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List of Symbols

P = axial compressive load (force)

P = critical buckling load (force)cr

M,M i  bending moments

S= length of a link

p = number of links

k = elastic hinge constant

aai = angular rotation of hinges

L = overall chain or column length

v,vi = lateral deflection of buckled chain or column

x,y,z = Cartesian coordinate axes

E = Young's modulus of isotropic column

I = moment of inertia

a. = matrix coefficientsij

A = coefficient for exact buckling loads of chains
p

AT = energy change due to work of external load on buckled column

or chain

AU1 = bending strain energy change of buckled column or chain

e s
AU2,AU2,AU2 = strain energy changes in elastic foundation

e = refers to extension mode buckling

s = refers to shear mode buckling

E = transverse modulust

G = longitudinal shear modulus

b = dimension associated with chain packing

A = cross-sectional area per chain (= b2 )

f(x) = curve fitted to shape of buckled chain
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m,n,r =integers

an = coefficients of trigonometric series

Cy = normal strain in y-direction

ay = normal stress in y-direction

Yy =sersri nx ln

TV = shear strain in xy plane

u = displacement in x-direction

u = displacement in y-direction

V = volume
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I. Introduction

Structure-property relationships are highly important for oriented polymers.

Such polymers typically have a relatively large axial modulus and small trans-

verse and shear moduli. This behavior can be accounted for by strong covalent

bonding along the chain orientation axis, and weaker secondary bonds between

chains. The directionally dependent bond strengths are also evident in the

disparity between large axial tensile strengths and smaller transverse tensile

and shear strengths. Furthermore, the axial compressive strengths of oriented

polymers are typically less than 25% of their corresponding tensile strengths.

Because highly oriented polymers are becoming attractive as structural

materials, the low compressive strengths of these materials have become a major

concern. The reasons for this relative weakness in compression are not clear.

In this paper a mechanism for buckling of highly oriented polymers during axial

compression is proposed. A model is introduced that allows both predictions

of compressive strengths and perhaps some understanding of the failure process.

• , ,,. . : : . '-. . . ' . ... . .,
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II. Background

Compression of oriented polymers along the orientation axis results in an

apparent failure which manifests itself as kink band formation. An example of

kink banding in axially compressed Kevlar* fibers is shown in Figure 1. These

compressive kink bands have been observed for well-oriented polymers based on

both rigid rod [1-6] and flexible [7-15] chains. Most of these polymers exhibit

nearly linear elastic behavior in compression until the onset of kink banding.

This point usually coincides with a maximum compressive load and the initiation

of inelastic deformation. The compressive strength of these oriented polymers

is usually defined as the stress which initiates the apparent yield behavior and

concommitant kink banding. These compressive characteristics are not unique to

oriented polymers, having been observed for other materials exhibiting similar

structural anisotropy such as wood [16,17], unidirectionally reinforced fiber

composites [18-22], graphite fibers [23,24] and models of foliated rock [25].

The compressive strength of fiber-reinforced materials has been analyzed

with regard to elastic instabilities [26-29]. These theories predict the

compressive strength to be the critical load necessary to cause the micro-

buckling of a system of parallel and stiff fibers in an isotropic and elastic

matrix. The most frequently cited analysis is by Rosen [26), who used energy

methods developed by Timoshenko and Gere [30] to solve the problem of buckling

of columns supported by an elastic foundation. The compressive strengths pre-

dicted by this theory are typically twice the experimental values for well-

fabricated composites reinforced with isotropic fibers such as boron [31].

. . . . . . . *.i/
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The discrepancy between measured and predicted values has been attributed to

use of a two-dimensional instability model to predict compressive strengths for

a material which is three-dimensional. The predicted strengths represent upper

bounds, and in many cases the measured compressive strengths of composites are

much lower than half the values predicted by stability analysis. The reasons

postulated to account for these discrepancies include imperfections (voids, poor

fiber packing and alignment, poor fiber-matrix adhesion, etc.) and inelastic

behavior of either matrix or fiber. Other theories have subsequently been pro-

posed to predict compressive strengths when these effects are included in the

analysis (see, for instance, references [32,33] for reviews of fiber composite

compressive strength theories). A prevailing result in many of these theories

is the proportionality of compressive strength with either longitudinal shear

moduli (for "failure" as predicted by elastic instabilities) or longitudinal

shear strengths (for shear failure instabilities).

Analyses of the compressive strengths of oriented polymers have been

focused on continuum mechanics treatments of anisotropic yield behavior [11],

the analysis of deformation along preferential slip planes [4,7,9,11,13,15], or

dislocation models for kink formation [34]. The bulk of this work indicates

that failure in compression results from shear deformation or slippage between

polymer chains. However, to our knowledge there are no general theories based

0
on molecular concepts which predict the axial compressive strengths of highly

anisotropic polymers.

