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ABSTRACT

Processing Dynamic Image Sequences
from a Moving Sensor

February, 1984
Daryl T. Lawton
B.S., University of California at Santa Cruz
M.S., Ph.D., University of Massachusetts at Amherst
Directed by: Professor Edward M. Riseman

- A fundamental problem in motion processing research has been the discrepancy
between the precision and reliability with which image displacements can be de-
termined and the sensitivity of inference procedures to noise and resolution errors.
There are also indications that these inference procedures are inherently unstable
and, in some cases, ambiguous. The approach of this thesis has been to deal with
restricted cases of motion for which the inference of the motion parameters, image
displacements, and environmental depth, can be combined into a single, uniform,
and mutually constraining computation. These restricted cases of motion are suffi-
cient for a wide range of real-world tasks, especially since othef associated sensing
devices can be used to ascertain the other parameters of motiofl';? -\iieft/hgn apply the
procedure developed for translational motion to local portions of image sequences

to process general sensor motion as if it were composed of independent local envi-

ronmental translations. The resulting representation can considerably simplify the
/ ,

processing of less restricted and general motion. A R
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The procedure for processing translational motion robustly combines the de-

termination of image displacements with the extraction of the direction of sensor
motion. We present several experiments showing its behavior in a variety of sit-
uations. We also consider various extensions to this procedure for such things as
developing it as a hierarchical computation; processing translational blur patterns;
dealing with multiple independently moving objects; and using the translational

procedure in the control of an autonomous vehicle.

Results are presented for two other restricted cases of motion: pure sensor
rotation and motion constrained to a known plane. The results are similar to the
translational case except that certain simple cases of planar motion are found to be

inherently ambiguous.

We then process less restricted and general sensor motion by applying the pro-
cedure for translational motion processing to local areas of images. This results in a
low level description of motion called the Environmental Direction of Motion Field
(or EDMF) which associates a direction of environmental motion with extracted
image features. This representation can greatly simplify the recovery of sensor mo-
tion parameters. We also develop the constraints associated with object rigidity in
determining the inference of sensor motion parameters, and then show how these

constraints are simplified by information in the EDMF.

We conclude with a summary of the major results of the thesis and mention
future work, chiefly in the areas of architectures for real time motion processing,

and applications to more challenging and specific domains.
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| CHAPTER 1
INTRODUCTION

The importance of processing dynamic information is obvious. Change is a basic

and pervasive aspect of reality. Artificial perceptual systems which cannot deal

with such dynamic information will be severely limited. They would not be able to

determine basic causal and structural relations in the environment. They would not

r be able to move about and directly explore the world. These fundamental concerns,

coupled with recent advances in sensor technology and attainable computing power,

have made image motion processing an active area of research.

The work in dynamic image processing can be roughly divided into two types
of techniques: those for determining the changes in a sequences of images and those
for inferring environmental information from these transformations. Much basic
work has been done on determining the displacements of distinguishable image
points over time and inferring sensor motion and environmental depth from these
displacements. A fundamental problem that has emerged in all this work is the
discrepancy between the precision and reliability with which image displacements
can be determined and the sensitivity of the inference procedures to noise and
resolution errors. For example, some of the inference procedures require high order

derivatives to be extracted from the determined image displacements. Additionally,

there are indications that the problem itself is inherently unstable and, in some
cases, ambiguous. This has lead to an interesting state of affairs: formulations which
are often elegant but do not work in motion processing of real world situations, and

therefore have limited practical application.
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The approach of this thesis has been to deal with restricted cases of motion for

which the inference of the motion parameters, image displacements, and, to some
extent, environmental depth, can be combined into a single, uniform, and mutually
constraining computation. These restricted cases of motion are sufficient for a wide
range of real-world tasks, especially since other associated sensing devices can be
used to ascertain the other parameters of motion. Finally, we apply the procedure
developed for translational motion to local portions of image sequences to process
general sensor motion as if it were composed of independent local environmental
translations. The resulting representation can considerably simplify the processing

of less restricted and general motion. A brief outline of the thesis follows.

Thesis Qutline

Chapters two and three present background information on motion processing.
In chapter two we review the general problems and previous work in image motion
processing. In chapter three we review the basic structural relations between image

displacements and sensor motion.

In chapter four we present a procedure for processing image sequences pro-
duced by translational motion of a sensor relative to a stationary environment. The
procedure robustly combines the determination of image displacements with the
extraction of the direction of sensor motion. Several experiments are performed
to show the behavior of the procedure in different situations. As a part of the

implementation we develop a simple feature extraction process.

In chapter five we consider various extensions to the translational procedure.

These include developing the procedure as a hierarchical computation to increase

1
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I its speed; processing the blur patterns produced by prolonged exposures during
translational motion; dealing with multiple independently moving objects; and using
the translational procedure in the control of an autonomous vehicle by using devices

to stabilize the sensor or directly determine the other parameters of motion.

In chapter six we consider two other restricted cases of motion: pure sensor R
rotation and motion constrained to a known plane. The results are very similar to -
the translational case except that certain simple cases of planar motion are found -4

to be inherently ambiguous.

In chapter seven we process less restricted and general sensor motion by apply- i
ing the procedure for translational motion processing to local areas of images. This .a

results in a low level description of motion called the Environmental Direction of

!
L

Motion Field (or EDMF) which associates a direction of environmental motion with

POFLIT

s
2

extracted image features. This representation can greatly simplify the recovery of

[ )
f i

u sensor motion parameters. We consider different ways of computing the EDMF and
how sensor motion can be determined from it. We present a simple computation

for the case of motion constrained to an unknown plane. We also develop the con-

’o o
FaPSPrar Y

straints associated with object rigidity in determining the inference of sensor motion - o
parameters, and then show how these constraints are simplified by information in 3

the EDMF.

In chapter eight we summarize the major results of the thesis and mention
future work, chiefly in the areas of architectures for real time motion processing,

and application to more challenging and specific domains.
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CHAPTER I

THE NATURE OF MOTION PROCESSING

Introduction

A general outline of motion processing is shown in figure 1. This figure indicates
a basic control loop in which the changes in a sequence of images are determined and
represented, a model is inferred from these transformations, and the model is used to

predict and constrain the processing of further and ongoing image transformations.

model

predict /

constrain infer

image
transformations

Figure 1. The General Structure of Motion Processing
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Each of these elements — the image transformations, the inference of the model,
the model itself, and the predictions — typically correspond to several different
processes and representations which can vary significantly with application. In
this representation, the beginning of the processing is ambiguous because of the
circul~r nature of the organization. This is an aspect of what we will refer to as the
start-up problem, and is concerned with whether it is possible to determine image
transformations without an initial model. Generally, there is always an initial
model which is either based upon domain specific information about the type of
image transformations that can be expected to occur, or implicit in the procedures

for determining image transformations by basing them upon general environmental

properties such as continuity of motion and environmental surfaces.

One implication of the start-up problem is that motion processing always in-
volves assumptions about the environment in which it is used. In many applications,
these assumptions are quite specific and task dependent, as in target tracking. In
others, the assumptions are more abstract and the resulting procedures have more
general application, as in the case of constrained types of continuous motion, con-
strained types of environmental objects, or image transformations. A general area
of research in motion processing has been concerned with the analysis of image
sequences produced by rigid body motions in the environment. This problem lends
itself to a theoretical development which does not become overly complex, yet also
reflects a very common occurrence in the real world. A particular image transfor-
mation which this analysis can utilize is also well known — optic flow. This may
be thought of as an almost classical problem in image processing: the inference of
environmental information from the optic flow field generated by rigid body mo-
tions. In much of what follows, the static environment is viewed as a single rigid

body and relative motion is induced by sensor motion.
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Optic Flow —

Optic flow is the vector field representing the changes in the positions of the
images of environmental points over time. It was introduced by the psychologist
J.J. Gibson [Gibs50, Gibs66, Gibs79] based, to some extent, on his experiences as a
bomber pilot during the Second World War. Gibson was struck with how different
patterns and extents of image displacements could specify critical environmental
information for the control of behavior, such as heading, immediacy of collisions,
and environmental layout. Gibson’s analysis has proven to be extremely suggestive
and stimulating, but incomplete, in two critical aspects. He assumed the optic flow
field was a given and did not deal with the computational difficulties in determining -
it. He also did not explicitly (at least initially and never completely) analyze how
environmental information was extracted from the flow field. Both of these problems
have come to form the basis of much research by psychologists, psychophysicists, and
researchers in computer vision. It is this latter work, concerning the computation
of optic flow and the formation of environmental inferences from optic flow, upon

which we will focus.

There is some ambiguity in the definition of optic flow in the literatur: (even =

with respect to the phrase itself, since gptical flow or even optic flows are used).

E: Some refer to the flow field as being entirely independent of images, and instead

;-. view it as a representation of the changes in environmental directions over time. _
Jf To others it is a basic description of image motion determined from image inten- 3
f": sity changes and not necessarily related to environmental motions. Both of these

b:. perspectives have validity and the sense to which we are referring should be clear _
F_; from the context of whether we are dealing with computing optic flow or forming

;t environmental inferences from a flow field. A further source of ambiguity is that

. some people refer to the optic flow field as a continuous vector field in which the

-
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vectors are instantaneous velocity vectors, while others refer to it as a field of dis-

crete displacement vectors. Throughout this thesis, we refer to it as a set of discrete

displacement vectors.

Computing Optic Flow

Computing optic flow involves the determination of the displacements of image
points over a sequence of images. There are several problems in this computation
involving the effects of image resolution, the types of dramatic changes in image
structure that can occur during motion (such as occlusion), and the now well-known
stimulus matching or correspondence problem. To begin with, the notion of an en-
vironmental point corresponding to a distinguishable image point is an abstraction
which is difficult to realize computationally. An image point is actually a small im-
age area which can correspond to an appreciable surface area in the environment.
One aspect of this observation is that actual flow fields do not have an arbitrarily
high level of precision. The flow vector at a point may actually summarize the
composite activities of an area in the environment. Another implication is the
emergence or disappearance of detail as environmental surfaces are approached or
receded from. In such situations, features which are meaningful and trackable at
one environmental distance may no longer be meaningful at another distance. This
provides motivation for the hierarchical procedures for flow field computation that
we discuss below. It also reflects an important assumption applied throughout mo-
tion processing: during motion the image structures will change sufficiently slowly
to allow the changes to be determined, but not so dramatically that correspondence
becomes unrecognizable at successive instants. Often this is not a valid assumption

and reflects another basic problem with computing optic flow. Highly significant

information can be obtained from particular situations at which the optic flow field
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becomes non-existent or singular, and thus difficult to compute. These situations
are related to image events such things as occlusion, the motion of specularities, and
the presense of smooth extremal boundaries. Another source of confusing changes

are the wide range of general noise effects in image formation.
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Figure 2. The Stimulus Matching Problem

: The stimulus matching or correspondence [Burt76, Huan81, Thom81, Ullm81]
problem refers to the ambiguity in determining image displacements, and is partic-

‘ ularly problematic with nondistinctive portions of image structures or homogeneous
° image areas. The difficulties are simply exemplified by the situation illustrated in
| figure 2 which shows a square undergoing a diagonal displacement. The informa-

tion obtainable at a portion of one of the edges only constrains the locally observed
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edge motion to a wide range of potential displacements. The general form of the
stimulus matching problem involves the manner in which local determination of
displacements can result in a globally coherent interpretation of the changes in an

image sequence.

Techniques developed to date for computing optic flow can be grouped into
matching techniques and differential techniques. Both of these techniques have to
deal with the problems just described and are distinguished by the different assump-
tions under which they operate. Both can be expressed hierarchically (though it is
more typical for matching procedures). This allows the procedures to be expressed
uniformly across different image resolutions, and a flow field to be determined by
utilizing required consistencies between image displacements in images at different

resolutions.

Matching Techniques

Matching techniques can be roughly distinguished by the types of image struc-
tures upon which they operate and the criteria by which matches of image structures
in successive images are determined. Image structures can be ordered by the ex-
tent and the locality of processing required in their extraction and the complexity
of the structural relations in their description. In general, the more abstract the
image structure, the more stable it becomes over a sequence of images because the
ambiguity in determining matches is reduced. For example, if a complete seman-
tic analysis of each image has been performed in a sequence taken from a sensor
moving relative to a house, it is easier to match at the level of extracted houses in

the successive images than a less abstract and more local feature level, such as a

vertical edge. There are fewer things to match and they cover an area of the image
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significantly larger than their potential displacements.

Examples of image structures that have been (or could be) used in motion
analysis, organized in terms of increasing abstraction are distinctive raw image sub-

areas [Agga81b, Barn80, Dres81, Hann74, Levi73, Mora81, Quam71], parameter-

ized tokens describing local image subareas [Hara82, Hara83, Lee82, Prag79), edges

- [Agga8la, Burr77, Mart79], regions [Medi83, Nage77, Nage78, Radi8l, Roac79),

-g structural descriptions of edges and regions [Brad83, Jaco80|, instantiated environ-

! mental surfaces [Will80], and various high level semantic interpretations {Badl75,

{ Tsot80).

¢ ° Procedures for determining optic flow have generally been restricted to match-

g o

_ ing features whose extraction involves very little processing and are based on local
[ . image structures and computations. This is a consequence of optic flow being viewed
! as a very primitive description of image motion from which much information that is
;u useful for higher level processes will be derived. From this perspective, flow process-
. ing should not be dependent on the processes to which its results will contribute.

Also, when more abstract descriptions are used, although the determinations of

matches becomes more viable, the determination of specific image displacement be-
comes less exact. This reflects a general problem that has been largely ignored by
researchers in motion (with some important exceptions, notably Tsotos [Tsot80]):

the mechanisms by which matches at different semantic levels of image descriptors

can be combined into a coherent interpretation of an image sequence. Here, the —
matches between lower level image structures could be constrained by the matches
determined at higher levels of surface or semantic description. The same question
.0 is involved in prediction of feature displacements from a model in which the model -
may consist of relatively distinct, multilevel information, and is used to constrain

the interpretation and displacements of low level, local processes and features.
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In general, most matching procedures that have been developed do not explicitly

deal with the dramatic-change and resolution problems. Due to the assumption
that most image structures will change slowly over time, if dramatic changes do
occur, they will be reflected by a break-down in the matching processes. The
basic approach to the stimulus matching problem has been to characterize global
properties of the displacement field in a manner which directs the evaluation of
image displacements. This is done in different ways. Matching structures at a
more abstract or symbolic level typically involves matching strings or graph-like
structures. There are solutions to this type of problem using dynamic programming
or heuristic search techniques to minimize some global distortion measure reflecting
the extent of graph similarity [Barr72, Chen82, Hara78, Shap82]. In another form
of match processing typically applied to less abstract features, a global property
such as smoothness or continuity of the displacement field is used to form a local
constraint on the flow field computation. This constraint leads to a local, iterative,
relaxation type procedure in which a given feature displacement must be consistent,
under the criteria of smoothness, with the displacements of its spatially neighboiing
features [Barn80, Prag79]. Updating rules take the form of setting a feature’s

estimate of its correct displacement to the average of its neighbors.

