,

4 but in others an adaptation of ideas of Bickel and Rosenblatt (1973) or Qualls and Watanabe

(1973) seems more fruitful.
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3.4 Tests Against the Alternative of Exactly One Change

The problem of testing the null hypothesis of no change, Ho JAW i - . (m) 00,

against the alternative of exactly one change, HI : 31 5 p < m such that p(l) .. - p() _

Po # At,= - ... #("0 (po and p both unknown) has been widely discussed; and a

number of test statistics have been proposed. The quasi-Bayesian statistics of Chernoff and

Zacks (1964) and Gardner (1969) are analytically tractable, but maximum likelihood type

statistics have typically been studied by numerical or Monte Carlo methods (e.g. Sen and

Srivastava, 1975, Worsley, 1983).

The square root of the log likelihood ratio statistic is proportional to

(3.6) max (ISk - kS,/mI/k(1 - k/rn)]'12).

A simple heuristic derivation of this statistic with minimal calculation is to suppose mo-

mentarily that HI specifies p = k. The problem then becomes a two population test to

decide whether the mean (0) of the first k observations equals the mean (;,) of the last

m - k. The standard test statistic is the normalized difference between the mean of the

first k observations, Sk/k, and the overall mean, 5./n. This is just (3.6) without the max,

which accounts for the fact that p is actually unknown.

Slightly more generally, we shall consider

(3.7) max {IS& - k S./ml/[k(1 - k/rn)]/2),

where 1 _< mo < m < m. (A justification is given below.)

To obtain some intuition for the virtues and defects of (3.7) consider also the ad hoc

suggestion of Pettit (1980)

(3.8) max IS, - k s./ml.

Under H0 the process S, - k S.n/m, k = 0, 1, n is the same as the conditonal

process 5,, k = 0, 1,..., m given that S. = 0, i.e. the same as a Brownian bridge observed

at discrete instants of time. Hence an excellent approximation to the significance level of

(3.8) can be obtained from (2.11) or (2.16) (multiplied by 2 to account for the two-sided

alternative); the significance level of (3.7) is discussed below.
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Under H, the drift of Sh - k S/m, k 0, 1,, m, is

(3.9)
(p/m)(m - k)(p, - po), k p,

and the residual process after subtracting out the drift is again a Brownian bridge observed

at discrete instants of time.

It seems intuitively clear from (3.9) as illustrated in Figure 5 that (3.8) is more powerful

than (3.6) for detecting changes that occur near m/2, whereas the converse is true for

changes occurring near the endpoints 0 and m.

Reject H0 (3.8)

Reject H0 (3.7)
(MO . 1~, M 1=M- 1)

iY

01 k

E (S -k Sn/m). 0)

FIgure 5

0

It is intrinsically difficult to detect a change that occurs near one or the other endpoint,

and the likelihood ratio statistic pays for its efforts to do so by giving up power near p = m/2.

* The introduction of mo and m, in (3.7) gives the statistician the flexibility to give up some

power to detect changes occurring near the endpoints in return for an increase in power
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near m/2.

By conditioning on S,,, one can obtain approximations to the power of (3.7) and (3.8),

* which can be used to compare these statistics with each other and with other proposals (e.g.

the recursive residual test of Brown, Durbin, and Evans, 1975). A more complete discussion

will appear in a future publication of B. and K. James. To illustrate the applicability of

the methods of Part 2, and to prepare for the discussion of confidence sets in Section 3.5,

- an approximation to the significance level of (3.7) is given below.

Let zj, z2, x.., ,. be independent standard normal random variables, and put S.

z, + -. + z,,. We continue to use the notation

Let b-5-0, m 2,3,-.1:5 mo< m, and define

(3.9) T = inf{n: n 2! 'o, 1S.1 2 bfn(1 - n/m)11/2}.

*Let mo <in m<5m - 1. The significance level of the test defined by (3.7) is

P,-( <min, = rP'-CiS I > b&1m 1(I - mij/m)j1/2}
(3.10) +fj P~m'){T < m:})P(,"'{SM, E df}.

* Theorem 3.11. Assume that bi- oo, in0 - co, m, - oo, m - oo in such a way that for

some 0:5to < t1 < Iandjl> 0

m,/m - ti (s= 0, 1) and &/l/2l i,

Let C=mfo for some Ifol E (pz(l t1)Ito/(l to)] 1/2, pi1[ti(1 tl)11/2 1).