The morphology of kink bands formed in oriented polymers is strikingly

similar to that of kink bands observed in the axial compression of fiber

0
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composites. Furthermore, we have shown that the permanent damage sustained by

Kevlar 49® fibers during kink formation is minimal and that compressive failure

appears to be the result of buckling of microstructural elements [5]. The

concept of microbuckling under compression has been proposed for carbon fibers

[23,24], oriented polyethylene [10] and KevlarO fibers [1,2,5].

The similarities between fiber composites and oriented polymers have lead

us to consider the concept of failure due to microbuckling instabilities for

extended polymer chains subjected to axial compression. In this work a simple

mechanical model is used to predict the compressive buckling loads of a single

long and stiff polymer chain. Analysis of this model leads to a relationship

between the bending stiffness of an extended chain and the force constants for

bond angle deformations. The results for a single chain are then applied to a

collection of such chains that interact through lateral bonding. The load

required to buckle this collection of oriented chains is calculated as an esti-

mate of the compressive strength of highly oriented polymers. The interaction

between chains is accounted for in much the same way that Rosen approached the

problem of predicting the compressive strengths of fiber composites using the

energy methods outlined by Timoshenko and Gere. Finally, the predictive power

of this simple and ideal model is tested against experimentally determined

compressive strengths of highly oriented polymer fibers.

I1. Rigid-Link-Elastic Hinge Model For Single Extended Polymer Chain

The mechanical modelling of chemical bonds between atoms and molecules

with springs has been a popular concept (refer to any standard Physical

0' ' w - ". m ,- " " , . • . " -,"
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Chemistry text). Indeed, the calculations of theoretical moduli of extended

polymer chains involve treating the chain as a series of elastic springs con-

nected by elastic hinges. One of the first calculations of axial modulus of

long chain molecules was made by Mark [35] and since then has been performed by

many others for several polymers. Force constants for the springs and hinges

are obtained from infrared spectroscopy measurements of force constants for

bond stretching and bond angle bending, respectively. For small deflections

about equilibrium positions, the bonding potential energy profile is assumed to

be parabolic so that forces are proportional to deflections. This assumption of

linear springs results in equivalent calculated tensile and compressive moduli.

Under compression, a long and stiff polymer chain can buckle in a manner

similar to the buckling of a long slender column. Buckling of a chain can

occur by contraction of bonds, bending of bond valence angles, and/or bond

rotation (torsion). Even if these deformations were only slight deviations from

equilibrium positions, the summation of them all along a large section of the

chain could result in significant chain axis curvature. The force constants for

each type of deformation provide a measure of the resistance of an extended

chain to buckling and the total effect could be considered a "bending stiffness"

of the chain. If it is possible to obtain a measure of this bending stiffness,

then the application of classical instability analysis can provide an estimate

of the compressive load required to initiate chain buckling.

As in calculations of theoretical moduli, buckling loads are calculated for

static conditions by assuming bond lengths, bond angles, and force constants

remain at their respective equilibrium values. The actual values of equilibrium

+ :. .+: .: • I i . . -i- +.+ i - + _ . -. . . _.i :
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bond lengths and angles, and the orientations of bonds with respect to the chain

axis differ for each polymer. To take these specific geometric factors into

consideration is beyond the scope of this paper. It is emphasized that con-

sideration of these factors will improve the predictive power of the model, but

to introduce the concept of elastic buckling instabilities in fully-extended

polymer chains under axial compression, the following simplifying assumptions

will be applied to the model. The polymer chain consists of rigid links of

equal length I oriented along the chain axis. Furthermore, the links are con-

nected by linear elastic hinges of equal stiffness k. A representation of the

model is shown in Figure 2.

Covalent bonds have been replaced with rigid links for two reasons. First,

tabulated values of force constants indicate that bond stretching constants are

at least an order of magnitude greater than torsion and bending constants [36,371.

Therefore, most of the deformation in a loaded chain is primarily due t) bond

angle changes. Second, the axial deformation of a buckled chain is negligible

compared to the displacement due to bending the chain. This assumption of

"axial rigidity" is also made in the classical analysis of column buckling.

The elastic hinges represent the bending of valence bond angles and bond

rotation. If bending deflections are small, the hinges can be considered linear

elastic. The bending moment developed at any hinge is then equal to the product

of k and the angular rotation a as shown in Figure 2.

To calculate critical buckling loads for the link-hinge chain, one approach

is to perform a static equilibrium analysis of the system in the buckled con-

figuration and determine the minimum value of compressive load required to

"-
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maintain such an equilibrium. It is assumed that the chain is pinned at its

ends (i.e., no reaction moments) and that the compressive load is conservative.

Additionally, at the onset of buckling the magnitude of the lateral deflections

are assumed to be small relative to the overall chain length and confined to

a single plane, thereby reducing the problem to two dimensions.