Generzlized Hough transform approaches to matching [Agga81lb, Ball8l,
O’Rou8l1, Davi83] somewhat reverse the relation between local computations and
global field properties when compared to the relaxation-based matching approaches
just described. In the generalized Hough approaches, the properties of a displace-
ment field are parameterized and represented in an n-dimensional histogram to
which the local image measurements contribute. For example, the global structure
of the flow field can be restricted to being a particular type of transformation, such
as an affine transformation in the plane. Each local process for determining an

image displacement evaluates the consistency of its potential displacements with
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the values of the parameters describing each affine transformation (up to some level
of parametric resolution). Globally, the parameter value most consistent with all
of the potential image displacements will have the most favorable evaluation (or re-
sponse in the histogram). Once a global interpretation has been determined, it can

then be refined with increased resolution in the parameter space about the coarse

solution.

Differential Techniques

L Differential techniques are based on direct measurements of intensity changes -
& perpendicular to an image gradient in order to determine one component of the op-
p tic flow at a point. These measurements are expressed as a function of the temporal =
2 changes in image intensity and the image gradient at a point. The other component
' is then determined by using an additional constraint derived from assumptions con- —
. cerning the global structure of the flow field. These generally involve smoothness

3

t

t _ of the flow field or the type of transformations that can describe the displacement
a

.j field. In a manner similar to the matching techniques, these constraints can be de-

- veloped computationally as local, iterative processes in which global consistency is o
achieved via propagation similar to solutions of diffusion equations [Horn80, Glaz81,
Glaz83a, Terz83). In a few applications [Fenn79, Thom81], the local measurements
F can also be integrated by their independent contributions to a global histogram -
E which expresses the parameter values of particular types of image transformations. -
: Differential techniques can also be used to roughly constrain the motion of bound-
) aries [Marr79] without trying to derive the optic flow. These constraints can be =
1 used to get rough qualitative motion information along closed contours, such as

expansion, image motion in a rough direction, or the occurrence of rotation.
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The key attributes of differential techniques is that they are based on very

local, simple computations that may be performed at a low level of processing.
They are also based on some unrealistic assumptions that show up when these
techniques are uniformly applied to actual image sequences. These assumptions
concern smoothness and often linearity in the image intensity gradients, limited
extents of motion, and the constancy of image brightness over time. The smoothness
assumption breaks down at surface occlusion boundaries, or wherever dramatic
image changes occur such as at reflectance boundaries. Differential techniques
also tend to produce dense fields, whose value is not clear, especially since the
interpolation is performed in a manner that may adversely affect the inference of
motion parameters. Researchers are focusing on some of these problems: Schunk
[Schu83] has tried to characterize the effects of occlusion so that the computation of
image displacements are selectively shut off in such areas. Nagel [Nage83|, Hildreth
[Hild82], and Kearney [Kear82] are working with more complex image gradients and
integrating the components of information to the degree they provide unambiguous

displacement information at boundaries.

Hierarchical Processing

A basic paradigm in computer vision is the use of hierarchical representations
and processes [Burt82, Hans80, Rose83, Tani80, Uhr78]. This allows different
resolutions and scales of image events to be handled uniformly. Additionally, the
consistent agreement among hierarchically organized processes is a basic control
strategy for a wide range of high and low level interpretation tasks. Hierarchical
processing can produce significant computational reductions, wherein results from

processing performed rapidly at lower resolutions of image information are used to
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direct and constrain more detailed and extensive processing of higher resolution . i
image information. Given the increase in computational requirements over static p
image processing, hierarchical mechanisms are extremely important in real-time ;
motion processing. 4
o |

The use of hierarchical processing in motion typically involves representing an
image at different filtered spatial frequencies and using the processing at lower spa-
tial frequencies to constrain the processing at higher spatial frequencies [Burt82,
Glaz83b, Grim8i, Luca81l, Wong78|. The matches determined for the larger spatial
structures in an image are used to initialize the computation for the displacements
of the smaller structures. In hierarchically organized processing, the resolution
problem is handled implicitly by representing an image sequence at multiple res-
olutions simultaneously. The stimulus matching problem is dealt with by taking
advantage of the fact that matches have a tendency to be less ambiguous at lower

spatial frequencies because there are fewer gross image structures and they are large -

relative to their potential displacements. However, the problems of dramatic change
associated with flow field computation affects hierarchical processing because image
structures may aopear and disappear at different levels of resolution and errors pro-
duced at a lower image resolutions can propagate to the higher resolution images. -
Some filtering schemes [Burt83, Glaz83b] have been proposed to deal with this in-
herent problem by detecting the occurrence of a failure in the matching procedure

and shutting off the initialization of image displacements in the higher resolution

images.

PN FRAURIVIAE ) S

P nference of Environmental Informatijon

i J

Work in the inference of environmental information from flow fields has gen-
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erally been restricted to the case of rigid body motion or linked systems of rigid
bodies [Webb81]. There is very little general understanding in the interpretation
of non-rigid environmental motions. Often, such work is task dependent as in the
interpretation of image sequences of moving cloud formations and beating hearts

[Tsot80].

The problem of inferring environmental information from a flow field produced
by rigid body motion is often termed the shape-from-motion problem (i.e., how
to determine the shape of objects or environmental depth from a flow field or a
sequence of flow fields); or, somewhat confusingly, the motion-from-motion problem
(i.e., how to determine the parameters of object or sensor motion from a flow field
or sequence of flow fields). Theoretically, these problems are equivalent, though

there are practical difficulties in inferring one from the other.

There have been significant milestones in formulating solutions to these prob-
lems in motion processing research. One set of results has dealt with the minimal
conditions that are necessary for determining object shape and sensor motion in
terms of the number of flow vectors across an image sequence [Fang83b, Lawt80,
Meir80, Roac80, Ullm79, Webb81, Yen83). In this work, researchers derive vari-
ous sets of simultaneous nonlinear equations whose solution would constitute the
appropriate inference. Since these equations cannot be solved directly, various
optimization procedures are required. In another set of formulations developed
primarily by Nagel [Nage81] and Prazdny [Praz81], the inference of sensor motion
parameters is expressed as a search through the rotational subspace of the total set
of rigid body motion parameters. Prazdny’s development is rather geometrical and
Nagel’s is more algebraic, but they are basically similar. In 1981, Tsai and Huang
[Tsai82], simultaneously with Longuet-Higgins [Long81|, developed a closed form

solution which could be solved by direct means.
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Given these developments over the past several years, it is somewhat alarming
that none of the techniques have been successfully applied to flow fields computed
from anything like realistic image sequences. In fact, only in the recent work of
Huang and Fang [Fang83a, Fang83b] and Jerian and Jain [Jeri83] has there even
been an explicit evaluation of a procedure on such images. This work has shown the
particular difficulties familiar to motion researchers: extreme sensitivity to noise and

resolution, dependence upon the type and extent of motion, and general instability.

A possible exception to these difficulties may be a procedure recently developed
by Rieger and Lawton [Rieg83, Lawt83]. The technique is restricted to recover-
ing the parameters of sensor motion relative to a stationary environment and is
based upon the fact that the decomposition of a flow field into its rotational and
translational components can be directly obtained at image positions where a signif-
icant depth variation occurs in the environment [Long80|, such as at some occlusion
boundaries. This results in a very simple analysis which does not involve solving
unstable equations. The basic practical difficulty associated with this technique is
that it is dependent on the analysis of a flow field at occlusion boundaries where the
flow field tends to be most errorful. Dealing with this effect requires a computation

which may reduce the precision of the inference of the sensor motion parameters.

There are many reasons, not all of which are fully understood, why the infer-
ence of motion parameters and environmental depth has been difficult. Some of the
formulations involve image measurements, such as higher order derivatives of an
instantaneous vector velocity field which are difficult to obtain and are also quite
noise sensitive when applied to discrete image sequences [Praz80, Long80]. There
are also many cases of motion which are inherently ambiguous. One of these is dis-
cussed in chapter VI of this thesis and concerns a rather typical case of terrestrial

motion in which the rotational and translational field components are nearly impos-
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sible to separate. In recent work concerning the interpretation of images containing
multiple independently moving objects, Adiv [Adiv84] appears to have found cases
in which independently moving objects with different parameters of motion, can,
when considered together, result in a globally consistent, but incorrect, interpre-
tation. Another problem affecting shape from motion formulations is the baseline
effect which is common to stereo. The baseline effect expresses that the resolution
and accuracy of depth inferences are a decreasing function of the distance between
the sensor locations at which images are formed. For motion, wlL_ : the sensor
displacements are generally small between successive instants, the environmental
inference would tend to be poor, but could be compensated by the availability of

more and more images over time.

There has been almost no stability analysis of the systems of equations for in-
ference from optic flow. Along these lines, recent work by colleagues and myself
(Stee83] has given empirical indications of the instabilities in the inference proce-
dures under certain conditions. We have been exploring the use of a highly parallel
array architecture for inferring motion parameters from flow fields. This processing
amounts to sampling and evaluating 200,000 points in the five dimensional space
of determinable rigid body motion parameters at near video rates. This roughly
shows the appearance of the error surface these system of equations may describe.
What this work indicates is that the space is very bumpy and jagged, full of local

optima, that would make solutions difficult, especially in the presence of noise.

There have been several responses to these difficulties. One approach has been
to utilize optimization procedures which are based on global evaluation of the ex-
pressions for the inference of motion parameters from flow fields instead of local,
iterative optimization procedures. Examples of these approaches are the work with

generalized Hough transforms [Adiv84, Ball81] and the procedure involving highly
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parallel architectures mentioned above [Stee83]. Some researchers are beginning to
perform an explicit analysis of the stability of the different solutions [Shaw83], while
others are trying to develop qualitative inference techniques which are hoped to be
more robust [Thom83], and still others are beginning to investigate the inference
of motion and shape from image transformations other than optic flow, such as
the analysis of contour shape changes [Davi82]. Currently, much of this work is

preliminary.

Another response to these inadequacies has been to deal with restricted cases
of motion. Here too, the work has been limited in application to realistic image
sequences with principle results having been achieved by Williams [Will80] and
Dreschler and Nagel [Dres81]. These restricted cases of motion can be of signifi-
cant practical use, since in many cases some of the parameters of motion can be
determined by other sensing devices. Additionally, general motion can be locally
interpreted, temporally and spatially, as consisting of certain restricted types of

motion.

In the research presented in this thesis, we will develop procedures for various
cases of restricted motion, and show how to use the procedures for translational
motion to locally interpret more general motion. In this regard, it is useful to sum-
marize related work in vanishing point extraction and translational motion process-
ing. The determination of the vanishing point in a static image is closely related
to determining the direction of translation. In perspective projection, parallel lines
in the environment map onto lines radiating from the vanishing point in the image.
For translational motion, the environmental motion paths correspond to the par-
allel lines in the perspective case. Techniques for extraction of a vanishing point
have been explored by Kender [Kend79], Nakatani [Naka80|, and in a more general

framework by Ballard [Ball81]. The use of the Hough transform in this work is sim-
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ilar to the global sampling of the error measure developed in chapter IV. It would
be interesting if the determination of edges could be combined with the determi-
nation of the vanishing point, in a manner similar to the concurrent determination
of image displacements and the translational axis in the work presented in chapter
IV.

Williams [Will80] was the first to develop algorithms for interpreting natural

complex images produced by an optic sensor translating relative to environmental

objects. This work consisted of two processes: one for inferring the direction of

translation given environmental depth information and the other for inferring depth

given the direction of motion. These processes used an error measure describing the ' ]
consistency of depth information and the inferences of feature motion along image .4
-

displacement paths. His work indicated that these two processes, for inferring depth

and the direction of motion, could be combined.

The primary weakness of Williams’ work was the necessary restriction to planar ‘

_ surfaces at one demonstrated orientation. Additionally, in the case of unknown .

L environmental depth and translation, the processing is quite complex — involving .
segmentation, resegmentation, and coordinating the processes for inferring depth = PN
r and for inferring the direction of translation. The method we develop in chapter “ h?
' IV requires no restrictions on the orientation of surfaces or shape of environmental ﬁ'
3 objects, and involves only a simple procedure for evaluating an error measure. It ____;
® also indicates that the direction of sensor motion should be determined prior to, or -Q
- concurrently with, environmental depth.
E _i
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CHAPTER I
DISPLACEMENT FIELD STRUCTURE

Introduction Lo

In this chapter we review the relations between sensor motion relative to rigid
body objects and the structure of the corresponding field of image displacements.
Basic results from kinematics [Whit44] and geometry [Coxe61] allow arbitrary rigid
body motions of the camera to be decomposed into a rotation about its focal point
followed by a translation. This permits image motions to be described as consisting
of two components: a rotational and a translational field. The rotational field con-
tains information concerning sensor orientation relative to the environment, while
the translational component contains information concerning environmental depth

and the relative displacements of the sensor and environmental objects. This de-

composition forms the basis of procedures for recovering camera motion parameters

from displacement fields [Nage81, Praz81]|. O

escribij igi otio - q
In this section we review some basic terminology for describing image and envi- }
ronmental motion, the particular coordinate systems employed, and how rigid body - !1

motions are described in terms of sensor motion.
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Terminology

It is necessary to have terms for describing the motion of features in an im-
age sequence and the corresponding motion of environmental points. We define an
Image Displacement Vector to be a two-dimensional vector describing the displace-
ment of an image feature from one image to the next. An Image Displacement
Field is the set of image feature displacement vectors for successive images. An
Image Displacement Sequence indicates the positions of an image feature over sev-
eral successive images. Though we are dealing with discrete image sequences, it is
often possible to describe the continuous curve along which an image feature point

is moving. This curve is called the Image Displacement Path,

Corresponding to image motions we use a set of terms for describing environmen-

tal motions. An Environmental Displacement Field is the set of three-dimensional

vectors indicating the positions of environmental points at successive instants. An
Environmental Displacement Sequence indicates the position of an environmental
point over several successive instants. An Environmenta]l Displacement Path de-

scribes the three-dimensional curve that an environmental point is moving along

for a particular motion.

Coordinate Systems

We utilize two coordinate systems in this exposition: a fixed system based on the
environment and another based on the sensor. The fixed environmental coordinate
system is a Cartesian coordinate system. The sensor coordinate system (or camera

model) is referred to throughout this thesis and consists of a planar retina embedded
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in a three-dimensional Cartesian coordinate system (X,Y,Z), with the origin at _ ;{
the focal point and the optical axis aligned with the positive Z— axis (figure 3). The *
X and Y axes correspond to the gravitationally intuitive horizontal and vertical :
directions, respectively. The image plane is parallel to the XY plane and located __4
at a distance of one focal length along the Z axis. ) -’«
]

P mi ._t: .f_

.

Y Focal

b Point

3 X

.

