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A fundamental problem in motion processing research has been the discrepancy

between the precision and reliability with which image displacements can be de-

termined and the sensitivity of inference procedures to noise and resolution errors.

PThere are also indications that these inference procedures are inherently unstable

and, in some cases, ambiguous. The approach of this thesis has been to deal with

restricted cases of motion for which the inference of the motion parameters, image

i displacements, and environmental depth, can be combined into a single, uniform,

and mutually constraining computation. These restricted cases of motion are suffi-

cient for a wide range of real-world tasks, especially since other associated sensing

- devices can be used to ascertain the other parameters of motion. We then apply the

procedure developed for translational motion to local portions of image sequences

to process general sensor motion as if it were composed of independent local envi-

ronmental translations. The resulting representation can considerably simplify the

processing of less restricted and general motion. ' /,
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.S The procedure for processing translational motion robustly combines the de-

termination of image displacements with the extraction of the direction of sensor

motion. We present several experiments showing its behavior in a variety of sit-

uations. We also consider various extensions to this procedure for such things as
'4

developing it as a hierarchical computation; processing translational blur patterns;

dealing with multiple independently moving objects; and using the translational

procedure in the control of an autonomous vehicle.

Results are presented for two other restricted cases of motion: pure sensor

rotation and motion constrained to a known plane. The results are similar to the

translational case except that certain simple cases of planar motion are found to be
r-

inherently ambiguous.

We then process less restricted and general sensor motion by applying the pro-

cedure for translational motion processing to local areas of images. This results in a

low level description of motion called the Environmental Direction of Motion Field

(or EDMF) which associates a direction of environmental motion with extracted

image features. This representation can greatly simplify the recovery of sensor mo-

ftion parameters. We also develop the constraints associated with object rigidity in

determining the inference of sensor motion parameters, and then show how these

constraints are simplified by information in the EDMF.

We conclude with a summary of the major results of the thesis and mention

future work, chiefly in the areas of architectures for real time motion processing,

and applications to more challenging and specific domains.
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.;,: . . .. * . *. *. , *,.. ,. .* . -: -



P TABLE OF CONTENTS

ACKNOWLEDGMENT. ............. ....... v

ABSTRACT. ........................ vi

TABLE OF CONTENTS. .. ................. viii

LIST OF TABLES. ............. ......... xi

LIST OF ILLUSTRATIONS. .................. xii

Chapter

I. INTRODUCTION. ......................

Introduction. ........................
Thesis Outline. .. .................... 2

II. THE NATURE OF MOTION PROCESSING .. ......... 4

Introduction ........... ............ 4
Optic Flow. ........ ............... 6 ::
Computing Optic Flow ............... .... 7

Matching Techniques . . . . . . . . . . . . . . . . . . O
UDifferential Techniques .. ................. 12

Hierarchical Processing .. ................. 13
Inference of Environmental Information ......... .... 14

III. DISPLACEMENT FIELD STRUCTURE. ........... 20

Introduction ........... ............ 20
Describing Rigid Body Motion .. ............... 20

Terminology .. ..................... 21
Coordinate Systems .. .................. 21

Decomposing Rigid Body Motion .. .............. 24
Properties of Pure Rotational Displacement Fields .......... 25
Translational Field Properties. ........... ..... 30

-Composite Field Properties .. ................ 33

IV. PROCESSING TRANSLATIONAL MOTION .. ......... 36

Introduction ............ ........... 36
Extraction of Interesting Points. ............... 38

Feature Ext-action Using Zero-Crossings. ........... 40
Feature Extraction Using Threshold Contours. ........

viii



Determining the Axis of Translation .... ............. ... 51
Utility of the Direction of Translation Sphere .. ........ . 55
Search Organization ...... .................. ... 55

Experiments ........ ..................... . 56
Industrial Images ....... ................... ... 60
Industrial Images with Selected Features .. .......... ... 65
Roadsign Image Sequence ..... ................ ... 70
Roadsign Sequence with Redundant Features .. ........ . 79
Roadsign Subimage ...... .................. ... 84

Discussion ......... ...................... .. 90
Feature Extraction ....... .................. .. 90
Properties of the Error Measure .... ............. . 94

V. EXTENSIONS TO TRANSLATIONAL MOTION PROCESSING 96

Introduction ..................... 96
Hierarchical Computation ................ 97

Hierarchical Representation of Images and Features ....... . 97
k7 Translational Processing at Different Resolutions ........ . 102

Some Problems ....... ................... . 107
Translational Blur Path Extraction .... ............. ... 108
Approaches for Multiple Independently Moving Objects ...... .. 114
Hybrid Sensor Systems ...... ................. . 116

VI. PROCESSING RESTRICTED SENSOR MOTION ......... ... 119

Introduction .............. 119
Processing Pure Sensor Rotation ...... .............. ... 119
Motion Constrained to a Known Plane .............. 127
Known Planar Motion with Determined Image Displacements 134

Ambiguities in Planar Motion ..... .............. .. 135
Discussion ......... ...................... .. 139

VII. THE LOCAL TRANSLATIONAL DECOMPOSITION ..... ... 140

Introduction ........ ..................... . 140
Computing the Environmental Direction of Motion Field ..... ... 141

Analysis of Raw Image Sequences .... ............. ... 142
Analysis of an Existing Displacement Field .. ......... .. 149
Computing the EDMF from Sparse Flow Fields .......... .. 156 - -

EDMF Properties for Different Cases of Motion .. ........ . 156
Pure Translational Motion ..... ............... . 156
Pure Rotational Motion ... 157
Motion Constrained to an Unknown Plane. ......... 157
Arbitrary Motion ................... 158

Processing of Motion Constrained to an Unknown Plane ...... .. 159

ix

pI



Environmental Inference via EDMF and Rigidity Constraints . . . 165
Development of Rigidity Constraints .... ............ .. 165

Rigidity Constraints Applied to Known Planar Motion .... 167
Rigidity Constraints Applied to Translational Motion ..... ... 169

Solving the Rigidity Constraints using the EDMF .......... .. 170

VIII. SUMMARY AND FUTURE WORK ... ........... . 175

Summary ......... ...................... .. 175
Future Work ........ ..................... . 179

Architectures for Translational Motion Processing ......... ... 179
Image Interpretation of Dynamic Road Scenes .. ........ .. 180

BIBLIOGRAPHY ........ .................... . 181

|I

x

o . . ..° . . . . . . . . . . . .. . . - • -o ..- . . .-- - - -. . . . . . , -.

.- ° ! ' ' o . . . • • o . . , .• . . - . . . , . , % ., ,. o • o o ,° ,



LIST OF TABLES

lab. Industrial Image Error Values. ............... 61
1c. Industrial Image Local Search Values. ............ 62
2ab. Industrial Image Selected Feature Error Values .. ........ 66
2c. Industrial Image Selected Feature Local Search Values. .. .... 67
3ab. Roadsign Image Error Values. ............... 72
3c. Roadsign Image Local Search Values ............. 73
4ab. Roadsign Redundant Feature Error Values. ............ 8
4c. Roadsign Redundant Feature Local Search Values ........ 81
Sab. Roadsign Subimage Error Values. .. ............ 86
5c. Roadsign Subimage Local Search Values. ........... 87
6ab. House Sequence 1 Error Values. ............. 125

xi



LIST OF ILLUSTRATIONS

1. The General Structure of Motion Processing .... .......... 4
2. The Stimulus Matching Problem ....... ............... 8
3. Camera Model ........ .................... . 22
4a. Rotational Displacement Paths .... .............. . 26
4b. Displacement Paths for Rotations about the (0,0,1) axis ..... . 29 .,

4c. Displacement Paths for Rotations about the (0,1,0) axis ..... .. 29
Sa. Relation Between Depth and Translational Displacements . . .. 31
5b. The FOE/C and the Translational Axis ... ........... ... 32
6a. Composite Field Structure ..... ................ ... 33
6b. Error Measure from Composite Field Structure . ........ ... 34
7. Computation of Curvature ..... ................ ... 41 .
8a. Roadsign Image 1 ...... ................... ... 42
8b. Roadsign Image 2 ....... ................... ... 43
8c. Zero-crossing Contours of Roadsign Image 1 .. ......... . 44
8d. Local Maxima of Interest Measure .... ............. ... 45
Se. High Curvature Points along Zero-crossing Contour ......... ... 46
9a. Industrial Image I ....... ................... ... 49
9b. Industrial Image 2 ....... ................... ... 49
9c. Threshold Contour of Industrial Image 1 ..... ........... 50
9d. Local Maxima of Interest Operator ...... ............. 50
9e. High Curvature Points along Threshold Contour .......... ... 51
10. Translational Displacement Paths for a Hypothesized FOE . . .. 52
II. Coordinate System for Describing Translational Axes ....... . 58 -
12. Industrial Image Displacements .......................... 60'
13a. Intensity plot of table la ...... ................ . 63
13b. Intensity plot of table lb ...... ................ .. 63
12c. Contour plot of table la ...... ................. ... 64
13d. Contour plot of table lb ................ 64
14. Selected Features from Industrial Image 1 ... ......... ... 65
15a. Intensity plot of table 2a ...... ................ . 68
15b. Intensity plot of table 2b ...... ................ . 68
15c. Contour plot of table 2a ..... ................. ... 69
15d. Contour plot of table 2b ...... ................ . 69
16a. Intensity plot of table 3a ...... ................ . 74
16b. Intensity plot of table 3b ...... ................ . 74
16c. Contour plot of table 3a ..... ................. ... 75
16d. Contour plot of table 3b ...... ................ . 75
17. Displacements for Roadsign Images .... ............. ... 76
18. Depth Map ........ ..................... . 77
19. Depth Histogram ....... ................... . 77
20a. Depth Cluster corresponding to the sign .. ........... ... 78
20b. Depth Cluster corresponding to the pole.. . . . . . . . . . . 78
20c. Depth Cluster corresponding to the trees ... .......... . 78

xii -

XIII

°" " "".....................................• " "" ' "°°" ....



21a. Intensity plot of table 4a ...... ................ . 82
21b. Intensity plot of table 4b ...... ................ . 82
21c. Contour plot of table 4a ..... ................. ... 83
21d. Contour plot of table 4b ...... ................ . 83
22. Roadsign Subimage Features ..... ............... ... 85
23a. Intensity plot of table 5a ...... ................ . 88
23b. Intensity plot of table 5b ...... ................ . 88
23c. Contour plot of table 5a ........ ................. 89
23d. Contour plot of table 5b ...... ................ . 89
24. Binary Image Roadsign Image ..... .............. . 92
25. Interesting Points along Contours.. . . . . . . . . . . . . 93
26a. Roadsign Image 1 at 128 x 128 Resolution ... .......... ... 100
26b. Roadsign Image 1 at 64 x 64 Resolution ... .......... . 100
26c. Roadsign Image 1 at 32 x 32 Resolution ... .......... . 100
26d. Roadsign Image I at 16 x 16 Resolution ... .......... . 100

U- 27a. Roadsign Image 1 Features at 128 x 128 Resolution . ...... .. 101
27b. Roadsign Image 1 Features at 64 x 64 Resolution ........ ... 101
27c. Roadsign Image 1 Features at 32 x 32 Resolution . ....... . 101
27d. Roadsign Image 1 Features at 16 x 16 Resolution ........ ... 101
28. Relations between Displacements at Different Resolutions . ... 103
29a. Image Displacements at 16 x 16 Resolution .. ......... . 105
29b. Image Displacements at 32 x 32 Resolution .. ......... .. 105g 29c. Image Displacements at 64 x 64 Resolution .... ......... 106
29d. Image Displacements at 128 x 128 Resolution .. ........ . 106
30. Blur Image ......... ...................... ... 110
31a. Magnitude of gradient of Blur Image .... ............ . 110
31b. Row Component of Normalized Gradient ... .......... 111
31c. Col Component of Normalized Gradient .... ........... 111

.i 32a. Intensity Plot of Error Function ..... .............. .. 112
32b. Contour Plot of Error Function ..... .............. . 112 -
33. Determined Translational Blur Paths ............ 113
34. Cartesian Manipulator with attached Optic Devices ....... 117
35. Layout oF Fiber Optic Rotation Sensor ... ........... . 118
36. Determining Individual Pixel Displacements of a Feature .. ..... 121
37a. BYU Sequence I Image I ...... ................ .. 122
37b. BYU Sequence I Image 2 ..... ................ ... 122
37c. Extracted Contour and Features ..... .............. ... 123
37d. Determined Displacements ...... ................ ... 123
38a. Intensity plot of table 6a ...... ................ . 126
38b. Intensity plot of table 6b ...... ................ . 126
39a. 01, 02 parameters for describing planar motion .. ........ . 127
39b. Evaluation of Image Displacements corresponding to 01, 02 . 128

xiii

i-i.- "12i-..i? i' 2" .1. 2 " .-. .?.j -" 2 - ; ".". " -G ? -i?2?';? ?"-: i ?. ' '- " ¢ 2 7 ' -. :-".i.!



40a. Grass Sequence 1 Image I ..... ............... .... 130
40b. Grass Sequence I Image 2 ................ 130
41a. Selected Features ....... ................... ... 131
41b. Determined Displacements ...... ................ ... 131
42a. Intensity plot of Error Measure ..... .............. ... 132
42b. Contour plot of Error Measure ..... .............. ... 133
43. Ambiguity in a case of Planar Motion .... ............ .. 136
44a. House Sequence 2 Image I ...... ................ .. 137
44b. House Sequence 2 Image 2 ...... ................ ... 137
45a. Intensity Plot of Error Measure ..... .............. ... 138
45b. Contour Plot of Error Measure 138
46. Approximating Match Value Along Translational Flow Paths . 143
47a. Grass Sequence 2 Image I ...... ................ . 146
47b. Grass Sequence 2 Image 2 ...... ................ ... 146
48. Selected Features ................... 147
49. Determined Image Displacements .... ............. ... 147
50a. Computed X Component of EDMF .... ............ .. 148
50b. Computed Y Component of EDMF ...... ............ 148
50c. Computed Z Component of EDMF .... ............. ... 149
51. Simulated Flow Field .... .................. 151
52a. Computed X Component of the EDMF ........... 152
52b. Correct X Component of the EDMF .... ............ .. 152
52c. Computed Y Component of the EDMF ... ........... ... 153
52d. Correct Y Component of the EDMF .... ............ . 153
52e. Computed Z Component of the EDMF ... ........... ... 154

" 52f. Correct Z Component of the EDMF . . . . . . . . . . . . 154
53a. Intensity plot of Error of Approximation ... ........... ... 155

53b. Surface plot of Error of Approximation ... ........... ... 155
* 54a. Error Histogram for Simulated Flow Field ... .......... .. 162

54b. Contour Plot of Error Histogram .... ............. ... 163
55a. Determined Rotational Field ..... ............... ... 164
55b. Determined Translational Field ..... .............. .. 164
56. Relative Depths for a Point Over Time from the EDMF ..... ... 170

xiv

Lz



m ..

* CHAPTER I

INTRODUCTION
12

The importance of processing dynamic information is obvious. Change is a basic

and pervasive aspect of reality. Artificial perceptual systems which cannot deal

with such dynamic information will be severely limited. They would not be able to

determine basic causal and structural relations in the environment. They would not

a- be able to move about and directly explore the world. These fundamental concerns,

coupled with recent advances in sensor technology and attainable computing power,

have made image motion processing an active area of research.

The work in dynamic image processing can be roughly divided into two types

of techniques: those for determining the changes in a sequences of images and those
" ~for inferring environmental information from these transformations. Much basic -£i

work has been done on determining the displacements of distinguishable image

0 points over time and inferring sensor motion and environmental depth from these

displacements. A fundamental problem that has emerged in all this work is the

discrepancy between the precision and reliability with which image displacements .. -

can be determined and the sensitivity of the inference procedures to noise and

resolution errors. For example, some of the inference procedures require high order

derivatives to be extracted from the determined image displacements. Additionally,

there are indications that the problem itself is inherently unstable and, in some

cases, ambiguous. This has lead to an interesting state of affairs: formulations which

are often elegant but do not work in motion processing of real world situations, and

therefore have limited practical application.

ii
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The approach of this thesis has been to deal with restricted cases of motion for

which the inference of the motion parameters, image displacements, and, to some

extent, environmental depth, can be combined into a single, uniform, and mutually

constraining computation. These restricted cases of motion are sufficient for a wide

range of real-world tasks, especially since other associated sensing devices can be

used to ascertain the other parameters of motion. Finally, we apply the procedure

developed for translational motion to local portions of image sequences to process

general sensor motion as if it were composed of independent local environmental

translations. The resulting representation can considerably simplify the processing

of less restricted and general motion. A brief outline of the thesis follows.

Thesis Outline

Chapters two and three present background information on motion processing.

In chapter two we review the general problems and previous work in image motion

processing. In chapter three we review the basic structural relations between image

displacements and sensor motion.

In chapter four we present a procedure for processing image sequences pro-

duced by translational motion of a sensor relative to a stationary environment. The

procedure robustly combines the determination of image displacements with the

extraction of the direction of sensor motion. Several experiments are performed

to show the behavior of the procedure in different situations. As a part of the

implementation we develop a simple feature extraction process.

In chapter five we consider various extensions to the translational procedure.

These include developing the procedure as a hierarchical computation to increase

" . 'm* '. . .° 
o

t " " -, .. . .
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its speed; processing the blur patterns produced by prolonged exposures during

translational motion; dealing with multiple independently moving objects; and using

the translational procedure in the control of an autonomous vehicle by using devices

to stabilize the sensor or directly determine the other parameters of motion.

In chapter six we consider two other restricted cases of motion: pure sensor

rotation and motion constrained to a known plane. The results are very similar to

the translational case except that certain simple cases of planar motion are found

to be inherently ambiguous.

In chapter seven we process less restricted and general sensor motion by apply-

r ing the procedure for translational motion processing to local areas of images. This

results in a low level description of motion called the Environmental Direction of

Motion Field (or EDMF) which associates a direction of environmental motion with

extracted image features. This representation can greatly simplify the recovery of

U sensor motion parameters. We consider different ways of computing the EDMF and

how sensor motion can be determined from it. We present a simple computation

for the case of motion constrained to an unknown plane. We also develop the con-

straints associated with object rigidity in determining the inference of sensor motion

parameters, and then show how these constraints are simplified by information in

the EDMF.

In chapter eight we summarize the major results of the thesis and mention

future work, chiefly in the areas of architectures for real time motion processing,

and application to more challenging and specific domains.



CHAPTER B

THE NATURE OF MOTION PROCESSING

Introduction

A general outline of motion processing is shown in figure 1. This figure indicates

a basic control loop in which the changes in a sequence of images are determined and

represented, a model is inferred from these transformations, and the model is used to

predict and constrain the processing of further and ongoing image transformations.

model

predict /
constrain

image -

transformations

0

Figure 1. The General Structure of Motion Processing

4
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SEach of these elements - the image transformations, the inference of the model,

the model itself, and the predictions - typically correspond to several different

processes and representations which can vary significantly with application. In

this representation, the beginning of the processing is ambiguous because of the

circuit, nature of the organization. This is an aspect of what we will refer to as the

start-up problem, and is concerned with whether it is possible to determine image

transformations without an initial model. Generally, there is always an initial

model which is either based upon domain specific information about the type of

image transformations that can be expected to occur, or implicit in the procedures

for determining image transformations by basing them upon general environmental

r-- properties such as continuity of motion and environmental surfaces.

