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Abstract
We analyze algorithms that sequence the retrieval of Items
from a carousel conveyor, and show how the appropriate algo- -"-

rlthm depends on the load to which the carousel is subjected.
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0. Introduction.

A carousel conveyor is a length of shelf fashioned
into a closed loop that is rotatable (under computer control) in
either direction. It is increasingly found in automated ware-
houses since it can help considerably with the storage and re-
trieval of small parts. Among the benefits of a carousel is that,
rather than have a picker, human or robotic, travel to retrieve
an item, the item can travel to the picker. This allows the
picker to perform some other activity (e.g. sorting, packaging,
labelling, or picking from another carousel) while the item is
travelling. This parallelism of activity enables greater through-
put and therefore enhanced warehouse operation.

1. Item- and order- density.

An order is a set of items that must be picked
together, as for a single customer. We assume that only one order
can be picked at a time, and that we must pick many orders.

How to best retrieve a collection of orders is a two level
sequencing problem: how to sequence items within an order, and

how to sequence orders. These levels cannot be separated because
the time to retrieve the next order depends on where the carousel
ended up after retrieving the previous order.

Two parameters measure the density of traffic to which the
carousel is subjected. The order-density indicates how many

orders are received per unit time; the item-density indi-
" cates the average number of items within each order. Both of

these parameters are important to the operation of a carousel
since they jointly affect how to best retrieve items and orders.

Both the order-density and the item-density affect how we
might choose to solve the problems of sequencing orders and
items. For each parameter we consider two extreme situations. For
order rate these are

C) The order rate is small relative to the speed of order
retrieval. When the order rate is low, the average time to
retrieve an order is smaller than the average time between the

. arrival of orders. Usually the carousel will retrieve an order,
and then wait for the arrival of the next order. Orders will then
be retrieved In first-come, first-served sequence, and to be
efficient we must retrieve each individual order quickly. Thus

, our retrieval problem decomposes into a series of problems, each
of which is to quickly retrieve a single order. ..- i- --
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(2) The order rate is large relative to the speed of
order retrieval. If the order rate is high, the problem

..

does not decompose, since new orders may arrive during the re-

trieval of any order. Thus some orders must wait during the
unproductive time spent travelling from the end of one order to
the beginning of the next, and we would like for them to not wait

* -long.

{1") The item-density is large relative to number of
storage locations in the carousel. In this case, to re-
trieve all the items of an order, most, or all of the storage

;W locations must be visited for each order, and so all retrieval
problems are (almost) the same. Such re~rieval problems are easy
since an efficient route visiting all of the storage locations is
trivial to find- simply rotate the carousel clockwise! If merely
most locations are to be visited, then simply rotating the
carousel clockwise still produces an effective (and probably
minimal-time) picking sequence. Since all good solutions to such
problems look very similar, they are simple to solve.

(2') The item-density is small relative to the number of
storage locations in the carousel. In this case each re- 0
trieval of an order requires the solution of a routing problem
which visits only a small number of the storage locations. The
solutions to such problems can be very different, and so not
amenable to the simple approach above. In this case we must
exercise ingenuity to quickly find effective retrieval routes.

The choice of retrieval strategy will therefore depend on
the item- and order-densities. When the order-density is low,
retrieval strategies can be simpler, since the problem decomposes .
into a succesion of independent retrieval problems; when the
order-density is high, retrieval strategies must account for the
sequencing of orders. When the item-density is low, retrieval
strategies must be more complex in order to search for an effi-
cient picking sequence; when it is high, the retrieval strategie.
can be very simple and still produce efficient picking sequences.
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2. Retrieval Strategies.
, -]

Consider a carousel serviced by a single picker. The picker j
is to retrieve a fixed and known collection of items. We would
like this to be done as quickly as possible. on the premise that

this will improve service. The total time to retrieve all of the

items may be expressed as a sum of two terms: the total time

during which the carousel is travelling + the total time during
which the carousel is stopped for picking. While an item is being _

picked, neither the carousel nor the picker is available for

other activities. At the end of the pick time, both the carousel

and the picker become available. All of the pick times are as-

sumed to be constant, approximately equal, and independent of the

sequence in which the items are picked. Thus, to shorten the

total retrieval time we must shorten the time during which the

carousel travels between storage locations.

