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I. BACKGROUND

The measurement of plastic strain has long been of interest to engi-
neers and scientists concerned with the behavior of materials subjected to
impact loading, such as experienced when a kinetic energy projectile impacts
an armor target. Many methods have been devised to measure the strains
experienced in materials subject to loads in excess of the yield limit, but
these methods have usually been restricted to conditions of low rates of
loading. With the rapid escalation of threats within the field of armor and
penetrator ordnance, the researcher is being pressed to expand the under-
standing of penetrator - target interaction to permit the development of new,
improved ordnance.

For the study of the mechanics of deformation it is necessary to be
able to measure the strain and energy absorption occurring everywhere within
the zone of deformation. In many penetration experiments, these zones of
deformation may be quite small while the levels of strain are quite high. A
prerequisite for the measurement of the strain sustained by an element pass-

ing through the deformation zone is a knowledge of the precise size, shape,
and position of that element before entry to the plastic field.

To study the strain distribution and energy distribution within an

impacted target, a technique was developed for depositing an orthogonal grid
on an internal surface of the target. Measurements of both total strain and
strain increments could then be made and then used to determine energy
absorption anywhere within the zone of deformation.

The work presented here deals with the specific case of long rod pene-
tration into semi-infinite rolled homogeneous armor (RHA) steel targets.
Previous work most closely paralleling this study was performed by Mobley,
Dietrich, Harrison, Pond, and Glass.1 Their studies utilized the phenomenon
of strain hardening to correlate strain and change in microhardness in order

to obtain an energy balance for pellets impacting aluminum, copper, and mild
steel semi-infinite targets. Energy balances were obtained utilizing the
concept of the Prager curve which will be described in more detail later.
Mobley utilized the same correlation technique in his dissertation2 for

notched and unnotched impact specimens, deformed through a wide range of
velocities. He determined "critical velocities" for the material as well as

demonstrating the effects of strain localization in his specimens. Pond and
Hsu 3 then refined the determination of strain in a target by placing a

1R. B. Pond, C. Mobley, C. M. Glass, "Energy Balances in Hypervelocity Pene-
tration," Proceedings of the Sixth Symposium on Hypervelocity Impact, Vol. 2,

Part 2 (1963); and C. Mobley, A. M. Dietrich, E. Harrison, R. B. Pond, The
Effect of Metal Properties on Hypervelocity Penetration, "Sumary Report,"

0 U.S. Army Contract No. DA-36-034-ORD-3565 RD.

2C. Mobley, Ph.D. dissertation, The Johns Hopkins University, "The Effect of

Velocity on the Deformation of Modified Charpy Copper Specimens," 1968.

3N. Hsu, R. Pond, "Hypervelocity Target Dynamics as Seen by Three-Dimensional
Markers," AIAA Hypervelocity Impact Conference (1969).
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three-dimensional array of wires in copper targets prior to hypervelocity
pellet impact and measuring their displacements after impact. Variations of
the above techniques were utilized in the current study which involves a
semi-infinite RHA steel target undergoing penetration by a tungsten-nickel-
iron alloy penetrator.

II. INTRODUCTION

The traditional approach to armor and penetrator design for ordnance
applications has followed two paths. In the area of penetrators, the
approach has been to increase muzzle velocities, increase the penetrator
density, and increase the length to diameter ratio of the penetrator. In
the area of armor design, effectiveness has been enhanced by increasing the
hardness of the armor steel and its thickness. This has largely been a
brute force approach to ordnance design. However, penetrators are now
reaching the design limits of the gun systems used to launch them, and
armored vehicles are approaching the design limits of bridges and roads over
which they must travel. Under these constraint% it has become necessary to
re-emphasize the development of materials with "new or unique" properties to

withstand the severe stresses imposed during ballistic impact.

In the past, high velocity deformation was often considered hydro-

dynamic in nature and independent of material parameters, such as micro-
structure, crystallography, etc. Experimental studies have shown this con-
cept to be incorrect. - Consequently, if one is to design advanced ord-
nance, then a more detailed and faithful characterization of the materials
being used must be undertaken. The objective of this program was to gain
additional insight into the interaction between the penetrator and target
during the penetration of a semi-infinite block of target material. The

experimental efforts were designed to provide data on the energy parti-
tioning between the penetrator and impacted target and to provide an uncom-
plicated geometrical configuration which would lend itself to simulation by

numerical modeling. To obtain this information, it is necessary to observe
the material flow and energy dissipation process in an opaque material.
Although experiments have been conducted in transparent materials, such as
wax and plexiglass, the applicability of these results is ambiguous when one

4H. P. Tardiff, F. Claisse, P. Callet, Some Observations on Explosively
Loaded Iron and Mild Steel, "Response of Metals to High Velocity Deforma-
tion," Conf. Metal. Soc., 9, 389 (1961).