The equations obtained from a static equilibrium analysis of bending moments

at each hinge of the buckled chain form a set of p-1 linear and homogeneous

algebraic equations for a chain with p links. This set of equations can be

written in matrix form as,

II
a a a 1------------a a 011 a12 13 a ,p- 1

21 a2 2  a23 ------------ - 2 1

3 0 (3.1)

ap-1,1 ap-1,2 ap-1,3 ap QI  _ 0
a PI ap, aP--------------ap-1,p-1 ap-i

where the angles ai are the rotation of each hinge i and the coefficients aij

are functions of the compressive load P, the hinge constant k and the length of

a link 2.

The calculation of buckling loads is an eigenvalue problem for this set of

linear equations. The p-i eigenvalues obtained from the nontrivial solution of

(3.1) are the compressive loads which cause buckling. The minimum positive

eigenvalue is the critical buckling load Pcr. An example of these calcula-

tions for a chain with p=4 is given in Appendix I.

. . .. - , . ..
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The calculated critical loads for any value of p are all of the form;

Pcr : Ap (k) (3.2)

where the coefficient A is a function of p only. Values of Ap for p = 2-6 are

given in Table 1. These results show that the critical buckling load decreases

with increasing chain length.

In performing the calculations of critical loads by moment equilibrium ana-

lysis, it becomes evident that the computation difficulty increases rapidly with

increasing model size. In other words, for a chain with p links the determinant

of a (p-1)x(p-1) matrix must be found and after setting this determinant equal

to zero, the (p-1) roots of the resulting polynomial must be determined. So

that the buckling analysis may be applied to polymer chains where p is very

large, we seek to derive a single relationship betwe~q the critical buckling

load and the values p, k, and L.

IV. Approximate Buckling Load Formula For Long Link-Hinge Chains

Intuitively, it appears that the buckled shape of a long link-hinge chain

(p large) should be similar to the shape of a buckled elastic column of the

same length and with the same end restraints. This analogy is illustrated in

Figure 3.
The bending moments in a loaded elastic column are related to material pro-

perties by the equation;

E= d2 = M(x) . (4.1)
dx

2
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The critical load for the buckling of an elastic column can also be calcu-

lated using a static equilibrium analysis of the buckled column. Referring to

Figure 3, it can be seen that the bending moment at any point along the column

is given by;

M : - Pv (4.2)

Substituting this result into equation (4.1) and rearranging yields;

EI- d 2 v + Pv = 0 (4.3)
dx 2

Solutions to this differential equation lead to discrete values of the load P

required to initiate buckling. The minimum (critical) value for a column with

pinned ends is known as the Euler buckling load and is given by;

- irEI (4.4)
cr L2

The next task is to demonstrate the analogy between Euler buckling of a

continuous column and buckling of the link-hinge chain when the number of ele-

ments is large. This will be accomplished by deriving a "differential equation"

for static equilibrium of the link-hinge chain and comparing it to equation

(4.3).

A coordinate system for the buckled configuration of the link-hinge chain

is defined as shown in Figure 4(a). The balance of bending moments at any

arbitrary hinge i is given by;

Ile
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M Pvi - Mi = 0 (4.5)

where vi is the lateral deflection of hinge i from the x-axis. The bending

moment Mi is due to the rotation of hinge i from its equilibrium position. By

inspection of an expanded view of the buckled link-hinge chain in the vicinity

of hinge i shown in Figure 4(b), it is seen that the bending moment is;

Mi = k(ai-i - ai) (4.6)

Substitution of this result into equation (4.4) yields the equation which

governs the buckling of the link-hinge chain;

k(ai - ai-1) + Pvi = 0 (4.7)

As the number of elements in the link-hinge chain is increased, the shape

of the chain after buckling approaches a continuous curve. Using finite dif-

ference methods, a continuous function f(x), which passes through each hinge,

can be fitted to the profile of the buckled link-hinge chain. When the number

of elements and therefore the chain length is allowed to increase without bound

at a fixed link size, the chain configuration will conform exactly to the curve

traced by the fitted function. It should be noted that the limit of increasing

overall chain length at fixed link length is mathematically equivalent to the

limit of vanishing link length at fixed overall chain length. Both cases repre-

sent the limit of an infinite number of elements.

The details of this procedure are given in Appendix II. The important

result of this analysis is that the curvature of the buckled chain is propor-

tional to the angular change between neighboring hinges, i.e.;

0
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( - ai l) = 2 (4.8)
dx2

Substituting this result into equation (4.7) gives;

kX& d 2v + Pv =0 (4.9)
dx2

Comparison of this equation with (4.3) shows that the differential equations

governing the buckling of the link-hinge chain and continuous column are comple-

tely analogous. More importantly, it shows that the bending stiffness of the

link-hinge chain is given by the product ki. The dimensions of this product are

equivalent to those of the stiffness El, namely (force)(length)2.

