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arbitrary rigid polyhedral moving object "P" with three translational and three
rotational degrees of freedom, find a continuous, collision-free path taking "P"
from some initial configuration to a desired goal configuration.

_-- This thesis describes the first known implementation of a complete algorithm (at

a given resolution) for the full six degree of freedom Movers' problem. The al- 0

gorithm transforms the six degree of freedom planning problem into a point navigation
problem in a six-dimensional configuration space (called C-Space). The C-Space

obstacles, which characterize the physically unachievable configurations, are
directly represented by six-dimensional manifolds whose boundaries are five

dimensional C-surfaces. By characterizing these surfaces and their intersections, -

collision-free paths ma be found by the closure of three operators which .

(i) slide along 5-dime sional level C-surfaces parallel to C-Space obstacles;
(ii) slide along 1-o 4-dimensional intersections of level C-surfaces; and
(iii) jump between 6-dimensional obstacles.

4 Implementing the point navigation operators requires solving fundamental repre-

sentational and algorithmic questions: we will derive new structural properties S

of the C-Space constraints and show how to construct and represent C-surfaces

and their intersection manifolds. A definition and new theoretical results
are presented for a six-dimensional -Space extension of the generalized .
Voronoi diagram, called the"'t-Vorono diagradiwhose structure we relate to

the C-surface intersection manifolds. he representations and algorithms we
develop impact many geometric planning p oblems, and extend to Cartesian
manipulators with six degrees of freedom.
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Motion Planning with Six Degrees of' Freedom

by

Bruce Randall Donald

Abstract: The motion planning problem is of central importance to the fields
of robotics, spatial planning, and automated design. In robotics we are interested
in the automatic synthesis of robot motions, given high-level specifications of
tasks and geometric models of the robot and obstacles. The Mover's problem
is to find a continuous, collision-free path for a moving object through an

* environment containing obstacles. We present an implemented algorithm for the
classical formulation of the three-dimensional Movers' problem: Given an arbitrary 0
rigid polyhedral moving object P with three translational and three rotational
degrees of freedom, find a continuous, collision-free path taking P from some initial

- configuration to a desired goal configuration.

This thesis describes the first known implementation of a complete algorithm
(at a given resolution) for the full six degree of freedom Movers' problem. The 0
algorithm transforms the six degree of freedom planning problem into a point
navigation problem in a six-dimensional configuration space (called C-Spa e). The

C-Space obstacles, which characterize the physically unachievable configurations,
are directly represented by six-dimensional manifolds whose boundaries are five
dimensional C-surfaces. By characterizing these surfaces and their intersections,
collision-free paths may be found by the closure of three operators which (i)
slide along 5-dimensional level C-surfaces parallel to C-Space obstacles; (ii) slide
along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between
6-dimensional obstacles.

Implementing the point navigation operators requires solving fundamental
"i representational and algorithmic questions: we will derive new structural properties

of the C-Space constraints and show how to construct and represent C-surfaces and
their intersection manifolds. A definition and new theoretical results are presented
for a six-dimensional C-Space extension of the generalized Voronoi diagram, called
the C- Voronoi diagram, whose structure we relate to the C-surface intersection

" manifolds. The representations and algorithms we develop impact many geometric
planning problems, and extend to Cartesian manipulators with six degrees of
freedom. "'2'essio For
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1

Geometric Planning Problems

Introduction and Statement of the Problem

The motion planning problem is of central importance to the fields of robotics,

spatial planning, and automated design. In robotics we are interested in the

automatic synthesis of robot motions, given high-level specifications of tasks and

geometric models of the robot and obstacles. The problem is to find a continuous, .

collision-free path for a moving object through an environment containing obstacles;

hence it has also been called the Find-Path or Piano Movers' problem. In its most

general formulation the object can have an arbitrary number of hinges and joints,
S

and in some cases coordinated motion planning for multiple objects has been

considered. We will confine ourselves to the classical formulation of the Movers'

problem: Given an arbitrary rigid polyhedral moving object P, find a continuous,

collision-free path taking ' from some initial configuration to a. desired goal

configuration. We are parti(:ularly interested in the 3-dimensional Movers' problem,

for an object with 3 translational and 3 rotational degrees of freedom. This thesis

describes the first known implementation of a complete algorithm (at a given

resolution) for the full 6 degree of freedom Movers' problem. .

1.1. Vhat are Geometric Planning P~roblems?

Our work has impact on a class of geometric planning problems. In robotics

we are typically interested in motion planning for a mobile robot or manipluator.

7
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080
. start

Figure 1.1. An example of a solution path for the classical Mover's problemn with six degrees
of freedom. This illustration is a "tim e- lapse" picture of a path found by our planner for a.
harn iner-sh aped ohject. In all our examnples, the workspace is hounded by a box (which is not
shown). This solution path reqluires usC of all three rotational degrees of freedom.

In Computer-Aided Design (CAD), the problem of automated structural design

for n structural members is also an instance of the most general form of the

Mover's problem. The prcblem of determining whether an object can be assembled

as designed, and of generating an assembly plan if it can, is also in this class.

Examples of geometric planning problems include:

(i) The Find- Path or Movers'problern is to find continuous, collision-free path

for one or more moving objects in the presence of obstacles. Find-path problems

fall into two broad categories: single-body and multiple-body motion planning

problems. In the classical Movers' problem, a single rigid polyhedral object must

be moved through a workspace containing polyhedral obstacles. For the inked

or hinged body Movers' problem, a set of moving objects connected via joints or

linkages must be moved. An industrial robot arm is a typical example of such an

- fll nt tw boadcaegoie: snge-bdy ndmulipe-bdymotonplanig ::S

." robems Intheclasicl Mver' poblma sngl riid olyedrl ojec mut ):-)-0

:::" b........through...wor.......containing.polyhedra..obsta..es....r.the.lin..d........-..



"transparent" to allow us to view the rotations better.

object. In the coordinated planning problem, a number of independent (i.e., not

necessarily linked) objects must be moved. An algorithm for multiple body motion

* planning must ensure that the moving objects collide neither with the walls nor

with each other.

(ii) The find-space problem is to find a collision-free placement for one or

more objects in a field of obstacles. By analogy with the find-path problem, we

can speak of the classical, linked-body, and coordinated find-space problems. In

computer-aided design and automated design, the find-space problem is typically

subject to additional geometric constraints. Lozano-P~rez (1983) grouped find-path

* and find-space algorithms together as the spatial planning problems.

(Hii) The fine- motion problem cntailIs motion-plan ni ng along obstacle surfaces, ..-

typically while maintaining some applied force. Collision-free paths and placements

avoid obstacles: however, for many tasks in robotics and in automated design, it

t0t. • .

• .
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affix maff I x cearv

Figure 1.3. Application Example: Planning for an indusLrial robot arm with six degrees of

freedom is an example of the linked-body movers' problem. (Figure courtesy of lodney Brooks).

is necessary to plan motions and placements in contact with obstacle surfaces. For

example, consider the tasks of welding, insertion, and assembly in robotics. These . "

tasks require compliant motions, entailing consideration of additional physical

constraints such as friction, kinematics, and force control. However, the compliant

motion planning problem has a strong geometric flavor and its solution requires

the tools of spatial planning (see Mason (1981), Erdmann (1984)).

(iv) Recently, researchers have begun to consider motion planning with

uncertainty (Mason (1981), Brooks (1982), Lozano-P6rez, Mason, and Taylor (1983),

Erdmann (1984)). Broadly speaking, uncertainty may arise from inaccuracy in

object models, sensors, or control. Motion planning with uncertainty also presumes

algorithms and representations from spatial planning.

As we can see, all geometric planning problems contain components of the

spatial planning problem, especially if the underlying geometries are the same. In

I 0

. ."....' .
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Oft PLfI

Figisre 1.4. 1-Nariple from computer-aided des~ign: Automatically generated flat-plate structure
fromi Donald (19383b). Ilow can wc generate structural patterns subject to thc constraints of the

* building envelope and mechanical core?

* particular, for high-dimensional configuration spaces, the theoretical analyses of

Mason (1981), Lozano-P6rez, Mason, and Taylor (1983), and Erdmann (1984) all

presume geomctric results which are derived in this thesis.

This work impacts all geometric planninig problems. To illustrate the theoretical

* results, we address one particular problem, namely the classical Movers' problem

* with six degrees of freedom. Our algorithms immediately generalize to applications-

* involving gross-motion and fine-motion planning for Cartesian manipulators with

six degrees of freedom.

. . . .. . . . . . . . . .. . .



Figure 1.5. A finid-path problemi for an b-shaped object. The L-shaped object in shown amidst
obstacles in the start and goal configurations.

-~ [64]

Figure 1.13. Solution Patti 1, frame 64 (final configu ration).

12
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Fte-

Figure 1.21. A detail ot t s h he l-Shaped exanpl. The detail is in dtime-apse" ormat, 0
and shows a complex doubie rotation ncar the goal configuration.

Examples of "classical" find-path problems solved by our planner may be found """""

throughout this chapter, and also at thle end of chapter 2 (section 2.4, "Examples•

of the Local Experts in Use"). See fig. 1.5-21, 1.22-28, and 2.7-21. In general, S...

geometric planning problems with more than three degrees of freedom have proven -.- -

extremely difficult to solve. We believe that in part, this difficulty has been due -- .

to the unresolved issues in the mathematics of spatial planning. By solving these

problems for the six degree of freedom case, and illustrating the results for the

find-path problem (which holds considerable intrinsic interest), we hope to provide

a geometric foundation which will make all geometric planning problems feasible.

S

27
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goa 0

Figure 1.22. (3 Views or the "Puizzle Problem"). In thi find-patti prohkint, Oic L-4haped object 5
mu~ h mv((jarun thcdigal, ypa~ nbsacic. lferc the L-shaped object is shown in the

initial and goal configurations.

1.2. A Sirnple Example: How to Find a Path for a Point Amnidst 3-D

P~olyhed ral Obstacles

* . We will begin by discussing an algorithm for navigating a single point amidst

* polyhedral obstacles in three-dimension Euclidean space We then review the

configuration space transformation of Lozano-P6rez (1983), which transforms the

problemn of reasoning about the motion of a polyhedral objcct to reasoning about a

single point in configuration space, If the configuration space is isomorphic to R

then the point navigation algorithm can be applied directly to find collision free

paths. In this thesis we will generalize the point navigation algorithm to work in-

the configuration space for a three dimensional polyhiedral object with six degrees

of freedom.

The six degree of freedom planner is based on the following analogy: suppose

28
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we wish to find a path for a point in W3 avoiding collisions with polyhedral

obstacles, where each polylhedron is modeled as the intersection of a finite number

of half-spaces of W. One solution might be to move until tile point comes in

contact with a polyhedron, and then to move around the obstacle by traversing the

edge-graph on its boundary. (Refer to figure 1.39, ignoring the caption for .ow).

Each arc in the edge-graph is the intersection of two surfaces bounding half-spaces.

Even if the polyhedra are allowed to overlap, the technique will still work since their

intersections have the same structure. Naturally, we will also need some technique

for jumping from one obstacle to another.

To suririarize, we can find a collision-free path for a point amidst obstacle

polyhedra in s through the closure of three operators:

Tile Point Navigation Operators

Operator (i) slides along the 1-dinensional edges, which lie in the intersections
of the obstacle planes;
Operator (ii) slides along the two diimensional obstacle planes, which contain
faces of the obstacle polyhedra;

Operator (iii) jumps from one 3-di,,ensional obstacle to another.
S

We now review the configuration space transformation. Using this transfor-

mation in its simplest form, the find-path problem in three dimensions without

rotations is reduced to the point navigation problem amidst polyhedral obstacles.

* 1.3. Configuration Space

The configuration of a moving object is a vector of parameters representing

its combined translation and orientation, relative to a specified coordinate system.

For Lhe classical Movers' problem in the plane, a typical configuration

(X, y, o)
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0

represents a displacement (translation) of (x, y), and a rotation by 0. (For example,

imagine a polygon displaced by (x,y), and rotated by 0 about one of its vertices).

For the six degree of frecdom classical Movers' problem, a typical configuration

X (X, y, z,

0
represents a displacement (translation) of' (x Y, z), and a three dimensional rotation

R((-). The three dimensional rotation group is a three parameter family; typical

representations of rotations include luler angles, (Symon (1971)), spherical angles,

and quaternions (lamilton (1969)). For example, if the E"uler angles 0 = (0,0,q ) 0

are employed, then they determine a 3 by 3 rotation matrix which functions as

(O) in the rotation group. It is convenient to identify the rotation operator with

its parameterization, that is, to express X as

x = (1 ,0, ,0,¢).

Using configuration space, reasoning about the motion of a complicated three-

dimensional body amongst obstacles may be transformed into reasoning about

a point in a six dimensional configuration space. The transformation described

by Lozano-irez (1983) entails "shrinking" the moving object to a point, and

correspondingly "growing" the obstacles. In principle, tile point may then be 0

navigated a rounid the grown obstacles by means of the point navigation operators

(above).

In this thesis, the point navigation operators will be generalized to the 0

six-d*imn e ision alI conliguration space of the classical Movers' problem.

In ,rder to present our algoritlhm for planning in C-Space, it is necessary to -

review the basics. Ve present an introduction to representations in configuration

space at two levels: first, we present an intuitive discussion. Next, we present a

more d,,iil(l, slightly more in atheiatically-oriented exposition. For the sake of

readal)lity, there is some redundancy in the sections. Those who are encoun it ering

cot figtiratiort space for tle fir:At time may wish to postpone reading the latter 0

sc'tion for now.
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Figure 1.29. These ligures show ani obstacle polygon B and a moving polygon A. A must be 0
moved around 11 to the goal configuration.

1.3.1. Representations in Configuration Space: An Intuitive Treatment

Figure 1.29 is an example of the classical Movers' problem in two dimensions, S

without rotations. A is a moving object which must be moved from the start

configuration to the goal configuration, around an obstacle po'ygon B. The start

and goal configurations may be expressed as two dimensional vectors of the form

(X, y) which represent the displacement of a vertex v1 on A from a fixed coordinate

frame. The displacement is a rigid translation of the polygon A. The C-Space of

this Movers' problem is the space of two dimensional translations, which is the

same as the Cartesian plane. I,ozano-Prez (1983) demonstrated a transformation S

which shrinks A to the vertex vi, while inversely growing B. The grown obstacle for

B is a C-Space obstacle called CO(P), and is shown in figure 1.31. (We will discuss

the details of this transformation later). The problem of moving the polygon A

from the start to the goal is transformed into the problem of navigating the point

:17
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Figure 1.30. The edges and vertices of A and B.

vI around the C-Space obstacle shown in figure 1.31.

Both A and B are convex; non-convex objects are represented by overlapping

unions of convex polyhedra. The C-Space obstacle CO(B) is constructed by

considering all feasible interactions of the edges and vertices of A and B. Each such

interaction generates a constraint which is manifest as an edge of CO(B). We say

that an interaction between a vertex of A and an edge of B, or between an edge of 0

A and a vertex of B, is feasible if there is some pure translation which can bring

the vertex and edge in contact without causing A and B to overlap. For example,

the set of all possible interactions of A and B is the union of the two cartesian

products

{el,e 2,e 3 X {V',V, -, -V 4
|S

and

38



0

(v, e..•

Figure 1.31. CO(B), the grown obstacle for B in C-Space. The vertex v, must be navigated
around CO(Bl).

{V1, V2, V3. .ee2,e3 , -e4'

However, at the depicted orientation of A, only these interactions are feasible:

{(vi, e), (V1, C4), (el, V'), (V2, e'), (e2, V'), (V3, e'), (e3, Vf)

It is easy to visualize the translation that will bring any of these pairs into contact.

Furthermore, note that (for example), no translation can bring V3 in contact with

e 2 .

Now imagine that A is allowed to rotate about v.. At different orientations,

there will be different sets of feasible contacts. We say that the constraints associated

with feasible contacts are applicable constraints. It should be clear that at any given

. . .. . .. . . . . ..-. . . . . . . .
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Fiur 1.2 CO)cnb rpeetda the intersection or 7 half-spaces, w~hose boundaries

conai ede hondn CO(B).

orientation, only certain constraints will be applicable. The orientations for which a

given constraint is applicable form its applicability region. The applicability regions

for each constraint in this problem are angular sectors of the form [ot ! 0 < 0U..

This simply means that there exists a range of angles in which a particular contact

is feasible. This range of angles may be geometrically visualized as a sector of a

circle.

When A is allowed to rotate, the geometry of CO(B) changes as 0Ovaries, and

as thc set of applicable constraints changes. As the edges and vertices of A rotate

a about vi, the constraints they generate sweep out ruled surfaces which bound

CO(Bl) in a three dimensional C-Space. (The C-Space is three dimensional, since

A now has three degrees of freedom: x, y, and 0). At any fixed orienta tion 00, an

x-y slice of CO(B) is a polygon, called slice(CO(D),0u). Figure 1.31 shows such a-S
slice at the depicted orientation of A. With each edge of slice(CO(B), 0) there is an

40
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associated half-plane containing slice(CO(B), 0), whose boundary contains the edge

(see figure 1.32). The intersection of these half-planes is exactly slice(CO( B), 0).
As 0 changes, different half-planes are used to construct slice(CO(B),O). By (1) 0

deriving the line equation of the boundary of these half-planes in terms of the

orientation 0, and (2) by determining the applicability region for each lialf-plane

constraint, we can characterize slices of the C-Space obstacle slice(CO(B), 0) as 0 .

changes. Thus we can characterize the three dimensional C-Space obstacle CO(B).

This representation may be used to develop planning algorithms for the Movers'

problem with two translational and one rotational degrees of freedom (see Brooks

and Lozano-Per6z (1983)).

In this thesis we develop such a representation for the six degree of freedom .,

Movers' problem. There are several problems which must be solved. Because

the structure of the rotation group is more complicated in three dimensions,

the applicability regions for constraints in a six degree of freedom C-Space are

ge.ometrically much more complicated. While in two dimension- the appli-ability

regions may be visualized as sectors on a circle, in three dimensions they are

complicated three dimensional manifolds on the projective 3-sphere. It is important

to characterize these regions, since they specify where a constraint is applicable. ..-

We will discuss some of the other problems presently.

Generalizing the Point Navigation Operators Requires Solving •
Representational Questions

In order to generalize the point navigation operators to the C-Space or the " "'

classical Movers' problem, we must be able to characterize the surfaces of C-Space @

obstacles, and the intersections of these surfaces. The first two operators, then, must

slide along the C-surfaces and their intersections. In the next section, we discuss some . '

of the representational issues involved in developing such operators. For example, . -

when rotations are allowed, the C-surfaces are curved. In the six-dimensional space

of the classical Movers' problem, each C-surface is a five-dimensional submanifold of

C-Space, and the intersection of two such surfaces is a four-dimensional manifold.

Thus it is possible to slide along such an intersection with four degrees of freedom.

41
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1.3.2. Representations in Configuration Space: A More IFormal Treatment

In this section, we present a somewhat more abstract formulation of

representational issues in C-Space. Some readers may wish to postpone reading this

section until later. We will proceed as follows: first, we will outline an important

representational question which must be solved in this thesis. Next, we discuss

how to represent volumes (such as C-Space obstacles) in C-Space. In the course

of this discussion, several terms will be defined in context by means of intuitive

L descriptions. At the end of this section, under the heading Working Definitions, we

will summarize and formalize the definitions to the extent that will be required in

chapters 1 and 2. ]

The Domain Question

Until now, geometric planning problems with more than three degrees of

freedorn have proved resistant to solution.' In this thesis we provide such an I

algoritlim for find-path with six degrees of freedom (the classical Movers' problem).

The resistance of these problems has largely been due to unresolved mathematical

issues and questions relating to the structure of configuration space and to the nature ....

of C-Space constraints, (although for fine-motion and planning with uncertainty

there are of course additional issues).

One fundamental theoretical problem for high-dimensional configuration spaces

may be stated as follows: in a configuration space C with rotations, each C-Space " S
obstacle may be represented by the intersection of a finite number of half-spaces.

Each half-space, in turn, is defined by a real-valued C-function on C-Space. For

example, the half-space might be the set of configurations where the C-function

is negative. However, each C-function is a partial function on C, whose domain

is a complicated region in C-Space. This greatly complicates the representation

for C-Space obstacles and C-surfaces (see figure 1.36). Moreover, until now the

dornains of the C-functions were unknown for all but the one-dimensional rotation 0

group. One of our first tasks will be to derive the domains of all C-functions for

the classical Movers' problem with six degrees of freedom.
I hw( vc'r, previous w,rk has provided ;mi existeice proor of a po0iynorn i time :iigorithi i for

itr;ri sp ildiI plarm iing probiis. In :dditioion, there are approxitiat.e algorilhm for soine of hm.e S
probhlins. Sce our review or previo work.
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There are several related problems, for which we also present solutions. This

allows us to construct a complete geometric representation for the configuration space

of the classical Movers' problem with six degrees of freedom. This representation S

impacts all the geometric planning problems we have discussed, and extends

naturally to Cartesian Manipulators.
Representing Volumes in Configuration Space 0

The dimensionality of configuration space is the number of degrees of freedom

in the parameter space, i.e., the number of degrees of freedom available to

the moving object(s). Thus the classical Mover's problem in the plane has two

translational and one rotational degrees of freedom, while in three dimensions it
has three translational and three rotational degrees of freedom. The configuration

spaces for these problems are three and six dimensional manifolds, respectively.

As the number of degrees of freedom increases, a geometric planning problem

becomes harder. There are several reasons for this. First of all, when rotations are

allc-ed, configuration space ceases to bc E ucidean, and the C-surfaces become
curved. Furthermore, the non-commutativity and multiple-connectedness of the

three-dimensional rotation group are classical difficult issues in mathematics. In 0

addition, it can be shown that the computational complexity of spatial planning

grows exponentially with the dimensionality of the C-Space.

A fundamental issue for geometric planning algorithms is: how should C-Space

obstacles and surfaces be represented and computed?

A volume in a configuration space C may be represented by the intersection of -

a finite number of half-spaces (see figure 1.33). Each half-space may be defined via

some smooth, real-valued function function on C,

fiC

For example, (fig. 1.34) suppose fi(x,y) ax + by + c, for some constants a, b,

and c. The kernel of f is the line where f(x,y) 0. The halfspace h- is the

portion of the plane where f(x,y) is negative. C-functions such as fi arise in the

0

two dimensional Movers' problem, at a fixed orientation.

4:1
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In general, the (closed) half-space h - is the set of all points in C7 where fi is.-.-...-

negative-valued or zero: - --?-

h --- v E C lI f(v) <5 0 }

The common intersection of a number of such half-spaces can yield a volume in

C. Lozano-Pdrez (1983) showed how C-Space obstacles can be modeled in this """

manner, and gave the form of the functions fi. Note that each C-surface lies .

within the kernel of some constraint fi. Fine-motion strategies and algorithms for

planning with uncertainty need to compute the normals and tangent spaces to -i.-i

these C-surraces. The normal can usually be derived from the gradient Vfi (this----.-

requires placing an appropriate Riemannian metric on the tangent space). When • "

a real-valuied function f'i on configuration space is used to describe constraints in. .-

L

III
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Figure 1.34. Examrple of a C-runction fh in the plane.

that C-Space, (i.e., C-Space obstacles), we call it a C-function. The form and

interpretation of C-funkctions are presented later.
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Figure 1.35. Illustration of the chi~osical Mover's problem in three dirruentions. 11 is an obstacle,.
and A is an ol~jtcc- whuich m ust be' muoved around 1i). A.,", shows A in Lte stitrt conufigu ration,

and A,.(4 shows; .4 in~ the dcmiru'd goal conufigiurationt. C is thue ixolyhedron which is the C-Space

obhstaclt fromu H? for A at orjctitatjou 01.u At orivnu~taiou 0', the (:-Simc(c obstacle fromu 11 isclrr-u ailhclou hc i hwa ~
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Example: (See figure 1.35). Consider the Movers' problem for a three dimensional

polyhedron A which can translate but not rotate amidst polyhedral obstacles. The

configuration space for A is a three-dimensional vector space of translations, which

it is convenient to identify with W:. Each constraint fi will be linear on 1 , and

the kernel of fi is a plane. Each such plane bounds a C-Space obstacle (such as C

or C' in figure 1.35). The C-Space obstacles are possibly overlapping polyhedra in

R 3. The find-path problem in the transformed space is that of navigating a point

past the union of these C-Space polyhedra (see figure 1.39).

In this formulation there is a fundamental underlying assumption: fi is a total

function on C, that is, the domain of fi is all of C. In the example this is not a

problem, since the domain of each linear C-function is the entire space. A function

whose domain is a subset of C is called a partial function on C. When rotations are

allowed, C-functions become partial functions.

A
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0

Figure 1.37. The two-diinenl.ional ckuisieal M vt problumn: An o|,itacle polygon 13 and a inovitng..
?. polygon A. A i , qhowi at a particular orientaiLion, 01 .  .

Why do C-Space constraints become partial functions when rotations are

introduced' Consider the classical find-path problem in two dimensions, for a •

moving polygon A which can translate auld rotate in the plane (see figure 1.37). A

configuration of A may be represented by three parameters, (X, y1 0). The surfaces of

the C-Space obstacle for tB arise from each of the feasible contacts (or interactions)

between the edges and vertices of A and B. Thus the constraint functions (which 0

we have been calling fi) are defined by considering pairwise interactions of edges

and vertices of A with vertices and edges of B. Every such pair such as e,, and vb

will generate a smooth, real-valued C-function f,.,,, on configuration, space.2 Each

constraint is designed such that their conjunction enforces a disjointness criterion

for A and B. Hlowever, not all interactions are possible at any given orientation.. .'ii I :

For example, at the depicted orientation 01 of A, edge e,2 can interact with vertex."" ""

v, but edge ei cannot: .at orientation 01, no translation can bring el in contact

.- =l~~~'or the formn or" thw (-functi)n., 4c ehap(Ar. 3 and 4. .
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with v while maintaining the disjointness of the interiors of A and 13. We say the

associated C-function f, is not applicable at orientation 01. In other words, no

configuration

(x,y,01) C W x {0, }

is in the domain of f ,. Each constraint fC,,vb is applicable only at certain

orientations, and hence each can be considered a partial function on the C-Space.3

In three dimensions (see figures 1.35 and 1.39), the surfaces of the C-Space 0

obstacle for B arise from each of the feasible contacts between the vertices, edges,

and faces of A and 1. By analogy with figure 1.37, it is clear that not all of these

interactions are feasible at any given orientation. Thus the C-functions describing

C-surfaces for spatial planning with six degrees of freedom must also be partial

functions.

Working I)efilritions: Review and Summary

We now summarize and formalize the key definitions and concepts required in

this chapter and the next:

Configuration Space: (Formal definition) Configuration space is the product

space of the space of translations and the space of rotations for an object. In three

dimensions, the space of translations is Euclidean 3-space , and the space of

rotations is the 3-dimensional rotation group or Special Orthogonal Group, SO(3).

S0(3) is isotnorphic to the intersection of the Special Linear Group (the set of

all real 3 X 3 matrices with determinant 1) and the Orthogonal Group (which

may be thought of as the set of matrices with orthonormnal rows and columns).

The orthonorimality of rows and of columns are equivalent conditions. S0(3) is

isormorphic to P3 , the 3-sphere S3 with opposite points identified. (l ' : is also known •

as the projecive 3-sphere). S"' is isomorphic the group of unit quaternions. For the

classical Mlovers' prothe we will (Anlloy configuration space, J17: X SO(3). We will

den ote thie classical Movers' IProbletn with three tr a nslational d three rotational

It(c ok, i I; d ,ozao 'in'z (19813) for L di'iIusior off i.1w do mains of (C fm'icion for the two

i nii on.d hni-p;uIh prolc ii tic rot. tj,). M.
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degrees of freedom as 6DOF. In practice, we will represent rotations as members

of a three-parameter family (for example, Euler Angles), but we must keep in mind

that they parameterize an isometry and that : X SO(3) is not a vector space.

If the Euler angles (0,0,0) are employed to represent the orientation of a rigid

polyhedral body, a typical configuration X in R3 X S0(3) has the form

X - -, ),z,,O ).

We will sometimes adopt the notation

X = (r,0),

where r denotes a three-dimensional translation vector, and E) some three

dimensional rotation. This second notation is independent of the particular

representation chosen for rotations; the first isn't. If Euler angles are employed, we

may think of 0 as the "vector" of Euler angles, (0, 0, 0).

C-Space Obstacle: (Informal definition) Configuration space obstacles are

(possibly overlapping) six dimensional manifolds (with boundary) which correspond

to sets of configurations that would cause collisions of the moving object with real

space obstacles.

Free space: The free space is that subset of C-Space which lies within no

C-Space obstacle. The free space will be denoted F. S
Applicability Set: (Informal (lefinition) Refer to figures 1.29-32 and 1.33-38, and .

recall that C-Space obstacles are represented by the intersection of a finite number

of half-spaces. (To be formal we should call them half hypcrspaces). The boundary

of each half-space is a C-surface, and contains a boundary patch of the C-Space

obstacle. Each C-surface S may be expressed as the kernel of a real-valued function

f on C-Space. The C-function f is negative on the obstacle side of the half-space

C-Space obstacle, an(l positive on the other half. In the literature C-functions have

been called constraints, since they express constraints on the possible motions for

~-.L L.. . ~ ~ .~ - . - . ~ -.-. -,- -. . j..



an object. A burface parallel to S is called a level C-surface, and represents the set

of configurations where f has a certain fixed value. This value is termed the level

of the level C-surface. The boundary of the C-Space obstacle is a special case of

level C-surface, where the level is zero. We have seen that at any given orientation,

only certain C-functions (and their associated C-surfaces) are applicable. This is

because only certain contacts are f( asible between the faces, edges, and vertices

which generate the C-functions. We call this set of C-functions the applicability set.

For example, in 1.29-32, at the depicted orientation the applicability set is

{(v 1, e') , (v 1, e'), (el1, v'), (V2, e'), (e2, V'), (V3, e'), (e:1, v )}

(Actually, the applicability set is the set of C-functions generated by these

vertex/edge and edge/vertex pairs, but since there is a one-to-one correspondence

between the generator pairs and the C-functions, we can write it this way). In later

ch-pters, we will demonstrate algorithms for computing the applicability set, and

for decomposing rotation space into regions where the applicability set is invariant.

Redundant and Non-redundant Constraints: (Informal definition). If a config-

uration X is in free space, the set of constraints which is (locally) relevant to motion

planniag from X is a subset of the applicable, positive-valued C-functions at X.

lowever, the value of a C-function does more than merely indicate which side of a

C-surface X is on. A C-function's value represents the translational distance to that

surface. Thus, C-functions provide a collection of pseudo-metrics on C-Space. Using

these metrics, it is possible to order C-surfaces by their closeness to a configuration

X (simply sort the C-fuictions on their value at X). We say that a C-surface is

redundant if it is subsumed by a nearer, intervening constraint. In figure 1.38, for

example, f and g are non-redundant constraints at X, but h is redundant since it

is subsumed by f. It is useful to determine the set of non-redundant constraints at

X since this is the smallest set of constraints that are locally relevant to motion

planning. We provide a formal definition of redundancy in chapter 3.

Robot, Moving Object, and Piano: All of these terms have been employed in S

thc literature to refer to the moving object for which a collision-free path must
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Figure 1.38. h is a redundanit constraint.

be found. Our moving object is modeled as the possibly overlapping union of a

finite set of convex polyhedra. The union is rigid, but not necessarily convex or

connected. The moving object has three translational and three rotation degrees of S

freedom. To avoid monotony, we may employ the term robot to refer to the moving

object. The terminology is justified in part by the fact that our algorithm extends

straightforwardly to Cartesian manipulators.
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Thc Research Agendx or' this Thesis

A Brief Outline

1. Corn ltitational rheory ______ - __

Paths caii be found in C-Space by the closure of three operators:]
(i) slidles along I- to 'l-(irnnsioflal intersections of level C-surfaces;
(ii) slidjes along 5-dimiensional level C-surfaces;

(iii) jumps between 6-dimiensional obstacs. _ - -- _

fl. Represe rtation andAlgorith in__ _____]

L Search Algorithm Employing the Three Operators

Solve the Intersection Problems.
Develop a represention for the intersection manifolds.

Solve open questions about the structure of 6DOF constrainits. Derive and

rcp.-cscnt A;ractural properties of thc constraintz3, for examplc, the donialns of
dlefining partial func tio ns. D~evelop dlecomnpositionI algorithms.

- 1.LI Irifljlerrientation __________________ ________

L Implement the 6DOF planner. _______ ___ ____

IV. New Theoretical Results __ _ ____ ___

IThe structure of 61)01 constraints: T heorems on the domains and domain

topology of the defining partial functions.
Theorems on the applicability decomposition.
The C-Voronoi Diagram (CVD).

I The Equivalence Theorerr for intersection manifolds and the CVD.
Crtei foresigning/intcgrating local and global planning algorithms.
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1.3.3. Generalizing the Point Navigation Operators

Consider a three-dimensional configuration space containing smooth, curved

C-Space obstacles. Observe that the point navigation operators will work even if

the surfaces are curved and complicated, as long as we can find their intersections.

For the two-dimensional Mover's problem (for a polygon allowed to rotate and i-

translate in the plane), we employ a configuration space W2 X S1. W2 is the space of

two dimensional translations, and S' is the unit circle, on which one-dimensional

rotations may be represented. C-functions are of the form fW :2 X S1 _- R and

are valid within some sector Ai of S 1 . A C-surface is the set of configurations

where fj is zero. Although these C-functions are complicated expressions containing 0

trigonometric terms of the form x cos 0 and y sin 0, it is possible to solve two

such C-surfaces simultaneously to obtain an intersection curve in R2 X S, which

is parametric in 0 (these intersection manifolds are derived in chapter 4). The

analogy to navigating a point through a polyhedral environment should now become

clear: the faces of the polyhedra correspond to C-surfaces in 2  S' and the

edge-graphs to the graph of C-surface intersections. By searching the graph of

C-surface intersections we can find a path in configuration space, if one exists. "

Planning in a Six Dinmensional C-Space

Our planner for a six dimensional C-Space is based on the idea of moving along

the intersections of level C-surfaces in free space, parallel to the boundaries of C- S

Space obstacles. In the example above, the coincidence between the dimensionality

of configuration space and Euclidean space was serendipitous: edges on polyhedra

corresponded to curves in T 2 X S1, and faces to 2-dimensional surfaces. However, in

a six dimensional C-Space, the C-surfaces are 5-dimensional and their intersections

are 4-dimensional sub-manifolds. Intuitively this means that the set of possible

motions while complying with two constraints is a four-parameter family.

Our idea is as follows: Suppose we could slide along C-surfaces (see figure 1.39). 0

In addition, suppose we could intersect C-surfaces to construct a lower dimensional

manifold in C-Space which contained paths along (or around) the boundary of

C-Space obstacles. By sliding along C-surfaces, and by sliding along the intersection

of C-surfaces, we should be able to devise an algorithm which can circumnavigate
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Figure 1.39. We can represent the configuration of a polyhedron A by a pair, (T, 0), where T is
a translation of A and 0 is a rotation or A. The problem of moving A froul configuration (r.,091)
to (r,,02) is tranMforyned to the problem of nv.Wig;Lting a configuration point, r, past C, which
is the C-Space obstacle due to I. S, and S2 are C-surfaces bounding C. The configurations ci
lie on the boundary of C, while d is in free-space. Two trajectories around 11 are shown. Note
that the path segments (C6 , (re, 02)) and (d, ,(re, 02)) must also include a rotation. (The actual -

rer.ence ix)int is at the centroid of A, but for the purposes of exposition, wc have placed it at a
vertex as shown).

" C-Space obstacles. (Of course, we also need a way to plan motions which "jump"

from one obstacle to another).

Ezanple: Figure 1.39 shows how such a planning algorithm might work. The

planner moves through free-space from (r5 ,()) until it strikes a C-surface St at -

cl. From c, a path is found towards c2 sliding along the C-surfacc SI. We say the

planner slides along Si to c2. Configuration c2 lies on an intersection manifold of

the C-surfaces S, and $2. The path segment (c2, c3) slides along this intersection

manifold, which lies on the boundary of C. A path (c2, C3, C4 , c5, CG) is planned along

the graph of intersection manifolds on the boundary of C. From cti we leave the

boundary of C, and translate and rotate through free-space to (rg, 92). This path
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is an idealized example of planning along C-surfaces and intersection manifolds of

C-surfaces. The implemented planner finds a path similar to ((r.,ei),di,(r.,02 ))

(see chapter 2). The path segment ((r,, 0), dj) is parallel to the C-surface Si, and

we say that it slides along a level C-surface for S 1 . The path segment (d1 , (rg, -))

is along a level C-surface for S2 . These level C-surfaces intersect along a manifold - ......

in free-space containing d, (imagine extending the faces S1 and S2 beyond the

boundary of C until they intersect).

We will derive the necessary mathematical theory and tools relating to C-

surfaces and their intersection manifolds, and present algorithms for moving and

planning paths in C-Space. Some of the issues we will address include:

(i) What is an appropriate representation for constraints in a six dimensional
C- Space?

(ii) How (to we plan motions using constraints whose domains change with the
motions? 0

(iii) flow can trajectories in C-Space be intersected with C-surfaces whose domains
change along the trajectory?

(iv) How can intersection manifolds be constructed in C-Space?

(v) How are motions planned which slide along C-surfaces and intersection manifolds?

It is useful to develop a terminology for evaluating algorithms and repre-

sentations for geometric planning problems. An algorithm employing an approximate

representation does not characterize the constraints exactly. A complete algorithm

(for a given resolution) is guaranteed to find a solution if one exists (at that

resolution). In general, construction of a complete algorithm mandates the employ-

ment of a complete representation. A brute-force algorithm tries to find a solution

through exhaustive search. Heuristic algorithms fall into two (overlapping) classes: 0

heuristically complete, and heuristically fast. See also the review of previous work

(below).

The implemented algorithm we present for the classical Mover's problem with

six degrees of freedom employs a complete representation of the configuration space

constraints, and a complete search algorithm (for a given resolution).
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1.4. Local versus Global

Local algorithms for the find-path problem examine local constraints in some 0

neighborhood of real space or in C-Space, and propose motions based on the_ ---

geometry of the neighborhood. Typically, local algorithms are implemented as .-

searches, and the examination of constraints near a search node leads to the

selection and application of some local operator to move the robot in space. For

example, in our algorithm for the six degree of freedom Movers' problem, the local

constraints correspond to the geometric structure of C-surfaces in a neighborhood,

and local operators consist of motions along C-surfaces.1 In general, a local planning

algorithm will be complete if (1) the closure of the local operators is complete for the

arcwise-connected components of C-Space, and (2) each local operator attempted

ensures that a collision-free path exists between configurations in the search.

However, our observation has been that in general, even complete local

algorithms can get lost examining irrelevant local constraints. In particular, without

,adequate knowledge of the connectivity of a workspace and the classes of paths

it contains, such methods may choose impossible or ill-advised candidate paths:

hence they may take a long time to converge.

A global find-path algorithm attempts to construct a model of the connectivity

of the workspace. We believe that the connectivity of configuration space can be

inferred from the connectivity of real space. Good hypotheses about the channels,

or classes of paths through free-space can serve as guidance for a more detailed

method. While there exist several proposals for global approaches to the Movers'

problem, in Donald (1983a) we attempt to formalize criteria for the design of such 0

algorithms. A global planner based on these criteria was implemented, and coupled

with a (om)lete local algorithm to form an integrated planning system.

Channels are an encoding of free-space corresponding to the classes of paths S

within an environment. An implementation exploiting this global model of the if - --

connectivity of free-space has been able to solve two dimensional find-path problems .- :-

in several minutes which formerly took many hours. The algorithm is essentially

TrhisM ( ,am ple im ilhI I rit ive and tyI)ica:I or th I localI con.Ir;mirLts ait(I o I)rators. The ilp1e'mented

Il.rI 'r im more com lictivd, ws we sthall wCC.
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a problem-solving strategy using a hoincomorphic reduction of the search space.

See Donald (1983a) for a description of the channel algorithm. In appendix Ill,

we discuss the design and integration of local and global planning algorithms in

303X SO(3).

1.5. Review or Previous Work

1.5.1. Introduction

In this section we review previous work on geometric planning problems.

AVe also give a formal characterization of completeness for the spatial planning •

problems. A survey of robotics issues in robot motion planning can be found

in Brady, et al. (1980). For related work on the mover's problem, see Brooks

(1983a), Lozano-P~rez (1981, 1983), Lozano-P6rez and Wesley (1979), Brooks and

Lozano-Per~z (1983), Schwartz and Sharir (1982a), Reif (1979), Moravec (1979),

Udupa (1977) and Ilopcroft and Wilfong (1984). Wingham (1977) and Popplestone,

Ambler, and l-ellos (1980) consider related issues in geometric planning problems.