One implication of the start-up problem is that motion processing always in-

volves assumptions about the environment in which it is used. In many applications,

*[ these assumptions are quite specific and task dependent, as in target tracking. In

others, the assumptions are more abstract and the resulting procedures have more

general application, as in the case of constrained types of continuous motion, con-

strained types of environmental objects, or image transformations. A general area

of research in motion processing has been concerned with the analysis of image

sequences produced by rigid body motions in the environment. This problem lends

itself to a theoretical development which does not become overly complex, yet also

reflects a very common occurrence in the real world. A particular image transfor-

mation which this analysis can utilize is also well known - optic flow. This may

be thought of as an almost classical problem in image processing: the inference of

environmental information from the optic flow field generated by rigid body mo-

tions. In much of what follows, the static environment is viewed as a single rigid

body and relative motion is induced by sensor motion.
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otic Flow

Optic flow is the vector field representing the changes in the positions of the

images of environmental points over time. It was introduced by the psychologist

J.J. Gibson [GibsS0, Gibs66, Gibs79] based, to some extent, on his experiences as a

bomber pilot during the Second World War. Gibson was struck with how different

patterns and extents of image displacements could specify critical environmental

information for the control of behavior, such as heading, immediacy of collisions,

and environmental layout. Gibson's analysis has proven to be extremely suggestive

and stimulating, but incomplete, in two critical aspects. He assumed the optic flow

* field was a given and did not deal with the computational difficulties in determining

it. He also did not explicitly (at least initially and never completely) analyze how

environmental information was extracted from the flow field. Both of these problems

have come to form the basis of much research by psychologists, psychophysicists, and

researchers in computer vision. It is this latter work, concerning the computation

of optic flow and the formation of environmental inferences from optic flow, upon

which we will focus.

There is some ambiguity in the definition of optic flow in the literatura (even -

with respect to the phrase itself, since optical flow or even Optic flows are used).

Some refer to the flow field as being entirely independent of images, and instead

view it as a representation of the changes in environmental directions over time.

To others it is a basic description of image motion determined from image inten-

sity changes and not necessarily related to environmental motions. Both of these

* perspectives have validity and the sense to which we are referring should be clear

from the context of whether we are dealing with computing optic flow or forming

environmental inferences from a flow field. A further source of ambiguity is that

some people refer to the optic flow field as a continuous vector field in which the

it. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . ..i. . . ... .. . .- " .
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U vectors are instantaneous velocity vectors, while others refer to it as a field of dis-

crete displacement vectors. Throughout this thesis, we refer to it as a set of discrete

displacement vectors.

II

Computing Optic Flow

Computing optic flow involves the determination of the displacements of image

points over a sequence of images. There are several problems in this computation

involving the effects of image resolution, the types of dramatic changes in image

structure that can occur during motion (such as occlusion), and the now well-known

stimulus matching or correspondence problem. To begin with, the notion of an en-

vironmental point corresponding to a distinguishable image point is an abstraction

which is difficult to realize computationally. An image point is actually a small im-

age area which can correspond to an appreciable surface area in the environment.

One aspect of this observation is that actual flow fields do not have an arbitrarily

high level of precision. The flow vector at a point may actually summarize the

composite activities of an area in the environment. Another implication is the

emergence or disappearance of detail as environmental surfaces are approached or

receded from. In such situations, features which are meaningful and trackable at

one environmental distance may no longer be meaningful at another distance. This

provides motivation for the hierarchical procedures for flow field computation that

we discuss below. It also reflects an important assumption applied throughout ma-

tion processing: during motion the image structures will change sufficiently slowly

to allow the changes to be determined, but not so dramatically that correspondence

becomes unrecognizable at successive instants. Often this is not a valid assumption

and reflects another basic problem with computing optic flow. Highly significant

information can be obtained from particular situations at which the optic flow field

, , = ~~~~~~~~~~~~~~~~~. '. .'. . ..... .... 'd. - - ........... .................. ..... ?, . _. ....... -
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becomes non-existent or singular, and thus difficult to compute. These situations

are related to image events such things as occlusion, the motion of specularities, and

the presense of smooth extremal boundaries. Another source of confusing changes

are the wide range of general noise effects in image formation.

Ile

Figure 2. The Stimulus Matching Problem

The stimulus matching or correspondence IBurt76, HuanS1, Thom81, Ullm8l]

problem refers to the ambiguity in determining image displacements, and is partic-

ularly problematic with nondistinctive portions of image structures or homogeneous

image areas. The difficulties are simply exemplified by the situation illustrated in

figure 2 which shows a square undergoing a diagonal displacement. The informa-

tion obtainable at a portion of one of the edges only constrains the locally observed

SJ
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edge motion to a wide range of potential displacements. The general form of the

stimulus matching problem involves the manner in which local determination of

displacements can result in a globally coherent interpretation of the changes in an

image sequence.
IA

Techniques developed to date for computing optic flow can be grouped into

matching techniques and differential techniques. Both of these techniques have to

deal with the problems just described and are distinguished by the different assump-

tions under which they operate. Both can be expressed hierarchically (though it is

more typical for matching procedures). This allows the procedures to be expressed

uniformly across different image resolutions, and a flow field to be determined by

utilizing required consistencies between image displacements in images at different

resolutions.

Matching Techniques

Matching techniques can be roughly distinguished by the types of image struc-

U tures upon which they operate and the criteria by which matches of image structures

in successive images are determined. Image structures can be ordered by the ex-

tent and the locality of processing required in their extraction and the complexity

of the structural relations in their description. In general, the more abstract the

image structure, the more stable it becomes over a sequence of images because the

ambiguity in determining matches is reduced. For example, if a complete seman-

tic analysis of each image has been performed in a sequence taken from a sensor

moving relative to a house, it is easier to match at the level of extracted houses in

the successive images than a less abstract and more local feature level, such as a

vertical edge. There are fewer things to match and they cover an area of the image
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-~ significantly larger than their potential displacements.

Examples of image structures that have been (or could be) used in motion

analysis, organized in terms of increasing abstraction are distinctive raw image sub-

areas [Agga8lb, Barn8O, Dres8l, Hann74, Levi73, Mora81, Quam7l], parameter-

ized tokens describing local image subareas [Hara82, Hara83, Lee82, Prag79], edges

[Agga8la, Burr77, Mart79], regions [Medi83, Nage77, Nage78, Radi81, Roac79],

structural descriptions of edges and regions [Brad83, Jaco8Ol, instantiated environ-

mental surfaces [Will80I, and various high level semantic interpretations [Badl75,

Tsot8O].

Procedures for determining optic flow have generally been restricted to match-

ing features whose extraction involves very little processing and are based on local

image structures and computations. This is a consequence of optic flow being viewed

as a very primitive description of image motion from which much information that is

useful for higher level processes will be derived. From this perspective, flow process-

ing should not be dependent on the processes to which its results will contribute.

Also, when more abstract descriptions are used, although the determinations of

matches becomes more viable, the determination of specific image displacement be-

comes less exact. This reflects a general problem that has been largely ignored by

researchers in motion (with some important exceptions, notably Tsotos [Tsot8O]):

the mechanisms by which matches at different semantic levels of image descriptors

can be combined into a coherent interpretation of an image sequence. Here, the

matches between lower level image structures could be constrained by the matches

determined at higher levels of surface or semantic description. The same question

is involved in prediction of feature displacements from a model in which the model

may consist of relatively distinct, multilevel information, and is used to constrain

the interpretation and displacements of low level, local processes and features.

0 .f . . % ..- %'
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In general, most matching procedures that have been developed do not explicitly

deal with the dramatic-change and resolution problems. Due to the assumption

that most image structures will change slowly over time, if dramatic changes do

occur, they will be reflected by a break-down in the matching processes. The

basic approach to the stimulus matching problem has been to characterize global

properties of the displacement field in a manner which directs the evaluation of

image displacements. This is done in different ways. Matching structures at a

more abstract or symbolic level typically involves matching strings or graph-like

structures. There are solutions to this type of problem using dynamic programming

or heuristic search techniques to minimize some global distortion measure reflecting

the extent of graph similarity [Barr72, Chen82, Hara78, Shap82]. In another form

of match processing typically applied to less abstract features, a global property

such as smoothness or continuity of the displacement field is used to form a local

constraint on the flow field computation. This constraint leads to a local, iterative,

relaxation type procedure in which a given feature displacement must be consistent,

under the criteria of smoothness, with the displacements of its spatially neighboi ing

features [Barn8O, Prag79]. Updating rules take the form of setting a feature's

estimate of its correct displacement to the average of its neighbors.

Generalized Hough transform approaches to matching [Agga8lb, Ball81,

O'Rou81, Davi83] somewhat reverse the relation between local computations and

global field properties when compared to the relaxation-based matching approaches

just described. In the generalized Hough approaches, the properties of a displace-

ment field are parameterized and represented in an n-dimensional histogram to

which the local image measurements contribute. For example, the global structure

of the flow field can be restricted to being a particular type of transformation, such

as an affine transformation in the plane. Each local process for determining an

image displacement evaluates the consistency of its potential displacements with

,'" ' % m
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the values of the parameters describing each affine transformation (up to some level

of parametric resolution). Globally, the parameter value most consistent with all

of the potential image displacements will have the most favorable evaluation (or re-

sponse in the histogram). Once a global interpretation has been determined, it can

then be refined with increased resolution in the parameter space about the coarse

solution.

Differential Techniques

Differential techniques are based on direct measurements of intensity changes

perpendicular to an image gradient in order to determine one component of the op-

tic flow at a point. These measurements are expressed as a function of the temporal

changes in image intensity and the image gradient at a point. The other component

is then determined by using an additional constraint derived from assumptions con-

cerning the global structure of the flow field. These generally involve smoothness

of the flow field or the type of transformations that can describe the displacement

field. In a manner similar to the matching techniques, these constraints can be de-

veloped computationally as local, iterative processes in which global consistency is

achieved via propagation similar to solutions of diffusion equations [Horn80, Glaz81,

Glaz83a, Terz83]. In a few applications [Fenn79, ThomS], the local measurements

can also be integrated by their independent contributions to a global histogram -

which expresses the parameter values of particular types of image transformations.

Differential techniques can also be used to roughly constrain the motion of bound-

aries [Marr79] without trying to derive the optic flow. These constraints can be

used to get rough qualitative motion information along closed contours, such as

expansion, image motion in a rough direction, or the occurrence of rotation.
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The key attributes of differential techniques is that they are based on very

local, simple computations that may be performed at a low level of processing.

They are also based on some unrealistic assumptions that show up when these

techniques are uniformly applied to actual image sequences. These assumptions

concern smoothness and often linearity in the image intensity gradients, limited

extents of motion, and the constancy of image brightness overtime. The smoothness

assumption breaks down at surface occlusion boundaries, or wherever dramatic

image changes occur such as at reflectance boundaries. Differential techniques

also tend to produce dense fields, whose value is not clear, especially since the

interpolation is performed in a manner that may adversely affect the inference of

motion parameters. Researchers are focusing on some of these problems: Schunk

[Schu83] has tried to characterize the effects of occlusion so that the computation of

image displacements are selectively shut off in such areas. Nagel [Nage83], Hildreth

[Hild82], and Kearney [Kear82] are working with more complex image gradients and

integrating the components of information to the degree they provide unambiguous

displacement information at boundaries.

UHierarchical Processing

A basic paradigm in computer vision is the use of hierarchical representations

and processes [Burt82, HansSO, Rose83, Tani8O, Uhr78]. This allows different

resolutions and scales of image events to be handled uniformly. Additionally, the

consistent agreement among hierarchically organized processes is a basic control

strategy for a wide range of high and low level interpretation tasks. Hierarchical

processing can produce significant computational reductions, wherein results from

processing performed rapidly at lower resolutions of image information are used to

. .. .. , . .. , . . ., .. . : . . .. . .. . ... . .- . . . . .- .. . . .V_. ,. . .. . . . "
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direct and constrain more detailed and extensive processing of higher resolution p

image information. Given the increase in computational requirements over static

image processing, hierarchical mechanisms are extremely important in real-time

motion processing.

The use of hierarchical processing in motion typically involves representing an

image at different filtered spatial frequencies and using the processing at lower spa-

tial frequencies to constrain the processing at higher spatial frequencies [Burt82,
J

Glaz83b, Grim8 i, Luca81, Wong78]. The matches determined for the larger spatial

structures in an image are used to initialize the computation for the displacements

of the smaller structures. In hierarchically organized processing, the resolution

problem is handled implicitly by representing an image sequence at multiple res-

olutions simultaneously. The stimulus matching problem is dealt with by taking

advantage of the fact that matches have a tendency to be less ambiguous at lower

spatial frequencies because there are fewer gross image structures and they are large -

relative to their potential displacements. However, the problems of dramatic change

associated with flow field computation affects hierarchical processing because image " j
structures may appear and disappear at different levels of resolution and errors pro-

duced at a lower image resolutions can propagate to the higher resolution images.

Some filtering schemes [Burt83, Glas83b] have been proposed to deal with this in-

herent problem by detecting the occurrence of a failure in the matching procedure

and shutting off the initialization of image displacements in the higher resolution

images.

Inference of Environmental Information

Work in the inference of environmental information from flow fields has gen-

- . . ... . . . . . ,. - , . . . .:. .; . . .
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erally been restricted to the case of rigid body motion or linked systems of rigid

bodies [Webb8l]. There is very little general understanding in the interpretation

of non-rigid environmental motions. Often, such work is task dependent as in the

interpretat'on of image sequences of moving cloud formations and beating hearts

[Tsot801.

The problem of inferring environmental information from a flow field produced

by rigid body motion is often termed the shape-from-motion problem (i.e., how

to determine the shape of objects or environmental depth from a flow field or a

sequence of flow fields); or, somewhat confusingly, the motion-from-motion problem

(i.e., how to determine the parameters of object or sensor motion from a flow field

or sequence of flow fields). Theoretically, these problems are equivalent, though

there are practical difficulties in inferring one from the other.

There have been significant milestones in formulating solutions to these prob-

lems in motion processing research. One set of results has dealt with the minimal

conditions that are necessary for determining object shape and sensor motion in

terms of the number of flow vectors across an image sequence [Fang83b, Lawt80,

Meir8O, Roac80, Ullm79, Webb8l, Yen83]. In this work, researchers derive vari-

ous sets of simultaneous nonlinear equations whose solution would constitute the

appropriate inference. Since these equations cannot be solved directly, various

optimization procedures are required. In another set of formulations developed

primarily by Nagel [Nage8l] and Prasdny [Pras811, the inference of sensor motion

parameters is expressed as a search through the rotational subspace of the total set

of rigid body motion parameters. Prazdny's development is rather geometrical and

Nagel's is more algebraic, but they are basically similar. In 1981, Tsai and Huang

[Tsai82], simultaneously with Longuet-Higgins [Long81], developed a closed form

solution which could be solved by direct means.
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Given these developments over the past several years, it is somewhat alarming

that none of the techniques have been successfully applied to flow fields computed

from anything like realistic image sequences. In fact, only in the recent work of

Huang and Fang [Fang83a, Fang83b] and Jerian and Jain [Jeri83] has there even

been an explicit evaluation of a procedure on such images. This work has shown the

particular difficulties familiar to motion researchers: extreme sensitivity to noise and

resolution, dependence upon the type and extent of motion, and general instability.

A possible exception to these difficulties may be a procedure recently developed

by Rieger and Lawton [Rieg83, Lawt83]. The technique is restricted to recover-

ing the parameters of sensor motion relative to a stationary environment and is

based upon the fact that the decomposition of a flow field into its rotational and

translational components can be directly obtained at image positions where a signif-

icant depth variation occurs in the environment [Long80], such as at some occlusion

boundaries. This results in a very simple analysis which does not involve solving

unstable equations. The basic practical difficulty associated with this technique is

that it is dependent on the analysis of a flow field at occlusion boundaries where the

flow field tends to be most errorful. Dealing with this effect requires a computation

which may reduce the precision of the inference of the sensor motion parameters.

There are many reasons, not all of which are fully understood, why the infer-

ence of motion parameters and environmental depth has been difficult. Some of the

formulations involve image measurements, such as higher order derivatives of an

instantaneous vector velocity field which are difficult to obtain and are also quite

noise sensitive when applied to discrete image sequences [Prazs80, Long8o]. There
are also many cases of motion which are inherently ambiguous. One of these is dis-

cussed in chapter VI of this thesis and concerns a rather typical case of terrestrial

motion in which the rotational and translational field components are nearly impos-

0
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sible to separate. In recent work concerning the interpretation of images containing

multiple independently moving objects, Adiv [Adiv84] appears to have found cases

in which independently moving objects with different parameters of motion, can,

when considered together, result in a globally consistent, but incorrect, interpre-m -

tation. Another problem affecting shape from motion formulations is the baseline

effect which is common to stereo. The baseline effect expresses that the resolution

and accuracy of depth inferences are a decreasing function of the distance between

the sensor locations at which images are formed. For motion, wL '. the sensor

displacements are generally small between successive instants, the environmental

inference would tend to be poor, but could be compensated by the availability of

r- more and more images over time.

There has been almost no stability analysis of the systems of equations for in-

ference from optic flow. Along these lines, recent work by colleagues and myself

* (Stee83l has given empirical indications of the instabilities in the inference proce-

dures under certain conditions. We have been exploring the use of a highly parallel

array architecture for inferring motion parameters from flow fields. This processing

amounts to sampling and evaluating 200,000 points in the five dimensional space

of determinable rigid body motion parameters at near video rates. This roughly

shows the appearance of the error surface these system of equations may describe.

What this work indicates is that the space is very bumpy and jagged, full of local

optima, that would make solutions difficult, especially in the presence of noise.

There have been several responses to these difficulties. One approach has been

to utilize optimization procedures which are based on global evaluation of the ex-

pressions for the inference of motion parameters from flow fields instead of local,

iterative optimization procedures. Examples of these approaches are the work with

generalized Hough transforms [Adiv84, Ball81 and the procedure involving highly

I
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parallel architectures mentioned above [Stee83]. Some researchers are beginning to

perform an explcit analysis of the stability of the different solutions [Shaw83], while

others are trying to develop qualitative inference techniques which are hoped to be

more robust [Thom83J, and still others are beginning to investigate the inference

of motion and shape from image transformations other than optic flow, such as

the analysis of contour shape changes [Davi82]. Currently, much of this work is

preliminary.

Another response to these inadequacies has been to deal with restricted cases

of motion. Here too, the work has been limited in application to realistic image

sequences with principle results having been achieved by Williams [Wi180] and

Dreschler and Nagel [Dres81]. These restricted cases of motion can be of signifi-

cant practical use, since in many cases some of the parameters of motion can be

determined by other sensing devices. Additionally, general motion can be locally

interpreted, temporally and spatially, as consisting of certain restricted types of

motion.

In the research presented in this thesis, we will develop procedures for various

cases of restricted motion, and show how to use the procedures for translational

motion to locally interpret more general motion. In this regard, it is useful to sum-

marize related work in vanishing point extraction and translational motion process-

ing. The determination of the vanishing point in a static image is closely related

to determining the direction of translation. In perspective projection, parallel lines

in the environment map onto lines radiating from the vanishing point in the image.