Then as m - o P(ma){T < m1}

* [ 1( -tzJ'Ipi~
1 [,(I tz)/fo + fo/(1 tl)]eXp{-!m[1&2 - C/t, (I t1f)}, Where z' is

given by (2.12).

* Remarks. Substitution of this asymptotic expression into (3.10) suggests the approxima-

* tion

(3.12) -mVZ + I2/

(3.2) P,(m){T < m1} LN 2b po(b)( '' ~ zz +b/mz)dz + 2[1 - fb]
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which can be shown to be a valid asymptotic relation (even if mo and m - m, are o(m)). A

proof of Theorem 3.11 along the lines of Theorem 2.18 has an interesting twist, leading to

some new technical problems. An informal discussion is contained in Appendix 1. Siegmund

(1985, Chapter XI) derives (3.12) directly without first obtaining Theor-m 3.11. However,

we shall find Theorem 3.11 to be of interest in its own right in the next section.

Table 5 gives an indication of the accuracy of (3.12). For comparison an exact numerical

calculation from Worsley (1983) or the result of a Monte Carlo experiment plus or minus one

standard error is also given. There were 2500 repetitions of the Monte Carlo experiment,

and importance sampling along the lines discussed in Siegmund (1975) was used for variance

reduction.

Table 5
P(m){T < mi}

Probability Exact or

b m0  m, m Approximation (3.12) Monte Carlo
2.91 1 3 4 .010 .01

2.65 1 9 10 .052 .05

2.38 1 9 10 .105 .10

2.38 4 8 10 .057 .058 ± .002

2.5 1 19 20 .120 .110 ± .002

2.5 1 10 20 .066 .063 ± .001

2.5 4 16 20 .073 .074 ± .002
Exact values from Worsley (1983)

3.5 Confidence Sets for p

This section is concerned with finding confidence sets for p, when #o and #1 are re-
garded as nuisance parameters. Initially we shall asume that po and jp are both known,

a case studied in considerable detail by Hinkley (1970, 1972), who suggested a method

based on the maximum likelihood estimator 0 and a second method based directly on the

likelihood function. In order to simplify the computational difficulties as much as possible

and obtain a picture of the relative merits of these two proposals, we begin with the case of

37

"



*~~~. % Q- 9. 'W. V .

Brownian motion observed for 0 _5 t <_ m. As the results of Part 2 indicate, use of Brownian

motion as an approximation usually yields quantitatively poor results for boundary cross-

ing probabilities. For comparing competing procedures, however, Brownian motion can be

quite useful.

Hence let W(t), 0 < t < m, be standard Brownian motion, and assume that the

observed process X(t), 0 :5 t < m, satisfies U

dX(t)=#odt+dW(t) for O<t<p

ffuldt+dW(t) for p<t<m,

where po and p, are both known and p is unknown. There is no loss of generality in taking

p. = 0. Put 6 = P1. The likelihood function at p = t is proportional to exp [152t - JX(t)].

Hence the log likelihood t(t) - 6t - 6X(t) satisfies

"M~t = t- 6 dW(t), 0 < t <

2= -62dt _ 8 dW'(t), < t < m

22
i.e. t(t) is Brownian motion with drift 162 or -152 accordingtis<por>p, and is the

time at which this process takes on its maximum value.

It is easy to compute the distribution of j, but to simplify the resulting expression we

assume that p and m - p are effectively infinitely large. Consider

Pp{o - p 6 (t, t + dt), r(:) - 1(p) 6 (z, z + dz)}.

This joint density can be evaluated by (i) conditioning on t(t) - .(p) = z - V(dt)1/2, .(t +

dt) - t(p) = X- z(dt)112 , (ii) computing the (conditional) probability that the process

t(o) - t(p) does not attain the value z for * < t nor for > t + dt and its maxium in the

interval (t, t+dt) is in (z, z+dz), and (iii) integrating out if and z over (0,oo). See Figure

6. The joint density is 6-1zltJ-3 /2 [l - exp(-z)]sp (z/61t11/ 2 + 16Itis/ 2) dz dt for z > 0 and

0 otherwise. Integration over z e (0, oo) and t E (r, oo) (r > 0) yields

PPY - > F) 0 60-lr/2) (lIj2r + O)- rs/2 or r/2 )
(3.13) 2() exp(62r)4(_S6r1/2/.
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9ts)-t(p)

t t +dt

x+dx
*x

drift -15 -2

Figure 6

It follows from (3.13) that the length of a 95% confidence interval for p obtained by treating

- p as a pivotal quantity is about 22/62. (Without the assumption that p and m - p are

infinitely large, - p would not be an exact pivotal).