By analogy, we can write down the critical buckling load for a long link-

hinge chain as;

w2kiP - (4.10)
cr L

The validity of using the approximate equation (4.10) to predict the criti-

cal buckling loads of the link-hinge chain can be demonstrated by comparing

values of Pcr calculated using (4.10) with the exact values calculated in

Section III for several values of p. By noting that L = pt, where L is the

4 overall chain length, equation (4.10) can be modified to give;

= () (4.11)

14,
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This allows a direct comparison between the term (R/p)2 and the coefficient

A defined in equation (2.2). These values are given in Table 1. Clearly the

agreement is very good even for chains of only 6 links.

The derived approximate formula (4.10) is significant in that it allows

calculation of critical buckling loads for a polymer chain (given the imposed

assumptions) from bond bending and torsion force constants, bond lengths, and

total chain length. It also demonstrates that the bending stiffness of such a

chain is a function of the resistance to bond angle deformation and the length

of the bonds along the chain axis.

Inspection of (4.10) will reveal that the buckling loads diminish rapidly

with chain length. This result, which neglects the effects of interchain

interaction, predicts extremely low compressive strengths for polymer chains of

only average molecular weight. As ai example, the compressive strength of

Kevlar ® fibers will be calculated using (4.10).

Because a buckled chain can only support a load which is less than or equal

to the critical load, the load required to buckle a collection of non-

interacting chains, regardless whether the chains buckle one at a time or all at

the same instant, is simply the sum of the buckling loads for each chain.

Therefore, the critical stress for buckling a single chain is equal to the

buckling stress for any collection of laterally non-interacting chains. A

stress calculated in this manner can be used as an estimate of the compressive

strength of a fiber having relatively poor lateral strength and stiffness.

Typical force constants for bond angle bending are k = 0.5 x 10-18 J-rad "1 [36).

Most covalent bond lengths are approximately L. I A. The average length of a

4
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Kevlar ® molecule is 2100 A [38] and the cross-sectional area per chain in the

unit cell is 20.24 A2 [37]. Using (4.10), a critical stress of only 0.06 MPa is

calculated. This estimate is compared to the measured compressive strength of

700 MPa [5]. Clearly, in order to predict the compressive strength of a fiber

formed from a collection of highly oriented and fully extended chains,

interchain interactions must be considered.

V. Interchain Interactions

The lateral interactions between linear polymer chains in highly oriented

fibers are usually secondary bonding forces. For small deviations away from

equilibrium separation, these lateral bonds can be adequately modelled with

linear springs (again, refer to standard Physical Chemistry texts). Therefore,

when a polymer chain is subjected to an axial compressive load, its tendency to

buckle and deflect laterally will be opposed by forces which are approximately

proportional to the magnitudes of the lateral displacements.

A collection of fully extended and well-oriented chains, that interact as

just described, can be treated as elastic columns supported by an elastic

foundation. The elastic foundation can be considered as a "matrix" having a

stiffness that is the sum of the interactions of all the individual lateral

bonds. A method for determining the buckling loads for elastically supported

columns using a strain energy approach has been developed by Timoshenko and Gere

0 [30]. Their analysis was applied to a single column supported on only one side

by an elastic foundation. The extension of this analysis to the problem of a

collection of columns on a foundation has been reported by several investigators

-. . - -* .. *- . *.* i[. -- .::.: . I . :i- V*. . . . . . .. *: ",
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as a prediction of the axial compressive strength of unidirectional fiber-

reinforced composites [26-29]. A similar analysis will be performed here,

following especially the work of Rosen [26], in order to calculate the

compressive buckling loads of a collection of link-hinge chains that interact

laterally. These loads will be used as theoretical estimates of the axial

compressive strengths of oriented polymer fibers.

At the onset of elastic instability, the following energy balance holds;

AT = AU1 + AU2 (5.1)

where;

AT = the change in potential energy of the chains due to load P acting

to shorten the buckled chains

AU1  = the strain energy change of the buckled chains

AU2 = the strain energy change in the elastic foundation

To calculate a critical load, the buckled chains are assumed to take on shapes

which produce energy changes that satisfy (5.1). The smallest load which causes

buckling into the allowed shapes is the critical load. Any buckled shape can

be described by a series of trigonometric functions which are all periodic over

length L. For simplicity it is assumed that the buckled shape of each chain has

the same wavelength. Therefore, the only difference between neighboring chains

is a phase mismatch. The two extreme cases considered here are when the chains

buckle completely in or out of phase as shown in Figure 5. These two con-

figurations were called extension and shear mode buckling by Rosen because of

the nature of deformation in the foundation. The details of the calculations of

4
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compressive strengths for these two cases is given in Appendix 11.