For translational motion, the environmental motion paths correspond to the par-

allel lines in the perspective case. Techniques for extraction of a vanishing point

have been explored by Kender [Kend79], Nakatani [Naka80], and in a more general

framework by Ballard [Ball8l]. The use of the Hough transform in this work is sim-
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ilar to the global sampling of the error measure developed in chapter IV. It would -.

be interesting if the determination of edges could be combined with the determi-

nation of the vanishing point, in a manner similar to the concurrent determination 1
of image displacements and the translational axis in the work presented in chapter

IV.

Williams [Wil8O] was the first to develop algorithms for interpreting natural

complex images produced by an optic sensor translating relative to environmental

objects. This work consisted of two processes: one for inferring the direction of

translation given environmental depth information and the other for inferring depth

given the direction of motion. These processes used an error measure describing the

consistency of depth information and the inferences of feature motion along image

displacement paths. His work indicated that these two processes, for inferring depth

and the direction of motion, could be combined.

The primary weakness of Williams' work was the necessary restriction to planar

surfaces at one demonstrated orientation. Additionally, in the case of unknown

environmental depth and translation, the processing is quite complex - involving

segmentation, resegmentation, and coordinating the processes for inferring depth

and for inferring the direction of translation. The method we develop in chapter

IV requires no restrictions on the orientation of surfaces or shape of environmental

objects, and involves only a simple procedure for evaluating an error measure. It

also indicates that the direction of sensor motion should be determined prior to, or -

concurrently with, environmental depth.

V i1
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CHAPTER III

DISPLACEMENT FIELD STRUCTURE

Introduction

In this chapter we review the relations between sensor motion relative to rigid

body objects and the structure of the corresponding field of image displacements.

Basic results from kinematics [Whit44] and geometry [Coxe6l] allow arbitrary rigid

body motions of the camera to be decomposed into a rotation about its focal point

followed by a translation. This permits image motions to be described as consisting

of two components: a rotational and a translational field. The rotational field con-

tains information concerning sensor orientation relative to the environment, while

the translational component contains information concerning environmental depth

and the relative displacements of the sensor and environmental objects. This de-

composition forms the basis of procedures for recovering camera motion parameters

from displacement fields [Nage81, Praz81].

Describing Rigid Body Motion -

In this section we review some basic terminology for describing image and envi-

ronmental motion, the particular coordinate systems employed, and how rigid body

motions are described in terms of sensor motion.

20
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K Terminology

It is necessary to have terms for describing the motion of features in an im-

age sequence and the corresponding motion of environmental points. We define an

ImMe Displacement Vector to be a two-dimensional vector describing the displace-

ment of an image feature from one image to the next. An ImMe Displacement

Field is the set of image feature displacement vectors for successive images. An

Image Displacement Sequence indicates the positions of an image feature over sev-

eral successive images. Though we are dealing with discrete image sequences, it is

often possible to describe the continuous curve along which an image feature point

is moving. This curve is called the Image Displacement Path.

Corresponding to image motions we use a set of terms for describing environmen-

tal motions. An Environmental Displacement Field is the set of three-dimensional

vectors indicating the positions of environmental points at successive instants. An

Environmental Displacement Sequence indicates the position of an environmental

point over several successive instants. An Environmental Displacement Path de-

scribes the three-dimensional curve that an environmental point is moving along

for a particular motion.

Coordinate Systems

We utilize two coordinate systems in this exposition: a fixed system based on the

environment and another based on the sensor. The fixed environmental coordinate

system is a Cartesian coordinate system. The sensor coordinate system (or camera

model) is referred to throughout this thesis and consists of a planar retina embedded

-1
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in a three-dimensional Cartesian coordinate system (X, Y, Z), with the origin at

the focal point and the optical axis aligned with the positive Z- axis (figure 3). The

X and Y axes correspond to the gravitationally intuitive horizontal and vertical

directions, respectively. The image plane is parallel to the XY plane and located

at a distance of one focal length along the Z axis.

~mi

i Z

Y

A

Focal
Point Image Plane

x

Figure 3. Camera Model.

Positions in the image plane are described using a 2 -D coordinate system with

the axes A and B aligned with the X and Y axes of the camera coordinate

system, respectively. The origin of the image plane coordinate system is determined

7
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by the intersection of the image plane and the Z- axis. The vector Pmi refers to

the position of an environmental point in the sensor co-)rdinate system and the

vector Imi refers to the position of the intersection of the ray of projection for

P, i with the image plane. The first index of these vectors is used to specify a

particular image from a sequence of images. The second index specifies a particular

environmental point. Setting the focal length to one, the relations between P,,

z, ,, and positions in the image plane determined by perspective projection are:

PM (Xmi, Ymi, Zmi)

Imi = (ami, bmi, 1) (1)

x=: (x-, m  1)
Zmi Zmi

PMsi = ZmImi

The position and the orientation of the sensor relative to the environmental

coordinate system at time t is described by the vector P(t) and the matrix O(t),

where P(t) is the position of the origin of the sensor coordinate system at time t,

and O(t) describes the orientation of the sensor coordinate system by its direction

cosines. The matrix O(t) is obtained by translating the sensor coordinate system

to the origin of the environmental coordinate system and determining the angles

between the axes of the two coordinate systems. Denoting the coordinate axes

of the camera coordinate system as (X,, Y, Z,) and those of the environmental

coordinate system as (X, Y, Z) yields:

* S!
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(cos(X, XC) cos(X, Y') cos(X, Z')

0(t) = cos(Y, Xc) cos(Y, Yo) cos(Y, Z) (2)

cos(Z, x') cos(Z, YC) cos(Z, ZC)

Decomposing Rigid Body Motion

There are some basic results in kinematics which allow arbitrary rigid body

motions to be expressed as consisting of a rotation about an axis positioned at an

arbitrary point followed by a translation. These are stated as

A rotation about any axis is equivalent to a rotation through the
same angle about any axis parallel to it, together with a simple
translation in a direction perpendicular to the axis. The converse
is also true, the rotation of a rigid body about any axis, preceded
or followed by a translation in a direction perpendicular to the axis,
are together equivalent to a rotation of the body about a parallel
axis [Whit44].

Thus, the orientation of a body will change the same for parallel axes of rotation

with the same extent of rotation, regardless of where they are positioned. This

implies that the axis of rotation can be positioned anywhere so long as it is followed -

by the appropriate translation. Thus, we can canonically describe sensor motion as

an initial rotation about an axis positioned at .he origin of the sensor coordinate

system (bringing the sensor into the same orientation at successive instants) followed

by a translation (bringing the sensor in coincidence at the successive instants). This

will also decompose an image displacement field into a field produced solely by the

• S 0 .•.
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rotation of the sensor and a field produced solely by the translation of the sensor.

Each of these fields contains different information.

More specifically, given the sensor at successive positions and orientations (P(t),

0(t)) and (P(t + 1), O(t + 1)), its motion is described as an initial rotation about

the origin of the sensor coordinate system described by the matrix R such that

O(t+ 1) = O(t) • R, followed by a translation T with respect to the environmental

coordinate system such that P(t + 1) = P(t) x T. Thus,

O(t)- x O(t + 1)= R (3)

1 0 0 0

o 1 0 =T

kP(0t) P,(t) P(t) I

Properties of Pure Rotational Displacement Fields

Let us consider rotational fields that are produced by rotation about an axis

containing the origin of the sensor coordinate system. The basic property of such

fields is that the image displacements are totally a function of image position and can

yield no information concerning environmental depth. That is, given thn position

of an image point at time t and the sensor rotation R, its position at time t + 1

* * . * *. . . .. * .- *,
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is determined.

To describe the general structure of rotational flow fields, consider the image

displacement path generated by a particular image point under sensor rotation. In

figure 4a we see an axis of rotation positioned at the origin of the coordinate system

and a ray of projection determined by some image point Ii. The effect of the
rotation will be that the ray of projection will generate the surface of a cone. The

image displacement path for the rotation of this image point will then be determined

by the intersection of this cone with the image surface, i.e. a conic section.

*t

Figure 4a. Rotational Displacement Paths. The figure on the left shows
the intersection of an image plane with the cone determined by the axis of
rotation positioned at the focal point and a given image position vector.
The figure on the right shows the resulting conic image displacement path.
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One should note that for points along the same ray of projection, the image dis-

placements under a given rotation will all be the same. Thus, there is no basis upon

which to infer environmental depth under rotational motion because the angles be-

Mtween rays of projection remains fixed.

Now let us consider sensor rotation analytically with the axis of rotation rep-

resented as a unit vector R = (P , Rv, R.). For any environmental point P =

(X, y, z), we can describe the cone generated by the rotation to be: hi

c - cos(e) = (4)

where 0 is the angle between R and P. To determine the image displacement

paths, we expand this equation with z set to I (corresponding to the location of

the image plane):

x& + A + R,

.. VX 2 + y2 +1

By squaring both sides and reorganizing terms, this equation may be expressed as

an implicit function in the general form of a conic:

F(,y) = x 2(R2 - C2 ) + -2(R2 C2) + 2z(R.R,)

+2y(RVR) + 2xy(RR,) + (R2 - C2 ) = 0 (6)

I
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The partial derivatives of this equation yield the tangents to the image displacement .

path:

BFez,'') = 2z(R 2 - C2) + 2(RR) + 2y(RR) (7)
Ox

oF(x,y) - 2y(R - C2 ) + 2y(RR,) + 2(RR4)

Note that for the rotational axis aligned with the Z axis, R = (0, 0, 1) substitution

into equation 6 yields

1

c2+ Y2 (8)

This describes a family of circles in the image plane centered at (0, 0, 1) and indexed

by the particular values of c in the range 0 to 1 (figure 4b). For the rotational axis

R = (0, 1, 0) substitution Into equation 6 yields

21 -c2

This describes a family of hyperbolas indexed by values of c in the range 0 to 1

(figure 4c).

e-
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Figure 4b. Displacement Paths for Rotations about the (0,0,1) axis.

Figure 4c. Displacement Paths for Rotations about the (0,1,0) axis.
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Translational Field Proverties

For purely translational motion the sensor orientation is fixed relative to the

environmental coordinate system and the motion is described by an axis of trans-

lation. The image displacement paths are determined by the intersection of the - '

translational axis with the image plane. If the translational axis intersects the

image plane on the positive half of the axis, the point of intersection is called a

Focus of ExDansion (FOE) and the image motion is along straight lines radiating

from it. This corresponds to sensor motion towards visible environmental points.

If the translational axis intersects the image plane on the negative half of the axis,

the point is called a Focus of Contraction (FOC) and the image displacement paths

are along straight lines converging towards the FOC. This corresponds to camera

motion awp.y from visible environmental points. The intersections of axes parallel

to the image plane are points at infinity and thus may be considered to be either

an FOE or FOC in opposite directions. This ambiguity is one reason we refer to

the directions of motion determined by the translational axes themselves instead of

the intersections with the image plane.

Given the direction of translation and the image displacements of a set of en-

vironmental points, the relative depths of these points can be computed by solving

the inverse perspective transform [Roge76]. Relative depth can also be simply in-

ferred from the position of a feature and the extent of its displacement relative to

an FOE or an FOC. This relation is expressed as

D z
D Z (10)

E Z

4: - . ? - ., . . .. . . - , . - - . . . . • _ . . . . ' . .
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where Z is the value of the Z component of an environmental point at time t + 1,

AZ is the extent of environmental displacement along the Z axis from time t to

time t + 1, D is the distance of the corresponding image point from the FOE or

FOC at time t, and AD is the displacement of the image point from time t to time

t + 1. Thus, the Z value of an environmental point can be recovered from image

measurements in units of AZ, or what has been termed Time-Until-Contact by

Lee [Lee76, Lee8O] (figure Sa and 5b). To the degree that the sensor displacement

can be accurately monitored, absolute depth of surface points can be computed.

\ --

FOE/C--
D AD

_

AZ AD

Figure 5a. Relation between relative environmental depth and the ex-
tent of image displacement vith respect to the FOE/C.

.1
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z

Figure 5b. The FOE/C is determined by the intersection of the image
plane with the translational axis.
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S Composite Field Properties

The effects of composite image motions produced by sensor rotation and trans- I
lation can be analyzed as follows for an image feature Imi which undc-rgoes a

displacement D to position l,, at time n (figure 6a). The motion can be de-

scribed as an initial displacement R to a position J, i due solely to the rotation

of the sensor, which is followed by a displacement T from Jms to Ini along the

translational displacement path determined by the straight line containing image

points Jmi and the FOE determined by the translational parameters.
I

Ini
" D

p Imi
"- T

dMi

FOE/C

Figure 6a. Composite Field Structure.

b.-.
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ni

Imi q :.D
0 i

RT

FOE/C

Figure 6b. Error Measure from Composite Field Structure

* These structural properties will be used to develop measures describing the

consistency of a given image displacement with hypothesized sensor rotation and -

translation parameters (figure 6b). As above, for an image point mI the rotational

parameters induce an image displacement to some position s,. This point and

the FOE corresponding to a particular translational axis, determine an expected 2

translational displacement path. The angle between this displacement path and the

6t

6/
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K vector l.n - J,. corresponds to the discrepancy 1 .he image displacement

and the hypothesized values of the sensor motion t ers. We will utilize this

measure to evaluate motion parameters with respect to determined displacement

urJ fields in chapters VI and VII. This local consistency measure has also been used in

generalized Hough transforms so that each image displacement vector can scale its

vote against a particular set of motion parameters corresponding to the extent of

this determined angle [Stee83].

............................



CHAPTER IV

PROCESSING TRANSLATIONAL MOTION

Introduction

In this chapter we present a procedure for processing image sequences produced

by translational motion. The computation robustly combines the determination

of the translational motion parameters, image displacements, and environmental

depths of visible surfaces. The procedure consists of two basic steps: Feature

Extraction and Search. The feature extraction process finds small image areas which

may correspond to distinguishing, and therefore trackable, parts of environmental

objects. The direction of translational motion is then found by a search across

hypothesized FOE/C positions to determine a set of image displacement paths for

the extracted features which minimizes an error measure of total feature mismatch

along these displacement paths, and also yields consistent displacements for the

features.

The feature extraction process finds distinctive points which are positioned at

*points of high curvature along contours determined by simple processes such as

thresholding, zero-crossing extraction and local contrast measurements. Particular

forms of the feature extraction process can lead to effective and very rapid compu-

tation on proposed image processing architectures.

The search process minimizes an error measure defined over a unit sphere, with

each point on the sphere corresponding to a different direction of sensor translation.

A given direction of translation constrains the motion of extracted image features
36
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to straight lines which radiate from or converge onto a single point in the image

plane. Thus, the error measure associates a point on the unit sphere, corresponding

to a particular translational axis, with a number describing the degree of total

feature mismatch along the displacement paths determined by the translational

axis. Experiments have shown this error measure to be smooth and with a distinct

minimum in a large neighborhood about the correct translational axis. This allows

simple search methods to be effective.

We present several experiments showing the results of applying the procedure

in various situations. The experiments indicate that it is robust and applicable to a

wide range of real world image sequences. In the next chapter, we review particular

extensions for implementing the procedure in a hierarchical computational frame- "

work, dealing with independently translating objects, translational blur-streaks,

and implications for autonomous navigation.

1 *3

*
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Extraction of Interesling Points

The feature extraction process is used to determine small areas (referred to as

image points or features) in an image that are distinct from their respective neigh-

boring areas. This distinctiveness limits the potential matches of these image areas

in suceeding images and suggests the possibility that these points may be trackable

over time. These image features may also reflect a correspondence to actual and

significant features in the environment, such as points of high curvature on object

boundaries, texture elements, surface markings, etc. However, there are some fea-

tures, termed false features, which may be selected but which result from noise,

occlusion, and light source effects and have behavior which is currently difficult to

interpret. Features can be represented either as arrays of numbers extracted as a

subimage directly from an image, or as parameterized tokens describing local image

properties. We refer to features exclusively as small arrays of data values centered

at some point in an image at some time t.

Following Moravec [Mora77, Mora8l], the method of feature extraction used

here is based upon finding image areas which are significantly different than their

neighboring areas. Using correlation measures bounded between 1 (for perfect

correlation) and 0, the distinctiveness of a feature is 1 minus the best correlation

value obtained when the feature is correlated with its immediately neighboring areas

(excluding correlation with itself). Good features can then be selected by finding

the local maxima in the values of the distinctiveness measure over an image. There

are several metrics available for similarity of two n x n arrays Ai, and Bj,i. We

have utilized the following measures:
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Normalized Correlation

U /E, Ej A,,jAj x V/E, Ej B,,jBj
U

2"

Moravec Correlation [Mora77]

(E, Ej AjAj + Ej, Ej B,,jB,,j)/2.0 (1)

Normalized Absolute Value Difference

Ej, E I A, - B(1)

All of these measures have a value of I for a perfect match. Of these, the first

choice is the most conventional, the second is a good approximation to the first and

more efficient, and the third is the quickest to evaluate.

We further constrain the neighborhoods over which the features are selected

to contours determined by other processes, such as zero-crossing extraction and

thresholding, which are sensitive to edges. This yields interesting points which are

locally distinctive and exhibit high curvature along extracted contours containing

the point.
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Feature Extraction Using Zero-Crossin.-

The use of zero-crossings to determine significant image contours at different

levels of resolution has been proposed and extensively studied by Marr et. al.

[Hild8O, Marr8O]. In this processing an image is convolved with Gaussian-Laplacian

masks (V 2G) of different positive widths and thresholded at zero to determine

zero-crossing contours. These contours are significant since they correspond to the

points of greatest change in the convolved image. The distinctiveness measure can

be applied to points along these contours in the convolved image, with the local

maxima determining the position of potential features. This generally has the effect

of finding points of high curvature along the zero-crossing contour, although points

apparently corresponding to local occlusion vertices and weak maxima will also be

extracted.

Many weak features which are local maxima of distinctiveness can be removed

by suppressing those which are at points of low curvature along the zero-crossing

contours (a cheaper method for dealing with this is presented in the discussion of

this chapter). For features which are local distinctiveness maxima, we approximate

the curvature along the contour by the inner product of the normalized vectors

describing the relative positions of the nearest local maxima along the contour

(figure 7). These values are then thresholded between 1.0 (corresponding to high
curvature) and -1.0 (corresponding to low curvature) to reflect feature strength.

I.'
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U

Figure 7. Computation of curvature for low curvature suppression of
extracted features.

The images in figure 8a and figure 8b were taken from a gyroscopically stabi-

lized movie camera held by a passenger in a car traveling down a country road in

Massachusetts [WillS0. They are 128x128 pixel images with 6 bits of resolution

in intensity and will be referred to as the roadsizn images. Figure 8c shows the

zero-crossings extracted from the initial roadsign image using a V2G mask with a

3 positive width of 5 pixels. The distinctiveness values were computed using features

which were 5x5 pixel arrays extracted from the convolved image and centered on

pixels which were adjacent to the zero-crossing contour and of positive value. These

* features were correlated, using Moravec's norm, with their 8 immediately neighbor-

ing features. Figure 8d shows the local maxima in the distinctiveness measure

positioned with respect to the zero-crossing contour. Figure 8e shows the results of

suppressing low-curvature points using a threshold set to -0.8 radians (143 degrees).