!

g Figure 3. Camera Model. -
\ Positions in the image plane are described using a 2-D coordinate system with -

- the axes A and B aligned with the X and Y axes of the camera coordinate

system, respectively. The origin of the image plane coordinate system is determined
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l by the intersection of the image plane and the Z - axis. The vector P,,; refers to

the position of an environmental point in the sensor courdinate system and the
vector I, refers to the position of the intersection of the ray of projection for
P,,; with the image plane. The first index of these vectors is used to specify a
- particular image from a sequence of images. The second index specifies a particular
environmental point. Setting the focal length to one, the relations between P,,;,

Zun: » and positions in the image plane determined by perspective projection are:

P = (fmia Yms, zrru')

I, = (ama’)bmia l) (1)

Zms Ymi
I ;= (=& =7
.. ™ zmi,zmi')

Pms' = zmiIrm'

The position and the orientation of the sensor relative to the environmental
coordinate system at time ¢ is described by the vector P(t) and the matrix O(t),

where P(t) is the position of the origin of the sensor coordinate system at time ¢,

and O(t) describes the orientation of the sensor coordinate system by its direction
cosines. The matrix O(t) is obtained by translating the sensor coordinate system
| to the origin of the environmental coordinate system and determining the angles
between the axes of the two coordinate systems. Denoting the coordinate axes
of the camera coordinate system as (X, Y., Z.) and those of the environmental

coordinate system as (X,Y,Z) yields:

-0 0y . ce . . .
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cos(X, X.) cos(X,Y.) cos(X,Z.) ;T
O(t) = | cos(Y,X.) cos(Y,Y.) cos(Y,Z.) (2)
cos(Z2,X.) cos(Z,Y.) cos(Z,2.)

g

Decomposing Rigid Body Motion

There are some basic results in kinematics which allow arbitrary rigid body
motions to be expressed as consisting of a rotation about an axis positioned at an

arbitrary point followed by a translation. These are stated as

A rotation about any axis is equivalent to a rotation through the

same angle about any axis parallel to it, together with a simple

. translation in a direction perpendicular to the axis. The converse ‘

' is also true, the rotation of a rigid body about any axis, preceded ~
or followed by a translation in a direction perpendicular to the axis, -

are together equivalent to a rotation of the body about a parallel

axis [Whit44].

Thus, the orientation of a body will change the same for parallel axes of rotation

with the same extent of rotation, regardless of where they are positioned. This

r. e

’ implies that the axis of rotation can be positioned anywhere so long as it is followed -
Ei : by the appropriate translation. Thus, we can canonically describe sensor motion as ’
L-':‘_: an initial rotation about an axis positioned at .he origin of the sensor coordinate
' . system (bringing the sensor into the same orientation at successive instants) followed _
by a translation (bringing the sensor in coincidence at the successive instants). This

g will also decompose an image displacement field into a field produced solely by the

®
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4. |
o

rotation of the sensor and a field produced solely by the translation of the sensor.

Each of these fields contains different information.

More specifically, given the sensor at successive positions and orientations (P(t),

-
H ]

O(t)) and (P(t+1), O(t+1)), its motion is described as an initial rotation about

s 8.

the origin of the sensor coordinate system described by the matrix R such that

e

. - ) St S " P e ‘li -
MQWMLD_'.J.}. ®L L

Vo,

O(t+1) = O(t)* R, followed by a translation T with respect to the environmental
coordinate system such that P(t +1) = P(¢t) x T. Thus,

o@t)"'xO(t+1)=R (3) o

1 0 0 0 T e

SO

0 1 0 o0 2

=T R

o o 1 o e

P(t) P,(t) P.(t) 1 R

. =(t) PBy(t) Pi(t) "o
Properties of Pure Rotational Displacement Fields

-—

= . @

Let us consider rotational fields that are produced by rotation about an axis :\5"_2}

containing the origin of the sensor coordinate system. The basic property of such 2 J

fields is that the image displacements are totally a function of image position and can - Q

yield no information concerning environmental depth. That is, given the position 5

of an image point at time ¢ and the sensor rotation R, its position at time ¢ +1 ‘-":f

- .
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is determined.

To describe the general structure of rotational flow fields, consider the image
displacement path generated by a particular image point under sensor rotation. In
figure 4a we see an axis of rotation positioned at the origin of the coordinate system
and a ray of projection determined by some image point I,,;. The effect of the
rotation will be that the ray of projection will generate the surface of a cone. The
image displacement path for the rotation of this image point will then be determined

by the intersection of this cone with the image surface, i.e. a conic section.

Figure 4a. Rotational Displacement Paths. The figure on the left shows
the intersection of an image plane with the cone determined by the axis of
rotation positioned at the focal point and a given image position vector.
The figure on the right shows the resulting conic image displacement path.
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One should note that for points along the same ray of projection, the image dis-
placements under a given rotation will all be the same. Thus, there is no basis upon
which to infer environmental depth under rotational motion because the angles be-

tween rays of projection remains fixed.

Now let us consider sensor rotation analytically with the axis of rotation rep-
resented as a unit vector R = (R, Ry, R;). For any environmental point P =

(z,y, 2), we can describe the cone generated by the rotation to be:

¢ = cos(f) = % (4)

where 8 is the angle between R and P. To determine the image displacement
paths, we expand this equation with z set to 1 (corresponding to the location of

the image plane):

c=zR,+yR,+R,

Nz )

By squaring both sides and reorganizing terms, this equation may be expressed as

an implicit function in the general form of a conic:

F(z,y) = z*(RZ - ¢) + y*(R] — ) + 22(R:R.)

+2y(RyR.) + 2zy(R.R,) + (R? — c?) =0 (6)
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g
The partial derivatives of this equation yield the tangents to the image displacement -~ ™
path: ;
0F(z
OF(2,9) _ 2a(R2 ~ %) + 2R.R) + 29(Re ) @)
F(z
2TE0) — 20(B] ~ ) + 29(R,R.) + 20(R.R,)
Note that for the rotational axis aligned with the Z axis, R = (0,0, 1) substitution -
into equation 6 yields
4yt = 1 (8)
1 c?
JF This describes a family of circles in the image plane centered at (0,0, 1) and indexed
- by the particular values of c in the range 0 to 1 (figure 4b). For the rotational axis E
- R = (0,1,0) substitution into equation 6 yields
[
(
& —
: | -
5 2 Y 2
: v el ©) .

This describes a family of hyperbolas indexed by values of ¢ in the range 0 to 1

(figure 4c).
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i Figure 4b. Displacement Paths for Rotations about the (0,0,1) axis.

Figure 4c. Displacement Paths for Rotations about the (0,1,0) axis.
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tional Fiel opertie

For purely translational motion the sensor orientation is fixed relative to the

environmental coordinate system and the motion is described by an axis of trans-

lation. The image displacement paths are determined by the intersection of the :.-f 1
translational axis with the image plane. If the translational axis intersects the

image plane on the positive half of the axis, the point of intersection is called a -
Focus of Expansion (FOE) and the image motion is along straight lines radiating T
from it. This corresponds to sensor motion towards visible environmental points. -
If the translational axis intersects the image plane on the negative half of the axis, -

the point is called a Focus of Contraction (FOC) and the image displacement paths

are along straight lines converging towards the FOC. This corresponds to camera

Y | W

motion away from visible environmental points. The intersections of axes parallel -

to the image plane are points at infinity and thus may be considered to be either

LW S Nty

an FOE or FOC in opposite directions. This ambiguity is one reason we refer to

the directions of motion determined by the translational axes themselves instead of

the intersections with the image plane.

Given the direction of translation and the image displacements of a set of en-

vironmental points, the relative depths of these points can be computed by solving -

<

the inverse perspective transform [Roge76]. Relative depth can also be simply in-

L
Py

ferred from the position of a feature and the extent of its displacement relative to

an FOE or an FOC. This relation is expressed as

D V4
X 2D -3z (10)
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where Z is the value of the Z component of an environmental point at time ¢+1,

AZ is the extent of environmental displacement along the Z axis from time ¢ to

time ¢t + 1, D is the distance of the corresponding image point from the FOE or

FOC at time ¢, and AD is the displacement of the image point from time ¢ to time

t + 1. Thus, the Z value of an environmental point can be recovered from image

measurements in units of AZ, or what has been termed Time-Until-Contact by

Lee [Lee76, Lee80] (figure 5a and 5b). To the degree that the sensor displacement

can be accurately monitored, absolute depth of surface points can be computed.

\\ ,///
FOE/CPio—ce
/’ ! D AD

)

Z _ D

AZ AD

Figure 5a. Relation between relative environmental depth and the ex-
tent of image displacement v/ith respect to the FOE/C.
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Figure 5b. The FOE/C is determined by the intersection of the image -
N plane with the translational axis.
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‘ Composite Field Properties

The effects of composite image motions produced by sensor rotation and trans-

' lation can be analyzed as follows for an image feature I,,; which und-rgoes a
displacement D to position I,; at time n (figure 6a). The motion can be de-

scribed as an initial displacement R to a position J,,; due solely to the rotation

of the sensor, which is followed by a displacement T from J,; to I,; along the

translational displacement path determined by the straight line containing image

points Jp,; and the FOE determined by the translational parameters.

Ini
" 'mi =
T -]
oy
]
R 1
D .
i =
' ]
I R
' .
- ! _®
-~ | b
|
! ':‘-11
3 4
FOE/C ]
. @
.
Figure 6a. Composite Field Structure. o
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FOE/C

Figure 6b. Error Measure from Composite Field Structure

-

These structural properties will be used to develop measures describing the
consistency of a given image displacement with hypothesized sensor rotation and

translation parameters (figure 6b). As above, for an image point I,,; , the rotational

parameters induce an image displacement to some position J,;. This point and
the FOE corresponding to a particular translational axis, determine an expected

translational displacement path. The angle between this displacement path and the



"

*- .
“

vector I,; — J,,, corresponds to the discrepancy ! . the image displacement

and the hypothesized values of the sensor motion } - ters. We will utilize this
measure to evaluate motion parameters with respect to determined displacement
fields in chapters VI and VII. This local consistency measure has also been used in
generalized Hough transforms so that each image displacement vector can scale its
vote against a particular set of motion parameters corresponding to the extent of

this determined angle [Stee83|.
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CHAPTER 1V

PROCESSING TRANSLATIONAL MOTION

Introduction

In this chapter we present a procedure for processing image sequences produced
by translational motion. The computation robustly combines the determination
of the translational motion parameters, image displacements, and environmental

depths of visible surfaces. The procedure consists of two basic steps: Feature

Extraction and Search. The feature extraction process finds small image areas which
may correspond to distinguishing, and therefore trackable, parts of environmental
objects. The direction of translational motion is then found by a search across
hypothesized FOE/C positions to determine a set of image displacement paths for
the extracted features which minimizes an error measure of total feature mismatch
along these displacement paths, and also yields consistent displacements for the

features.

The feature extraction process finds distinctive points which are positioned at
points of high curvature along contours determined by simple processes such as
thresholding, zero-crossing extraction and local contrast measurements. Particular
forms of the feature extraction process can lead to effective and very rapid compu-

tation on proposed image processing architectures.

The search process minimizes an error measure defined over a unit sphere, with
each point on the sphere corresponding to a different direction of sensor translation.

A given direction of translation constrains the motion of extracted image features

36
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to straight lines which radiate from or converge onto a single point in the image
plane. Thus, the error measure associates a point on the unit sphere, corresponding
to a particular translational axis, with a number describing the degree of total
feature mismatch along the displacement paths determined by the translational
axis. Experiments have shown this error measure to be smooth and with a distinct
minimum in a large neighborhood about the correct translational axis. This allows

simple search methods to be effective.

We present several experiments showing the results of applying the procedure
in various situations. The experiments indicate that it is robust and applicable to a
wide range of real world image sequences. In the next chapter, we review particular
extensions for implementing the procedure in a hierarchical computational frame-
work, dealing with independently translating objects, translational blur-streaks,

and implications for autonomous navigation.
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Extraction of Interesting Points

The feature extraction process is used to determine small areas (referred to as
image points or features) in an image that are distinct from their respective neigh-
boring areas. This distinctiveness limits the potential matches of these image areas
in suceeding images and suggests the possibility that these points may be trackable
over time. These image features may also reflect a correspondence to actual and
significant features in the environment, such as points of high curvature on object
boundaries, texture elements, surface markings, etc. However, there are some fea-
tures, termed false features, which may be selected but which result from noise,
occlusion, and light source effects and have behavior which is currently difficult to
interpret. Features can be represented either as arrays of numbers extracted as a
subimage directly from an image, or as parameterized tokens describing local image
properties. We refer to features exclusively as small arrays of data values centered

at some point in an image at some time ¢.

Following Moravec [Mora77, Mora81], the method of feature extraction used
here is based upon finding image areas which are significantly different than their
neighboring areas. Using correlation measures bounded between 1 (for perfect
correlation) and 0, the distinctiveness of a feature is 1 minus the best correlation
value obtained when the feature is correlated with its immediately neighboring areas
(excluding correlation with itself). Good features can then be selected by finding
the local maxima in the values of the distinctiveness measure over an image. There
are several metrics available for similarity of two n x n arrays A;; and B;;. We

have utilized the following measures:
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Normalized Correlation

32 AiiBi;

(11)
VI L, A % \[ L BijBij
Moravec Correlation [Mora77]
220, 4i;Bi; (12)
(3 225 4i A + 22,225 Bi ;Bi ;) /2.0

Normalized Absolute Value Difference

22514 — Bigl

1.0 — Z;’ Z:j A+ Za’ Zj B.',J' (13)

All of these measures have a value of 1 for a perfect match. Of these, the first
choice is the most conventional, the second is a good approximation to the first and

more efficient, and the third is the quickest to evaluate.

We further constrain the neighborhoods over which the features are selected
to contours determined by other processes, such as zero-crossing extraction and
thresholding, which are sensitive to edges. This yields interesting points which are

locally distinctive and exhibit high curvature along extracted contours containing

the point.
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Feature Extraction Using Zero-Crossings

The use of gero-crossings to determine significant image contours at different
levels of resolution has been proposed and extensively studied by Marr et. al.
[Hild80, Marr80]. In this processing an image is convolved with Gaussian-Laplacian
masks (V2G) of different positive widths and thresholded at zero to determine
zero-crossing contours. These contours are significant since they correspond to the
points of greatest change in the convolved image. The distinctiveness measure can
be applied to points along these contours in the convolved image, with the local
maxima determining the position of potential features. This generally has the effect
of finding points of high curvature along the zero-crossing contour, although points
apparently corresponding to local occlusion vertices and weak maxima will also be

extracted.

Many weak features which are local maxima of distinctiveness can be removed
by suppressing those which are at points of low curvature along the zero-crossing
contours (a cheaper method for dealing with this is presented in the discussion of
this chapter). For features which are local distinctiveness maxima, we approximate
the curvature along the contour by the inner product of the normalized vectors
describing the relative positions of the nearest local maxima along the contour
(figure 7). These values are then thresholded between 1.0 (corresponding to high

curvature) and -1.0 (corresponding to low curvature) to reflect feature strength.
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Figure 7. Computation of curvature for low curvature suppression of
extracted features.