With the assumption that chain packing produces transverse isotropy (i.e.,

fiber symmetry), the results obtained for the compressive strengths due to

e anextension mode, a shear mode, a c buckling are;

a 4 V tkj (5.2)
c A

a = G (5.3)

where:

Et = transverse Young's modulus

A = cross-sectional area per chain

G = longitudinal shear modulus

The values Et and G are the appropriate elastic constants of the polymer

fiber. These quantities appear in the result because is was assumed that

bonding between chains can be modelled with a continuous foundation. Not

surprisingly then, these results are similar to those obtained by Rosen, except

for the omission of a "volume fraction" term which is meaningless in the present

analysis. The predicted compressive strength of a uniaxially oriented polymer

is the lower value of the strengths given by (5.2) and (5.3).

VI. Discussion: Calculated and Measured Compressive Strengths

It is unfortunate that data on compressive strengths of highly oriented

polymers is scarce. However, a good comparison of the microbuckling theory

with measured compressive strengths can be made for oriented polyethylene (PE),

Kevlar ® , graphite and poly(paraphenylene benzobisthiazole) (PBT) fibers. The

S
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yraphite fibers are included because they are composed of oriented ribbons and

microfibrils of "polymeric" graphite [39]. The PBT fiber is based on a lyotropic

liquid crystalline polymer and exhibits thermal and mechanical properties simi-

lar to those of Kevlar® [6]. All four of these fibers have been shown to deve-

lop kink bands under axial compression.

To calculate compressive strengths using the microbuckling theory, values

of bond bending and torsion force constants, covalent bond lengths, transverse

moduli, longitudinal shear moduli and chain cross-sectional areas are required.

Covalent bond lengths are generally close to 1 A and bending force constants of

valence angles are surprisingly similar for many types of bonds, with values

near 0.5 x 10-18 J-rad-1 [36]. However, for PE it is assumed that bending of

the chain will occur almost exclusively by torsion away from the trans

conformation. A force constant for this torsion in n-paraffins was measured to

be 0.024 x 10-18 J-rad-1 [40].

The elastic moduli of these materials have been determined. The longitudi-

nal shear moduli were measured by fiber torsion [5,6,41], and the transverse

moduli were measured by lateral compression of the fibers [41,42]. There are no

reported values of transverse modulus of PBT fibers, so we estimate a value of

U.5 GPa, which is slightly less than that of Kevlar ®. The reason for this lower

estimated value is that PBT does not hydrogen bond laterally like Kevlar ®.

Cross-sectional areas were calculated from unit cell dimensions [37,43-45].

No cross-sectional area or bending stiffness ki can be defined for the graphite

ribbons based on the microbuckling model. Therefore, there is no calculation

for the extension mode buckling strength of graphite fibers presented here.

However, because the shear mode buckling strength is equal to only the shear

i - ,.-.... .
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modulus, this strength can be estimated for the graphite fibers. It is

assumed that shear mode buckling of graphite fibers will occur by sliding be-

tween graphite basal planes. The shear modulus for this deformation has been

determined for dislocation-free graphite to be 4 GPa [46].

Measured compressive strengths of oriented PE are obtained from direct

axial compression [14,15]. The compressive strength of graphite fibers were

measured using the elastica test [23]. We have determined the compressive

strengths of Kevlar® [5] and PBT fibers from measurements of compressive strains

to kink formation in both bending and axial compression. By assuming linear

elastic behavior to kink formation, compressive strengths could be calculated

from the product of these compressive strains and the respective axial moduli

of the fibers. All of this data is summarized in Table 6.1.

In comparing measured and predicted values of compressive strengths, it is

clear that the microbuckling theory overestimates the fiber strengths. The best

estimates are the shear mode buckling strengths which are lower than the esten-

sion mode buckling strengths for all four materials. It is note,- that for

fiber-reinforced composites with fiber volume fractions greater than 15%, the

shear mode buckling strength is also the lower and therefore the more

appropriate estimate of compressive strength.

Although the measured compressive strengths are lower than the theoretical

estimates (i.e., the shear moduli), the relationship between these quantities is

evident. Considering the simplicity of the analysis, which disregards morpholo-

gical structure, defects and inhomogeneities, the fact that it predicts values

within an order of magnitude of measured compressive strengths is indeed

remarkable. Theoretical predictions of material strengths are typically two

orders of magnitude larger than observed values [47].

L
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Some explanations for the disparity between measured compressive strengths

and predicted values will now be discussed. The single chain model was

constructed after assuming many simplifications in the specific architecture of

the chain. Particular values of bending force constants, bond lengths and bond

orientations were ignored. Fortunately, the analysis of a collection of

interacting chains showed that the strength is almost exclusively a function of

the shear modulus of the foundation and that the bending stiffness of the chains

can be neglected when the chains are long. Therefore, if another level of

structural scale was considered, for instance long microfibrils, the buckling

strength of a collection of these fibrils would also be proportional to the

shear modulus. However, studies of kink bands indicate that shear slippage

between chains is the mechanism of deformation, so that the present analysis at

the molecular level appears valid.