A
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K o,

Figure 8a. Roadsign Image 1. The upper image has the intensity values
normalized across the entire image. The lower image uses a restricted range
of intensity values to show the dark, low contrast tree texture.
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Figure 8b. Roadsign Image 2. The upper image has the intensity values
normalized across the entire image. The lower image uses a restricted range
of intensity values to show the dark, low contrast tree texture.
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K Figure 8c. Zero-crossing Contours of Roadsign Image 1.
S

S



45

Lj-mC

II

Figure 8d. Local Maxima of Interest Measure.
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Figure 8e. High Curvature Points along Zero-Crossing Contour
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Use of features based on zero-crossings requires specification of the sizes of the

convolution masks that are employed, and a decision whether to position extracted

feature points with respect to the unprocessed image or the convolved images. It

is usually beneficial to use masks of various widths for sensitivity to features at --

different levels of resolution. In this case, the translational processing described

below can be applied independently to the different pairs of images formed by

convolving the original successive images with the different masks. Alternatively,

as was done above, features can be extracted from the original, unfiltered image

at the positions where features were determined in the convolved images, though

experience with large masks has shown that this approach can position features

significant distances from their apparent position in the original image.

0

I.-
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Feature Extraction Using Threshold Contours .

Another simple operation to determine image contours is thresholding. The val-

ues of the threshold can be determined in a variety of ways: using fixed increments,

finding peaks and valleys in the image intensity histogram, or using techniques

sensitive to image contrast across the contours produced by a particular threshold

[Kohl8 l,Wesk75].

The images in figure 9a and 9b were produced from a solid state camera held

by a robot manipulator translating toward some industrial parts lying on a table.

The images are 128x128 pixel images with 6 bits of intensity resolution. These will

be referred to as the industrial imazes. Analysis of the image intensity histogram,

using the procedures described in [Kohl81], determined a clear break in the his-

togram at an intensity level of 10 in the image. This corresponded to separation

of the dark background and the brighter objects in the scene. Figure 9c shows the

extracted contour and figure 9d the local maxima in the distinctiveness measure

of image features centered on pixels adjacent to the contour and of intensity value

greater than or equal to ten. Figure 9e shows the extracted feature points after

low curvature suppression using a threshold set to -0.8 radians (corresponding to

an angle of 143 degrees).

-I " " . . " . . ' -' ' ' .. .. . - - . _ . . _. " ." i "" -"



491

K Figure 9a. Industrial Image 1.

Figure 9b. Industrial Image 2.
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Figure 9c. Threshold Contour of Industrial Image 1.

Figure 9d. Local Maxima of Interest Operator.
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Figure 9e. High Curvature Points along Threshold Contour. 79

Determining the Axis of Translation

The procedure for determining the translational axis minimizes an error measure

which describes the extent of feature mismatch along the image displacement paths S

determined by an hypothesized translational axis. Note that the image displace-

ments are determined simultaneously wi~'h the direction of motion. For example,

figure 10 shows an FOE determined by a potential translational axis and the corre-

sponding image displacement paths for some extracted features. Also shown is the

match profile for correlation of a particular feature along a segment of its displace-
bI

p 5 .
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ment path in the succeeding image. The adequacy of a potential translational axis

for describing the motion between successive images is measured by summing the

error associated with the best match for each of the features along their respective

image displacement paths.

\ /

\ / - ir--

/ --
FOE,*.L -

/ N
/ N

/
/

1.0

MATCH

STRENGTH

0 1 2 3 4 5 6 7 8 9 10 11

DISPLACEMENT (PIXELS)

Figure 10. Translational Displacement Paths for a hypothesized FOE
and a match function on one feature.
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UThe set of all possible translational axes describes a unit sphere called the

translational direction shere. For reasons discussed below, the search procedures

are defined with respect to this sphere, rather than the image plane itself. The

error measure associates a point on the direction of translation sphere with a num-

ber describing the quality of feature matches along the image displacement paths

determined by the corresponding hypothesized translational axis. This error value

is computed by first finding the best match for each feature along a segment of its

image displacement path using one of the normalized match metrics above. Each

of these values is then subtracted from one, and all the resulting values are added

together to form an error measure. Thus, for a set of N features in an initial image,

a hypothesized translational axis, and use of one of the match metrics above, the

error measure E is

N

E = 1-[1.0 - bestmatch(i)] (14)

where bestmatch(i) is the best match value associated with feature i along the

appropriate image displacement path.

The error measure utilizes the different correlation norms described above and

different interpolation processes for determining positions along an image displace-

ment path. The choices among these generally involve a trade-off between the speed

of evaluating the error measure and the precision with which the translational axis

can be determined.
S
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The interpolation process approximates feature values along the image displace-

ment path from one image onto another. Depending on the accuracy required, po-

sitions along the image displacement path can be approximated roughly by setting

the coordinates of the feature's position to the nearest integer value, or more ac-

curately by performing a bilinear subpixel interpolation of the feature at each of a

set of selected positions along the image displacement path. The basic trade-off is

between speed and accuracy, with subpixel interpolation being more expensive.

The error measure was computed in two forms in the experiments below: a fast

evaluation form and a precise evaluation form. The fast form uses the absolute

value norm and the nearest integer approximation to determine feature position

along the image displacement paths. The fast form is useful for evaluating image

sequences with several extracted features to determine the rough position of the

global minimum. However, the fast form may not be adequate for fine determination

of the translational axis because of the nearest integer approximation for feature

position.

The precise form of evaluation uses the Moravec norm and bilinear interpolation.

It has been found to vary smoothly with respect to small changes in the position of

a translational axis.

. -- . . . .. .- . •-.*: ~.. * * - . .. -
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Utility of the Direction of Translation Sphere

There are significant advantages in defining the error measure with respect to

a unit sphere instead of the potential positions of FOEs and FOCs in the image

plane. The sphere is a bounded surface which makes uniform global sampling o-

the error measure feasible. In contrast, when the image plane is used directly, the

resolution in the position of the translational axis varies. For example, the FOEs

determined by translational axes separated by very small angles will be separated

by larger and larger distances in the image plane as FOEs are placed further from

the visible image. The effect of using the image plane on the error measure is a

loss of resolution with large flat areas surrounding FOEs that are distant from the

visible portions of the image.
I

Finally, special criteria must be used to distinguish between FOEs and FOCs

if the error measure is defined relative to the image plane. Roughly parallel image

displacoments could correspond to an FOE off to one side or an FOC off to the2
opposite side of the image plane. On the direction of translation sphere, the cor-

responding translational axes would be close, while on the plane they are widely

separated at plus and minus infinity.

Search Organization

The search process used here consists of two phases: An initial global sampling of

the error measure to determine its rough shape and then a local search to determine

-]
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a minimum. The local search begins at the position where the minimum value

was determined by the global sampling. The local search is a gradient descent

procedure using a diminishing step-size. That is, it begins with an initial fixed

step size and determines a local minimum using it. The step-size is then reduced -

and the procedure repeated until the step-size is at the desired resolution for the

determination of the translational axis. In the experiments below the initial step-

size was set to 0.1 and then reduced successively to 0.025 and 0.005 radians.

As will be seen in the following experiments, the error measure is smooth, with

a single minimum in a large neighborhood around the correct translational axis.

Thus, the global sampling can be quite sparse or the initial step size of the local

search quite large.

Experiments

The following experiments were performed using the roadsign and industrial

image sequences. They represent a wide range of situations. The first experiment

involves determining the translational axis from the industrial image sequence using

the features indicated in figure 9e. In this sequence the translational axis intersects

the image plane in a visible portion of the image. The second experiment involves

processing the industrial image sequence using a smaller number of features. In

the third experiment the roadsign image sequence is processed using the features

extracted at the positions indicated in figure Se. Here, the intersection of the

translational axis and the image plane is not in the visible portion of the image.
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iThe fourth experiment involves processing the roadsign image sequence, but using

the features extracted prior to low-curvature suppression. This has the effect of

introducing weak and spurious features into the error measure computation. The

uwa fifth experiment involves processing the roadsign images using features extracted

from a small area of the initial image.

In all of the experiments, the maximal displacement along an image displace-

ment path was set to 10 pixels. Displacements were in increments of 1 pixel along

the image displacement paths. Features were 7x7 pixel arrays centered at the posi-

tions indicated in the figures.

We use a 2 -D, polar coordinate system to describe the points on the direction

of translation sphere over which the error measure is evaluated. The axes of trans-

Ulation are unit vectors based at the origin of the camera coordinate system and are

described by two angles (0 1, 02) (figure 11). For an axis of translation, V, based at

the origin, 01 is the angle between the (0, 1, 0) vector and the edge determined by

gthe intersection of the YZ plane and the plane determined by the X axis and V.

01 thus specifies one of the pencil of planes containing the X axis. 0'2 is then used

to express V as a vector in the specified plane. 02 is th i angle between (-1,0,0)

and V. Note that for all angles a and b, (a, 0) - (b, 0) and (a, ir)- (b, ir) which

corresponds to points lying along the X axis.

• . °* . o O . , j . •
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(01, 02) coordinates on the direction of translation sphere. The first of these tables

corresponds to translational axes which intersect the image plane at FOEs. The

second basically corresponds to those which intersect the image plane at FOCs.

04 Each of these tables is also presented as an intensity plot and a contour plot. In the

intensity plot, error is proportional to intensity so darker areas imply lower values

of error. In the contour plots, the positions of local minima are marked with a ,

and the local maxima are marked with a " + ". Certain distortions appear in these

figures because they result from mapping tl - unit sphere onto planes. Thus values

near the right and left hand sides of the figures are actually closer to each other

on the unit sphere than those points nearer the center. Additionally, the positions

on the extreme left-hand side of the figures actually correspond to the same point

on the direction of translation sphere which flattens the error surface plots at these

positions.

The third table (table c) shows the minimal value determined by the global

sampling process that is used to initiate the local search, and the successive values

of the error measure determined during the local search. In this table, the position

of the translational axis is referred to in terms of (X, Y, Z) camera coordinates,

in addition to (01, 02) coordinates, so that translational axes computed under

different situations can be compared.
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Industrial Images

The procedure was applied to the industrial images using the features ex-

tracted at the positions shown in figure 9e. Tables la and lb show the global

sampling of the error measure using the fast form of evaluation. Note the min-

ima at (01, 02) = & 4 -L) (1.571, 1.257) radians. Table Ic shows the successive

values of the local search using the precise form of evaluation. The determined

translational axis is (-0.139, -0.099, 0.985). The image displacements determined

for these features are shown in figure 12.

Fiur 12 nusra IaeDip-emns
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Figure 12. Industrial Image Displacements.
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0 1 2 3 4 5 6 7 8 9