The images in figure 8a and figure 8b were taken from a gyroscopically stabi-
lized movie camera held by a passenger in a car traveling down a country road in
Massachusetts (Will80]. They are 128x128 pixel images with 6 bits of resolution
in intensity and will be referred to as the roadsign images., Figure 8c shows the
zero-crossings extracted from the initial roadsign image using a V2G mask with a
positive width of 5 pixels. The distinctiveness values were computed using features
which were 5x5 pixel arrays extracted from the convolved image and centered on
pixels which were adjacent to the zero-crossing contour and of positive value. These
features were correlated, using Moravec’s norm, with their 8 immediately neighbor-
ing features. Figure 8d shows the local maxima in the distinctiveness measure
positioned with respect to the zero-crossing contour. Figure 8e shows the results of

suppressing low-curvature points using a threshold set to -0.8 radians (143 degrees).
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Figure 8a. Roadsign Image 1. The upper image has the intensity values
normalized across the entire image. The lower image uses a restricted range
of intensity values to show the dark, low contrast tree texture.
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Figure 8b. Roadsign Image 2. The upper image has the intensity values
normalized across the entire image. The lower image uses a restricted range
of intensity values to show the dark, low contrast tree texture.
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Figure 8c. Zero-crossing Contours of Roadsign Image 1.
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Figure 8d. Local Maxima of Interest Measure.
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l Use of features based on gero-crossings requires specification of the sizes of the
| convolution masks that are employed, and a decision whether to position extracted
feature points with respect to the unprocessed image or the convolved images. It
is usually beneficial to use masks of various widths for sensitivity to features at ~q
different levels of resolution. In this case, the translational processing described
- below can be applied independently to the different pairs of images formed by .
E- convolving the original successive images with the different masks. Alternatively,

L as was done above, features can be extracted from the original, unfiltered image

!, at the positions where features were determined in the convolved images, though 3
-

experience with large masks has shown that this approach can position features ®

significant distances from their apparent position in the original image. BN
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Feature Extraction Using Threshold Contours )
-

Another simple operation to determine image contours is thresholding. The val- -;'.; 4

)

ues of the threshold can be determined in a variety of ways: using fixed increments, — A
finding peaks and valleys in the image intensity histogram, or using techniques

sensitive to image contrast across the contours produced by a particular threshold

[Kohl81,Wesk75).

The images in figure 9a and 9b were produced from a solid state camera held

3 by a robot manipulator translating toward some industrial parts lying on a table.

f The images are 128x128 pixel images with 6 bits of intensity resolution. These will
be referred to as the jndustrial images. Analysis of the image intensity histogram,
using the procedures described in [Kohl81|, determined a clear break in the his-
togram at an intensity level of 10 in the image. This corresponded to separation
of the dark background and the brighter objects in the scene. Figure 9¢ shows the

extracted contour and figure 9d the local maxima in the distinctiveness measure

of image features centered on pixels adjacent to the contour and of intensity value T #

greater than or equal to ten. Figure 9e shows the extracted feature points after

low curvature suppression using a threshold set to -0.8 radians (corresponding to ' ;
an angle of 143 degrees). - w
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Figure 9a. Industrial Image 1.

Figure 9b. Industrial Image 2.
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Figure 9c. Threshold Contour of Industrial Image 1.

Figure 9d. Local Maxima of Interest Operator.
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Figure 9e. High Curvature Points along Threshold Contour.

Determining the Axis of Translation

The procedure for determining the translational axis minimizes an error measure
which describes the extent of feature mismatch along the image displacement paths
determined by an hypothesized translational axis. Note that the image displace-
ments are determined simultaneously wi‘h the direction of motion. For example,
figure 10 shows an FOE determined by a potential translational axis and the corre-

sponding image displacement paths for some extracted features. Also shown is the

match profile for correlation of a particular feature along a segment of its displace-
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ment path in the succeeding image. The adequacy of a potential translational axis

image displacement paths.

for describing the motion between successive images is measured by summing the

error associated with the best match for each of the features along their respective

DISPLACEMENT (PIXELS)

Figure 10. Translational Displacement Paths for
and a match function on one feature.
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The set of all possible translational axes describes a unit sphere called the

translational direction sphere. For reasons discussed below, the search procedures
are defined with respect to this sphere, rather than the image plane itself. The
error measure associates a point on the direction of translation sphere with a num-
ber describing the quality of feature matches along the image displacement paths
determined by the corresponding hypothesized translational axis. This error value
is computed by first finding the best match for each feature along a segment of its
image displacement path using one of the normalized match metrics above. Each
of these values is then subtracted from one, and all the resulting values are added
together to form an error measure. Thus, for a set of N features in an initial image,
a hypothesized translational axis, and use of one of the match metrics above, the

error measure E is

N
E =) (1.0 — bestmatch(s)] (14)

=1

where bestmatch(i) is the best match value associated with feature ¢ along the

appropriate image displacement path.

The error measure utilizes the different correlation norms described above and
different interpolation processes for determining positions along an image displace-
ment path. The choices among these generally involve a trade-off between the speed
of evaluating the error measure and the precision with which the translational axis

can be determined.
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The interpolation process approximates feature values along the image displace-
ment path from one image onto another. Depending on the accuracy required, po-
sitions along the image displacement path can be approximated roughly by setting
the coordinates of the feature’s position to the nearest integer value, or more ac-
curately by performing a bilinear subpixel interpolation of the feature at each of a
set of selected positions along the image displacement path. The basic trade-off is

between speed and accuracy, with subpixel interpolation being more expensive.

The error measure was computed in two forms in the experiments below: a fast
evaluation form and a precise evaluation form. The fast form uses the absolute
value norm and the nearest integer approximation to determine feature position
along the image displacement paths. The fast form is useful for evaluating image
sequences with several extracted features to determine the rough position of the
global minimum. However, the fast form may not be adequate for fine determination

of the translational axis because of the nearest integer approximation for feature

position.

The precise form of evaluation uses the Moravec norm and bilinear interpolation.
It has been found to vary smoothly with respect to small changes in the position of

a translational axis.
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B Utility of the Direction of Translation Sphere ‘e
. 1
There are significant advantages in defining the error measure with respect to ]
” a unit sphere instead of the potential positions of FOEs and FOCs in the image _‘
[ {

plane. The sphere is a bounded surface which makes uniform global sampling o:

the error measure feasible. In contrast, when the image plane is used directly, the

resolution in the position of the translational axis varies. For example, the FOEs

determined by translational axes separated by very small angles will be separated

by larger and larger distances in the image plane as FOEs are placed further from ;
‘ the visible image. The effect of using the image plane on the error measure is a ‘_i

loss of resolution with large flat areas surrounding FOEs that are distant from the {‘

visible portions of the image. ]
N D

Finally, special criteria must be used to distinguish between FOEs and FOCs
if the error measure is defined relative to the image plane. Roughly parallel image
displacements could correspond to an FOE off to one side or an FOC off to the
opposite side of the image plane. On the direction of translation sphere, the cor-
responding translational axes would be close, while on the plane they are widely

separated at plus and minus infinity.

Search Organization

The search process used here consists of two phases: An initial global sampling of

the error measure to determine its rough shape and then a local search to determine
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a minimum. The local search begins at the position where the minimum value
was determined by the global sampling. The local search is a gradient descent
procedure using a diminishing step-size. That is, it begins with an initial fixed
step size and determines a local minimum using it. The step-size is then reduced
and the procedure repeated until the step-size is at the desired resolution for the
determination of the translational axis. In the experiments below the initial step-

size was set to 0.1 and then reduced successively to 0.025 and 0.005 radians.

As will be seen in the following experiments, the error measure is smooth, with
a single minimum in a large neighborhood around the correct translational axis.
Thus, the global sampling can be quite sparse or the initial step size of the local

search quite large.

Experiments

The following experiments were performed using the roadsign and industrial
image sequences. They represent a wide range of situations. The first experiment
involves determining the translational axis from the industrial image sequence using
the features indicated in figure 9e. In this sequence the translational axis intersects
the image plane in a visible portion of the image. The second experiment involves
processing the industrial image sequence using a smaller number of features. In
the third experiment the roadsign image sequence is processed using the features
extracted at the positions indicated in figure 8e. Here, the intersection of the

translational axis and the image plane is not in the visible portion of the image.
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. The fourth experiment involves processing the roadsign image sequence, but using ‘ &
the features extracted prior to low-curvature suppression. This has the effect of
introducing weak and spurious features into the error measure computation. The

” fifth experiment involves processing the roadsign images using features extracted

from a small area of the initial image.

In all of the experiments, the maximal displacement along an image displace-
ment path was set to 10 pixels. Displacements were in increments of 1 pixel along
the image displacement paths. Features were 7x7 pixel arrays centered at the posi-

tions indicated in the figures.

We use a 2-D, polar coordinate system to describe the points on the direction
of translation sphere over which the error measure is evaluated. The axes of trans-
. lation are unit vectors based at the origin of the camera coordinate system and are -.
described by two angles (41, ¢2) (figure 11). For an axis of translation, V', based at
the origin, ¢, is the angle between the (0,1,0) vector and the edge determined by
b the intersection of the Y Z plane and the plane determined by the X axis and V. :.
#1 thus specifies one of the pencil of planes containing the X axis. ¢2 is then used N
to express V as a vector in the specified plane. ¢; is th> angle between (-1,0,0)

and V. Note that for all angles a and b, (a,0) = (b,0) and (a, ) = (b,7) which -‘

corresponds to points lying along the X axis.
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Figure 11. Coordinate System for Describing Translational Axes

For each experiment, the results of processing are contained in 3 tables. The

first two (tables a and b) indicate the values of the error measure during the global

OPOFSIN. | _J VNIt »

sampling of points using a fixed angular increment (equal to {5 or 18 degrees) in
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(¢1,92) coordinates on the direction of translation sphere. The first of these tables
corresponds to translational axes which intersect the image plane at FOEs. The
second basically corresponds to those which intersect the image plane at FOCs.
Each of these tables is also presented as an intensity plot and a contour plot. In the
intensity plot, error is proportional to intensity so darker areas imply lower values
of error. In the contour plots, the positions of local minima are marked witha ¢ - »
and the local maxima are marked with a “ + ”. Certain distortions appear in these
figures because they result from mapping tk * unit sphere onto planes. Thus values
near the right and left hand sides of the figures are actually closer to each other
on the unit sphere than those points nearer the center. Additionally, the positions
on the extreme left-hand side of the figures actually correspond to the same point
on the direction of translation sphere which flattens the error surface plots at these

positions.

The third table (table c) shows the minimal value determined by the global
sampling process that is used to initiate the local search, and the successive values
of the error measure determined during the local search. In this table, the position
of the translational axis is referred to in terms of (X,Y,Z) camera coordinates,
in addition to (41,42) coordinates, so that translational axes computed under

different situations can be compared.
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Industrial Images

The procedure was applied to the industrial images using the features ex-
tracted at the positions shown in figure 9e. Tables 1a and 1b show the global
sampling of the error measure using the fast form of evaluation. Note the min-
ima at (#1,¢2) = (575,475) =(1.571,1.257) radians. Table 1c shows the successive
values of the local search using the precise form of evaluation. The determined
translational axis is (-0.139, -0.099, 0.985). The image displacements determined

for these features are shown in figure 12.
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Figure 12. Industrial Image Displacements.
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0 1 2 3 4 5 6 7
22.00 23.73 24.16 25.15 26.03 26.02 26.52 25.30 24.17 23.18

20.76 24.90 26.09 26.18 27.17 27.27 28.46 27.28 24.21 -
20.29 23.22 25.60 25.00 26.88 26.21 27.13 25.33 23.65
20.31 21.60 24.71 25.45 25.61 25.67 24.95 24.75 23.90
20.17 19.97 21.17 23.74 22.65 23.33 24.07 24.20 24.25 ]
21.45 20.31 19.52 14.45 15.76 20.53 24.22 24.48 24.82 , ?
21.04 20.66 20.78 18.12 17.38 19.94 22.71 23.86 24.56
21.25 22.51 21.86 23.55 24.75 23.10 21.89 23.01 24.22 ]
22.19 22.49 24.23 25.33 26.39 24.88 24.25 22.20 23.67 .i
2297 24.09 2489 26.34 26.22 26.08 25.30 23.24 23.83 :
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s

4
. @

..'
.

PP Y

© 0 3 O o W N =

B Table 1a. Industrial Image Error Values o

10 11 12 13 14 15 16 17 18 19
0 26.91 2201 26.39 27.19 28.17 28.84 29.11 30.89 29.62 26.16
P | 1 25.42 26.06 27.81 27.75 27.71 27.81 28.20 27.25 26.02

2 26.10 26.88 28.19 28.00 27.42 29.11 28.91 27.73 26.28
3 26.98 27.98 28.52 28.38 28.33 20.76 29.60 27.52 26.35

4 26.72 27.72 29.89 29.43 30.55 20.35 30.23 27.07 25.85
5 26.75 27.01 30.86 33.98 32.84 30.01 27.99 26.35 24.36 R
6 27.03 27.34 30.04 32.99 32.16 30.98 26.77 23.97 23.86 ifd
7 26.55 27.67 31.02 31.13 31.69 30.68 20.49 24.51 24.37
8 26.49 29.30 30.81 31.06 30.16 20.72 27.44 27.69 23.20 '1
9

26.14 29.14 31.25 30.14 2894 28.46 27.41 27.11 22.88 )

| Table 1b. Industrial Image Error Values
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f_ Stepsize d1 &2 X Y Z Error
1.5708 1.2566 -0.30905 0.00000 0.95105 *14.446* .
0.1 1.6708 1.4566 -0.11395 -0.09919 0.98852 3.5456 i
0.025 1.6708 1.4316 -0.13875 -0.09887 0.98538 3.5313 -
0.005 1.6708 1.4316 -0.13875 -0.09887 0.98538  3.5313 .
4
-
Table 1c. Industrial Image Local Search Values ]
.“
-
5
} a
4 *Denotes this error value was computed using the fast evaluation form. The ;
4
E—. other values were computed using the precise evaluation form. - '
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Figure 13b. Intensity plot of Table 1b.
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Figure 13c. Contour plot of Table la.
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Figure 13d. Contour plot of Table 1b.
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Industrial Images with Selected Features

The procedure was again applied to the industrial image sequence but using
features which were selected by hand. The positions of these 8 features are shown

in figure 14.

Tables 2a and 2b show the global sampling of the error measure using the
precise form of evaluation. Note the minima at (¢;,¢2) = (57,55)- Table 2c
shows the successive position determined by the lo:al search. The translational
axis was determined to be (-0.154, -0.079, 0.985). This corresponds to an angular

difference of 0.025 radians (1.45 degrees) with respect to the axis determined in

experiment 1.

Figure 14. Selected Features from Industrial Image 1.
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0 1

2

3

4

5

6

7

8

9

1.583 1.967
1.946
1.907
1.908
1.806
1.630
1.505
1.451
1.449
1.456

2.106
2.060
2.024
2.062
1.784
1.626
1.551
1.470
1.459
1.645

2.055
2.013
1.905
1.783
1.762
1.414
1.740
1.424
1.716
1.949

1.991
1.823
1.777
1.670
1.419
0.580
1.227
1.312
1.888
2.082

1.986
1.830
1.690
1.590
1.284
0.427
1.018
1.513
1.895
2.163

1.840
1.785
1.758
1.610
1.241
0.688
1.062
1.578
1.804
1.755

1.711
1.739
1.622
1.464
1.446
1.117
1.768
1.480
1.495
1.669

1.713
1.567
1.488
1.533
1.631
1.672
1.890
1.695
1.607
1.627

Table 2a. Industrial Image Selected Feature Error Values

10 11

12

13

14

15

16

17

18

1.779
1.754
1.757
1.829
1.874
1.983
2.003
1.907
1.739
1.684

19

2.267 1.750
1.773
1.802
1.835
1.933
2.224
2.443
2.308
2.045
1.939

1.857
1.926
1.961
1.964
1.977
2.291
2.524
2.096
2.003
2.004

1.937
2.024
2.143
2.221
2.348
2.709
2.434
2.193
2.109
1.888

2.137
2.218
2.304
2.370
2.579
2.770
2.614
2.582
2.137
1.910

2.675
2.532
2.416
2.421
2.526
2.681
2.893
2.520
2.295
2.219

2.642
2.731
2.721
2.748
2.647
2.663
2.647
2.625
2.478
2.299

2.354
2.492
2.655
2.685
2.597
2.490
2.129
2.589
2.491
2.335

2.089
2.141
2.160
2.047
1.811
1.874
2.100
2.108
2.379
2.469

Table 2b. Industrial Image Selected Feature Error Values

1.635
1.611
1.616
1.669
1.739
1.802
1.902
2.083
2.134
2.132
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Stepsize o1 ¢ X Y Z Error
1.5708 1.5708 0.00000 0.00000 1.00000 0.57998

0.1 1.6708 1.3708 -0.19867 -0.09785 0.97517 0.1995%
0.025 1.6458 1.4208 -0.14943 -0.07401 0.98599 0.17476
0.005 1.6508 1.4158 -0.15438 -0.07896 0.98485 0.17410

Table 2c. Industrial Image Selected Feature Local Search Values
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Figure 15a. Intensity plot of Table 2a.