The lateral bonding between chains was modelled as a matrix or continuous

foundation having elastic constants equal to those measured for the fiber.

Locally, there may be regions where the shear modulus is lower than the measured

torsion modulus. Also, there may be anisotropy within the fiber cross-section

which would favor buckling within the plane of lowest shear modulus. In these

cases the microbuckling strength is determined by the lowest value of shear

modulus.

Because predictions of strength are failure analyses (in this case due to

microbuckling instabilities), regions which effect the properties of the

material locally can possibly lead to a premature failure or buckling. It has

been shown that kink bands are nucleated in a localized area at a certain

critical stress and then propagate at nearly constant compressive loads [19,25].

: ": : : : i ' :: -:: : : :: ::::: :: f : T: ::::T:: :::::: k :: :: ::::::/i: : m
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Obviously, lower compressive strengths can result from local inhomogeneities.

The presence of voids in the fibers eliminates the elastic foundation on one

side for those chains which line the void surface. Also, chains along the sur-

face of the fiber are supported on only one side. These chains should reach

critical buckling loads at a stress equal to half the shear modulus.

Residual stresses have been shown to exist in graphite fibers [48]. If

these stresses are large, regions where the fiber is in compression will reach

critical buckling loads sooner than the rest of the material. As with regions

surrounding voids, these areas can become nucleation points for kink formation.

Some evidence has been seen for the initiation of kink bands near the surface of

graphite fibers [24], and the surface of these fibers is apparently under resi-

dual compression [48].

Misalignment of chains and microfibrils is seen even in high modulus fibers

[39,49]. Under axial compression these sections of the fiber will experience

shear stresses that could possibly exceed the shear strength between chains or

fibrils. In this case, the ultimate compressive strength cannot by predicted by

an elastic instability analysis. The compressive strength for materials which

fail in shear should be proportional to the shear strength rather than the shear

imodulus.

Finally, as a point of clarification, it should be emphasized that the

classical analysis of elastic buckling instabilities is not a true failure

analysis. The purpose of the analysis is to predict the load necessary to

initiate a geometrical instability for special structures like slender columns.

When the critical load is removed from a buckled elastic column, it should

• S.. 1 i ? " . i i - .
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return to its original undeformed state. However, because large bending defor-

mations occur at loads slightly greater than the critical loads, true material

failure or plastic deformation may occur after buckling is initiated. In this

manner, permanent shear deformation can occur after the onset of microbuckling

as polymer chains slip past each other to form a kink band, a band which remains

after removal of the compressive load. Therefore, the estimate of axial

compressive strength for oriented polymers is the load which initiates buckling

and subsequent kink formation.

VII. Conclusions

The use of a rigid link-elastic hinge chain to model the axial compressive

behavior of extended polymer molecules permits the calculation of a bending

stiffness for single chains. This bending stiffness is the resistance of a

polymer chain to bending and buckling and it has been shown to be proportional

to valence bond bending and bond torsion force constants. For isolated or

weakly interacting chains such as in polymer solutions and melts, the model can

be used to calculate single chain buckling loads. An example calculation for

Kevlar gave an estimated buckling stress of only 0.06 MPa. Flow fields which

lead to compression or bending of the polymer chains may result in flow instabi-

lities or even chain scission as a result of severe bending.

Modelling oriented polymer fibers with a collection of interacting rigid

link-elastic hinge chains indicates that the compressive strength should be

equal to the longitudinal shear modulus. Although the actual compressive

strengths are lower than the estimated values, the trend of increasing strength

with increasing shear modulus was noted for highly oriented PE, two rigid rod
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based fibers, and graphite fibers. Several reasons were given for the disparity

between predicted and measured compressive strengths, most of which are related

to local imperfections in the fibers. All of the explanations point to the

relationship between compressive strength and either longitudinal shear modulus

or longitudinal shear strength.

4I
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APPENDIX I

Buckling of a Link-Hinge Chain with 3 Hinges (p=4 )

The moment equilibrium is calculated only at hinges labelled 2 and 3

in Figure 6(a). The free-body diagrams for moment balance at these hinges are

shown in Figure 6(b). The equations generated by inspection of these diagrams

are;

M= Ptsinz - k(al-Q 2) (0
(A1.1)

EM3  PR(sina + sina - k(2 0
1 2) k(ad

For small deflections, the small angle approximation sina z a can be substituted

to give;

(Pt-k)a + (k)a = 0
1 2 (A1.2)

(Pt)a + (Pt-2k)a : 0
1 2

or in matrix form;

(Pt-k) (k) Li L (A .3)

(Pt) (x2

The critical values of P are obtained from;

(Pt-k) (k)
: 0 P2 t 2 _ 4ktP + 2k 2  

(A1.4)

(Pt) (P-2k)

The roots of this polynomial or eigenvalues are given by;