0 22.00 23.73 24.16 25.15 26.03 26.02 26.52 25.30 24.17 23.18

1 20.76 24.90 26.09 2618 27.17 27.27 28.46 27.28 24.21

2 20.29 23.22 25.60 25.0. 26.88 26.21 27.13 25.33 23.65

3 20.31 21.60 24.71 25.45 25.61 25.67 24.95 24.75 23.90

4 20.17 19.97 21.17 23.74 22.65 23.33 24.07 24.20 24.25

5 21.45 20.31 19.52 14.45 15.76 20.53 24.22 24.48 24.82

6 21.04 20.66 20.78 18.12 17.38 19.94 22.71 23.86 24.56

7 21.25 22.51 21.86 23.55 24.75 23.10 21.89 23.01 24.22

8 22.19 22.49 24.23 25.33 26.39 24.88 24.25 22.20 23.67

9 22.97 24.09 24.89 26.34 26.22 26.08 25.30 23.24 23.83

U Table la. Industrial Image Error Values

10 11 12 13 14 15 16 17 18 19

0 26.91 22.91 26.39 27.19 28.17 28.84 29.11 30.89 29.62 26.16

1 25.42 26.06 27.81 27.75 27.71 27.81 28.20 27.25 26.02

2 26.10 26.88 28.19 28.00 27.42 29.11 28.91 27.73 26.28

3 26.98 27.98 28.52 28.38 28.33 29.76 29.69 27.52 26.35

4 26.72 27.72 29.89 29.43 30.55 29.35 30.23 27.07 25.85

5 26.75 27.01 30.86 33.98 32.84 30.01 27.99 26.35 24.36

6 27.03 27.34 30.04 32.99 32.16 30.98 26.77 23.97 23.86

7 26.55 27.67 31.02 31.13 31.69 30.68 29.49 24.51 24.37

8 26.49 29.30 30.81 31.06 30.16 29.72 27.44 27.69 23.20

9 26.14 29.14 31.25 30.14 28.94 28.46 27.41 27.11 22.88

Table lb. Industrial Image Error Values

~~~~~~~~~~~~~. . . . . . .. . . . . .... .... . . , . . . ..- " , .. . . . . . . ,. • • , . , , - . L " " . .
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Stepsize 1 02 X Y Z Error

1.5708 1.2566 -0.30905 0.00000 0.95105 * 14.446*

0.1 1.6708 1.4566 -0.11395 -0.09919 0.98852 3.5456

0.025 1.6708 1.4316 -0.13875 -0.09887 0.98538 3.5313

0.005 1.6708 1.4316 -0.13875 -0.09887 0.98538 3.5313

Table 1c. Industrial Image Local Search Values

II

*Denotes this error value was computed using the fast evaluation form. The

other values were computed using the precise evaluation form. --

6.
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Figure 13b. Intensity plot of Table 1a.



. I r -<---''-~-- - - -

64

-m

I

Figure 13c. Contour plot of Table la. I
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Figure 13d. Contour plot of Table lb.
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I Industrial Images with Selected Features

The procedure was again applied to the industrial image sequence but using

features which were selected by hand. The positions of these 8 features are shown

in figure 14.

Tables 2a and 2b show the global sampling of the error measure using the

precise form of evaluation. Note the minima at (,q2) = (50,5-). Table 2c

shows the successive position determined by the lo_'al search. The translational

L axis was determined to be (-0.154, -0.079, 0.985). This corresponds to an angular

difference of 0.025 radians (1.45 degrees) with respect to the axis determined in

experiment 1.

o °Go
0 CD

Figure 14. Selected Features from Industrial Image 1.
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0 1 2 3 4 5 6 7 8 9

0 1.583 1.967 2.106 2.055 1.991 1.986 1.840 1.711 1.713 1.779

1 1.946 2.060 2.013 1.823 1.830 1.785 1.739 1.567 1.754

2 1.907 2.024 1.905 1.777 1.690 1.758 1.622 1.488 1.757

3 1.908 2.062 1.783 1.670 1.590 1.610 1.464 1.533 1.829

4 1.806 1.784 1.762 1.419 1.284 1.241 1.446 1.631 1.874

5 1.630 1.626 1.414 0.580 0.427 0.688 1.117 1.672 1.983

6 1.505 1.551 1.740 1.227 1.018 1.062 1.768 1.890 2.003

7 1.451 1.470 1.424 1.312 1.513 1.578 1.480 1.695 1.907

8 1.449 1.459 1.716 1.888 1.895 1.804 1.495 1.607 1.739

9 1.456 1.645 1.949 2.082 2.163 1.755 1.669 1.627 1.684

Table 2a. Industrial Image Selected Feature Error Values

10 11 12 13 14 15 16 17 18 19

0 2.267 1.750 1.857 1.937 2.137 2.675 2.642 2.354 2.089 1.635

1 1.773 1.926 2.024 2.218 2.532 2.731 2.492 2.141 1.611

2 1.802 1.961 2.143 2.304 2.416 2.721 2.655 2.160 1.616

3 1.835 1.964 2.221 2.370 2.421 2.748 2.685 2.047 1.669

4 1.933 1.977 2.348 2.579 2.526 2.647 2.597 1.811 1.739

5 2.224 2.291 2.709 2.770 2.681 2.663 2.490 1.874 1.802

6 2.443 2.524 2.434 2.614 2.893 2.647 2.129 2.100 1.902

7 2.308 2.096 2.193 2.582 2.520 2.625 2.589 2.!08 2.083

8 2.045 2.003 2.109 2.137 2.295 2.478 2.491 2.379 2.134

9 1.939 2.004 1.888 1.910 2.219 2.299 2.335 2.469 2.132

Table 2b. Industrial Image Selected Feature Error Values
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Stepsize 0X Y2 xZ Error

1.5708 1.5708 0.00000 0.00000 1.00000 0.57998

0.1 1.6708 1.3708 -0.19867 -0.09785 0.97517 0.19955

0.025 1.6458 1.4208 -0.14943 -0.07401 0.98599 0.17476

0.005 1.6508 1.4158 -0.15438 -0.07896 0.98485 0.17410

Table 2c. Indus;trial Image Selected Feature Local Search Values

L
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Figure 15a. Intensity plot of Table 2a.

Figure 15b. Intensity plot of Table 2b.
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Roadsign Image Sequence

The procedure was applied to the roadsign image sequence using the features

extracted at the positions indicated in figure 8e. Tables 3a and 3b show the global

sampling of the error measure using the fast form of evaluation. Note the minima

at (01, 02) = (8fA, 2A). Table 3c shows the successive values of the local search

using the precise form of evaluation for the error measure. The translational axis

determined by this process is (-0.837, -0.420, 0.349). The image displacements for

the feature points shown in figure 8e that are associated with this translational axis

are shown in figure 17.

Given the direction of translation and image displacements, the relative environ-

mental depths of image points can be recovered by the simple relation in equation

ten from chapter III. When image displacements are small, the inferred depth values

can be quite erratic due to sensitivity to small numbers in the denominator in the

left hand side of this equation. For this reason it is necessary to use image pairs

for which large displacements can be determined. One way to do this for image

sequences which are related by successive sensor translations is to track the FOE

from a given image with respect to successive later image. This was done with four

successive images from the roadsign sequence beginning with roadsign images 1 and

2 and using the features from image 1 at the positions in figure 8e. The position

of the translational axis determined from images I(l) and I(t+l) was used as the

initial value in the local search for determining the translational axis for images

I(1) and I(t+2), where t = 1,2 in this example. The displacements of all features

6?
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along the contour in figure 8c were determined along the image displacement paths

determined by the FOE found f-r images I(1) and 1(4). To compute depth along

the contours, 5x5 windows, centered at r -ch contour point, were matched along the

image displacement paths and the displacement corresponding to the best match

were determined. The resulting relative depth map is shown in figure 18 where

depth is encoded by intensity (more distant things are brighter).

The roadsign sequence is particularly nice for presenting depth processing results

because the three environmental objects in the images are at three distinct depth

intervals. This is shown in figure 19 by the three distinct clusters in the histogram

of 0he depth values calculated for the points along the contour. The units in the

histogram are cumulative time-until-contact values. That is, the depth is given in

units of the displacement of the camera from I(1) to 1(4) along the Z-axis. From

left to right, the first peak corresponds to the sign, the second to the pole, and the

third to the trees. As can be seen, there is a wide range of depths associated with

the trees. Mapping these clusters back onto contour points from figure 8c yields the

distinct objects: the boundary shown in figure 20a (the sign), the boundary shown

in figure 20b (the pole), the boundary segment shown in figure 20c (the trees).

Points near the image boundary of I(I) were ignored because the processing did not

take into account occlusion effects along the image boundaries.
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0 1 2 3 4 5 6 7 8 9

0 4.935 6.487 8.022 9.200 10.24 10.94 11.00 11.87 11.92 11.27

1 6.296 7.493 8.540 9.329 9.729 9.801 9.868 10.06 10.01

2 6.059 7.122 8.177 8.971 9.625 9.750 9.812 10.10 9.993

3 5.739 6.593 7.270 8.309 8.967 9.492 9.788 10.02 9.966

4 5.402 5.651 5.940 6.988 8.119 8.709 9.082 9.806 9.895

5 4.787 4.536 4.838 6.117 7.454 8.314 8.828 9.434 9.771

6 4.149 3.590 4.035 5.071 6.537 7.716 8.870 9.200 9.669

7 3.694 2.865 3.357 4.622 5.999 7.750 8.816 9.147 9.604

8 3.319 2.795 3.808 5.432 6.821 8.026 8.751 9.041 9.505

9 3.281 3.129 4.385 6.078 7.126 7.903 8.817 9.125 9.546

Table 3a. Roadsign Image Error Values

10 11 12 13 14 15 16 17 18 19

0 11.20 9.617 9.147 8.802 7.836 7.277 6.247 4.632 3.284 3.378

1 10.76 10.40 9.530 8.103 7.335 6.504 5.006 3.962 3.538

2 10.96 10.80 9.915 8.734 7.237 6.388 5.280 4.270 3.849

3 11.14 11.04 10.62 9.592 8.233 7.020 5.690 4.691 4.270

4 11.17 11.20 11.07 10.28 9.343 8.121 6.774 5.235 4.511

5 11.20 11.29 11.33 10.97 10.24 9.057 7.383 5.694 4.959

6 11.20 11.34 11.64 11.16 10.92 9.485 7.904 6.159 5.394

7 11.20 11.54 11.77 11.74 10.88 9.975 8.158 6.813 5.758

8 11.23 11.69 11.92 11.71 10.94 10.35 9.084 7.719 6.158

9 11.25 11.90 11.95 11.38 10.81 10.32 9.316 8.031 6.314

Table 3b. Roadsign Image Error Values

S
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Stepsize 01 02 X Y Z Error

2.5133 0.62832 -0.80902 -0.47554 0.34548 *2.7952*

- 0.1 2.5133 0.52832 -0.86366 -0.40782 0.29628 0.21031

0.025 2.4383 0.57832 -0.83738 -0.41691 0.35352 0.20767

0.005 2.4483 0.57832 -0.83738 -0.42043 0.34933 0.20760

Table 3c. Roadsign Image Local Search Values.

* Denotes this error value was computed iising the fast evaluation form. The

other values were computed using the precise evaluation form.
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Figure 16a. Intensity plot of Table 3a.

Figure 16b. Intensity plot of Table 3b.
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Figure 18. Depth Map. Contour depth encoded by intensity.
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Roadsign Sequence with Redundant Features .4

The procedure was applied to the roadsign image sequence using the features

which were extracted prior to low-curvature suppression. The positions of these

features is shown in figure 8d. This has the effect of including several weak and

false features in the evaluation of the error measure.

Tables 4a and 4b show the values of the global sampling of the error measure

using the fast form of evaluation. Note the minima at (01, 02) = (8 -L, 2-). Table

4c shows the successive values of the local search. The determined translational

axis was (-0.829, -0.423,0.366). This corresponds to an angle of 0.019 radians

(1.068 degrees) with respect to the axis determined in experiment 3.

I

atI
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0 1 2 3 4 5 6 7 8 9

0 7.777 10.07 12.54 14.27 15.46 18.22 18.37 18.91 19.44 19.53

1 9.942 12.45 14.15 16.67 18.32 18.34 18.94 19.55 19.54

2 9.593 11.80 13.52 17.07 18.04 18.32 19.15 19.64 19.55

3 9.071 11.01 12.47 16.12 16.92 17.80 19.19 19.60 19.49

4 8.412 9.412 11.15 14.14 15.85 17.38 18.21 19.32 19.40

5 7.506 7.562 9.772 12.68 15.30 16.82 17.85 18.82 19.25

6 6.690 5.760 8.265 11.72 13.74 15.95 17.83 18.49 19.15

7 6.008 4.821 6.675 10.60 13.20 15.69 17.76 18.41 19.07

8 5.555 4.733 6.971 11.47 13.71 16.15 17.57 18.30 18.97

9 5.535 5.206 7.515 11.45 14.10 15.66 17.61 18.34 19.02

Table 4a. Roadsign Redundant Feature Error Values.

10 11 12 13 14 15 16 17 18 19

0 22.65 21.90 21.16 19.95 15.98 14.73 10.76 7.699 5.361 5.569

1 22.06 21.51 19.50 16.25 13.01 10.82 8.195 6.394 5.781

2 22.28 22.00 19.74 16.38 12.43 10.64 8.510 6.821 6.319

3 22.52 22.31 20.70 16.02 13.62 11.44 8.860 7.491 6.908

4 22.59 22.52 21.21 16.83 15.10 12.45 10.44 8.361 7.257

5 22.65 22.74 21.25 17.79 15.75 13.80 11.51 9.119 7.853

6 22.63 22.83 22.02 17.38 16.90 14.88 12.46 9.834 8.575

7 22.63 23.07 22.18 18.77 16.85 15.66 12.96 10.92 9.096

8 22.65 23.01 21.95 20.34 17.69 16.64 14.57 12.22 9.679

9 22.68 23.21 22.02 20.56 18.29 16.80 15.26 13.03 9.924

Table 4b. Roadsign Redundant Feature Error Values

. .- --,.- ..... -, -- . .. .--
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Stepsize 0 02 X Y Z Error

2.5133 0.62832 -0.80902 -0.47554 0.34548 *4.7330*

wJ 0.1 2.5133 0.52832 -0.86366 -0.40782 0.29628 0.34143

0.025 2.4133 0.60332 -0.82346 -0.42344 0.37765 0.33771

0.005 2.4283 0.59332 -0.82909 -0.42281 0.36585 0.33693

Table 4c. Roadsign Redundant Feature Local Search Values

I

I

*Denotes this error value was computed using the fast form of evaluation. AU

other values were computed using the precise form.
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Figure 21b. Intensity plot of Table 4b.
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Figure 21c. Contour plot of Tables 4a.

Figure 21d. Contour plot of Tables 4b.
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Roadsign Subimage

This experiment was conducted to test the accuracy of the algorithm when

applied to a very small area of the visual field. The procedure was applied to the

roadsign image sequence with features restricted to the rectangular area shown in

figure 22 corresponding to texture in the distant trees.

Tables 5a and 5b show the values of the global sampling of the error measure

using the precise form of evaluation. Note the minima at (01,, 2) = (7, 2-).

Table 5c shows the successive values determined by the local search. The transla-

* tional axis is determined to be (-0.843, -0.429,0.325). This corresponds to angles -

of 0.027 radians (1.53 degrees) and 0.044 (2.516 degrees), with respect to the trans-

lational axes determined in experiments 3 and 4 respectively.
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Figure 22. Roadsign Subimage Features.
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0 1 2 3 4 5 6 8 9 0

0 0.171 0.249 0.353 0.437 0.488 0.515 0.520 0.504 0.502 0.491

1 0.231 0.309 0.388 0.454 0.505 0.522 0.504 0.500 0.490

2 0.207 0.256 0.307 0.370 0.469 0.520 0.502 0.498 0.483

3 0.184 0.202 0.226 0.264 0.316 0.439 0.487 0.478 0.471

4 0.156 0.146 0.133 0.119 0.126 0.260 0.368 0.444 0.460

5 0.128 0.096 0.073 0.074 0.115 0.244 0.298 0.368 0.441 -*

6 0.106 0.069 0.065 0.102 0.169 0.255 0.295 0.334 0.422

7 0.091 0.060 0.084 0.137 0.206 0.265 0.290 0.327 0.405

8 0.083 0.061 0.105 0.166 0.233 0.274 0.288 0.329 0.400

9 0.081 0.065 0.119 0.187 0.252 0.279 0.292 0.336 0.404

Table 5a. Roadsign Subimage Error Values

10 11 12 13 14 15 16 17 18 19

0 0.568 0.473 0.393 0.334 0.300 0.279 0.206 0.126 0.065 0.085

1 0.495 0.428 0.371 0.319 0.279 0.224 0.121 0.063 0.094

2 0.524 0.478 0.433 0.380 0.315 0.235 0.100 0.070 0.112

3 0.549 0.534 0.515 0.494 0.458 0.276 0.102 0.115 0.142

4 0.575 0.580 0.587 0.589 0.588 0.503 0.320 0.194 0.176

5 0.586 0.603 0.611 0.616 0.627 0.600 0.482 0.303 0.205

6 0.597 0.614 0.619 0.624 0.626 0.612 0.512 0.386 0.236

7 0.605 0.617 0.624 0.623 0.636 0.610 0.520 0.417 0.256

8 0.608 0.620 0.620 0.629 0.646 0.597 0.515 0.418 0.265

9 0.609 0.621 0.620 0.639 0.639 0.573 0.498 0.397 0.262

Table 5b. Roadsign Subimage Error Values

. . o
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Stepsize 01 02 X Y Z Error

2.1991 0.62832 -0.80902 -0.34549 0.47553 0.059910

0.1 2.2991 0.62832 -0.80902 -0.39123 0.43867 0.059542

0.025 2.474 1 0.57832 -0.83738 -0.42930 0.33837 0.059288

0.005 2.4941 0.56832 -0.84281 -0.42928 0.32465 0.059269

Table 5c. Roadsign Subimage Local Search Values

L7
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Figure 23a. Intensity plot of table 5a.

Figure 23b. Intensity plot of table Sb.

r
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3 Figure 23c. Contour plot of table 5a.

Figure 23d. Contour plot of table Sb.



90

Discussion

The experiments presented here, as well as others, have shown that the proce-

dure is robust in several important ways. It is resilient with respect to weak and

false features and is not dependent on identical features being extracted in succes-

sive images prior to matching. It can use a small number of features positioned

across an image surface, or a small number of features from a limited area of the

image.

In the remainder of this chapter, we discuss the feature extraction process and

how it may be made more efficient, and the general behavior of the error measure. In

the next chapter we explore several potential extensions of the translational motion

procedure.

Feature Extraction

Since the procedure's performance does not degrade severely due to the occur-

rence of poor features, the type of feature extraction used is not critical. Nonethe-

less, the feature extraction process developed here could be extended in many ways.

A simple one is to constrain the extraction of interesting points to positions where

image contrast exceeds some minimal value. Also, other types of contour extraction

can be used. For example, contours can also be determined by local application of

histogram guided thresholding and segmentation. This resolves some of the prob-

lems associated with using a single threshold determined for image subparts with

, . ; i. ii /. ; i -. " / -:; .i . -. " . . .-' - . i . -. .- . : i..
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significantly different brightnesses [Kohl8l].

A significant question concerns the speed at which features are extracted. Lo-

cality of processing leads to the most efficient computation in array processing - -

architectures. In the procedure here, the technique of contuur walking to determine

curvature is significantly non-local. Since the algorithm is robust with respect to

weak features, the use of less costly methods for extraction of possibly weaker fea-

tures may be acceptable. It may be possible to directly determine points of high

curvature by using corner finders [Kitc80, Zuni83J.

Another alternative to the contour walking is to simply use a threshold on the

distinctiveness measures, with or without the determination of local maxima in

distinctiveness. Examination of the local maxima along the telephone pole in figure

2c, reveals that these are local maxima with very small distinctiveness measures.

This has been observed in general.

An additional speed-up can be obtained when features are selected from con-

tours determined by segmentation procedures (such as thresholding or zero-crossing

extraction) which produce binary images where pixel values may be represented by

1 or -1. In this case there is no need to normalize the correlation measure used

to determine distinctiveness because each image subarea of equal size has identical

constant image energy [Duda73]. Thus, the normalizing terms in the correlation

measures become constants and the arithmetic operations are restricted to products

or additions over the set (1, -1). When the distinctiveness measures are determined

along the contours of binary images followed by a threshold on distinctiveness and

local maximal extraction, very rapid rates of feature extraction can be achieved

pi
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in the particular architectures we have explored, on the order of a fraction of a

millisecond [Lawt84].

The binary image in Figure 24 was determined by thresholding at zero the

initial roadsign image with the V 2G mask used above. Figure 25 shows the in-

teresting points extracted from the binary image in figure 24 using a threshold on

distinctiveness set to 0.1 followed by local maxima extraction. The results are rea-

sonable, although mistakes can occur if the neighborhoods over which local maxima

are computed contain points of high curvature from distinct regions. This could

be remedied by restricting the calculation of distinctiveness for points only along

contours of the same region (which would then require the determination of region

labels via a connected components algorithm).

Figure 24. Binary Roadsign Image.
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Figure 25. Interesting Points along Contours.

It would also be useful to incorporate information determined from the extrac-

tion of the translational axis to isolate false features. This could involve removing

from the error measure those features which have weak matches once a translational

axis has been determined, and re-evaluating to refine the FOE. Such a filtering pro-

j.o ;
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cess would be particularly helpful when the total minimum error was not sufficiently

low thereby casting doubt on the correctness or accuracy of the solution. Alter-

natively, the depth inferences could be used to isolate the positions of potential

false features by noting discontinuities in depth along an extracted contour. Such

features tend to be associated with vertices generated by surface occlusion. Such

extracted features could be removed from the re-evaluation of the error measure if

they are at or near such positions.

Another type of feature which can affect the evaluation of the error measure

are those near an FOE or FOC which is contained in a visible portion of the image.

Such features tend to move very small amounts along their image displacement

paths and hence require fine interpolation to determine their best matches. The

depth inference associated with such points tend to be highly erratic since their

use in the inference relation from chapter I involves dividing a small number by

another small number.

Properties of the Error Measure

In the experiments presented, the error measure has a distinct global minimum

at the point on the unit sphere corresponding to the correct translational axis. It

is generally expected to have such behavior because it is very unlikely that trans-

lational axes that are far from the correct position will define image displacement

paths that simultaneously allow good matches for many features. Thus, competing

ciadidates for the global minimum are not expected to be widely separated. This

|
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reasoning implies strong unimodality and smoothness of the error measure over a

large neighborhood and this has been confirmed empirically. Therefore, the opti-

mization procedure used here could be replaced by other techniques which generally

have faster convergence.

The error measure is affected by both non-distinctive and false features. Non-

distinctive features will match well for many different translational axes. Large

numbers of these weak features will flatten the response of the error measure. False

features will also distort the error measure since they will often have their best

matches with incorrect translational axes.

The effects of these poor features should be compensated by the agreement of

good features. Every one of the good features will tend to have a bad match for

* the incorrect translational axis and their unanimity is expected to override the lack

of discrimination of weak features and the random quality of the matches of false

features. However, there is a limit in the percentage of weak and false features before

U] the algorithm will degrade. This limit has not been explored, but our experience

suggests that it may be quite high, with perhaps as many as 50 percent of the

features being ineffective.

b
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CHAPTER V

EXTENSIONS TO TRANSLATIONAL MOTION PROCESSING

Introduction"

In this chapter we discuss several extensions to the translational motion proce-

dure. We begin by formulating the computation hierarchically. This significantly

increases the computational speed of the procedure and the extent of image dis-

placements that can be processed. We then show how to process the blur paths of

nearby textured surfaces when prolonged exposures are used during translational

motion. We note the implications of this case, both for processing computed trans-

lational displacement fields, and for using blur to determine image displacements

in general. The third extension to our algorithm considers different approaches for

processing image sequences containing multiple, independently translating objects.

One of these is based upon generalized Hough techniques to decompose the error

measure response into the effects of the different objects. The others are based upon

local application of the procedure to image subareas determined by segmentation

or image subdivision. Finally, we consider the use of translational motion process-

ing for autonomous vehicle navigation by using devices to stabilize the sensor or to

obtain the rotational parameters directly.

96
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Hierarchical Computation

A basic paradigm in computer vision is the use of hierarchical representations

and processes [Burt82, Glaz83a, Glaz83b, Hans80, Tani8O, Uhr78]. This allows dif-

ferent magnitudes and scales of image events to be handled uniformly. Additionally,

the consistent agreement among hierarchically organized processes is a basic control

strategy for a wide range of high and low level interpretation tasks. Hierarchical

processing can produce significant computational reductions, wherein results from

processing performed rapidly at lower resolutions of image information are used to

direct and constrain more detailed and extensive processing of higher resolution

image information.

The processing of translational motion can be developed in a hierarchical fashion

with the primary benefits being increased speed and the ability to deal with larger

image displacements. This requires specifying the hierarchical representations of

the successive images and the extracted features, and specifying how processing at

different levels of image resolution are related.

77

Hierarchical Representation of Image and Features

In the initial work described here, images have been represented in the VISIONS

*" image operating cone structure [Hans8O. This consists of a sequence of images

.l o, 1,, 12,...1., where the successive sizes of the images are I x 1, 2 x 2,4 x 4,..., 2' x

. 2". The value n is the level of the image in the cone. Each pixel in the i -

th image, except for the first and last images, has a connected neighborhood of
immediate descendants in the i + 1 image and a parent in the i - I image. The

b .
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size and shape of the immediate descendant neighborhood can be arbitrary and the

immediate descendent neighborhoods of adjacent pixels may or may not overlap.

There are several ways to reduce the resolution of an image in the VISIONS

cone [Hans80] and other pyramid architectures [Burt82, Tani80, Uhr78]. These

techniques involve smoothing the image with some operator and then sampling at

a reduced interval, or by using a reduction operator which is some function of the