Figure 15b. Intensity plot of Table 2b.
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Roadsign Image Sequence .

The procedure was applied to the roadsign image sequence using the features
extracted at the positions indicated in figure 8e. Tables 3a and 3b show the global
sampling of the error measure using the fast form of evaluation. Note the minima
at (¢1,¢2) = (8f5,275)- Table 3c shows the successive values of the local search
using the precise form of evaluation for the error measure. The translational axis
determined by this process is (-0.837, -0.420, 0.349). The image displacements for

the feature points shown in figure 8e that are associated with this translational axis

are shown in figure 17.

Given the direction of translation and image displacements, the relative environ-
mental depths of image points can be recovered by the simple relation in equation
ten from chapter III. When image displacements are small, the inferred depth values
can be quite erratic due to sensitivity to small numbers in the denominator in the
left hand side of this equation. For this reason it is necessary to use image pairs
for which large displacements can be determined. One way to do this for image
sequences which are related by successive sensor translations is to track the FOE
from a given image with respect to successive later image. This was done with four
successive images from the roadsign sequence beginning with roadsign images 1 and
2 and using the features from image 1 at the positions in figure 8e. The position
of the translational axis determined from images I(1) and I(t+1) was used as the
initial value in the local search for determining the translational axis for images

I(1) and I(t+2), where ¢ = 1,2 in this example. The displacements of all features
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along the contour in figure 8c were determined along the image displacement paths
determined by the FOE found f~r images I(1) and I(4). To compute depth along
the contours, 5x5 windows, centered at € ich contour point, were matched along the
image displacement paths and the displacement corresponding to the best match
were determined. The resulting relative depth map is shown in figure 18 where

depth is encoded by intensity (more distant things are brighter).

The roadsign sequence is particularly nice for presenting depth processing results
because the three environmental objects in the images are at three distinct depth
intervals. This is shown in figure 19 by the three distinct clusters in the histogram
of ihe depth values calculated for the points along the contour. The units in the
histogram are cumulative time-until-contact values. That is, the depth is given in
units of the displacement of the camera from I(1) to I(4) along the Z -axis. From
left to right, the first peak corresponds to the sign, the second to the pole, and the
third to the trees. As can be seen, there is a wide range of depths associated with
the trees. Mapping these clusters back onto contour points from figure 8c yields the
distinct objects: the boundary shown in figure 20a (the sign), the boundary shown
in figure 20b (the pole), the boundary segment shown in figure 20c (the trees).
Points near the image boundary of I(1) were ignored because the processing did not

take into account occlusion effects along the image boundaries.
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0 1 2 3 4 5 6 7 8 9
4935 6.487 8.022 9.200 10.24 1094 11.00 11.87 11.92 11.27
6.296 7.493 8.540 9.329 9.729 9.801 9.868 10.06 10.01
6.059 7.122 8.177 8.971 9.625 9.750 9.812 10.10 9.993
5.739 6.593 7.270 8.309 8.967 9.492 9.788 10.02 9.966
5.402 5.651 5.940 6.988 8.119 8.709 9.082 9.806 9.895
4.787 4.536 4.838 6.117 7.454 8.314 8.828 9.434 9.771
4.149 3.590 4.035 5.071 6.537 7.716 8.870 9.200 9.669
3.694 2.865 3.357 4.622 5.999 7.750 8.816 9.147 9.604
3.319 2.795 3.808 5.432 6.821 8.026 8.751 9.041 9.505
3.281 3.129 4.385 6.078 7.126 7.903 8.817 9.125 9.546

(=

© 0 3 O G b W e

Table 3a. Roadsign Image Error Values !

10 11 12 13 14 15 16 17 18 19
0 11.20 9.617 9.147 8.802 7.836 7.277 6.247 4.632 3.284 3.378

1 10.76 10.40 9.530 8.103 7.335 6.504 5.006 3.962 3.538
10.96 10.80 9.915 8.734 7.237 6.388 5.280 4.270 3.849
11.14 11.04 10.62 9.592 8.233 7.020 5.690 4.691 4.270
11.17 11.20 11.07 10.28 9.343 8.121 6.774 5.235 4.511
11.20 11.29 11.33 10.97 10.24 9.057 7.383 5.694 4.959
11.20 11.34 11.64 11.16 10.92 9.485 7.904 6.159 5.394
11.20 11.54 11.77 11.74 10.88 9.975 8.158 6.813 5.758
11.23 11.69 11.92 11.71 10.94 10.35 9.084 7.719 6.158
11.25 11.90 11.95 11.38 10.81 10.32 9.316 8.031 6.314

© 00 9 O G oA W N

Table 3b. Roadsign Image Error Values
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Stepsize o1 &2 X Y Z Error
2.5133 0.62832 -0.80902 -0.47554 0.34548 *2.7952*
0.1 2.5133 0.52832 -0.86366 -0.40782 0.29628 0.21031
0.025 2.4383 0.57832 -0.83738 -0.41691 0.35352 0.20767
0.005 2.4483 0.57832 -0.83738 -0.42043 0.34933 0.20760
Table 3c. Roadsign Image Local Search Values.

* Denotes this error value was computed nsing the fast evaluation form. The

other values were computed using the precise evaluation form.
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Figure 16b. Intensity plot of Table 3b.
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Figure 16b. Contour plot of Table 3b.
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Figure 18. Depth Map. Contour depth encoded by intensity.
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Roadsign Sequence with Redundant Features

The procedure was applied to the roadsign image sequence using the features
which were extracted prior to low-curvature suppression. The positions of these
features is shown in figure 8d. This has the effect of including several weak and

false features in the evaluation of the error measure.

Tables 4a and 4b show the values of the global sampling of the error measure
using the fast form of evaluation. Note the minima at (¢1,42) = (85,27) . Table
4c shows the successive values of the local search. The determined translational

axis was (—0.829,—0.423,0.366). This corresponds to an angle of 0.019 radians

(1.068 degrees) with respect to the axis determined in experiment 3.
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0 1 2 3 4 5 6 7 8 9
7.777 10.07 12.54 14.27 1546 18.22 18.37 18.91 19.44 19.53

r—v

]

9.942 12.45 14.15 16.67 18.32 18.34 1894 19.55 19.54
9.503 11.80 13.52 17.97 18.04 18.32 19.15 19.64 19.58

-)rv-!v
» Ty s
S

st

9.071 11.01 12.47 16.12 16.92 1780 19.19 19.60 19.49
8.412 9.412 11.15 14.14 1585 17.38 18.21 19.32 19.40
7.506 7.562 9.772 12.68 1530 16.82 17.85 1882 19.25
6.690 5.760 8.265 11.72 13.74 1595 17.83 18.49 19.15
6.008 4.821 6.675 10.60 13.20 15.69 17.76 18.41 19.07
5.555 4.733 6.971 11.47 13.7! 16.15 17.57 18.30 18.97
5.535 5.206 7.515 11.45 14.10 15.66 17.61 18.34 19.02

© 0 3 O v s W

*" Table 4a. Roadsign Redundant Feature Error Values.

10 11 12 13 14 15 16 17 18 19
0 22.65 21.90 21.16 19.95 1598 14.73 10.76 7.699 5.361 5.569

1 22.06 21.51 19.50 16.25 13.01 10.82 8.195 6.394 5.781
22.28 22.00 19.74 16.38 1243 10.64 8.510 6.821 6.319

22.52 2231 20.70 16.02 13.62 11.44 8.860 7.491 6.908
22,59 2252 2121 16.83 15.10 12.45 10.44 8.361 7.257
22.65 22.74 21.25 17.79 15.75 13.80 11.51 9.119 7.853

22.63 22.83 22.02 17.38 1690 14.88 12.46 9.834 8.575

>
b

22.63 23.07 22.18 18.77 16.85 15.66 12.96 10.92 9.096
22.65 23.01 21.95 20.34 17.69 16.64 14.57 12.22 9.679

O 00 3 & W s W W

22.68 23.21 22.02 20.56 18.29 16.80 15.26 13.03 9.924

¢ Table 4b. Roadsign Redundant Feature Error Values

T s
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Stepsize &1 ¢2 X Y Z Error
2.5133 0.62832 -0.80902 -0.47554 0.34548 *4.7330*
" 0.1 2.5133 0.52832 -0.86366 -0.40782 0.29628 0.34143
- 0.025 2.4133 0.60332 -0.82346 -0.42344 0.37765 0.33771
0.005 2.4283 0.59332 -0.82909 -0.42281 0.36585 0.33693
Table 4c. Roadsign Redundant Feature Local Search Values _
J -

! B *Denotes this error value was computed using the fast form of evaluation. All

other values were computed using the precise form.

-------

AR .- - B v e e e e e e e e e
et .- .- L R T R I R . et e e C
At FIAL S bt [P T S . RV R LT YRR W SR W PR R B L. Y AL ST T TV Y PR U " P




L AT P . S R e o AR U AR T ke T Bl ot TRl i “th o - -
- N T T N T N T W Y T T T S L N L W W LW T Y TN TN VTS T TS TR TG T MAA AR Sl N S AE e e o
T v AN A i

82

-

- "
e
- . ..
b

® -
[', : L ok ‘nwu‘
- , :
. Figure 21b. Intensity plot of Table 4b.
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Figure 21d. Contour plot of Tables 4b.
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Roadsign Subimage

This experiment was conducted to test the accuracy of the algorithm when
applied to a very small area of the visual field. The procedure was applied to the
roadsign image sequence with features restricted to the rectangular area shown in

figure 22 corresponding to texture in the distant trees.

Tables 5a and 5b show the values of the global sampling of the error measure
using the precise form of evaluation. Note the minima at (¢1,¢2) = (75,2%)-
Table 5c shows the successive values determined by the local search. The transla-
tional axis is determined to be (—0.843, —0.429,0.325) . This corresponds to angles
of 0.027 radians (1.53 degrees) and 0.044 (2.516 degrees), with respect to the trans-

lational axes determined in experiments 3 and 4 respectively.
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0

1

2

3

4

5

6

8

9

0

0.171

10

0.249
0.231
0.207
0.184
0.156
0.128
0.106
0.091
0.083
0.081

0.353
0.309
0.256
0.202
0.146
0.096
0.069
0.060
0.061
0.065

0.437
0.388
0.307
0.226
0.133
0.073
0.065
0.084
0.105
0.119

0.488
0.454
0.370
0.264
0.119
0.074
0.102
0.137
0.166
0.187

0.515
0.505
0.469
0.316
0.126
0.115
0.169
0.206
0.233
0.252

0.520
0.522
0.520
0.439
0.260
0.244
0.255
0.265
0.274
0.279

0.504
0.504
0.502
0.487
0.368
0.298
0.295
0.290
0.288
0.292

Table 5a. Roadsign Subimage Error Values

11

12

13

14

15

16

17

0.502
0.500
0.498
0.478
0.444
0.368
0.334
0.327
0.329
0.336

18

0.491
0.490
0.483
0.471
0.460
0.441
0.422
0.405
0.400
0.404

19

0.568

0.473
0.495
0.524
0.549
0.575
0.586
0.597
0.605
0.608
0.609

0.393
0.428
0.478
0.534
0.580
0.603
0.614
0.617
0.620
0.621

0.334
0.371
0.433
0.515
0.587
0.611
0.619
0.624
0.620
0.620

0.300
0.319
0.380
0.494
0.589
0.616
0.624
0.623
0.629
0.639

0.279
0.279
0.315
0.458
0.588
0.627
0.626
0.636
0.646
0.639

0.206
0.224
0.235
0.276
0.503
0.600
0.612
0.610
0.597
0.573

0.126
0.121
0.100
0.102
0.320
0.482
0.512
0.520
0.515
0.498

Table 5b. Roadsign Subimage Error Values

0.065
0.063
0.070
0.115
0.194
0.303
0.386
0.417
0.418
0.397

0.085
0.094
0.112
0.142
0.176
0.205
0.236
0.256
0.265
0.262
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Stepsize 1 é2 X Y Z Error

2.1991 0.62832 -0.80902 -0.34549 0.47553 0.059910

P 0.1 2.2991 0.62832 -0.80902 -0.39123 0.43867 0.059542

0.025 2.4741 0.57832 -0.83738 -0.42930 0.33837 0.059288

0.005 2.4941 0.56832 -0.84281 -0.42928 0.32465 0.059269

Table 5c. Roadsign Subimage Local Search Values
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Figure 23b. Intensity plot of table 5b.
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Figure 23c. Contour plot of table 5a.

Figure 23d. Contour plot of table Sb.
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Discussion

The experiments presented here, as well as others, have shown that the proce-
dure is robust in several important ways. It is resilient with respect to weak and
false features and is not dependent on identical features being extracted in succes-
sive images prior to matching. It can use a small number of features positioned

across an image surface, or a small number of features from a limited area of the

image.

In the remainder of this chapter, we discuss the feature extraction process and
how it may be made more efficient, and the general behavior of the error measure. In
the next chapter we explore several potential extensions of the translational motior

procedure.

Feature Extraction

Since the procedure’s performance does not degrade severely due to the occur-
rence of poor features, the type of feature extraction used is not critical. Nonethe-
less, the feature extraction process developed here could be extended in many ways.
A simple one is to constrain the extraction of interesting points to positions where
image contrast exceeds some minimal value. Also, other types of contour extraction
can be used. For example, contours can also be determined by local application of
histogram guided thresholding and segmentation. This resolves some of the prob-

lems associated with using a single threshold determined for image subparts with
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significantly different brightnesses [Kohl81].

A significant question concerns the speed at which features are extracted. Lo-
cality of processing leads to the most efficient computation in array processing
architectures. In the procedure here, the technique of contour walking to determine
curvature is significantly non-local. Since the algorithm is robust with respect to
weak features, the use of less costly methods for extraction of possibly weaker fea-
tures may be acceptable. It may be possible to directly determine points of high

curvature by using corner finders [Kitc80, Zuni83).

Another alternative to the contour walking is to simply use a threshold on the
distinctiveness measures, with or without the determination of local maxima in
distinctiveness. Examination of the local maxima along the telephone pole in figure
2¢, reveals that these are local maxima with very small distinctiveness measures.

This has been observed in general.

An additional speed-up can be obtained when features are selected from con-
tours determined by segmentation procedures (such as thresholding or zero-crossing
extraction) which produce binary images where pixel values may be represented by
1 or -1. In this case there is no need to normalize the correlation measure used
to determine distinctiveness because each image subarea of equal size has identical
constant image energy [Duda73|. Thus, the normalizing terms in the correlation
measures become constants and the arithmetic operations are restricted to products
or additions over the set (1,—1). When the distinctiveness measures are determined
along the contours of binary images followed by a threshold on distinctiveness and

local maximal extraction, very rapid rates of feature extraction can be achieved
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in the particular architectures we have explored, on the order of a fraction of a -

millisecond [Lawt84].