The definition of a likelihood based confidence set is very simple. For z > 0 let

A(p) = {sup,[t() - t(p)] < z). Choose z so that Pp{A(p)} = 1 - a and define the

confidence set to be those values t for which t(t) > (i) - z. Again assuming-that p and

m - p are effectively infinite, one easily sees that (cf. Figure 6)

P,{A(p)} = [I - exp(-z) 2 ,

so

= - log[l - (1 - a)'/2].

Observe that the confidence set obtained in this manner is by no means an interval.

In fact, because of the rapid fluctuations of Brownian sample paths, with probability one it

consists of the union of infinitely many open intervals.
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To compare this likelihood based confidence set with the confidence interval determined

above, we compute the expected size of the confidence set, i.e.

(3.14) E,(A{t wF EAlt)}] = P,[Altlldt.

where A denotes Lebesgue measure and w is a sample path 1(a) - 1(p), -oo < 8 < co. By

conditioning on 1(t) one can derive an expression for P4[A(t)], which when integrated shows

that (3.14) equals

46-1[1 - exp(-z){z -1 - exp(-z)]}

- 46-2(1 - a)i/2{_ log[l - (1 - a)i/21 - (1 - a)1/2}.

For a 95% confidence set the expected size is about 10.5/§2, or less than one half the length

of the corresponding confidence interval based on the distribution of 0. Numerical evidence

indicates that the likelihood based set has approximately the same expected size advantge

throughout the range of commonly used confidence levels.

Remark. Cobb (1978) has proposed yet a third confidence set (interval) for p, which is

in a certain respect intermediate between the two proposed here. Given a suitable to > 0,

Cobb treats t(j) - 1(t), It - jI < to, as ancillary and bases his interval on the conditional

distribution of $ - p given this ancillary statistic. Thus, if the likelihood function drops

off sharply from its maximum at ;, Cobb's interval is short - a property shared by the

likelihood based confidence set. There is some arbitrariness in the choice of to, which seems

a definite disadvantage if one tries to adapt this method to the case of unknown po and js,

especially if m is of moderate size. Nonetheless, it would be interesting to compare Cobb's

method with those described above.

Now suppose that our observations are z,.. -, z. as in Section 3.4, that the hypothesis

of exactly one change is true, and that pe and #i are twknown nuisance parameters. A

likelihood based confidence set for p can be defined as follows. The log likelihood ratio

statistic for testing the hypothesis p - p. against the alternative of arbitrary p is (cf. (3.6))

max[(Sb - k S./m) 2/k(L - k/m)] - (So - po S./m)2/po(l - po/m).
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Hence for 1 _5 mo < m,< m and e > 0 define the events

(3.15) A(p,c) = {Cm [(s,-k s2/,) 2lk~l-klm)i-(s,-p s.lm) 2lp(l-plm) < e2).

Although the unconditional probability of A(p, e) depends on both p and 6 = Pi-pc, its con-

*_. ditional probability given that S, - p S,/rn = C, say, does not depend on 6. (Conditionally,

S, - k S./m - fk/p, k = o, 1,., p and Sb - k S./m- J(m- k)/(m), k p, p + M

are two stochastically independent Brownian bridges in discrete time.) Hence one can in

principle determine c = c(a, p, C) such that

(3.16) P,{A(p, ) I S, - pS./, = C) = 1- a.

From (3.16) it follows immediately that the set of all p such that the sample path W =

(St - k S.lm, k = 0, 1, -.. , m)} belongs to

A[p, c(a, p, s, - p S./m)

is a (I - a)100% confidence set for p.

To implement this procedure one must compute the conditional probability in (3.16);

but this problem is already solved (asymptotically) in Theorem 3.11, as follows.

In terms of the stopping time T defined in (3.9)

P,{A(p,c) IS,- pS./m = = P('){T < + P'-P){T < m- p}

. RP,) {T < p}pm-){T < m- f1,

where b = [c2 + f 2/p(l - p/m s 1/2 . If in addition to the asymptotic normalization of Theorem

3.11 one assumes that c2 is proportional to m and p/rn equals some constant in (0,1), then

Theorem 3.11 and (3.17) yield

P,{A(p, e) I S, - p Sm/r = , exp (-IC2) [1 + p(1 - p/m)c2 /f 2J/' 2

({[c2(1 - p/m)/f + f/p(1 - p/m)] + V[c 2 p/m + f/p(1 - M/)]},

where v is defined in (2.12) and evaluated approximately in (2.13)-(2.14).