P (2 + V2) (k_) (A1.5)

The critical load is therefore;



RFPRODtCED AT GOVERNMENT EXPENSE

P (p=4)= (2 - 1.) (_6)
cr

It should be noted that a symmetrical buckling pattern was assumed and therefore

an equation for hinge 4 would be redundant. The symmetry of the buckling con-

figuration can be proven by assuming a general shape for the buckled chain and

determining the eigenvectors, i.e., the values of ai, for each eigenvalue or

buckling load.
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APPENDIX II

Finite Difference Method Approximation for Buckled Shape of Long

Link-Hinge Chains

While a number of finite-difference methods are applicable, we have chosen

an interpolation method known as the Backward Newton-Gauss Formula [50]. The

first few terms of this formula are given by;

f(xi + rAx) = fi + r(fi-fi-1) + 2! [(fi-fi) - (fi-fi-1)] +

2! (A2.1)

where;

f(x) = function approximating buckled column shape

xi =starting point for interpolation

fk= f(xk)

Ax = equidistant separation of points, i.e., hinges, along x-axis

r = integer constant

Mathematically, the links form chords which connect points along the curve

f(x). These points correspond to the location of the hinges in the buckled

chain. As the number of elements or points increases without bound, the chords

and therefore the profile of the buckled column will conform exactly to curve

f(x).

Referring to Figure 4(b) it is easily seen that;

Axi = X cos ai (A2.2)

With small deflections, cos ai 1 1, then;

Axi (A2.3)



and the equidistant separation between hinges becomes;

Ax = £ (A2.4)

The derivatives of the function f(x) at the point x = xi are obtained by

taking the derivatives of equation (A2.1) with respect to r and then setting r =

0. Hence;

Axf'(xi+rAx) = (f+ii) + 2 [(fi+l-fi) - (fi-fi-i)]
2! (A2.5)

Ax2 f"(xi+rAx) = 2 (fi+_fi (fi-fi.1)]
2.

and with r = 0;

fi(xi) = I { (f i -fi l) + - -. (f i+l -fi (fi-fi.1] }
Ax 2! (A2.6)

f"(xi ) xI (fi+1-fi) - (fi-fi-i) }

It can be seen in Figure 4(b) that the differences in parentheses in

equation (A2.6) are given by;

(fi-fi.1) = f(xi) - f(xi_1) a Avi.1
(A2.7)

(fi+ 1-fi) = f(xi+l) - f(xi) = Avi

Substitution of these results along with (A2.4) into (A2.6) yields;

f,(x i ) = L { Avi_ + Av i }
) 2x (A2.8)

f"(x i ) = L ( Avi - Avi_ 1}

The increments Avi and Avi I can also be written as;

vi = sinai (A2.9)

Avi.1 = tsini_1

I

I

Ii ~ ~~ ~ ~~~. . . -. . .. :.. :.... .. '



and for small angles these relations are reduced to;

Avi £ i(A2.10)

Avi_ 1  lai_ 1

Substitution of (A2.10) into (A2.8) gives;

f,(xi) 1 { ai-I + ai }
2 (A2.11)

f,,(xi) =1 { ai-ai-I }

Rearrangement of the equation for the second derivative gives;

d 2v"d v =X ( -t-l (A2.12)
f"xi): ;(-2) x=xi

I.,

p.1
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APPENDIX III

Buckling of Chains on Elastic Foundations

The chains are assumed to pack in the cross-section of the fiber on a cubic

lattice as shown in Figure 7. The lattice dimension, b, is chosen so that

the cross-sectional area per chain b2 is equal to the value determined experi-

mentally from the actual unit cell of each polymer. The elastic foundation is

treated as a "matrix" which surrounds the chains and is not shown in Figure 7.

Buckling is assumed to be restricted to one of two planes, either xy or xz,

which are geometrically equivalent. The foundation is assumed to be equally

stiff in the y and z directions. This assumption imposes a restriction of

transverse isotropy on the polymer. If the total effect of lateral bonding is

summarized as a continuum foundation, then the foundation stiffness in the

extension buckling mode is a function of a single transverse modulus, Et = Ey =

Ez, and the stiffness in the shear buckling mode a function of a single longitu-

dinal shear modulus, G = Gxy = Gxz. In reality each polymer chain will buckle

in a manner that simultaneously minimizes the chain bending strain energy and

foundation strain energy changes.

Rosen postulated that any combination of the two buckling modes will

require more energy and therefore higher loads than either of these extremes.

The critical load for a material is then given by the lower of the two values

predicted for extension and shear mode buckling.