The binary image in Figure 24 was determined by thresholding at zero the - ﬂ
initial roadsign image with the V2G mask used above. Figure 25 shows the in-

teresting points extracted from the binary image in figure 24 using a threshold on g
distinctiveness set to 0.1 followed by local maxima extraction. The results are rea- 3 b
sonable, although mistakes can occur if the neighborhoods over which local maxima . ?
are computed contain points of high curvature from distinct regions. This could ]
be remedied by restricting the calculation of distinctiveness for points only along T
contours of the same region (which would then require the determination of region a

labels via a connected components algorithm).

et it

R TR

Figure 24. Binary Roadsign Image. o
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Figure 25. Interesting Points along Contours.

It would also be useful to incorporate information determined from the extrac-
tion of the translational axis to isolate false features. This could involve removing
from the error measure those features which have weak matches once a translational
axis has been determined, and re-evaluating to refine the FOE. Such a filtering pro-
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cess would be particularly helpful when the total minimum error was not sufficiently
low thereby casting doubt on the correctness or accuracy of the solution. Alter-
natively, the depth inferences could be used to isolate the positions of potential
false features by noting discontinuities in depth along an extracted contour. Such
features tend to be associated with vertices generated by surface occlusion. Such
extracted features could be removed from the re-evaluation of the error measure if

they are at or near such positions.

Another type of feature which can affect the evaluation of the error measure
are those near an FOE or FOC which is contained in a visible portion of the image.
Such features tend to move very small amounts along their image displacement
paths and hence require fine interpolation to determine their best matches. The
depth inference associated with such points tend to be highly erratic since their
use in the inference relation from chapter IIl involves dividing a small number by

another small number.

Properties of the Error Measure

In the experiments presented, the error measure has a distinct global minimum
at the point on the unit sphere corresponding to the correct translational axis. It
is generally expected to have such behavior because it is very unlikely that trans-
lational axes that are far from the correct position will define image displacement
paths that simultaneously allow good matches for many features. Thus, competing

caadidates for the global minimum are not expected to be widely separated. This
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reasoning implies strong unimodality and smoothness of the error measure over a
large neighborhood and this has been confirmed empirically. Therefore, the opti-
mization procedure used here could be replaced by other techniques which generally

have faster convergence.

The error measure is affected by both non-distinctive and false features. Non-
distinctive features will match well for many different translational axes. Large
numbers of these weak features will flatten the response of the error measure. False
features will also distort the error measure since they will often have their best

matches with incorrect translational axes.

The effects of these poor features should be compensated by the agreement of
good features. Every one of the good features will tend to have a bad match for
the incorrect translational axis and their unanimity is expected to override the lack
of discrimination of weak features and the random quality of the matches of false
features. However, there is a limit in the percentage of weak and false features before
the algorithm will degrade. This limit has not been explored, but our experience
suggests that it may be quite high, with perhaps as many as 50 percent of the

features being ineffective.
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CHAPTER V : i

EXTENSIONS TO TRANSLATIONAL MOTION PROCESSING .4
=

Introduction ]

In this chapter we discuss several extensions to the translational motion proce-
dure. We begin by formulating the computation hierarchically. This significantly
increases the computational speed of the procedure and the extent of image dis-
placements that can be processed. We then show how to process the blur paths of
nearby textured surfaces when prolonged exposures are used during translational
motion. We note the implications of this case, both for processing computed trans-
lational displacement fields, and for using blur to determine image displacements
in general. The third extension to our algorithm considers different approaches for
processing image sequences containing multiple, independently translating objects.
One of these is based upon generalized Hough techniques to decompose the error
measure response into the effects of the different objects. The others are based upon
local application of the procedure to image subareas determined by segmentation
or image subdivision. Finally, we consider the use of translational motion process-
ing for autonomous vehicle navigation by using devices to stabilize the sensor or to

obtain the rotational parameters directly.
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Hierarchica] Computation

A basic paradigm in computer vision is the use of hierarchical representations
and processes [Burt82, Glaz83a, Glaz83b, Hans80, Tani80, Uhr78]. This allows dif-
ferent magnitudes and scales of image events to be handled uniformly. Additionally,
the consistent agreement among hierarchically organized processes is a basic control
strategy for a wide range of high and low level interpretation tasks. Hierarchical
processing can produce significant computational reductions, wherein results from
processing performed rapidly at lower resolutions of image information are used to
direct and constrain more detailed and extensive processing of higher resolution

image information.

The processing of translational motion can be developed in a hierarchical fashion
with the primary benefits being increased speed and the ability to deal with larger
image displacements. This requires specifying the hierarchical representations of
the successive images and the extracted features, and specifying how processing at

different levels of image resolution are related.

Hierarchical Representatio a n atu

In the initial work described here, images have been represented in the VISIONS
image operating cone structure [Hans80]. This consists of a sequence of images
I, I, I, ...I, , where the successive siges of the images are 1x1,2x2,4x4,...,2"*x
2" . The value n is the Jevel of the image in the cone. Each pixel in the -
th image, except for the first and last images, has a connected neighborhood of
immediate descendants in the s + 1 image and a parent in the s — 1 image. The
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size and shape of the immediate descendant neighborhood can be arbitrary and the

immediate descendent neighborhoods of adjacent pixels may or may not overlap.

There are several ways to reduce the resolution of an image in the VISIONS
cone [Hans80| and other pyramid architectures [Burt82, Tani80, Uhr78]. These
techniques involve smoothing the image with some operator and then sampling at
a reduced interval, or by using a reduction operator which is some function of the

pixels in the immediate descendent neighborhoods. The results of reducing image

resolution by averaging using Gaussian masks over 5x5 pixel immediate descendent

neighborhoods at successive levels of the roadsign image 1 is shown in figures 26a-d. R

The positions of extracted features can also be represented in the cone structure — i
at different levels of resolution. There are several alternatives for doing this. First,

it may not be necessary to extract features at all and simply apply the procedure

uniformly to features at each position, relying on the increased speed of hierarchical
computation or potential architectures to make this possible. One approach is to
apply the feature extraction process for each image at each level of image resolution.
Another technique is to extract features in the highest resolution image and then
treat the ancestors of these in the lower resolution images to be features. In this
case, the immediate descendent neighborhoods should not overlap (so each feature
has unique ancestors). A feature is then positioned at a parent pixel if any of its

descendants are at positions where a feature has been extracted. These approaches

may interact in interesting ways if the strength of a feature is expressed as a function
of its own distinctiveness and that of its descendants. We have thus far utilized the

approach based upon extracting features at the highest image resolutions, though

[} general problems with this should be noted. Features that are ceparated at higher

E resolutions become adjacent at lower resolutions. Thus, the inferred features at the
: lower resolutions may not be meaningful, especially since the information is not
4
b
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uniform across the range of spatial frequencies represented in the different image

resolutions. The benefit of this technique is that there are explicit and unique links
between features at different image resolutions so that displacements determined at

coarse levels can be used to initialize the estimates of displacements at finer levels.

Figures 27a-d show the features resulting for roadsign image 1 at different levels
of resolution by using the feature positions determined from the highest level of
image resolution (figure 8e in.chapter IV) at the corresponding positions in the

lower resolution images.
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Figure 26c. 32 x 32 Resolution. Figure 26d. 16 x 16 Resolution
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Translational Processing at Different Resolutions

The translational processing can be applied to successive images at any level of

resolution for which features have been extracted from the initial image. The basic

questions concern how processing at one level affects processing at another level. In
particular, how do processing results at a coarser level of resolution constrain the -]
processing at finer levels of resolution? At what level in the cone can processing be 2
meaningfully initialized? How do the various parameters involving feature window g
size, displacement resolution along a flow path, and resolution of the optimization ]

procedure change at different levels of the cone?

Let us present our first effort to deal with these issues. For a given pair of im-
ages at level 1 in the cones formed from successive images, the translational error
measure will be minimized for the set of features determined at level s (using the
ancestors of features determined from the highest resolution version of the initial -
image). The position of the minimum error in the translational axis at level & is
then used to comstrain the optimization of the error function for the images and
feature positions at the s + 1 level in the cone. In addition to constraints on the
position of the error function minimum, processing higher in the cone constrains a
the evaluation of the potential displacements of extracted features along their dis-
placement paths. Figure 28 shows flow paths at different levels of resolution. For
each displacement determined at level 1 only three positions have to be evaluated
at level 1 + 1. Thus, not only is the minimum of the error function passed on,
but also the displacements of parent features which are then used to constrain the

evaluation of the displacements of descendent features [Glaz83b).
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Figure 28. Relations between displacements at different resolutions.

There are a wide range of possibilities for relating the error function minimiga- o .
- tion across the different image resolutions. One strategy that has been employed ‘é

involves the use of different step sizes in the error function evaluation correlated with

particular image levels. That is, as processing moves to higher image resolutions,
: the stepsize of the error function evaluation decreases. Alternatively, a complete .'
search could be done at a given level before proceeding to the higher resolutions. "]

Feature size can also change as processing goes down the cone since at higher levels
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a given window size corresponds to an increased area with respect to the image. 0
At a high level of resolution, features described by small image areas may not be ‘

distinctive enough to match well.

Y. ... . e

In the experiments in figures 29a-d processing was initialized at level 4 by per- =

forming the global sampling of the error measure at the same density as the exper-

iments in chapter IV (a separation of 15 Tadians in the coordinate system for the
direction of translation sphere). The resulting flow field is shown in figure 29a. The
first step of the local processing was initialized at the minimum determined in the
global sampling and used a stepsize equal to 0.1 radians for the images and features

at level 5. The resulting flow field is shown in figure 29b. At level 6, the stepsize

. g ) ,
EL . SIS N ST S

was reduced to 0.025 and the local search initialized at the minimum determined
by the processing done at level 5. At level 7, the stepsize was reduced to 0.005 and
the search was initialized at the minimum determined at level 6. 5x5 windows were

used at each level. The procedure converged to the same results as in experiment
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three in chapter IV.
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Figure 29a. Image displacements at 16 x 16 resolution
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Figure 29b. Image displacements at 32 x 32 resolution
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Figure 29c. Image displacements at 64 x 64 resolution
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Figure 29d. Image displacements at 128 x 128 resolution
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Some Problems

A reasonable change to the procedure described here would be the use of band-
passed filtered images instead of the smoothed ones used here. Work by Burt
[Burt82] and Glazer et. al. [Glaz83b] indicates that the matches of features from
successive bandpassed images are much more distinctive than using features from
low-pass images. Another important question which has not been addressed in any
detail concerns the image level at which to begin processing. One criteria could
be the level at which significant changes in image values occur as determined by
an average difference value. Another could be the response of the error function.
This would involve determining the level at which the error function has a distinct

minimum.

A particular problem in hierarchical matching schemes occurs at occlusion
boundaries. Here, features on different sides of an occlusion boundary can have
a common ancestor, but will themselves have different displacements. Therefore,
the displacement value inherited from the parent may be incorrect for one of the
features and that feature should have its potential displacements re-evaluated along
it’s displacement path. A possible criterion to determine the need for re-evaluation
of the displacements of a feature is if its match value is ever less than some threshold
or is less than the match strength of its parent. It may be sufficient simply to not
evaluate such features if they are found, and to then determine their displacements

or occlusion after the more certain image displacements have been found for other

image points.
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Translational Blur Path Extraction

Blur streaks are cornmonly produced when the shutter mechanism of a camera
remains open while the camera is moving relative to a textured surface. The streaks
are produced by the successive positions of the image projections of the texture
elements. Recent work [Harr80, Shep83| indicates that blur streaks may be a very

common motion effect in the human visual system.

For translational camera motion, the blur streaks will correspond to the image
displacement paths: straight line segments radiating from a common intersection
point. In the analysis of translational blur paths, some information is lost concerning
the direction (from an FOE or towards an FOC) and magnitude of the displacements
of image points over time. Nonetheless, the techniques developed in chapter IV
can be easily modified for the extraction of translational blur paths. First, it is
necessary to compute the gradient of the blurred image. The image gradient will be
perpendicular to the translational blur paths at positions where image blur occurs.

Thus, the error measure can be expressed as

N
3" llcosdi (15)
i=1

where 1 is an index over image positions, and 6; is the angle between the im-
age gradient at point ¢ and the translational displacement path corresponding to
a particular translational axis. The same evaluation techniques can be used for
this error function as above, except that there is no need to distinguish between
FOEs and FOCs. Thus, the evaluation of the error measure need only occur on a
hemisphere. It should be noted that a variant of this error measure can be used
for processing translational motion sequences for which image displacements have

been determined. In this case, the image displacement vectors will lie along (not
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H perpendicular to) the correct translational displacement paths. The corresponding ;’
error measure becomes Y 1.0 — | cosf;|. R

The results of a preliminary experiment are shown in Figures 30-33. Figure _.J

- 30 shows an image taken from a car traveling down a straight road. The shutter |

was kept open for a prolonged exposure and blur streaks resulted from the texture
elements in the nearby tree. Figure 31a-c shows the gradient magnitude of the image

and its normalized row and column components. Figure 32a-b show intensity and -

e e
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contour plots of the error function at points on the direction of translation sphere
roughly corresponding to the potential positions of FOEs. Darker corresponds to
less error in the intensity plot. In the contour plot, a “ - * is used to indicate the
position of a local minima of the error function and a “ + ” is used to indicate the
position of a local maxima. The error function is unimodal due to wrap around on
the direction of translation sphere because the FOEs and FOCs along a particular

. line of translation are not distinguished. Figure 33 shows the set of translational
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blur paths that were determined.
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Figure 31b. Row component of normalized gradient.

P

Figure 31c. Col component of normalized gradiélit.
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Figure 32a. Intensity plot of error function.
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Figure 32b. Contour plot of error function.
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Figure 33. Determined translational blur paths.
P It may be useful to use multiple versions of the same image sequence, each
formed using a different exposure rate. Those formed with short exposure times
would have very little blurring and their gradients would correspond to static edges. *
By subtracting the images formed with very short exposure rates from those formed L )
during the same interval but with longer exposure rates, it may be possible to -ﬂ?
suppress edges in the blurred images which are non-blur related. Of more general
importance in such a representation is the potential ability to relate blur streaks to -
- the displacements of features extracted from the static images. j _.1'
The extraction of translational blur paths is also similar to the extraction of -
vanishing points and lines from static images. The same procedure can be applied, i‘iii
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:‘_ without the initial extraction of edges: the determination of edges can occur concur- “ i
; rently with the extraction of the vanishing point. However, vanishing point analysis lf
5 is typically more difficult because only small portions of the image are rudely orga- i
* nized with respect to the potential vanishing poinis. Determination of these areas, ' _
¢ or finding a way not to have the ’noise’ from the rest of the image dominate the - .
:? analysis, are the key difficulties. In this case, the error measure may need to be ' ‘%
b extended to incorporate information concerning edge length or connectedness along }‘

the radial paths determined by a particular vanishing point. J‘

oaches for Multiple Independent oving Objects

rr

The procedure developed here assumes a sensor moving relative to a stationary

v v W
[
- B A

environment, or a single object moving relative to a stationary sensor. A useful

extension would allow the presence of multiple, independently moving objects, while
maintaining the ability to determine image displacements concurrently with the
direction of translation. There are at least three techniques which could make

this possible. One is to utilize generalized Hough transform techniques [Ball81,

O’Rou81] for decomposing the responses in a error measure into the corresponding .
image structures or segments. The other two constrain the analysis to independent ‘

limited image areas over which the procedure can successfully function.