Table 6 indicates the accuracy of (3.18). To obtain a Monte Carlo estimate of the

desired probability, importance sampling (Siegmund, 1975) was used to obtain independent
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estimates of the two probabilities on the right hand side of (3.17). The standard error of

the overall estimate was obtained via the obvious Taylor series expansion. The number of

repetitions in each Monte Carlo experiment was 900.

Table 6

P(A(p, e) I 8,- p S/m = C
Probability Monte Carlo

m C p fo = m- 1 Approximation (3.18) Estimate
40 2.5 20 .50 .027 .029 ± .001

40 2.4 12 .25 .059 .058 ..001

20 2.4 10 .25 .066 .059 ± .001

20 2.4 6 .25 .057 .052 ± .OOL

20 2.2 6 .50 .043 .042 ±..002

3.6. Tests Against the Epidemic Alternative

In this section we consider several tests of the hypothesis of no change H :/(1) _

19(2 ) _- ... = -po, against the epidemic or square wave alternative, Hi 3 1 < p, <

P2 < m such that ;(I) A .. =p(I,) = ps, 6(,+1) U-i ... - /(P) =/o+6, p(f+1) - ... 

* =m f'o. Results for this problem are incomplete, and our goals will be (i) to show that
these tests naturally involve new boundary crossing problems and to (ii) suggest possible

approaches to their solution. The problems are different than those discussed earlier in

this paper, and the methods of Part 2 seem of limited usefulness. A promising alternative

approach is provided by the method of Pickands (1969) as developed independently by Bickel

and Rosenblatt (1973) and Quails and Watanabe (1973). The results presented here are

joint work with M. Hogan, which will be described in greater detail in a future publication.

Typically po and 6 are unknown nuisance parameters, although often only one-sided

alternatives with 6 > 0, say, are of interest. We shall assume that there is some threshold

change, 6o, which one is interested in detecting and consider tests for the particular alter-

native 6 = 60. Thus in effect we assume that 6 is known for the purpose of deriving a test

statistic, although a complete evaluation of that statistic would involve all values of 6, not
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just the hypothesized value 6.

In contrast to the alternative of exactly one change, the epidemic alternative has rarely

been considered. See Levin and Kline (1984) and Bhattacharya and Brockwell (1976) for

two quite different discussions.

Assume that I = 60 is known. In the unlikely case that po is also known the log

likelihood ratio statistic for testing Ho against HI is proportional to

Z1 = max[ -[ p - ($ - io) - 's( j-i)]
(3.19) -ma i -ii-Yo/ o 2,<

ma <o - i@6o/2- min (Si - io - i6o/2)].

For the case of unknown po Levin and Kline (1984) suggest the use of (3.19) with 1So replaced

by its maximum likelihood estimate under Ho, namely j40 - m-1 S., to obtain

(3.20) Z2 = max [Si - j Sw/m - (Si - iS./m) - ( - s)6/21.

The actual log likelihood ratio statistic in the case of known 6 = 6o and unknown po is

easily calculated to be

(3.21) Z- - - (j - i)m/m - 26O -i)[1 - ( - i)/m]}

Levin and Kline (1984) discuss Bernoulli and Poisson data; and in that context an

important aspect of their test is their proposal to use a conditional distribution given S,

which under Ho does not depend on the unknown po, to compute a significance level. In

the Gaussian case under discussion here the conditional and unconditional distributions are

the same. Since (3.20) is somewhat easier to study than (3.21), an interesting question is

to what extent the two statistics behave similarly. Presumably they do if the duration of

the epidemic, P2 - p, is small compared to m, but not in general.

For a completely different problem which leads to consideration of (3.20) in the special

case 60 = 0 and the simpler framework of continuous time, see Adler and Brown (1984).

For a different underlying random walk the probability that Zz in (3.19) is jriater than b

can be interpreted as the probability that among the first m customers of a G/,I/I queue,

at least one has a waiting time exceeding b.
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The appearance of a two-dimensional indexing set in (3.19)-(3.21), corresponding to

the unknown onset and disappearance of the epidemic, makes the null hypothesis sampling

distributions of these statistics quite different from those discussed earlier. Approxims-

tions to the power function seem more complicated in detail, but for the most interesting

range of parameter values do not seem to require fundamentally new ideas. The remainder

of this section describes some promising methods for approximating the null hypothesis

distributions of (3.19)-(3.21).

We begin with the relatively simple (3.19), which gives us an idea of what e can hope

to achieve in the more complicated (3.20) and (3.21).