Some issues in automated structural design are addressed in Donald (1983b). For

a review of geometric modeling techniques, see Baer, Eastman, et al. (1979) and

Requicha (1980).

1.5.2. Complexity-Theoretic Results

In seminal work on the complexity of the Movers' problem, Reif (1979) has

shown that the motion planning problem for a robot with an arbitrary number

of degrees of freedom in the form of arm-like linkages is P-Space-hard. llopcroft,

Joseph, and Whitesidvs (1982) have shown similar results for planar manipulators

with n linkages. In general it has been found that with n degrees of freedom, the

problem is P-Space-hard. Happily, Schwartz and Sharir (1982a) have demonstrated.

the existence of a polynomial-time algorithm for the Movers' problem with fixed

degrees of freedom, where the size of the problem is measured in the number of

obstacle faces in the environment. The algorithm of Schwartz and Sharir (1982a)

for the classical Movers' problem is unfortunately of time complexity

O(nd
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where n is polynomially dependent on the number of faces in tile environment, and d

is tile number of degrees of freedom. For 6 degrees of freedom this becomes O(n1o1b).

Hence it serves chiefly as an existence proof for a polynomial-time algorithm.

The coordinated motion problem has also been given some attention: Schwartz

and Sharir (1982b) address the problen, for 2 and 3 circular bodies moving amidst

polygonal obstacles in the plane. The coordinated motion system has degrees of

freedom equal to the sum of the degrees of freedom of the moving bodies. These

results lead us to expect exponential behavior from all motion-planning algorithms

as the number of degrees of freedom grows. For these reasons we will confine

ourselves to the classical Movers' problem, which has 6 degrees of freedom in

3-dimensional space.

Reif (1979) also sketches a polynomial-time algorithm for the classical Movers'

problern, but it appears incomplete in that it ignores constraints arising from the

interactions of faces of the moving object with vertices of obstacles, and does not

consider edge-edge interactions in 3 dimensions.

1.5.3. Work in Computational Geometry arid Robotics

The foundations of our approach lie in Lozano-IP6rez (1981, 1983), Lozano-P6rez

and Vesley (1979) and Schwartz and Sharir (1982a). The problem of moving a

complex polyhedral object among obstacles is transformed to the problem of finding

a path for a point in a high-dimensional configuration space.

Brooks and Lozano-Per6z (1983) have implemented a general path-finding
ilgorithni for a polygonal object in the plane with two translational and one 0

rotational degrees of freedom. Their planner uses hierarchical subdivision of the

3 di mei, ional configuration space R2 X S 1.The subdivision algorithm hals been

'pcclal'ilzxd lo the particular geometry of the Movers' problem in R2 X St and

while in pririple it is extensible to the 6 degree of freedom proble, its space--

'omplexity in high dimensions is likely to be unattractive. A problem with the

hierarchical subdivision strategy is that it has trouble exploiting coherence in

C-.S'pacc. It-; spatial taxonomy is restricted to filled, empty, and mixed, in a 0

world where ilrnost everything is mixed. Mixed cells are subd ivided until an empty
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region is found. However, it is hard to propagate this useful information to guide

the search through nearby, unrefined cells in the subdivision. One goal of the

algorithms and representations in this thesis has been to exploit coherence in the •

configuration space. The intuitive appeal is that the intersections of C-surfaces "go

somewhere useful" (i.e., around the obstacles). We will adopt an approach which

exploits the coherence of C-Space obstacles by moving along the intersections of

high-dimensional C-manifolds 2 parallel to the obstacle boundaries.

Lozano-Prez (1981) has described approximate solutions for Cartesian manip-

ulators with 6 degrees of freedom (in principle) which consider 3-dimensional

slice-projectons of Configuration space. In practice these approximations are only

reasonably accurate for Cartesian manipulators with 4 degrees of freedom. In

principle, the C-Space constraints on motion defined by Lozano-Prez (1983) can

be extended directly to a 6 degree of freedom planner; indeed, this is our starting S

point. However there are many interesting and complex problems to work out (see

Bro4'k3 (!983b) for another disclssion of these problems). In particular, there are

many unresolved mathematical details for the 6 degree of freedom case. Given

the mathematical inodel, there still remains the issue of a complete planner which .

exploits the model.

1.5.4. Global Methods

Global methods for path planning attempt to construct a model of the

connectivity of free-space which can be related to the Voronoi diagram (see

Drysdale (1983)). In particular, Brooks (1983a) has implemented a 2-dimensional

path-planner which models the free-space as an overlapping union of Generalized

Cones (13inford (1971)). Each cone provides orientation constraints on motion within

the cone, and these constraints are intersected to find a translational path along the

cone axes (called spines) interspersed with rotations at the spine intersections. This

work was extended to a six-link manipulator for moving payloads with 4 degrees •

of freedom (Brooks (1983b)). The extended algorithm uses the same cone model,

but sweeps each cone vertically to build prisms at horizontal slices through the

workspace. This method works well when the payload (or polygon) is small and

2A (-mani ifold is a ,nanifold in a coniigiration space.

Oh::if!
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convex in a relatively uncluttered obstacle environment. It is not at all clear how

to extend the algorithin to large, non-convex moving objects, or how to consider

more than one rotational degree of freedom at a time. Nevertheless the concept of

computing "freeways," or "channels" through free-space is attractive in that it can

provide global guidance to local algorithms (such as C-Space methods), and can

enumerate good hypotheses about candidate paths through complex workspaces.

Using an approach called retraction, O'Ddnlaing and Yap (1982), O'D16 nlaing,

Sharir and Yap (1982) construct a Voronoi diagram for a two-dimensional workspace

and consider moving simple objects (a disc, a line-segment) along it.. This technique

was mentioned by Brooks (1983a). It has not yet been extended to polygonal objects

or 3-dimensional cases. We will address this issue by considering Generalized

Voronoi Manifolds.

1.5.5. Approximation and Conipleteness

Planning problems have two components: characterizing the constraints, and

searching for a solution which satisfies the constraints. One attempts to achieve a

complete (in sonie sense, "exact") characterization of the tConStraints, and a complete 0

search algorithm for the representation. Since the Mover's problem is a continuous

matthematical decision problem, we must in general consider a discrcized version of

the problem (see Reif (1979)), for example, we might represent the polyhedral input

models as systems of linear inequalities within a fixed accuracy c, with 0 < E < 1.

In fact, there are two kinds of resolution limit. Any algorithm which employs real

arithmetic has a resolution limited to the machine precision. (Schwartz and Sharir

(1982a) employ rational and algebraic numbers instead). For the find-path problem,

we are interested exclusively in the physically realizable paths, that is, those paths

lying entirely within open sets of free space. The resolution limit Reif mentions is

essentially a bound on how small an open set can become before it is no longer

considered open. The open set resolution lhii. t is typically greater thoan the machine 0

precision.

Almost all find-path search algorithms are complete only to this fixed resolution;

the notable exception is Schwartz and Sharir (1982a), which appears to be 0

search-corn plete and resolution independent. We should stress that for a comiplete
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representation, the resolution-dependence is in practice not a severe restriction.

However, the effect of a complete search algorithm running on an approximate

characterization of the constraints is not clear. In principle, in case of search failure,

it is sometimes possible to refine the approximation and redo tie search until a .-

path is found. This possibility has rarely been exploited however, arid introduces a

number of unpleasant technical and conceptual issues. A complete search running

on an approximate representation will in general result in an incomplete algorithm.

For these reasons we would prefer a complete characterization of the constraints

coupled with a complete search algorithm.

We will place this thesis in the context of previous work by considering the

following criteria:

(i) For what degrees of freedom does the algorithm apply?

(ii) Is the representation (the characterization of the constraints) complete? 0

(iii) Is the search complete (at a given resolution)?

(iv) Has the algorithm been implemented?

Approximate Representations

Much of previous work has focused on approximate characterizations of the

constraints. Approximate representations may (1) artificially restrict the degrees of

freedom in a problem, (2) bound objects in real-space by simple objects such as

spheres, or prisms with parallel axes, while considering some subset of the available

degrees of freedom, (3) discretize configuration space at certain orientations, or (4)

approximate swept volumes for objects over a range of orientations. Such restricted

planning systems may lose solutions which require exploiting all six degrees of

freedom. An approximation of the obstacle environment, robot model, or C-Space

obstacles can result in a transformed find-path problem which has no solution.

Some approximate algorithms -for example, those of Brooks-run quite fast

for the class of problems that they address. In general, speed has been a

*. motivating factor in the design of these approaches. We also observe that some

approximate nmethods were motivated by the difficulties of modeling constraints in

a full 6-dimensional C-Space. These difficulties in turn stemme(d from unresolved S

mathematical problems relating to both (.-Space iself and to the structure of
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C-Space constraints. However, even with a complete mathematical model in hand,

we are still confronted with the problem of devising a complete planner which

wvorks using the full set of constraints.

The configu ration space of the three dimensional classical Movers' problemii with

six degrees of freedom is R' X S0(3), where S0(3) denotes the dt ree-(linensional

rotation group. lIi this thesis we first comiplete the mat hemnatical framework for Lte 0

Coll ligi ration space k' X S0(3) and p)resent, solutions for sotne heretofore unsolved

pro' IeIIm This foui ldation then allows us to propose and construct a complete

planner exploiting thle full set of c:onstrainits and 6 degrees of freedomr for motion

planning in W X S0(3).

In this sect ion, we characterize the comipleteness of previous work. Unless noted,

serh-conmpleteness is resolution-dependent. Schwartz an 1 Sharir (1 9S2a) describe

comnplet , rep rese ntat ions and comnplete (un io plernen ted) search algorm t Iins for 21)

and 3P). These theoretical algorithmns appear to be rcsolution-indepemrdent. Brooks

Mi, .ozarno-Pler6z (1983) descr roe comnplete representations and search algorithmns

ror tie problem ii w2 X S1. Lozanio-PNrez (198t, 1983), Lozano-NPrez and Wesley

(1979) give approximate representations (except for translation) with comlpleteC

search algorithmis for x1and 90 X 50(3). These approximate reliresenain

also mrodlel Cartesian manipulators. Most algori thmns for 903 X S0(3) can bc extended

for Cartesian ma iipuilators in a similar mran ner. For tranislations, Lozano- INrez 0

algo ri dIlins are coinplete to die machine resolution. B~rooks (1 983a) provides ant

approximate constraint characterization with a complete search algorithm for

Il Brooks (I 9831h) extends thl~is for a liniked armi carrying a pal)'oad with

dlegrees of freedom J'P X . A sign ific ant con tr ii) t ion of' Brooks was the addressing

* ~of t he issute of Joi nt ed ar ins. 'Ire( open set rceoluntion lim it for the Voronoi methods

(for si irple olbjects in two dlimenisions) is no Ia rgor than thle mnachirie precision.

* 1 ~~(dli pa (1 9771) and W\id loes (I 971) 1iseil approxirm ate represenit ations and inicomp~lete

search ilgoritlinis iii ;ddres.sin,-; find- path for jointedl arms.

Ii this light, we ca;n characterize our algorif hun as follows:

* Thi's thesis presents the first irnplcrntc ncd, reprcs(it to i- corn plc/c(, search-

CO~rpIC il/go nt/imi (at (a icc?! rcsolnt ioo) [or the co. (lAovrs'rolmin



R x so(3).

1.6. An Outline of this Thesis: Research Contributions

In this thesis we present a local algorithm for the six degree of freedom

classical Movers' problem. The channel based algorithm developed in )onald (1984)

is described in Donald (1983a).

At the heart of this research lie certain mathematical developments that may

seem fairly abstract at first reading. To motivate the mathematics, we first present,

in chapter 2, the design and implementation of a six degree of freedom planning

system for the classical Movers' problem. The description of the planning algorithm

assumes that certain representations and mathematical tools are available. In

* subsequent chapters, we develop these tools in answer to the following questions,

for which chapter 2 assumes solutions:

Representational and Algorithinic Questions

(i) What is an appropriate representation for constraints in a six dimensional

C-Space? (Chapter 3).

(ii) In the six dimensional C-Space of the classical Movers' problem, the domain of 0
each constraint is the product space of R, and a complicated three-dimensional

manifold (with boundary) on the projective three-sphere. What are these regions,
and what is their structure? What represer: tation can be used for these domains?
(Chapter 3).

(iii) How do we plan motions using constraints whose domains change with the
motions? (Chapter 5).

(iv) Given a trajectory in C-Space, it is necessary to find where it intersects
the boundary of C-Space obstacles. flow can traiectories be intersected with
C-surfaces whose d-'mains change along the trajectory? (Chapter 4, 5). *

(v) flow can intersection manifolds be constructed in C-Space? (Chapter 4).

(vi) flow are motions planned that slide along C-surfaces and intersection manifolds?
(Chapter ,4, 2).

(vii) flow can rotation space be decomposed into regions where the set of applicable
constraints is invariant? (Chapter 5).

ff S
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How to Read this Thesis

Chapter 2 -covering the design and implementation of the search algorithm in

C-Space--presents the most heuristic component of this research. It is also in some

sense the most accessible chapter to the non-specialist. However, do not confuse

chapter 2's implementation details and search heuristics with the representational

and algorithmic framework developed under the considerably more formal wegis of 0

chapters 3 through 6. The thesis is structured so that those prefering a presentation

more in keeping with the traditional style of mathematical exposition may read the

chapters on 61)OF planning in the alternative order:

(I) Geometric Planning Problems

(3) Questions of Representation: C-functions and Applicability Constraints in a
Six l)imensional Configuration Space

(4) Mathematical Tools for Motion Planning in a Six Dimensional Configuration
Space

(5) Moving Through Rotation Space

(6) The C-Voronoi Diagram and its Relationship to Intersection Manifolds

(2) A Planning System for the Classical Movers' Problem with Six Degrees of
Freedom.

In the alternative order, the representations and algorithms are derived and

presented first, and the application and implementation is presented last.

Chapter 3 presents a formal framework in which several open questions about

configuration space constraints--notably (ii) (above) - may be solved. Chapter 3

also derives fundamental structural properties of C-Space constraints, in particular,

the dorlains and domain topology of C-fuinctions for the classical Movers' problem.

We call these domains ap)icability constraints. Chapter 1 addresses the intersection

problem in high-dirnensional C-Space: how to coristruct and slide along intersection

rmnifolds, and how to intersect trajectories with C-surfaces an(1 applicability* S
constraints. We demonstrate the form of the intersection manifolds for 90 X SO(3)

ari1d R2 X S1. Chapter 5 discusses algorithms for moving through rotation space,

an mld for decounposing rotation space into equivalence classes where the set of

:iplplicable constraints is invariant. In chapter 6, we extend time concept of the S

geiieralized Vororioi d iagram (which l)rysdale (1983) defined for the plane) to the six
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dimensional C-Space R3 X SO(3), to provide a formal and constructive definition

of the C- Voronoi Diagram, or CVD. The CVD is an attractive construction, in that

it contains a representative component for each "branch" of free space. Each such

component is a submanifold of dimension 0 < d < 5, called a Voronoi manifold.

We will derive the following connection between intersection manifolds and the

CVD:

Theorem: (The Equivalence Theorem for intersection manifolds and the CVD).

Let p be a path along the CVD. p lies along a connected chain of Voronoi

manifolds, VI,..., Vk. We demonstrate that for each Voronoi manifold Vi, there

exists an equivalent intersection manifold of level C-surfaces, Ii. Furthermore,

we also show that for every connected chain of Voronoi manifolds, there is an

equivalent connected chain of intersection manifolds (of level C-surfaces). (The

equivalence we demonstrate is actually stronger than homotopic equivalence, •

but the additional details are too complicated for this chapter).

0

* 0
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2
A Planning System for the Classical

Movers' Problem with Six Degrees of Freedom

In this chapter, we describe the design and implementation of a planning

systci fur the classical Movers' ... v',; uh six degrees of freedoi. The planning

algorithm required the solution of the seven "Representational and Algorithmic .

Questions" listed at the end of chapter 1. The solutions to these problems are

presented in subsequent chapters.

In this chapter we will simply assume that these problems are solved, and ---

proceed to employ the solutions in constructing a planning algorithm. Of particular

importance will be two effective procedures, which address the intersection problem

in C-Space:

(I) Given two or more level C-surfaces, construct their intersection manifold.

(Chapters 3 and 4).

(II) Given a C-surface and a trajec'ory, find their intersection. Determine

whether the intersection lies on the boundary of a C-Space obstacle. (Chapters

4 and 5).

The immediate application of (I) is the sliding problem: [low to slide along

one level C-surface, and how to slide along the intersection of two or more level 0

C-surfaces.

68
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Using the point navigation operators (chapter 1), we implemented a best-first

search algorithm in C-Space. The algorithm has nice theoretical properties which

include completeness (at a resolution). This chapter describes the heuristic search,

with particular emphasis on the heuristic strategies that evaluate local geometric

information, and on the interaction of these strategies.

2.1. l)cfinitions

A topological space M is called an n-dimensional manifold if it is locally

homeomorphic to -'. A chart is a way of placing a coordinate system on M: if

U and V are open subsets of M, two homeomorphisms f U f(U) C DO and

g : V -- g(V) C Rn have C' overlap if the maps

fog-' g(U v) - f(UnV)

go fr :f(UfV)-g(UfV) 5

are also C' (that is, possessing continuous partial derivatives of all orders). A

family of pairwise C°-overlapping homeomorphismns whose domain covers M is

called an atlas for M. A particular member (f, U) of an atlas U is called a chart (for -

the atlas Ut), or a coordinate system for U. For a good introduction to differential

geometry, see, for example, (Spivak, 1979).

In this thesis we usually specify charts via the inverse form h R -* M S

(where R is an open smb.ket of qh') with the understanding that it is the inverse

(or set of local inverses) h-' which provides the family of charts {(h', W) for"

Uj Wi = h(I). As an example, consider the map h that specifies a chart for a five

dimensional level C-surface: 0

h W - ' x SO(3)
E 2y + E,1z + E 4 - "

[[ere the Ej are smooth, real-valued functions on SO(3), that is, E: (, 0, €) -R.

The inverse map h is obvious, and provides a chart for the five dimensional

submanilold of W:' X S0(3). In subsequent chapters we will derive such charts, in

the formn of h; in this chapter, we will take themi for granted.
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2.2. Ititrodijetion

We are now ready to describe a planning system for the find-path problem inll

X S0(3). The algorithm has the structure of e archi and is coniplete (for a

given resolution). The basic idea is as follows: we arc able to definie and imiplemenit

certain local operators. When app~liedl at a configuration in C-Space, a local operator

attenipts to move the robot in a specified direction until either the subgoal or anl

intervening C-surface is reached. The local operators have thc gencral form

Move(X:con figuration, -b:direclion, limit:con figuration),

and are designed to return X', the configuration reached in direction b, and

0 the reason for stopping (which will either be "reached subgoal" or the name of

the C-surface which halted progress). The local operator assumes that X is in

Free-space, anid ensures that there exists a collision-free path along b taking the

robot from configuration X to X'. Furthermore, we insist that limit ==X + 1b, for

somne positive t. In general, 0 can be represented as a tangent vector to R 1 X S0(3);

the space of directions is clearly locally homeomorphic to R6

Mantry (different Mo! ve operators can Ibe defined. Let X =(x, 0). We will restrict

to be either a pure translation

or a puire rotation

E -~,-' i0 +b, ,- }

TIhe closuire of these operators is complete for the space of configujrations. Bly

* this wve meianl that in the ab~sen~ce of obstacles, there is somne finite. sequence of

* operators which carries any, conifigu ration X into any other con figiration Y . It is

* often conveient to think of these operators as J'ran.s1otc(.V, ti, x') (where a C k'3

andl x' is a goal t r awisationi) anrd IUofatc(X , , o') (where '~is an ariguIa r di rec t ion
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and p is a goal angle). The theory and implementation of Translate and Rotate

is discussed in chapters 3, 4, and 5.

Given the local operators, we can define more sophisticated local strategies for

spatial reasoning. These strategies are implemented by local experts' in C-Space.

For example, one local expert attempts to circumnavigate C-Space obstacles by

sliding along intersections of level C-surfaces. Another, "greedy" expert tries to

translate or rotate straight towards the goal. A local expert typically examines the

local geometric environment of C-surfaces, their normals and intersections. It also •

takes into account the history of planning. The local experts can be thought of as
issuing "commands" in terms of the local operators. Depending on the results of

these attempted motions, an expert may issue other local operator commands, and

either directly invoke or leave a forwarding message for another local expert.

To summarize: a local operator is an algorithm for moving along a specific

trajectory until a constraint is encountered (or a subgoal is reached) . A local expert
S

is a strategy for choosing the trajectory based on an examination of the history of - -

planning and the local geometry. When a local expert chooses a trajectory, it calls

on some sequence of local operators to realize it.

* 0

'The L4'r n l(o l fJJ)(' Ti m bro iig i. to my ;,ttvv ion in~ disc ussjotis w ith Vati-11c NgIi yeni (Ngiiyvit
(1983)), lomi a I ,ozi;mo-VI rz, and I vinIry Brooks.

7 1
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C 0

+...... Figure 2.1, Schematic illhitrattion of the "Bun~be" strategy (an exhaustive search). A fine.
:'" "'- six-ditnensional lattice is thrown acro-. C-Sipace. By exp~loring fromn one configuration to its -"
+:. -f nighbors in the lattice, a path will eventually be Couid, if one exists at the lattice resolution.
.-- ~ ~~~Fortunately, it is also possible to take large steps in the lattice, and simrply record the neighnborhoods -:'..:'_--

,- the path visits .. .
2.2.1. Planning and Search

) ~The planning algorithm is implemented as a search of configuration space. The " ~

-2"i-' "search constructs a graph of neighborhoods which have been explored. (We will be

. ,. 7 more precise about the term neighborhood later). Each node in the search graph is.

'" ~asociated with a configuration and contains information abou' the local geometry-..

-'and the hsoyof pang.The search agrtmchooses anode for exploatio.

.-. -Several local experts are then applied at that node. Each expert ca n produce a new
search node. All of these are sons of the explored node, and are added to the search-".'i"

queue. The new sons are connected o t heir father by the arcs of the search graph .

and each son may be thought or as n eploration from t athe lt rir.o

If at any point in the search, two explorations reach the same neighborhood,

72 '-2
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the planner attempts to merge the associated nodes into one node.

The search algorithm is Best-First (Nilsson (1980)) with the metric of progress

established as distance from the goal. (This requires placing a metric on both

translation and rotation space). Other search measures (such as path length, or

time) would also be possible, and an A* search strategy could be exploied to find

optimal paths. In practice this would probably require adding new local experts in •

order to ensure reasonable performance.

As search nodes are explored, they are entered in a priority queue, called the

search queue. The nodes in the search queue are ordered by the search metric. S

Some search strategies we discuss require two search queues: when the primary

queue is exhausted, then nodes from the reserve queue are explored.

We will proceed as follows. First, using the local operators alone, we can define

a complete search strategy (at a given resolution). This search strategy can be

considered the most primitive local expert, and is known as the "Bumble Strategy."

By applying the Bumble strategy at every search node, we are guaranteed to find

a path (at a given resolution) if one exists. ,

Next, we will define more complicated local experts which will be applied to

search nodes at the same time as the Bumble expert. These experts greatly improve

the performance of the planner.
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2.3. A Complete Search Straitegy

I AA searc'h riode is associated withI a con figuration. Every conf igu ration is lin turn

;soiateil withi a neighborhood of C- Space. The neighborhoods form a pa;rt ition

of C-Space. Since mlany confligu rations are associated1 with one neighborhood, so

several search nodes may have coilfigii rations ly intg lit the same neighborhood.

Ass ume the neighborhoods are "sniI"If the( con figurat ions of two sea rchI

nodes are in the samie neighborhood, it ind~icates th at they sh1ould LIfi' p' evible, be

inerged In to one node, since they are close together, H y keeping t rmck of t be set ohf

explored neighborhoods , we carn avoid red iinda nt explorat tons. 11 t be riejt'.blr i1od5

aire sO hicienitly small, thenr the search will b~e comiplet e ait a resolutilon clo,.el related

to the ne~ighborhood size.

L
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F'igre 2.2. f, g R3 X SO(3) R~ are C-functions which describe two level C-surfaces, ker I
* arid ke. y. The level C-surfaces are smooth, 5-dirrrerrsionad manifolds parallel to C-Space ohstacle

boundaries. Frouin X E kcr I, three paths sliding along the level C-surface ker I are shown.
* Each path is orthogonal to Vf. The sliding expcrt plans such paths along 5-1) level C-surfaces.
* (kernn f(ker g) is the intersection of the two level C-surfaccs, arid is a 4-dimensional manifold.

Tihe inicrscciI'on expert plans paths along intersection manifolds. Such a path p is showun from
configuration Y.

It is possible to devise a complete search strategy (at a given resolution) using just

*the local operators. We first throw a fine six-dimensional lattice 2 over configuration

space. The lattice is used to keep track of the state of the planner, i.e., which

neighborhoods have been explored, and for computing the connectivity of these

neighborhoods. The lattice will "1wrap around" in the rotational dimensions, but

this is easily implemented using modular arithmetic. We will define an adjacency

function for points in the lattice; in addition, when a neighborhood is explored,

the corresponding node in the lattice is marked. When a search node is chosen for

exploration,

2 I.e., the factor Rparccs of tire pararnieter space are quaiitized, arid the lattice is a1 partial order :1.
on tim' Cartesianl product of UIre IACtor spare' qriatitizatioiis.
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(i) X, tile configuration of the search node is mapped to L, a point in tile lattice.
1, is tile name of the neighborhood MV(L) centered or L, which contains X.

(ii) The unexplored neighborhoods adjacent to V(L) are found. Elach of these
neighborhoods is also identified by a central lattice point.

(iii) The planner attempts to move to each of the uinexplored, adjacent neighbor-
hoods.

(i) has the effect of mapping a neighborhood of C-Space to a canonical element •

(which lies on the lattice) in its interior. These neighborhoods decompose W X SO(3)

into equivalence classes with the same canonical element. When a neighborhood

is reached for the first time, we mark its lattice point as explored. The search

terminates when a neighborhood containing the goal is reached, and when that •

exploration can be connected to the goal configuration.
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0

2.3. 1. Implcinetitation or Neighborhoods and Lattices

In principle, it is possible to implement the lattice as a six-dimensional array

(with modular indexing for the rotational dimensions). In practice, for any fine

resolution, this array will be enormous, and very sparse. Although an adversary

can design a find-path problem for which our planner must explore the entire

lattice, in practice this does not occur. However, we niust maintain a record of what •

neighborhoods have been explored, in order to generate the unexplored neighbors

for a search node. Since the array is sparse, we will employ a different strategy.

A partial order can be defined on lattice points by considering then as

six-dimne,,ional vectors. This order has no particular geometric significance for

the rotitonal dimensions, but it can be used to store explored lattice points in a

binary tree. Since the vast majority of neighborhoods are never explored, the tree

it typic:ally small, even for fine lattices. To mark a lattice point as explored, we 0

insert into the binary tree. To find whether a lattice point has been explored, we

search the tree.

It is desirable to employ a fine lattice in order to ensure completeness at a line 0

resolution. The use of a binary tree to record explored configurations effectively

removes the problem of lattice size for storing explored configurations. For example,

if we segment C-Space into an N X N X ... X N lattice, then an array would

have to be N(' long. But the binary tree need store only the explored locations, and 5

(if height-balanced) can access any leaf in O(log N) operations.

0
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If the lattice resolution is fine, then the planner as described so far will take

very sinall steps for each search exploration. This has been remedied as follows:

a If a local operator is invoked to find whether llimit may be atta ied from X in

direction F. it must effectively intersect a path in direction L wit,i all (C-surfaces. It

is not nuch har(der to find the first constraint along the path p(t) v X i 15F (ev en

if it is heyond Ilinit): in particular, we note that all it terse(cl ions along IOw, path T)

may he sorted on distance from X. The coniplexity of finding this first inersecl ion

along p is independent of the lattice resolution (since the iit ersection algoril lint has

nothing do (1o with the lattice; see chapter 5). We can 'sin ple" the portion of the

b path which lies in free space at the lattice resolution. All of these config;urations •

are then marked as "explored", and as reaehable from their imincdate neighbors

along the path. Thus they form a connected chain in the lattice along the path p.

While all these configurations are in some sense sons of X, in practice we will select
S

only one or two to be entered in the )rimary search queue. These sons might be

(1) the son which is closest to the goal, and (2) some son at a reasonably large step

away from X. This step size, called the Bumble resolution, might be 3 to 10 times

Poll the lattice resolution. The other sons should be kept on a reserve queue, which can

be explored when the primary search queue is depleted or exhausted.

In practice, it may preferable to enter ranges in the exploration tree, for

example, to record that all lattice points

(x y, zV,0,0 , < (xA+d, ,z ,0

(for sonie integer k) are explored. This requires keeping an exploration tree of lines

instead of configurations, with the intent of minimizing the number of exploration

tree entries. When lines are entered into the tree, they may be merged with previous

lines to form connected components of explored regions. These operations are

supporte(d by hierarchical subdivision algorithms. At this point in the experimental

* use of the planner, it is still too early to tell whet her this optimization is necessary. 0
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In practice we have had no probler :, selecting a very fine resolution for

the lattice (one selects a fine lattice resolution, and a considerably larger Bumble

resolution or step size, as described above). This lattice-based strategy is not

only theoretically complete for a given resolution, but has also been used to find

very complicatel paths for the G degree of freedom classical Mover's problem.

[owever, the algorithm has an "excessively local" flavor -- it is clumsy and quite

slow when employed alone (hence the strategy's name). We can construct much

"smarter" heuristic experts which attempt to exploit coherence in C-Space. When

these experts are used in conjunction with the Bumble strategy, we obtain a

planner which is not only complete, but which can solve complicated problems in S

a reasonable aniouit of time. We continue to find the lattice useful for recording

the planner's explorations by the local experts.

2.3.2. Keeping Track or Connectivity S

Suppose a subsequent exploration reaches the same neighborhood. There are

two choices, which we call the mark algorithm and the connect algorithm:

The Mark Algorithm. Discard the exploration, since the neighborhood is already 5

explored. In practice, the mark algorithm often suffices f'jr path-finding. The mark - -

algorithm computes a directed, spanning tree 7' of explored neighborhoods, which

is rooted at the start configuration.

The Connect Algorithm. Connect together the search nodes for all explorations to

that neighborhood. The connect algorithm is more complicated, and requires the
following bookkeeping (see figure 2.3). Let NM be a neighborhood of V X SO(3),

and L Ec i(/) be a lattice point which is the canonical element for N. Suppose X is

an exploration of N, i.e., X G NV is the final configuration in some motion reaching

R. Let s(X) denote the search node for X. (If X is the first exploration of .R, then

create a search node s(l) for L). Determine whether there exists a path from X to

L (using the local operators). If so, connect s(X) and s(L) together.

The connect algorithm computes a more complete connectivity graph for

the neighborhoods of C-Space. It computes an undirectcd graph I of explored

neighborhoods, which may contain cycles. As long as II is connected, then 7
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Figure 2.3. Theii lattice point L is at the center or a neighborhood NI of C-S pace. Search
- ('e[)IoratioIM arrive at configurations X anid Y in N. The planner atteinpts to find a path

COnivti(~tig A' and~t Y, by try fig to connrect bothi configu rations to L.

* is a spariing trec for 11, and the mark algorithm is complete for planning a

connected path along H. However, not all planning strategies admit this kind of

"connected p~lanniing." In particular, when we consider strategies which construct

partial paths and plamining islands (which may later connect up), the connect

algorithm is necessary. (See the Sugges for strategy, below, for an example).

2.3.3. Discussion Of the BUMble Strategy
* S

Suppose the lattice spacing is d7 , and dil in the translational and rotational

c anensions. Then the adjacent lattice points to L =(x, y, z, V,, 0, 0) will be:

* 80



(x ± d.,y,z,iV,O,d)
(x, ± d'r, z,r¢,O,d)

(z, y, z ±d0r,¢,0,¢) 

(X, y, z, V) ± du (mod 27r), 0, k)
(X, , z, , 0 ± d, (mod 27r),

(X, y, z, V, 0, 0 ± dj (mod 27r))

Each adjacent lattice point is the center of a neighborhood of configurations which

is contiguous to the neighborhood of L. Each such neighborhood can be reached

(if it is in free space and there is no intervening C-surface) by the local operators

Translate and Rotate. Since there are 12 neighbors for each lattice point, we have

found it inadvisable to explore them all for each search node expansion. Instead,

the set of unexplored adjacent neighborhoods is ranked (in terms of proximity

to the goal), and motions towards the top kT translational and kie rotational

neighbors are attempted. (Typically, kT7  -3 ani(l kle - 2). If the node is reexplored *
later, motions toward k7, + kil more of the unexplored neighbors will be attempted

(it' there are that many left). 'When using the mark algorithm (above), we say

an exploration is successful if it reaches a new (unexplored) neighborhood. If an

exploration is successful, then a new search node is created and the neighborhood

is marked as explored. Since the neighborhood's "name" is its lattice point., this

simply corresponds to marking the lattice point. Whether successful or riot, all

explorations are recorded at the parent search node so that they will not be tried j
again.

Suppose X is a configuration in neighborhood A'(L), with associatcd lattice

point L. The unexplored adjacent lattice points to L indicate a set of sithgoals to

be attai rd from X. The llBunrble strategy ranks these subgoals, chooses some of

tiern, and selects trajeclories which may attain them. The local operators are then

employed to (try to) realize the selected trajectories. These explorations are then

recorded so that only new explorations will he pursued in the future. Note that S

the planner is not constrained to move along the lattice, and that although the

subgoals lie on the liattice, the motion fromi X to any si)goal does not, unless

X L.

SThe" local experts are consid erablv more sophisticated than tle limu ble strategy.
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.

Their subgoals need not lie on the lattice, and the motions specified to the local

operators need not lie along the lattice. The lattice is still employed to keep track

of the planning history and the connectivity of explored neighborhoods.

Clearly, the arcwise-connected sets of lattice points are closed under the

operators Travslate and Rotate. If a path exists at the lattice resolution, then
S

the search is guaranteed to find it. We see now exactly what the resolution for

this find-path algorithm is: by choosing a sufficiently fine lattice, the algorithm is

(trivially) complete at the lattice resolution. As we saw above, we can choose a very

fine lattice with little computational overhead. One final point: the start and goal

configurations may not lie directly on the lattice. This is not a problem, however,

since the local operators can ensure that there exists a path from the start and goal

to the nearest lattice point.

2.4. Local Experts for the Find-Path Problem

2.1. 1. Path Planning versus Continuous Intersection Detection: Why We

Need Local Experts

The Translate and Rotate operators detect collisions along continuous

trajectories)3 Given these operators, it is possible to devise a complete path-planning

algorithm based on something like the Bumble strategy, above. However, while

complete, this is not a particularly good algorithm, in that it says nothing about

how or when the operators should be applied. The domain of the operators is

large and foi realistic path planning, it is necessary to know where, and in what

directions to apply them. 6

Algorithms which can detect intersections with obstacles for a robot following

a continuous trajectory say nothing about how to plan these trajectories.

i lowever, they can be used to find a path by exhaustive search.

The Translate and Rotate operators use the constraints in C-Space to detect ..- *

colli.,ions. lowever, these constraints can also be employed to plan paths. In

chapter 1, we proposed an i(ealized planner which constructed the intersection S

'l1lhis dc.IM i(,io lI al.s , hIl. for IO I,viwral Mlove op'rator.
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manifolds of level C-surfaces, and slid along these manifolds to navigate around

C-Space obstacles. Such a planner could exploit coherence in configuration space:

by examining C-Space constraints an algorithm can be devised for intersecting

and sliding on C-surfaces to circumnavigate C-Space obstacles. In the following

sections, we describe a planner which approaches the idealized planning algorithm

of chapter 1. The local experts are strategies for reasoning about tile local geometry

of configuration space, and for exploiting geometric constraints to plan collision-free

paths. When applied to a search node, each local expert examines the local geometry

and history of planning to propose one or more path segments. Each path segment

is realized by means of the local operators, which ensure that a collision free path

exists.

2.4.2. Designing Local Experts

In the exploration tree of C-Space neighborhoods, we have seen one type of

information that must be maintained for planning. In designing local experts, we

must address the following questions:

(i) What constitutes a local description of a (level) C-surface? 5

(ii) What information should be stored at a search node?

(i) can be stated, "What constitutes a sufficiently rich description of the

local geometry in C-Space to allow robust local experts?" (ii) relates more to the .

history of planning, and the connectivity of the explored search neighborhoods.

For example, we want to record the results of previous applications of experts at a

search node, and the adjacent nodes in the search graph.

The Local Description of a C-surface

A C-surface has a nornal at point X. Motions tangent to the C-surface at X

will have instantaneous velocities orthogonal to the normal. We must characterize

the normal and tangents to a C-surface in order to plan trajectories which slide

along it.

Let f be an appl-:able, positive-valued C-function at X. We can check that f is

"-. non-redundant at X (see chapter 6); alternatively, we may heuristically assume f is

non-redu~idant if its value at X is small. We wish to develop a local characterization



of f at X, that is, of the level C-surface S - { Y I f(Y) f(X) I about X. We

should think of S as the kernel of the auxiliary function

fx ~J~X S0(3) W~

Y f (Y) - f(X).

The local characterization will have two parts, one of which is invariant, and one

of which will change for different subgoals. The invariant part of the description is

a pair,

(Arx), Vf)

consisting of the value of f at X and the normal to S at X. Now, since W3 X SO(3)

is not a vector space, the normal Vf(X) to S at X will depend on the Riemannian

metric defined on the tangent space at X. We will employ a metric which admits S

construction of Vf(X) using the partial derivatives of f at X, with respect to the

parameterization of C-Space. [ence if rotations arc parameterized by Euler angles,
then f =rf ')f af iOf i)f If

then Vf =(' , , ,I , Y , 7 , b, ,90, ......

Assume that Vf is normalized to be a unit vector. We now wish to characterize

the relationship of the C-surface to some subgoal, G: this requires sorte way of

talking about directions in W:' X SO(3). Specifically, we wish define a "vector"

algebra on configurations, such that

lir IC - Xll = 0
G-.X

and

lim, (C- X). ('-X)=.

These equations express the vector space characteristics which are required for - -

our computations on tangent. vectors. To construct this algebra, it is possible to

define a field of inner products over W X SO(3), i.e., to define an inner product on

the tangent space to e..ch point. Thus R"? X SO(3) is a Riemannian manifold (see -" ."

Erdrnann (1984)). If two tangent vectors-i.e., directions-are applied to the same

point, this inner product allows us to talk about the angle between two such tangent

vectors, or of the angle between an arbitrary tangent vector to R': X S0(3) and the
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normal to a C-surface. However, the inner product is somewhat arbitrary for our

application. Alternatively, we could also construct geodesics on Ps, the 3-sphere

with antipodal points identified. These approaches are probably too elaborate for •

a heuristic strategy.

-. Heuristics for Evaluating Directions in the Tangent Space

A basic issue is that placing a metric on a non-abelian group, such as SO(3), 0

is a diflicult problem. We will demonstrate the metric that our planner employs,

and then show that it is adequate for this application. In particular, the metric

is adequate when applied to three one-dimensional slices of SO(3). (These are the

slices considered by the Rotate operator). Note, however, that a metric may also

be derived by representing rotations as unit quaternions. In this case, the metric is

obtained by considering rotations as points on S 3 embedded in K' (Brou 1983).

Suppose we employ rotation matrices to represent rotations. (The implemented

planner uses Euler angles). If we are willing to tolerate singularities in the

representation, it is often convenient to identify a rotation matrix in SO(3) with

the vector of three angles, (1b, 0, 0) which determine it. The angles (b, 0, 0) form a

three dimensional angle space, Q 3. The rotation matrix corresponding to (V5, 0, 0) is

of course R 0, ). (The singularities induce an equivalence relation on Q 3 , where
two points in angle space are equal when the rotation matrices they determine

are equal). Most of the time, the identifiation of SO(3) with Q3 does not lead 0

to problems. lowever, when we wi.sh to cornpute directions, and differences of

configurations, it is necessary to distinguish between S0(3) and Q3 .

We can state this more concisely as follows: SO(3) is a three dimensional

manifold. The mapping R from Euler angles to rotation matrices is a chart for

so(3):

:1- S0(3).

We typically describe a rotation ,(O) C S0(3) by its chart coordinates (V, 0, 0)

0 E Q3 . This makes it convenient to identify ) with R(E), so that in general, S

instead of dealing with the manifold directly, we will work with a chart for Lhe

S:~::i :!~
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manifold. In this section alone, however, we must distinguish between the domain

and image of 2.

We can compute a direction in R" X SO(3) by simply subtracting two

configurations (of course the angles must be subtracted (mod 27r)) to yield a

six-dimensional direction vector. Using this arithmetic, the goal direction is denoted

G - X. We will use the convention that the first three coordinates of G - X arise

from R3, and the second three coordinates arise from Q3.