5R. B. Pond, C. M. Glass, Crystallographic Aspects of High Velocity Deforma-
tion of Aluminum Single Crystals, "Response of Metals to High Velocity
Deformation," Conf. Metal. Soc., 9, 145 (1961).

6G. L. Moss, S. Toms, R. Vitali, A. Merendino, "Effect of Target Microstruc-
ture on Penetration by Shaped Charge Jets," BRM Report No. 1739 (April 1966).
(AD# 487842)

7C. M. Glass, G. L. Moss, S. K. Golaski, Effects of Explosive Loading on
Single Crystals and Polycrystalline Aggregates, "Response of Metals to High
Velocity Deformation," Conf. Metal. Soc., 9, 115 (1961).
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considers the high strength materials used in most ordnance applications.

Another requirement is to be able to represent the effects of strain rate
and high stresses on the material properties. A method initially proposed
by Prager 8 and utilized in subsequent high velocity experiments was used to
address this problem.

III. TEST TECHNIQUES

Based on previous small-scale experimentation at the Ballistic Research

Laboratory, testing was conducted using long rod penetrators which had a
length-to-diameter ratio of 10 and a mass of 65 grams. The penetrator geom-
etry was that of a right circular cylinder with a hemispherical nose. There
has been a considerable data base collected using this geometry penetrator,

and it was felt that its continued use in this program would allow the
expansion of this data base and permit the use of the data gathered in this

program to be used to explain some of the phenomena observed in other firing
programs. Each of the penetrators tested was fired at a muzzle velocity of
1550 meters/second. The targets were either 15 cm cubes of RHA or the split

target composed of a RHA core split on a plane parallel to the shot line and
held together in a 4340 steel sleeve. Photographs of the split target con-

figuration are shown in a later section. Figure 1 shows a sketch of the
4 experimental setup used during the conduct of these tests.

IV. METALLOGRAPHY

A. Semi-Infinite Target Blocks.

Sectioned targets were examined with both optical and electron micro-
scopes. Various etchants were usedbut the best results were obtained with
Nitol and Picrol. The target material, RHA, wh.,:' nominal composition is
listed in Table 1, was in the form of six-inch thick, rolled plate before

being cut into cubes approximately 15 cm on each edge. (All targets were
this geometry except the split target, whose configuration is discussed
later). It should be noted that RHA is purchased by the U.S. Army on the

basis of performance specifications rather than chemical compositions
thereby resulting in significant chemical and/or microstructural differences
from lot-to-lot.

TABLE I. Typical Chemistry For 15 cm Thick RHA Steel

C Mn P S Si Ni Cn

.22 .15 .025 max .025 max .15 3.2 1.2

4 83W. Prager, "On Isotropic Materials with Continuous Transition from Elastic

to Plastic State," Intern. Congr. Appi. Mech., 5th (1933).I.. 9
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The RHA examined in this study consisted of a fine structure composed
largely of bainite and tempered martensite (Fig. 2). Lighter regions, com-
parable to free ferrite in a plain carbon steel, were also seen with fine
carbides scattered throughout the micro-structure. Due to the complexity of
the alloying constituents, this initial study did not attempt to identify

*" the exact compositions of the various phases.