Let vi, y,''" be independent, identically distributed random variables with E(yi) < 0.

Let S=V1 +---+V andforb >Odefine

(3.22) r = r(b)=i{n:S- m o s n mb).

The following inequality is useful in analyzing (3.19).

Proposition 3.23. Let r = r(b) be defined by (3.22), r+ = infn: Sn > 0), and T =

inf : e (0,61). Then

P{r(b) _< m) _5 P(r+ = oo}E{(m - T + 1); T < m, ST > b)
(3.24) "-1

+ P(n < r+ < oo)P(T < m -n, ST > b).

rn=O

Moreover, a lower bound for P{r(b) < m) is the right hand side of (3.24) divided by

1 + E{(m- T + 1); T < m, ST > b).

Remark 3.25. With large deviation scaling and observations whose distribution can be

imbedded in an exponential family, one can use likelihood ratio identities similar to, but

simpler than, those developed in Part 2 to obtain first or second order asymptotic approx-

imations to P{r(b) < m). For example, for the normal case in (3.19), if mexp(-66) -- 0

and 80m/26 - I is bounded below by some positive number, then

(3.26) Po{ZI > b) Oo(mio/2 - 6)v 2(6o)exp(-6o6),

where v is given by (2.12). If in fact m 2 exp(-Oob) --* 0, then the error in (3.26) is

K(Oo) exp(-o6)(I + o(l)), where K is very complicated to evaluate exactly, but satis-
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fies K(6) 21/26/8 as 6 0 (and better approximations are possible). Details of this

asymptotic analysis will be presented elsewhere.

* *Proof of Propostlon 3.23. Let w+ denote the n-shifted sample path, so S( + ) =

Sn+&(w) - S§(w). The event {r _. m) can be decomposed into a union of disjoint events,

" {r < m} = U (r > n, s- = mm S, T(.+) rn -n, ST(+) > b}. Hence by

. .
independence,

n=8

rn-I

SP{ } = P(r >n, S,=min §kSP{T < rn-n, § > b}
n=O
rn-I

[P{§. - §k -< 0 V k :_ n} - P{r < .n}IP(T < m - n,. T b}
n=O
rn-1

Y[P{r+ > n} - P{r <. m)JP(T < m - n, ST > b}

0 = [P(r+ = o) - Pr -5 .m)E{(m.- T + 1); T < m, T 2 b)

+ P{n < r+ < o}P{T5 _ -n, >b.

Rearranging gives the lower bound, and a similar, simpler argument gives the upper bound.

* .In principle the method sketched in Proposition 3.23 and Remark 3.25 to approxiamte

* -the distribution of (3.19) should also be applicable to (3.20). In this case because of non-

stationarity one must decompose {Z 2 2._ b} not only according to the location of a (relative)

minimum of the sample path but also according to the value of the process at the minimum.

The details become much more complicated and are not pursued here. For the simpler case

of Brownian motion it is straightforward to obtain what one expects to be very goo, .pper

" bounds. Analyzing these asymptotically leads to the following conjecture.

Conjecture. Suppose m - co, b - oo such that for some fixed 0 < 5 < 0o and -00 <

fo

b/m=c and f/m=fo.

Then

(3.27)
P() max [W(t) - W()] > b} = [2m-(2b - C)(b - ) + 1 + o(1)1exp[-2m-'b(b- )1.
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One can give a rigorous proof of the leading term in (3.27) (cf. Theorem 3.28 below),

* but the second term causes some difficulty. Since a standard reflection argument yields an

exact evaluation of the two-sided probability,

rP max IW(e) - W(8)I b

it is surprising that the one-sided problem should appear to be considerably more difficult.

An alternative method for approximating the null hypothesis distributions of (3.19)

and (3.20), which works equally well for (3.21), is that developed independently by Bickel

and Rosenblatt (1973) and Quails and Watanabe (1973). (Both of these papers generalize

to multidimensional time parameters the method of Pickands (1969) for a linear time pa-

rameter.) Since the general results of these authors give a tail probability for the maximum

of a Gaussian field in terms of an integral involving another complicated probability, it is

not immediately evident that the computational problem has been essentially simplified.

But for Gaussian fields built up from random walks (or Brownian motion) in sufficiently

simple ways one can use renewal theory to evalute the required intergrals in terms of the

function v of (2.12). For illustration the tail behavior under He of (3.20) and (3.21) is given

below.

Let zj, 2," be independent standard normal random variables, and put Sn = z2 +]

+""" z,. Suppose b and m -- co in such a way that m-1b = f is a fixed positive constant.