Let G = (G:, Go) and X = (X:,X(.). Since G -- X is clearly well defned

when G and X differ only by a translation, assume that G and X differ only by a

rotation. Assume further that rotations are represented by Euler angles. Note that,

in general G - X is not a rotation which carries the moving object at orientation

G into the moving object at orientation X. However, G - X does represent the

difference in orientation, i.e., it specifies a displacement in angle space which will

carry G into X. For example, if G- = (450, 500, 900) and X0 == (150, 450 450) then

there are rotation matrices R(Go) and R(Xe) corresponding to each of GO and

Xe. (We use degrees, not radians in this example, since the sy'abol 7r Will soon be

used for a projection map). Note that

)Z(45 , 500, 900) $ R(45 , 450, 450)2(00, 50, 450),

" where )RV indicates composition of rotations. However, the path in angle space -

p(t) X(-) + t(GE -xo) 5
(450 , 450 , 450) + t(o0, 50 , 450)

(for t E [0, 1]) will work, since it corresponds to the rotational path '0

(p(l)) z= R(X( + L(C - X())
S((450,450, 450) + t(O,5, 450)).

Considering configuration space as the product space of the translation space S

and the angle space, we see that G- X is well defined. G.- X" specifies a .
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direction and a distance to be traveled in angle space in order to carry Xo into G(o.

Furthermore, along the path from X( to G., the corresponding rotations specified

by the angle space trajectory p are well defined. For all G E SV: x SO(3), we will •

treat the space of directions G - X as the tangent space Tv to W:' X SO(3) at X.

Properly, Ty is the product space of the tangent space to 5P at X 1 , and the three

dimensional angle space Q 3.
$

We now define a map from Tx X Tx to the plane, which will function in place

of an inner product. First, define the natural projection maps fron Tx onto its

factor spaces:

7r?3 : Tx - 3

7ro : T - 3+

(G -X) i*(Go - Xq).

Let u v denote the standard inner product on 90, for vectors u and v. If u

and v are p. jections (under 7rQ3) of direction vectors in Tx, we say that u and -o

are translationally orthogonal if u . v --- 0. Let (qt, q2, qj), (WI, W2, w 3) E Q3. Assume

the each pair of angles qi and wi (for i - 1, 2, 3) is normalized so that

1q- wi I 180'. •

(Note that this normalization is critical). Now, define

nQ((ql,q ,q,),(W, W2, w3)) = qwt + q2W2 + q3w3.

nQ will function in place of an inner product on Q:. We say that two rotational

directions q and w are rotationally orthogonal if nq(q, w) = 0.

We may now define (1x, which will function in place of an inner product on

Tx. First, let

D -G-X

D' G' - X.
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Assume that D.,, D', D,, and D' are all normalized to be length 1 (where the

length of DO is defined as nQ(D(, Do)2). Finally,
0

(DXTX X TX R2

So (DX yields a pair consisting of the dot product of the translational components 0

of the direction vectors, and the n(2 product of the rotational direction vectors. If

4x(D, D') = (0,0), we say that D and D' are orthogonal directions in the tangent

space TX. Note that two directions are orthogonal if, and only if, their translational

components are orthogonal and their rotational components are orthogonal. •

This discussion extends naturally to other representations for rotations. For

example, if spherical angles (Kane and Levinson (1978)) are used, then the difference

in orientation is the rotation carrying G into X, that is, Go - X( is a rotation 0

carrying the moving object at orientation X 0 into the moving object at orientation

Go. We should stress that the natural Riemannian inner product (Erdinann (1984))

could be used instead of 4), This would complicate the representations employed

in subsequent chapters. (PX and nQ are heuristic measures on directions in Tx. We

will later discuss why, for our purposes, they are good heuristic measures.

*Evaluating Normals and Gradients to C-Surfaces

The local description of a C-surface relative to some subgoal is designed to

address the following qualitative questions:

(i) Is the C-surface locally tangent or locally orthogonal to the goal direction?

(ii) Is the C-surface locally orthogonal to any rotational motion?

Recall that a level C-surface ker f is described by a real-valued C-function f.

Assume that normals and tangent vectors are appropriately normalized. Question

(i) may be resolved by examining

lx( -- X), Vf(X)). (2.1)

When (2.1) approaches (0, 0), we say that ker f is locally tangent to the goal direction.

Note that (2.1) makes sense: f maps parameters of the form (7, y, z, V, 0, ) to real

- " " -~ .< -• . •.2.-.1.".. -



numbers, and hence the gradient of' f,

(Of Of Of af af f)
ax,' y z' ao' 00' 0o

is clearly a direction in TA'.

* We will also employ

7(G - X). i(V f(X)), (2.2a)

When (2.2a) approaches 0, we say that ker f is (locally) translationally tangent

to the goal direction. Symmectrically, when (2.1) (resp. (2.2a)) approaches (1, 1)

(resp. 1), we say that ker f is locally orthogonal (resp. translation ally orthogonal)

to G - X. A sim~ilar calculation yields the rotationally tangent and orthogonal

C-surfaces to the goal direction:

lQ (7r o-(G - X), 7r o(V f(). (2.2b)

Why Fxy and n( are Good Heuristic Measures

Suppose that the rotational direction is along one of the axes. (Let, us say the

* - direction is ).To tell whether a C-surface is rotationally orthogonal (or tangent)

to the direction, we simply examine the magnitude of' which can be obtained

directly from Vf(X). This is because

nQ (0, i7r) (V(f (X)))) nQ ((O, 0, 1), (o o 00f do

In other words, the mnap riQ nceed not be employed. Since the implemented Rotate

operator moves along tie rotaticnal axes in dlirections

CS

this is the most comtmon - but. niot the only - test for rotationally orthir-onal (or

tangenlt) C-surfaces. This inf'orrmation is usedl by the rotation experts to choose

rotational subgoals that move aw~iy from C,-surfaces.



I)cscription o1" a Search Node

The following information is stored at each search node. Lazy evaluation is

implemented so that some of these objects (for example, the set of all applicable

C-surfaces) may not be computedi until they are required.

(i) The configuration X of the search node.

(ii) The lattice point for X, which is the unique identifier for the neighborhood
about X.

(iii) The applicability set at X.

(iv) A, the set of non-redundant constraints at X, sorted on increasing value. The
non-redundant constraints may be a)proxilated by the applicable constraints
having small positive (or zero) values at X.

(v) The parent node.

(vi) The From-Direction (The direction traversed from the parent node to this
node).

(vii) The sons of this node. These include "unsucc(.ssful" explorations which (lid
not reach a sub-goal, or which reached a previously expl)re(l neighborhood.

(viii) The C-surfaces on which X lies which also bound C-Space obstacles, that is,
all f C A such that f(X) = 0 and ker(f) bounds a C-Space obstacle at K. -

(ix) An Eiplanation of how this node was reached. An explanation typically includes
the name of the local expert that planned the move, and enough information
to reconstruct the move. For example, the experts which slide along level
C-surfaces leave an explanation containing the names of the constraints, their
levels at the parent node, and the parameterization chosen for the intersection •
manifold.

Much of the information stored at a search node is used to record the history

of the planning. An expert which planned the move to a search node s will not be

applied again with the same parameters. As an example, consider th" Intersection

expert, which attempts to slide along intersection manifolds, and the Greedy expert,

which attempts to move straight towards the goal. We discuss these experts in

more detail in the next section. If applied to s, the C-surface intersection expert

will not attempt to consriict and slide along the same intersection manifold

which led to s, unless it. can slide in a different direction along the intersection

mranifold. IHy recording the From-I)irection for a node, the planner cani avoid

repeating tinfriuitful explor:i.ions. In pt rticular, different experts c'an advise motion a

in the sarne direction; thtus a particular intersection manifold may point in the

90
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same direction which was previously (or simultaneously) attempted by the Greedy

expert. Whether successful or riot, reexplorat ion in this direction may be avoided by

examining the From-directions of the sons of s. An additional constraint is provided

by the From-l)irection of s itself: there is typically no point in exploring back in

the direction we caie from. The process of leaving information for some expert

which may be applied in the future is known as "forwarding." As we shall see, the •

performance of one expert can provide strong hints as to what expert should be

applied next.

MA The planner computes local descriptions for the C-surfaces in ,. Naturally, parts

of these descriptions will change for different subgoals. The local characterizations of

C-surfaces allow the planner to find the set of C-surfaces to which the goal-direction

is tangent (or orthogonal) as described above. When a planning direction is chosen,

these C-surfaces clearly provide strong constraints. 5

We are now ready to discuss the experts themselves. The Bumble strategy is

also applied at. each node, since it is a guarantee of completeness. In light of the

previous discussion, we will omit any discussion of the detection and pruning out S

of explor-.tions in unfruitful directions (as determined by the planning history).

kVe will consider the application of particular experts to a search node s (at

configuration X) which has patent so.

= •
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2.4.3. ilec G reedy Expert

j The greedy expert attempts to translate or rotate directly towardls the goal.

The expert is necessary as -,n "cnd-game" strategy, in order to close inl oil a

particeullar subigoal without worrying about, findIing tlIe appropriate Iii ersec lion
'fold. The ('reedy expert illustrates two import ant heuirist ics: fradn n

backing off. Suppose the greedy expert tra islates from a parent niode so to a

son s. Ani appropriate explaniation for the move will be left at s. If the same

sulbgoaI is intact when tile p~lanlner explores s, the greedly expert wvill not attempt

tranislation again. Inistead, the rotation expert (see below) might be invoked. The

effect is one of translating uintil an obstacle is hit, and then rotating to get around(

it. Alternatively, the sliding expert (which slides along level C-suirraces) might

be invoked. This coupling of experts is termed the "hit and slide" strategy (see

* ~igure 2.A). However, the planner does not directly recurse by calling the sliding

exp~ert, imr~iiediately after tile greedy expert. Instead, a suggestion is left by wsay of

explanation at s, and~ when .s is explored in the search, the appnropriat e follow-up

exp~ert is invoked. The exact choice for which expert is invoked will depend oil

the hiistory of planning (typic ally, what neigtiborhoods and (direc tions have been

exploredl fromn s() and s), and oi the local geomretry of C-so rfaces ab~out s.

Suppose that all experts moved the robot as far as they could, that. is, moved until

a coni:t rainit wais hit and left the robot touching the constraint. This coul d result in

j un iig thle rob~ot. illp against miany C-surfaces at once. It can prove very di fficulIt

o ex tr naLte the robot fromn tl-,i logj am situation. InI fact, it Is usually tiot preferable

to riiove all tile way up1 to an1 Obstacle. Instead, we wish to detect this intersection

with hi a 1k n ned t rajectory p), and tiien back off froni the obstacle ho o riry (along

1). Thuns if 1)(0) - V- and p(1I) s Y is the fi rst initersect ion of p) with C(- Space

obst ucl' boundary, t hen it, makes good senise to move to 1)(0."). This has tile effect

oof' leatvinf Ohe rob~ot in the channel between obstacles ilu.tle:1l of jai11ig It 111) i

corners. forser,(, of it is ieu-ess~irv to mlove to 1+(95) then the greedly iilud Humble

stra I l',i(' will uiltimrately converge,
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Figure 2.4. An idealized illhistraLion of ,he hit and slide strategy. Some expert moves the robot
in direction 0 until a C-surrace S is hit at X. When the planner tries to move from X, the -
sliding expert is invoked to slide along S in the goal direction.

2.4.4. The Intersection Expert -. .

The mathematics of intersection manifolds in R3 X SO(3) is presented in

chapters 3 and 4. The intersection expert attempts to find two C-surfaces in A

whose intersection manifold contains a path which makes progress towards a subgoal.

The path may be a pure translation or a pure rotation. We will begin by describing 0

the process of finding a translational path which slides along an intersection

manifold. First, all C-surfaces in A which are nearly translationally tangent to the

goal-direction are selected. We select the first few of these which have the smallest

value at X. Ideally, these are the closest non-redundant constraints at X. Call

this set A'. The explanations for the moves from so to s and from s to any sons

of s will yield a set of previously explored intersection manifolds. (An intersection

manifold may be identified by the name or the intersected C-surfaces, their levels, .
and the chosen parameterization). The C-surfaces in A' are pairwise intersected

93 :-'-"- .:.. ' .- .
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(see chapter 4), after appropriate pruning as indicated by previously explored

intersection manifolds. Each intersection manifold (ker f)If(ker g) is constructed. A

translation or rotation vector 0J,g is chosen such that the path pf,,q(t) = X + tJb.-g

slides along the intersection manifold of the two level C-surfaces ker f and ker g

at X. rhe intersection expert then selects the direction 0A,, which is closest to

the goal direction (and which is not pruned out by consideration of the planning .

history). Suppose vf,, is a pure translation. The local operator Translate is called

to move from X in direction 01,g until a C-surface is struck4 or the point on the

trajectory PJ,q which maximizes proximity to the goal is reached.

Now, suppose 01,g is a pure rotation. Our experimental implementations have

intersected two C-surfaces kerf and kerg to yield pure rotational paths sliding

along the intersection manifold of kerfflkerg (see chapter 4 for the details). In

Proposition (4.4), we demonstrate that these paths may be approximated to an 0

arbitrary resolution by successive applications of the local operators, with only a

..near increase in the number of path scgrncnts as the resolution grows finer. We

have also found it useful to approximate the rotational path along the intersection -

as follows.

-' Given two level C-surfaces ker f and ker g at configuration X, we wish to

choose a direction from X tangent to both. For example, if the configuration space

were isomorphic to W, then ker f and ker g would both be two dimensional surfaces

* - in 3-space, and this direction would be Vf(X) X Vg(X). (Where X denotes the

standard cross product on R3). In the tangent space to a six-dimensional C-Space,

there are typically four such tangent vectors at X which are tangent to ker f and

ker g. We will demonstrate an operator analogous to X which produces one such
tangent vector in a natural way. (It is also possible to solve for all such tangent ' '

" vectors).

We begin be defining an extended product on the tangent space to 3 X SO(3)

at X. Let V = (Vz, Vo) E Ty be a tangent vector at X. We may think of V, and

" Vo as the translational an rotational components of a six-dimensional velocity ..

"A though we also employ the hackihig olf heltiristic here.
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vector V at X. If W = (W,, Wo) E Tx is another tangent vector at X, we define

the extended product of V and W by

V ; W =(v. x W",Ve x WO).

The cross products on the right hand side are simply the standard three-dimensional

cross product. (See below (2.3) for why this makes sense for the rotational

components, Vo X Wo). If V -= Vf and W = Vg then V X W is tangent to both

ker f and ker g at X. Since ;< only operates on tangent vectors to R3 X SO(3)

which have the same point of application, we will never have reason to confuse it 4

with X, which can only be applied to three-dimensional tangent vectors.

Let f, g E A' be C-functions generating the C-surfaces ker f and ker g at X.
Observe that the tangent vector Vf(X) ;< Vg(X) is tangent to both kerf and

*

ker g at X. We can locally approximate a pure rotational trajectory sliding along

. the intersectiun or f and y by a paLh in direction

ire(Vf(X)) X 7re(Vg(X)). (2.3)

Note that this is well defined since

((f af af af a f _fof of of- -
ax' ay' az' o 'l o0'ao =, o' ,o "

The differential rotations from X are isomorphic to a three dimensional vector

space, and hence the cross product

M,~~~~~ .X ,K) X .91 •X .9() g(

a a! af 'alp ag a g

* is also well defined, and guaranteed to be tangent to kerf and kerg at X. The

Rotate operator can be called in succession on the largest components of (2.3)

in order to approximate the sliding trajectory. Of course, it is also possible to

re-evaluate the tangents after each step.
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2.4.5. The Sliding Expert

The sliding expert attempts to find a path sliding along one level C-surface
0*

at X, which makes progress towards the goal. The sliding expert can be thought

of as a iess constrained version of the intersection expert. The sliding expert tries . -

to choose a C-surface in A' to which the goal-direction is (almost) tangent. As we

will see in chapter 4, it is possible to choose a parameterization along a C-surface 0

which maximizes progress. This path along the C-surface can then be realized (at a

desired resolution) by successive applications of the local operators. However since

there are many paths from X sliding along a C-surface at X, we need to develop -

a good heuristic strategy. .6

Our motivation is as follows. There are an uncountable number of paths from

X sliding along a C-surface at X. We could maximize a directional derivative at -

X to choose a locally optimal search direction. This would work once; however, 0

this would not solve the problem of state: it is necessary to partition the set of

paths into "neighborhoods," and to mark a neighborhood or paths as explored

when a representative from that neighborhood is selected and attempted by a local

operator. In principle, a computation involving homotopic equivalence classes is .

possible (see Donald (t983a) and appendix I1). However, this requires a global

computation in C-Space. In particular, the image of all paths in an equivalence -"

class may cover *j3 X S0(3), even if there are several classes. We wish to find a .

way to partition the paths from X into neighborhoods, sample a canonical element

from the neighborhood, and evaluate it as a local move in the search. -

Given a C-surface normal Vf at X, we wish to choose a direction 0 sliding along 0

the C-surface ker f which maximizes progress to a subgoal. Let B = (1, , , 4, 0, )
be the obvious orthonormal basis for the tangent space to X?) SO(3), a.,d

A.- -"""'"4-

Next, we form a set of vectors orthogonal to Vf(X) as follows:

D {Vf (X)0(U -B)
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where P OQ =J {p q I P E P, q E Q }. All of these vectors are orthogonal to

kerf at X. We then choose the direction D E D which maximizes 4x(0,(G -X)),

where the G - X is the goal direction. If 4x is the heuristic product on tangent

vectors insead of the single-valued Riemannian inner product, then both components

of the image of 4x should be maximized. In chapter 4 we will see that it is

possible to comply as closely as desired to the C-surface ker f while traveling in ,

direction 6.

To understand this strategy, consider the following example: Suppose we . .

employ a basis V' which only spans R3. Then the expert will choose the available

translation sliding along the level C-surface which maximizes progress towards the

goal. Once the direction i is chosen, the Translate operator is invoked to slide

along the level C-surface until a constraint is reached.

There is no need for the basis 8 to be orthogonal; this was merely adopted for

the sake of intuitive development. The basis provides a sampling of the functio n

space of paths compliant to the C-surface about X.

A Conjecture on Completeness using Extended Spanning Sets

By using the basis B, we obtain a 12-way sampling of the space of directions -

orthogonal to Vf at X-in other words, there are 12 vectors in D. Imagine using

another set of vectors, B+, which is larger than D, to construct D. Then D would

provide a finer sample of the space of directions, since more directions would be

sampled. In principle it should be possible for a sample to be complete at a given

resolution. We formalize this idea a.s follows: . - ..-

A spanning set for a space V is a set of vectors which spans V yet which is

not necessarily a basis. A spanning set is a b.sis for V which has been extended

by adding other vectors. We conjecture that there exist certain spanning sets

which might be employed to construct a complete planning algorithm without the

Bumble strategy. What constitutes such a complete spanning set? The analogue of

resolution for an arbitrary spanning set B+ would consist in (1) the cardinality of .

the spanning set and (2) the uniformity of distribution of the vectors
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B+U-B+

about the unit Five- dimensional sphere S in the tangent space at x. rhe greater

the numnbcr of vectors in the spanning set, and the more uniformn their distribution

K about S', the finer the resolution or the planner. The development of such a planning-

algorithm requires surmounting additional theoretical andl technical (lilliculties.

980
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Figure 2.5. An idealized illustration or the bit and rotate strategy. Some expert moves the robot
- ~in direction 6 until a C-surface S is hit at conligurationi X. Wheun the plannier tries to plan a

move from X, the rotation expert is called to calculate a rotation away fromt S (if) direttion * ..

,From the new configuration, direction ; can be pursued again.

2.4.6. The Rotation Expert

The rotation expert is built on the rotational operator Rotate, and is designed

ito handic some of the spccial problems of moving through rotation space that are

discussed in chapters 3, 4, and 5. The rotation expert might be called to accomplish

a simple rotational subgoal, or in conjunction with some more elaborate strategy.

In particular, when a translational motion terminates by striking a C-surface,

forwarding messages are left for both the sliding expert and the rotation expert.

b The former has been discussed as the "hit and slide" strategy (figure 2.4); the latter

is known as the "hit and rotate" technique (figure 2.5).

The first problem that the rotation expert must deal with is the "wrap around"

in rotation space. A subgoal o0 can be reached in directions +hmo and -a, although

typically one is "shorter". In conjunction with the planning history, the rotation

. . " ,W



expert, on successive applications to the same node, can develop strategies for

rocking back and forth on a slice of rotation space.

1 0
The Rotate operator is more constrained than the Translate operator (in that

it can only be applied in Atb, =0, and ±). lence the rotation expert must have

a method for approximating rotational trajectories (specified in angle space) which

are linear combinations of the rotational basis vectors, such as 0

= aO + b0 + (2.4) 7..

for some scalars a , b, and c.

In terms of the completeness of the algorithm, there is no need for a rotate

operator in direction (2.4) (provided a path along 0 lies in open sets of free space).

In chapter 4, we show that a continuous path may be approximated as closely as

desired by a sequence of moves along the rotational axes, and that the number

of staggered path segments required grows only linearly as the resolution becomes
finer. In practice this use of the restricted rotate operator has proved adequate

in our path-finding experiments. However, it is heuristically useful to realize such

paths as accurately as desired, since this allows higher level experts to suggest

-' arbitrary rotational trajectories. Given such a trajectory, the rotational directions

are ranked by magnitude of change, and the unexplored direction of greatest change •

is first attempted. On failure, or upon successive applications of the rotation expert

to the search node, the other directions in (2.4) will be attempted. This process

leads to the approximation of arbitrary pure rotations by a staggered sequence of

rotations along the axes. If the extent of each rotation is limited, the approximation

can be made arbitrarily fine. To approximate motion in a direction such as (2.4), the

planner actually attempts several of the directions simultaneously, which results in

a spanning "box" of rotational moves about the idealized trajectory (in the absence S

of obstacles).

Suppose a, b, and c in the idealized trajectory (2.4) are positive. This yields

a set of positive, or "forward" rotational directions, and a set of "backwards"

rotational directions which can attain the goal. Which directions are forward and
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which are backward depend upon the distance (in the vector parameter space V)

of the goal from X, that is, on 7ro(G - X). For example, if GO - X4 is negative and

small, then + will be a backwards direction, and - will be a forward direction.

The rotation expert develops and ranks these sets of forward and backward . .

rotational directions. By examining the planning history and the local geometry of

C-surfaces at X, these sets of directions are in turn pruned. In particular, local 0

C-surfaces that would block a particular rotational motion are detected. For a

direction f, this is done by examining the magnitude of the directional derivative

in 0. The importance of such an impediment is then heuristically ranked by the

closeness of the C-surface at X. Special consideration is given to C-surfaces which

have a history of proving troublesome. For example, when an expert runs into a

C-surface, the reason for stopping is left as part of the move explanation. If the

rotation expert is invoked as part of a "hit and rotate" strategy, then we must

ensure that the planner tries to rotate away from the C-surface(s) which blocked

progress. The rotational dirvctins which point, away from C-s'irfqeQ rny he found . -

by examining Vf. The process of determining the rotational constraints from the

local geometry of C-surfaces is closely related to our earlier discussion of detecting .0-

rotationally orthogonal C-surfaces. " -

Thus the requested rotational trajectory and rotational goal provide a set

of desired rotational motions. The planning history supplies a set of rotational

constraints, and from the local C-surface geometry can be inferred a set of

preferred and prohibited motions. The constraints, preferences, and prohibitions

are intersected with the forward and backward desires. This yields a set of rotational
IO

directions which will be attempted using the Rotate operator. Depending on the

kind of invocation, the rotation expert may apply the Rotate operator up t-

some fixed number of times- -this is particularly useful when it must attempt to

approximate an idealized rotational trajectory which is a linear combination of the

basic rotational directions.

Canny (1984) has recently extended the Rotate operator for directions such as

eq. (2.4), corresponding to uniform rotation.
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Figure 2.6. An idealized illustration of the around expert. When progress for the movinig object - 5
in the goal direction i is blocked, the expert attempts to find a C-surface which is roughly
orthogonal to f. A sliding motion (either 0 or -6) is then planned along this level C-surface
(around the obstacle). The resiltig search node is then expnrded.

2.4.7. The Around Expert

The around expert attempts to circumnavigate obstacles by sliding around

their boundary. An idealized illustration of the around expert is shown in figure 2.6. -

The around expert is similar to the sliding expert, except that instead of attempting

to find a C-surface which contains a path towards the goal, the around expert

searches for a C-surface which is (roughly) locally orthogonal to the goal direction.

Next a path is planned sliding along this surface in a direction 0' orthogonal to the

goal direction; the path is attempted using a local operator. Typically, this motion

will result in a search node s' which is farther from the goal than the parent node,

s. Ordinarily, s' would not be explored soon, since other search nodes would appear

more promising to the planner's best-first strategy. In order to give the around

strategy a chance, the around expert explicitly places s at the front of the search .
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queue and calls the planner recursively.

The around expert can also invoke the intersection expert. Recall that the

intersection expert normally tries to construct tangent intersection manifolds which

contain paths towards the goal. However, when called from the around strategy,

it can construct intersection manifolds locally orthogonal to the goal direction. To

construct the intersection set of locally orthogonal level C-manifolds, we perform a

pairwise intersection of C-manifolds locally orthogonal to the goal direction at X.

2.4.8. The Suggcstor

The suggestor is a strategy for proposing good subgoals in configur:tion space.

As we saw in Donald (1983a), one of the problems with local operators even if

they are complete (that is, their closure covers configuration space), is that without

good subgoals, they may take a long time to converge. The suggestor is a heuristic

strategy for setting subgoals in C-Space.

First, a very coarse lattice is thrown over C-Space. This lattice is then

searched for a sequence Q of free configurations (not a path) stepping through the

lattice to the goal. If no such sequence can be found, then configurations on a

promising partial sequence are employed. These configurations may then be set as

subgoals, and the planner can be called recursively. The configurations Q represent

intermediate planning islands of safe configurations. If paths can be found between .

these configurations, then the find-path problem is solved. Otherwise, expanding

from any partial paths found can also prove useful, in that the planning islands

effectively distribute the application of local experts and operators over more of

* configuration space.

The suggestor complicates the connectivity of the explored neighborhoods

graph. The ability to explore arbitrary subgoals and suggested paths requires

more complicated bookkeeping for neighborhood exploration: we must employ the

connect strategy, in order to know when partial paths link up. If partial paths

not rooted at the start neighborhood are permitted, then the graph of explored

neighborhoods will not necessarily be connected, and the mark strategy will fail (the - * 2
mark strategy constructs a directed, spanning tree for a connected, rooted graph
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Figure 2.7. A pathi which was round using local experts. This find-path problem is very easy (it
is used as an examrple in chapter 1)..-

of explored neighborhoods). Happily the connect strategy will succeed, since it is

defined on an arbitrary graph. An algorithm for the connect strategy is discussed

in section 2.1.2.
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Listing I: The iog or expert explanations for the path in figure 2.7.

S

(find-path *sl *gi)

Verifying the start and goal points...
start : (0 0 0 1 11), goal : (-8 10 0 0 0 0). -

Starting search, boss...
Exploring (0 0 0 1 1 11) ...

Local Expert: I translated straight towards goal, reaching ((-1 1 0 1 1 11)) 

Exploring (-1 1 0 1 1 11)...
Local Expert: I Slid along a level C-Manifold, reaching ((-6 1 0 1 1 11))

Exploring (-6 1 0 1 1 11)...
Local Expert: I translated straight towards goal, reaching ((-6 10 0 1 1 11))

Exploring (-6 10 0 1 1 11)...
Rotation-Expert: Found 0 guiding constraints on rotational motion.
Rotation-Expert: Intersected Rotational Constraints with desired

rotations yielding possible motions in
((MINUS PHI) (MINUS PSI) THETA).

Rotation-Expert: I am trying to rotate in (PLUS THETA)
Local Expert: I rotated to reach ((-6 10 0 1 1 0))

Exploring (-6 10 0 1 1 0)...
Rotation-Expert: Found 0 guiding constraints on rotational motion.

Rotation-Expert: Intersected Rotational Constraints with desired

rotations yielding possible motions in

((MINUS PHI) (MINUS PSI)) .. .
Rotation-Export: I am trying to rotate in (MINUS PHI) ...

Local Expert: I rotated to reach ((-6 10 0 0 1 0))

Exploring (-6 10 0 0 1 0)...
Rotation-Expert: Found 0 guiding constraints on rotational motion.
Rotation-Expert: Intersected Rotational Constraints with desired

rotations yielding possible motions in S

((MINUS PSI)).

Rotation-Expert: I am trying to rotate in (MINUS PSI) ...
Local Expert: I rotated to reach ((-6 10 0 0 0 0))

Exploring (-6 10 0 0 0 0)...

[success!] Saving and Drawing final path...
Back to Lisp Top Level in Lisp Listener 2
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[19]

Figuire 2.12. View II: (frame 19), The final configiration.

2.5. Examples of the Local Experts in Use.

In1 figure 2.7, we show a very simple example of a path found using local

experts. Listing I shows a log of the expert explanations for each move.

Thc "Thor's Hammer" example in chapter 1 was produced by disabling all

experts, and employing only the Bumble strategy. (Please refer to this figure). In

the accompanying figures (2.8-13), we show a path found by a strategy comprising

all the experts described above. The solution path is very different, and tends to

* slide around obstacles instead of finding convoluted paths between them.

Figures 2.14-21 show the solution for a find-path problem in a cartesian

workspace. A cartesian workspace is a bounding box beyond which the referenceS

* point may not translate. However, the bounding box imposes no restrictions on

rotations. The Movers' problem in a cartesian workspace is similar to tile motion-

* planning problem for cartesian manipulators, and the L-shaped object may be

thought of as the (wrist and) payload. First, we show the reference point on

* the L-shaped object. Next two views are presented of the path found within the

workspace, around a large, d iagon ally- placed obstacle. View (11) is a view from

the side; view (1) is a view from the top. Only the back faces of the rectangloid

workspace are shown. Since the rotation from frames 13 to 14 is very large (> 7r
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0
ah eeece point an the L-shaped MovinS object .. ."--

Figure 2.14. The reference point on the L-shaped object.

in the - direction), a detail of the rotation is also shown.

2.6. Path Planning versus Discrete Intersection Detection

Imagine a brute-force planner which discretizes configuration space, places the

robot at every point in the discretization, and tests for intersection. This would

yield a discrete set of configurations where the robot could be placed. Alternatively,

the tests could be structured in a search. As stated so far, this is not collision-free

path planning. Path planning ensures that a path exists between each configuration

on the path. It has been argued that if the intersection-detection is done at a

fine enough resolution then a path will have been effectively found. At a given

resolution, it is possible to bound the size of the intersection between the robot

and any obstacle which can occur between intersection checks. This bound grows

smaller as the sampling of the space grows finer. By growing the real-space obstacles

by this bound, it is possible to ensure that no collisions occur between discrete
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Figure 2.21. Detail of the rotation from frames 13-14.

intersection checks (Gouzenes (1983)). Of course, if the resolution is insufficiently

fine, then the obstacles may be grown so much that no path can be found.

For gross motion planning in an uncluttered environment, this approximate

method may perform reasonably well. In complicated environments, however, the

resolution will have to be fine in order to ensure that paths are collision free 0

without growing the obstacles so much that no path can be found. We will

compare the asymptotic complexity of the discrete intersection method with the

Rotate operator. (The Rotate operator is the most complex local operator). The
0

fundamental observation is that the complexity of the discrete intersection method

varies linearly with the sampling resolution, whereas the complexity of the Rotate

operator is independent of (any) resolution. This is because our discretization is

quite different: a lattice is thrown on the space in order to record the state of the

planner and the connectivity of the explored neighborhoods.
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Consider the following. Suppose X and Y are configurations on a rotational

trajectory in direction €. Suppose further that the robot is composed of m convex

polyhedra containing k generators each, and that there are n convex obstacles

*.- containing j generators each. The number of faces on a robot polyhedron or an

*:. obstacle polyhedron is O(k) (respectively, O(j)). To perform one intersection check

(at a single configuration) for one robot polyhedron and one obstacle polyhedron 0

requires time O(log2(j + k)) (Dobkin and Kirkpatrick (1980)). This theoretical

intersection algorithm has not yet been implemented, but we consider it since it

is the fastest known. To perform a check (at one configuration) for the entire

robot against the entire obstacle environment requires time O(mn log 2 (j + k)). Now 0

suppose that the path segment [X,Y] must be sampled i times for the quantizing

intersection checker. This requires time

o(imn log 2 (j + k)).

In chapter 5, we show that our planner's Rotate operator could determine whether

there exists a path from X to Y in time O(N log N) (where N is the number of

C-surfaces). In chapter 3, we show that N = O(mnjk). Hence the complexity for

Rotate is

7O(rinijk log(mnjk)) O(mnjk(log rn + log n + log j + log k)).

IRotate ensures that there exists a path from X to Y without growing the real-space

obstacles, and (toes not involve a resolution factor i. Holding k and j fixed, the

relative asymptotic performance of the quantizing intersection detector and the

Rotate operator will depend on whether or not

i > log(mn).

The constants i, j, and k will depend on particular workspaces and find-path 0

problems. However, we believe that in order to be reasonably sure of the safeness
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of a path between configurations without growing the real-space obstacles too

much, i may have to be quite large. This is especially true in reasonable sized

environments. So as mn increases, the workspace becomes more crowded and/or the

robot becomes more complicated, and the sampling rate will have to be increased.

We think it unlikely that the sampling rate will grow only logarithmically with

the workspace complexity. Moreover, the theoretical O(log2(j + k)) intersection
time for the Dobkin and Kirkpatrick (1980) algorithm assumes that the solid
models of the m robot polyhedra are precomputed. (If the solid models must be

computed for each configuration, then this will take O(km) additional time per

sample point). In addition, for a polyhedron with k faces, O(k log k) preprocessing 6

time is required by the algorithm (for each intersection check), which would

yield an even higher complexity for the discrete path planning algorithm. At this

stage, since the algorithm is unimplemented, it is unclear whether some sort of

lazy evaluation, parametric representation, or efficient precomputation could be

employed to reduce the complexity of iterative application of this intersection test.

Most implemented intersection detectors that are reasonably robust have time

complexity O((j + k) log(j + k)) or O((j + k)2). However, it is possible to employ S

minimum distance checks, or O(j + k) intersection checks in some cases.

Summary

In a practical planning system, there are, of course, other considerations. For 0

example, our employment of the Rotate operator requires time to update the lattice.

The main point is as follows: on a lattice of spacing d, to verify the safeness of a

path of length di, the discrete intersection method requires at least time O(irnn),

whereas the Rotate operator requires time O(mn log(mn)). The discrete method

actually does not ensure safeness, but merely that the intersection "size" is no

greater than some function of d.

Competence versus Performance •

We have shown that the relative performance of the two algorithms will largely

depend on the constants in the problem. For gross motion in uncluttered workspaces

the discrete intersection algorithm will probably perform better. In complicated, 0

crowded enviromrnents, or in problems reqquiring motions close to the obstacles, the
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required sampling rate will probably be prohibitive. In addition to the question

of performance, we should also mention the issue of competence. (In linguistics,

competence refers to the knowledge base, and performance refers to how well it is

used). The representations we develop in subsequent chapters are applicable not

only to the find-path problem with six degrees of freedom, but also to the class of

geometric planning problems described in chapter 1 (for example, fine motion, and

planning with uncertainty). It is clear from previous work that these problems are

within the competence of the representation we develop for W3 X SO(3) (Mason

(1981), Lozano-P6rcz, Mason, and Taylor (1983), Erdmann (1984)). At this point we

have no indication that these problems are within the competence of the discrete •

intersection method. (Find-space, however, can be accomplished using discrete

intersections).
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3
Questions of Representation: C-functions and Applicability

Constraints in a Six Dimensional Configuration Space

In this chapter, we first present a formal framework in which several open

questions about configuration space constraints may be resolved. This framework

has been discussed informally in the first two chapters. We then proceed to construct

and prove a set of theorems about the domains and domain topology of C-functions

for the classical Movers' problem with six degrees of freedom.

Thcse theorems allow us to define the applicability constraints on C-functions for

the Movers' problem in W X SO(3). Every C-function characterizes a constraint on .O

motion only within a certain region of rotation space. Determining what constraints . . -

are applicable at a given orientation (or range of orientations) is of fundamental

importance to the mathematical framework for the spatial planning problem: in $

order io plan using constraints, we must know where (at what orientations) these

constraints are applicable. Recall that each C-function is generated by a pair of

boundary cells (a, b), where a lies on the boundary of a moving polyhedron and b on

the boundary of an obstacle polyhedron. Put simply, the applicability constraints

determine what boundary cells a and b can interact at a given orientation.

3.1. Definitiors and Conventions

Let A denote any rigid, convex set. A(8) denotes A rotated to orientation 0. -

Formally, if E is an orientation, and ,Z(O) is the corresponding rotation operator,

12:1
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then .4((-)) denotes R(E) applied to A. As a kind of shorthand, we refer to A(O) as "A

at orientation 9," or "A rotated to orientation 9." For example, if ' is a face, then

P"(O) denotes I" at orientation 0. P"s normal, N, rotates with P', and is denoted

N(C). We assume face normals are outward-directed from tile polyhedra they

bound. We will in general use A to denote a convex moving polyhedron, and II for a

convex obstacle polyhedron. If e,, is an edge of A and mid(e,,) denotes its midpoint,

then mid(e,,(O)) denotes its midpoint at orientation 0. At this point it is not

convenient to commit ourselves to any particular representation for 3-dimnnsional

rotations. However, the reader may without esseiitial loss of generality interpret

v(O) (for v E R:) as the rotation matrix R(O) applied to the vector v, where R(E)

might be parameterized by Euler Angles. Since R(O) is an orthonormnal matrix,

)- [,(o)]T can be employed to rotate a plane which is represented as a

4-dimensional vector. This operation yields the rotated normal N(E) of course (see

Paul (1981)). However, note that tile results of this chapter are independent of any

particular representation of rotations, and that R(O) is properly a generic rotation

operator. u • v denotes the standard inner product on De of u and v. If u and v are

complicated expressions, however, we will use the notation (u, v). "

The six dimensional configuration space R3 X SO(3) is formally defined in

chapter 2. X will denote a configuration in this space. We will identify a with

R(O) and write 0 E SO(3). Writing X = (x, 0) makes explicit the translational

component of the configuration (x) and the rotational component (0 or R(9)).

0 denotes the boundary operator. For example, if " is a face on a polyhedron

B, then 01; denotes the ring of edges which bound F. D denotes the faces of 1, 0

0e for an edge e deitotes e's vertices, and so forth. The coboundary operator is the

dual of tile boundary operator and is denoted b. The coboundary of a vertex is the

set of edges incident there; the coboundary of an edge are the faces which the edge

bounds; and the coboundary of a face is the zero, one, or two solids it bounds. In 0

chapter 5, we provide a formal definition of boundary and coboundary using the . .-

chain groups; alternatively, see Hocking and Young (1961) or Giblin (1977).

We denote the faces, edges, and vertices of a polyhedron B by faces(I), -
eges(fi), and vert(B), respectively.
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If S is a set then i(S) denotes its interior, and KS its closure. KS Z*(S)U OS.

We denote the classical Movers' problem with six degrees of freedom by 6DOF. -

3.2. Representing Constraints in Configuration Space

Lozano-P6rez (1983) showed that the C-Space obstacles can be represented as

an intersection of a finite number of half-hyperspaces, I where each half-hyperspace S

is represented via a constraint function of the form

A: x S0(3) -+ R

where the sign of fi(X) determines whether X is inside, on, or outside the C-Space

obstacles. However, when rotations are allowed, each constraint function is valid,
or applicable only within a certain region Ai of the rotation space:

fi : 3 f x Ai -- (Ai C SO(3)).

We call such a function fi a C-function. We consider the robot and obstacles to

be modeled by the (possibly overlapping) union of convex polyhedra, and define

a boundary cell to be a face, edge, or vertex of such a polyhedron. C-functions "

model constraints on motion generated by pairs of cells (g,,, g) where g(, and 9b are

boundary cells on the robot and on an obstacle, respectively. Lozano-l'rez (1983)

identified three types of interactions: (face,vertex), (vertex,face), and (edge,edge),

which to preserve tradition we shall term type (a), (b), and (c) constraints. However,

these interactions can only occur in certain orientations; for example, it is easily seen

that although two cuboids generate 144 type (c) constraints, at any fixed orientation

only certain edges can interact and hence only certain type (c) constraints are

applicable. The region of rotation space where a C-function fi is applicable is it's

applicability region, Ai. The domain of fi, then, is X:i X Ai.