An interesting characteristic of the microstructure of this RHA is
shown in Figure 3. Spheroidal pockets of material can be seen to have been
pulled out of the matrix material during polishing. If care is taken to
retain these regions, they are found to etch more readily in Picrol than the
matrix, indicating higher carbon content, and contain more than one phase at
higher magnifications (Fig. 4). These areas were apparently a solid solu-
tion which spheroidized during heat treatment. The components in these
regions did not have time to disperse during cooling and were precipitated
as small irregular particles inside some matrix material, all within the
original spheroid upon passing through what was probably a eutectoid of some
kind. Their frequency was fairly constant throughout the section (both
close to and far away from penetration crater),and they are believed to be
relatively hard regions due to the lack of distortion they underwent very
near to the crater (Fig. 3). The matrix material, on the other hand, under-
went severe deformation close to the crateras can be seen by the elcngated
phases (Fig. 5). This deformation was very localized, however, and farther
than approximately 0.37 millimeters away, no flow was apparent in the micro-
structure. In upper regions of the target (approximately the upper third),
deformation adjacent to the crater was so severe that adiabatic shear bands
(Fig. 6) and microcracks (Fig. 7) were formed. It is believed that the
higher pressure and greater material flow associated with the region just
beyond projectile entry and prior to its degradation are responsible for the
shear band and microcrack formation.

Targets were also macroetched with a hot 50% concentrated hydrochloric
acid etch for 15 to 30 minutes. This procedure revealed an area of reverse
flow (against penetrator flight direction) near the upper surface, a region
of mixed flowand finally an area of flow approximately parallel to flight
direction (Fig. 8). In the region near the entry surface where gross defor-
mation is in the reverse direction, there is actually a thin layer of paral-
lel flow adjacent to the crater. It is in this thin layer that the micro-
cracks and adiabatic shear bands, both oriented in the same direction as the
layer, were formed. No localized shear bands or cracks were seen below the
mixed flow region (i.e. they were located, as previously stated, in the
upper regions of the target, nearer to penetration entry surface).

Hardness profiles of sectioned targets following penetration revealed,
as expected, a higher hardness near the crater due to strain hardening.
Both microhardness and Rockwell C hardness measurements were taken in order
to make a comparison. Microhardness has the advantage of small impressions
and can tnerefore be used very close to the crater edge but becomes too
dependent on micro-constituents a short distance away, causing large varia-

tions in the readings. Rockwell C cannot probe close to the crater but
averages over larger areas than the microhardness measurements, giving good
general trends (Fig. 9). The results for one-half (longitudinally) of a
sectioned surface can be seen in the three-dimensional plot made from a grid
of hardness measurements (Fig. 10). These hardness readings are not chinges

10
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Figure 1. Sketch of Experimental Test Set-up.

Figure 2. Photograph of Undeformed RHA Microstructure. Nitol Etch, 300X.
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Figure 5. Target Microstrcture Near Penetration Crater
(Crater is Oriented Parallel to Focused
Portion of Photo). Nitol Etch, 800X.

4k

Figure 6. Adiabatic Shear Bands Formed During
Penetration. Nitol Etch, 320X.
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Figure 7. Tip of Microcrack and Localized Shear. Nitol Etch, 280X.

Figure 8. Macroetched Section of Target Revealing Flow Pattern
Caused by Impact. Hot 11C. Etch.
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in hardness but rather nominal hardness after penetration, giving rise to
inaccuracies due to local variations in hardness before penetration. The
hardness change would be much more pertinent. One should also keep in mind
that the physical significance of the increased hardness is somewhat ambigu-
ous. Although it is related to stored energy (i.e. dislocations generated,
etc.) in some way, which is in turn related to strain, the quantitative
relationship is not a simple problem. A phencmenon knoun as strain softening
has even been documented for certain materials under given loading condi-
tions. On the other hand, excellent energy balances have been obtained in
copper and aluminum targets by relating hardness values to strain via a uni-
axial tensile test and then integrating this strain to determine strain
energy.1 This was attempted with RHA, however, no accurate hardness changes
could be measured prior to necking, making a hardness change, strain energy
correlation very difficult. This was due to the different strain hardening
characteristics and the lower ductility of RHA as compared to the copper and
aluminum successfully used in previous studies. It was therefore necessary
to directly determine the strain field and thereby strain energy in the
target by the method described in the next section.