pixels in the immediate descendent neighborhoods. The results of reducing image

resolution by averaging using Gaussian masks over 5x5 pixel immediate descendent

neighborhoods at successive levels of the roadsign image I is shown in figures 26a-d.

The positions of extracted features can also be represented in the cone structure

at different levels of resolution. There are several alternatives for doing this. First,

it may not be necessary to extract features at all and simply apply the procedure

uniformly to features at each position, relying on the increased speed of hierarchical

computation or potential architectures to make this possible. One approach is to

apply the feature extraction process for each image at each level of image resolution.

Another technique is to extract features in the highest resolution image and then

treat the ancestors of these in the lower resolution images to be features. In this

case, the immediate descendent neighborhoods should not overlap (so each feature

has unique ancestors). A feature is then positioned at a parent pixel if any of its

descendants are at positions where a feature has been extracted. These approaches

may interact in interesting ways if the strength of a feature is expressed as a function

of its own distinctiveness and that of its descendants. We have thus far utilized the

approach based upon extracting features at the highest image resolutions, though

general problems with this should be noted. Features that are separated at higher

resolutions become adjacent at lower resolutions. Thus, the inferred features at the

lower resolutions may not be meaningful, especially since the information is not

4
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uniform across the range of spatial frequencies represented in the different image

resolutions. The benefit of this technique is that there are explicit and unique links

between features at different image resolutions so that displacements determined at

coarse levels can be used to initialize the estimates of displacements at finer levels.

Figures 27a-d show the features resulting for roadsign image 1 at different levels

of resolution by using the feature positions determined from the highest level of

image resolution (figure 8e in chapter IV) at the corresponding positions in the

lower resolution images.
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Figure 26a. 128 x 128 Resolution. Figure 26b. 64 x64 Resolution

Figure 26c. 32 x 32 Resolution. Figure 26d. 16 x 16 Resolution
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Translational Processing at Different Resolutions

The translational processing can be applied to successive images at any level of

resolution for which features have been extracted from the initial image. The basic

questions concern how processing at one level affects processing at another level. In

particular, how do processing results at a coarser level of resolution constrain the

processing at finer levels of resolution? At what level in the cone can processing be

meaningfully initialized? How do the various parameters involving feature window

size, displacement resolution along a flow path, and resolution of the optimization

procedure change at different levels of the cone?

Let us present our first effort to deal with these issues. For a given pair of im-

ages at level i in the cones formed from successive images, the translational error

measure will be minimized for the set of features determined at level i (using the

ancestors of features determined from the highest resolution version of the initial

image). The position of the minimum error in the translational axis at level i is

then used to constrain the optimization of the error function for the images and

feature positions at the i + 1 level in the coae. In addition to constraints on the

position of the error function minimum, processing higher in the cone constrains

the evaluation of the potential displacements of extracted features along their dis-

placement paths. Figure 28 shows flow paths at different levels of resolution. For

each displacement determined at level i only three positions have to be evaluated

at level i + 1. Thus, not only is the minimum of the error function passed on,

but also the displacements of parent features which are then used to constrain the

evaluation of the displacements of descendent features [Glaz83b].
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Figure 28. Relations between displacements at different resolutions..--

There are a wide range of possibilities for relating the error function minimiza-

-- tion across the different image resolutions. One strategy that has been employed

involves the use of different step sizes in the error function evaluation correlated with

particular image levels. That is, as processing moves to higher image resolutions,

* the stepsize of the error function evaluation decreases. Alternatively, a complete

search could be done at a given level before proceeding to the higher resolutions.

Feature size can also change as processing goes down the cone since at higher levels

b
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a given window size corresponds to an increased area with respect to the image. - I

At a high level of resolution, features described by small image areas may not be

distinctive enough to match well.

In the experiments in figures 29a-d processing was initialized at level 4 by per-

forming the global sampling of the error measure at the same density as the exper-

iments in chapter IV (a separation of L radians in the coordinate system for the10

direction of translation sphere). The resulting flow field is shown in figure 29a. The -

first step of the local processing was initialized at the minimum determined in the

global sampling and used a stepsize equal to 0.1 radians for the images and features

at level 5. The resulting flow field is shown in figure 29b. At level 6, the stepsize

was reduced to 0.025 and the local search initialized at the minimum determined i

by the processing done at level 5. At level 7, the stepsize was reduced to 0.005 and

the search was initialized at the minimum determined at level 6. 5x5 windows were

used at each level. The procedure converged to the same results as in experiment

three in chapter IV.
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Some Problems

A reasonable change to the procedure described here would be the use of band-

passed filtered images instead of the smoothed ones used here. Work by Burt

[Burt82] and Glazer et. al. [Glaz83b] indicates that the matches of features from

successive bandpassed images are much more distinctive than using features from

* low-pass images. Another important question which has not been addressed in any

detail concerns the image level at which to begin processing. One criteria could

be the level at which significant changes in image values occur as determined by

an average difference value. Another could be the response of the error function.

This would involve determining the level at which the error function has a distinct

minimum.

A particular problem in hierarchical matching schemes occurs at occlusion

boundaries. Here, features on different sides of an occlusion boundary can have

a common ancestor, but will themselves have different displacements. Therefore,

the displacement value inherited from the parent may be incorrect for one of the

features and that feature should have its potential displacements re-evaluated along

it's displacement path. A possible criterion to determine the need for re-evaluation

of the displacements of a feature is if its match value is ever less than some threshold

or is less than the match strength of its parent. It may be sufficient simply to not

evaluate such features if they are found, and to then determine their displacements

or occlusion after the more certain image displacements have been found for other

image points.
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Translational Blur Path Extraction

Blur streaks are commonly produced when the shutter mechanism of a camera

remains open while the camera is moving relative to a textured surface. The streaks

are produced by the successive positions of the image projections of the texture

elements. Recent work [Harr80, Shep83] indicates that blur streaka may be a very

common motion effect in the human visual system.

For translational camera motion, the blur streaks will correspond to the image

displacement paths: straight line segments radiating from a common intersection

point. In the analysis of translational blur paths, some information is lost concerning -

the direction (from an FOE or towards an FOC) and magnitude of the displacements

of image points over time. Nonetheless, the techniques developed in chapter IV

can be easily modified for the extraction of translational blur paths. First, it is

necessary to compute the gradient of the blurred image. The image gradient will be

perpendicular to the translational blur paths at positions where image blur occurs.

Thus, the error measure can be expressed as

N

- Ii cos Ui (15)

where i is an index over image positions, and 9i is the angle between the im-

age gradient at point i and the translational displacement path corresponding to

a particular translational axis. The same evaluation techniques can be used for

this error function as above, except that there is no need to distinguish between

FOEs and FOCs. Thus, the evaluation of the error measure need only occur on a

hemisphere. It should be noted that a variant of this error measure can be used

for processing translational motion sequences for which image displacements have

been determined. In this case, the image displacement vectors will lie along (not

6- ,- : .:.,: " " i. - : :ii "- " : " ' " : ' : .i-:. :- :.;•
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perpendicular to) the correct translational displacement paths. The corresponding

error measure becomes E=l 1.0 - I cos O, .

The results of a preliminary experiment are shown in Figures 30-33. Figure

30 shows an image taken from a car traveling down a straight road. The shutter

was kept open for a prolonged exposure and blur streaks resulted from the texture

elements in the nearby tree. Figure 31a-c shows the gradient magnitude of the image

and its normalized row and column components. Figure 32a-b show intensity and

contour plots of the error function at points on the direction of translation sphere

roughly corresponding to the potential positions of FOEs. Darker corresponds to

less error in the intensity plot. In the contour plot, a -. is used to indicate the

position of a local minima of the error function and a" + is used to indicate the

position of a local maxima. The error function is unimodal due to wrap around on

the direction of translation sphere because the FOEs and FOCs along a particular

line of translation are not distinguished, Figure 33 shows the set of translational

blur paths that were determined.
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Figure 30. Blur image.

a ..... '...

. . ., ' ... : ." * ~ ?W"-j 
-.. :g~ 

: • .;- 4....

" ..: .'." ;, :.. 
' 1., '.:'..t.-.-'. -... : .

•~~ 
~ 

.
A... 

... ::;.g.

M. % ..'". . - .

" .p.. , .."- .t.; 

. ? . . : .

r :"." 
*:, :Cd.-:Y 

......

-.. 
Ow 

..,

I4".

.. ,;,'.-;. .. 
Ar

..
:*:: .. ' ,.. ,P ..

,, ..

/:F... .- C..::.-;.,S 
... 1 -. - . . .

.. .

Figure 31a. Magnitude of gradient of Blur image.0 
'. ';".- ...



111

I

Ii

I,

~~iEEiiiu
Figure 31~~Row component of normalized gradient.

N

0

Figure 31c. Col component of normalized gradient

. . . .
- ~ -. - -. ..* -. .- -~-------. - - .,......-. -.



112

Figure 32a. Intensity plot of error function.

Figure 32b. Contour plot of error function.
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Figure 33. Determined translational blur paths.

p It may be useful to use multiple versions of the same image sequence, each

formed using a different exposure rate. Those formed with short exposure times

would have very little blurring and their gradients would correspond to static edges.

By subtracting the images formed with very short exposure rates from those formed

during the same interval but with longer exposure rates, it may be possible to

suppress edges in the blurred images which are non-blur related. 0" more general

importance in such a representation is the potential ability to relate blur streaks to

the displacements of features extracted from the static images.

The extraction of translational blur paths is also similar to the extraction of

vanishing points and lines from static images. The same procedure can be applied,
.%.°
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without the initial extraction of edges: the determination of edges can occur concur-

rently with the extraction of the vanishing point. However, vanishing point analysis

is typically more difficult because only small portions of the image are rudely orga-

nized with respect to the potential vanishing points. Determination of these areas,

or finding a way not to have the 'noise' from the rest of the image dominate the

analysis, are the key difficulties. In this case, the error measure may need to be

extended to incorporate information concerning edge length or connectedness along

the radial paths determined by a particular vanishing point.

Approaches for Multiule Independently Moving Objects

The procedure developed here assumes a sensor moving relative to a stationary

environment, or a single object moving relative to a stationary sensor. A useful

extension would allow the presence of multiple, independently moving objects, while

maintaining the ability to determine image displacements concurrently with the

direction of translation. There are at least three techniques which could make

this possible. One is to utilize generalized Hough transform techniques (Ballsi,

O'Rou811 for decomposing the responses in a error measure into the corresponding

image structures or segments. The other two constrain the analysis to independent

limited image areas over which the procedure can successfully function.

We begin by noting that the global component of the optimization process used

in chapter IV is an instance of a generalized Hough transform in which each feature

scales its vote against a particular translational axis as a function of the best match

it can find that is consistent with the translational axis. With only a minor change,

instead of using an error measure, we could use an optimization measure by which

each feature scales its vote for a particular translational axis by the extent of the

",U.I)  ": ~
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best match it can find that is consistent with the axis. The problem then becomes

a typical one for Hough transforms: how to associate labels corresponding to the

resulting peaks in the histogram with image points or features. The general form

of this processing is to find the translational axis with the greatest response in

the histogram, associate a label with it, and then associate this label with image

features which match above some threshold along the image displacement paths

determined by the corresponding translational axis. The resulting set of features

are then removed and a new histogram is produced. The peak in this new histogram

and the process is repeated until there are no more distinct peaks in the resulting

histograms, or all image features are labeled [Adiv83].

This procedure will have difficulties with weak or homogeneous feature points

which have strong matches consistent with several distinct translational axes. Thus,

when rehistogramming occurs it is necessary to establish which image features al-

ready labeled are consistent with the newly extracted peak. An alternative, is to

proceed in the conventional manner and determine a set of labels corresponding to

translational axes for which there is evidence. Each feature is then labeled with

each translational axis from this set with which it is consistent. Note that a given

feature could have several labels. A unique consistent labeling is then obtained

by using other information: segmentation-grouping using other image attributes,

depth consistency with neighbors, and common magnitude of image displacements.

Additionally, this disambiguation can occur over several successive images. In fact,

a potentially significant aspect of generalized Hough techniques may be the correla-

tion of histograms from successive instants to bring out structures that are moving

consistently.
0 

Two basic questions have to be addressed in this use of Hough techniques: what

is the required density of translational axes in the transform and what is the minimal
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match threshold. In general, the higher the density, the better.

An alternative approach is to break the image into subparts and then locally

apply the procedure to associate a translational axis with each subpart. In one

scheme, this would be done using regular image areas (as in a grid) at multiple

levels of resolution. Techniques similar to this are used in chapter seven to deter-

mine the local directions of environmental motion. In another scheme, the subparts

are determined by some segmentation procedure, and the translational axis is de-

termined from image features within or lying along the boundary of the extracted

segments. Segments for which the error function response is indistinct are reseg-

mented or their features are associated with the translational axes determined for

adjacent image subparts.

Hybrid Sensor Systems

Translational processing is sufficient for vision-based navigation in a station-

ary environment if the orientation of the optic sensor can be fixed relative to the

environment over time. In this case, sensor motion amounts to a sequence of trans-

lations in possibly different directions over time. There has been much recent work

on sensor stabilization, notably by researchers at McDonnell Douglass Aerospace

Corporation in suspending electro-optical systems in a magnetic field, and elsewhere

using more conventional gimbel-based stabilization.

A difficulty with such a stabilized retina is that it is not able to rotate to focus

on particular parts of the environment. This can be corrected by using a set of

such stabilized retinas arranged to yield a complete view of space. There would

then be no need to rotate the sensor to view a particular environmental point. A

possible arrangement of retinal surfaces is a cubical one. One of the retinal planes

F:
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will always contain an FOE and another will always contain an FOC (unless the

direction of motion is right on an edge of the cube and the focal length has not

been properly adjusted). There will also be several independent estimates of the

direction of translation which can be integrated. Figure 34 shows such a proposed

arrangement of optic sensors attached to a Cartesian robot manipulator so such a

complete, stabilized view of a workspace is produced at all times.

pi /-* OPTIC COLLR.

AGRIPPER

Figure 34. Cartesian Manipulator with attached optic devices.

Alternatively, if the sensor cannot be stabilized, there are other devices which can

at least determine the rotational parameters of sensor motion. The rotational ef-

fects can then be removed from successive images, reducing them to translational

sequences which can be processed by the techniques here. A particular technology

which is very attractive for this use is that of fiber t c rotation sensors [Ezek82]

(figure 35). These sensors are expected to be the low-cost gyroscope of the near

00
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future since they are small, cheap, and precise. Because they have no moving ele-

ments, they are not as affected by rapid accelerations as conventional gyroscopes.

There are currently slow drift problems when sensor orientation is considered over

long periods of time. In our processing though, we would be concerned with mea-

surements of rotation over much shorter periods. Additionally, when such sensors

are coupled with an image processing system for guidance and navigation, the ef-

fects of such long term drifts could be recognized and accounted for by noting the

position of specified landmarks.

Fi .1 9  Artist view of a fiber/inte-
a te-optics strap-dowi a Lti tude-and-

heading-reference-systLeI (101O'1KO cua')

Figure 35. Layout of Fiber Optic Rotation Sensor (from [Ezek82J).
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I CHAPTER VI

PROCESSING RESTRICTED SENSOR MOTION

Introduction

The techniques used for translational motion can also be applied to other cases

of restricted motion. The issue is the computational feasibility of a search through

a subspace of sensor motion parameters for values that are consistent with image

feature displacements. In this chapter we briefly consider two such cases, pure

sensor rotation and motion constrained to a known plane.

Processing Pure Sensor Rotation

For processing pure sensor rotation, the error measure can again be defined with

respect to a unit sphere with each point corresponding to an axis and a direction

of rotation. We use the ( 01, 02) coordinate system from chapter IV for referring

to these positions. In addition to these two parameters for specifying an axis of

rotation, there is a third corresponding to the extent of rotation. The extent of

rotation is defined relative to the orientation of a given axis and encoded with

positive values denoting rotation in a clockwise direction. Thus, on the unit sphere

the points (z, y, z) and (-x, -y, -z) will lie along the same axis of rotation but

correspond to different directions of rotation.

As in the case of translation, we utilize the error of matches of selected features

along their respective image displacement paths. However, there are a few basic

differences with the translational procedure. First, feature displacements are not

119
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measured in image units, but in the extent of angular displacement about the axis

of rotation. Second, the displacement along the image displacement path can cause

significant reorientation and expansion in a feature, especially for large rotations.

For this reason, each pixel of the feature array has its position interpolated inde-

pendently (figure 36). If motion is restricted to small rotations only, this may not

be necessary.

For a rotational field, the extents of angular displacements for all the features

must be identical. This yields a constraint which can be incorporated into the eval-

uation of a particular set of rotational parameters in different ways. The evaluation

can be done as in the translational case where the best match of each feature along

its displacement path is determined independently of the other features. This re-

sults in two different error measures: one based on the summed error values of the

best matches and the other based on the variance of the extent of displacements

corresponding to these matches. Alternatively, the feature displacement determina-

tion can be restricted such that they all evaluate the same extent of displacements

simultaneously.

We have tried these three error measures on a simple image pair and found that

they all give roughly the same result. The variance of the extent of displacements

was minimized at the correct value, but was very jagged and rough. The summed

error values for the best matches and the direct 3 -D search were very smooth and

had a distinct global minimum in a very large neighborhood.
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Figure 36. Determining Individual Pixel Displacements of a Feature.

Figure 37a and 37b show successive images formed with the image generation

system MOVIE BYU and are referred to as the House Sequence 1. The motion

was a rotation of 2 degrees (0.035 radians) about the (0, - 1, 0) axis. The field of

view was 45 degrees. Image contours for application of the interest operator were

determined by a threshold selection algorithm which produces boundaries with max-

imum average contrast [Kohl8lJ. The resulting contour and the extracted features

are shown in figure 37c. The interesting points were extracted by finding the local

7- maxima in the distinctiveness measure values which were also greater than a mini-

mal threshold. Both the features and the neighborhoods over which local maxima

were determined were 3x3 pixel areas. This small neighborhood size caused the

feature extraction process to be sensitive to the notches along the contours as can

be seen by the number of extracted features along the bush boundary. Figure 37d

shows the displacements determined for these features.
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Figure 371a. House Sequence 1 Image 1
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Figure 37c. Extracted Contour and Features.
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Figure 37d. Determined Displacements
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The evaluation of the error measure based on the extent of feature mismatch

is presented as in chapter IV using the (01, 02) values in two tables. The first

table (table 6a) basically corresponds to those axes of rotation on the positive

Z portion of the unit sphere. The second (table 6b) basically corresponds to

axes on the negative Z portion. Axes for which Z is equal to zero and Y is

positive are represented in the first row of the first table while axes for which Z

is equal to zero and Y is negative are represented in the first row of the second

table. The tables are shown as intensity plots in which darker corresponds to

less error and also as contour plots in figures 38a and 38b. There is a distinct

global minimum at the position corresponding to the (0, -1,0) axis. Nearly all

the features had displacements corresponding to a rotation of 0.035 radians for this

axis. This was also the best axis and extent of rotation determined by the local

search using the extent of feature mismatch for features restricted to evaluating the

same displacements simultaneously.

L
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0 1 2 3 4 5 6 7 8 9

0 6.407 6.966 6.252 5.557 5.241 5.384 5.208 5.252 5.810 6.377

1 7.004 6.507 5.961 5.472 5.479 5.430 5.577 6.096 6.391

2 7.064 6.985 6.606 6.387 6.258 6.285 6.283 6.364 6.441

3 7.103 7.229 7.418 7.725 7.684 7.359 6.981 6.593 6.404

4 6.658 7.081 7.457 7.940 8.125 8.006 7.128 6.539 6.298

5 6.294 6.083 6.008 5.879 6.009 5.870 5.862 5.823 6.057

6 5.985 5.496 5.109 4.159 3.465 3.775 4.809 5.401 5.676

7 5.666 5.094 4.189 2.767 1.586 2.219 3.913 4.935 5.492