For the two-dimensional Movers' problem, the rotation space is the i-sphere

and the applicability regions Ai are simply sectors on S 1. While Lozano-lP6rez 0

For a moving object ard oI~dtachvm represerte'd as overlappiig rimions o1" convex polyledra.
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(1983) was ab~le to defline the forixi of' C-Space constraints fi for 6D01, previous

work has not been able to foriilate the applicability regions in S0(3).
S 0

We b)egin by defining CO) C W, X S0(3), the space of forbidden con figuirations:

CO{X I V C() (1

where C,, is a constraint sentence (see Blrooks arid Lozano-Per6z (1983)). a is indeIxed

Iby C-Space obstacles. For each C-Space obstacle O(,, C, maps a configuration X

to truc or false, depending onl whether X is inside 0,a. (I) states that if X is inside

ally (--Space obstacle, then it is in CO.

For X =(X, 0),

Ca(Z, E)) A (E E Ai fi(x, 0) <5 0). (2)

Let us parse (2). The index i ranges over the set of all C-functions{f, ,f.}

which define the C- Space obstacle 0 ,,. We call such a set of C-functions a family

of C-functions. This family is generated by considering pairwise interactions of

features on the boundary of A arid features on the boundary of B, where A is a -

convex polyhedron onl the moving object, and B is a convex obstacle polyhedron.

For a two dimensional example, refer to figures 1.29-32 (chapter 1), which illustrate

an obstacle polygon B) with four vertices, and a moving polygon A with three

vertices. For these two polygons, the family or constraints gcnerated corresponds

to all possible interactions of their edges and vertices:

f amilY2,)(A, B) =(f aces(A) X vert(D)) U(vrAxacs.)

Each pairing, for example (ej,vf), generates exactly one C-function f,. In three

-* dimensions, a family of C-functions corresponds to a set of constraints resulting
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from the possible interactions of one polyhedral component of the moving object,

and one obstacle polyhedron:

family1,)(A, B) (faces(A) X vert() vert(A)Xfaces(B)) U(edges(A) X edges(n)).

Of course, in both two and three dimensions, at a given orientation, only a subset of

this family is applicable. For each C-function fi, there is an associated applicability

region Ai. Equation (2) for C,, can be parsed as follows: for a configuration X, for

each C-function fi such that X is in the domain of fi, fi(X) must be negative-valued

(or zero) for X to be inside the C-Space obstacle 0 '. To determine whether X

is in the domain of fi, test whether the rotational component of X is within the

applicability region Ai.

Next, we define

F =qZ 3 X SO(3)- CO

to be the space of free configurations.

Now, for each C-function fi, A, C SO(3) is the corresponding portion of

rotation space where fi is applicable. We construct Ai as the intersection of a set

of half-hyperspaces on SO(3):

Ai ={0 E SO(3)IA(gj(o) 0)} (3)
)J

where gj : SO(3) -R R is an applicability constraint function (ACF). A C-function --

fi is said to be applicable For a configuration X =- (z, O) if E E Ai. In this chapter,

we will dcrive, and prove, the form of the ACFs. Geometrically, the applicability

regions A are complicated three dimensional manifolds (with boundary) on the

projective 3-sphere. Their boundaries are the two dimensional manifolds kerg1 . U

indexes over the set of functions used to construct Ai. There are typically three or - .

four gj, as we will see later).
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The form of the applicability constraints was heretofore unknown. Many of

the representational and algorithmic issues for geometric planning problems with

six degrees of freedom rely on a correct formulation of the applicability constraints.

With these advances, however, the mathematical framework will be conplete, and

we can construct the planner of chapter 2 which exploits the geometry.

The work of Brooks and Lozano-Per6z (1983) dealt with surfaces in the C-Space

S2 X S', which are called C-surfaces. The obvious extension of this concept for

6DO" is a C-manifold in VR3 X S0(3). For a C-function fi we define a level

C-manifold to be the set of configurations X where fi is applicable and fi(X) == f, •

for some level e. Thus a level C-manifold is the level set fi(f). Of particular

interest is the C-manifold

kerf; = f t(0) {X I f (X) 0 0,

which contains a boundary patch of a C-Space obstacle. Since in the literature, -

C-manifolds of this form have been called C-surfaces, we shall also employ this

term.

We now define paths in C-Space. Given a start configuration s and a desired -

goal configuration g, a successful collision-free path is a continuous function

p :' X S0(3) such that p(O) s, p(l) g, and p([1) C F. 1' denotes the . .

closed unit interval, [0, 1].

3.3. The Geonetlric Interpretation for c-runctons

Consider the interaction of ani obstacle polyhedron B and a moving polyhedron

A, where both A and 1) are convex. Let f,, be in the family of C-functions generated

for A and 11. f,, models a constraint on the motion of A. For example, fl, might be

generated by considering the interaction of a face of A and a vertex of B. For a

given orientation 0, the projection into V of any (applicable) C-manifold f I(0)

is a plane corresponding to a face of the polyhedron resulting from the Minkowski 0

sum of ()A and 11, that is,
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B A(E) {b+a(O) Ib B, a A } • |

where a(O) denotes vcctor a rotated to orientation 0 and OA = { -aa C A}.

(Note that in constructing OA(O), the "negation" takes place before the rotation).

1) () A()) is the projection into Wa of the C-Space obstacle at orientation 0. In 0

effect, we have parameterized the plane equations of faces of B 0 A(O) by 0. Here

is the form of the parameterized plane equations derived by Lozano-P6rez (1983):

ai((-)) is a vertex of )A(O) and bj is a vertex of B. Recall that the equation of

a plane in W car be expressed as { x I(N, x) = (N, q) }, where N is the plane

normal and q is a reference point known to be on the plane. Then C-functions take

the form:

f,,(x, 0) -- (N(E), x) - (N(O), (a(O) + bj)) (4)

where a: is a point in 90'. N(O) is the real-space component of the C-manifold

normal at orientation E), and is defined as follows: for a type (a) C-function,

N((-)) is the normal of a face of OA(EJ). For a type (b) C-function, N(O) is the

normal of a face on B, and hence is constant. For a type (c) C-function, N(O) is

the cross-product of an edge on B3 and an edge on OA(E). Furthermore N(E) is

normalized to a unit vector when it is non-zero.

The geometric significance of fp(x, 0), is now clear. The value of fp represents

how far the (reference) point x lies above the plane of a face in the 0-paraneterized

Minkowski solid. (Asume (z, 0) E F). When the projection of x falls on the fh-face

of the Minkowski solid, thc metric provided by f, represents the translational

distance to a collision. When the projection falls outside the face, tile value of fp

represents the translational distance to the plane of the f,-face. Hence even though 0

there is no convenient way of talking about distances between configurations in

90 x SO(3), we can employ the values of C-functions as a metric on the distances

of the moving object from obstacles at any configuration. This metric will become

important in chapter 6.
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:1.4. Rediindant Constra.ints

j In chapter 2, we gave an informal definition of a redundant constraint (see

figure there). We now give the formal definition of a redundant constraint for

a (oiifigLurition X c F. Intuitively, a redundant constraint is one sub~sumed( by

nearer, intervening C-funictions (lower C-rnattifolds). Let C denote the set of all

applicable, positive-valued C-functions at X = (x, 0). For each fA C C, let si be

lie project ion into W: of the kernel of fi restricted to orientation On. 'That is,

Note that si is the projection into W- of the tangent hyperplane at 0 to the level

C-manifold for fA. Intuitively, si is the plane of the face of the Minkowski solid

dletermined by fi, at orientation 0.

Now, let hi be the half-space of W3 bounded by si containing x. Constructing

n i

yields a solid S in R3 Those hialf-spaces bounding S correspond to the non-redundant

constraints at X.

I 30



Figure 3.1.

3.5. Applicability Constraints for type (a) and (b) C-functions

We are now in a position to derive the domains of the C-functions. To define the

applicability constraints, we consider a family of C-functions in isolation (that is,

an environment comprising only the obstacle B and the moving polyhedron A). We

perform an analysis to see what generators can interact at what orientations. While

C-functions are defined on the "negated object" eA(e), applicability constraints

are defined from the "positive object" A(8).

* Definition: Consider a constraint c, generated by (ga, gb) where the pair (g,, gb) is

either (a) a face of A and a vertex of B, (b) a vertex of A and a face of B, or (c) an

edge of A and an edge of B. We say c is applicable at orientation E if some pure

translation of A(E) can bring g,,(e) in contact with 9b, such that

i(A(E)) i(B) -0.
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See figure 3. 1. Let f(O) be a face on a moving polyhedron A(C)), with a normal

N(O). Let b be a vertex on obstacle 13. (f, bi) generates a type (a) constraint. Let

R be the set of adjacent vertices of bj on the edge graph of u, that is,

R = {b, ver() 6b1 $ 0 }. •

It is instructive to parse the delinition for R. (Recall that 6 denotes coboundary). bb,,

is the set of edges incident at b,. If two vertices b,, and bi have disjoint coboundaries,

then they are not adjacent on the edge graph of 11. If their coboundaries overlap, S

then the common element is the edge connecting b,, and bj.

Theorem 111J.: A type (a) constraint generated by (f, bi) is applicable at orientation

0 if, and only if, for all b,, E R, S

b,, N(E) - bi. IV' > ( .6 (3.1)

If the type (a) constraint is applicable, then (3.1) holds for all vertices b,, of P.

We will show that considering the vertices in R provides a necessary and sufficient

condition for applicability.

Proof: ( ) Observe that applicability is invariant under translation. We

transform the workspace so that the plane of f(O) contains the origin. Then for

C x. N(O) is the perpendicular distance of x from the plane of the constraint.

Since face normals are outward-directed, when this distance is positive, then x lies S

above the plane of f(O). If (3.1) is true, then when by is brought to rest on the

plane of f(O), thcn bj N(O) = 0. Now, for all b, E R, b,, N(0) 0. Thus a!l

adjacent vertices to bi are on or above the halfspace boundary. Since A and B are

convex, their interiors cannot intersect.

(=4) If we can bring bi in contact with f(O) while maintaining the disjoint

interior criterion, then we have bj. N(0) = 0. No b,, C I? can dip below the surface

of f(0), since then the interiors of A and 11 would intersect. Hence each b,, must

lie sorne distance d > 0 above the plane of f(O). .
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Figure 3.2.

Now, let fbe a face of B with niormal N. (Sec figure 3.2). Let ai be a vertex

of A, and

R {a,, E vert(A) j a,, f bai 340}

* be the vertices adjacent to a, on the edge graph of A.

Theorem rHF.2: A type (b) constraint generated by (ai, f)is applicable at orientation

* E if, and only if, for all an E R,

a,,(O) .N -ai(E) . N > 0. (3.2)

Proof: Symmetric case of Theorem (1.)

* Consider

9k(e9) b, N(O) - bj-N(O) (3.3)
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Figure 3.3. The applicability region A, is the iuLrscudion or the hair- hy pcrspaces where gt 0.

as a mapping 9k SO(3) -R~. We call gi, a type (a) applicability constraint function

(ACF). (There are several ACfs for one type (a) C-function--or indeed for any

C-function, and they are indexed here by k). For the symmetric case from (3.2), we

* call

gk(e) =a,,(e) -N - ai(E)) - N (3.4)

* a type (b) ACE. The region on SO(3) where gk is positive-valued defines a half-

hyperspace of SO(3) (see figure 3.3). (3.2) and (3.1) define the applicability region

for a type (a) or (b) constraint as the intersection of these hair-hyperspaces. This

* yields the conjunction promised earlier:

A,.= I -SO(3) IA(9k~e 0 )
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A C-function c is applicable if and only if for a configuration (z, 0), each of c's

ACFs is positive (or zero) at 0, that is, 0 E A,. The number of ACFs for a type

(a) or (b) constraint is equal to the cardinality of 1he coboundary of the generating

vertex (which is the same as 1111).

3.6. Applicability Constraints for Type (c) C-functions

Determining the applicability regions for type (c) C-functions (generated by

edge--edge interactions) turns out to be a bit more grueling. We can derive a set

of ACFs for type (c) constraints which are analogous to g. in (3.3) and (3.4). The

conjunction of these type (c) ACFs is a necessary but not sufficient criterion for 0

applicability. rhe positive conjunction (tile intersection of half-spaces where the

type (c) ACFs are positive) forms two, disconnected regions in SO(3). It will become

apparent shortly how these regions arise, but let us pause, before bringing in some

complicated machinery, to survey their topology. In one region A the type (c)

constraint is applicable, in the other A', it is not. To determine which region 0 is

in, we use a set of related functions termed disambiguating applicability constraints

(DACs). Fortunately, the symmetric region A' where the ACFs are positive but

the constraint is not applicable is disconnected from the valid applicability region

A (where the ACFs are positive and the constraint is applicable) by a region X,

where the ACFs do not hold (see figure 3.4). We will demonstrate that since A is

disconnected from A', it is possible to plan continuous paths within A with heed

only for the basic type (c) ACFs. Both type (c) ACFs and DACs are functions of

the form g : SO(3) -R J ; however, they are considerably more complicated than

(3.3) and (3.4), above.

. .
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Figure 3.4. The space SO(3) showing A, A', and X. The type (c) ACFs determine whether 0 is
iII theC set 7 or in A UPA. TIhen IACs determhine, for 0 E AU A', Whether 0 is in A or A'.

3.6.1. The Basic ACFs for Type (c) Constraints

Let c be a type (c) constraint generated by the pair of edges (eat eb). As

* usual e0(E)) denotes ea rotated to orientation E). We will define type (c) ACFs

which provide a necessary criterion for applicability. In conjunction with the DACs

(below), the type (c) AM~ form a complete char acteri zation of the applicability of

type (c) C-functions. We employ the following construction: imagine trying to make

the midpoints of e. and eb touch while maintaining the disjoint interior criterion

for A and D. We then allow A to pivot about

v mid(eb) mid(ea(E))) (3.5)

while maintaining disjoint interiors. Keeping (3.5), for what orientations (values of

0)are the interiors of A and B disjoint?
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Figure 3.6. A section view through e(O) ((.(0) is orthogonal to the page).

d2(0) =bj. N2(9) - mid(eb) -N 2(O) (3.6b) -

""d(O) a() • N 3 - mid(ea(E)) • N 3  (3.7a) .

d4(O) -a(0) " N 4 - mid(e(e)) -N 4  (3.7b)

(We express (3.6-7) in this form rather than as di(O)d2(e) < 0 in order to preserve

the positive sign convention for all the ACFs).

Proof: Refer to figures 3.5 and 3.6. Again, since applicability is invariant under

translation, we transform the workspace so that mid(eb) is at the origin. With

mid(e,(#()) fixed at mid(eb), di(O) for i = 1, 2 is the distance of bj above the plane < 1
of fA; for i - 3, 4, this is the distance of a(e) above the plane of fi. We allow

ea to rotate about v - mid(cb) with 3 degrees of freedom. Observe that ai and- -

ai,-I may not dip below the surface of B, and that bi and bi+I may not fall below .

the surface of A. This is clearly enforced by considering only the planes of the
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faces cobounding e. and eb. If the type (c) constraint is applicable at E), then d1(O)
*and d2.(e) can never both be positive, nor both negative, for in these cases eb will

intersect the interior of A. We see this as follows: If d1 (() < 0 and d2(0) < 0, then

bj is insidc both halfspaces, and some point on thc line segment (inid(eb), bj) must

*be inside A. If dl (0) > 0 and d2(0) > 0, then b1j 1 is inside both half spaces, and

some point on the line segment (mid(eb), bj 1 must be inside A.

Hecnce d1 (O)d 2(e) :! 0. This immediately yields (3.6). A simnilar and symmetric

*argument yields (3.7). 1

1:19



3.7. )isambiguating Applicability Constraints (I)ACS) for Type (c)

Constraints

The basic type (c) ACFs take into account edge-edge interactions, but do not

model the interactions of the faces they bound. In order to preserve the disjoint

interior criterion, we introduce Disambiguating Applicability Constraints (DACs) as

follows. l)ACs are constraints on the tangent vectors to faces cobounding eb and ea;

assuming that the basic ACFs have determined that 6 E A U A', DACs discriminate

between A and A'. In fact, the DACs are necessary and sufficient conditions for

applicability. We split the type (c) applicability computations between the basic

type (c) ACFs and the DACs for reasons relating to the algebra system, which

is described in chapter 4. Our proofs draws heavily on constructions employing a

separating plane.

The Separating Plane Construction

Join the midpoints of e0(6) and eb together as usual. Consider the plane P

containing v = mid(e,,(O)) =- rnid(cb), whose normal is e0(O) X eb. Assume without

loss of generality that e,,(O) X eb -1 0. P contains both eb and ea(6). Suppose that .

the type (c) ACFs for constraint c are positive-valued (or zero), i.e., (3.6) and (3.7)

hold. Hence each vertex of eb is on or above the plane of one face cobounding

e,,(O), and each vertex of e,,(O) is on or above the plane of one face cobounding eb..

Refer to figures 3.6 and 3.5 once more. By reason of the ACF values for c and the

convexity of A and B, some open halfspace p, of W3 which is bounded by P must

contain i(B) entirely, and some open halfspace PA bounded by P must contain

i(A(O)) entirely: S

B C r(P,,)

A(O) C c(PA). 0

(Recall that no(S) denotes the closure of a set S: n(S) - i(S)U aS).

Now, if c is not applicable, then i(A(6)) n i(i) / 0. This means that A C tc(PIg) 0

also, since unless PI Pt, then, P" would scpara.e '(A(O)) from i(B). We conclude
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that for all W'E .A', i(A(O')) C P11 and i(I) C Pj. fly a symmetric argument, for

all 0 E A, plane P separates '(A(O)) from i(B). To summarize: if the constraint

c generated by (e,,eb) is applicable at orientation 0, then i(A(0)) i(f) =0. .

Therefore there exists a separating plane between i(A(0)) and i(B). On the other

hand, if c is not applicable, there exists no such separating plane, for then the

interiors could not intersect. Furthermore, if e,,(O) X eb /- 0, then there exists

exactly one separating plane that contains all four points vert(e,,(0)) U vert(eb). We

formalize these results in the following lemma:

In this lemma, we abbreviate e,,(O) by e,,, and A((-)) by A.

Lemma II.4.1: (Existencc and uniqueness of the separating plane). Join together

the midpoints of e, and eb. Assume that e,, X e /- 0. The constraint c generated

by (en, eb) is applicable if, and only if, the plane P containing ea and eb separates

the interior of A from the interior of B.

Proor ( ) If P seprates i(A) from i(P-, then I(A) Ni(B) - . Therefore the

constraint c is applicable. I

Proof: (-.) If c is applicable, then there exists exactly one separating plane between

i(A) and i(B), and this plane is P. To see this, first observe that if i(A)li(L) -,

then by convexity there must exist some separating plane. Assume that this plane

does not have normal e, eb. In this case, the plane cannot contain both e, and e
el,. Since the plane contains the midpoints of both edges, it must intersect either

e,, or eb in a non-parallel cut. Hut in this case, the plane intersects the interior of

either A or B. Thus it cannot be a separating plane. Since there must exist some

separating plane, it must have normal e,, X eb. I

[he strategy for defining DACs is as follows. For each face cobounding eb, we

choose a point in the interior of that face. The basic type (c) ACIfs ensure that

eb is outside the interior of A(), and that C,,(0) is outside the interior of B; the

I)ACs ensure that the faces cobounding eh lie on the opposite side of P from the

the faces cobounding e,,(O). If the type (c) constraint is applicable, then i(A(0))

must lie in a half-space bounded by P complementary to the half-space bounded

by P containing i(I). The )ACs ensure that if the faces cobounding e,,(O) lie in
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AS

Figure 3.7. The Tanrgent Vectors T3 and T4 to the fares cobounding eb. -.

KC(PA) , then the faces cobounding eb must lie in x(P11), with PA P11. Since A and

B are convex, this suffices to show that A and B lie in complementary half-spaces .'- :;:_-

bounded by P.

The vertices of e.((O) and eb lie on P. Let pl, P2 be points in the interior of the---....

faces cobounding e., and P3j, P4 be points in the interior of the faces cobounding

eb . The DACs ensure that p, and P2 lie on one side of P, and that P3 and P4 lie on

the other.

The points inside the faces cobounding eb and e,, are chosen as follows. For

each edge e on 11 and A, we construct a pair of tangent vectors, (TI, T2), where •-'

T,1 and T2 are tangent and interior to the faces cobounding e. TI and T2 are also..-'i:-::"

perpendicular to e. For an edge e. on A, (TI (O), T,(O)) will clearly rotate with e, ,

and A, maintaining these criteria. The tangent pai'r for eb is shown in figure 3.7.

Formally, we proceed as follows:"-" "
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pA W

Figure 3.8. The tangent pairs and riormals for e.(()).

Definition: A tangent vector to W3 (O'Neill (1966)) is a pair (V, P) E W3 X Rf3,.-

interpreted as the vector v applied to point p. We will sometimes write vp for (V, p),

or, when there is no ambiguity about the point of application, we simply write v.

Definition: Consider an edge e on a polyhedron P. Let fl, f2 be the faces that

cobound e, and let NI, N2 be their normals. A tangent pair for e is a pair of tangent

vectors to ,(TI, T2), both applied to mid(e). Ti is perpendicular to e and to Ni,

and it is directed into the interior of jr when applied to mid~e) (i =1, 2). In other---

words, , -. .'

I I

Ti = kCN i X e) (i = 1, 2) : .:

I- S

where k 3. +1,-1 is chosen to orient Ti into the interior of fi. Ni X e indicates

the cross product of Ni and the directed edge vector for e.(v p),

ow te n b i b paco e p w v

I S I



Refer to figures 3.7 and 3.8. We will now construct I)ACs. Let (7, T4) be the

tangent pair for eb, and let N:1 , NI be the normals to the faces coboiinding eb. Let

(T (c),-T.C()) be the tangent pair for e,,(O), and let N(O), N2(() be the normals 0

to the faces coboundiig c,,(0). Thus T. N - 0 (for i = 1,2,3,4). Keeping with

this numbering convention, let fi be the face with normal Ni . As usual, we imagine

joining together the midpoints of eb and e,,(O).

Let Nl,(O) be the normal to the plane P), that is, Nl,(O) - e,,(9) X eb. Assume

without loss of generality that N1,(O) , o. The plane containing mid(e,,(O)) -

inid(c,) with normal Np(O) also contains e (O) and e6 . We construct I)ACs which

ensure that i(A(O)) is on one side of P, and that i(B) is on the other side. To

ensure that the points inid(eb) + T3 and nhid(eb) + 7t lie on the same side of P, we

have the constraint

sign(T. Nl,(O)) = sign(T 4 N1,(O))

which may be written

(T3. NIC(E))(T 4 . NV(e)) > 0. S

Assume without loss of generality that the signs are non-zero. The case where one

sign is zero is easily handled by examining the other sign. To ensure that the points

jmid(e,(O)) + TI(O) and inid(e,(0)) + 7'2(0) lie on the same side of P, we have the

symmetric constraint

sign(TI(O) Np(O)) sign(T 2(0) .Nl((-)))

Now, we must ensure that the two half-spaces are complementary. This is enforced

by insisting that the signs are opposite. All of the following must be true:

ku -sign(Tj . N,(O))

.... sign(Ti • Np((-))) (3.8a) 6
kA sign(7' 1(0-) . N,(E))

- sign(T 2((-)). N,(O)) (3.8b)

kA - ktl (3.8c)

Equations (3.8a-c) embody the DACs we require.
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Theorem I11.4: Let c be a type (c) C-function generated by (e,,,eb). Assume the

tangent pairs for eb and e,,, and normals to the faces cobounding eb and e,, are as

above. Then c is applicable if, and only if, the all the l)ACs (3.8a-c) hold.

Proor: () Assume the type (c) constraint is applicable, but that at least one of

(3.8a-c) is false. We will demonstrate a contradiction. Join the midpoints of e,,(e)

and eb, as usual. If any of the DACs is false, then P does not separate i(A(O)) from

i'(/): a contradiction. I

Proof. ( =) We show that if the J)ACs hold, then c is applicable: if these conditions

are true, then P is a separating plane. Therefore the interiors cannot intersect, and 6

c is applicable. I

S: ..

". .-. ,1-
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3.8. Oni the Structure or' the Tlype (c) Applicability Regions on SO(3)

lit this section, we prove a theorem on the structure or the regions A, A', and

.4 for type (c) constrain ts, (see figuire 3A.) which yields an ho ruledlate comuipleteness

result for our formulation of ACI's and DACs. As promsed, we will show that A

andc A' are dlisconnected on SO(3), and[ that Life region A sep~arates them. Our

proof dIraws heavily on constructions employi ng a separating pile (tein nia IIIA. 1).

Theioremi 111.5: A4 disconnects A from A' on SO(3).

Proor: We first observe that by dlefinition,

AfU(A U A') = SO(3)

* (see (3.6), (3.7) for confirmation). Recall the separating plane construction: we iaw

that for all W' C A', i((')C Pli and i*(J) C I'l. Let Pj denote the interior

ef the cocncrit of Pj1 : I'll =~ z*(,R B ,).y a 3ymmentric -rguiient, for all

0 C A, planec P separates ?'(.1(0)) fmin 4(1). If A4 U A' is path-connected, then there

exists a continuous function , p P --+ S()(3), such that p(O) = 0, p( 1) =0,and

* P([' ) C A u A'. F'urthermiore, if' A U A' is path- connec ted, then for Al t C E P, ither

* i~z(A(/p(1))) C VI, of .. pi)) C P/, (assumre without loss of generality that for all

Cb,/ cn,(p(t)) 0 1). Note that. for all t,

1, n(Apt))) o 0

ie rice in traversing thle piat h 1 in rot atiomi space, A is required to "nlip" over P

from I'll to /)/;, wit licit its interior ever itersecting P'. This is clearly impossible

if conitinumity is tii he prescrved. I

3.9. Orivinting Iyjpc (c) C onistraints

Consider affixinig mii( 1 0)to v mmid(c,,) as usual. Refer once miore to 3.5

an id 3.6;. The cross produoct

Nl,.(0) -re,((-) X eb,

-. -7 . . .



when applied to v will for some E point out of Pn and into PA; for other 0,

N,(O) will point into P1 and out of PA. (Assume for now that N,(O) =/ 0.) Ilence

for sonic orientations Np(O) is the correct (unnornialized) real-space normal for

constraint (en, eb); for other orientations we must employ -Nl,(O). When applied ... -

to v, the real-space normal kNl,(O) (for k E { +1, -1 }) must always point out of

P11 and into PA. The following rule for choosing k is stated without proof:

k - sign(Np(O). 1(()) (3.12)

where I(O) = Tt(0) + T,(0).

However, it is easy to see that we need not compute this dot product each

time we use the C-function. k (and the orientation of N,(O)) will be invariant in

regions of A where the signs of the ACFs are invariant. For example, if k is positive

for some 0 E A and

dai(0) > 0 and d4(0) < 0, (3.13)

then clearly wherever (3.13) holds, then k must be positive. Also, wherever

d3(E) < 0 and d.1(0) > 0,

k must be negative. This argument shouhl be quite obvious if the reader imagines

how the cross product of the edges changes as ea pivots about mid(eb). This leads to

the following simple algorithm for orienting a type (c) C-function c. Essentially, we

can just compute (3.12) once, and record the signs of the ACFs at that orientation.

(i) For some E, compute the values of di(O) (i = 1, 2, 3, 4) for the type (c) ACFs.
If c is not applicable, then stop.

(ii) If k has not been computed yet, calculate k as in (3.12). (Assume k / 0). Record
the signs of d:(-)) and d,1(0) for c. We call this pair of signs the sign map for c.

(iii) If a k and sign map have been computed for c, then compare the recorded sign
map to the current sign map for da((-)) and d 4(O). If the sign maps are equal, 0
use k to orient c; otherwise use -k.

1.17
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3.10. Singularities and Special Cases

Our analysis of type (c) ACFs and DACs assumes that e,,(O) and eb are never

aligned, i.e., that their cross-product is never zero. In addition, our algorithm

for orienting type (c) C-functions assumes that no function di is zero. The cross

product will be zero when e,(O) is parallel to eb, and an ACF will be zero when

either e,,(O) is aligned with a face cobounding eb, or when eb is aligned with a face S

cobounding e,,(O). In practice, these special cases will arise frequently. For tunately,

they can be ignored. Consider the following: The vertices of e,, generate type (b)

constraints with the faces cobounding eb; and the vertices of eb generate type (a)

constraints with the faces cobounding e,. In the cases where e,,(O) is aligned with

eb or a face cobounding eb (or in the symmetric case), some of these constraints

will also be applicable. In these aligned cases we say that the type (c) constraint

is subsumed by the neighboring type (a) and (b) constraints, because the disjoint •

interior criterion will be enforced by the type (a) and (b) constraints alone. This can

be seen as follows: (see figure 3 5) sippose some ACF, for exarriple 3, is zero-valued

at 0, and that e E A. Then both mid(e,,(O)) and ai(0) can be brought to rest

on the plane of f3, while preserving the disjoint interior criterion. Since ai ()

is also lies on e,,(O), it too may be brought to rest on the plane of f3. Clearly,

the type (b) constraints generated by (ai, f3) and (ai [1, fJ) must also be applicable

at orientation E. At this aligned orientation, the type (c) constraint ensures the

following: while mid(e,,(0)) is on the plane of f.,, ai(O)) must also lie on the plane

of f3. This is precisely the condition enforced by the equivalent pair of type (b)

constraints. Symmetric arguments hold for the other ACFs.

3.11. Level ACFs

For ACFs, there is an analogous concept to a level C-Manifold. Let g : SO(3) -*

W be an ACF for a C-function c. An AC Boundary is the space of rotations where

c is applicable and g is zero:

ker g = { 0 SO(3) I g(0) 01.

A Level AC" is the space of rotations where c is applicable and g is some constant

".-I1.18
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value 1:

t0

{9 E SO(3) g(O) =1}.

Recall the geometric interpretation for ACFs. Consider a type (b) constraint (see

figure 3.5). A path p: 11 -+ SO(3) along a level ACF for the constraint (ai, fj)

would, if the midpoints of the edges were affixed, preserve ai(O) at a constant

height above the plane of f3.

a 3.12. A Note on the Computation and Algebra of Applicability Constraints S

The implemented planning system contains an algebra system (described

in chapter 4), which performs the computations relevant to the applicability

* constraints. We would like to make the computation as simple as possible, for

otherwise an implementation might be infeasible.

We have shown that there arc four types of computations foi thc applicability

constraints:
(i) Type (a) ACFs (3.3) which determine the applicability of type (a) C-functions.
(ii) Type (b) ACFs (3.) which determine the applicability of type (b) C-functions.

* (iii) [Basic] Type (c) ACIs (3.6) and (3.7), which provide a necessary but not -

suflicient condition for the applicability of type (c) C-functions.

(iv) DACs (3.8a-c) which provide necessary and sufficient conditions for type (c)
applicability.

However, it is not hard to show that the real-valued functions for (iii) and
(iv) are composed of simple type (a) and (b) ACFs. We will demonstrate this as

follows. Let V:' be the space of normals to planes in -3 . Note that M3 is of course

isormorphic to 9:1. We now define the functions Pt and F to model the computation

of type (a) and (b) ACFs. These functions will be composed to compute the more

complex type (c) ACFs and I)ACs. Let F1 and F11 be real-valued functions S

FA, F: 3 X 93 X 'V3 R•

where 0

FAz(b,, bi, N,0) bn N(O) - b N(0)

119
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and

F1(a,,, a, N, 0) = a,,() N -- a() N.

Clearly, FA and Fi'l can be used to comi-ite ACFs for all type (a) and (b)

constraints. They can also be used to compute type (c) ACFs as follows:

fFA(bj, miid(eb), N,, 0), if i = 1, 2;
di(())- li(ai, mid(e,,), Ni, 0), if i = :3, 4.

Nl,(0) is already computed as the real-space normal for a type (c) C-function.

With N1,(0) in hand, DACs can be computed using F, and FA. This is because

DACs are essentially constraints on tangent vectors to the faces of the polyhedra

in question, and the tangent space of R3 is isomorphic to its normal space. We

will show how to compute DACs using type (a) and (b) ACFs. Our trick for

rotating a tangent vector (v, ) simply involves rotating the line segment (p, v + p)

to (p(O), [v + p](O)). For example,

711(0)• N,,(E) F i(mid(,,(Oo)) + T1(-)), mid(e,,(Oo)), N,,(O), O) .

lHere O0 denotes sonic fixed orientation. Typically 0( is the identity element for .. "

the rotation group, i.e., it denotes no rotation at all, and will be the orientation

in which the polyhedra are given, and in which the tangent pairs are initially S

computed. In particular, [7'(Oo)](O) T(E).

Our reduction of all applicability computation to a few simple functions is

partially motivated by aesthetics, and partially by the design of an algebra system

for our planner. The reduction will admit a simpler and more elegant design.

3.12.1. A Conjecture

Let us make one final comment on type (c) ACIs. For each type (c) C-function,

there are two type (c) ACFs. One type (c) ACF (3.6) is the product of two

type (a) ACs; and the other (3.7) is the product of two type (b) ACFs. These

products are constrained to be negative. In practice, we would probably wish only

to compute the value of each subresiilt (di) for each type (a) and (b) ACF, and then

compute a logical conjii.ction to determine when one is negative and the other
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positive, instead of computing their product. 2 We conjecture that the composition
of type (c) C-functions and ACFs reflects the underlying algebraic structure of these

constraints: observe that each type (c) face f,,,b of the Minkowski solid 1B E A(9) 

*" is the composition (by direct sum) of an edge on A and an edge on B:3

.fa,b = e0 (9D eb. (3.14)

Similarly, the (real-space) normal N,b to such a face is the composition (by vector

cross-product) of an edge on A and and edge on B:

N.,b = ea(e) X eb. (3.15)

In this chapter we have derived a new symmetry, a symmetry for the ACfs of type

(c) constraints. In particular, it is now clear that type (c) ACFs are the composition

(by scalar multiplication) of a pair of type (a) or (b) ACFs.

2 nis appF'roachI is take f or the i mph~C,meted planner~.

31.51
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4
Mathematical Tools for Motion Planning
in a Six Dimensional Configuration Space

4.1. Introduction

Our earlier presentation of representational issues and applicability constraints

in 90 X SO(3) addressed basic theoretical issues for the motion planning problem. .

In this chapter we discuss specific issues which were critical for the implementation

of the planning system described in chapter 2. The fundamental issue is the

intersection problem in high-dimensional configuration spaces: .. - -.
f(i)ihow do we intersect high-dimensional level C-Manifolds to construct an
interscction manifold?

(ii) flow( do we intersect a trajectory in configuration space with C-Space constraints?

Examples and applications of these results may be found in chapters I and 2.

We will proceed as follows. First, as a "simple" example, we will solve these

problems for the configuration space t2 X SI. For this space the algebra is not

un reasonable ind illustrate.,i some of the complexities of planning for the 6DOF "
S

case. fowever, in -Vi X S((3), the equations for some constraints (notably, type (c)

constraints) can fill several pages. For this reason, I first computed the general form

of the intersections for an arbitrary constraint, and then solved all intersections

using Macsyma (ICS (1983)). The results were then optimized and compiled into 0

Lisp. For all practical purp.;es these results are in machine readable form only. For
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example, using Luler Angles paramneterized by C)= (V), 0, 0) for three-dimiensional

rotations,I a type (b) constraint in Macsyma becomes:

* ~~((-XC (Al) *XC (NGJ) .COS (PHI) -XC (Al) *YC(NO.1) SIN (PHI)) *COS (THETA)
+XC (Al) -ZC(NGJ) *SIN (rHETA) -YC (Al) *YC(No1) *COS (PHI)
*YC (Al) *XC(NGJ) SIN (PIll))

*O(PSI)
* +((YC(AI)-XC(N.J)*CS(PHI)+YC(AI)*YC(NJ)*SIN(PHI))*COS(THETA)

-YC (Al)*ZC (NO.1) SIN (THETA) -XC (Al) *YC(NO.1) *COS(PHI)
+XC(AI) *XC(NGJ) .sIN(PHI))
*SIN (PSI) -ZC (Al) *ZC(NO1) *COS (THETA)

+(-ZC(AI)*XC(NGJ)*COS(PHI)-ZC(AI)*YC(NGJ)*SIN(PHI))*SIN(THETA)
-YC (NO1) *COS (PHI) +XC (NO.1) SIN (PHI) +ZC (NO.1) Z+YC (NO.1) Y+XC (NOJ) *X
-Zc (.1) *ZC (NO1) -YC (.1) *Yc(NOJ) -XC (BJ) *XC (NGJ.1

This is the simplest of the constraints; a type (c) constraint is over 10 times as long.

For WR3 X S 0(3) our approach has been to (1) derive these constraints (arid the

ACFs) from some arbitrary representation for rotations, (2) reduce each constraint

to a series of simpler, canonical forms which are linear, bilinear, or quadratic in the

terms of interest, and (3) dlevelop simple mathematical procedures for operating on

* the canonical forms.

For example, to construct an intersection manifold for n constraints, we

essentially need to solve a set of n simultaneous equations, each of the form

f (X) 0. (X E 3 XS(3))

* We proceed as follows. Let DJ= x, y, z, V), 0, 0 be the set of all the (degrees

of freedom. F~irst we select P, a subset of 6 - n elements of D. P) will paramneterize

the intersection manifold. The variables in P will be the frce variables which the

planner can choose; tie vairiables D - P will vary dependently with P so as to stay

on the intersection mnrifold. Mechanically, this entails (1) solving the n constraints

simultaneously eliminating all but one variable in D - P, and (2) expressing all

dependent (degrees of freedom D - P in terms of the free variables 1.

* . The canonical forms are cxpressions for C-functions which imake explicit the

coeflicients of the dependent variables (1) - P) thiemiselves, arid of the sines and

cosines of these variables. 13 complicated equations describe the canonical formsS

Eler ankfltcM ItE iplrictnet( ;L4 rut~ttioi mratrices in the planneiir. Svc Symoii (1971).
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of a C-function, and 9 equations are needed for a type (a) or (b) ACF.' Complete

Macsyma listings or these procedures are provided in an appendix. Before wading

into these waters, however, let us turn our attention to the configuration space

We will adhere to the definitions and conventions established in chapter 3.

4.2. The Intersection Problem in R2 X S I

The find-space and find-path problems in R2 X S' are of considerable intrinsic

interest. We have suggested that good algorithms for the two dimensional Movers'

problem could be developed by planning along the intersections of constraints. Some

of the necessary theoretical tools for this approach are presented in this section.

These results illustrate the principles necessary for planning along intersection

manifolds in 9Z3a X SO(3). The derivations are simpler because (1) the constraints

are simpler and (2) the applicability regions are merely sectors on the unit circle. A

complete, general path planner has been implemented for this problem (see Brooks

and Lozano-Per~z (1983)). This section serves both as a pedagogic example and as

a presentation of a new approach to the planning problem in 9?2 X S".

To plan paths along the intersections of constraints, we must be able to construct"-

the intersection manifold of some set of constraints. To preserve tradition (see

Brooks and Lozano-ler6z (1983), for example), we will call any level-O C-manifold a -

C-,surfoce. A C-surface is the space of configurations where a C-function is applicable

and zero-valued. C-surfaces are interesting because they bound C-Space obstacles.

We will derive the form of the intersection of any two C-surfaces in R' X S'. Each

C-surface is a 2-diniensional manifold in R2 X S', and their intersection manifold is

a curve p in R2 X St. We derive a curve p which is parametric in 0.3 Since there are

2 types of C-surfaces (type (a) and (b)), there are 3 types of intersection manifolds.

4.2.1. rhe intersection or" Two C-Surraces in R2 X st

We describe a technique for finding the intersection of two C-surfaces for the

two dimensional mover's problem with rotations. Throughout this discussion of .x-.

2 W(' : jl, W Wihy it. w;L4 desird le to vxpress all ACI". and I)AC. :L4 o Cmositiol of type (a)

and (b) ACI's. O
:llo, ol t hat (x, y, 0) i4 a typical p il , if, th' C-Space ?e x S n X ,;I.
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V2 X S1 , we will employ the abbreviations C cos0 and S = sin 0. Tie surfaces

are embedded in a 4-dimensional manifold and expressed as functions on (X, y, C, S)

with the added constraint that C2 +S2 = 1. A system of equations for two surfaces

can then be solved for x and y in terms of C and S.

Two type (a) constraint surfaces are functions of the form f(x, y, 0) 0, for

example: S

sin(0 + Xi)y + cos(0 + X')x - Jibjjj cos(O + Xi - -y) - Ilall cos(Xi - 77) (a1)

sin(0 + X)y + cos(0 1'), - IIb.ll cos(O + X! - -y ) - Ila'1I cos(X' - ') (a2)
PS

Similarly, two type (b) surfaces are:

sin(Cj)y + cos(kj)x - Ilaill cos(0 - Oj + 7i) - IlbllI cos(4j - lj) (b )

aA

sin(C')y + cos(O )x - JJaII! cos(O - O +q!) - Iib'l cos(' -.- 4) (b2)

Refer to figure (4.1). Here the ai's are vertices of the "negated" moving polygon •

(QA in Lozano-PNrez [[981, 1983]), in its local coordinate system. ri is the angle

the line from the origin of that coordinate system to the point ai makes with the

coordinate system 's z axis, and Xi is the angle made by the normal to the segment

from ai to ai ,. Similarly the bj's are the vertices of a convex obstacle polygon, Jj

the orientation of the line from the origin to bj, and Oj the orientation of the normal

to the segment from bj to bj 1. The p:rareter 0, a parameter of the configuration

space, measures the angle between the x- axes of the object and obstacle coordinate S

systems.

rype A constraints can be thought of as being generated by a face (edge) of

the moving object A coming into contact with a vertex of an obstacle B, and a

type II constraint as a vertex of A coining into contact with a face (edge) of I).