B. Split Target.

0 The preceeding work on solid target blocks was done on post shot target
sections and required no special considerations as far as target preparation
was concerned. The quantitative information it generates, without more com-
plete background data, is limited. A technique which would allow unambigu-
ous internal mapping of material flow due to penetration into RHA targets
would not only help to further generate understanding of the process of long
rod penetration, but would also allow for more quantitative data to be

-. obtained from targets already tested, once the proper correlations are
*derived. For example, if one could derive the hardness change/strain

energy relationship in a specially designed target, it could be utilized in
the post shot analysis of targets for which only hardness data is available.
A unique split target systbn, was developed which allowed hardness changes
and material flow to be measured (i.e. before and after) on a radial plane
through the crater. This was accomplished by machining a cylindrical tar-
get split down its longitudinal axis, which fit into a mating, unsplit
sleeve or constraining ring,to hold the target together during penetration.
The target and sleeve were machined with a slight interference fit and taper
(approximately one degree). The large ends were situated towards the incom-

0 ing projectile. A front plate bolted to the face of the sleeve prevented
any back slipping of the target out of the sleeve during target impact (Fig.
11 & 12). The penetrator was fired parallel and directly into the split
plane such that after firing, the longitudinal axis of the crater laid in
the split plane.

Prior to firing, hardness measurements were taken over the entire split
surface. This allowed the change in hardness to be determined while the
marks left by the indentation measurements could be used as a reference grid
to determine material flow (Fig. 13). The change in hardness is shown as
iso-hardness contours (Fig. 14). Note the pockets of high hardness in the
upper regions of the target adjacent to the crater. These correlate roughly
with the regions of mixed flow and adiabatic shear banding observed in the
metallographic examination of post shot sections of other targets. Another
interesting observation is the negative change in hardness in the outer

16
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regions of the target. This "strain softening" pattern (zero hardness
,* change contour and outward) is believed to be connected with wave propaga-

tion and reflection from target edges. More experiments are necessary, how-
ever, to determine its reproducibility before an exact mechanism is offered.

As previously mentioned, indentation formed by the hardness measure-
ments were used as a reference grid to determine strain in the target. An
optical comparator was used to measure the locations of these indentations
both before and after penetrationsfrom which displacements were calculated.
The results are shown in Figure 15. Line segments in this plot connect
equivalent points before and after penetration. The larger circles at one
end of each segment indicate the post shot location. Note the flow pattern

indicated on this plot: away from the crater and towards the upper free
surface. Regions of large displacement (i.e. near the front surface) do not
necessarily indicate greatest energy absorption. Relative displacements, or
strain, as explained before, are responsible for this. Another interesting
observation is the lack of displacement near the tip of the crater. The
material is not so near a free surface as at the entry point and is there-
fore not able to flow as readily. It is probably loaded in compression in
this region with much larger residual stresses than in the upper region
where flow occurred.

From the displacements discussed above, the strain at each point may be

calculated. Assuming axial symmetry about the penetration axis, it can be

shown that the components of strain are:

1 2 2eR= rR + z -1 (1)
RR 2 R R

2
1 r(2)

Re* = r2 R-z- -1 (3)

1 2 2

eZ =e (r + Z
RZ ZR 2 (rZrR + ZzR) (4)

eR = eR =ez = ez = 0,5
R *fR Z* *Z 0, (5)

where r = radial location before penetration
4 R = radial location after penetration

z = vertical location before penetration

Z = vertical location after penetration

r r 3r 3z _z

r R z -Z; ZR -; ZZ 3Z (6)

20
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From these elements of the strain tensor, the strain invariants are
found to be:

I eJ + e + e(7
1 RR zZ (7)

12 eZZ eZR eRR 0 (8)

0 eZZ eRZ eRR 0 e

2-e e + e rR -e e eZZ eZZ RR RZ RR 00

I det I el

2
= erz e

Each invariant was calculated at each grid point and iso-invariant con-
tour plotted for I1 and 12 (Fig. 16 and 17, respectively). 13 was found to

be zero everywhere in the section within experimental error. In the infin-
itesimal limit, I; is proportional to a volume change and I to a shear1 2
strain. For finite deformations, as in this case, higher order terms
become more significantmaking the physical meanings of the invariant less
clear but still related to the infinitesimal case. Note the close relation
between invariant and hardness contours (Figs. 14, 16, and 17) for the
regions of greatest material flow in pockets adjacent to the crater in the
upper portions of the target. Near the crater tip, however, the strain has
not reached the values indicated by hardness. This suggests that the hard-
ness may have increased due to increased stored energy (i.e. dislocation
generation, etc.) perhaps brought about by shock wave propagation in this
region rather than any macroscopic strain. It should be noted, however,
that the stored energy and strain are related and that hardness increase in
the upper portion of the target is also due to stored energy which follows
the macroscopic strain due to loading conditions and material flow.