For definiteness we assume that each order has been prepro-
cessed, and is given as a circularly-linked list of items sorted -

according to storage location on the carousel, with a pointer to

the current relative position of the pick station. To avoid

tortured grammar, we will occasionally speak of the picker as

moving around a stationary carousel, even though the opposite is

true. Also it will sometimes be more convenient to speak of

travel distances in place of travel times. (We assume them to be ..-

pro po rtio nal.)

2.1. When the order-density is low.

In this case the retrieval problem decomposes into a series

of independent problems, each of which is to quickly retrieve one

order.
H.D. Ratliff (private communication) has observed that an

optimal pick sequence can be found quickly: In retrieving n items

from a carousel, it is never optimal to rotate the conveyor

through a complete revolution nor to rotate past the same loca- 

tion more than twice. Consequently some storag location (or else

the current position of the pick station) will be the "'rightmost"

3 •



in an optimal retrieval sequence. Now a location can be rightmost

in at most two different ways: the carousel can rotate counter-

clockwise to the item and then reverse direction, or the carousel

can rotate clockwise and then reverse direction and travel to the

item (Figure I). Since the current location of the pick station

can be rightmost in only one way, there are only 2n-1 retrieval

sequences that are candidates for optimality.

"OPTIMAL RETRIEVAL" ALGORITHM

Step I: Evaluate the 2n+1 candidate retrieval sequences that

correspond to specifying a "rightmost" location.

Step 2: Choose the best of the candidate solutions from Step 1.

This algorithm determines the very quickest sequence in which to

retrieve the items of an order. It requires only O(n) steps

(beyond the preprocessing sort).

The intelligence of this algorithm lies in its determining

the best place at which to reverse the direction of travel of the

carousel. However, when the item-density is large, it is unlikely

that the optimal solution will double back so that the computa-

"*- tion that determines the best place to double back is likely to ...

be wasted.

For larger item-densities simpler, non-optimal procedures

begin to work almost as well as the optimal. A natural one is

X.
"NEAREST ITEM" HEURISTIC

" iStep 1: Always rotate to the nearest item to be retrieved.

This heuristic is simpler than the optimal algorithm, but it is

not guaranteed to produce the shortest retrieval route. Neverthe-

less, it does have provable performance bounds that guarantee on

,* the quality of its solutions.

4
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THEOREM 1: Under NEAREST ITEM, the total distance travelled to

retrieve one order is never greater than one revolution of the

carousel. Furthermore, it is is never greater than 2 a the

optimal distance.

Proof: Consider the route produced by NEAREST ITEM, and partition

it into maximal segments in which there are no changes of direc-

tion: assume there are k such segments. For the jth seg-

ment, let Ij be the length along the segment to the first item

retrieved on that segment; let Rj be the length of the remain-

der of the segment. (See Figure 1.) Then, since the heuristic

always selects the nearest item to pick next,

Ij a 2*Ij_ 1 + Rj_ , 0

Expanding this gives
i-I--

Ij ( (It  R1)
i-I 0 -

Thus each Ij, and Ik  in particular, is at least as large as

the total distance that has preceeded it, so that the total

distance travelled is never more than 2 -Ik + Rk . But 2 *Ik

R. is never more than one revolution of the carousel which

yields the first conclusion.

The second conclusion is obtained as follows. Let I be the

shortest interval that spans all of the items in the order. The

distance travelled under the optimal sequence must be at least as

long as I. If I is greater than or equal to one-half a carousel

revolution, then the claim holds, since the heuristic requires no

more than one revolution. If I is less than one-half a carousel

revolution, then I a Ik + Rk , and 2=(the distance travelled

under the optimal sequence) 2 * 1 2 * Ik Rk ) a

2-1k - a_ the distance travelled under the heuristic. I

Thus, NEAREST ITEM can never produce a solution with an exces- 0

sively large relative error, or with an excessively large abso-

lute error.

* 5

. . . . . ....-.. ......... ...-
*".'' . . . . .. . . . * .- . .- ... , . 5'-, - .-- -- . .- .. _" ... S :, - . - . .... : .-



When the item-density is high, it is unlikely that an opti-
mal route will double back. In this case we can safely restrict
our consideration to only 2 of the n+1 candidate routes for
optimality: the 2 routes that do nOL double back. If we choose
the shorter of these 2, then we are very likely to have chosen
the optimal route.

"SHORTER DIRECTION" HEURISTIC

Step I. Evaluate the length of the route that simply rotates
clockwise, and the length of the route that simply
rotates counter-clockwise.

Step 2: Choose the shorter of the two routes from Step 1.