't .- -7.
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=
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Each constraint is valid only over a fixed range of 0. For type A surfaces the range

is given by 0 E [Oj - -Xi, Oj-Xi] and for type I surfaces by 0 C [Ij-X, ' -

By applying trigonometric reductions we can express these constraints as

follows (only (al) and (hi) are shown):

cos(X)Sy + C sin(X,)y - sin(X1)Sx + Ccos(X )x

+ sin(X1 - -y)llbllS - Ilail cos(Xi - .{)

- C cos(X - Jj)llb'll (al)

sin(Oj)y + cos(Oj)x - Ilaill sin(1j - ?7)S

- Call cos(¢; - 77.) - IlbllJ cos(O, - -yj) (bl)

Where

C =cosO, S =sin0.

Now, we can consider a pair of these equations as a system in four variables,

(x,y, C, S), and proceed to solve (al) and (b2), (b) and (b2), and (a[) and (b) for

x and y. For example, the intersection of two type (a) surfaces, (al) and (a2) is a

curve

p: ral fra2 R2 X S"

where ral fl ra2 C S' denotes the intersected applicability constraints for

(at) and (a2). Although the solutions are in the variables C and S, we can use

C = cos O = cos r and S = sin 0 = sin r to generate the curve of intersection

in R2 X S'. Because of their excessive length, these equations may be found in

appendix I.

4.2.2. Intersecting Trajectories with C-surfaces

A General Discussion for )t2 X S' and R" X SO(3)

In order to motivate a discussion of the intersection problem for trajectories

and C-surfaces, we now introduce the problem in a context which will be expanded

S vourre: Th Ist, .hree par;agraplhs arc cxccrpicld froti Brooks 1Ind [,oza ,-JI'tg,''z, [11J83.
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In principle it is possible to intersect arbitrary trajectories with C-surfaces-

such trajectories could translate and rotate simultaneously. Once an intersection

is found, we must then determine whether (t) tile C-surface is applicable, and (2) 5

whether it lies on tile boundary of a C-Space obstacle. Tile question of applicability

may be resolved a priori by maintaining and updating an accurate set of applicable

constraints as the planner moves through rotation space. This set is called the

applicability set. As the planner moves from E to 0', the updating algorithm

must detect which constraints have expired (ceased to be applicable) and which

new constraints have been activated (become applicable). The expired constraints

are deleted from the applicability set, and tile new constraints are added. In this 0

manner the trajectory will be intersected only with the applicable constraints.

Another approach involves intersecting the trajectory with all C-surfaces, and then

finding the first applicable intersection on the boundary of a C-Space obstacle.

The first strategy is more general in that it decomposes the image of the trajectory 0

into equivalence classes where the applicability set is invariant. Hence it can in

principle be used to map out these equivalence classes on SO(3). Hlowever, for

most environments the latter strategy runs faster, although both techniques can

be shown to have the same asymptotic complexity. Both algorithms have been

irnpleniented 5 and tested, and are presented later in chapter 5.

There are also two ways to determine if an intersection lies on tile boundary

of a C-Space obstacle. I.et X be the intersection point of a trajectory with an

applicable C-surface f. Then X lies on the boundary of a C-Space obstacle bounded

by f if either of the following holds:

(i) All applicable C-functions in f's family are negative or zero-valued at X.

(ii) If the projection of X into real-space lies within the displaced face of the

Minkowski solid corresponding to the generators for f.

Correctness Argument: Let us briefly discuss why (i) and (ii) are equivalent. The

correctness of (i) is obvious, since the C-Space obstacle is constructed as tile finite.

intersection of half hypcrspaces, each of which is defined by a real-valued function

on C-Space. Let S dhenote the face of the Minkowski solid, and x the projection of

:'"For 9V: x. ,SO(3) but, ni, for %€2 X 51. 0

"TlIhe faLmil/ or a (-frtin(1on is defined in 3.2.

I 5 .9
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the intersection point into real-space (i.e., X = (x,O0)). We will demonstrate that

(i) V- (ii).

( ) Suppose (i), but not (ii). We demonstrate a contradiction. x must lie on

the plane of S, even though x 'S, since that is how the C-functions are defined

(X could not be an intersection point, otherwise). Recall that the normals of the

faces (and planes) bounding the Minkowski solid are defined to be outward-directed 0

from the interior. Since the Minkowski solid is convex, the plane of S bounds a

half-space entirely containing the solid. If x is not within S, then it must be outside

the plane of some other face, S', which shares an edge with S. But in this case,

the C-function corresponding to S' will be positive-valued: a contradiction.

(€=) The Minkowski solid is convex. If x C S, then it is behind (or on) the

plane of every other faces of the solid. The C-functions are defined in terms of the

0 distance of x from these planes, which must be negative (or zero). i 0

One further note: suppose that all intersections with C-surfaces--including

non-applicable C-surfaces have been sorted along the image of the trajectory in

C-Space. Then if X is the first intersection for which (ii) holds, then f is applicable

and X lies on the boundary of the C-Space obst;':le. Again, both approaches have

been implemented, and the results are discussed later.

Intersecting Trajectories with C-surfaces in qZ2 X SI

We will now present methods for intersecting pure translational and pure

rotational trajectories with C-surfaces in R2 X St. Note that as long as every path

of interest lies entirely within open sets of R2 X S', then for every such path there

exists a homotop ically equivalent path composed of "staggered" pure translations

and pure rotations. We assume such paths can be expressed as (piccewise) linear

f unctions of some parameter. Intersecting such a path with a C-surface entails

If t inring the zeroes of the associated C-function (with respect to the parameter). S

Purc Translational Paths. Note that (a I) and (bl) are linear in x and y. At a fixed

orientation their projection into real space is a line. A pure translational path is

also a line. Clearly then, intersection of a pure translational path with a C-surface

is trivial.

[... . . - -.
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Pure RotaLional Paths. A pure rotational path is a linear function from P to S'.

Intersecting such a path with a C-surface involves finding the zeros (with respect

to 0) of the C-function at a constant translation. Observe that C-surfaces (al) and

(bl) are linear in C and S, that is, they can be expressed as

EC + E2 S + E 3  0 ('I)

where the terms Ei (for i = 1, 2, 3) vary only with x and y. The zeros of (4.1) are

not hard to find. First we note that (4.1) can be expressed as a pure quadratic in

C (or S), and that solving a quadratic for its zeros is easy. (We must, of course,

check for the first applicable zero which is on the boundary of a C-Space obstacle).

This method is not the best because of susceptibility to numerical problems and

singularities. Happily, such equations arise frequently in robot kinematics; Paul

(1981) describes a stable, singularity-free calculation for the zeros of exactly this S

form of trigonometric equation.

Practical Note

The reader will notice that motion sliding along an intersection manifold S

in 2 X S1 will not in general be a pure translation or rotation. We have not

derived the results for intersecting arbitrary trajectories with C-surfaces in g"2 X S I,

although in principle it iS possible to do so. Note that any such sliding motion "

can be approximated as closely as desired by a sequence of pure translations and

rotations, and furthermore, any such "approximating" planner will be complete (in

the sense discussed above) if the "sliding" planner is complete.

Furthermore, our purpose here is a theoretical analysis in low dimensions

which still illuminates some of the staggering difficultics in WA X SO(3). As it turns

out, with the additional degrees of freedom in 90i X SO(3), this turns out to be

considerably less of a restriction.

4.3. Relat'ed! Poblets in 2 X St

here are a riumber of interesting related probllemris in 2 X 5 I The first

a(llresses techniques for "sliding" along one geometric constraint (C-surface).

liding is a uicfu l way to circimnavigate obstacles: it cani also be used to slide to an

p _]
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intersection mnanif~old. The second result is of use in the find-space and co -idinated

motion problems, andl involves characterizing the minimum clearance to a C-surface

in~ X S' . Again, these results are presented niot only for their intrinsic interest,

but also as an exp)osition of somec of the algebi-aic techniques required anid as an

illustrat ion of the complications arising in high-dimiensional configuration spaces.

'1.3. 1. reciiniques ror Moving Along C-Surfaces in W?2 X S1

Inl this section we present techniques for moving along a C-Surface. We could

imagine using these miethods to move to the nearest "edge" (C-Surface intersection),

for example. A level C-Surface is (lerined via afunction f(x,ya, 0) = k for k constanit.

f is exactly of formr (at) or (bi) (above), anid the level surface in 9P X S, is all

points

L {X C xZ X, f (X) k}

0 where rf C S' is the 0 applicability range for f

D~efine a hyperplane in R' X S' as the set

P =(XE C2 R' X S' X ! - -h 4 }

* -where H It 1 h, 12, h3).

We intersect the level surface L with the hyperplane P to obtain an intersection

curve p Pl __ WJ2 X S1. The equation for this curve for both type (a) anid (b) -

C-surfaces may be found in appendix 1.

* -4.3.2. Characterizing Clearance to a C-Surface

It would be very useful to characterize the iminimumn clearance to a C-surface.

The result could he applied in the coordinated miotion problemn to determine where

two mobhile objects coul (1Possibly interact. In the find-space problem, we could use

clearanice in form ation to in axi in ize the clearance to a constraint while placing omie

* ohjcct, in order to leave room for another. We would like to answer the question:

For aL point 1bL, (i, t what orientation is by~ closest to a C. surface, and
What is rmnirflmm (lreecc clearance vector (it that orientation?~

Using Lagrange multipliers, we can inimniiniz a function f(x, y, 0) subject to a 2
constraint, y(:r,y, 0) -0 by cowe hur"ting the auxiliary function
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H1(X, y, 0, 1) f (X, y, 0) - ty(x, Y, 0)

and simultaneously solving the partial derivatives of 11. In our case, y will dlefinle

* a C-surface, and f will be a dlistanice function. Now, the rotational dlimensions

* cannot be treated uniformly in establishing a metric, so we will define distance in

Euclidean space. Minimizing the square of the translational (list.ric sullices for

our purposes. Hence,

fAx,y,0) = (x - ± ) (y .

D~ifferentiating Hf gives us a system of four equations. Solving these equations for x,

y, 0, and I is not trivial. We provide the solutions and their derivation in appendix

1. (Solutions are given for both type (a) and type (b) C-surfaces).

4.4. The Intei-section Problem in NR' X 80(3)

In this section we extend the previous examples of intersection problems to

th e f-dimfnsional C-syr,,re s9 q.S(3) kV. this point -,e must cormmit ourselves

to a particular representation for rotations. The implemented planner uses a

rotation matrix specified by Euler Angles. Implementing a different representation

* for rotations (such as spherical angles, qiraternions, or joint angles for a Cartesian

* Manipulator) would merely require replacing the Macsyma rotation abstraction

ROTATE-VECTOR with the appropriate new function (and recompiling the algebra

system). Thie Euler Angles are

E) 0,

Thle intersection problerns in RT'~ X S0(3) are as follows. With each problem

we give the motivation for att acking it.

(i) Intersecting (level) C-surfives. (Necessary to construct tire intersection manifold).

(6i) In tersectinrg ILevel AC Vs',. (Interesting thei oretic al question: rela tes to planiriing on
* ~~different k inrds of initersec tion luanfolds, and exploitinrg cohieren ce in C-5 pace

conistrainits).

(iii) Inutersec tinrg (-Surrfaces with I ~e el AC~s. (Saine ;Is (ii)).

(iv) Inritersectinrg Trajec tor ivs xith C-sriirfaces. (Indicates thrat we mray have hit a
* C-S'pace o1)stacIc).
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(v) Intersecting Trajectories with ACFs. (Indicates that a constraint has expired
(ceased to be applicable)).

Note that we never have to intersect a trajectory with a I)AC, since any path 6

straying out of a type (c) constraint's applicability region must first violate an ACF

boundary (see Theorem 111.5). Since all AC~s can be composed out of type (a) and

(b) ACFs, we need only deal with three distinct kinds of functions on W X SO(3)

and two on SO(3). In the context oF this section the term ACF is used to refer

only to the basic type (a) and (b) ACFs out of which all ACFs and DACs may be

composed.

Our approach is as follows: We express all C-functions and ACFs in certain

canonical forms. The Macsyma procedures to derive these forms are provided in an

appendix. We then develop certain operations which are defined on any function

expressed in these forms. Throughout this discussion of 90 X SO(3), we use the

notation Ca = cosa and S, = sina where a G {c 0, 0}. Most of the clains in

this section should be self-evident when the rotation matrix R(O) for Euler Angles

is considered.

Claim 4.1: All C-functions are affine in x, y, and z. This is obvious, since R(E) is

a linear transformation. *

Claim 4.2. While expressions for C-functions and ACFs can contain cross-terms of

the form C,,S3, S,5) , or C,,Qj, it should be clear that a A fl, that is, C, can

always be expressed as ati affine function of S,.

To derive this, consider the definition of a C-function (equation (4) in chapter

3) once more: S

fl,(x, 0) (N(O), x) - (N(C), (ai(0) + bj))

Only the terin (N(e),aj(O)) could result in any troublesome terins. For a type (b) .

constraint, N(O) is a fixed vector. For a type (a) constraint, N(O) is a rotated

normal of a face of A, and we have

(N(()),a())) --(N , ai).
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Finally, for type (c) constraints, N(O) is the cross product of e,(O) and eb. This

results only in cross-terms of different angles:

(aiC(), e,(o) X eb) = (ai(O), (ai ,(0) - ado) x cb)

= (ai(e),. ,j1(0) X eb - a(O) X eb)

= (ai(), a I 1,() X eb)

= (e, a#)) x a 1(e)).

A proof for the ACFs is very similar. I

4.4. 1. Canonical Forms for C-functions and ACFs

Delinition: The Linear Form for a C-function f : W3 X SO(3) -R is an equivalent

expression

f(Yy, z, 0) = Elx + E 2y + E 3 z + E 4 ,

where E, : SO(3) --- W (for i = 1, 2, 3, 4).

Definition: A Trigonometric Quadratic Form (7QF,) (in 0) for a C-function f is

an equivalent expression

f(x, y, z, , 0, F) IF sin € + F2 cos € + F3 ,

where

",. oz., X (0, 0) -R . (i 1, 2, 3)

Definition: A Trigonometric Qutadratic Form (TQF )(in 0) for an ACF g: SO(3) -.

R is an equivalnt expression

g(O, 0, 0) G, sin 0 + G2 cos + G3 ,

where

c;G(¢ 0) --R (Z' 1 , 2, 3)

The TQFs are defined here in € -of course we must also define the TQFs in -

and in 0 in the natural way. € will be our typical example angle in this discussion,

however.
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lBefore we proceed let us provide some intuition for these definitions. Imagine

deriving a linear form for a C-function, and setting the expression equal to zero.

The result is just an expression whose coefficients make explicit how the plane 

equation of the face of the Minkowski solid changes with rotation.

A TQI, (in 0) is just a way of expressing C-functions and ACFs in ternis of

the coeflicients of sin o and cos . Linear forms and TQFs will be useful canonical •

forms for the intersection problem in W3' X SO(3). It is important to realize that the

coeflicients Ei, F,, and Gi are actually functions on the other degr. -s of freedom.

We see immediately from claims (4.1) and (4.2) that: S

Claim 4.3: Every C-function can be expressed as a linear form and as a TQI, in

4', 0, and 4; similarly, every ACF can be expressed as a TQF in 4', 0, and 0.
0

4.4.2. Intersecting C-surfaces in W"' X SO(3)

When intersecting C-surfac-s in 5p 2 Y ,S1, we eerntially eliminated variables in

a system of equations. This corresponds exactly to "spending" degrees of freedom

to comply to two constraints. In W2 X S1, there were few choices for which -

variables to eliminate. lowever, in .' X SO(3), we have many more degrees of

freedom, arid hence there are more choices for how to solve the intersection of

a set of constraints. For example, to construct the intersection manifold of three

constraints, we could spend all the translational degrees of freedom, which would

result ia parameterizing the intersection manifold by (0',0,0b). Alternatively, we

could in principle elirrinate the rotational degrees of freedom and parameterize

the intersection manifold by (Xy,z). In the former case, we leave (0',0,0) as S

iridependent degrees of freedom: parameterizing the intersection manifold simply

involves solving the 3 constraints simultaneously for x, y, and z in terms of (V', 0, 0).

To rmove along their inters.ction, we are free to plan any values for (V', 0, 0), and

the parameters for the tirislational degrees of freedom will vary so as to comply

to the sinmulita n cois set of constraints. Obviously the choice of which degrees of

fre eloin should paraineterize an intersection manifold is important; linear forms

and TQFs give us a general way of attacking it. This approach is best illustrated

through the following examples:

I GO
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Example (i). A C-surface in linear form is an expression for a C-function in linear

form set equal to zero. Two C-surfaces expressed in linear form may be intersected

to yield a 4-dimensional intersection manifold parameterized 7 by (z, 4, 0, 4)). This 0

amounts to simultaneously solving the equations . - .

f(x,y,z,0) =Elx + E 2 y + E 3z + E 4= 0"

g(x, y, z, 0) Elx + E y+ E'z + E' =0

by first eliminating x and then solving for y. This yields expressions for x and

y in terms of (z, 4, 0, 4); we say that (z, ,0, 0) form a 4-parameter family for

the intersection manifold, and that x and y comply to the C-surfaces f and g as

(z, i, 0, 0) are varied.

This intersection has the following geometric interpretation. Imagine holding

orientation constant at 01. Then E i and E! are all constant also. Intersecting f

and g at a constant orientation is equivalent to intersecting two planes in W. The

intersection is a line, and the position along the line may be parameterized by

the one remaining translational degree of freedom, z. The planes intersected are .

exactly the planes of the faces of the Minkowski solid for f and g at orientation

Example (ii). The intersection manifold f(X) g(X) - 0 from example (i) may .

be intersected with another C-surface, h(X) - 0, expressed in linear form. Suppose S

z is eliminated. Then the intersection manifold for f, g, and h is parameterized by

(4, 0, 4). The translational degrees of freedom x, y, and z, will be expressed in terms

of the rotational degrees of freedom, and will slide along the intersection manifold

as rotations are chosen. The new intersection manifold f(X)== g(X) = h(X) = 0

is a 3-dimensional sub-manifold of R:, X SO(3). This intersection has the following
geometric significance. Imagine holding orientation fixed at 01 once more. The

intersection at a fixed orientation of f, g, and h is the intersection of three planes S

in gZ3 . This intersection (if it exists) is a typically a point. If 01 is allowed to vary,

the intersection point moves. The coordinates of the intersection point are the x,

y, and z degrees of freedom as they comply to the intersection manifold.

'Assumv i tl, the conStraint. art riot parallel, arnd that this is possible, tc.
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0

Examples (i) and (ii) show how to spend translational degrees of freedom to

intersect C-surfaces. In (i), we saw that it is possible to plan motion along the

the 4-dlimensional intersection manifold with one translational ind three rotational

degrees of freedom. (i) can be used to plan a pure translational pat cofpIn

to two C-surfaces. The free translational parameter may essentially be chosen to

maximize progress in a search algorithm. This is precisely how one "local expert"

in the implemented planner works.

One last note on linear forms: the discussion and examples above can be easily

generalized to arbitrary level C-surfaces (instead of C-surfaces with level 0) by

increasing or decreasing E74 (the "constant" term in time linear form) by a constant

equal to the level.

[ntersecting Two TQF9 0

Consider a TQF g (in 0) for either a C-function or an ACt",8 and suppose

further that the TQF has been set equal to zero so that it is actually a TQF surface,

ker g, by which we mecan a TQF for a C-surface or ACF boundary:

P1 sin 0±F2 cos0~+ F3 =0

Suich a TQF can be expressed as:

(F 2 + 1,,2) cos82 4+ 2 F2 Fj cos qS+ 'p, p,2~ 0. (4.2)

Thc new express;ionL is quadratic in cos o. (This explains the nanme TQF). The

procedure for Intersecting two quadratics is well known.0 Such a procedure can

be used to inters~ect two (piladratirs of form (4.2) (i.e., with cos o treated as the

0 ~~Iiaratic variable). Thus we can obviously intersect any two tI surfaces. This

11n Ianis that the procedurc ['Or intersecting two quadratics can be aipplied to TQI's of

G>sI I r f; I Ies amnd of ACF boundaries. T'his imnmediately yields5 an effective procedure

lIkpeiidirig on Milivrr the 'IQI i4 a (-rimcioni or ACF, IeI fillcoIC1', FSWill ha:VV diffrentu
lm;~o~,h t 16; w iI oi ll mA 11 i' for mir tfilc ili.kion.

'li ('(iOple, sev Wii )I on~ an Iorn (1981X), (1). 175).
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for constructing the intersection manifold of two C-surfaces, two ACF boundaries,

or a C-surface and an ACF boundary while spending only rotational degrees of
freedom. 6

4.4.3. Intersecting Trajectories with C-Surfaces and ACF Boundaries in

x SO(3)

In this section we extend the method of (4.2.2) for intersecting arbitrary linear

pure translational and pure rotational trajectories with C-surfaces in : X SO(3).

Pure Translational Paths. A pure translational path can not stray out of an

applicability region. It is not hard to intersect a linear pure translational path with 0

a C-surface. Such a path can be represented as a line in R3 . At the fixed orientation

of the path, any C-surface can be represented as a plane in V. Hence the problem

of intersecting a C-surface with a (linear) pure translational path is simply the

problem of intersecting a line with a plane. The linear form of any C-surface

directly provides the coefficients of this plane for any (applicable) orientation.

Note that in intersecting a pure translational trajectory from some configuration

X E F with a set of applicable C-surfaces, we need only consider C-functions which

are positive-valued at X.

Pure Rotational Paths. We restrict our attention to linear, pure rotations in

one rotational direction (i.e., in +t:, +0,-t-), for example, 0

0(t) = k0 + kit (t I')

(for some constants k0 and ki). To intersect such a path with a C-surface (or ACF

boundary), we simply find the zeros of the appropriate TQF. For this example, we

would use the TQ (in 0) for the C-surface:

Fj sin + 12 cos + r,,,O. (4.3)

With motion strictly in ,, the functions Jj will be constant, arid may be regarded

simply as tile coefficients of a quadratic form. (4.3) is easily solved for the values of

¢ which are its roots (see section 4.2.2). Now, depending on the solution technique,

I 6q
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(4.3) mray yield several roots. The correct root may hei chosen a." follows: for a

C-surface, we choose the first root where the C-suirface is applicale. For an ACI"
0boundary, we choose the first root where t he assoc lat ed U(i rf;k# r iq aplicable.

* 'r~his last step requires exanmining the other A( 's for t -Cli rfacc

* ~~Comnpleteness and Comnplexity ror Rot ationial 'lraj iclIories

We have seen that acontinuorns path throuigh rot atii pat i 1 .11 h, r\Ortte

as closely as desired by a series of linear iiiotion.s almig 0ii .1 nJ.i oiw

show that the numnnber of path segments reqtilred gri lii Irk i r lii1 11 ;On0

of the approximation becomes finer.

Definition: Let V he a vector space, and P' anid V ht, i ijr t;r ic in We say

that PF' approximates P at resolution r if for all p' t, I ', I It cp r pl Ii i i ar ( destance

of p' to P is less than ~
0

Proposi'ti*on 4-4: A linie ar tr ajectory i n a vec to r sparce ( : i be a 1 1tr ()\ i i iia ied by a

number of path segments along the axes, which increases linearly Ls the( resoluition

becomes finer.

Proof: Suppose V = W3 and P is a linear trajectory from u to v. Imagine

* approximating P lby linear motions along the i, ', and axes. Segninit. P) into k

subpaths. From u, attain each of the k - I subgoals (and v) by 3 linear motions

(along , ,and 3&) from the previous subgoal. This yields a sequence P' of 3k

motions which approximates P at resolution Tk. We can bound ±from ab~ove as

follows:

Tk k nriax(IVr - 1 uI VY - uYI, 1V2 tz ) "I

* 'fo achieve a particular resolution r, it is easy to choose the smallest k Satisfying

the reverse inequality. We see imminediately that k varies linearly with r. 3

Let the angle space Q3 be the dlomain of a chart for SO(3), as (described in

chapter 2. Then thc angle space trajectory

0
P(t) + 1  to
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for

= + bb + c'

specifies a well-defined trajectory R(p(t)) in SO(3).

Proposition 4.5: We can approximate p as closely as desired by a sequence { qi } of 0

motions in Q 3 along the 4, 0, and directions. Furthermore, the size of the set

{ qi } grows only linearly as the resolution r becomes finer.

Proof: Immediate, from proposition (4.4). 1

4.5. The Algebra System

The treatment here of the implemented algebra system is mercifully brief.

Given the discussion, the details, at least in principle, should be easily imagined

by most readers. In computer algebra these problems are well understood, and the

system does not make a significant contribution to that field. I would like to note,

however, that the algebra system is both massive and at the heart of the planning

system. It takes 12 hours for a dedicated VAX to optimize and compile the vector

form of the constraints (in Macsyma) into the primitive functions of the Lisp algebra

system. On top of these primitives is built a more abstract system, which (for

example) can evaluate constraints, intersect constraints, intersect trajectories with S

constraints, and find zeros of constraints. The intersection and evaluation system

has automatic singularity handling (for division by zero, imaginary roots, alignment,

etc). For example, to intersect two C-surfaces (a I example (i)), the planning system

will typically specify a list of preferences for the translational parameterization of

the intersection manifold. The system then attempts to construct an intersection

manifold with a high-ranked parameterization, and on encountering singularities

will back tip and try again.

It should now be clear how the algebra system for the planner is designed.

For each kind of con.straint (C-function or ACV), the algebra systicln contains

procedures which comnpute the coefficients of the linear form (for C-surfaces only), 0

and coefficients of the TQFs. Each of these procedures cmn be thought of is a
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function of (t) the constraint, and (2) the parameters not explicit in the form (for

example, the rotation parameters for the x coefficient of a linear form). On top

of this is built a level of abstraction, so that for example the operation "compute

the sin € coefficient of the TQF (in 0)" is defined on all constraints. Coefficients

of all possible forms are described by a total of 12 coefficients for tile linear forms

of C-functions, 27 coefficients for the TQFs of the C-functions, and 18 coefficients

for the TQFs of the ACFs. (These functions correspond exactly to the functions

Ej, Pi, and Gi, above). All of these functions are constructed and optimized by

Macsyma running under NIL (Burke (1983)), and then converted into Lisp.

We have also experimented with precompiling functions for all possible

intersection manifolds (up to some degree). ° For intersection manifolds of degree

2 or 3, this is not hard, and in fact we have already illustrated all the necessary

mathematics in this chapter. Intersection manifolds of higher degrees may be S

constructed by solving for the submnanifold representing the simultaneous satisfaction

,,f 4,,v,,r'l constraints, for examp!c, three constraints in linear form together with

t.wo "l'(ls such as (4.2). When higher degrees are considered, this becomes

,1itt. complicated, especially when we allow different parameterizations of the

intir-,i iilo man ilolds. Construc t.ion of intersection manifolds of higher degree may

,,,1cr when different representations for rotations-such as unit quaternions--are

'i.iploy'. 'lq~ii appears a fruitful direction for future research. In practice, we view

it ..- itferabhle, wherever possible, to obtain the values of coefficients of a form

.0 t Lc,tmn ciion filuration, and then to plan locally while keeping these coefficients

fix(, . 'lius for exa in ple, we riglit compute t.e coefficients of the linear forms of

t o (U-i rfaec, at a given orientation, and then intersect the resulting planes to 5

(,ba ii t traniilatiomnal path aong their intersection. The structure of the forms
,itaks lhis eisy to do. For example, rotating tie moving onject (say, in y) until

it hits a constraint i; mnatliematically a coiplicated operation. All we need do,

howvewr, is find thle cceicients of tie TQF in 0, and supply them to a procedure

in t , ;dIl(bra system which finds the zeros of TQF surfaces. (But see chapter 5 for

the details of the applicability set computation).

''1, ,/r( a" an itI r. lct lion rf a iril is simIply the ,Ititnber or 'ons.Itraints inter.ect(d there.
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4.6. Related Issues in X SO(3)

4.6.1. Normals to C-surraces 0

Let f be an applicable C-function and X a configuration on a level C-surface

for f. When an appropriate inner product is defined on the tangent space, '' the

normal to the C-surface at X is the gradient of the C-function f evaluated at f.

Normals to C-surfaces are of great importance for motion planning. The gradient

may be computed as follows: first the coefficients for the linear form of f (evaluated

at X) are obtained:

f(X) = Ex + E2y + E3 z + E.

Clearly, Y = E1 , Y = E 2 , and 4 E3 . To obtain the partial derivatives in the

rotational direction, we find then coeflicients of the TQFs (evaluated at X)

f(X) = F1 sin 0 + F 2 cos + F3

to obtain
Of F cos - F2 sin .

4.6.2. C-functions, Potential Fields, Penalty Functions, and Morse Theory:

A Conjecture

A popular approximate algorithm for collision avoidance places "potential

fields" around the obstacles (either in real space or in some C-Space), and attempts

to navigate the reference point through a trough of least resistance. The obstacles

may be thought of as having a "charge" which repels the robot, and the goal has an

inverse charge which "attracts" it. The potential field inethod is closely related to

the so-called "Morse Theoretic"12 approach to motion planning, and lends itself to

fast control-loop algorithms which can exercise real-time dynamic control of robot

arms with few degrees of freedom, in simple environments. As might be expected,

the method works best for robots that can be approximated by points or spheres. A

proper potential function increases as the robot approaches the obstacle, and goes

S e, - sc. 2 .4 .2 ard IVrd m a n (118 ,1). 0
2W hiCh ,l,ke,.4 ifM wi,,, fror Nl r:i Thcory iu diffiri ial topology.
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to infinity at the obstacle boundary. Traditionally, the potential function is chosen

somewhat arbitrarily, with inuch emphasis on the closeness of the "fit" of the

potential sturfaces al)out the real-space obstacles, antd with understandable concern

for the computability of such functions by specific control hardware. \Vitl the

thecorelical tools we have developed, it is Flow possible to give a potential funct'ion in

configuration space which is "exact." For a configuration X, let f be a C-funct.ion

representing the maximum, applicable, non-red kund1 a nit constmint from one family.

For each such f, we conjecture that a good potential field fu nction would be:

1(X) - f(f(X))--,, if- (X > 0,

00o, if f(X) = 0.

for some k > 2. Whether or not such penalty functions could be used in devising

a fast real-time control algorithin is, of course, ,mnothier question. The suggestion is

primarily intended to show that there is a represenLtation on which (in principle)

ap;p~roximate potential fiel ritethods im, ii' be based.
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5

Moving Through Rotation Space

5.1. introduction

In this chapter we discuss some of the computational issues involved in

planning paths involving three dimensional rotations. The primary issue is that

of keeping track of which constraints ((-functions) are applicable as orientation 5

changes. In principle it is possible to intersect paths with all ACF boundaries, and

thus to determine which applicability regions the path traverses and crosses. It is

also possible, in principle, to compute the applicability regions a priori, before the

planning begins.1 In practice this is computationally infeasible. Even for simple

environIImient.s, there are typically thousands of constraints, each of which has at

least 3 associated type (a) and (b) ACI's. We will investigate alternative strategies

which exploit coh,-rence in how the set of applicable functions changes as the S

robot moves continuously through rotation space. In previous chiapters (particularly

chapter 1) we showed how to intersect trajectories with C-surfaces and ACls.

The appliability set for an orientation 0 is the set of all ;applicable const raints

(C-function s) there. Clearly, there are regions on SO(3) for which the applicability

set is invariant; orientations in the interior of these regions corresponid to orientations

where no edges or faces of the robot, are aligned with the edges or faces of any

I''i- ; ,t ir m h is siirnihtar I o f w cr iif catI r( iin cori 11ti:tti(i,[I t I'd by Stciw t r i I Stih;rir 0

(I! ). . .75
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obstacle. For a fixed orientation 0, we conipute the applicability set by exam ining

the signs of the ACl's for all C-functions (see chapter 3). lowever, this is clearly

not an operation we wish to repeat very often, an( the applicability set calculation
procedure should be rneinoized. (A memoized procedure records the answer for a

given input, so it will not have to be recomputed. Instead, it can simply be looked up

in a table). As the robot moves in rotation space, certain constraints will expire as

the path moves out of their applicability region, and other constraints will become

active as we move into their applicability region. This suggests that an incremental

update algorithm should be possible: we iniagine detecting when constraints expire,

and when new constraints become active and constructing a Deletelist of expired 5

constraints and an Addlist of new constraints. The applicability set is then updated

by means of the 1)eletelist and Addlist.

5.2. rhe Applicability Decomposition for SO(3) 0

In this chapter, we will first present a naive algorithm which does riot use

an up(lte strategy. We then present a more sophisticated procedure, called the

update algorithm, which is ar incrementidt pdate strategy. We have performed

experiments using both algorithms to implement the local operator Retate, which

was discussed in chapter 2. Both algorithns have the same asymptotic complexity.

Although we have applied both to the fi|rd-path problem, they are designed for

fundamentally different tasks. rhe naive algorithm is specialized for a particular

find-path operator, while the update algorithn is a general tool for conputing a

decomposition of C-Space for spatial planning.

* The 9 update strategy addresses the fundamental problem of applicability set i

corlptations in a continuous space. With out the 9 algorithm, there exists only

the "discrete" applicability set computation, which given one point in SO(3) can

(letermine the set, of all applicalble ('-functions. With an incremnerital update strategy

we can niap out, regions on SO(3) for which the applicability set is inrvariant. The

* h~~oundn~aries of these regions are i\CF bounrd aries. Let Y'(0-) be the( ap plicability

set at 0 C SO(3), and -b be a binary relation on SO(3) such that 0 . ' 0' if,

* anl only if Y(-) Y y(0-'). Clearly, is an equivalence relation on 50(3), and

50(3) is decornls,,l Iy nto disjoint equivalence classes where tie applicalbility
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set is invariant. We call this the applicability decomposition for SO(3). Computing

this decomposition is a fundamental step in reducing continuous spatial planning

problems to discrete computational problems. S

We will show how to compute these decompositions for sections of SO(3) in

any of the directions S ±V { , ±0, ±0 }. In particular: The incremental update -

strategy computes a projection of the applicability decomposition onto a subspace 0

of SO(3) which is isomorphic to S'. In principle it is not hard to generalize

these sections to arbitrary rotational slices: algebraically this entails solving the

intersection of a TQF with an arbitrary pure rotation. As we have noticed, any

rotation of interest can be approximated as closely as desired be a sequence of

rotations in S, with no loss of completeness (at a given resolution).

The naive algorithm, on the other hand, is highly specialized to the particular

problem of rotating to a constraint. It does not address the more fundamental 0

problem of decomposing SO(3) into applicability set equivalence regions. We

believe that the applicability decomposition is also important to planning problems

other than find-path, particularly, for find-space, fine-motion, and planning with

uncertainty. However, in practice the naive algorithm has proved faster for rotating

to a constraint than any incremental algorithm we have devised. It is gratifying to

find that both strategies have the same asymptotic complexity; however, we have

no strong indication that the O(N log N) bound we demonstrate is optimal, and S

faster algorithms may exist.

5.3. A Naive Algorithm Without an Update Strategy

'We begin by presenting a naive algorithm for moving in rotation space which

does not employ an update strategy. We wish to design an effective procedure which

is to be given a start configuration s, a goal direction C C { -I , +0,-0, ±;,-€ },

and a goal configuration q. The goal configuration differs from s only in that the

goal angle in the & direction will be g,, instead of s,. The procedure determines

if the robot caLn reach g along the trajectory in 6e, or whether it will strike an

obstacle, in which case it riiust return the C-surface hit and the intersection angle.

(We use intcr.scclion angle to mican the value of a at the intersection point). 0
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Figure 5.1.

Let C be the set of all C-surfaces. Calculate the intersection of the trajectory

p(t) = + tcx "

with every C-surface in C (whether applicable or not). Each such intersection can

be expressed as a single angular value (i.e., the value of t or a for which p(t)

lies on the C-surface) and hence as a single point on the unit circle. We can 0

order the intersection points by their intersection angle with a C-surface. Sort the

intersections around the circle. Then traverse the intersections on the circle in "

direction & from s, and find the first intersection which is both applicable and on

the boundary of a C-Space obstacle. In 4.2.2 we gave an algorithm for how this

may be determined.

I 5.4. Update Strategies: Exarmplc

We now proceed to &-scribe how an update strategy works. If constraints could
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Drection: (MIMUS THETA) Start: 2.42; Goal: 6.9 [bold

Csurface Intersections IRCF Intersections _

*Figure 5.2. As Lthe hammer rotates in tbc -b direction from (0o, 2.42, Oo) to (iko,O0, qo), the boxes
in the lower leri. show tlic C-Sporr obstacle boundaries and ACF boundaries that the tra~jectory

* hits. Since the hamrncr is in free-space, it hits no c-surfaccs. However, it crosses many ACF
boundaries.

expire and become active "arbitrarily", this problem might still be formidable.

* However the following observation makes things much easier:

* Claim (5.1): When a constraint expires, another "neighboring" constraint

becomes active.

For example, consider figure 5.1, which depicts a cross-section of a rectangloid A

*moving above an obstacle face jr. As A translates, it rotates in direction 0. In

*5.1a, constraint (vi,f) is applicable, and (V2,f) is not. At 5.1b, however, we move

out of the applicability region for (vi,f) and (v 2 ,f) becomes active. 5.1b is on
* the boundary of the applicability regions, and both constraints are applicable. By

5.1c, however, (v 1 ,!) has expired. (V 2 ,f) has replaced (vi,f) in the applicability .--

set. (V2 , f) clearly seems like a neighboring constraint to (vi, f), in that v1 and V2

are adjacent vertices on the edge graph of A. We would like to devise an update
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strategy which, given a Deletelist of expiring constraints, could enumerate a small

list of candidates for the Addlist. In general an expiring constraint will be replaced

by neighboring constraints. However, the neighborhood function is somewhat more

complicated than in this simple example. For instance, imagine that A were rotating

towards the viewpoint (out of the page), leading with vertex v:- (see figure 5.4). It

is possible for constraints (v2, f), (v4, f), and (v:3, f) to replace (vt, f), if the faces

f and { v1, v 2 , v 3,v 4 } are parallel when (vi, f) expires. Clearly v3 is also "near" vi,

but not as near as V2 and V4. To exploit claim (5.1), it remains to be seen just

what we mean by a "neighboring constraint." We should emphasize that the update

strategy does not predict exactly which constraints will become active, but merely a

a set of candidate constraints, some of which must replace the expiring constraints

in the applicability set.

5.5. Using Update Strategies S

Let us modify the naive algorithm to incorporate an update strategy. At

configuration s, we compute the applicability set. The trajectory p is next intersected

with all C-surfaces in the applicability set, and with all ACF boundaries for these

C-surfaces. The two lists of intersections are merged and sorted around the unit

circle. (The sort key, once more, is the intersection angle). We call this sorted

structure of C-surface and ACF intersections the intersection queue, since it a

priority queue containing intersections. An entry in the intersection queue is a pair: -

C-surface or ACF, Angle of intersection).

We then traverse the intersection queue in order from s in direction &, taking

the following actions when we encounter a C-surface or an ACF intersection:

(1) When an ACE boundary is hit, a C-surface has expired. Let the angle of

intersection b a/. Sometimes several C-surfaces expire at once; in this case their

ACF boundaries will all have the same intersection angle on the circle. Determine

all the C-surfaces that expire at a, (simply scan down the intersection queue until

an intersection angle greater than a, (with respect to direction &) is found). These a

C-surfaces constitute the l)eletelist. Assume we have an update procedure, which

ISO
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can determine an Addlist of newly active C-surfaces given a Deletelist of expiring

C-surfaces. Call the update procedure with the )eletelist, to determine the Addlist.

(i) Delete all C-surfaces in the l)eletelist from the Applicability set.

(ii) Delete all C-surfaces in the l)eletelist from the intersection queue.

(iii) Delete all the ACls of C-surfaces in the Deletelist from the intersection queue.

(iv) Create an Addlist intersection queue, i.e., a sorted structure containing the
intersections of all C-surfaces in the Addlist, and all ACF boundaries of these

C-surfaces, with the trajectory p.

(v) Merge the Addlist intersection queue with the old intersection queue.

(2) When encountering a C-surface intersection, we know the C-surface must

be applicable, since we have not yet hit an A(' " undary which could invalidate it.

(This is essentially the correctness criterion maintained by step (1) of the algorithm).