V. ENERGY BALANCE

Although the strain field can be determined by the method described
above,additional information is necessary to calculate an energy balance.
To accomplish this, a method first described by Prager8  was employed. As

0 is well known, the energy absorbed per unit volume by a material during
tensile deformation is given by the area under its true stress-true strain
curve. As the rate of deformation is increased in such a test,,it is found
that the yield and ultimate strengths begin to converge to the true frac-
ture strength of the material. A dynamic true stress-true strain tensile
curve can therefore be defined by extending the elastic portion of the

0 quasi-static curve up to the true fracture stress and then drawing a hori-
zontal line over to the fracture strain. This has been done for the RHA
target material and the tungsten penetrator material (Figs. 18 & 19).

22
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This concept was used previously in the treatment of high velocity
impact,1 high velocity metal extrusion, 9 and nigh velocity metal cutting.1 0

The hypothesis is that the material is being deformed faster than it can
strain harden. The area under the elastic portion of the dynamic curve
represents the energy necessary to initiate metal flow. This energy must
be added more quickly than Prager's proposed "time delay" for strain hard-
ening. Once the metal begins to flow, it will continue to do so until one
of three things occurs: the energy is dissipated, the material fractures,
or the time delay for strain hardening is reached. Remaining energy will
be absorbed by areas adjacent to the crater in the form of a change in
structure or as residual stress (stored energy). An objection to this
method of analysis is brought about by tests conducted in uniaxial
tension/compression at high strain rates. In these tests, one sees the
increase in yield with strain rate but also a corresponding decrease in
ductility. It is believed that this is due to the localization of strain
under the non-hydrostatic test conditions whereas crater formation occurs
under high hydrostatic pressures and consequently the ductility remains
relatively constant. The quasi-static true tensile strain to fracture is
therefore believed to be more indicative of the str-in which occurs before
fracture or "material separation" during crater formation. The ductility
may, in fact, increase slightly during the penetration process since the
role of inclusions and other defects is most likely minimized by the hydro-
static pressures and high velocities. For the present work, the true strain
to fracture from quasi-static tests was assumed to be within experimental
error of the actual value.

Employing this method,the dynamic curves for the target and penetrator
material were determined (Figs. 18 & 19). The strain in these plots, which
is obtained from the test as true long~tudinal strain, must now be related
to the invariants of the strain tensor in order to obtain the strain energy
in tne targets. Assuming that tensile deformation is a constant volume
phenomena, the longitudinal strain - strain invariant relationship can be
calculated for a uniaxial tensile test.

Assuming axial symmetry, it can be shown that the components of the
strain tensor become:

1
eRR 2 (exp (-c2)-c ) (10)

e = 2 (exp (2 E)-1) (11)

eI_ =exp (-c )-l (12)

9 R. B. Pond, "Cold Extrude Rapidly to Produce Long, Thin-wall Aluminum Tubes,"
Metal Progr., 89, No. 6, 77 (1966) and unpublished results referred to in
Ref. 2.

I OD. C. Drucker, "Analogous Strain Rate Effects in Jet Formation and Metal
Cutting," Tech. Rpt. No. 4, BRL Contract No. DA-19-020-ORD-3426 (August 1963).
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and the first and second invariants are:

I = -2 + 3 exp (-€e) + 1 exp (2e) (13)

2 3- 7 1
12 = T + ; (exp c exp 2c)- exp (-c) + exp (-2EtJ (14)

where: e denotes engineering strain

e denotes true strain.

The second invariant obtained for HHA is shown plotted against the
longitudinal strain in Figure 19. The same was done for the first invari-
ant but when the relationship was correlated with the iso-invariant plot
from the target, the results were off by roughly a factor of four when com-
pared to the second invariant. When the energy balance was then calculated

* with the first invariant more energy was returned than had actually been

delivered to the target. This is consistent with plasticity theory in that
the second invariant is representative of plastic deformation (shear
strain), tne first invariant, being indicative of a volume change. A quan-
titative reason for the large difference is unknown. It is perhaps related
to the assumption of constant volume during tensile deformation. As can be
seen in the invariant plots (Figs. 15 & 16). The contours of both are
qualitatively the same. Future tests will continue to utilize both invari-

ants in an attempt to determine the origin of the large difference.