While this heuristic never produces a route longer than the
length of the carousel, it can, in the worst case, produce a
route that is many times longer than the optimal (by a factor of
one-half the number of carousel locations). Nevertheless, its
routes are likely to be optimal when the item-density is large.

Notice that both NEAREST ITEM and SHORTER DIRECTION are
suitable for dynamic versions of the retrieval problem, in which ,
the list of requested items changes even while the order is being
picked. In contrast, an optimal solution requires more computa-

tion to update itself.

When the item-density is large with repect to the number of
carousel locations, then almost any reasonable heuristic will
produce routes only negligibly longer than optimal, on the aver-
age. Thus, in the interests of economical computation, we might
as well adopt the simplest such heuristic. For example, we might
accept only a slight degradation of expected quality of solution - 0
by using the following extremely simple retrieval strategy.

"MONOMANIACAL" HEURISTIC

Step 1. Always rotate to the right and pick items as they are

encountered.

This heuristic is absurdly simple yet for large number of item-
densities, it becomes nearly optimal.

Thus as the item-density increases, the qualities of solu- 0
tions of the retrieval strategies become indistinguishable and
optimal. When the item-density is large, we might as well use the
simplest retrieval strategies.

* 6
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2.2. When the order-density is high.

When the order-density is high, the order-retrieval problems
do not decompose and we must sequence orders, as well as the
items within the orders. A typical way to organize retrieval in
this case is to solve a "rolling" problem, i.e. to specify
some collection of orders to be retrieved, and ignore any new
arrivals while retrieving them. This converts the dynamic problem
to a series of (easier) static problems. Unfortunately, to solve
even the static problem optimally can be difficult: J. Spinrad
and C. Tovey (private communication) have shown that the problem
is NP-complete [1], which strongly suggests that no fast optimum-
finding algorithm exists. Nevertheless there exist fast heuris-
tics that give solutions guaranteed to be close to the optimal.

A lower bound on the cost to pick an order is the length of
the shortest interval containing all the items of the order. The
minimal spanning interval of the n items in an order may be
found in O(n) steps by omitting the largest gap between neighbor-
ing items of the order. We distinguish the endpoints of this
interval by referring to them as the "endpoints of the order". If

V there are m orders to be picked, then there are 2m endpoints of
orders.

Assume m orders are to be retrieved. Any way of picking the
orders must visit the two endpoints of each order and so must
travel at least the lengths of the shortest spanning intervals.
Without loss of generality, we may assume that the picker always

begins retrieving an order at one of the endpoints of the order
and finishes at the other. Thus any way of picking orders deter-
mines a matching among the endpoints of orders.

Suppose we compute the minimum cost matching among the
endpoints of orders; then we will have determined a way of pair-
ing the endpoints of orders so that the total travel distance is
as small as possible. However, the minimum cost matching may fail
to give an uninterrupted sequence in which to pick the orders,
since the endpoints of orders may be paired in such a way as to

yield disjoint circuits rather than a single path traceable by
the picker. We can account for this by connecting the disjoint
circuits in an efficient way. Thus we can heuristically determine
a sequence in which to retrieve orders by hierarchically decompo-
sin'g the problem, solving each level well (minimal spanning
intervals, minimum cost matching), and assembling a solution from
the pieces (connection of disjoint circuits and path). This is
formalized as

7



S"HIERARCHICAL" HEURISTIC

Step 1: Construct the minimal spanning interval of each order.

Step 2: Construct a minimum cost maximal matching among the 2m

endpoints of orders and the start position of the -- icker.

(The matching organizes the order intervals into a set

of (possibly disjoint) circuits and a path from the

starting point of the picker.)

Step 3: Pick all orders in the circuit or path containing the
current position of the picker. Pick these orders, and
the items within them, in the sequence of their

appearance along the circuit or path.

Step 4: Rotate the carousel clockwise until an unpicked item is

encountered; go to step 3.

Figure 2 illustrates the performance of HIERARCHICAL.

Notice that HIERARCHICAL specifies a sequence of retrieval 0

for the orders and, in addition, specifies a sequence of retria-
val for the items within each order.

THEOREM 2: Under HIERARCHICAL, the carousel will never travel

more than I revolution beyond optimum. S

Note that this guarantee is independent of the number of

orders and the number of items to be retrieved! Consequently

HIERARCHICAL is asymptotically optimal.