8 5.566 4.753 3.762 2.347 0.998 1.966 3.327 4.632 5.444

9 5.473 4.485 3.647 2.170 0.611 1.944 3.279 4.399 5.386

Table 6a. House Sequence I Error Values

10 11 12 13 14 15 16 17 18 19

0 6.311 5.415 4.457 3.352 2.057 0.469 2.140 3.651 4.541 5.492

1 5.475 4.791 3.664 2.306 0.634 2.272 3.775 4.861 5.576

2 5.641 5.175 4.525 3.109 1.318 2.660 4.507 5.286 5.744

3 5.907 5.572 5.277 4.613 3.949 4.283 5.392 5.710 5.978

4 6.540 6.677 6.410 6.549 6.431 6.506 6.427 6.400 6.334

5 6.594 6.860 7.159 7.558 7.741 7.859 7.367 7.023 6.816

6 6.598 6.723 6.662 6.702 6.575 6.873 7.040 6.999 6.862

7 6.530 6.325 5.925 5.646 5.568 5.940 6.309 6.698 6.878

8 6.444 5.943 5.399 5.184 5.285 5.351 5.821 6.371 6.908

9 6.390 5.736 5.187 5.149 5.366 5.242 5.515 6.222 6.926

Table 6b. House Sequence 1 Error Values
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Figure 38a. Intensity plot of Table 6a

0R

Figure 38b. Intensity plot of Table 6b
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Motion Constrained to a Known Plane

If motion is constrained to a known plane, the translational axis must lie on a

plane perpendicular to the rotational axis which contains the focal point. Therefore,

the FOE/C in the images are restricted to lie along the line determined by the

intersection of this plane and the image plane. There are two parameters to recover:

the extent of rotation about the axis that is perpendicular to the plane at the focal

point, and the position of the translational axis in this plane. Both of these are

expressed as angles: 01 for the extent of rotation and 02 for the orientation of the

translational axis (figure 39a).

UC

20

R "

Figure 39a. 091, 02 parameters for describing planar motion.

The error measure for this case combines the computation for rotation and

translation. For the rotation and translation corresponding to particular (61,02)
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values, a feature is first positioned along its rotational displacement path using

bilinear interpolation for each pixel and then displaced along the translational dis-

placement path at equal increments to determine its best match. As in translational

processing, the interpolation for individual pixels is not performed for the trans-

lational displacement (figure 39b). The minimal match errors for each feature are

then summed. The error function in this case can be thought of as being mapped

on a cylinder with the 82 parameter, corresponding to the direction of translation,

wrapping around.
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Figure 39b. Evaluation of image displacements corresponding to 01,02 values.
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Figures 40a and 40b show the grass sequence 1. The image in figure 40b of

sample grass texture was produced from figure 40a by rotating 0.1 radians about

the (0,0, 1) axis and then translating along the (0, 1, 0. axis. Figure 41a shows 50

points which were selected at random from image positions where contrast exceeded

a minimal value. Figure 41b shows the displacements determined for these points.

Figure 42a shows the resulting error function in terms of 01 and 02 coordinates

as an intensity plot. Figure 42b shows the error function as a contour plot with

- " indicating the local minima and " + " indicating the local maxima. 01

ranges from -0.15 to 0.15 radians in 0.01 radian increments. 02 ranges from 0.0.

to 2 x ir radians with 0.0 corresponding to the position of the translational axis at

(-1,0,0). The minimum in the error function corresponded to the correct values of •

the rotation and translation.

. .. . . . -°.
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Figure 40a Grass Sequence 1 Image 1

.. #.

Figure 40b Grass Sequence 1 Image 2



K 131

Figure 41a. Selected Features.
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Figure 42a. Intensity plot of Error Measure.
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Figure 42b. Contour plot of Error Measure.
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Known Planar Motion with Determined Image Displacements

To process known planar motion for image sequences for which image displace-

ments have been computed, we use the error measure based on the properties of i-

composite image motions discussed in chapter I to describe the consistency of a

given set of image displacements with particular values of 01 and 02.

Referring to Figure 6b in chapter III, for a given image displacement from image 4
point I,., to I,, its consistency with particular values of 01 and 02 is determined

by first applying the rotation specified by 01 to obtain a displacement from I,,, to

Jm. (figure III.6b). The angle between the vector Jmi - I, i and the translationa!

displacement path line determined by the FOE/C corresponding to 02 and Jmn

reflects the degree of consistency. We actually use one minus the cosine of this

angle. By summing these values for a set of image displacements, the consistency

of the entire field is determined.

This procedure has to be extended slightly to deal with pure rotations. In this

case, the difference vector between the image displacement vector and the correct

rotational displacement vector will be quite short and behave erratically with re-

spect to the determination of the angle with the corresponding translational field

line. Pure rotational fields have two properties which we utilize to detect their oc-

currence. First, when rotational fields having the same axis but different extents of

rotation are subtracted from each other, the variance of the length of the difference

vectors tends to be small. Secondly, the correct rotational field will minimize av-

erage length of these difference vectors. Thus, a purely rotational field is indicated

when the variance of the length of the difference vectors is small with respect to

one of the rotational fields generated by the axis of rotation corresponding to the

known plane of motion, or the average length of the difference field is small. The

• .S, . -.. , . ..
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correct extent of rotation is that which minimizes the total length of the difference

vectors.

Ambiguities in Planar Motion

We have noted an ambiguity that occurs in the case of motion constrained to

a known plane when the focal length is relatively long and the axis of rotation is

roughly parallel to the image plane. In this case, the rotational component field

is very similar to a translational field with the FOE/C at infinity in the image

plane. The extent of displacements are also nearly identical. The effect of this is to

displace the translational component by some amount proportional to the direction

and extent of rotation. As a result, the composite field looks like a translational field

which could result from a wide range of translations and compensating rotations

(figure 43). The effect of this on the error measure is a trough of low error values.

Figures 44a-b are successive images formed using MOVIE BYU and are referred

to as House Sequence 2. 44a is identical to 37a while 44b was generated by translat-

ing along the (0,0,1) axis after the rotation shown in images 37a and 37b. Figures

45a and 45b show the error measure with 01 ranging from -0.05 to 0.05 radians and

02 ranging from 0.0 to 2 x 7r. The trough of low error values is apparent.

S.2
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Figure 44a. House Sequence 2 Image 1

... ...

Figure 441). H~ouse Sequence 2 Image 1
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Figure 45b. Contour plot of Error Measure.
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t Discussion

All of the extensions discussed for translational processing - hierarchical pro-

cessing, blur path extraction, independently moving objects - should be directly

applicable to the pure rotational case. There are some specific differences how-

ever. The blur path extraction is more complex in the rotational case because

the structure of the image displacement paths are conics instead of straight lines;

the necessary expression for the tangents to the image displacement paths in the

rotational case were derived in chapter III. While independently moving objects

may not frequently move in trajectories corresponding to rotation about an axis

positioned at the focal point, there is a related phenomena which may be of some

use in decomposing arbitrary motion. The image displacements of very distant,

stationary objects or environmental features (like the horizon, the moon, the stars)

will primarily be a reflection of the effects of the rotational sensor motion. Thus, if

image features whose displacements are dominated by rotational motion could be

detected, the rotational parameters could be extracted, the image corrected, and

the translational parameters inferred by the procedures in chapter four.

ilt These extensions should also be applicable to the case of pure planar motion

though with some complications. The blur paths are more difficult to characterize

in the planar case. The error function response also seems to have large flat areas

which would especially affect the processing of planar motion in restricted portions

of an image. Finally, the cases for which planar motion is ambiguous would be

serious for any of the discussed extensions and may require processing over several

frames.

he
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CHAPTER VII

THE LOCAL TRANSLATIONAL DECOMPOSITION

Introduction

In this chapter we utilize the procedure for translational motion to process im-

age sequences produced by other classes of restricted and arbitrary sensor motion.

This is accomplished via application of the translational procedure to small image

areas. This approximates more general motion as an array of local environmental

translations, and interprets local image motions as if they resulted from transla-

tional motion of the corresponding portions of the environment. The feasibility of

this approach was demonstrated in chapter IV where the direction of translation

was extracted with reasonable precision from small image areas containing a few

features. The resulting description of motion is an approximation to what we term

the Environmental Direction of Motion Field (EDMF) which associates with a set

of image points (or small image areas) the relative direction of motion of the cor-

responding environmental points (or small environmental surface areas). This is a

low level representation of environmental motion which considerably simplifies the

recovery of the sensor motion parameters.

This chapter consists of four parts. The first considers computing the Environ-

mental Direction of Motion Field when image displacement vectors have or have

not been initially computed. The second section describes EDMF properties for

different cases of sensor motion. In the third section, these properties of the lo-

cal translational decomposition are used to process image sequences produced by

sensor motion constrained to an unknown plane in textured environments. In the

140
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fourth section, we develop a set of equations for environmental depth inferences -4

from image displacements based upon an assumption of environmental rigidity. We

then show how these equations may be solved using the EDMF.

Computing the Environmental Direction of Motion Field

The Environmental Direction of Motion Field (EDMF) is a low level description

of environmental motion which associates with each feature, or small image area, a

three dimensional unit vector describing the direction of motion of the correspond-

ing feature (or small surface area) in the environment relative to the observer. In

the continuous case, the EDMF can be thought of as a description of environmental

motion where only the orientations of tangents along the environmental displace-

ment paths are known. We consider first how to compute the EDMF and then how

u it can be used to recover sensor motion parameters and environmental depth.

Analysis of Raw Image Sequences

The procedure for translational motion described in chapter IV yields a set of

image displacements consistent with a determined translational axis. Application

of this procedure to a small area of an image containing extracted features will yield

a set of image displacements consistent with an interpretation of the local image

motion as a relative translation of that corresponding part of the environment. Note

that where the translational approximation is poor there will be a large value of the

error measure reflecting the weaker confidence in the validity of the approximation.

It is also necessary to incorporate information concerning the number and distribu-

tion of the feature points in the local image areas for this evaluation. For example,
&'
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if there is only one feature in a small area or the features are bunched together, then -

the translational approximation would be suspect. The further processing of the

EDMF should not utilize local areas which do not have satisfactory characteristics.

This use of the translational procedure can be seen as a local constraint on the

determination of image displacements. Typically, most such constraints are based

upon smoothness of the resulting displacement field [Barn8O, Glaz81, Horn8O,

where image displacements are computed under the constraint of being a local

average of the displacements in their surrounding neighborhood. In our case, image

displacements are determined such that the corresponding environmental motion

can be interpreted locally as being translational. Note that this constraint does not

necessarily imply local smoothness in the displacement field.

Computing the EDMF from raw image sequences depends upon how the images

are divided into subareas. The image could be divided into small, regular, square

subareas across the image and the procedure for determining the axis of translation

is applied to each subarea independently. Alternatively, the procedure could be

applied to individual regions determined by some segmentation procedure. In our

LE_ work Lo date, we have used another approach in which the image subareas are neigh-

borhoods centered on single features and the computation is applied independently

over the neighborhood of each feature.

Computing the EDMF can be expensive for such feature-based neighborhoods

since the feature displacements of many points are being determined simultaneously
for different, overlapping, image subareas. An approximation is used to simplify

this computation. For each feature, its best match and corresponding displacement

along each of a set of radial directions are determined from one image into the next.

These values are then stored in a I -D array where each index corresponds to a

particular radial direction centered at the feature and the associated best match
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Kvalue for the corresponding direction (figure 46). -S
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Figure 46. Approximating Match Values Along Translational Flow Paths.
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This set of values is then used for all the translational computations employing

this feature in its various neighborhoods. To determine the value of a particular

translational axis with respect to a the neighborhood of a feature, each feature in

the neighborhood finds its best match along the direction closest to that determined

by the translational axis and the resulting values are then summed up. In this way,

redundant evaluations of feature matches are avoided.

Figures 47a-b are referred to as the Grass Sequence 2. Figure 47a is a 128x128

pixel image of some grass texture with seven bits of intensity. Figure 47b was

derived from figure 47a by applying a rotation of 0.1 radians about the Y axis of

the camera coordinate system described in chapter MI. The focal length was set

to one and bilinear interpolation was used. Features were selected from the image

in figure 47a by determining image points where the contrast was greater than

20 intensity levels and which were also local maxima in the distinctiveness values

associated with 5x5 pixel square features centered at those points. The resulting

feature positions are shown in figure 48.

The direction of translation was determined for 1 lx I pixel neighborhoods cen-

tered at each feature in figure 48. Each feature determined its best displacements

in 256 evenly spaced directions for distances of up to 10 pixels. The image dis-

placement associated with a feature was the displacement that was consistent with

the FOE/C determined by the translational approximation for the feature's neigh-

borhood. The resulting image displacement field is shown in figure 49. As can be -

seen from the discussion in chapter III, it has the correct form for rotational motion

about the Y -axis.

0
Figure 50a-c show the (X, Y, Z) components of the EDMF for the corresponding

image points. The values in the EDMF are between 1.0 and - 1.0 since it consists of

unit vectors. Note that all the features have displacements in the same X direction

p " - - . , . *. * . - . -* I *- . - . .. .. ,
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(Figure 50a) because the camera rotation about Y induces all points to move left

or right. The Y displacements were all very close to zero (consistent with motion

constrained to planes parallel to the Y -axis). The mean Y displacement was -0.003

(figure 50b). The Z components are positive for the right half and negative for the

left half of the image (figure 50c. The scale of the display has also been increased).

This motion occurs in pure rotation about Y because the environmental motions

lie on circular paths with one side going away from the observer and the other side

going towards the observer.

Li'
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Figure 47a. Grass Sequence 2 Image 1.

* Figure 47b. Grass Sequence 2 Image 2.
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Figure 49. Determined Image Displacements.
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Figure 50a. Computed X Component of EDMF.

Figure 50b. Computed Y Component of EDMF.
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measure from chapter IV discussed in the section on the prrcessing of translational

blur paths. The error associated with a particular translational axis is a function

of the angles between the image displacement paths determined by the FOE and

the image displacement vectors. The function employed is the sum of one minus

the cosine of each such angle, E-N(1.0 - cos0,). To compute the EDMF, the

translational axis is determined by applying this error measure, minimized as in

chapter IV, to local areas of a computed displacement field.

Figure 51 shows a 32x32 image displacement field produced using a spherical

distribution of environmental points about the Z-axis. The observer is looking

into the interior of a sphere with noise modulation added to the depth values of

the points in this figure. This noisy sphere was rotated 0.1 radians about an axis

tangent to a point on the back of it along the (1, 1, 1) axis. Note that this field was

generated by an axis of rotation that was not positioned at the origin of the camera

coordinate system. Each image point was the center of a 5x5 neighborhood over

which the translational procedure, using the adapted error measure, was applied.

Figure 52a-c show the X, Y, Z components of the computed EDMF and the

correct EDMF, encoded as intensity with -1 being darkest, 1 the brightest and

the neutral gray intensity along the border is 0. Figure 53 shows the values of

the error of the translational approximation. Note how the approximation is poor

where the field has a rotational character with vectors at very different orientations

in a small area.

0 . ,_ _. . ,__ _ _ _ .o
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Figure 52a. Computed X Component of the EDMF.

Figure 52b. Correct X Component of the EDMF.



1531

-JII

Figure~~~~5 52.Cmue 7opoeto h D

Figue 5d. Crret YCompnen of he DMS



u

154

Figure 52e. Computed Z Component of the EDMF.

Figure 52f. Correct Z Component of the EDMF.
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Figure 53a. Intensity plot of Error of Approximation.

IF 5

Figure 53b. Surface plot of Error of Approximation.
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Computing the EDMF From Sparse Flow Fields

It may be possible to compute the EDMF from sparse displacement fields by

applying an interpolation process [Glaz83b, Grim8l, Terz82, Terz83 to produce

a field of adequate density and then applying the techniques above. Some initial

experiments have been performed to test this possibility, and they have shown a

correlation between field density and the reliability of the approximation. The

primary difficulty with very sparse fields is that the interpolation processes produce

large areas of parallel displacements about the given image displacement vectors

upon which the interpolation is based. This resulting flow field can be very different

than the actual flow field from which the points were sampled, and therefore result

in a poor approximation to the actual EDMF.

EDMF Properties for Different Cases of Motion

To describe EDMF properties for different cases of motion, it is useful to map

all the EDMF vectors onto the direction of translation sphere. In Chapter IV,

the direction of translation sphere was used as the domain of the error measure.

Here it is used in a manner similar to a histogram. Each EDMF vector votes for

a particular point on the direction of translation sphere. Processing then involves

finding certain patterns in the distribution of the EDMF vectors.

EDMF Properties of Pure Translational Motion

As discussed previously the image displacement paths for translational motion

9: .... . .- .... ' -.. .. . . ..



157 -.

are straight lines intersecting at a point. The environmental displacement paths are

straight, parallel lines. All the vectors in the EDMF are identical and map onto a

single point on the direction of translation sphere corresponding to the translational
axis.-

EDMF Properties of Pure Rotational Motion

For pure rotational motion of the camera, the image displacement paths are

conic sections determined by the intersection of the image plane with the nested

L. family of cones aligned with the axis of rotation based at the origin of the camera

coordinate system. The environmental displacement paths are circles about the

axis of rotation and are contained in planes perpendicular to it. When mapped

onto the direction of translation sphere, the EDMF vectors will lie upon a great

circle contained in a plane perpendicular to the axis of rotation.

EDMF Properties of Motion Constrained to an Unknown Plane

For this case, the environmental displacement paths are circles in planes per-

pendicular to the axis of rotation, but the axis does not necessarily contain the

* origin of the coordinate system (see the discussion of kinematics in chapter I of

[Whit44]). As for the rotational case, the EDMF vectors will lie on a great circle

in a plane perpendicular to the axis of rotation when mapped onto the direction of .

translation sphere.

b 0

*
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EDMF Properties of Arbitrary Motion

For arbitrary motion, the image displacement paths cannot be easily described.

However, the environmental displacement paths are helices about an axis which does

not necessarily contain the origin (since a screw displacement is the most general

form of a rigid body motion ICoxe61, Whit44]).

The set of normalized tangent vectors to a helix, when based at a common

origin, will generate a cone which we term the tangent cone. The orientation of

this cone specifies the axis of rotation. The set of tangent cones determined by a

rigid body motion for all points in space will all have the same orientation. Note

that the difference vectors between any vectors of a tangent cone will lie in a plane

perpendicular to the axis of rotation. Thus, the EDMF produced during arbitrary

motion has a particularly nice property if the rigid body motion is constant over

two or more intervals. For such motion there will be successive environmental direc-

tion of motion vectors associated with each image point, and the difference vectors

between these successive EDMF vectors will lie in the same plane, perpendicular to

the axis of rotation, for all image points.

In general, by mapping the EDMF onto the direction of translation sphere,

the local differential properties of the EDMF are not being utilized. Such things

as the extent of rotation can be recovered, or at least strongly constrained, by

analyzing the local changes in the orientation of the EDMF vectors either spatially

(over a small area of an image) or temporally (over successive inter-image intervals).

Consider the case where the parameters of motion remain constant over successive

intervals. Here, the angle between the successive EDMF vectors associated with

an image point will be equal to the angle of rotation. This angle will be the same

for all points in the image sequence and suggests a potentially robust technique for

6qF., .
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determining the extent of rotation by finding the mean angle between successive .

EDMF vectors. For a single EDMF and image displacement field, this technique

could be extended by predicting the EDMF vector for a point in the next interval

by interpolating the value in the EDMF at the position determined by the head of

the image displacement vectors.

Processing of Motion Constrained to an Unknown Plane
S

The EDMF produced by motion constrained to an unknown plane leads to a

particularly simple algorithm. For this case there is one constraint on the inference

of sensor motion parameters: the axis of rotation is perpendicular to the axis of

translation. This corresponds to inferring four independent parameters: the ro-

tational axis, the extent of rotation and the position of the translational axis in

the plane perpendicular to the axis of rotation. All of the EDMF vectors are con-

strained to lie in a plane which is parallel to the plane of environmental motion.

By calculating the EDMF vectors and fitting a plane to them, the plane of motion

and thus the axis of rotation can be recovered. If the motion occurs over several

successive instants and remains constrained to the same plane, then the vectors

in he successive EDMFs are also constrained to lie in a plane parallel to it and

containing the origin on the direction of translation sphere. Thus, more and more