A relationship between the energy absorbed during tensile deformation
and the second invariant was obtained by cross plotting Figure 21 (the

absorbed energy versus true longitudinal strain) and Figure 20 (the secono
invariant of the strain tensor versus true longitudinal strain). In this
way the energy absorbed by the material when it has been strained to a

given value (denoted by the second invariant) is known. This was only
necessary for the RHA since the tungsten penetrator had its entire volume
deformed to fracture judging from observations of the severe material flow.
Its bulk was found to line the crater walls with a small residual amount at
the crater tips, all being severely deformed. Therefore, only one energy
absorption value is necessary - the amount absorbed to fracture - which can
be taken directly from the Prager curve in Figure 19.

The energy balance now becomes

Enegy 1 MV 
2

I. Impact Energy 2

73,125 Joules

* II. Energy After Impact

A. Projectile deformation energy

penetrator volume x energy per unit volume to fracture for

tungsten

1,684 Joules
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i,

B. Crater formation energy

volume of crater x energy per unit volume to fracture for

RHA.

47,606 Joules

C. Strain energy in target

18,618 Joules *

(To obtain this target energy, volumes for various 2nd invariant
values were approximated and multiplied by the appropriate energies per

unit volume and final values summoned. In the future, test curves fitted to the
invariants will be integrated over the appropriate energy values to obtain
more accurate estimates.)

The final energy after impact is then

A + B + C = 67,909 Joules

or 93% of the incoming projectile energy.

Approximately 931 of the incoming energy (a much larger fraction than
nad been expected) is accounted for by the strain energy of the penetrator
and target material, including crater formation. No material was assumed
to disintegrate since total mass before and after penetration for the
systems was constant. Energy not accounted for could be in such forms as
i) slight material disintegration, (ii) frictional heat, (iii) acoustic
radiation,(iv) electro-magnetic radiation, etc.

VI. DISCUSSION AND CONCLUSION

The Prager concept of material deformation has been shown to describe
ballistic impact at ordnance velocities, thus giving credibility to the

approximation of elastic - perfectly plastic behavior of metals under con-
strained high velocity deformation. This phenomenon has been described in
the past as a time delay for strain hardening. Although not attempted in
the present work due to time and space considerations, it is felt a
description of this phenomenon from a mechanistic standpoint is attainable.
Separation of the roles of strain, strain rate, and high pressure in rela-
tion to this phenomenon are required before such a treatment is possible.

The projectile energy during the long rod penetration process has not
only been shown to occur mainly in the strain of penetrator and target

(including crater formation), but the distribution of this strain has also
been determined. This distribution indicates that at initiation and ter-

mination of crater formation, there is relatively little strain. Refine-
ment of a grid has recently been accomplished, thereby allowing more accur-
ate strain field measurements for future work. This, coupled with experi-

ments utilizing different velocities and penetrator materials, would

increase the understanding of long rod penetration further. Stored energy

(perhaps utilizing differential calorimetry) and temperature changes in
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future tests should also be measured in order to independently verify the
energy balance findings of this work. The temperature change will be
generated by two separate sources; a latent heat of recrystallization, in
which macroscopic flow mechanisms will be accounted for, and frictional
heat. In order words, except for stored energy (i.e. elastic residual
stresses, dislocations generated, etc.),all the macroscopic flow will mani-
fest itself as heat. Therefore, although a distribution of temperature may
not be possible, a check on the current energy balance could be obtained
through fairly straightforward measurements of the total heat generated.
The following equality :&s applicable:

Macroscopic Strain Energy = Heat Energy + Stored Energy -

Frictional Heat.

Experiments involving heat measurements would therefore serve as

excellent independent checks on the Prager Concept. The implications of
the demonstration of this elastic-perfectly plastic behavior are dramatic,
although systems in which it applys are unclear. As mentioned previously,
for instance, dynamic tests under non-hydrostatic conditions do not find
the ductility predicted from the Prager curve.

This split target configuration can also serve as an excellent check
on computational codes. Experimental verification of internal deformation
due to long rod penetration is possible, rather than simply using final
crater shape. This provides a comparison between theory and experiment not
often found.

This work also indicates that although hardness may be qualitatively
indicative of strain, the correlation is far from exact as seen in the
comparison of iso-invariant and iso-hardness plots. It would perhaps be

more accurate to relate hardness and stored energy while continuing to
measure strain by the split target method in future studies.

-
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