Proof: Let Y'Ij be sum of the lengths of the shortest spanning

intervals of the orders, and let M be the length of the minimal-

cost matching. Then any way of retrieving* the orders requires

total retrieval distance at least 2Ij + M. HIERARCHICAL 7.

requires additional travel of at most one revolution of the

carousel due to step 3. .

An additional result of the above argument is that step 2 of
HIERARCHICAL can be implemented with any of the candidate
matchings with non-overlapping edges. In this case the carousel

would never make more than 2 revolutions beyond the optimal.

* 8
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THEOREM 3: HIERARCHICAL can be implemented to run in O(Xn,)

steps, where n is the number of items in order j.

Proof: The minimal spanning interval of order j can be found in

O(nj) steps from the preprocessing sort, so that O(Xnj)

steps suffice to find all of the minimal spanning intervals.

In the matching exactly one point is not matched at all

since there are an odd number of points (the starting point of

the picker plus the 2 endpoints of each order). Furthermore, the

matching contains no overlapping edges since each point is mat-

ched to one of its two nearest neighbors. Each specification of

an unmatched point uniquely determines a matching with no over-

lapping edges, and all such matchings are determined by speci-

fying an unmatched point. If m is the number of orders, we need

evaluate only the costs of the 2m-1 matchings corresponding to

all possible choices of unmatched points, since one of them must

be optimal. Thus to determine the minimum matching requires only

O(m) steps. 0

Thus, for relatively little effort, we can det-2rmine a

provably near-optimal sequence in which to retrieve a collection :

of orders. Moreover, as the number of orders increases, the

relative amount of unnecessary retrieval time quickly be-

comes negligible.

0

When the item-density is larger, then in the optimal retrie-

val route, the subroute to retrieve any individual order will

tend to be one that does not double back. In such a situation, a

much simpler retrieval strategy produces near-optimal routes.

"NEAREST ORDER" HEURISTIC

Step I: Construct the minimal spanning interval of each order.
S

Step 2: Travel to the closest endpoint of an unpicked order and

pick that order.

9 0
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NEAREST ORDER also requires O(TnJ) steps, but it is much

easier to program. Furthermore, the quality of its solutions can

also be guaranteed: if the carousel has S storage locations, then

THEOREM 4: Under NEAREST ORDER, the carousel will never travel

more than log2 S revolutions beyond optemum.

This guarantee is not as good as that for HIERARCHICAL; neverthe-

less, it too is independent of the number of orders and the

number of items to be retrieved, and so is aymptotically optimal.

Proof: First note that once begun, each order is retrieved as

quickly as is possible. Therefore any travel beyond optimum must

be due to travel between orders. Call the travel from the

end of one order to the beginning of the subsequent order a
"gap". Gaps never partially overlap- Any gap is either not con-

tained in any subsequent gaps, or else is contained entirely

within a subsequent gap that is at least twice as long. This

holds since otherwise the carousel must not have rotated to the

nearest endpoint, in violation of the heuristic rule. Thus the

carousel cannot have rotated past any point idle more than log 2  0- -

S times. Furthermore, between subsequent rotations past any point

the gaps sum to length no more than one carousel revolution.

Therefore the total length of all gaps cannot exceed log 2  S

revolutions. U - _

The above argument in fact establishes a more general re-
sult: under the heuristic which always travels next to the order

whose closest unpicked item is closest of all, the total distance _

travelled between orders is never greater than log 2  S. This

bound is independent of the sequences in which the items

are retrieved within the orders. This permits the observation

that using NEAREST ITEM within each order and also between orders

never requires travel beyond log 2 S + 2 * optimum, and so is

asymptotically within twice optimum.

10
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When the item-density is high, most carousel locations must

be visited, so that the optimal retrieval route is largely deter-

mined. This enables an extremely simple heuristic to perform

close to optimal, on the average.

"MONOMANIACAL" HEURISTIC #r2

Step 1: Always turn clockwise and pick the next encountered order. j
In the worst-case this greedy procedure can suggest retrieval
routes that are quite poor. Nevertheless, certain weak performan-

ce guarantees can be established.

THEOREM 5: The total travel time under MONOMANIACAL ,42 is

never more than twice the minimum possible when always rota-

ting the carousel in one direction.

Proof: (See the appendix.) U

Again, as the item-density becomes large, this simplest
heuristic produces routes which are negligibly longer (on the

average) than optimal routes.