Theorem 3.28. For Co > -f

P( max [Si - Si-m-(-i)S.-(j-i) o] ! >}
0,[2(2C¢ + Co)]I2m(2¢ + fo)(€ + Co)] exp[-2m¢(¢ + Co)l,

* where v, is given by (2.12).

Theorem 3.29. Let Co 2! 0. Then for Ce > 4f

P{ max [S, - S- m-(j-i)S$. - fo(-i)(1 - m-(i-i))I 2! )

" 2 (2)m - /0 exp(-2mfo¢),

while for 0 Co < 4C it is

vI(fo + 4C)4m(C + fo/4)"/(C - o/4) - " expl-2m(; + Co/4)21,

46

Ile
. ... . . . . .



where Y is given by (2.12).

Note that in (3.26), Theorem 3.28, and Theorem 3.29 the function P(-) which accounts

for excess over the boundary is squared, basically because of the two dimensional time

parameter. Since typical values for v(-) are in the range .5 to .7, for these problems use of a

simple Brownian motion approximation, which replaces P(-) by 1, probably gives extremely

poor results.

The preceding discussion is only a beginning attempt to study the problem of change-

points with epidemic alternative. It is included here to show how quickly natural generaliza-

tions of previous work lead into new territory, requiring new ideas. Two obvious questions

are (i) how good are these approximations and (ii) what do they (presumably in conjunc-

tion with approximations for the power function) tell us about the relative merits of (3.20)

and (3.21)? Preliminary Monte Carlo experiments indicate that the approximations are not
nearly so accurate for small m as those given in Part 2, although the derivations of (3.26)

and (3.27) might lead one to expect quite good approximations.
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Appendbe 1

Proof of Theorem 3.11

Both Theorems 2. 18 and 3. 11 can be proved by the method of Siegmund (1982), which

requires rather length analytic calculations. The somewhat different method used in this

paper to prove Theorem 2.18 yields a considerably simpler proof of that result, so one

naturally asks how well it adapts to related problems. As we shall see below, it gives the

appearance of a relatively computation free proof of Theorem 3.11. However, there are

* some technical problems which seem to demand additional analytic computation for their

complete solution.

Let T be defined by (3.9) and assume the conditions of Theorem 3.11. We also use the

notation A)from the proof of Theorem 2.18. Let

(A.1) MMI) = I'A {( :)mi'1A-C( t1 )]}[(1 - ti)/Mtj'/ 2 dA.

* Alsolet T uup~n: n < n1 , 15 1 n(1 - n/rn)11/2), so ,i 1 =,

ino). As in the proof of Theorem 2.18 one easily calculates the likelihood ratio ofz, M

*under P' relative to R()and obtains

[n(1 - tl)/(m - n)t1J'I2 exp [!Su'/n(1 - n/rn) - !C2/mi(1 - m/rn)]

where ti= mi/m (i = 0, 1). Hence Wald's likelihood ratio identity yields

(Am 1) (T- > ma)[(I - tj)/h 1/exp [ (b.2 o m /t, (I _ tl))]
= )([(in - T")T*] 12 exp(-Jr.); T* Mo),

where R, I [S.ITO(1 - T*/m) - 621.

The equation (A.2) is analogous to (2.23) in the proof of Theorem 2.18, and we try to

* evaluate it similarly. Let

r =inf~n (C+ S,) 2 /(ml n)[1 - m-1 (ml n)] 2! b2)

and

R,, = {(C+ Sr)2/(m: - r)[1-m(m - )-.)
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Past experience with large deviation scaling leads one to expect that r/m -- t in probability

for some constant t. We consider the definition of r expressed in the general form

(A.3) r = inf{n : mh(n/m, S./m) > 0) i

and expand h in a Taylor series about (t, pt), where p denotes the drift per unit time

of Sn (from (A.1) = o/(1 - i)). This shows that for n close to the random time r

mh(n/m, $./m) = m(h - th, - pt h2) + nhl + Snh 2 +", where hi denotes differentiation

with respect to the ith argument, and h, ha, and h2 are evaluated at (t,1t). The heuristic

reasoning following (2.27) suggests that the higher order terms play no role iir determining

the asymptotic distribution of R1., which is thus obtained by applying (2.8) to nh, + S.h2.