Test to see if the intersection is on the boundary of the C-Space obstacle. Note

that this operation typically requires knowing the applicability set. 0

We then continue traversing the intersection queue (of course, resuming

traversal the next a slightly beyond a, in the i direction) until either an obstacle

is hit or tile goal angle is reached. As the intersection queuie is traversed, steps

(1) and (2) are performed to update the queue and detect collisions whenever an

ACF-botindary or C-surface (respectively) is crossed. S0(3) is typically quite dense

in ACF boundaries: see figure 5.2. In this figure, the small boxes depict one

dimensional slices (isomorphic to SI) of rotation space in the -b direction. The -

thin line extending out of thc circle indicates the start angle, which is 0 2.42

radians, and the heavy line extending out of the circle indicates the goal angle,

which is 0 -- 0. The intersections of the trajectory with C-surfaces are shown in the

left box (there are none). The intersections of the trajectory with ACF boundaries

are shown in the right box. Each line indicates the angle of intersection for an

ACF boundary. The applicability set is invariant between intersection points. The

moving object is shown rotating between the start and goal angle. The C-surfaces

and ACF's were general ed by the moving object and obstacles shown. However, the

actual size of each Addlist is usually small. The algorithm works by maintaining a

correct applicability set as we move in &, and by modifying the intersection queue

to remove C-surface and ACF intersections that are not ipplicable.
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5.6. Update Strategies

In this section we finally discuss specific update strategies. An update strategy -

has two parts: first, given a Deletelist of expiring constraints, it must predict a

set of C-functions guaranteed to contain the Addlist. Second, it must test each of

these predictions to determine which are really applicable. The latter operation is

conceptually trivial, but since it is expensive, we wish to make the prediction set

as small as possible. For example, predicting C, the set of all C-functions is clearly

correct, but not very useful.

A better approximation would be as follows: given a Deletelist, determine

all the C-families (i.e., families of C-surfaces) it represents. A safe prediction

would comprise all the C-functions in these families, since clearly an expiring

constraint will be replaced by another constraint from its own family. In practice

this approximation has proved useful, however, it is not the best we can do. In

particular, note that even two cuboids will generate 48 type (a) C-surfaces, 48 type

(b) C-surfaces, and 144 type (c) C-surfaces. Clearly the C-family approximaLion is

not a very tight upper bound for the replacement set, that is, the Addlist for a

IDelete list.

Let Vp, &j', and I', denote the vertices, edges, and faces of polyhedron P. For

a moving polyhedron A and an obstacle polyhedron B, we can express the family .

of constraints as:

(7 A x V,)U(VA x 7u)U(A x C,6).

"To be formal, this should, strictly speaking, be considered the domain of a bijection

C which maps plirs of generators to the function space of C-functions, but

where there is no ambiguity we will speak of a pair (gA, gi) as representing the

corresponding C-function C(g1, g1)..

For an expiring C-function (gA, glj), we would like to define a neighborhood S

map on a polyhedron P,
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9VP UF1 Up 7 (VP U el U Y>,)*

(where * is the Kleene star denoting closure) such that the set

9(gA) X gC) (5.1)

is the smallest maximal replacement set for (gA, g1). In other words, we want (5.1)

to contain all possible replacement sets for (9A, g1), no matter what the rotational

motion; but we also wish (5.1) to be as small as possible so as to minimize the

ACF computations. It is possible for 9 to be local in character: although several

constraints in a family may expire simultaneously, all that we require is that the

union of their replacement sets is correct.

We conjecture it rnig,, be possible to find exact-or at least smaller replacemcnt

sets by taking the specific motion into account. Such a strategy has not yet been

developed, however.

5.6.1. Mathematical Preliminaries S

In chapter 3, we gave an informal definition (by example) of the boundary and

coboundary operators. We now define and employ two related operators which can

be composed to define operators such as "the faces which contain vertices vI, V2,

and v:s" and "the edges which are incident at the vertices of these faces."

In this section we define the discrete boundary and coboundary operators.

Consider a finite collection of cells, S. The discrete boundary and discrete coboundary

of S, denoted DS and 6S, are defined as follows:

bs = U as
sCS

= U s.
sES

The discrete boundary and coboundary operators have very different properties

from the normal boundary and coboundary operators. For example, if f is a face,

then a2f - 0, while a f vcrt(f). To see this, observe that
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b2 = 5(5f)

=Uae
eEbf

- v.rt(f).

In fact, for any "well behaved" object P (and in particular, any polytope), a2 P = 0

and b2 P = 0 (this is a fundamental theorem of topology). However, two (or more)

applications of the discrete boundary or coboundary operator will not, in general,

yield 0.

^22Examples: S2 (Vt, V2, V3) is tihe set of faces F which contain at least one of tihe vertices

vI, V2 or V3. Since for one face f, b2f vert(f), then 52 F = a22 (vI,v2,va)
is the vertices of all the faces F. The set of edges incident at these vertices is

a26 (vI, V2, v3).

.2^3
Ezercisc: What is 19 6 (vhv2,v:-A?

Elementary Review: Boundary, Coboirtndary, and Star S

We must show that the discrete boundary and coboundary operators are well

behaved. We will do so by presenting a formal definition of 5 (and S) on a single

chain. Readers who have encountered a bit of homology will find the demonstration

transparent. Others may wish to take this section on faith, and to skip to the next

section, where we define the star operator.

Discrete boundary and coboundary operators can be considered as the ordinary

boundary and coboundary "modulo orientation." We see this a- follows. (For a

more comprehensive account see any textbook on elementary topology, for example,
locking and Young (1961)).

Let K be an arbitrary oriented complex of abstract cells, and 7 an arbitrary

(additively written) abelian group. An i n-dimensional chain on the coinplex K with

coellicients in 2 is a fu nction c,, mapping oriented n-cells of K to Z, such that if

r,,(+a") = z, then e,,(--a") -z. An arbitrary n-chain c,, on K can be written as S

* the formial linear comnbination

18t "'
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where zi ,(±~) The boundary operator a9 is amapping from nz-chains to

(n - 1)-chains. a9(z, a, ') is an (n - 1)-chain which has non-zero coefficients only on

the (n 1 )-faces of the cell a!'. Formally, let [or , on-'I be the inci'dence number for

a' and or", that is

0, if a'-' is not aface of a",

[or-, Un- j+1, if an- I is a posi tively- oriented face of a",

1, if a"'-' is a negatively- orientedl face of ar'.

Hence,

O(Z, or' Y [an; n"' -"t

To factor out the effect of orientation, we define the discrete boundary operator as

follows:

b *z a) 11,an,a' 1 1 a 1.on

Discrete coboundary is defined analogously.

Thei Star Operator

Let P' be a polyhedron. Any cell k is a face of itself, although if is not a proper-

* face. A proper face of P mnust bc lower in dimension than I-: if an n-dinieiisional

cell k is on the boundlary of P, then we call k an proper n-face of P. Thus edges

* are proper I-racei, andl vertices proper 0-faces of at 3-diniensimuMi polyhedron. Let

* K be somec complex of cclls. If k is a n-face of K, then we write K > k. We will

usually assume that a face is a proper face.

Now, let be somec set of cells in K'. The star of E (in K) Is dlefi ned by

f8



S t(, K) = E K I3 (T C E), or > T},

i.e., the set of all cells in K that contain a miember of Z in their boundary. When

there is no ambiguity we will simply write St(>]). (Giblin (1977), Hocking arid Young

(1961)).

For a cell k, define 6k k, 6 k k, and 6 S(6k), (etc). We see

F immediately that the star of {k } may be computed as

K ~ ~St({ k })= 6k.0

Using this observation, we have imiplemented the star operator by recording the

boundary and coboundary of each cell in the geometric model.

5.16.2. Local Comnputation or Replacement Sets

Type (a) arid (b) Consti-aints

Consider Figure 5.3. (V1 , f) denotes a type (b) constrainit. Consider any rotational

* nimotion from the configuration shown. Assume this rotation will cause (7) , f) to

exp~ire. We wish to determine the maximal possible type (b) replacemrent set for

(01, f), th at is, the set of nieighborinrg type (b) constrainits which cot111( replace (u1 , f)

* under aniy conceivable rotation.

Consioler the set

% (vo)-{v71 {} (5.2)

6ij ov, is just the edges which mieet at vi. Tihe discrete bounldary of these

.0edges9 is Simply the Collect ion of t hiir vertices. viis deleted, sinlce it is expiring.

Now, cons;ider a rotational iniot lin whiich causes ( 1 , f) to expire. (.)will contain

replacenncnrt type (b) coist r;6is. Hlowever, (5.2) is not iniaxirml: conisider a rotAion

which Causes (or, f) to expire, at somie orientationi at. which a Face f' conitain irig vi

is parallel to f.(See figi re 5. 1). Then :illI rhe vertice(s of f'are replaicerent s for ?1r,



Irz

0

Figure 5.3

thatisthetyp (b relaceentsetis Ver~f' - V X Ingenral th

maxial reditedtyp (b)repacemnt et or (i, ) i

-Cer , 3VI _ t, /1 X 53

that is, te te(b) relacmnt s erto isnvr~' i X{f} ngnrl h

maximl prdictd tye (b repaeent se o (i)i
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Figure 5.A. (a) A is rotating above face f, out of the page, (towards the eyepoint). f' is the
visible rar,:, with vertices vi, v2, v3 , and vi. (1)), (c) show a section through f' as A rotates.
When f ,.id f' are pa lle!, e2 , 1)3, aId v1 all aai,,;r activc a- v, expires. This is a singular
point; ,s A continues to rottr, I 2 and v, expire, and v3 rermains applicabhle. The irstailneous
replacen crt set for v, s yr rt(f ) - { v

This analysis is, of course, symmetric for type (a) constraints. In this case, f S

would be interpreted as a face of A and v, as an obstacle vertex. The equations

given all work when the generator pairs are reversed.

* Claims (5.3) and (5.4) are particularly interesting, in that they suggest that

we can detect all expiring type (c) constraints by examining the ACFs of type (a)

and (b) constraints alone.

*O 5.6.3. )eflnition or the Neighborhood Mapping for the Replacement

Generators

The replaCemcnt set in (5.3) makes a certain amount of sense: the rcplacemeints

for an expiririg generator v, are to be found in the faces con taining 1)1. On a

polyhedron I', the general neghihorhood function 0 is a sipl,1 10 'ncralization of

I .t

e S
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Figuire 5.5. Section through Cb. be, ={VI~, V2)

(5.3):

9(.) =St(vert(.), OP),

* that is, 9(k) is the set of all cells which contain vertices of k as faces.

Let D be a Deletelist. The smallest maximal replacement set for D is

U 9(9A) X .9(gij).
(gA,gn,)ED

This particular formulation requires that we ignore "nonsense" pairings such

as all members of VA X V11. This is easily accomplished by appropriate construction

of the function C mapping pairs of generators to the function space of C-functions.

We extend the domain of C to bA X bB, and map all generator pairs except those

in (.7. x VII)U(VA X 71) U(eA~ X ll) to 0. :
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A Correctness Proof for 9

We shall now argue that 9 is the correct mapping to predict smallest maximal

replacement sets. Let (9A, gHj) be an expiring constraint at some orientation e. The

replacement set for a constraint is the Cartesian product of the the replacement -

-sets for its generators. Hence the the replacement set for (gA, g1) is r(gA) X r(gn).

Consider the replacement set r(gA) for 9A, i.e., the set of constraints 0

r(gA) X {9}

which will replace (9A, gO). This set of constraints will become active at orientation

e, while (9A, gB) expires. Let

G { gA } U r(gA).

Note that (1) all constraints in G X { g,/ } must be applicable at orientation 4, and

(2) 0 must lie on the boundary of each of their applicability regions in SO(3). We

say that at E each g E G is in ACF boundary condition. Note further that r(gA)

is not a predictive replacement set, but any actual replacement set for a generator

9A under some arbitrary rotation.

We will first show that all g E G are coplanar.

S."All ACFs are defined in terms of a contact vertex and an applicability vertex

(see chapter 3). The contact vertex is brought to rest on some applicability plane

(which is parallel to a face or the other polyhedron), and the applicability vertex •

is constrained to lie above that plane. When a constraint is in ACF boundary
.. - condition, then both the contact vertex and the applicability vertex of at least one

or its ACFs are constrained to lie on the applicability plane. (We consider type (c)

constraints to be composed of four such ACFs, two of which are type (a) and two .

or which are type (b) ACFs). In addition, observe that each line segment .

(Applicability vertex, Contact vertex)

190
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lies on some edge of either polyhedron A or polyhedron B. In fact, these edges,

which we term applicability edges, cover the edge graphs of both polyhcdra, although

• the mapping is many-one. We are given a generator gA for a constraint (gA, g). .. ..

The constraint is placed in ACF boundary condition. This requires aligning an

(applicability) edge or A with a face of B (or vice versa). (This point is fundamental

to understanding the correctness argument: if both contact vertex and applicability -

vertex must lie on the applicability plane, then the applicability edge, which is

an actual edge of A, must be aligned with the plane). We are then asked to find

all constraints which can be simultaneously placed in ACF boundary condition. -

This is equivalent to asking, "Given one edge of A aligned with some face of •

B, and maintaining this alignment, what additional edges can simultaneously be

aligned with faces of B, such that all associated constraints are in ACF boundary

condition?" (By associated constraints we mean the following: the aligned edge is

considered as an applicability edge. Since the applicability edges cover the edges

of the polyhedra, the associated constraints for an applicability edge CA are those

C-functions for which the orientation of eA determines applicability.)

Now, by fixing an edge eA at some arbitrary aligned orientation (with a

face of B), we retain one rotational degree of freedom about eA. We wish to

choose this rotation such that (1) the constraint associated with eA (i.e., (gA, gj))

remains applicable (and of course, in boundary condition), and (2) a maximal set .

* of constraints is simultaneously placed in boundary condition. The replacement set

we compute is the union of these maximal sets. (2) requires a maximal number of

additional edge alignments, and must also preserve the disjoint interior criterion.

So choosing 0 so as to maximize the number of edge alignments propagates the

alignment constraint. Clearly, by propagating the alignment constraint, we obtain

a set of coplanar edges (recall that A and B are convex). Each edge represents a

contact vertex and an applicability vertex for (one or more) ACFs in applicability

°. boundary condition. The associated generators must also be coplanar.

We have seen that all replacement generators r(gA) must be coplanar with

9A. (As usual, there exists a symmetric argument for r(glj)). Given an expiring

generator g1; on a polyhedron P, we wish to predict replacement sets. Replacement

........... ... ... ... ... ... .:...
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* sets are obtained from maximal sets of coplanar generators which contain vertices

of ge, Clcarly, the maximal coplanar sets of generators for a convex polyhedron

are exactly its faces (and their boundaries). Hence, to predict replacement sets, we

must find the set of faces or P (along with their boundaries) that contain vertices

of gi'. This set is C

.9(gl') =SL(vert(g,.), aP).*

5.7. Analysis and Evaluation

We have implemented algorithms for moving in some selected rotational

dlirection until either the goal or a C-surface is reached: The naive algorithm (see

section 5.3), the predictive update algorithm based on the C-surface family as a

loose maximal bound on the replacement set (section 5.6), and the incremental

update algorithm based on 9 (section 5.6.3). We next show that the naive algorithm

an(1 the 9 algorithm both have thc same asymptotic complexity. This means that

their performance wNill largely depend -in the ronqtant factors in the computation.

We discuss empirical resuilts to indicate the size of these constants.

5.7.1. Complexity

Naive Algorithm: 0(n log n)

Let N be the niumber of C-surfaces in the environment (including non-applicable

C-surfaces). if the moving object is made uip of mo convex polyhedra, with ko

* generators each, and the obstacle environment comprises no convex polyhedra

with jo generators each, then clearly N =Jokomo-no. The complexity of the naive

algorithm is as follows:0

* (i) Intersect trajectory with all C-surfaces (0(N)).

* (ii) Sort intersections arouind S'. (0(N log N)).

(iii) F~or each intersection, determine if it is applicable and on the boundary of a
C-Sp7acr obstacle. F-irst., test to see if the C-suirface is applicable by examining
its ACI~s. If so, there are two options: (1) if the applicability set is known at the
intersection poiit, we can test to see if' the other C-functions in the family are
negative or zero. (2) lF* the applicability set is not known at the intersection point,
We Carn compte tlhe displaced lace or the Minkowski solid corre'spondling to the

- two generators For the C-surface. Next, test to see wvhether the intersection point
*falls within the face. (1) would make this step ((jk)o Ono)) )
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However, (2) needs only examine the generators of a constraint, and allows this
step to be O(N). (O(N)).

We see that the complexity of the naive algorithm is O(N log N). .

9 Update Algorithm: O(N log N)

The complexity of the 9 update algorithm is as follows:

(i) Intersect trajectory with all applicable C-surfaces and their ACFs. Let the
number of applicable C-surfaces be M < N, and the number of ACFs per
C-surface be a. (N(I + a) intersections = o(N)).

(ii) Sort the intersections around S n. (M(1 log 1)).

(iii) For each intersection: Sort, add, and delete j C-surfaces from the intersection 6
queue. (O(j log j)).

This yields complexity:

NoN N N . ..N
N g - + jlogj- -(logN- logk) + -(j logj)

- O(N log N).

In the next section, we justify treating k as a constant. -

Actual Performance

In practice, the naive algorithm has run faster than the 9 update algorithm

for the specific problem of rotating until a C-surface (or the goal) is reached. As the -

complexity analysis has shown, since both algorithms are O(N log N), the difference

in performance will be due to different constant factors. A good estimate for k is

10. For example, in a typical environment with 624 type (a), 704 type (b), and 1.872

type (c) C-surfaces, 4 sample applicability sets have sizes 353, 362, 365, and 355. j

is quite small; for this environment it is typically between 2 and 40. The number of

ACFs per C-surface depends on the degree of the vertices. For trihedral vertices,

for example, a < 4 (type (c) C-surfaces have 4 ACFs). Hence this tends to balance 7-9 -

out any possible gains, since k is not much bigger than a.

Once more we should remember that the 9 update algorithm is designed to

solve the more general problem of applicability decomposition of SO(3), while the

naive algorithm has been specialized to solve the "rotate to a C-surface" problem.
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We speculate that similar specialized algorithms may be developed as fast solutions

to specific spatial planning problems. However, decomposition tools are a more

general solution which can be applied to a whole class of spatial planning problems. .

5.7.2. Related Work, Searching and Lazy Evaluation

The implemented planning system is described in chapter 2. The control

structure of the algorithm is a search. The search employs certain local operators

for moving between configurations. One such local operator is precisely the "rotate

to a C-surface (or the goal)" algorithm.

As for most heuristic2 search algorithms, an adversary can probably devise a

find-path problem which must require an exponential amount of time to solve. This

does not imply that a polynomial-time algorithm using the mathematics presented

in this thesis could not be devised; indeed, the theoretical work of Schwartz

and Sharir (1982a) suggests this possibility. However, in practice, the planner has

performed quite well. We offer the following explanation for why the planner should,

in average cases, perform better than in the adversary situation.

In the theoretical work of Schwartz and Sharir (1982a) and Schwartz and
Sharir (1981), the concept of non-critical regions is introduced. A non-critical

region, intuitively speaking, is a region in (free) configuration space where the

constraints are invariant. We employ similar constructs via sets of non-redundant ..
constraints, and by means of applicability sets. In Schwartz and Sharir (1981), for

example, free space is decomposed into critical and non-critical regions, and the

connectivity of these regions computed. The connectivity graph is then searched

for a path. However, computing these regions is (geometrically and algebraically)

quite difficult. The regions are at least as complex as the C-Space obstacle and

applicability regions.

Instead of precomputing the applicability regions (or knowing them a priors), -

our planner computes them as it explores configuration space. While in the worst

case the entire applicability decomposition must be calculated, this case does not

2WC 11,.4(! t e( h!rm hcuristic in reference to the Mime complexity, and not the cornplcteness or the - .
algorithm.
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arise in practice. We effectively adopt a policy of lazy evaluation of applicability in

devising the planning algorithm.

0
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6
The C-Voronoi Diagram and its Relationship

to Intersection Manifolds

6.1. Introduction

For a finite set of points P in the plane, the Voronoi diagram is the sct or all

points in the plane which are equidistant from two or more points in P. The Voronoi

diagram for P is a network of straight line segments. D~rysdale (1983) introduced

the generalized Voronoi Diagram (or GVD) for the plane: for a set of polygons in the

plane, the CVI) is defined to be all points in the planie which lie (perpendicularly)

* eqidistant between two or mnore polygons. The GVl) is a network of s:traight line

segments and paIrabolic sectionis. If the polygons are considered as obstacles, the

GVI) represents the network of paths through free-space which maximize clearance

from Cte obstacles. Brooks (1983a) arid O'1diniaing and Yap (1982),6Odniaing,

Sharir and Yap (1982) have dleveloped definitions and algorithmns employing an

extension of the Voronoi diagrain for low-dimiensional configuration spaces. Nguyen

(1983) also discusses the relationship of global methods to the CVI).

More formally, the generalized Voronoi diagram (and its extensions) decompose

the free space into a set of regions, f 1?, ), such that all points X E llj are closer to

0o10 obstacle than lto any other. Tfhus points on thc (IVD arc equiudistanmt from two

* - or mare obstacles.
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Figure 6.1. A picture of the generalized Voronoi Diagram ror a bounded 2D workspace containing
four polygonal obstacles. Reprinted with permission from Nguyen (1983).

In this chapter, we extend the concept of the generalized Voronoi diagram to the

six dimensional C-Space R3 X SO(3), to provide a formal, constructive definition

of the C- Voronoi Diagram, or CVD. The CVD is an attractive construction, in that

it contains a representative component for each "branch" of free space. Each such

component is submanifold of dimension 0 < d < 5, called a Voronoi manifold. We

will derive the following connection between intersection manifolds and the CVD:

Let p be a path along the CVD. p lies along a connected chain of Voronoi

manifolds, VIl..., Vk. We demonstrate that for each Voronoi manifold Vi, there

exists an equivalent intersection manifold of level C-surfaces, Ii. Furthermore,

we also show that for every connected chain of Voronoi manifolds, there is an

equivalent connected chain of intersection manifolds (of level C-surfaces). (The
equivalence we demonstrate is actually stronger that homotopic equivalence).

This yields an immediate (theoretical) completeness result for planning along
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intersection manifolds. While our proof is constructive, it cannot be considered an

effective procedure. The charts for the Voronoi manifolds are undoubtedly very

difficult to derive. This in turn makes it hard to develop planning algorithms along

the C-Voronoi diagram. In C-Space, the most attractive feature of the CVD is not

that it maximizes clearance from obstacles, but that it represents the connectivity

of free space. In other words, given the CVD, the Movers' problem can be solved

by connecting the start and goal configurations to the same connected component

of the CVD. But since the Movers' problem has already been reduced to the task of

* navigating a point, it is clear that, modulo some uncertainty bound, we do not need

to maximize clearances while in planning paths in C-Space. We demonstrate that

instead, it is possible, in principle, to devise a planning algorithm along intersection

manigolds--for which we have derived charts (chapter 4)-which is equivalent to a

planner along the CVD.

Generalized Voronoi Manifolds

In this section we define the C- "r'ronoi Diagram (CVD) for the configuration

space R3 X SO(3). Note that for Euclidean configuration spaces we would employ
W3"

the standard techniques (Drysdale (1983)). The metric in l3 X SO(3) is non-obvious,

and the CVD does not reduce to the GVD when rotations are factored out. However,

it has the same connectivity as the GVD. The CVD for configuration spaces without

a Euclidein distance metric is fundamentally different, and is defined as follows. - 0

To0 define the CVI), we rely on the collection of pseudo-metrics provided by

thv geometric interpretation of C-function values (chapter 3). Intuitively, within

some well-defined region in free-space where a C-function is non-redundant, its -

value characterizes the translational distance to either (1) an obstacle face, or (2)

the plane of the obstacle face. Formally:

In this chapter, we will use 7 C R 3 X SO(3) to denote free space. See chapter .

2 for a formal review of charts and atlases. As noted in more detail in chapter 2, in

this thesis we usually specify charts via the inverse form h E" -- M (where E" is

an open subset of 9?") with the understanding that it is the inverse (or set of local

inverses) h ' which provides the family of charts { (h-',wi)}, for Ui Wi h(E-).
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Definition (I): Let N be the set of families of C-functions on R- X S0(3). For

X E 7, let AX be the set of maximum, applicable, non-redundant C-functions

within families, that is, if M E -M is a family of C-functions, and M' C M is

the subset of applicable and non-redundant C-functions at X, then M contributes

to Ax the function f C M' such that f(X) > h(X) for all h E M' - {f}. If k

functions in M' tie for maximum, then M contributes all k to Ax.
0

Let n be the dimension of C-Space. Now, X E CVD if there exists a maximal

subset B of Ax, containing at least two and no more than n C-functions, such that

all functions in B have the same value b0 at X and all functions in Ax - B have a

value greater than b0 . We say that X E CVD lies on an (n - IBI + 1)-dimensional

Voronoi Manifold. The C-Voronoi Diagram for C-Space is the union of these

Voronoi Manifolds.

We have seen that a level C-manifold is analogous to a level surface in 90, in S

that it is the set of configurations { K If(X) = t} for some applicable C-function

f. Clearly, points on a k-dimensional Voronoi manifold 1) lie on the intersection of

n - k - 1 equal level C-manifolds, i.e.,

ft(X) f.-k+i(X) (X)

where the level t(X) is allowed to vary as X moves along V. Furthermore, we insist

that the C-functions f constructing the Voronoi manifold must belong to pairwise

distinct. families.

When we say that a Voronoi manifold 'Vi is constructed from a set of constraints 0

Fi, we mean that all the C-functions f E P, have equal value along Vi. An intersection

manifold constructed from Pi is the intersection of level C-surfaces for constraints

in i. By this we mean that first a level is choser. for each f E Fi, and then

the resulting level C-surfaces are irntersected. In general, a level C-surface for a

C-function f at level f has the form

f 19. .9
.. ' .' '. . .

.' 0-.?' '

f.-t(:)
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Figure 6.2. Strongly cquivark'it intersection inhnirolds, and thec bridge matriirolds corincctirg themn. 0
Each V, is strongly vquivalcnt to Ii. Each bridIge manifold Bj,,4 . is eqivalen~t (but not strongly
cqtiivalcnt) to Vi.

f-'(e) is the trivial intcr.ection manifold, that is, the manifold constructed by

intersecting one level C-surface with itself. The intersection of two level C-surfaces

is

ii = 'ejfg-'(2).

The intersection manifold 11 is constructed from the same C-functions at .Aiffcrent

levels:

An Overview of' thte Proof's
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Let p be a path along the CVD. p lies on a connected chain of Voronoi

manifolds. Call this chain V1, ... , Vk. For a Voronoi manifold Vi we say that an

intersection manifold 1i is equivalent to Vi if (1) the set of C-functions which -

construct Ti is a (possibly non-strict) superset or the C-functions FI which define

Ii, (2) 1i is homotopically equivalent to Vi, (3) 1i lies in free space, and (4) all -

C-functions in F! satisfy definition (1) along Ii. If F- f/, i.e., 1i is constructed

with exactly the same C-functions, then . i is strongly equivalent to Ti.

Note that by definition, each Vi is restricted to where the conditions of definition

(t) hold, i.e., to sonic region NR(F) C .7 where all C-functions in Fj constructing

Vi are maximum, applicable, non-redundant C-functions within families. Now, in

general, 1i is an unbounded level set which cannot lie in free space everywhere.

Thus by convention, we also restrict 1i to the region of interest NJ?(I"?) where

all C-functions in F! satisfy definition (1). That is, NR(F,!) = {X I F? C Ax }.

Instead of writing iA NIN (F:) everywhere, this convention is assumed throughout.

In is an interesting question whether, for every Voronoi chain Vt,• ..., Vk, there

exists a connected, finite, corresponding equivalent or strongly equivalent chain of

intersection manifolds 11,..., I, (where k is not necessarily equal to k). Theorem

(1) shows that for all Voronoi manifolds Vi, there exists a strongly equivalent

intersection manifold Ii. These 1i might not form a connected chain. Theorems

(II) and (1Il) show that each disconnected pair of intersection manifolds 1i and S

li+l can be connected by an infinite sequence of "bridges." Each bridge is an

intersection manifold equivalent (but not strongly equivalent) to Vi. We then argue

that since there exists an infinite bridge sequence, therefore there must also exist

a finite bridge sequence. Finally, (theorem IV) we show that there exists an entire

intersection chain

,U 

which is bornotopically equivalent to the entire Voronoi chain

V, U'". Uv ....
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Theorcrii 1: Let Vk be an rn-dimiensional Voronoi manifold, constructed fromn a

set of applicable, non-redundant constraints A, which satisfy definition~ (1) along

Vk. Theni if there exists an intersection manifold .Tk of level C-surfaces for the

constraints A, and if the constraints A satisfy definition (1) along 1k, thcn Vk andl

It are honnotopically equivalent.

1Proor. We will show that two intersection manirolds constructed from thle same

C-functions at different levels are hoinotopically equivalent. Next, we demonstrate

that the Voronoi manifold is essen~tially a special case of intersection manifold.

Let Vk be an rn-dimrensional Voronoi manifold,

_Vk ~X fl(X) .. f(X)} (n=6 -rmn+

where the fi are chosen from A as defined above (see definition (1)). Note that

the value of the fi may vary with X E Vk. Let 'k be a (mn - 1)-dimensional (or

0-dimensional, if m =0) intersection manifold of level C-surfaces constructed from

the samec functions fi:

Ik = X I (X) .t= ff 2(X) 1 2,...A1 (X) t'}

The region of interest for Vk and .Tk is of course restricted to N?({ A }) where the

functiojis {fi satisfy definition (1). 'k differs from Vk in that on 'Vk the values

(levels) of the functions fA are equal, whereas on Ik, they are ziot. Furthermore, on

Vk the valtie varies, whereas on Ik the values are fixed.

kmay be expressed as

Ik fl,(to

The claim is that Ik is homotopicalyeuvlett k that s, that if g Ek

is a chart for Ik and g' :~ E * 7 is a chart for Vk, then there exists a continuous

homotopy deformation h E k y 11 1. between g and g' such that
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h(Y, 0) = g(Y)
h(Y, 1) = g'(Y).

As usual, I denotes the unit interval [0, 11. For a review of elementary

homotopy theory consult appendix II.

The charts g and g' exist, since 1k and Vk are manifolds. (Assume without loss

of generality that only one chart is required). A level C-manifold fL-'(f) (for some

level t) is a 5-dimensional manifold and hence there exists a chart Ci E 5 - jr for
fT-1(t). We demonstrate such charts in the proof of claim (I.1), below.

Let ev be any achievable value for the functions fi along the Voronoi manifold

Ilk, that is, any IV such that there exists some X E Vk satisfying definition (1) for

which

ft(X) .... fn(X) =tv.

Now, tfi + (I - t)6, is a linear cornhnation of the levels -i and ?V for fi. Since each

level C-surface

fT-(ti + (1 - t)ev)

is a manifold, each has a chart of the form Ci, above. If t E [0, 1], these are .n

C-surfaces for fi with level I E [tV, i], and their charts may be parameterized'

by t. Suppose we have a set of several level C-surfaces (as in Ik). Their charts

may be intersected to form a new chart for the intersection manifold. We define

h Ek X I - 7 to be the chart for the intersection manifold at t, such that 0

h(E , t ) = f'tti + (t - t)tv ." : "

n f•

We call h a chart family for the intersection manifold.

Claim (1.1): The chart family h can be constructed such that h(Y, 1) is continuous

in Y and t, within the area of interest for Vk and Ik. (For proof, see below).

'See the proor or claity, (I.I), where h(: is mich a chart.
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Recall that Ii is the value (or level) of fi on the intersection manifold Ik. Then

h : Ek X jt -P 7 is a homotopy between g and g', that is, h continuously deforms

2 k into V.k(I-V), where we use V)k(tv) _ Vk to denote the Voronoi manifold restricted 0

to level tv, i.e.,

Vk(LV) {x I f (X) -f--(X) = } C 7.

Verify that

h(Ek, 1) = n fl-(tv)

and that

k-- A/ .v'

T k(fv).

We have shown that Ik '-h Vk(V) ( denotes homotopic equivalence) for all

achievable L,. We must now show that Vk(4h Vor+ eq c or + C).

We are interested in continuous deformation within 7. Hence Vk may be .0

multiply connected within 7, so long as it does not wrap around obstacles. Vk must

be contractible to a point (within 7). This is guaranteed by the construction of A

(definition (1)) and 14, i.e., by the choice and domains of the functions fi. To see

this, consider that if Vk did wrap around an obstacle in C-Space, then the value of

some fi would have to go negative. Hence, it would become redundant, and could

not be used in the construction of V. Note that the C-Voronoi diagram, which is . -.

the union of Voronoi manifolds such as Vk, will, in general, wrap around obstacles S

and be multiply connected.

Furthermore, we can choose c such that the topology of Vk does not change

too drastically between Vk(lv) and Vk(tv + c). (This is possible since Vk is -

finite-branching). So
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k1 h VkfvV) -h Vk(IV + 1i) L--h Vk(IV + 62) S-- .. Vsk(IV + )0

*What we have shown is that 'k is liomotopically equivalent to the "easy" parts

of Vk (where the levcl of the Voronoi manifold is constant). We next showed that-

because the topology of Vk is simple, we can paste together these restricted Voronol

* manifolds. *

Proof of Claim L.1: The existence of a continuous chart family for the intersection

manifold is based on our knowledge that the manifolds exist at certain levels, and

from our ability to demonstrate such a chart for the intersection manifold. In

chapter 4, we exhibited C-functions of six variables for the C-Space R3 X SO(3):

fi (Z Y, Z Op 0 0)

which are continuous, affine in x, y, and z, and multilinear in the sines and cosines

of the angles ik, 0, and 0. The Linear Form for a C-function fi R: X S0(3) R

is an equivalent expression

fixy,z, e) E E()) + E,2(e)y + E3(O)z + E4 (0), (6.1) -

where Ei S0(3) - R (for j 1, 2, 3,4). Now,

f(t) ker(f (X, Y, Z, ,0')-e)

A chart for f,'1(e) may be found by solving

MX(, Y,z, , 0) -e t 0

for x (or jor z) in tcrms of the other variables and t:
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E '+3 Z+E 4 -1

* .(We have droppcd the 0, since the functions E, are constant with respect to x, y,

* z, and4I) If Ei 0, then the solution for y' or z may be employed. 'This yields the

obvious chart

C:.E' 33 X SO(3)

which we presented in chapter 4. C is affine in t, and can be used to construct a

family of charts

hc; (y, ) %3 !J'X SO(3)

for the C-surfaces

f'(f) = tt4 + (1 - t)ev)

which is continuous in Y =(y, z, V,, ) and f. hC is clearly a homotopy between -

level C-manirolds for .

0Chapt er 4 also derives charts for f T'(ti)fnfj'(ti), f vi) n f;' (j) n fk (4),

(and so on) by solving thte C-functions simnultaneously for the intersection manifold.

F'or example, a chart for the intersection manifold of degree three

can be constructed by solving three sim~ultaneous equations with the form of (6.1).

For rbirar coeliccnt E~and levels 4i, this intersection may not always exist.

Hlowever, we know a priori that it exists for the specified levels ti and tv. From

the form of (6.1), it is clear that if the intersection manifold exists for some levels
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i (and if the coefficiet functions "i are independent), then it will exist for all

levels. We omit a discussion of intersection manifolds of higher degree: the reader

is referred to chapter 4 for further details. * 0

*Corollary: For evcry Voronoi manifold Vi, there exists a strongly equivalent

intersection manifold Ii.

Corollary: If Fi is the set of constraints used to construct Vi, let N?(Fi) denote

the region in free-space where all of the constraints in I, satisfy definition (1). If

* i exists, then in every connected component of N?(FI'i), there exists a strongly

equivalent intersection manifold 1i built out of Fi.

Proof of corollaries: All f E FI, exist within NR(Fi). Pick any X E NR(Fi).

Evaluate all the functions in 10i at X to obtain a set of levels. The intersection

manifold must exist at these levels, since we have demonstrated that X is on the

intersection manifold. The intersection manifold from the C-surfaces at these levels

is by definition and by theorem (I) strongly equivalent to V. I

Next, observe that for all t < i < k, either Vi C Vi+ 1 or Vi+1 C Vi. In other

words, to move from Vi to "Vi+l, we either add or remove one or more constraints: " -

Vi = { X ]f1(X) = A, I -- """:
Vi+1 = {X If(g).... fk

and either ki > ki+I or ki < ki+ 1.We call ki and ki+1 the degree of the Voronoi

manifolds.

We have shown that for a Voronoi chain V1,. .. , Vk, a sequence of intersection

manifolds I,*. , .k may be constructed such that each I"i is strongly equivalent

to V (for 1 < i < k). However, the sequence of intersection manifolds may

be disconnected. We now furnish a theorem demonstrating that the intersection

manifolds may be constructed in such a manner that they can be connected together

by a series of special intersection manifolds, called bridges.

Theorern I: The intersection manifolds 11,12,..., I may be constructed such

that each pair of intersection manifolds 1i and i f- can be connected by a sequence
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of "bridges." Each bridge is an intersection manifold equivalent (but not strongly

equivalent) to Vi.

Proof: Let I be a strongly equivalent intersection manifold to V1, constructed

with C-functions Fl. Along It, all constraints in F1 are non-redundant. Let V2

be the next Voronoi manifold after VI in the Voronoi chain, and let F be the "

constraints constructing V2 . 0

Case (i): If F2 C F1, then V1 is lower in dimension that V2. We can construct

12, a strongly equivalent intersection manifold to V2 , which is connected with ,1,

be removing one or more constraints in "l. (We remove exactly the constraints

F1 - F2). This is possible because if F2 C F1, then NR(F,) C NR(PF):

2= fl !,7'(c,) S

hEFi
2 n. flci. (6.2)

Strictly speaking, equation (6.2) should employ the subset notation (C) instead of - 0

equality (=), since .11 and 12 are restricted to where the intersection is applicable and

non-redundant. However, the equality makes the construction more transparent.

Note that the construction still works with the subset notation, since NR(FI) is a -

subset of NR(E2 ). Since F2 C F,, I and .2) agree on the levels for C-functions in

F2. Since It C 22, It and 12 are connected.

Case (ii-a): Suppose, however, that F C F2. Then V2 is lower in dimension

than V1, and NR(F) C NR(F). S

We know that I1 C NR(F,). If Ii fl NR(F) =, 0, then we can construct 12

from '; such that 12 C NR(F2), 12 C I|, and in addition, I| and 12 agree on the

levels in 1"1. Construct 2 as follows: pick a point Xo E 1, NNR(F,2 ). Evaluate each

f, E F2 - F1 at X 0 , to obtain a level cj fj(Vo). Construct:

12=ifl( fl f,,(c,))..
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Figure 6.3. Case where I, f NR(F I) 0.

We showed earlier that 12 may be constructed in this manner.

.j Case (i-b): The hard case is when iZ fl NR(F) 0 0. In this case, we must S

construct some strongly equivalent (to V2) intersection manifold 12 C NR(F2) with

different levels from "1 with respect to the C-functions Fl. We then build a sequence

of bridge manifolds, entirely within NR(FI), between 1 and 12, connecting them

together.

The bridge intersection manifolds are constructed out of some subset F0 C F1 ,

and each bridge manifold is equivalent (but not strongly equivalent) to VI. The

bridge manifolds are formed by relaxing one or more constraints in F to be able -

to move from NR(F) - NR(F2) into NR(F2). The motions slide along intersection

manifolds constructed from the remaining constraints. Once inside NR(F2), we

construct 12 there, and 12 is strongly equivalent to V2 . Note the levels at which 12

is constructed, (with respect to the constraints in FI), are typically different from
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Figure 6.4. Case where hi n NR(F2) 0.

the levels at which I is constructed. The existence of bridge manifolds is covered " .

in theorem 1I. -

We will use the dot notation for the Riemannian inner product on the tangent 5

space at X. The normal to a level C-surface f-(t) is Vf, and depends on the

inner product. We assume throughout that the normals are unit vectors. A basic

concept in these proofs is that of general position, or transversality (see Hirsch,

1976). Two submanifolds M, N of a manifold V are in general position if at every

point of MflN the tangent spaces of M and N span that of V. If A and B are -

not in general position, then arbitrarily small perturbations of one of them will put

them in general position. In our case, M and N correspond to level C-surfaces and -

their intersection manifolds, and V to R3 X SO(3). The proofs still work even if .

M and N are in general position only at "many" points of Mf nN. We will write "

the condition of general position for two level C-surfaces f-'(tl) and 9-1(6) as

Vf Vg A1.
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Theorem III The Existence of Bridge Manifolds: (Bridges of dimension five).

Let S be a path-connected component of NR(F), Xo, Xi E S, and f,g E Fl. Note

that S lies with in the domain of f and g, and that by construction, i(S) is an

open set. Then if Vf - Vg 74 1 within S, then there exists an infinite sequence of

five dimensional bridge manifolds within S, connecting Xo and X 1 .