Following reference [30], the buckled configuration of any chain can be

described by a single series of sine waves. The lateral deflection of a chain

is then;

v(x) = Z an sin 2L- (A3.1)
n L



The change in work due to load P acting on a chain buckled into a con-

figuration given by (A3.1) is;

pw2
AT - £ n2 an2  (A3.2)4L n

The change in bending strain energy due to P acting on a chain with bending

stiffness kX is;

AU1 = Ir4k X. n4 an2  (A3.3)

4L 3  n

The strain energy change in the foundation, AU2 , must be calculated for

each of the two modes of buckling.

a) Extension Mode: For buckling within a plane, the extension mode con-

figuration can be depicted as shown in Figure 8.

The deformation of the foundation is due solely to normal strains given

by;

y 2v (A3.4)Ey-b

The strain energy change is;

e 1
AU f ay ey dV (A3.5)U2 =2 v

and for a continuum foundation, ay = Etey , then;

e 2Et f V2 dV (A3.6)
AU2  b2 v

The energy change per chain is therefore;

e 2Et L b/2 b/2
AU2  b 2 O f V2 dzdydx

2 02  x-b /b 2  -b,12
(A3.7)

L
2Et f V2 dx

0



After substitution of (A3.1);

e
AU EstL E an2  (A3.8)

n

The energy balance is given by substitution of (A3.2), (A3.3) and (A3.8) into

(5.1) yielding;
p22 2 4ki E n'a 2 +2 (A3.9)

-L n2 an L -3 n n
4L n 4L) n n

solving for P;

pe =n 2k Ena 'a 2  +4EtL 2  Ean2pe _ 2; nan + a 2 (A3.10)
L2  En2an2  72 En2 an 2

It was shown in reference [30] that ratios of the summations appearing in

(A3.10) are minimized when only one arbitrary coefficient a is used.n

Therefore;

pe _ 2k ( 2 ) + L (m (A3.11)
L2 1 2  M2

where m = 1,2,3 .....

The minimum value of P depends on the relative values of kk and Et. If the

foundation is stiff relative to the bending stiffness of the chain (i.e.

Et > kx, then the second term in equation (A3.11) will dominate and large

values of m will be required to minimize P. For large values of the integer m,

it was shown [30] that;

L / (A3.12) am 4Et

Substitution of this result into (A3.11) gives the relationship;

I i

4



ePcr= 4 VEtX (A3.13)

For the packing arrangement shown in Figure 7, the compressive strength esti-

mated for extension mode buckling is then;

e P e 4 VEtki (A3.14)
cr A A

where A =b 2

The result is based on the assumption that the integer, m (which corresponds to

the number of half sine waves the columns buckle into) is large. Rearranging

A3.12 to give;

M L 4 fiE-j
m L =___1 (A3.15)IT kx

shows that m will take on large values for long chains and for stiff foundations

as mentioned earlier.

b) Shear Mode: The shear mode of buckling within a plane is represented

in Figure 9. In this case the foundation is only sheared, so the strain energy

change is given by;

U2 2 v f  T x Y dV (A3.16)

and with Txy = GYxy for a continuum foundation;

AUS = G f  (y )2 dV (A3.17)
-2 X'



The shear strain is defined by:

'Y xy lp + -3U- (A3.18)

where Uy and ux are the displacements in the y- and x-directions, respectively.

The displacements uy are the lateral deflections of the buckled chain. Since

these deflections are independent of the y-direction and since there are no

displacements, ux , (A3.18) reduces to;

_y =d (A3.19)
xy dx dx

Substitution into (A3.16) gives;

s G L b/2 b/2 d) 2 dzdydx
AU= - f f fd d

2 x=O -b 2  -b dx

-Gb 2 L (dv)2 dx (A3.20)
2 0 dx

Substitution of (A3.1) into (A3.20) results in;

2 4L gn-an2  (A3.21)2 4L n

Balancing the energies (A3.3) and (A3.21) with (A3.2) and minimizing the ratios

of the summations as before leaves;

p5 =2kx (m2) + Gb2  (A3.22)KL



where m is the integer number of half waves of the buckled column. The critical

buckling load is simply;

s + Gb2  (A3.23)

cr L2

Note that the first term in (A3.23) is the buckling load of an unsupported

link-hinge chain, a result derived in Section IV. The additional load required

to overcome the support given by the foundation is proportional to the shear

stiffness of the foundation. Because the minimum load occurs for m=1, the

column will buckle in exactly the same pattern as an unsupported chain; a half

sine wave.

For long polymer chains, the first term in (A3.23) can be neglected and the

critical load is then;

pScr = Gb2  (A3.24)

and the corresponding predicted compressive strength is;

cr =G (A3.25)

cr-
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tTable I

Comparison of Critical Loads Calculated From Exact Equilibrium

Analysis and From Approximate Formula For Long Link-Hinge Columns

pAp (W/p)2 Ap

p~O /P

2 2 2.467 0.81
3 1 1.097 0.91
4 0.586 0.617 0.95
5 0.382 0.395 0.97
6 0.268 0.274 0.98

exactPct = Ap(k/t)

papprox.- (7r/p) 2 (k/.)
cr
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