Although this conjecture is correct and allows one to-obtain easily the result claimed in

the statement of Theorem 3.11, there are two technicalities making a rigorous proof more

difficult. (i) Unlike the situation in Theorem 2.18, the P ')-process Ss - Sn, n = in,

m - 1,... is not a random walk, so the renewal theorem is not directly applicable. (ii)

Even if it were a random walk, the technical conditions of Lai and Siegmund (1977) are not

fulfilled, and no minor change in their argument produces an appropriate result.

Fortunately (ii) is solved by Hogan (1984), who considers nonlinear renewal theory for

processes of the form (A.3). See Appendix 2. To circumvent (i), note that by (A.1) and

(A.2) it suffices to evaluate

,Bv(""[n - T')/T']1/2 exp(-4A); T' >:mo
=E (mn} 1/2m

V.-") {(( -m- + r)/(m, - r)1/ exp(-Rm); r < m, - mo)

and then integrate out A. For A of the form

A = ,,o/(1 - t,) + om,

one can easily calculate the likelihood ratio of t,'"., z. under P4(._} relative to the un-

conditional probability P, (p = Co/(1 - t1)), which has essentially the same drift per unit
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time, to obtain

B!" ffin- m, + r)/(m, - r)Ji/2exp(.....I); r m, - in0 )

E.(Il - m + r)]I/'/(ml -r)) exp [Rm.- ( 1r)mi-)

+ 21(5, - gr)/m 1/2 17 2r/(m, - r r: ii - mo}.-

It is now straightforward, but tedious to use the asymptotic degeneracy of r/rn, the

asymptotic normality of [S, - prI/r 112, its asymptotic independence from R,.-*u in Lemma

2.16) and the P,-limiting distribution of R,. given by Hogan's (1984) nonlinear renewal

theorem to evaluate this expectation and hence complete the proof of Theorem 3.11.
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Appendix 2

Nonlinear Renewal Theory

In Section 2.3 the renewal theorem was used to approximate the distribution of the

excess of a random walk at its first passage across a linear boundary. In Theorems 2.18 and

3.11 similar problems arose with regard to first passages to nonlinear boundaries. In this

appendix we survey the appropriate nonlinear renewal theory.

The problem is complicated by the fact that the stopping time and the excess over the

boundary usually can be defined in more than one way. Conceptually the simplest situation

involves a stopping time of the form

(A.4) T = Tm = inf{n : S. > mc(n/m)}.

* Here e(.) is a positive continuous function, 5,, n = 1, 2,... is a random walk with positive

drift i = B(SI), and we assume that the ray pt crosses the curve c(t) at exactly one point, E,

near which c(.) is twice continuously differentiable. The stopping rules r' and r introduced

in the proofs of Theorems 2.18 and 3.11 respectively are both essentially of this form.

It follows from an argument based on the strong law of large numbers that Tm/m -'i

* with probability one as m -- oo. Since as m - oo the curve me(n/m) for n close to mf

flattens out, it is natural to conjecture that the excess over the curved boundary, B. =

ST - me(T/m), converges in law to the same limit as the excess over the tangent to me(.)

at the point i, which is given by (2.8) with S. = S. - nc'(-).

Although the conjecture of the preceding sentence is true under quite general condi-

tions, in special cases it follows from a somewhat different result, which is considerably

easier to prove. When possible, it is convenient to rewrite (A.4) in the form

(A.5) T = To - inf{n : ng(n-'S,) > a)

for suitable g and a (depending on m). For example, for c(t) = c0t" (0 < -y < 1) in (A.4),

we find that g(z) = (z+)(1- i - ' and a = ce- 7)-'m1-i. For the stopping time (A.5), the

excess over the boundary is R - Tg(ST/T) - a. A Taylor series expansion of g yields

no(Sn/n) =ng(p) + (S - np)g'(p) + (s - np)2g"(Cn)/2n,
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where . satisfies kI. - 1&1 5 In-IS. - pl. If #(,) > 0 (as we shall assume), the linear part

of ng(S./n) is a random walk increasing at a rate proportional to n, whereas'te quadratic

part is essentially constant. This leads one to suspect that the limiting distribution of

is given by (2.8) with S, = ng(p) + (S. - np)g'(#). This conjecture is also true and has

been given an abstract formulation by Lai and Siegmund (1977). They consider stopping

rules of the form

(A.6) inf(n: n + i. >a),

where S,, n 1, 2,.- is a non-arithmetic random walk with positive mean '--m E 1 and in

changes sufficiently slowly in a sense made precise below that it plays no role in determining

the limiting distribution of St + 'it - a as a - co. A typical application is to prove that

the limiting distribution of RPw is as indicated above. Lai and Siegmund also apply their

result to approximate the significance level, (1.2) with is = 0, of a repeated significance

test. Lalley (1983) extends the Lai-Siegmund method to the much more difficult case of

multiparameter exponential families.