Proof: Each bridge manifold will be of the form f- 1 (cf) or g-(), for different

levels of c! and cg. Note that as we vary cj, f-'(cf) covers S (similarly for g).

Let Tx denote the six dimensional tangent space at X. If co = f(X), the level

C-surface f-'(co) is a five dimensional submanifold of R' X SO(3), with a five

dimensional tangent space, Tf. That is, identifying TX with a subspace of TX,

T - {v E T x v .Vf(X) O}.

It is easy to show that Tx UTX spans Tx, for all X where Vf(X) Vg(X) 34 1.

Let NfX denote the normal space at X with respect to f, such that

N -{ v E Tx Iv = Vf(X)},

for all scalars ci E R. So Tx = N 3 Tf . Clearly, if Vf(X) . Vg(X) 74 1, then
Nf is spanned by Tx UT9. Hence T- -=T + T.-

Since the space of differentially tangent directions to the two level C-surfaces

at X is equal to the space of all directions, there exists an infinite sequence of

differential moves along level C-surfaces for f and g, at different levels, to realize

any path within S. Since S is connected, there exists such a path from X0 to X1. "

Corollary I1.1: (Bridges of dimension four). A direct result is the existence

of a sequence of bridges which are four dimensional intersection manifolds. Let fn,

f2, fh, fh E FI. Suppose that within S, Vfi(X) • Vfi(X) 74 1 (for i 7' j). Then

there exists an infinite sequence of bridges between X0 and X1, where each bridge _

is of the form

211.
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Figreal 6.r. al inde~penden icat X along l he irecta sum of thg agetsaest.l

possible intersection manifolds IBu(ij) is clearly TX:

* Tx(T~flT~+(T~flT~)f- +(T f )+-.. +(T~fT)

(Of course, i j for all terms in this sum).*

Corollary 1lL.2: (Existence of a finite sequence of bridges). We now argue that if

p there exists an infinite sequence of bridges from X0 to X1 within S, then there also

exists a finite sequence.
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Informally, we argue that it is always possible to to move a certain distance

along each level C-surface, and that this . cannot grow arbitrarily small. First of

all, note that S is not infinitesimal, and that i(S) is an open set. (if it were not, 6

it might be necessary to make an infinite number of differential motions to remain

within S).

We also appeal to the well-behaved structure of the level C-surfaces, and their

intersection manifolds. The level C-surfaces are smooth, with normals that change

continuously. (If the normals changed discontinuously, we might not be able to

take finite steps). Thus we can move a finite (i.e., not infinitessimal) distance along

the surfaces to a point where the normals are still independent, and where the

surfaces are "similar" (i.e., having normals in almost the same direction as before).

Furthermore, for any two levels of f within S, there exists a homotopy between

them. These continuity arguments indicate that it should be pos;iible to move in

finite steps along the intersection manifolds, and hence we can reach X 1 from X 0

in a finite number of bridges.

Suppose from X 0 to X 1 there exists an infinite sequence of bridge manifolds,

but no finite sequence. Then either (1) i(S) is not an open set (and therefore

only differential motions can stay within it), or (2) for a subset P C S, whose

cardinality is that of the continuum, the entire tangent space is not available along

the level C-surfaces. In both cases, our initial hypotheses are violated. (1) violates

the assumption i(S) is an open set, and (2) the assumption of general position.

We formalize this argument as follows:

Definition: Let ZI be a metric space, and p, p -1 U be paths in U. Let {U.}

be an open cover of p(!1) in U, where each U,, is a nvighborhood of radius < r,

and U. nfp(1 1) o 0. We say that p' approximates p at resolution r if { U, } is an

open cover for p'((') also; that is, if p'(I1) C U, U..

Claim (111.2.1) shows that an arbitrary curve in some neighborhood U of

free-space can be approxirnated by a path within U along a finite sequence of

intersection manifolds. The proof or Cor. (111.2) then employs the fact that the curve

is compact, and therefore can he covered by a finite number of such neighborhoods.
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*f f-1(cl)fnlQI(cr). The path segment between X0 and Xt may be approximated by a path sliding
first along g-'(col from Xo to X', and then from X' to X, along f '(c).

Claim I1L.2.1: Any path within a neighborhood where f and g are defined, may

be approximated to an arbitrary resolution by a finite sequence of motions along-

level C-surfaces of f and g.

*Proof. We will regard level C-surfaces of f and g as trivial intersection manifolds.

Consider how one can approximate a path from X0( to XI by a path along

intersection manifolds. Let d be a metric on W3X SO(3), and f, q be C-functions

with inverse images covering a neighborhood containing XZ0 and XZ1. Let co f(Xo)

and cl = f(X1 ). Xo lies on the intersection manifold f '(ro) flg-'(co), and X 1 lies

on f-'(c)lg'(c). Construct f1 I(ci)Ag 1 (co) (refer to fig. 6.6), and choose X'

* - to be the any of the closest points to X01 on this manifold. We can construct a path

which slides from X 0 to X' along g '(6)), and then slides from X' to AZ, along

f (ci). We wish to demonstrate that by choosing AZ1 sufficiently close to XZ0 , XZ'

can be made to lie arbitrarily close to YO; that is, for all E > 0, there exists a
* and c 0  g(X 0 ) g(X 1 ).
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6 > 0 so that d(Xo,X') < e whenever d(Xo, Xt) < 6. This is definitional, since

lirx 1 .. x f (cl) f-'(co).
0

Thus for every neighborhood B,(Xo) of radius r about X 0 , there exists an X, E

B,(Xo) such that X' E Br(XO) also. Furthermore, d(Xo, X') is finite (and non-zero).

Of course, a similar argument holds for the path segment between X, and X'. Thus -...

any path within a neighborhood where f and g are defined, may be approximated to

an arbitrary resolution by a finite sequence of motions along intersection manifolds.

Clearly, similar arguments hold for intersection manifolds of higher degree.

Proof (Corollary 111.2): (Sketch) Let p(I') be a path within i(S) from X 0 to X

along an infinite sequence of intersection manifolds. In short, p(i) C i(S). Choose

an open cover { Ua }, relative to R3 X SO(3), for p(I) such that U. U,, C i(S). 401

. p(I1) is compact, hence there exists a finite subcover, i.e., for finitely many indices

S..., cn, we have

p(i') C Uo1 U...U U.- C i(S).

Now, for each U,, we can construct a path p'(I1 ) along a finite sequence of

intersection manifolds approximating p(ii) fn u, (Claim 111.2.1). That is, p'(I1 ) is :.

also contained within the closure of U,. Furthermore, it is not hard to construct

p' such that it leaves the neighborhood Ua, at the same points as p, that is, so

that p( ) f Ua., = p'(I ) n aUa,. Since this is true for all U,,, then p(11 ) can be

approximated by some path contained within U, 1 U ... U U,, and which lies on 0

some finite chain of intersection manifolds. .

Theorem (IV) is almost immediate, and its proof similar to that of Theorem
*(I). " 9 o

*Theorem MV For every connected chain of Voronoi manifolds Cv =V 1, ..... ,

there exists an equivalent (in the sense of theorems (I-I11)) connected chain of

intersection manifolds C1 = 11,..., 1k, such that the entire Voronoi chain CV is 9.

homotopically equivalent to the intersection chain C1 . That is,
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Proof: Simply apply the fact that each equivalent pair (V, 1) (where V is a

Voronoi manifold and I is an equivalent intersection manifold) must lie in the same -

non-redundancy region. Hence if one chain wraps around an obstacle, so must the 0

other; furthermore, each chain must wrap around the same obstacles. I

Future Research

There are several interesting problems which are left open. They include the 6

following:

(i) We have demonstrated an equivalent chain of intersection manifolds for any
connected chain of Voronoi manifolds. Show whether or not a strongly equivalent
chain exists also. S

(ii) Show whether or not for every Voronoi chain CV there exists a (strongly)
equivalent intersection chain exhibiting a bijective correspondence to CV.

(iii) Devise an effective procedure for constructing a chain of intersection manifolds
to realize any class of paths in free space.

(iv) Derive complexity bounds on the construction of the C-Voronoi diagram and
the equivalent intersection chains.

(v) Other configuration spaces, such as those arising in the hinged body problem,
should be considered.

(vi) To extend these results to configuration spaces generated by real space
constraints which are not polyhedral (for example, algebraic surfaces), a
generalization of the GVD such as smoothed local symmetries (Hrady, 1982b)
could be considered.
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Conclusion

In chapters 1 through 6, we developed representations and algorithms for

automated spatial planning with six degrees of freedom. To demonstrate the

competence of the representation and the feasibility of the algorithms, a planning

system for the classical find-path problem with six degrees of freedom was

* implemented. The planner is of considerable intrinsic interest, in that it is complete

* (for a given resolution). Experiments have demonstrated that this algorithm can

solve find-path problcnis requiring six degree of freedomi solutions that were beyond

the competence of earlier, approximate planners. The mathematical framework

* developed here impacts a class of geometric planning problems for three dimensional

* objects.

The planning algorithm may be explained by analogy with the Point Navigation

* Operators. The C-Space transformation reduced the motion planning problem to

the task of navigating a point in R X S0(3). Since the path for the point must

avoid the C-Space obstacles, which are curved, six dimensional manifolds with

* boundary, clearly paths can be round in C-Space by the closure of three operators:

(i) slides along 1- to 4-dimensional intersections of level C-surfaces;

(ii) slides along 5-diimensional level C-surfaces;

(iii) junips between 6-dimensional obstacles.
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However, these simple operators could not be implemented until a series

of representational and algorithmic questions were solved. The fundamental

representational issues centered on the structural properties of the defining C-

*... functions. By deriving their domains, and by proving theorems about the topology "

* of these domains, it was then possible to address the intersection problem for

high-dimensional configuration spaces. By solving these open problems, developing

representations for the C-functions and their domains, and designing decomposition

algorithms in C-Space, it became possible to represent the constraints on motion

"completely," and to exploit the complete representation in implementing a planning

algorithm. Next, we presented new theoretical results on the C-Voronoi diagram. 0

By showing that for every connected chain of Voronoi manifolds, there exists

an equivalent chain of intersection manifolds of level C-surfaces, a theoretical

completeness result for planning along the intersection manifolds was obtained.

This result is also of interest since while the charts for the Voronoi manifolds are as

yet unknown, charts for the intersection manifolds are straightforward (given our

representational framework). Thus it is possible, in principle, to devise a planning

algorithm with all the advantages of a planner along the CVD. S

There is much work to be done. Ultimately, decomposition algorithms such as "

those we present in chapter 5 will become increasingly important in partitioning

C-Space into regions where the set of applicable (or alternatively, relevant) •

constraints is invariant (see also Schwartz and Sharir (1981)). The representations

and algorithms we have developed may make other geometric planiing problems--

such as fine-motion, and planning with uncertainty-more feasible, and should now

be applied in these applications. The find-path algorithm can be easily extended

to robot manipulators with six degrees of freedom in which translations can be

ldecoupled from rotations. This class includes Cartesian manipulators (for example,

the IBM IS/I). The adaptation of this work to a production environment presents

* .- interesting engineering challenges.

. -. IIn principle, the DOF representations can be extended to revolute-joint, linked . --

arms with six degrees of freedom. lowever, the C-Space of the linked-arm problem _ 0

is the six dimensional torus,
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which has a very different structure from 9Z3 X SO(3). It is our hope that this thesis

can present a methodology for formulating thc geometric constraints for arbitrary

configuration spaces, and that a similar structure will be found for constraints on

the 6-torus.

Our planning algorithm is complete (at a resolution), in that the representation

employed is complete, and in that the search is guaranteed to find a path if one

exists at that resolution. However, since it is a search algorithm, we cannot provide a

polynomial time bound. Our motivation has been to address the completeness issue

first, by resolving fundamental representational questions; now, one of the most

important remaining tasks is to develop complete, polynomial-time algorithms which

can actually be implemented. We do not believe that the worst-case exponential

behavior of the 6DOF planner is inherent in the representation, and conjecture

that a polynomial-time algorithm which plans paths along intersection manifolds .____

can be devised. Indeed, the theoretical results on the CVD are suggestive that the .

limiting complexity of the approach may be the complexity of constructing the

CVD or an equivalent chain of intersection manifolds. More research is needed on

the topology of the CVD. A fast planning system might determine what constraints -

construct the CVD, and, using these constraints, construct a chain of intersection

manifolds which could attain the goal. The first step in this effort would bound the

complexity of the CVD and the intersection chains.
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Appendix I

Details of' the Intersection Problem, and Related Problems

This appendix contains the detailed equations from chapter 4, which are

relegated to an appendix because of their excessive length. Some definition of terms

is repeated, so that the interested reader will not have to flip back and forth too

much.

1.1. Intersecting Two C-surfaces in 1R2 X< S1

By applying trigonometric reductions we can express type (a) and (b) constraints

as follows (only (al) and (bi) are shown):

cos(Xi)Sy + Csin(Xjy - sin(X1)Sx + Ccos(X1 )x

+ sin(Xj - -y,)jjbjjS - Ijaijj cos(X, - irn)

-C cos(X1 - -jj)!IbjII (al)

sin(Oj)y + cos(Oj)x - 11ail1 sin(Oj - ?7i)S

-Ci1a~iI cos(O~j - 77j) - Ijbjj cos(Oj - -yj) (bI)

Where

C=- cosO and S = sin 0.

Now, we can consider a pair of these equations as a system in four variables,

(X) Y1 C, S), and proceed to solve (al) and (b2), (hit) and (1)2), and (at) and (hi1) for
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z and y. For example, the intersection of two type (a) surfaces, (al) and (a2) is a

curve

p r,j jnra_2  X S I

where rai flr.2 C S' denotes the intersected applicability constraints for (al) and

(a2). Although the solutions are in the variables C and S, we can use C = cosO

cosr and S = sin0 = sinr to generate the curve of intersection in R2 X S1 .

After much simplification, the parametric solutions for the intersection curves

for type (a) and (b) constraints in R2 X S' are as follows:

The intersection or two type (a) Surfaces: (al) n(a2)

PO(r) = r,

pMr) = P(-SI'l cos(7! + X, - X:)+ 1Ia11 cos(q! - X,- X')

- Ial cos(X: + qi - X,) - Ilaill cos(-X' + th - Xi) 0
+ C(2 cos(X! + Xi - 1)hlbJ.l - 2 cos(X' + Xi - -yj)lbil))

+ C(la'1l sin(77! + X - X f) - Ila:II sin(7r? - Xi- X!)

-Ilaiil sin(X' + ri - Xj) + Ilaili sin(-X' + 7ig - Xi))
C2 (2 sin(X! + Xi - y)jjbjj - 2 sin(X: + Xg - yj)llbjll)

- (- sin(X' + Xi - - ) - sin(X - - ))ljbjj

+ (sin(X! + Xi -Ij) - sin(X? - Xi + -y))Ilbjll)/2)

py(r) I)(-(S(j1a[ sin(77 + Xi - X)- Ila!Il sin( - Xi - X>) ..--

- hIll sin(X! + 77i - X,) + IhlaiI sin(-X! + r/ - Xi)
+ C(2sin(X! + Xi - 4)hIbI - 2sin(! + X" - -yj)hlbhij))
+ C(-Ilall cos(q' + Xi - X!) - Ila!1 cos( - Xi - -)
+ Ilaill cos(X' +qj - Xj) 4- I11a11 cos(-X' + 7i - X1)) S
+ c 2 (2 cos(X! + Xi - -yi)llbjll - 2 cos(X! + Xi - -yP)lbhll)

+ (cos(X' + Xj - -y) - cos(X: - - -I))lbjll

+ (cos(X! - Xi + -yj) - cos(X' + Xi - -tj))llbjll)/2)-

where

D csc(X: - Xi).
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0

TIhe intersection or type (a) and (1)) Surfaces: (at)fl(b2)

p.,(r) =F(S(2C11a:Il cos(o - >,X1

+ llbll cos(O + Xi -y' - 11b311 cos(O + X1 - 'Yj)
+~ 1jlb4l cos(O' - Xi - -y)+ lfbjll cos(Oj - Xi + -yj))

+IIaiI sin(O -,q,! + Xj) - 2C llaIll sin(O - q!- X,)0

+ Ila a l1 siii(O - 7?- Xj) - Ilaill sin(O + 77i - Xj)

Slajll sii(O - tbi + Xj)

+ C(Ilb'lI sin(O + Xj - -y4) - llb 3 I sin(O + X, - -j

-Ilb'lI sin(O; - Xi- -y ;) - llb 3 I sini(Ok - Xj + y))

PY(r) =-I"'(s(2CIlaIl sin(O - 7!- Xj)

JIVII.l sir(o. + Xi - -4 ) + llbjll sin(Ok, + Xi - -fj)

+i 1lbl sin(O Xj - -y -lbjll sin(o - Xi + 'yj))

± lalII co~o - 771 + Xj) + 2C 11afl cos(o - 77!- Xj)

*-IliKII cos(Of - 7!- >,j) - Ihail cos(O + 7i~ - Xj)

-Ilaill cOSWt - 77 + Xi)
+ CQjb~lj cos(o + Xj - -4) - I1b]Ij cos(O + Xj - -yi)

+ llbV1l cos(o - Xj- -y4) - llbjll cos,(Ok Xi + y)

* where

(2 cos(O Xj)S - 2C snO - X1))

csc(O - 4- Xj)

2
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The Intersection of' two type (b) SurI'aces: (bI) f(b2)

PO (r)

Mxr) =E((S(Ifa'iI cos(,OS + bj - 77)- Ila~il cos((k + 4ij - tj

SIa'II cos(o -- Oj- q + Ii c'o - Oi+ 77)

+i C(-IlaIll siri(O + kOi - i?) + Ila~iI sin(,O + 'k3 - 77i)
*+ ItaIllsin(o - 4,, - 7) + Ilailsin(o - O, + ij))

- 1b11l sin(o, + Oj - -i.;) + 11b311 sin(o. + 4,, - -j

4- Ilbj'1I sin(O, - Oj- -y ) + IlbjII sin(o, - efjb + y)/

py(r) E((S(Ilafl sin(4, + kj - i7)- Ilil sin(O, + 4', - ivj)

+ Ila~f I sin(4, - d'j - 77) + Ila~iI sin(o, - 4,, + i'i1))

+ C(Ila~lI cos(4, + 4', - 77.) - Ila~iI cos(4, + 4,, - 7i

+ Ila 'II1 cos(4,; - 4,, - ?7!) - Ila~il cos(,. - 0'i + tn,))

4- + IVbII cos(01k ± 4, - yj - IIbjI1 cos(4, + O/j - -j

+ 11b11l cos(O,' Oj - p.1;) - IlbjlI cos(O, - 4,j + y)/)

E =cc4
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R2 X S1 -

1.2. Related Problems in 2 X S'

1.2.1. Techniques for Moving Along C-Surraces in W2 X S11

In this section we present techniques for moving along a C-Surface. We could-

imagine using these methods to move to the nearest "edge" (C-Surface intersection),

for example. A level C-Surface is defined via a function f(x, y, 0) = k for k constant.

f is exactly of form (al) or (bl) (above), and the level surface in 9?
2 X S I is all

points

L= { X E W2 X r/ I f(X) k}, 0

where rf C S' is the 0 applicability range for f.

Define a hyperplane in R2 X S1 as the set S

P =f{X W2 x S1 X .H=-h 4},

where HI = (hi, h2, h3 ).

We intersect the level surface L with the hyperplane P to obtain the intersection

curvye:

p~o(t) =,,

p,(t) = G1(S(cos(Xi)(-h 3 t - h4) + h'2 sin(Xi - -y)j1bj1)-
+ C sin(Xj)(-h:jt - h 4 ) - h2llail cos(Xj - i)

- Ch 2 cos(Xi - 7j)llbll - h2k

pY(t) -Gj (S(sin(X)(h:t + h4) + h, sin(X - )llbjll) S

+ C cos(Xi)(-h 3 t - h 4 ) - hi Ilaill cos(Xi - qi)

-Chi cos(Xi - -yj)llbjll - h k), (P n(a 1) -

where .

G11
(/12 sin(X 2 ) + hi c-os(Xi))S±+(hi sin(Xi) h2 COS(Xi))C
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PO(t) =

px(t) = -G(si(Ojk)(hdjt ± h4) + 11211a,11 sin(1 3 - iS

+ Ch2 l1aiI cos(46i - im)

+- h-,IbJI cos(Oj - -y,) +- h2k)

py(t) G2(cos(.0i)(hkit + h4) + hiI11aillsin(Oj -,q)

+ Chi I1aillcos(Oj - 7j

+ h1I~bJI cos(.Oj - -y,) + hk (Pfl(bl))

where

hisno)- h2 COS(tj)'

1.2.2. Characterizing Clearance to a C-Surface

It would be very useful to characterize (.he mninimum clearance to a C-surface.

We would like to answer the question:

* For a point b,, E R 2, at what orientation is bry csstoaC-surface, and
what is minimum directed clearance vector at that orientation?'

Using Lagrange multipliers, we can minimize a function f (x, y, 0) subject to a

constraint g(X, Y, 0) = 0 by constructing the auxiliary function

if(X' ,0, f) = f (a-,y,0) - g(X,Y, 0)

and solving the partial derivatives

-i = 0()
ax

= 0 (3)

all

5T
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and f will be a distance function. Now, the rotational dimensions cannot be treated

uniformly in establishing a metric, so we will define distance in luclidean space.

Minimizing the square of the translational distance suffices for our purposes. llence, 0

f(X,, )o) (x -b )2 + (y - by )2 .

Differentiating 11 gives us the following equations:

- = 2(x - b) - cos(O + X) (1)

ax
ay = 2(y - by) - tsin(O + X ) (2)

-0 e(cos(O + Xj)y - sin(O + X)x + 1bjlI sin(O + X, --J (3)
aol
a iiat (- sin(O + X)y - cos(O + X×)x + IIbIjj cos(O -P Xi - )

+ Ilai11 cos(ti - X1)) (4)

Solving these equations for z, y, 0, and t is not trivial. However, the following

observations make it easier. First of all, we note that solving

IaH =0 (5)

at

is equivalent to solving (4) as long as t - 0 is not a solution. We next solve (1) and

(2) for Icos(O + X1) and Isin(O - Xj) and substititute this value in to (3) and (5).

(5) then becomes a linear equation in x and y while (3) is quadratic in x and y and 0

linear in t. Our rewriting of (4) into (5) has thus eliminated t from (5), and we can

solve for x in terms of y:

-2y 2 ± (211bII sin('yj) + 2by)y - 2x 2 + (211bll cos(-yj) + 2b. )x

± !I;1iII cos(n7 - Xi) - 2bylIb 3II si,,Cyj) - 2blIbII cos(y ) (3)
(2h.- 211bjll cos('-yj))y + (211b1ll sin(-yj) - 2by)x

-2brllbjj lsin(-j) +- 2byIjbjII cos(yj) (5)

We necd one additional constraint: this is obtained by observing that

sin(O + X +) - cos(O - X;) 2  1. (6) . -

Since the trigonometric terms can be expressed in x, y, and f, we can obtain t2 in

terms of .c and y. (3), (5), and (6) then result in a quartic in z with the roots:

2211
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= G(2bllbjii2 sin(2y-) + 2blIbfl2 cos(2-yj)

((2b2 + 2b ) Ilb1 + 211bil 3) cos('Yj) + 2b.1bj 112  0

(11

-4- ,., a jllllb.,llcos( 7i- X i + -1j) - ,

+ Ilajllllbjll cos(7i - Xi - yj) - 2bcllaill cos(?7 -Xi)) ,

where

Gt,

2(2byIjbjjI sin(-Ij) + 2b,,Ilbjll cos(-yj) - I1bjII2 - b2- b2~

and

G2z= -2byjbjIl siii(yj) - 2bjll~bl cos(-ij) + IIbjI 2 + b2 + b2

Given x, y is found from (5)

(IIbjiI1 sin(,yj) - by, - b.,ijb'ji sin'-j) + byjbj cos(wyj)

= b3lI cos(-yj) - b.

t can be found from (3) as a linear function of x and y. To determine 0, we calculate

sin(O + Xj) and cos(O + Xi) from

sin(O + X) 2(y - by)e

cos(O + X) =2(x - b)

and use a two argument arctangent function Atan2 : W2 __ S1 to determine 0 + Xj.

The 0 value must be checked against the applicability constraints for surface g;

if it falls outside the range, then endpoints will yield the minimum clearance.

Naturally, it is possible that for certain orientations, (b,, by, 0) will lie on or inside

the C-surface. These cases may be disambiguated by the sign of g(b, by, 0). Finally, S

given the closest point (at some orientation 0) on the C-Surface, the minimum

clearance N simply the vector

(z, Y) (b by).
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The Minimum Clearance to a type (b) C-surface

To find the minimum clearance to a type (b) surface and the orientation At -

which the clearance occurs, we let g be a type (b) coustraint (equation (bi)) and

solve the system of partial derivatives of H.

ax 2(x - b ) - fcos(CC) (1)

a = 2(y - by) - tsin(,O) (2)
an
al = 1ajj sin(O - Oj + 77j) (3)
a0

- I g(x, Y,) (4)

The solution is considerably easier because the form of the constraint surface is

less complicated. Since all/f = -g, 0 may be found in terms of z and y using an

arccosine. Substituting this value of 0 into (3) yields a quadratic equation in x, y,

and f, which when solved with (1) and (2) for the following roots:

x =bj1 cos(Oj) cos(Oj - -y)

- by cos(Oj) sin(Oj) - b; cos(oj) 2 
- Iail cos(Oj) + b:,

v = 11bt sin(Oj)cos(Oj -- yj)

- (b, cos(Oj) ±tail) sin(Oj) + by cos(oj) 2 ,

i 2flbfl1 cos(Ok - -yj) - 2by sin(Cj) - 2bx cos(O3 ) - 211aui.

Z2.
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Appendix 11

Thc Connectivity of Configuration Space

11.1. A Review of Elementary Ilomotopy Theory

In this appendix we review some elementary homotopy theory, and address

the connectivity of configuration space. See Hocking and Young (1961) for a more

extensive review, and Donald (1983a) for an analysis of the relation between

,channels and homotopic equivalence classes. Let P denote the unit interval. A

parameterized family of mappings from a space X into a space Y is a continuous

function IL : X X P' -* Y. Consider the mappings f and g from X to Y: we say

that h is a homotopy between f and g if for each point x in X,

h(x, 0) f (x) and h(x, 1) g(x).

Intuitively the existence of h implies that f can be continuously derormned into g

* without leaving Y.

The homotopy relation between mappings from X into Y is an equivalence

relation on Lte function space YX*. Hence the homnotopy relation partitions YX'

* into disjoint equivalence classes, which are called homotopy classes. We write the.

*homnotopy relation as f g. These homnotopy classes capture our intuitive notion

of classes of paths. Thc homnotopy classes of YA carl be shown to be precisely the

* ~arcwise-conriected components of YX (Hlocking and Youing (19)61))
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0.

To take a concrete example, consider configuration space for the two-dinicrisional

mover's problem to be the product space of the 2-dimensional Euclidean plane R -

and the one-dimensional sphere S' to obtain J? X S 1 , and denote the configuration

obstacles as CO C x S'. Now two paths f and g in the same equivalence class

must belong to a parameterized family of mappings such that:

0

h:X XI -R 2 X Sl-_Co.

and h(x, 0) = f(x), h(x, 1) = g(x) as before.

Now, let y be a point in Y. The y neighborhood of cyclic paths in Y, C(Y, y)

is the collection of all continuous mappings f : 1 --+ Y such that f(0) = f(l) == y,

i.e., the set of all continuous curves that begin and end at y. If f and g are curves

in C(Y, y), we say that f is homotopic to .q modulo y if there exists a homnotopy

h : I X I -+ Y continuously deforming f into g without leaving Y.

Clearly, homotopy modulo y is an equivalence relation, and decomposes C(Y, y)

into disjoint equivalence classes which are exactly the arcwise-connected components

of C(Y, y). The set of these equivalence classes is termed the first homotopy group,

or fundamental group of Y. We say a path-connected space Y is simply-connected -'

if the fundamental homotopy group for X is the trivial group of one element

(for some, and hence for all y in Y). See also appendix 1I1, section "Topological

Constraints."

1.2. The Connectivity or Configuration Space

The configuration space W?2 X S (for the two-dimensional mover's problem)

is not simply-connected, since S' is not simply-connected. The function space

(R" X $')"' contains several homotopy classes. (92 X SI) X may be envisioned as

a cylinder on which there are clearly two classes of paths: those that bound a

* •2-dimensional region and are contractable to a point, and those that go around the

*: cylinder.

The configuration space R:' X SO(3) is not simply connected, because SO(3)

is not simply connected. To see this consider the following: geometrically, SO(3)

210
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is homeomorphic to P3, the 3-sphere with antipodal points identified. As is well

known (see Massey (1967), p. 166) the fundamental group for P" is cyclic of order .

2, and hence P"' is not simply connected.

General configuration spaces (other than that for the classical Mover's problem)

are not always simply-connected. For example, the C-Space for a manipulator with

six revolute joints is the 6-torus, S ' X S' X ... X S (to 6). 0

Let H be the hal-open interval [-7r,7r). H can be used to approximate S1,

if we are willing to tolerate singularities in the representation. It is instructive to

generate a configuration space which is simply-connected. Since this is not possible

for the general product space 9V X S1 we will instead consider the product space of

R and II. Thus for the two-dimensional mover's problem we consider the product

space

C R2 X 11.

For a manipulator with m revolute joints, the C-Space may be approximated

by 11m, where

rim - H X ... XII (to m)... 0

The three dimensional rotation group SO(3) can be approximated by a

hemisphere of the 3-sphere (which is simply connected), or by i3. 11, is

homeomorphic to the interior of the m-cube. This new product space C is simply S

a restricted configuration space where the piano is not allowed to spin around

wildly. The approximation of SO(3) by a hemisphere of S 3 , incidentally, is closely

related to the employmei t oft unit quaternions to represent rotations. The space of

unit quaternions is precisely S'"; the two quaternions q and -q construct the same

rotation, although they represent antipodal points on S :1. When all antipodal points

q and -q are identified, the projective 3-sphere, p 3 is obtained. P 3 is isomorphic

to SO(3). It is of interest that Euler angle space, Q3 (see chapter 2) is essentially S

an approximation of SO(3) by SO:3 (mod 27r), which is isomorphic to the 3-torus,
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when equivalent rotations are identified. If equivalent rotations are not identified,

then Q:1 is isomorphic to R 3 . While the approximation of SO(3) by 90 yields a "

simply-connected configuration space, from the point of view of an autotnated

planner it has the undesirable effect of introducing an infinite number of goals in

the rotational dimensions of configuration space, for every single goal in the space

of Euclidean motions. For this reason the approximation provided by the 3-torus 0

may be considered preferable.

2:12
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Appendix III

Integrating Local and Global Algorithms for the Find-Path Problem

In Donald (1983a), we have discussed the integration of a global channel
algritm itha oca (-space algorithm to form a planning system for the

find-path problem in lj 2 X St. I.ow can a three dimensional global, or channel

* algorithm be coupled with the planning system in W3 X SO(3) described in previous

chapters? More generally, what are the fundamental issucs in integrating local and

global geometric planning algorithms? it particular,

(i) How can a global algorithm suggest paths, or equivalence classes of paths to a
local algorithm?

(ii) How can the relevant geometric constraints be identified and exploited by
the local algorithm? Conversely, how can irrelevant geometric constraints be
effectively ignored?

(iii) fow can global topological constraints, such as those arising from analysis
of homotopy classes and fundamental groups, be propagated onto the (local)
geometric structure examined by the local algorithm?

in general, the design of a global algorithm will lepend on the geometric . §

constraints exploited by the companion local algorithm with which it will be

)coupled. Haence when we consider extending the channel algorithm of Donald ."-

(1983a) to the three dimensional ind-path do ain, we must specify what "target,"

local algorithm to use. A natural candidate is the local algorithm for find-path in

DOu X ln(3), which we describe in chapters 1- 2.
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Path Suggestion. A problem which must be solved in any local/global find-

path integration is how a global path may be suggested to a local algorithn. In

two dimensions this was accomplished by segmenting the find-path problem into

a sequence of sub-problems. The Suggestor strategy (chapter 2) is designed with

this in mind. The verified points along the suggested path become planning islands

in configuration space. The job of the local -algorithm is then to connect up the

planning islands and find a continuous path to the goal.

Choosing Subgoals in Rotation Space. In a three-dimensional rotation space,

the problem of selecting good rotational subgoals becomes more difficult. Much . 4

of the path-planning literature has been guilty of overlooking this difliculty. Such

subgoals can be used in path-suggestion as we have described above. Even when

the companion local algorithm is complete, a strategy for choosing good rotational

subgoals is desirable, since it would allow the algorithm to converge faster.

We have derived experimental strategies which consider alignments of the robot

polyhedra with the faces and edges of obstacles. Every polyhedron's boundary

contains alignable generators (faces and edges) which have an orientation, and 0

non-alignable generators (vertices) which have no orientation. Two generators are

said to be aligned when they are parallel, and the rotations in which they are

aligned form connected alignment regions in SO(3). For example, two cubes are

aligned when two faces are parallel, or an edge and a face are parallel. The channel

construction is useful for identifying the obstacle surfaces which bound the proposed

channel (in real space). Call this set of faces F.7 Let Y1 denote the faces of the

robot. The alignment regions can be considered for the generator pairs

G A11 7  (F1 X YK)U(7u/ X bTK)U( III X F)

We are only interested in applicable alignments, that is, an alignment of two

(or more) generators where the generators can be brought into contact through

some translational motion (this is our definition of applicability: see chapter

3). Applicability may be determined by examining the applicability constraint S

functions (ACI's) introduced in chapter 3. Furthermore, in chapter 5, we showed
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that alignments of edges and faces occurred exactly at the boundary of the

applicability regions for C-functions.

Every C-function is a partial function fi on the configuration space R' X SO(3),

whose domain is R3 X A for A C SO(3). The set of alignment regions is obtained

by the union of the boundaries of these applicability regions

Ralign =U A

for every C-function fi. Every point in RaIign lies in the kernel of some ACF

gi,i : SO(3) -+ R for a C-function fi. In chapter 4 we showed how to derive charts

for these boundaries and their intersection manifolds.

In most find-path problems, the alignment regions in Raign are complete as

subgoals in rotation space-i.e., no other rotational subgoals need be considered in

order to find a solution pthi (if one. e-ist). This makes a certain intuitive sense:

one might try aligning a large box with a narrow door-frame in order to squeeze

it through.' However, in general there exist pathological cases in which this is not .

true (imagine a robot which looked like a polyhedral sea urchin), and the set of

alignments is not complete as a set of subgoals. Furthermore, it is unsatisfying that

the alignment analysis exploits strong constraints in the pqlyhedral domain of the

classical Movers' problem, and does not appear to generalize well to linked-arm

problems.

We believe that it may be possible to overcome the problem of "star-shaped" robots

by considering additional alignment regions obtained from faces and edges of the 0

convex hull of such objects. Such an algorithm would have to deal similarly with

"star-shaped" obstacles. Even these additional alignments may prove incomplete;

however, they may have heuristic value.

The problem of how a global algorithm can infer good rotational subgoals from

the structure of real-space is one of the most interesting open problems in spatial

planning. We conjecture that an answer may lie in the structure of the boundaries

IWe are Iiot Iking any cdai m about hum|an spatial rc;woli g here.
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Figure 11.1. Pathological example showing a robot A whose alignment regions do not include a

rotation which helps get thro'igh the Light passage.

of the applicability regions in S0(3). The algorithms we provide in chapter 5 for

obtaining the applicability set decomposition may prove useful in computing this "

structure. Such a planner might slide along the intersections of ACF boundaries

or level ACFs in rotation space, 2 much as our planner slides on the intersections

of level C-surfaces in configuration space. The advantage of such an approach lies

in reducing the (infinite) search for rotational subgoals to a finite combinatorial

search along the ACF boundaries.

Topological Constraints. Ideally, the global strategy should enforce the

path-class criterion3 for each sub-problem: no straight-line approximation for a

subproblem may cross more th:,n one equivalence class of paths. We begin by defining

what a straight-line approximation means in lR X SO(3). This requires some way of

:" forming "linear combinations" of rotations. The definition of "linear combinations" .

S '21evel ACI's arc defined iii section 3.11. 0
3SVV aid l appendix 11.

2:16
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in SO(3) relates to a definition of convexity for W:' X SO(3). In particular, we wish

to determine whether C-space obstacles are convex. For if C-space obstacles are

convex, then we could trivially bound the number of intersections any straight-line

trajectory can make with any one obstacle. We present a conjecture that the

C-space obstacles are non-convex. Finally, we discuss basic topological notions for

formalizing our analysis of equivalence classes of paths. 0

We require some way of forming "linear combinations" of rotations. The

requisite algebraic structure is much like a module (over the reals), except that

the group operation cannot be commutative.4 . The group operation is composition S

of rotations. Let R(fi, 0) denote rotation about the three dimensional vector A by

angle 0. Scalar multiplication by a E R may be defined by

a 0) (A, aO).

By siub9tit'iing the (non-commutative) composition of rotations for the group

operation +, we obtain a natural definition for linear combinations, 0

aiR(9i, 0) + (I - a)R(fi', 0') R L aO)R(A', (I - a)0')(11)

for 0 < a < 1. R, of course, may be conveniently expressed by a unit quaternion. -

Suppose Q3 is a three-dimensional parameter space for SO(3)--that is, the

domain of a chart for rotation space. For example, Q3 might be the space of Euler

angles (see chapter 2). It is possible to define linear combinations in the parameter 0

space B3 X Q3. This seems unsatisfactory, since it makes the definition of linear

combination-and more disturbingly, of convexity-dependent upon the chosen

parameterization for SO(3). Observe that definition (111.1) for linear combinations

is invariant for all paramcterizations.

Open Question: Under a definition of convexity invariant for all parameteriza-

tions, show whether or not the C-space obstacles in R X S0(3) (and R2 X SI)

hItecall that a rriodiile is dhfined as follw.: If II is a coilliii ativw ring wil idrrtily, thn, M
is a module over I? if (.m, 4 ) is a r romaiitativv group, arid scalar itdiplictati,, (r, Al) '- rM or
clerients M in .M by r in le is sm.,ociativr ari distributive (ov'r 4, and if Il Ji M
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are convex. Conjecture: We conjecture that C-space obstacles are non-convex.

When R 2 X S' is approximated by R2 X [-7r, 7r) and embedded in R', the cor-

responding C-space obstacles are non-convex using Euclidean linear combina-

tions. Furthermore, in both g?2 X S' and gt3 X SO(3), each obstacle manifold

is the intersection of a finite number of half-hyperspaces of V:h X SO(3).

Each half-hyperspace is in turn defined via a real-valued partial function

f : R3 X SO(3) --* R. Using partial functions, arbitrary non-convex manifolds

can be constructed. Showing that the obstacle manifolds could be represented

by means of smooth, total functions would suggest convexity. Our analysis

suggests that these functions must be partial, which in turn leads to the

conjecture that the obstacle manifolds are non-convex. *

The homotopy relation (see appendix II) partitions the function space of paths

into equivalence classes. The image of one such equivalence class If] is the region

in C-space covered by the union of all the path images in [f]. The equivalence

c!asses are determined both by the structure of the underlying C.space , and

by the C-space obstacles. Intuitively, the fundamental group5 in a space Y is a

topological invariant corresponding to the set of equivalence classes of paths in

Y. The group operation corresponds to path composition ("pasting"), and for two

paths f, g: - Y where f(1) = g(0),

f (2t), for t E [0, ,j

* g(2t- ), fort E[, 11.

We think of f* g as the path whose first half is f and whose second half is g.

The pasting operation * is well defined on path homotopy classes:

[f * [g] = If*gJ, 

and exhibits groupoid properties. When an obstacle makes a hole in free-space, it . .-

augments the fundamental group for the space by adding an infinite (cyclic) number

'S(-e appedix II ror a review of eitivrtary homotopy theory and a rorial defiiiitio or the

ri ,,cLrriiM l groiup.
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fit
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Figure 11.2. Pasting together of paths f and g. Some paths in the hornotopic equivalence classes
and [gj are also shown.

of equivalence classes. (For example, by puncturing the plane at the origin 0, we-

I obtain the classes of paths (1) not looping around 0, (2) looping around 0 once,

(n) looping n - 1 times around 0, ... The topology of the underlying C-space

may be predetermined (see appendix 11), but each new find-path environment

generates different path homotopy classes. We wish to infer the equivalence classes

in the fundamental group by their generators, i.e., the C-space obstacles. Since the

C-space obstacles can be constructed from the ral-space obstacles, we are actually

attempting to compute path classes in C-space from the structure of real-space.