—. We begin by noting that the global component of the optimization process used .-

: in chapter IV is an instance of a generalized Hough transform in which each feature -
scales its vote against a particular translational axis as a function of the best match

. it can find that is consistent with the translational axis. With only a minor change, -

| instead of using an error measure, we could use an optimization measure by which

, each feature scales its vote for a particular translational axis by the extent of the

;
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best match it can find that is consistent with the axis. The problem then becomes
a typical one for Hough transforms: how to associate labels corresponding to the
resulting peaks in the histogram with image points or features. The general form
of this processing is to find the translational axis with the greatest response in
the histogram, associate a label with it, and then associate this label with image
features which match above some threshold along the image displacement paths
determined by the corresponding translational axis. The resulting set of features
are then removed and a new histogram is produced. The peak in this new histogram
and the process is repeated until there are no more distinct peaks in the resulting

histograms, or all image features are labeled [Adiv83].

This procedure will have difficulties with weak or homogeneous feature points
which have strong matches consistent with several distinct translational axes. Thus,
when rehistogramming occurs it is necessary to establish which image features al-
ready labeled are consistent with the newly extracted peak. An alternative, is to
proceed in the conventional manner and determine a set of labels corresponding to
translational axes for which there is evidence. Each feature is then labeled with
each translational axis from this set with which it is consistent. Note that a given
feature could have several labels. A unique consistent labeling is then obtained
by using other information: segmentation-grouping using other image attributes,
depth consistency with neighbors, and common magnitude of image displacements.
Additionally, this disambiguation can occur over several successive images. In fact,
a potentially significant aspect of generalized Hough techniques may be the correla-
tion of histograms from successive instants to bring out structures that are moving

consistently.

Two basic questions have to be addressed in this use of Hough techniques: what

is the required density of translational axes in the transform and what is the minimal
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match threshold. In general, the higher the density, the better.

An alternative approach is to break the image into subparts and then locally
apply the procedure to associate a translational axis with each subpart. In one
scheme, this would be done using regular image areas (as in a grid) at multiple
levels of resolution. Techniques similar to this are used in chapter seven to deter-
mine the local directions of environmental motion. In another scheme, the subparts
are determined by some segmentation procedure, and the translational axis is de-
termined from image features within or lying along the boundary of the extracted
segments. Segments for which the error function response is indistinct are reseg-
mented or their features are associated with the translational axes determined for

adjacent image subparts.

Hybrid Sensor Systems

Translational processing is sufficient for vision-based navigation in a station-
ary environment if the orientation of the optic sensor can be fixed relative to the
environment over time. In this case, sensor motion amounts to a sequence of trans-
lations in possibly different directions over time. There has been much recent work
on sensor stabilization, notably by researchers at McDonnell Douglass Aerospace
Corporation in suspending electro-optical systems in a magnetic field, and elsewhere

using more conventional gimbel-based stabilization.

A difficulty with such a stabilized retina is that it is not able to rotate to focus
on particular parts of the environment. This can be corrected by using a set of
such stabilized retinas arranged to yield a complete view of space. There would
then be no need to rotate the sensor to view a particular environmental point. A

possible arrangement of retinal surfaces is a cubical one. One of the retinal planes
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will always contain an FOE and another will always contain an FOC (unless the
direction of motion is right on an edge of the cube and the focal length has not
been properly adjusted). There will also be several independent estimates of the
direction of translation which can be integrated. Figure 34 shows such a proposed
arrangement of optic sensors attached to a Cartesian robot manipulator so such a

complete, stabilized view of a workspace is produced at all times.
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Figure 34. Cartesian Manipulator with attached optic devices.

Alternatively, if the sensor cannot be stabilized, there are other devices which can
at least determine the rotational parameters of sensor motion. The rotational ef-
fects can then be removed from successive images, reducing them to translational
sequences which can be processed by the techniques here. A particular technology

which is very attractive for this use is that of fiber optic rotation sensors [Ezek82]

(figure 35). These sensors are expected to be the low-cost gyroscope of the near
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future since they are small, cheap, and precise. Because they have no moving ele-
ments, they are not as affected by rapid accelerations as conventional gyroscopes.
There are currently slow drift problems when sensor orientation is considered over
long periods of time. In our processing though, we would be concerned with mea-
surements of rotation over much shorter periods. Additionally, when such sensors
are coupled with an image processing system for guidance and navigation, the ef-
fects of such long term drifts could be recognized and accounted for by noting the

position of specified landmarks.

Fig. 19 Artist view of a fiper/inte—
\ grated-optics strap-down aLutude~and;
heading-reference-systom (10210x10 cw?)

Figure 35. Layout of Fiber Optic Rotation Sensor (from |Ezek82)).
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PROCESSING RESTRICTED SENSOR MOTION .

Introduction

The techniques used for translational motion can also be applied to other cases o ol
of restricted motion. The issue is the computational feasibility of a search through
a subspace of sensor motion parameters for values that are consistent with image

feature displacements. In this chapter we briefly consider two such cases, pure

sensor rotation and motion constrained to a known plane.

Processing Pure Sensor Rotation

For processing pure sensor rotation, the error measure can again be defined with
respect to a unit sphere with each point corresponding to an axis and a direction
of rotation. We use the ( ¢;,¢2) coordinate system from chapter IV for referring
to these positions. In addition to these two parameters for specifying an axis of
rotation, there is a third corresponding to the extent of rotation. The extent of

rotation is defined relative to the orientation of a given axis and encoded with

positive values denoting rotation in a clockwise direction. Thus, on the unit sphere
the points (z,y,z) and (—z,—y, —2) will lie along the same axis of rotation but

correspond to different directions of rotation.

As in the case of translation, we utilize the error of matches of selected features

along their respective image displacement paths. However, there are a few basic

differences with the translational procedure. First, feature displacements are not
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measured in image units, but in the extent of angular displacement about the axis . %
of rotation. Second, the displacement along the image displacement path can cause |
significant reorientation and expansion in a feature, especially for large rotations. ]

For this reason, each pixel of the feature array has its position interpolated inde-

-\
pendently (figure 36). If motion is restricted to small rotations only, this may not :
be necessary.

For a rotational field, the extents of angular displacements for all the features - 3

must be identical. This yields a constraint which can be incorporated into the eval-

uation of a particular set of rotational parameters in different ways. The evaluation

can be done as in the translational case where the best match of each feature along
its displacement path is determined independently of the other features. This re-
sults in two different error measures: one based on the summed error values of the
best matches and the other based on the variance of the extent of displacements
corresponding to these matches. Alternatively, the feature displacement determina- —
tion can be restricted such that they all evaluate the same extent of displacements

simultaneously.

We have tried these three error measures on a simple image pair and found that
they all give roughly the same result. The variance of the extent of displacements
was minimized at the correct value, but was very jagged and rough. The summed

error values for the best matches and the direct 3-D search were very smooth and

had a distinct global minimum in a very large neighborhood. -

a
A K




Figure 36. Determining Individual Pixel Displacements of a Feature.

Figure 37a and 37b show successive images formed with the image generation "o
system MOVIE BYU and are referred to as the House Sequence 1. The motion
was a rotation of 2 degrees (0.035 radians) about the (0,—1,0) axis. The field of
view was 45 degrees. Image contours for application of the interest operator were - .]
determined by a threshold selection algorithm which produces boundaries with max- ”4
imum average contrast [Kohl81]. The resulting contour and the extracted features
are shown in figure 37c. The interesting points were extracted by finding the local __ _,
maxima in the distinctiveness measure values which were also greater than a mini- - .11

mal threshold. Both the features and the neighborhoods over which local maxima

were determined were 3x3 pixel areas. This small neighborhood size caused the

feature extraction process to be sensitive to the notches along the contours as can
be seen by the number of extracted features along the bush boundary. Figure 37d

shows the displacements determined for these features.




A v 1-—. Ty -1‘.. ld.j.i.lqlw .4. d.l — Py 144.1!1114 Tal o erral — - \ —T ‘J
] [ : i i
(]
2
f
)
o~
\ ™~
p—
-
b
h
g
,
w
P - N
o
% g0
=) [y
3 g =
d — -
. — p—
a2
o @
4 O
N\ ] =
[ =N g <
N foud
X 3 g g
o [ v
L oS ® .
.M m w M
. o & =
g p
N e =
7~ ///M, (3r] o
=\ 3] @
3 > b =
| A &
P, = €5
- .“
b ,
i
.
b,
3
-
g . A4 - - - - - - .
btk al e de o L ¥ @.lt % s 2 e 4 e .y P Y




Y

Figure 37c. Extracted Contour and Features.
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Figure 37d.

Determined Displacements
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l;t The evaluation of the error measure based on the extent of feature mismatch -
is presented as in chapter IV using the (¢,,#2) values in two tables. The first

table (table 6a) basically corresponds to those axes of rotation on the positive

Z portion of the unit sphere. The second (table 6b) basically corresponds to
axes on the negative Z portion. Axes for which Z is equal to gzero and Y is
positive are represented in the first row of the first table while axes for which Z
is equal to zero and Y is negative are represented in the first row of the second
table. The tables are shown as intensity plots in which darker corresponds to
less error and also as contour plots in figures 38a and 38b. There is a distinct

global minimum at the position corresponding to the (0,—1,0) axis. Nearly all

the features had displacements corresponding to a rotation of 0.035 radians for this
axis. This was also the best axis and extent of rotation determined by the local
search using the extent of feature mismatch for features restricted to evaluating the

same displacements simultaneously. _ i
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o 1 2 3 4 5 6 1 8 9
6.407 6.966 6.252 5.557 5.241 5.384 5.208 5.252 5.810 6.377
7.004 6.507 5.961 5.472 5.479 5430 5.577 6.096 6.391
7.064 6.985 6.606 6.387 6.258 6.285 6.283 6.364 6.441
7.103 7.220 7.418 7.725 7.684 7.350 6.981 6.593 6.404
6.658 7.081 7.457 7.940 8.125 8.006 7.128 6.539 6.298
6.204 6.083 6.008 5.879 6.009 5.870 5.862 5.823 6.057
5.085 5.496 5.100 4.159 3.465 3.775 4.809 5.401 5.676 o
5.666 5.004 4.180 2.767 1.586 2.219 3.913 4.935 5.492 o)
5.566 4.753 3.762 2.347 0.998 1.966 3.327 4.632 5.444
5473 4.485 3.647 2.170 0.611 1944 3.279 4.399 5.386 ";-:_::.;

.,
W @ I O N ha W N = O

'. Table 6a. House Sequence 1 Error Values

10 11 12 13 14 15 16 17 18 19
0 | 6.311 5415 4.457 3.352 2.057 0.469 2.140 3.651 4.541 5.492
5.475 4.791 3.664 2.306 0.634 2.272 3.775 4.861 5.576
5.641 5.175 4.525 3.109 1.318 2.660 4.507 5.286 5.744
5.907 5.572 5.277 4.613 3.049 4.283 5.392 5.710 5.978
6.540 6.677 6.410 6.549 6.431 6.506 6.427 6.400 6.334
6.594 6.860 7.159 7.558 7.741 7.859 7.367 7.023 6.816
6.508 6.723 6.662 6.702 6.575 6.873 7.040 6.999 6.862
6.530 6.325 5.925 5646 5.568 5.940 6.309 6.698 6.878
6.444 5943 5399 5.184 5.285 5.351 5.821 6.371 6.908 ”f‘q
6.300 5.736 5.187 5.149 5.366 5.242 5.515 6.222 6.926

e
—

© W N O e W N

b Table 6b. House Sequence 1 Error Values °
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- Figure 38b. Intensity plot of Table 6b
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Motion Constrained to a Known Plane -— &
o
L If motion is constrained to a known plane, the translational axis must lie on a .
plane perpendicular to the rotational axis which contains the focal point. Therefore, :ﬂ&
r the FOE/C in the images are restricted to lie along the line determined by the ; .:l;
intersection of this plane and the image plane. There are two parameters to recover: . ‘
- . SRR
! the extent of rotation about the axis that is perpendicular to the plane at the focal T

' point, and the position of the translational axis in this plane. Both of these are
expressed as angles: 6, for the extent of rotation and 8, for the orientation of the

translational axis (figure 39a).
f
' b

9,

. Figure 39a. 6;, 6, parameters for describing planar motion.

b The error measure for this case combines the computation for rotation and

translation. For the rotation and translation corresponding to particular (6;,62)
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values, a feature is first positioned along its rotational displacement path using
bilinear interpolation for each pixel and then displaced along the translational dis-
placement path at equal increments to determine its best match. As in translational
processing, the interpolation for individual pixels is not performed for the trans-
lational displacement (figure 39b). The minimal match errors for each feature are
then summed. The error function in this case can be thought of as being mapped
on a cylinder with the 8; parameter, corresponding to the direction of translation,

wrapping around.

)
FOE

Figure 39b. Evaluation of image displacements corresponding to 8,6, values.
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*‘ Figures 40a and 40b show the grass sequence 1. The image in figure 40b of
sample grass texture was produced from figure 40a by rotating 0.1 radians about

the (0,0,1) axis and then translating along the (0,1,0" axis. Figure 41a shows 50

points which were selected at random from image positions where contrast exceeded

a minimal value. Figure 41b shows the displacements determined fér these points.
Figure 42a shows the resulting error function in terms of 4, and #; coordinates
as an intensity plot. Figure 42b shows the error function as a contour plot with 4
“ - ” indicating the local minima and “ + 7” indicating the local maxima. 6, - q‘
ranges from -0.15 to 0.15 radians in 0.01 radian increments. 62 ranges from 0.0

to 2 x 7 radians with 0.0 corresponding to the position of the translational axis at

(-1,0,0). The minimum in the error function corresponded to the correct values of -

the rotation and translation.
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Figure 40b Grass Sequence 1 Image 2
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Figure 42b. Contour plot of Error Measure.
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Known Planar Motion with Determined Image Displacements "

To process known planar motion for image sequences for which image displace- j
4}

ments have been computed, we use the error measure based on the properties of
composite image motions discussed in chapter III to describe the consistency of a

given set of image displacements with particular values of 8, and 4>.

Referring to Figure 6b in chapter III, for a given image displacement from image

point I,,; to I, its consistency with particular values of 6, and 6, is determined

by first applying the rotation specified by 6, to obtain a displacement from 1I,,; to
Ji (figure II1.6b). The angle between the vector J,,; — I,,; and the translationa!
displacement path line determined by the FOE/C corresponding to 8, and J,,;

W, § V.

reflects the degree of consistency. We actually use one minus the cosine of this

angle. Bv summing these values for a set of image displacements, the consistency

of the entire field is determined.