Although the stopping rule (1.4) of a repeated likelihood ratio test in an exponential

family is of the form (A.5), the arguments used in this paper to prove Theorems 2.18 and 3.11

introduce auxiliary stopping rules which cannot be put into that form. Actually r" defined

in (2.28) to prove Theorem 2.18 is almost of the abstract form (A.6) with , = j o-4+Sn,

i = Lin f' "S., and = m(p,- ), except that Lai and Siegmund do not permit

vi to depend on a. A suitable essentially trivial extension, modeled on Woodroofe's (1982)

reformulation of the Lai-Siegmund result, is given below. This performs the dual function

of completing the proof of Theorem 2.18 and of explaining the general nature of this class

of results. Then we discuss briefly the method used by Hogan (1984) to deal with stopping

times of the form (A.3) or (A.4).

Theorem A.?. Let T be defined by (A.6), where §,, n = 1, 2, ..- is a non-arithmetic

random walk with positive mean A = E(iS) and for all n = ,(a) is a measurable

function of S, - - S.. Suppose also that for each A > 0

Pa max 1,I-.0 (a- cc)
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and for each A, e > 0 there exists 0 = 6(A,) such that

(A.8) max P max > Cn+h - nl < C.

Then as a - , for all z >e 0

P{T < oo, ST + r - a _z}- H(z),

where H is defined to be the right hand side of (2.8).

With the help of Theorem A.7 one can easily complete the proof of Theorem 2.18. The

critical condition in the statement of Theorem A.7 is (A.8). The method of proof involves

conditioning on S., + j.,, where nj is chosen so that S.1 + i-, is already close enough to

a that by (A.8) , is constant (to within e) for all n1 :< n < T, but it is far enough from

U a that the renewal theorem applies to the random walk S, - S,,, n = ns + 1,.... Hence

except for an event of arbitrarily small probability §n, + j. and i., + ,jn + (4. - S.,,) cross a

at the same time and have the same excess, to within e. See Figure 7. The renewal theorem

gives the indicated limiting distribution of excess over the boundary for the second process

and hence for the process of interest.
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It is easy to see where this argument runs into difficulty in dealing with a stopping rule

of the form (A.4) or what is essentially the same, (A.3). If we assume that E$S1 < 0o, the

variability in S. is O(nl/ 2 ). Hence to have probability close to one that 5n, < me(ni/m),

one must choose nj = m! - Kml / 2 for some large value of K. But a Taylor expansion

shows that mc(n/m) and the tangent mc(-) + c'(-)(n - mri) are essentially the same only for

-o in - mf <_ 6m1/2 for small 6. To circumvent this difficulty one can introduce the auxiliary

stopping time

T, = inf(n: S. _> mc(n/m) - imi/2

From the fact that m-T,,. -. i and the assumption E$S < o, it follows that with proba-

bility approaching one

ST, - [mc(Ti/m) - 6m /21 < max (S - S +,) + sup WI'(t)l

is o(m 1/2) and hence me(Tz/m) - ST, is large. Moreover, during the approximately Oml/2/

(1- c()] additional steps the random walk requires to cross the curve, the distance between

the curve and its tangent is small, provided 6 is small. Hence the Lai-Siegmund argument

with the random time T in place of nj shows that the time at which the random walk

crosses the curve and the excess over the curve are with high probability equal to the time

it crosses the tangent and almost equal to the excess over the tangent. Thus the nonlinear

problem is reduced to a linear one having an answer given by (2.8) with S, = S. - nc'(i).

This argument is easily made precise and also extended along the lines of Lemma 2.16.

The result provides an appropriate tool for completing the proof of Theorem 3.11, or of

Theorem 2.18 for that matter.

Hogan (1984) develops a much more sophisticated version of the argument for stopping

times of the form (A.3). He does not require that ES? < 0o, and in his defnition of T 1 he

4 replaces 6mI/2 by a large constant K. This minimizes the smoothness conditions imposed

on h (or c(.)). More importantly, however, Hogan's method also proves a nonlinear renewal

theorem in problems scaled for a diffusion approximation, where the methods described

4 here and also Woodroofe's (1976a) method fail completely.

It would be interesting to give an abstract formulation of Hogan's result for a stopping
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time as in (A.6), since the method seems much more general than the cases actually covered

by Hogan's theorems.
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