In general, if free-space is connected, the image in C-space of even a single class

of paths can cover all of free-space. sowever, we can impose a stronger condition

which subsumes thce path-class criterion. Let p be an injection of P into C-space

which will repre~sent some approximation of a solution path for a subproblem S.-

We wish to know whether the image of p can be expressed as the union of two
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Figure 11.3. The plane with a puncture (or obstacle) at the origin, showing paths f and g from
z0 to x1. f and q are not homotopir-lly equivalent, and hvnce ini different equivalence classes.

sets of points, those lying in the image of one equivalence class of paths, and those

lying in C-space obstacles bounding that image. In chapter 4, we showed how to . - .

intersect trajectories with C-surfaces in 2  S' and 1? X SO(3). We can intersect

p(I') with all C-surfaces, and determine the intersection points. These intersection

points indicate where it penetrates C-space obstacles, and are determined from its

zero-crossings from free-space to forbidden space. 5

Claim: That the image of p contains either no region or one connected region

lying within any C-space obstacles is a sufficient (but not a necessary) condition

satisfying the path-class criterion for sub-problems. S

Constraint Relevance. Another issue concerns how a global algorithm can

characterize the relevant constraints for a local algorithm, and if necessary, impose

additional, artificial constraints on the problem so that irrelevant constraints in •

the initial domain will be ignored. Because of the difficulties in maximizing channel
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breadth in three dimensional channel construction, the artificial faces introduced

by the current implementation may prove too restrictive, especially if the robot is

large or non-convex. However, the channel conmth tction is useful for identifying the

obstacle surfaces which bound the proposed cl, .'nel (in real space). Call this set of

faces YK. The C-surfaces generated by these faces may be exploited by the sliding -

and intersection experts (see chapter 2). Let 7t denote the faces of the robot. These

preferred C-surfaces are identified with their generator pairs, namely

Slide jrR X vert(.T))U(di, X K)U(vert(7it) X 7K). 0

The identification of good C-surfaces to slide along addresses a central issue in

local/global integration. At present, the sliding and intersection experts exploit only

local geometric structure and planning history. The channel algorithm introduce, 0

a global criterion for selecting which C-surfaces to slide along, and for constructing

intersection manifolds. The set of C-surfaces Slide specifies an implicit volume in

configuiration space which is closely related to the channel volume (in C-space ).

This volume is obtained by extending the hyperplanes containing the C-surfaces

past the obstacle boundaries until they intersect. Furthermore, Slide lies on the

boundary of the image of the hypothesized equivalence class of paths. By choosing

these interior surfaces as candidates for the sliding and intersection experts, global

advice on constraint relevance is provided to the local C-space algorithm by the

global channel algorithm.

2,11 "

, -. _-.- ' < -. '-. .V . -• ... % -.. :. ../ _ : .- ." .. : . -. -. .. -. : -- .: .- -- -: .. . : .- . . . - -. .- -- .- ". . "



Appendix lYV

A Listing of Mac syrna Code

In this appendix, we provide a listing of the Macsyma codc to produce optimized

Lisp procedures for computing the coefficient functions of thc canonical linear

l'ormis and trigonometric quadratic Formis of' the type (a), (b), and (c) C-functions,

and type (a) and (h) ACF clauses for W3 X SO(3). Using these 'ormrs, the

intersection manifolds, type (c) AC~s, and disamnbigurating applicability constraints

are constructed in the manner described in the text.

'We also list (in Macsyrna) the resulting combined forms for the C-functions anid

AC~s. Note that the type (e) C-function is "over a page long."

Rotations are speciried by means of the Macsyma functions Il~ateVcctor(X

oector) anid Ira'nsforrn(x plane or vect or). Rotations are iniptllernuted using

the Euler a ngles. I however, lby chianginrg these two ftinrctions, any rep resentationi

fo r rota~t ions stic as ju iatern Ions, sphecrical angles, or wrist, a ngles for a carte'sian

iin i 111at or may be em ployed . 'This corresponds to repa;Iratrie Icr iz irg .SO(3) , mid-

rests in dif[erent chiarts Icor the level C-suirfaces, irntcrscctionriniailolds, andl ACV~

mu a ri ifoId s.
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10 Display and Grind function. If OPTIMIZE-FLAG is TRUE then
we actually store the OPTIMIZED expression /

print('Setting Grind to TRUE... )$
Grind:Irue$
Optimize-Flag: TRUES
/* OPIMPREFIX: % S/

Display.andGrind(exp):-
-lock((label].

if OPTZMIZE-FLAG THEN
(print(EXP).

Print(" Optimizing..
Exp: Optinize(E&p)). 0

label:Ldisp(exp).

if Grind then
(print(" Ground, becomeS:

", label[ ]." : ").r n.e-]

grind(exp)).
print(" ").
label[])$

/I Utility function. Is the expression EXP free of all the VARS (a list?) 0/

Free.OfVars(Vars, Exp) :a
block([freedom),

freedom:true.
(for var in Vars unless freedom - false do 6

(if Not FreeOf(Var, Exp) then freedom: false)).
if Not freedom then

Print("[Exp contains Major Variables. Recursively Analyze...

freedom)$

/6 here we define Canonical Linear Form to be simply the
expression of the Constraint as a linear function .
in X. Y. and Z V 0

" Canonical-linear-variables: [X. Y. Z)S

Canonicallinear.form(Eap) :-

XsolateN(Exp. Canonical_linear_varables)S.
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I- Bruce Donald (ORDOOZ) analyze hairy eApressions - MACSYMA -e 0

a little bit 0/
/0 Analyze BiLinear Forms : given the "chief wars" in RATVARS.

generate intermediate labels for all the coefficients

of these vars and return the "simplified" bilinear form.

Recursively Calls ANALY2[BILINEARFORM So that 
the intermediate

labels are truly "constants" relative to the RatVars Of

/0 typically, ratvars:[x.y.z.psi.thets.phi] Of

/0 IsolateN works like ISOLATE but for N variables in a list.

on a bilinvar form /1

IsolateN(Exp. Nvars) :-
Block([SaveRatvarS. Ifer.

Save-ratVars: ratvars.
RatVars: Nyars.
Iform: Analyrze_Bilineerform(Exp).
Ratvars: Save)tvarw.
Iform)$

aJ simpleAnalyze_depth: 4S

AnalyzeBilinearForm(exp) :"
block([power, Coat. RatExp. Left, lose. Sum. Label].

print('Analyzing:1).
ldisp(reveal(Exp.simple.analyze-depth)).

Left: rat(exp). Sum: 0.
for var in Ratvars do

(Power: Hipow(Left. Var),
if power ) 2 then
(lose: var'power.

Error(*Warning: Not a Bilinear Form because of . lose)).

Coat: ratcoeff(Left. var. 2).
itf not (Coat w 0) then
Print( 'The coefficient of '. var'2." is ").

Label:Display-and-grind(Coef).
if not Freeofvarsratvrs.Co#f)

then Label: AnalyzeBilinear_form(Coof). 
0

Sum: Sum + label * Var2."
Left: rat(left - Coat * (Var 12)))).

print('Mixed terms: ,).
for var in Ratvars do
(for var2 in Ratvars do
if var *var2 then -

(Coat: ratcoeff(Left, varevar2. 1).
if not (Coaf - 0) then

Print( 'The coefficient of 1. Vorevar2." i s)
label:Disply_&ngrind(Coef).
if Not FreeOfvars(RatVars. Coat)

then Label: AnalyzeBilineartform(COal).
Sum: Sum + label var* vor2.
Left: rat(left - Coat * (Var 0 var2))))).

print(" Linear Terms: ),
for var in Retwars do

(cost: ratcoeff(left, var. 1).
if not (coat a 0) then

print("The Coefficient of ".var.' is 1.
label:Display-and-grind(Coaf),
if Not free_.f_var(RatVsrs. Cost)

then Label: AnalyzeBilgelar.form(Coat).
Sum: Sum * label'var.
Left: rat(left - Cosft Var))).

if Left 0 0 then
(Print(- And the constant term is ),

Label: Display.andgrind(left).
sum: Sum * Label).

Print(" Yielding :). Displayand.grind(Sum). Sum)$
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/* Bruce R. Donald. (URDOOZ) - od&:Macsyt'a &
Attempt to express applicability constraints for

C-surfaces in R-3 %cross S-3 0/

* /e PRODUCTION VERSION -- i.e., for production of LISP code 0/

STHETA: [phi. theta. psi]S

if *[uler-Rotationequtions-loaded *TRUE then 'OK"
else Satchild ([rotat..macJ);

shorten(exp):- subst( S,sin, subst(C, cis. exp))S

ratvars:[ sin(phi).cos(phi).sin(theta).cos(theta). sin(psi) .cos(psi));

/0 Each constraint is of the form 0/

1/ vectors: 0/
u(i) :[ux[ij'uyti).uztl));
v(i) :* va[i).vyji]'vZ~LJ);

/0 Normal for plane eq 0/

n(i) :- [nx[l),ny[i].nzti).ndti)):

/ I Here we define functions to generate the applicability conbtraints.

the argurients are: Sn :a vertex in 3-space, which we use to
measure distance to the plane.

v a vertex which we insist must be ON the plane.
N a plane (4-vector)
c: the "height" of the level surface in S'3.

if 0, corresponds to the maximim boundary
of the applicability clause (eg edge-face
contact).

R3...projction(Vec) :a [vecti). voc[2]. vec[3))S

Type...LClause(N, bn. v. 0) :0
a imp-.3(

(R3...Projectiofl(N) . otate..vctor(In))
-(R3-.Projection(N) .Rotate..vctor(v))

Type-Aclause(N. bn. v. C) :-
Ilock([N-.THETAJ.

N-.THETA: part(transfor(Euler..Inverse. U). 1).
a imp..3(

(R3...Projectiofl(M-.THETA) .bin)

-(R3...Projection(N-.thete) .v)

Nldp(a.b) :a a 4-(b-a)/ZS

Type..CI..Clauss(ni, n2. &I. a2. ci. c2) :a
simp..3(
-typc...b..clause~nl, &I. midp(al,a?). el)
*type..b-.clue(n2. &I. mldp(ai.a2). c2)):

Type...CClause(NI.N2. bi. b2. cl. c2) :a
simp..S(

-type.a...clause(fll. bl. midp(bl.b?). cl)

0 type...a.clause(n?. b2. midp(bI.b?). 0i)):

/0 lev~i) is just a CONSTANT to construct a Level surface on S,3 which

is applicable 6/9
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/o IC. VC. ZC. WC are CoordirateI&CCeSSOr funCtiOns (N4ACROS) in LISP 0/

type_9_8Acl1 use[ I]:
type...B.Cluse([xc(N). YC(M). ZC(N). WC(N)].

(AC(w). yc(v). zc(v)J.
Level),

/* b(1) type-.b-.claus@( n(il), v(jl). u(k?). lev[1J)

6[2J type..bclause( n(i2), V(j2). U(k2). 1.42Z)) 0/

Type-.A...Aclause[I):
type.,.AClause([AC(N). YC(N). ZC(N). WC(N)J.

[ac(u). yc(u). zc(ufl.
(aC(V). yc(v). zc(v)).
Level):

/* an)] type..a.clauseC n(l1). u(anl). v(pl). IevE3J)

: [23 type..m.clause( n(12). 
U(m2). (P), 1ev44)) 0/

_ ..1[13 type..xl..clause( n(bl). n(b2). v(ail). v(a12). 1.45)., lev[6)
C-.2[1] type-.c2-c11use( n(a1). n(aZ). u(bjl). u(bj2). 1.4[7). 1.48)]) 0/

/0 Grind the results ... 0/

pri tW
Type..A.AclauseII ) Grind(Typ..A.AclausCeI])

print('
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70

10 bruce r. donald. cspace constraints in 3-dimensions. -* acsyma -0- O

- /0 production-version: i.e. produce lisp code ...
ac. yc and zc are baccessor macros for components of vectors O

/0 this next section contains the equations for c-surfaces In
r^3 a s^3. see aim 605. tonas' spatial planning paper for details. O

*/0 load euler rotation equations Of
if euler-.rotation..equatians..loaded *true

then *ok'
else (batchload("usrdS:[brd.prod~rotate.mac').

euler..rotation..equations..loaded: true);

* 1P a vector in r-3: Of

xvec : Ex. Y. 23;

- ratvars: [A. Y. Z.
sin(phi). cos(phi), sin( theta). cos(theta).
sin(psl). cos(psl) 3

/0 a vertex on a . and a(i.1) S

Ai Exc(al) . yc(aI). zc(al)]:
* aione: (ac(aione), yc(aione). zc(aiona)J;

/0 a vertex on b . and b(j+l) *

*bj: (xc(bj). yc(bj). zc(bj)];
* bjone: [Ac(bjono). jrc(bjone). zc(bjons)J;

*/0 the normal to a face ft on a Of

nfi: [ xc~nfl). yc(nfl). zc(nfl). wc(nfl)];

/* the normal to a face 9.1 on b*Of

* noJ Exc(ngJ). yc(ngJ). zc(ngj). wc(ngJ)3;

* 1/ type a surface. rotate the normal:

R3...projecton(Vec) :- [vectl). vec[2J. vec[3]]S

Rot..Nfi: part(Transform(Euler..Inverse.nfi).1);

* RiN~: 13...Projection(Rot...fl);

Inner-.Product..Ter: (Rotate-.voctor(ai) + bj):

A-.5: N-a . Xvec -(*-a. Inner..Product..Term);

/0 Type I Surface Of

Kb: 13..projectlon(Ngj);

9_5 N~b Xvec - (N..b . nnsr_.ProductTerm);

/0 Type C surface (1) Of0

Edge-@: rotate...vctor(aione) -rotate-~voctor(ei):

Edge.b: UJone - bj;

MC: Cross( Edgema. Edge..b):

* C-.5: U...C . vec -c~ Inner..Product-.Term).
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/0 SImplify if possible? *,

Simp...(Exp. Var) :a ratsubst(I. sin(vmr)? * cos(var)-2. #xp):
simp..3(EzP) :* Rat(Simp.j( Swmp-..( Siump..1(Exp. Phi). Theta), Psi)):

A.b: Sitnp...3(ratsimp(....));

[leath(_5).lonth~bb).lengh(C5)0

/0 Grind the forims here 0/

Print("
Type-.A..Csurface[1) : S grind(A...)S

Print(
'rype-.B-.Csuracet1J:') Grind(B-.5)S

Print("
Type-.C-.Csurface~1):) Grind(C-..)$

28



/* MODV MACSYMA
(HERE ARE IHE DEIINIIIONS Of TYPE (A) (B) AND (C) C-SURFACES FORt

THI 6001 MOVERS PROBLEM. AND TYPE (A) AND (S) APPLICABILITY
CONSTRAINTS . Output of CSPACE and APFLIC under PRODUCE for
production run.) 0/

Type..A.CsurfaceflJ

(((XC(NFI).X-XC(IJ)-XC(N))COS(PHI)(XC(NFI)Y-YC(Bj)1XC(NFI))-SIN(PHJ))
-COS(TIHETA )
.(-XC(NfI )1.ZC(BJ)-XC(NfI) )SJN(TTA)(YC(NfI)Y-YC(BJ)YC(Nfl))C5(PHI)

*(-YC(NFI)pX-XC(BJ)OYC(NTI))51IN(PHI)-YC(Nfl))
*C05(PSI)
.(((-YC(NFI )X.KC(BJ)OYC(NrI ))OCOS(PHI)
.(-YC(NfI )SY.YC(J)OYC(NFI))51IN(PHI))
*COS( THE TA)
-(YC(NFI)OZ-2C(BJ)*YC(NrI))OSIN(THETA).(XC(Nrl)*Y-YC(BJ)OXC(N!I))COS(PHI)
.(-XC(F)X.XC(BJ)*XC(NFI))*SJN(PHJ)-XC(NFT))
*SIN(PSI).(ZC(NT )*Z-ZC(BJ)OZC(NFI ))*COS( THETA)

4((ZC(NFI )*X-XC(BJ)1ZC(NFI))*C05(PHI ).(ZC(NI)Y-YC(BJ)OZC(NFI)POSIN(PHI))
*SIN(THETA)-ZC(AI)-ZC(NFI)-YC(AI)-YC(NFI )-XC(AI )SXC(NfI)S

Type-.B.Csurfacer1J

((-XC(AI)OXC(NGJ)-COS(PHI)-XC(A )-YC(NGJ)51IN(PHI))OCS(THETA)
+XC(A )OZC(NGJ)PSIN( THETA)-YC(A1)OYC(fNGJ)*COS(PHI).tYC(A1 pXC(NGJ)OSIN(PHI))
-COS( PSI)
+( (YC(A )OXC(NGJ)OC05(PH! ).YC(AI)OYC(NGJ)51IN(PHI))COS(THETA)
-YC(AI)-ZC(NGJ)51IN(THETA)-XC(AI)-YC(NGJ)-COS(PHI)+XC(AI)OXC(NGJ)SIN(PHI))
51IN(PSI )-ZC(AI)SZC(NGJ)-CO5(THETA)

+(-ZC(A )*XC(NGJ)OCOS(PHI )-ZC(AI )YC(NGJ)51IN(PHI))SIN(THETA)
-YC(NGJ)@COS(PHI)+XC(NGJ)SIN(PHI)ZC(NGJ)Z.YC(NGJ)OY+XC(NG3)OX
-ZC(BJ)2ZC(NGJ)-YC(BJ)-YC(NGJ)-XC(8J)-XC(NGJ)S0

Type...C..Csurface(1J

(((((XC(AIONE)-XC(AI))SYC(BJONE)(-XC(AIONE)XC(AI))YC(BJ))*Z
*((-XC(AIONE).XC(AI ))OZC(BJONE)i(XC(AIONE)-XC(A))ZC(BJ))*Y
.(XC(AIONE)-XC(AI ))OYC(BJ)OZC(BJONE ).(-XC(AIONE)XC(A))ZC(BJ)OYC(BJONE)
*(-YC(AI)ZC(AIONE)+ZC(Al)*YC(AIONE))XC(BJONE)
.(YC(AI)OZC(AIONE)-ZC(AI)OYC(AIONE))1XC(BJ))
COS( PHI)

*(((-C(AIONE)XC(A!))1C(JONE).(XC(AIONE)-XC(A))1XC(SJ))'Z
*((XC(AIONE )-XC(AI ) )ZC(BJONE ).(-XC(AIONE)XC(AI))ZC(BJ))1X
*(.XC(AIONE).XC(AI))*XC(BJ)*ZC(BJONE)
*(-YC(AI )'ZC(AIONE)ZC(AIpOYC(AIONE))OYC(BJONE)
*(XC(AIONE)-XC(Al))OZC(BJ)OXC(SJONE)
+(YC(AI)*ZC(AIONE)-ZC(AI)*YC(AIONE))*YC(BJ))
*SIN(PHI )(XC(AIONE)-XC(Al))OZC(BJONE)e(-XC(AIONE)*XC(Al))OZC(BJ))
-COS( THETA)
*(((XC(AIONE)-XC(A))KXC(BJONE)*(-XC(AIONE)XC(A))1XC(SJ))COS(PHI) -.. *-

*((XC(AIONE)-XC(AI))OYC(BJ0NE).(-XC(AIONE)i+XC(A))YC(BJ))OSIN(PHI)
*((-XC(AIONE).XC(AI ))*XC(PJONE)+(XC(AIONE)-XC(AI))*XC(BJ))*Y
*( (XC(AIONE )-XC(A ) )*YC(BJONE ).(-XC(AIONE )4XC(Al))OYC(BJ))1X
+(YC(AI)OZC(AIONE)-ZC(AI)OYC(AIONE))2ZC(BJONE)
*(.XC(AIONE).XC(AI))OXC(BJ)OYC(BJONE).(XC(AIONE)-XC(AI))OYC(BJ)OXC(BJOUE)
*(-YC(A )-ZC(AIONE).ZC(AI)OYC(AIONE))OZC(BJ))
-SIN(THETA)

+(((-YC(AIONE).YC(AI ))*XC(BJONE).(YC(AIONE)-YC(A))XC(BJ))*Z
*((YC(AIONE )-YC(Al))OZC(BJONE)*(-YC(AIONE)YC(A))ZC(BJ))Zb
.(.YC(AIONE).YC(AI) )XC(BJ)OZC(BJONE)
.(XC(AI)2ZC(AIONE)-ZC(AI )*XC(AIONE))OYC(BJONE)
*(YC(AIONE )-YC(AI ) )ZC(BJ)*XC(BJONE)
.(-XC(AI )'ZC(AIONE).ZC(AI)*XC(AIONE))'YC(IJ))
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-COS(PHI)
*(((-YC(AION[)tYC(AI))OYC(BJONE)-(YC(AIONEi-YC(A))YC(IJ))*Z
.((YC(AION[)-YC(AI))OZC(BJONf)*(-YC(AIOtd)4C(A))ZC(SJ))*Y
.(-YC(AIONE).YC(AI))YVC(SJ)1ZC(BJON.).(YC(AION[)-YC(AI))OZC(BJ)OYC(JOE)
*(-XC(A1 )'Zt(AIONE)+ZC(AI)OXC( AIONE) )1C(BJONE)
.(XC(AI )2C(AIONE )-ZC(AI)OXC(AION[))*XC(BJ))
OSIM(PHI))
-COS(PSJ)
*(((((-YC(AIONE)YC(A))YC(BJONE)t(YC(AON)-YC(AI))OYC(SJ))*Z
4i((YC(AIONE)-YC(AI)).ZC(BJOtE)(-YC(A104)YC(A))ZC(IJ))*Y
4(-YC(AIOJE )'YC(AI))'OYC(BJ)*ZC(BJONE)4(YC(AIONE)-YC(Al))OZC(B3)YC(BJOE)
*(-XC(Al)pZC(AIOIJE).ZC(AI)PXC(AIONE))OXC(BJONE)
+(XC(A )'ZC(AIONE)-ZC(Al)-XC(AIONE))-XC(BJ))
-COS(PHI)
.(((YC(AIONE)-YC(AI ))OXC(BJONE).(-YC(AIONE)*YC(AI))1XC(BJ))OZ
.((-YC(AIONE).YC(Al))*ZC(BJONE)*(YC(AIONE)-YC(A ))OZC(BJ))*X
+(YC(AIONE)-YC(AI))1XC(9J)*ZC(BJONE)
+(-XC(AI)*ZC(AIONE).ZC(AI )XC(AIONE))OYC(BJONE)
4(-YC(AION[).YC(AI ))OZC(BJ)@XC(BJONE)
.(XC(AI )'ZC(AIONE )-ZC(AI )XCf.AIONE))OYC(IJ))
OSIN(PHI )+(-YC(AIONE)+YC(AI ))*ZC(BJONE)+(YC(AIONE)-YC(AI))OZC(SJ))

-COS( THETA)
.(((-YC(AIONE).YC(Al))OXC(BJONE)4(YC(AIONE)-YC(AI))OXC(SJ))C5(PHI)
.((-YC(AIONE).YC(AI))OYC(BJONE).(YC(AIONE)-YC(AI))OYC(BJ))SIN(PHI)
.((YC(AIONE)-YC(AI ))OXC(BJONE )i(-YC(AIONE)+YC(A))XC(SJ))*Y
+((-YC(AIONE).YC(Al) )YC(SJONE)+(YC(AIONE)-YC(AI))*YC(UJ))1X
*(XC(AI )*ZC(AIONE)-ZC(AI)OXC(AIONE))-ZC(BJONE)
*(YC(AIONE)-YC(AX ) )XC(BJ)SYC(BJONE).(-YC(AIONE).YC(Al))'YC(BJ)OXC(JONE)
*(-XC(A )-ZC(AIONE ).ZC(Al)-XC(AIONE))OZC(BJ))
SIN( THETA)0

+(((-XC(AIONE).XC(Al))*XC(BJONE)+(XC(AIONE)-XC(AI))'XC(BJ))*Z
*((XC(AIONE)-XC(AI ))OZC(PJONE)+(-XC(AIONE)+XC(AX ) )ZC(BJ))1X
*(-XC(AIONE)+XC(AI ))1C(BJ)-ZC(BJONE)
*(-YC(AI)-ZC(AIO.NE ).ZC(AI)-YC(AIONE))'YC(UJOUE)
*(XC(AIONE)-XC(A ) )SZC(SJ)-XC(IJONE)
*(YC(AI )ZC(AIONE)-ZC(AI)OYC(AIONE))OYC(BJ))
COS(PHI)

*(((-XC(AIONE).XC(A!))*YC(IJONE)+(XC(AONE)-XC(A))YC(IJ))OZ
*((XC(AIONE)-XC(A ) ).ZC(BJONE)+(-XC(AIONE)+XC(AI))OZC(I3))SY
*(-XC(AIONE)4.XC(AI ))-YC(IJ)-ZC(BJONE ).(KC(AIONE)-XC(Al))OZC(BJ)OYC(BJONE)
*(YC(AI)1ZC(AJONE )-ZC(AJ)*YC(AIONE))-XC(UJONE)
4(-YC(AI)OZC(AIONE ).ZC(AI)OYC(AIONE))1XC(BJ))
OSIN( PHI))
OSIN(PSI)

*(((-ZC(AXONE).ZC(A)).RC(IJONE).(ZC(AJONE)-ZC(A))'XC(IJ))OCOS(PHI)
*((-ZC(AIONE).ZC(AI))OYC(SJONE ).(ZC(AIONE)-ZC(A))OYC(SJ))OSIN(PHI)
*((ZC(AIONE)-ZC(AI ))'XC(BJONE)4i-ZC(AIONE).C(AI) )1C(SJ))*Y
*((-ZC(AIONE).ZC(AI))VYC(BJONE).(ZC(AIONE )-ZC(Al))YC(BJ))IX
*(-XC(AI)OYC(AIONE).YC(Al)*XC(AZONE))OZC(IJONE)
*(ZC(AIONE)-ZC(AI)).XC(BJ)SYC(IJONE).(-ZC(AIONE).ZC(AI))OYC(33)OXC(BJONE)
*(XC(A )-YC(AIONE)-YC(AI)-XC(AIONE))OZC(S3))
COS(THETA)

*((((ZC(AIONE)-ZC(AI) )YC(IJONE).(-ZC(AJONE).ZC(AJ) )YC(UJ))SZ
*((-ZC(AIONE).ZC(AI ))OZC(BJONE).(ZC(AIONE)-ZC(A ) )OZC(BJ))*Y
*(ZC(AIONE)-ZC(AI ) )YC(IJ)ZC(IJONE).(-ZC(AIONE)*ZC(Al))OZC(SJ)YC(BJONE)
*(-XC(A )-YC(AIONE).YC(Al)-XC(AIONE))-XC(UJONE)
*(XC(AI)OYC(AIONE)-TC(AI)OXC(AIONE) )XC(BJ))
-COS( PHI)
*(((-ZC(AIONE).ZC(AI))*XC(BJONE)(ZC(AIONE)-ZC(A))XC(I3))*Z
*((ZC(AIONE)-ZC(Al))OZC(BJONE ).(-ZC(AIONE)+ZC(A))ZC(BJ))IX
*(-ZC(AIONE )*ZC(AI ) )XC(BJ)OZC(BJONE)
*(-XC(A )-YC(AIONE ).YC(AI)OXC(AIONE))OYC(IJOUE?
*(ZC(AIONE)-ZC(AI) )ZC(BJ)-XC(BJONE)
*(XC(AI)OYC(AIONE)-YC(AI)1XC(AIONE))OYC(IJ))
OSIN(PHI )+(ZC(AIONE)-ZC(AI))OZC(SJONE ).(-ZC(AIONE ).ZC(AI ))SZC(BJ))
-SIN(T"ETA)$

/0 Herer are the Applicability constraints S
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Type-.A-Acl muse: 1

(((XC(U)-XC(V))OXC(N)t05S(PHJ ).(YC(I)-C(V))XC(N)OS13(PHI ) )COS(TH[TA)
+(-ZC(U).ZC(V))OXC(N)OSIN(TNETA)t(YC(U)-YC(V))OYC(N)OCOS(PHI)
*(-XC(U)+XC(V) )OYC(N)OSIN(P41))
-COS( PSI)
+( ((-XC(U).XC(V))*YC(N)*COS(PHI).(-YC(U)-YC(V))YC(N)SIN(PlI ))OCOS(THETA)-
.(ZC(U)-ZC(V) )YC(d)OSIN(IHEIA).(YC(U)-YC(V))1XC(N)COS(P41)
.(-XC(U).4C(V))OECttd)*SIN(PHI))
OSIN(PSI ).(ZC(U)-ZC(V))OZC(N)PCOS(THETA)

+((XC(U)-XC(V))*ZC(N)*COS(P14)(YC(U)-YC(V))ZC(N)SIN(PHI))*SIN(THETA)-LEVELS

Type-j...Aclause(2J

(((-XC(N)*XC(V)+XC(N)IXC(U) PCOS(PHI)+(-YC(N)5XC(V)'-YC(N)OXC{U))OSIN(PHJ))
COS(TII[TA)
.(ZC()XC(V)-ZC(N)'XC(U))5IN( THETA)*(-YC(N)*YC(V).YC(N)SyC(U))SCOS(PHI)
-(XC(N)-YC(V)-XC(N)'YC(U))'SIN(PHI))
COS( PSI)
.(((XC(N)*YC(V)-XC(N)YC(U))-COS(PHI).(YC(N)OYC(V)-YC(N)*YC(U))SIN(PHI))
-COS( TNE TA)
.(-ZC(N)OYC(V)+ZC(N)OYC(U))OSIN(TNETA)+(-YC(N)-XC(V)+YC(N)KXC(U))COS(PHI)
.(XC(N)PXC(V)-XC(N)-XC(U))PSIN(PHX))
OSIN(PSI ).(-ZC(N)ZC(V)+ZC(N)OZC(U))*COS(THETA)

.((-XC(d)OZC(V)+XC(N)ZC(J) )ICOS(PHI)+(-YC(N)OZC(V)+YC(N)oZC(U))SIN(PHI))
-SIN(TNETA)-LEVELS
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/*mode: macsyma*-
(Bruce Donald. Here we Express a Constraint (C-surface or
Acf) in Canonical Linear Form and Canonical Trig form.

Given a CONSTRAINT which is either a
C-surface or en AcF (applicability clause function)
and a variable (VAR) we solve for the variable) 0

Load-.upo:- /0 load necessary files 0/
block([]. /0 for solving 0/

if ALLOEVSLOADED *TRUE then 'OK"
*Ise batchload("usrdS:[brd.prod~defabc.mac").

batchload([intabc.uac)).
batchload( "usrdS : brd. prodjanalyze? .mac").I RatVars: [X. y. Z.

sin(phi). cos(phi). sin( theta). cos(theta).
sin(psi). cos(psi) )

Angles: [Phi. Psi. theta])$

Load..up( S

P/0 give us an "explicit" tangent space 0/

s(var) :a sin(var)S
c(var) :a cos(var)S
*uild..ManifoldoS /0 Rebuild Manifold

solve..for...ngle(exp.var):. 1. Solve for COS(var) 0/
bloCk([Rats. R2. 12, R3].

3 rats: ratvarS,
Ratvars: [c(var). s(ver)J.
print("Simplifying...").
RI: JsolateN(exp. Ratvars).
Print('Eliminatlng - ~a)".)
R2: Eliniinate[I)(RI. Var).
Ldisp(R2).
Print("Solving for *. c(var),". . .),

j - R3: solve(R2.c(var)),
displayand..grind(R3).
ratvars :rats.
r3)S

Solve..for...X(Exp, Xvar):* /0 Solve for Any Var 0
Bloek([Rmts. ri. 42].

i Rats: ratvars.
Ritvars: [Xvar],
print('Simplifying. ..
RI: IsolateW(Exp. Ratvars).
print(" Solving for .Ea..
r2: solve(RI. Xvar).
Display..and...grnd(r2).
ratvars: rats,

S RN2)S

Solve.tsto:w /0 Test the Solution Routines 0/
block([].

grlnd(solve..test).
grind:falSe.
Solve.jor...ngle(Csl. Phi).
Solvejfor..(CSI, X).

/0 SOlve a type (a) surface for PSI and Y 0

ASI: SinCos.to.CS( type..A..CSurface[I]).

Solve-.for..ngle(ASI. Psi).
Solve-for...(ASI, y).

/0 SOlve a type (B) surface for PSI and Y 9
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BSI: SinCos.to...CS(type..B_CSurfacerl]).

Solve..for-.angle(BS). Psi).
Solve.for...(ISI. Y).

Notify()

/0 CExpress expresses things Canonically 0/

CExpress(Exp. Type) :
BLockffl.

If Type *C..Surface then
(Print("Canonical Linear form.

Canonical-l inearjform(Eap)).
Print('Solving for Angles...').
for Var in Angles dD

(Solve-.forangle(Exp. Var)))S

/Here we Do the Expression. Now to get Ground forms, just change GRIND, etc. 9/

DO...CExpress( )a
*Lock(().

Grind: False. /0 Hart It is.. 0
kiliC labels).
CExpress(type..A-.Csurtacefl], *C..Surface).
CExpress(type-B-I..Csurface~lJ. *C...Surtace).
CExpress(type-C-.Csurface[1). *C..-Surface).
CExpress(type.A.Aclause~l). 'ACF).
CExpress(type..B-.AClause~l]. 'ACF))S
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P . -Macsyma *RD@OZ (Bruce R. Donald).
Soya intersections of C..surfaces and A-.clauses.
for the 6dof movers problem. 0/

Angles: [theta. Phi. PsiJS

/0 allow some simplification into C and S terms 0/

Sincos.to.CS (GRp):
Block([E).

e: gp.
for Var in Angles Do
E: ratsubst(s~varJ. sln(var),

ret(E))S ratsubst(c[var). cos(var). E)).

/0 permit the inverse 0/

CS..Ao.SinCos (GRP) :0
*loCk(rEJ.

E: *ap.
for Var in Angles Do
E: ratsubst(sin(var). s[var].0

ratsubst(cos(var) .c~var). E)).
EC

/a The Tangent Space Manifold 0/

/* DO it you~rself, pall batchload([defabc.mac. "usrdSl, brdJ) 6

1* Short form functions 0

s(var) :- s~var]$

c(var) :o cfvar]S

10 Simplify if possNOle? use the s/ctvarJ form though. 0/

dSimp...(Eap. Var) i- ratsut.t(l. s(var)-2 + c(var)?2. eap)S
simp-.3(Eap) :- Rat(

Simp-I.( Simp...( Simp-I.(Exp. Phi). Theta). Psi))$

manlfold(var):* s(var)-2 *c(var)^2 *IS

*uild-.manifold() :a
Block([]. -

Man~theta): manifold(theta).
Man[Phi) Manifold(phi).
Man[Psi] lMAnifold(psi))S

*uild...manfoldo$

/0 Ellminate[1) eliminate& the dual trig term. S^I is parameterized by
p one variable (var). Eliminates SJN(VAR) from EXP 0/

eliminate(1)(eup, var) :w
block(fl.

Tempt: rat(part(
elimiftate([eap. Nan[var]J. (s(var)]l.I))

/0 Eliminate[2] calls eliminate(I) twice, and eliminates the resultants.
Hence the intersection of two level surfaces on S'3 is
parameterized by a one param. family. Eliminates Sin/cos Varn/Var? Z
from Exp. 0/

USE-.CSFORM: True$

*liminat*[?J(eapI. exp2. varl. var?) :
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bloCk( [Rl. R2. R3, R4, R5. r6. /0 Temp results

Lrl. LrZ, Lr3. Lr4. Lrb. Ir6J. /0 Their Label$
RatVars: [a. y. 2.

S(phi). c(phi). s( theta), c(thetA).
s(psi). C(psi) )

if Use-SJORM then
(eApI: SinCos.TO..CS(expj),
exp2: SinCos..To-.CS(exp2)).

print("Elimilate .s(varl)." from eApression 2:*).

ri: elininate~l](expl. varl).
Lrl~ldisp(rl).

print("Elininate ".s(varl),' from eApression 2:").

r2: eliminate[13(exp2. varl).
[r2: Vdisp(r2),

print("Elimilate ".c(varl)." from ",apperul(LRI. LR2)).

r3: rat(el ininate(trl,rZ).[c(varl)))).
Lr3: Ldisp(R3),
pritnt(-Elifiinate ",s(varZ)." from '.Lr3).

R4: elininate~l)(R3. var2).

1r4: Ldisp(R4).
Print(" Solve ", lr4." for .. C(var2)).
R5: rat(Solve(R4. c(var2))).
Lrb: Ldisp(RS).
print("Finally. solve '.Lrl." for ".c(varl)).

R6: rat(solve(RI. c(varl))).
Lr6: ldisp(A6),

Append(lr2.lr2.1r3.1r4.lr5,lr6))S

* Test():-
ci iminate[2]typ...A.Aclaus@[TJ.

type-A.Acl ause[2J.
Phi.
Psl)S
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/0 -- mode: macsylh s
(File to Run Production at 3d Space equations.

Bruce R. Donald, 14IT Al LAB ) 1/

/0 Define the type ABC constraints. 0/

Define_.ASC():,

block([].
bat ch ('US RDS :brd. prodCs pace .mac"))

/0 Define the appilicability Constraints 0/

Oefine-.Applico:-
Block((].

Batch("USRD$: Ebrd.prod)Appl ic.niac"))S

/0 Define Both 0/

Produce..Defs( )
block([].

Writefile("usroS:[brd.prodJProduce.log").
Batch( "usrd$: Ebrd .prod)Rotate .mac').

.0 Define..ABCO.
Define-.Applico.
Closet ilesO.
Notify())$

Cold...Restrto:-
block([).

batchload( "sys~login: utils .maci).

0 batchload("usrdS:[brd.prod)produce.mac").
Produce-.defs( )

/0 Here's a function to save labels for you. 0

Save..labels(f110) :m
block([].

?Open..output-j'le(file).
for Label in Append( reverse(labeli(e)), reverse(labols(d)) S
DO
(?Grlnd-TO..FLE(Labol). Print(Labal)).

?Close...Outpufilo( ))S

/I Produce the EXPRESS file, parsing into solutions and coefficients. 4/

Produce..Expresso:e
block([).

writafile("usrdS :[brd.prod)Express.1Og').
batch("usrdS: [brd.prod)Express.mUcC).
DO...CExprssO).
Print(' Saving Labels in LSP fl.
Save-.LbelSUUSRS:brd.prod]EXPRESS.LSP").
Notify())$

/0 this function produces EVERYTHING. 0/

Produce-.ALL( )
BLOCK([].

Produce-.Defs().
ALL...DEFS...LOAOEO: TRUE.
Kill(Nfi, hgj. Ai. Alone. Bj. Ujone).
Type..A-.Csurface(1) A-.5.
Type.....Csuracefl): U-..
Type.C...CsuI'tce(): C-5.
Produce..expresso.
closefilaeV))s
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S ~ ~ f Bruce R. Donald (8RO@OZ) Euler Rotations for Macsyma. See -- MACSYKA--
Paul. p 45 0/

c(angle):e cos(angl@)S
S(angle):o sin(angle)S

matrix(ra (c(psi). -S(Psl).0. 03.
$ (psi). c(Psi). 0. 0].

C0. 0. 1. 0).
E 0. 0. 0. 13);

Not..y..theta: matrix(
(c(theta). 0. S(theta). 0].
0. 1. 0. 0).0

C-s(theta). 0. C(theta). 0].
(0. 0. 0. ID):

Rot.Z...Phi: matrix(
[c(phi). -s(phi). 0. 0],
(S(phi). c(phi). 0. 0).

i: 0. 0. 2,. 0
( 0. 0. 0.12):

Euler-.temp: Rot_.Y...Thots Rot_.Z...Psii

Eulerjiiatrix: Rot..Z..Phi .Euler-.temp:

hoinogenize(X):e [z(1J. 4(2J. x133, 1):

UnHomogenize(X) :* C[(1/x[4J. z(2)/x[4). x[3]/x(4]];

Rotate-.vector(X) :a UnHomogenize( Eulerjl.atrla Hc-rcgeniz4(X))

/0 Cross Product 0/
Cross(A.B) :

(&[a2]6b[3] aE3J0b[2]).

10 SImplify if possible? 0/

Simp-I.(Exp. Var) :a ratsubst(1. sln(var)-2 *cos(var)^2. exp):

Simp-..( Simp-.1( Simp-..(Exp, Phi). Theta). Pai)):

/* General Transformation function. A 4-vector Is assumed to be a plane.
and a 3-vector a 3-vector, hence the 3-rector is ROTATED and a 4-vector
plane is also rotated ... See PAUL 0/

Transform(Transformatlon~juatrla. X) :a
Block([Hom. Transans).
Ans: *Whoopsi".
If length(X) a 4 then

Ans: x .Transformation-mjatrix
Else
if length (x) a 3 then
Ans:Unhomogenze(Transformaton.matrla Homogenize (1))

Else Print(" But ". must be a 3-vector or 4-Vactorl').
Ama):

/0 Now Compute Inverse of the Euler Transformation 0/

E...Adj: simp..3(rat (adjoint( fuler-..mtrix)));
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