values for the fit can be collected over time, thereby increasing the accuracy of the

processing. The extent of rotation can then be recovered by techniques for pro-

cessing motion restricted to a known plane described in chapter VI. The processing

is further simplified since the image displacements have already been computed or

were determined from computing the EDMF.

The best planar fit to the EDMF vectors can be found using any of a number
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of plane fitting routines. In the experiments here, an eigenvector fit procedure (de-

scribed in [Duda73] pp. 332-335) is used, having been adapted for planes containing

the origin. Once the plane of motion is determined, the algorithm for processing

known planar motion from a computed displacement field is used. We now consider

some examples.

The grass sequence 2 from this chapter involving pure rotation is a case of

motion constrained to a plane since the environmental displacement paths all lie

in planes perpendicular to the axis of rotation. Using the EDMF determined for

the grass texture sequence described above, the normal to the best plane fit was

(.003,.999,-.014). This is in error by .015 radians, or .836 degrees, from the correct

rotational axis.

Using all the EDMF vectors determined for the flow field in figure 51 in the

plane fitting procedure, the normal to the plane of motion is determined to be

(.647, .544, .534). This deviates from the correct axis by .089 radians or 5.078

degrees. This fit can be improved by removing vectors from the EDMF for which the

corresponding local FOE/C yields a large error, and therefore a poor translational

approximation. For the EDMF vectors computed from the flow field in figure

51, the error value is equal to the sum of the angles between the flow vectors

in each 5x5 neighborhood over which the EDMF vector was determined and the

displacement paths corresponding to the translational axis which minimized the

error measure. We can thus express the validity of a computed EDMF vector by the

sum of these deviation angles. Figure 53 shows the error values in the translational

fit proportional to image darkness. Note that the greatest errors occur where the

image displacement vectors have a rotational character. By restricting the planar

fit to EDMF vectors for which the sum of the deviation angles corresponds to less

than some threshold (90 degrees in this example) of error relative to the determined
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I translational field lines over the 5x5 pixel neighborhoods, the normal is determined

to be (.579462, .583347, .569148). This deviates by .010380 radians or .594798

degrees from the correct rotational axis. Thus, the high error measure values have

been used to remove the rotational-like displacements in the center of the image.

The error histogram derived from the flow field in figure 51, assuming motion to be

constrained to this plane, is shown in figure 54a and 54b. In the contour plot (figure

54b) a - indicates a local minimum and a " + " indicates a local maximum. --

The correct rotation was selected from the histogram; (the rotational parameter 0

was varied from -0.15 to 0.15 radians in 0.1 radian increments). The determined

rotational field is shown in figure 55a and the translation field which results from

subtracting the determined rotational field from the original displacement field is

shown in figure 55b.

*0
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Figure 54a. Error Histogram for Simulated Flow Field
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Figure 54b. Contour Plot of Error Histogram
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Environmental Inference via EDMF and Rigidity Constraints

A basic paradigm in computer vision is to take an environmental property

and express it in terms of the constraints it imposes on resulting image structures

[Barr8l]. These constraints are then expressed as equations whose solution deter-

mines an interpretation of image events consistent with the assumed environmental

properties. In this section, we utilize the constraint of environmental rigidity to

derive a set of equations whose solution determines a set of environmental depths 4

that are consistent with given image displacements. We show the conditions under

which solutions to these equations are possible [Lawt8O, Meir8O, Ullm79, Webb8l]

for general motion and how these conditions are affected for restricted cases of mo-

tion. We then show how the equations for unrestricted motion are significantly

simplified when information concerning the direction of environmental motion is

also utilized.
S

Development of Rigidity Constraints

For this development, we refer to the camera model described in chapter III.

Equation 1 from chapter HI can be used transform expressed relations between en-

vironmental points into a set of equations in terms of image position vectors and

unknown Z values which correspond to the environmental depth values. Solutions

to the resulting equations yield a set of Z values which provide a consistent in-

terpretation over time for the positions of the corresponding set of environmental

points.

The basic relation for interpreting environmental motion is the assumption of

ps'
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rigidity which reflects the invariance of distance between environmental points dur- __

ing motion. For two points i and j on a rigid body at times m and n, this

preservation of distance is expressed as

11P, .- Ptill = liP,. - PnjII (16)

which can be expanded, by using the substitution specified by equation 1 from

chapter III and squaring both sides, into the image-based equation

4 MI

-2zmiZmj(I.ni fInj) - zn.(I -.I.)-

I2

- Z,,(I,,. - y) +2ziz j(Ini Ins) 0 (17)

where the inner-product terms in parentheses are constants determined from the

positions of image points. To determine a solution, we will find the minimum

number of points and frames for which the number of independent constraints (in

the form of equation 17) equals or exceeds the number of unknown Z values. It is

then necessary to solve the resulting set of simultaneous equations. Note that each

such constraint is a second degree polynomial in 4 unknowns.

We begin with the number of unknown Z values. For N points in K frames

(where N > 2 and K > I ), there are (NK - 1) unknown Z values. The decrease

by one in the number of unknowns reflects the loss of absolute scale information.4 _

4 _ I
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C" Thus, one of the Z -values can be set to an arbitrary value which can be recovered

from the actual sensor displacement if such absolute measurements are available.

The number of rigidity const raints generated by a set of N points in K frames

is the product of 3 x (N - 2) and (K - 1). The first term is the minimum number
of unique distances which must be specified between pairs of points, in a body of

* " N points with no three points being collinear, to assure its rigidity. Thus, 4 points

require 6 pairwise distances (all that are possible). For configurations of more than

4 points, it is necessary to specify the distance of each additional point to only

3 other points to assure rigidity. The second term is the number of interframe

intervals, with each interval providing a set of additional constraining points. Each

distance specified must be maintained over each interframe interval.

A solution is possible when the number of constraints is greater or equal to the

number of unknowns. This occurs when:

2NK- 6K-3N+" + (18)

Thus, minimal solutions can be found when N = 5 and K - 2, producing nine

constraint equations or when N = 4 and K = 3 producing 12 constraint equations.

Rigidity Constraints Applied to Known Planar Motion. As one would expect,

the rigidity constraints are simplified by adding restrictions on allowable motions

of environmental points. For example, consider motion constrained to a plane.

For simplicity, we will assume that it is parallel to the XZ plane of the camera

coordinate system, but an appropriate transformation can be applied so that the

results are valid for motion constrained to an arbitrarily oriented, but known, plane.
S
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Here, the Y component of an environmental point is assumed to remain constant

over time. For a point i at times m and n, this is expressed as

ym! zmbm = z,,= nsYi (19)

and solving for zi yields

Zni = Zr i(bms/bni) (20)

This allows a substitution for points i and j in equation i7 which simplifies (at

least in terms of the number of unknowns) the rigidity constraint to

bm
+z((,mi. J) - ( )2(j. I,))

=o Il)

-0 (21)-

The planarity constraint has removed two unknowns. Note that the bracketed

expressions are again constants that can be determined from the locations of the

image points. This equation can be solved given two points in two frames. Thus, for
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points i and j at times m and n with the corresponding unknown depth values

Zmi, Zmj, z,,, z 3j, equation 21 reduces these to a system of 2 unknowns, zm and

zmj. One of these variables, say zm,, can be set to an arbitrary value, reflecting

scale independence, allowing zmj to then be determined by solving the quadratic

in terms of z..

Rigidity Constraints Applied to Translational Motion The constraint imposed

by translational motion of points i and j on a rigid body at times m and n is

expressed by

Pm, - P. = P.n - P.u (22)

which is similar to equation 16 except the operation is vector subtraction reflecting

the preservation of length and orientation under translation. Setting zm, to a

constant value 1, to reflect scale independence in equation 22, yields 3 simultaneous

linear equations in 3 unknowns

(ami, bmi, 1) zmj(amj, bmj, ) + zi(an, bni, 1) - znj(anj, bni, 1) (23)
?a.-

Thus, not surprisingly, environmental inference from translation requires 2 points

in 2 frames.

p "5
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Solving the Rigidity Constraints using the EDMF

The rigidity constraints can be significantly simplified when they are integrated

with information concerning the environmental direction of motion from the local

translational decomposition. To do this the EDMF is used first to find consistent

relative depths for single points over successive images. Consistent relative depths

for several points are then determined by scaling the particular depth values for the

individual points using the rigidity constraint.

. Pni

Emi -

Pmi

pt
e Imi Ini

Imaoe Plane

Focal Point

Figure 56. Relative Depths for a point over time from the EDMF.
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We first examine the use of the EDMF in the determination of consistent relative

depths for a single point over time. Consider the image position vectors Iins and

I.j (for the successive image positions of point i at times m and n) and the

environmental direction of motion associated with point i at time m, Em,. (Figure
FA

56). Assuming the ideal case, in which there is no error in any of these ciuantities,

the EDMF vector Em will lie in the plane determined by I, and I.i. Thus, given

a depth zmi along the ray of projection corresponding to Imi, one can find a depth

value zn, along the ray of projection associated with Ii from the intersection of

the lines Pm, + tEmi and zrnini. In the usual case of error in these measurements,

these lines will not intersect because they are skewed in three dimensions. In these

instances we can solve for the line segment which is perpendicular to both of these

lines. Let us express the point along the ray of projection determined by lni which

is closest to the line determined by the point Pmi = ZmImi and the direction of

motion Em, from the EDMF:

((Zm,Im, + tErn,) - (z.J,.)) Era, = 0

((ZMXm + tEn) (z.,/,)) Inj 0 (24) S

which simplifies to

t(Em, Emi) - z.(Em,. I.,) = -Zm,(I. E.)

t(Emi In,) - zn(I," I.,) = -Zmi(Imi I.) (25) 5

These equations can be expressed in terms of the ratio of the relative distances

,. . .A .. , . . .S:.. . . . . : . .. : . .: . . . . -. , . . . . , . . .. .
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along the successive rays of projection consistent with the environmental direction

of motion Emi (and treating t as a dummy variable)

t(Emi Em,) - rm.,(Em, I. ) = (In. Em,)

t(Emi Ini) - rmnij(In ") = (Img Isi) (26)

where
Zmi

rmn i =
* Zni

This yields the relative depths of a single point over time. We now use the

rigidity constraint to detetrmine the appropriate scaling of each of these ratios for

all of the points.

Assume we have two points i and j at times m and n. Let Zmj be set to an

arbitrary value. Then, znj may be obtained by the product Zmj X rmnj = Zmj X Zn"

where the ratio rmnj is obtained through the relation expressed in equation 26. -

This yields the environmental points Pm, and Pn. We can now use the rigidity

constraint to determine a scale factor expressing Pmi = zmImi and Pi = z.i =

zmirmniIni in terms of Pmj and Pnj Substitution into the rigidity constraint yields

IIZmIm - emj-IlZmTmn.I,- Pnill (27)

where Zmi is the scale factor. Equation 27 can be expanded as

0. . .. . .-~ : ..- . . . . : i i .. , . ,.,. . .. : . '. .., .. -,.
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Z2 (r.J.- .JM
z ,C( ma ) - (tmi,a., rm.n,))

•I+ ( (P.,. P.,.i) - C P. j -P. A)

-2zm,((I m- Pmj) - 7m .P.u)) = 0 (28) 1.]
The resulting equation is quadratic in one unknown. Thus, given successive depth

values determined for a particular point from its EDMF vector, consistent depths

can be determined for every other paur of successive depth values by solving this

equation for each resulting pair of points.

In summary, given a flow field and an EDMF, a pair of depth values for each

image point at successive instants m and n can be found which are consistent

with the determined EDMF vectors describing motion from time m to n. These

are relative depth values, and hence may be scaled arbitrarily and inferred from

equation 26. Once these relative, successive depth values are determined for each

point, they may then be scaled relative to a selected point whose depth is arbitrarily

U] set by solving equation 28 for each point paired with this selected point. There is

a great deal of redundancy for optimization procedures to exploit. Several depth

maps can be computed (one for each selected image point) and the certainty of a

particular depth inference would be based upon agreement in the relative depth

values in all the resulting depth maps. If there are further spatial constraints, such

as motion relative to a planar surface, all the determined depth maps would have to

be in agreement with respect to the shape. For example, all the determined depth

maps for a plane would have to correspond to a single plane at the same orientation.

This work shows that if the EDMF can be reliably computed, it is a very useful

low level representation for rigid body motion analysis. This is p, ssible for densely
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j
textured image sequences for which the camera motion parameters to be recovered .

correspond to motion constrained to an unknown plane. The local translational

decomposition may also be applicable to inferring qualitative descriptions of non-

1 rigid motions by noting certain patterns in the relative directions of motion as would

typify such motions as expanding or twisting.

I Si
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I CHAPTER VIII

SUMMARY AND FUTURE WORK j

We summarize the major contributions of this thesis and many of the questions

it raises for further study. We shall conclude with a consideration of two major areas

for future research that are intimately related to motion processing: architectures

for real-time processing and image interpretation in the domain of dynamic road

scenes.

Summary

The review of work in dynamic image processing in chapter II stressed a basic

problem in motion research. There has been a discrepancy between the precision

and reliability with which image displacements can be determined and the sensi-

tivity of the environmental and sensor motion inference procedures to such noise

and resolution errors. In addition, there are open questions about the stability of

the inference procedures themselves. We noted that this has limited the practical

applications of dynamic image processing in domains where its use is fundamental.

In chapter IV we developed a procedure for processing translational motion.
The most important feature of this procedure is that the determination of the im-

age displacements, the direction of sensor motion, and environmental depth are

combined into a single, mutually constraining computation. The procedure consists

175
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of two basic steps: Feature Extraction and Search. The feature extraction pro-

cess finds small image areas which may correspond to distinguishing, and therefore

trackable, parts of environmental objects. The direction of translational motion

is then found by a search which minimizes an error measure defined over a unit

sphere, with each point on the sphere corresponding to a different direction of sen-

sor translation. A given direction of translation constrains the motion of extracted

image features to straight lines which radiate from or converge onto a single point

in the image plane. Thus, the error measure associates a point on the unit sphere,

corresponding to a particular translational axis, with a Dumber describing the de-

gree of total feature mismatch alon,7 the set of displacement paths determined by

the translational axis. Experience has shown this error measure to be smooth and

with a distinct minimum in a large neighborhood about the correct translational

axis. This allows simple search procedures to be effective. Experiments were pre-

sented which indicated that the algorithm was robust in a variety of ways. It could

function effectively with weak or false features, with a small numbers of features,

and even with a small number of features in limited portions of an image.

Many extensions and possible areas of further work were also discussed, and

we mention two, here, that are of particular interest. First, the procedure should

be developed to extend over multiple frames. The determined translational axis,

image displacements, and environmental depth values should be used to constrain

further processing and feature extraction in a manner that will allow refinement

in the accuracy of sensor motion parameters and the environmental depth map.

Second, a theoretical formulation is necessary to develop a more complete, analytical

understanding of the robustness of the procedure.

In chapter V we considered other extensions to the translational procedure in-

cluding its embodiment as a hierarchical computation; processing translational blur

L
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paths; dealing with multiple independently translating objects; and using the trans-

lational procedure for autonomous vehicle control by having a stabilized sensor or

associated devices to determine the rotational parameters. The hierarchical exten-

sion was found to significantly increase the speed of the procedure, since it reduces

the number of feature correlations that are necessary along potential translational

displacement paths. There are still a variety of alternatives to be investigated

before the most effective implementation of the hierarchical computation will be

thoroughly understood. We showed that the processing of translational blur paths

could be performed by a simple extension of the error measure used in chapter IV.

The extensions discussed for multiple, independently moving objects were based

upon the similarity of the translational procedure to generalized Hough transforms

and the limited image areas necessary for the procedure to function. Finally, the

incorporation of the procedure with sensor stabilization and rotational displacement

sensing devices has exciting implications for passive-sensing based autonomous ve-

hicles.

In chapter VI we successfully processed other simple cases of restricted motion,

pure sensor rotation and motion constrained to a known plane, for which it was

computationally feasible to search , rough the subspace of the sensor motion pa-

rameters for values that are consistent with image feature displacements. For pure

sensor rotation the dimensionality of the search increased over the translational

case, but was compensated for by the additional constraint that the extents of all

feature displacements were identical. We noted a typical case of planar motion,

quite common to terrestrial motion, which is inherently ambiguous.

In chapter VII we showed how to process sensor motion by applying the pro-

cedure for translational motion to local areas of images. This yields a low level

description of motion that we termed the Environmental Direction of Motion Field

r- - ... -.- -... : _. - ./..- o. , ...-.....-...... ,.-,..-..... . -... ..-... . -. ...-.. ,..-- . --, . '* -. . .. •. ...
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(EDMF) which associated a relative direction of environmental motion between -

features from restricted image subareas and the sensor. We showed how to pro-

cess the case of motion constrained to an unknown plane using the constraint that

all the EDMF vectors are constrained to lie in this plane. This constraint forms

the basis of a robust computation to recover the parameters of sensor motion in

this case. We discussed the recovery of the parameters of sensor motion from the

EDMF for general sensor motion. We developed the rigidity constraints which ex-

press the inference of environmental depth from displacement fields by exploiting

the preservation of object rigidity during motion. We showed that these constraints

were directly solvable for restricted cases of motion and that this was also possible

for arbitrary motion when information from the EDMF was incorporated with the -

rigidity constraints.

There are several aspects of the work in chapter VII that require further explo-

ration. The processing of unrestricted motion should be evaluated with respect to "

the required accuracy of the set of direction vectors in the EDMF. It may be possi-

ble to derive qualitative inferences more robustly. This is also related to the way in

which the EDMF i computed. We investigated only one of the techniques that were

discussed, the case where image subareas are centered on individual features. In

another of the suggested techniques, the subareas are formed by dividing the image

into regular, nonoverlapping subareas and applying the translational procedure over

each of these. In this case, the EDMF would not be associated with a particular

environmental point, but with a larger environmental area, thereby reducing the

resolution in the EDMF.

Direct solutions to the rigidity constraints should also be studied further, since

our formulation of the rigidity constraints was developed some years ago [Lawt80-

and was not explored beyond noting that the equations were tractable using simple

I



179

Siterative optimization techniques and that the solutions were multimodal in the

cases of minimal numbers of points and image frames. What, for example, are the

effects of using multiple images and a greater number of points? Additionally, there

has been interest in using optimization procedures based on simulated annealingU

[Kirk83] to solve these equations. These techniques have shown an ability to deal

with multimodal error surfaces in very high dimensional spaces.

Architectures for Translational Motion Procssing

The translational procedure that we have developed offers an attractive possi-

bility for real-time implementation of a motion processing system. The architecture

Sis a straightforward design consisting of multiple independent processors, each as-

sociated with a unique, disjoint set of features. Each processor determines the

displacement and extent of error for its features along the translational displace-

ment paths specified by a given FOE/C. The processors are then coordinated by

a global search executive which specifies a particular FOE/C, sums up the error

responses of the multiple processors, and determines which translational axis to be

evaluated next. The critical parameters for effective implementation are the speed

-- with which a feature's displacement can be determined along its displacement path

by its associated processor and the number of times the error function must be

evaluated to determine the translational axis to sufficient accuracy. Experiments

with the translational procedure indicate that, outside of pathological cases, fewer

than 50 evaluations of the error function will be sufficient and even fewer when the

translational axis has been initialized by previous processing. Preliminary timing

-
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studies using Motorola 68000 processors (10 megahertz minor cycle time) to deter-

mine feature displacements indicate that the necessary processing rates are feasible

[Levi83j.

Image Interpretation of Dynamic Road Scenes

Research often advances by the stimillating problems that are found in a wisely

chosen task domain. The VISIONS system [Hans78I used outdoor house scenes as a

guiding incentive to develop procedures and representations necessary for complex

imagery. A domain that we feel would be challenging, yet one in which achiev-

able results would be possible, is the interpretation of outdoor road scenes along

highways and country roads as seen from a moving vehicle. This domain is quite

tractable under assumptions consistent with a variety of the algorithms presented

in this thesis. The assumed constraints might include the vehicle constrained to

translational motion or constrained to a plane; a stabilized sensor or knowledge of

the rotational parameters; sensor and object motions constrained to slowly changing

translations; or motion of independently moving objects constrained to a roughly de-

termined plane. This domain forces us to address interesting questions such as how

to achieve dynamic segmentations using the temporal behavior of complex image

structures over time, the incorporation of object-specific semantics into recognition

using environmental depth and image motion information, and predicative process-

ing from a model which is established by temporally extended inferences. Thus, a

whole new set of issues arise as a full road scene interpretation system is developed
4 which integrates motion and static interpret ition into a goal oriented perceptual

system in a dynamic environment.

"
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