3. Conclusions.

The appropriate choice of heuristic for retrieval depends on

both the order-density and the item-density. As these increase,

we are justified in using simpler heuristics to sequence retrie-

vals. These simpler heuristics may be capable of undesirable
worst-case performance, but a high volume of items within orders

will protect them from exhibiting pathological behavior. In this

case they may be expected to produce retrieval routes that are

negligibly longer (on the average) than optimal routes. Advan-

tages of the simpler heuristics include ease of implementation

and speed of execution. Moreover, they are naturally suited for
incorporation in distributed control systems. Finally, since they

typically are "greedy" algorithms with little or no look-ahead,

they can quickly modify tentative solutions. Thus they can ope- 0

rate in a dynamic enviroiment in which the problem is changing

even as it is being solved.

11

* S
-. .................................... ............... - .



Practical choice of appropriate retrieval algorithms must be

done by simulation. In general, it depends on (in addition to the

item- and order-densities) the probability for each item of being

in a typical order, the locations in which those items are

stored, and the speed at which the carousel rotates.

Informal testing suggests that, across a wide range of

conditions NEAREST ITEM and NEAREST ORDER are the algorithms of

choice. They can perform quite close to the optimal (on the

average) for even fairly low item-densities: they produce solu-

tions that are guaranteed to be not "too far" from optimal.

independently of the number of items and orders they process;

they are fast in execution; they are simple to program: and they

are suitable for distributed and dynamic control.
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APPENDIX

Proof of Theorem 5: We first establish some terminology and prove
a lemma.

Imagine that the first item to be picked from each order is
specified. By implication then, the last item to be picked from
each order is determined. We will say that an order is "active"
at all carousel locations between and including the locations of

an order determine an "interval of activity" for that order. For
a specification of first and last items of each order, let A(j)
be that set of orders active at carousel location j. This set has
cardinality IA(j)I, and since only one order may be picked at a
time, to retrieve all orders we must rotate the carousel past
location j at least IA(j)I times, once for each active order. We
refer to the largest of the IA(j)I as the "maximum overlap".

To each carousel position i, there corresponds a particular-
ly important way of specifying the interval of activity for each
order k. Let F(i,k) denote the interval of activity beginning
with the first item in order k that is encountered when rotating
the carousel clockwise from location i. (See Figure 3.)

Let r be the smallest number of carousel revolutions re-
quired to retrieve all orders. 0

LEMMA: For the intervals of activity FCi,k), fAC)/ < 2sr

for all carousel locations j.

Proof.. For a specific location J, consider the intervals of
activity F(i,k) that are active at location j. Now the optimal

picking sequence may choose different first items for each order
than chosen by F(i,k). This induces a partition of the orders
which are active, at location j. One group includes those orders k
for which the optimal picking sequence chooses the same first
item as F(i,k). Such orders can be no more than r in number,
since the optimal picking sequence requires only r rotations of
the carousel. The remaining orders must all be active at location
i in the optimal picking sequence, and so must be no more than r .
in number. Thus the maximum number of orders active at location j
within F(i,k) can be no more than r-r. "

13
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Now to complete the proof of the theorem: For any specifica-

tion of intervals of activity for the orders, define a "critical

interval" to be a maximal sequence of consecutive carousel loca- "
* tions for which the IA(j)I are all equal to the maximum overlap.

At the initial location of a critical interval, there must be the

first item of some order, since otherwise the critical interval

would not be maximal. Thus, under NEAREST ORDER, the carousel

would never rotate idle past the start of a critical interval

without picking one ot the orders in that interval. Also, if any -

order ends in a critical interval, then it must end in the last
location of the interval, for otherwise the IACjHI would not all

be equal throughout the interval. Thus the heuristic must pick

one order throughout each pass through a critical interval.

Now consider the intervals of activity FCi,k). With each

revolution of the carousel, the heuristic reduces by I the over-

lap of the currently critical intervals. But, by the preceding

lemma, no overlap exceeds 2-r and so no more than 2-r carousel

revolutions are necessary to retrieve all orders. U

14-.
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Figure 1: The two different candidate retrieval sequences in
which the marked storage location is rightmost.
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Figure 2A: The minimal spanning intervals of a collection of orders.
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Figure 2B: The minimum-cost maximal matching on the endpoints
of the orders and the start position of the picker.
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Figure 2C: The sequence of picks determined by the
HIERARCHICAL heuristic. It is guaranteed

h to be within 1 revolution of optimum.
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a critical interval

50

Figure 3: The intervals of activity F (start position, )

The maximum overlap has value 3, as shown in the two
critical intervals, so that all of the orders can be.
retrieved within 3 revolutions of the carousel. .
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