This procedure has to be extended slightly to deal with pure rotations. In this

case, the difference vector between the image displacement vector and the correct

rotational displacement vector will be quite short and behave erratically with re-
spect to the determination of the angle with the corresponding translational field
line. Pure rotational fields have two properties which we utilize to detect their oc-
currence. First, when rotational fields having the same axis but different extents of
rotation are subtracted from each other, the variance of the length of the difference .
vectors tends to be small. Secondly, the correct rotational field will minimize av-

erage length of these difference vectors. Thus, a purely rotational field is indicated

when the variance of the length of the difference vectors is small with respect to
g one of the rotational fields generated by the axis of rotation corresponding to the

known plane of motion, or the average length of the difference field is small. The

P
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T v

correct extent of rotation is that which minimizes the total length of the difference

vectors.

Ambiguities in Planar Motion

We have noted an ambiguity that occurs in the case of motion constrained to
a known plane when the focal length is relatively long and the axis of rotation is
roughly parallel to the image plane. In this case, the rotational component field
is very similar to a translational field with the FOE/C at infinity in the image
plane. The extent of displacements are also nearly identical. The effect of this is to
displace the translational component by some amount proportional to the direction
and extent of rotation. As a result, the composite field looks like a translational field
which could result from a wide range of translations and compensating rotations

(figure 43). The effect of this on the error measure is a trough of low error values.

Figures 44a-b are successive images formed using MOVIE BYU and are referred
to as House Sequence 2. 44a is identical to 37a while 44b was generated by translat-
ing along the (0,0,1) axis after the rotation shown in images 37a and 37b. Figures

45a and 45b show the error measure with 8, ranging from -0.05 to 0.05 radians and

6, ranging from 0.0 to 2 x m. The trough of low error values is apparent.
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House Sequence 2 Image 1
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Discussion

All of the extensions discussed for translational processing — hierarchical pro-
cessing, blur path extraction, independently moving objects — should be directly
applicable to the pure rotational case. There are some specific differences how-
ever. The blur path extraction is more complex in the rotational case because

the structure of the image displacement paths are conics instead of straight lines;

the necessary expression for the tangents to the image displacement paths in the
rotational case were derived in chapter III. While independently moving objects

may not frequently move in trajectories corresponding to rotation about an axis

positioned at the focal point, there is a related phenomena which may be of some - j
use in decomposing arbitrary motion. The image displacements of very distant, i
stationary objects or environmental features (like the horizon, the moon, the stars) _-'_ﬁ{-‘
will primarily be a reflection of the effects of the rotational sensor motion. Thus, if _

L

image features whose displacements are dominated by rotational motion could be
detected, the rotational parameters could be extracted, the image corrected, and

the translational parameters inferred by the procedures in chapter four.

These extensions should also be applicable to the case of pure planar motion
though with some complications. The blur paths are more difficult to characterize
in the planar case. The error function response also seems to have large flat areas
which would especially affect the processing of planar motion in restricted portions
of an image. Finally, the cases for which planar motion is ambiguous would be
serious for any of the discussed extensions and may require processing over several

frames.
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CHAPTER VI

1

THE LOCAL TRANSLATIONAL DECOMPOSITION

o Introduction

ey
.
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. )
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In this chapter we utilize the procedure for translational motion to process im-
age sequences produced by other classes of restricted and arbitrary sensor motion.

This is accomplished via application of the translational procedure to small image

T —

areas. This approximates more general motion as an array of local environmental

@
1

translations, and interprets local image motions as if they resulted from transla-

Ot i ©

tional motion of the corresponding portions of the environment. The feasibility of

this approach was demonstrated in chapter IV where the direction of translation

was extracted with reasonable precision from small image areas containing a few -
features. The resulting description of motion is an approximation to what we term i

the Environmental Direction of Motion Field (EDMF) which associates with a set

of image points (or small image areas) the relative direction of motion of the cor-
responding environmental points (or small environmental surface areas). This is a S
low level representation of environmental motion which considerably simplifies the

recovery of the sensor motion parameters.

This chapter consists of four parts. The first considers computing the Environ- =
mental Direction of Motion Field when image displacement vectors have or have -
not been initially computed. The second section describes EDMF properties for
;‘_ different cases of sensor motion. In the third section, these properties of the lo-
cal translational decomposition are used to process image sequences produced by

sensor motion constrained to an unknown plane in textured environments. In the
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fourth section, we develop a set of equations for environmental depth inferences

from image displacements based upon an assumption of environmental rigidity. We

then show how these equations may be solved using the EDMF.

Computing the Environmental Direction of Motion Field

The Environmental Direction of Motion Field (EDMF) is a low level description

of environmental motion which associates with each feature, or small image area, a

three dimensional unit vector describing the direction of motion of the correspond-

ing feature (or small surface area) in the environment relative to the observer. In

the continuous case, the EDMF can be thought of as a description of environmental

motion where only the orientations of tangents along the environmental displace-

ment paths are known. We consider first how to compute the EDMF and then how
. it can be used to recover sensor motion parameters and environmental depth.

Analysis of Raw Image Sequences

The procedure for translational motion described in chapter IV yields a set of
image displacements consistent with a determined translational axis. Application
of this procedure to a small area of an image containing extracted features will yield
a set of image displacements consistent with an interpretation of the local image
motion as a relative translation of that corresponding part of the environment. Note
that where the translational approximation is poor there will be a large value of the . .
error measure reflecting the weaker confidence in the validity of the approximation.
It is also necessary to incorporate information concerning the number and distribu-

tion of the feature points in the local image areas for this evaluation. For example,
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if there is only one feature in a small area or the features are bunched together, then
the translational approximation would be suspect. The further processing of the

EDMEF should not utilize local areas which do not have satisfactory characteristics.

This use of the translational procedure can be seen as a local constraint on the |
determination of image displacements. Typically, most such constraints are based o

upon gmoothness of the resulting displacement field [Barn80, Glaz81, Horn80|,

where image displacements are computed under the constraint of being a local

RN - B

T W YT
Yo @
|
i

average of the displacements in their surrounding neighborhood. In our case, image
displacements are determined such that the corresponding environmental motion
can be interpreted locally as being translational. Note that this constraint does not

necessarily imply local smoothness in the displacement field.

Computing the EDMF from raw image sequences depends upon how the images ;
are divided into subareas. The image could be divided into small, regular, square

subareas across the image and the procedure for determining the axis of translation

LA e R L osiom, S St

is applied to each subarea independently. Alternatively, the procedure could be

applied to individual regions determined by some segmentation procedure. In our

SR
o

work io date, we have used another approach in which the image subareas are neigh-
borhoods centered on single features and the computation is applied independently

over the neighborhood of each feature.

Computing the EDMF can be expensive for such feature-based neighborhoods

since the feature displacements of many points are being determined simultaneously

: for different, overlapping, image subareas. An approximation is used to simplify }

this computation. For each feature, its best match and corresponding displacement

.L. along each of a set of radial directions are determined from one image into the next.
IL These values are then stored in a 1-D array where each index corresponds to a
E particular radial direction centered at the feature and the associated best match
.
.
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This set of values is then used for all the translational computations employing
this feature in its various neighborhoods. To determine the value of a particular
translational axis with respect to a the neighborhood of a feature, each feature in
the neighborhood finds its best match along the direction closest to that determined
by the translational axis and the resulting values are then summed up. In this way,

redundant evaluations of feature matches are avoided.

Figures 47a-b are referred to as the Grass Sequence 2. Figure 47a is a 128x128
pixel image of some grass texture with seven bits of intensity. Figure 47b was
derived from figure 47a by applying a rotation of 0.1 radians about the Y axis of
the camera coordinate system described in chapter III. The focal length was set
to one and bilinear interpolation was used. Features were selected from the image
in figure 47a by determining image points where the contrast was greater than
20 intensity levels and which were also local maxima in the distinctiveness values
associated with 5x5 pixel square features centered at those points. The resulting

feature positions are shown in figure 48.

The direction of translation was determined for 11x11 pixel neighborhoods cen-
tered at each feature in figure 48. Each feature determined its best displacements
in 256 evenly spaced directions for distances of up to 10 pixels. The image dis-
placement associated with a feature was the displacement that was consistent with
the FOE/C determined by the translational approximation for the feature’s neigh-
borhood. The resulting image displacement field is shown in figure 49. As can be
seen from the discussion in chapter III, it has the correct form for rotational motion

about the Y -axis.

Figure 50a-c show the (X,Y, Z) components of the EDMF for the corresponding
image points. The valuesin the EDMF are between 1.0 and —1.0 since it consists of

unit vectors. Note that all the features have displacements in the same X direction
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(Figure 50a) because the camera rotation about Y induces all points to move left

or right. The Y displacements were all very close to zero (consistent with motion
constrained to planes parallel to the Y -axis). The mean Y displacement was -0.003

(figure 50b). The Z components are positive for the right half and negative for the -

el
left half of the image (figure 50c. The scale of the display has also been increased). -7
This motion occurs in pure rotation about Y because the environmental motions * 1

[ - lie on circular paths with one side going away from the observer and the other side

going towards the observer.
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‘ Figure 47b. Grass Sequence 2 Image 2.
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Figure 48. Selected Features.
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Figure 49. Determined Image Displacements.
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Figure 50a. Computed X Component of EDMF.

Figure 50b. Computed Y Component of EDMF.
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Figure 50c. Computed Z Component of EDMF.

Analysis of an Existing Displacement Field

| To compute the EDMF from image sequences for which image displacements

i have already been determined, it is necessary to use the modification of the error o
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measure from chapter IV discussed in the section on the prrcessing of translational -

blur paths. The error associated with a particular translational axis is a function
of the angles between the image displacement paths determined by the FOE and
the image displacement vectors. The function employed is the sum of one minus
the cosine of each such angle, Z;Y(I.O — cos8;). To compute the EDMF, the
translational axis is determined by applying this error measure, minimized as in

o chapter IV, to local areas of a computed displacement field.

! Figure 51 shows a 32x32 image displacement field produced using a spherical

L distribution of environmental points about the Z-axis. The observer is looking

into the interior of a sphere with noise modulation added to the depth values of

E.. the points in this figure. This noisy sphere was rotated 0.1 radians about an axis B
t tangent to a point on the back of it along the (1,1, 1) axis. Note that this field was
; generated by an axis of rotation that was not positioned at the origin of the camera
coordinate system. Each image point was the center of a 5x5 neighborhood over .
which the translational procedure, using the adapted error measure, was applied. ‘

Figure 52a-c show the X, Y, Z components of the computed EDMF and the

'Yv—H

correct EDMF, encoded as intensity with —1 being darkest, 1 the brightest and
the neutral gray intensity along the border is 0. Figure 53 shows the values of
the error of the translational approximation. Note how the approximation is poor
where the field has a rotational character with vectors at very different orientations

in a small area.
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Figure 52a. Computed X Component of the EDMF.
Figure 52b. Correct X Component of the EDMF.
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Figure 52c. Computed Y Component of the EDMF. -

Figure 52d. Correct Y Component of the EDMF. 1
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Figure 53b. Surface plot of Error of Approximation.
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Computing the EDMF From Sparse Flow Fields

It may be possible to compute the EDMF from sparse displacement fields by
applying an interpolation process [Glaz83b, Grim81, Terz82, Terz83] to produce
a field of adequate density and then applying the techniques above. Some initial
experiments have been performed to test this possibility, and they have shown a
correlation between field density and the reliability of the approximation. The
primary difficulty with very sparse fields is that the interpolation processes produce
large areas of parallel displacements about the given image displacement vectors
upon which the interpolation is based. This resulting flow field can be very different
than the actual flow field from which the points were sampled, and therefore result

in a poor approximation to the actual EDMF.

EDMF Properties for Different Cases of Motion

To describe EDMF properties for different cases of motion, it is useful to map
all the EDMF vectors onto the direction of translation sphere. In Chapter IV,
the direction of translation sphere was used as the domain of the error measure.
Here it is used in a manner similar to a histogram. Each EDMF vector votes for
a particular point on the direction of translation sphere. Processing then involves

finding certain patterns in the distribution of the EDMF vectors.

EDMTF Properties of Pure Translational Motion

As discussed previously the image displacement paths for translational motion
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‘ are straight lines intersecting at a point. The environmental displacement paths are
| straight, parallel lines. All the vectors in the EDMF are identical and map onto a
single point on the direction of translation sphere corresponding to the translational

axis.

)

EDMF Properties of Pure Rotatioral Motion

For pure rotational motion of the camera, the image displacement paihs are
conic sections determined by the intersection of the image plane with the nested
family of cones aligned with the axis of rotation based at the origin of the camera -
coordinate system. The environmental displacement paths are circles about the
axis of rotation and are contained in planes perpendicular to it. When mapped

onto the direction of translation sphere, the EDMF vectors will lie upon a great

R circle contained in a plane perpendicular to the axis of rotation.

EDMF Properties of Motion Constrained to an Unknown Plane

For this case, the environmental displacement paths are circles in planes per-

pendicular to the axis of rotation, but the axis does not necessarily contain the

. origin of the coordinate system (see the discussion of kinematics in chapter 1 of
[Whit44]). As for the rotational case, the EDMF vectors will lie on a great circle

R
in a plane perpendicular to the axis of rotation when mapped onto the direction of T Lj
i

translation sphere. °
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EDMEF Properties of Arbitrary Motion S |

For arbitrary motion, the image displacement paths cannot be easily described.
However, the environmental displacement paths are helices about an axis which does
not necessarily contain the origin (since a screw displacement is the most general

form of a rigid body motion [Coxe61, Whit44}).

The set of normalized tangent vectors to a helix, when based at a common
origin, will generate a cone which we term the tangent cone, The orientation of
this cone specifies the axis of rotation. The set of tangent cones determined by a

rigid body motion for all points in space will all have the same orientation. Note

that the difference vectors between any vectors of a tangent cone will lie in a plane
perpendicular to the axis of rotation. Thus, the EDMF produced during arbitrary
motion has a particularly nice property if the rigid body motion is constant over
two or more intervals. For such motion there will be successive environmental direc-

tion of motion vectors associated with each image point, and the difference vectors

PSRN IC O SRR R

between these successive EDMF vectors will lie in the same plane, perpendicular to

the axis of rotation, for all image points.

In general, by mapping the EDMF onto the direction of translation sphere,
the local differential properties of the EDMF are not being utilized. Such things
as the extent of rotation can be recovered, or at least strongly constrained, by
analyzing the local changes in the orientation of the EDMF vectors either spatially
(over a small area of an image) or temporally (over successive inter-image intervals).
Consider the case where the parameters of motion remain constant over successive

intervals. Here, the angle between the successive EDMF vectors associated with

an image point will be equal to the angle of rotation. This angle will be the same ]

for all points in the image sequence and suggests a potentially robust technique for

......
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r determining the extent of rotation by finding the mean angle between successive

EDMF vectors. For a single EDMF and image displacement field, this technique

could be extended by predicting the EDMF vector for a point in the next interval

by interpolating the value in the EDMF at the position determined by the head of

the image displacement vectors.

Processing of Motion Constrained to an Unknown Plane

The EDMF produced by motion constrained to an unknown plane leads to a
particularly simple algorithm. For this case there is one constraint on the inference
of sensor motion parameters: the axis of rotation is perpendicular to the axis of
translation. This corresponds to inferring four independent parameters: the ro-
tational axis, the extent of rotation and the position of the translational axis in

E the plane perpendicular to the axis of rotation. All of the EDMF vectors are con- .

strained to lie in a plane which is parallel to the plane of environmental motion.

.

By calculating the EDMF vectors and fitting a plane to them, the plane of motion

and thus the axis of rotation can be recovered. If the motion occurs over several CY

@

successive instants and remains constrained to the same plane, then the vectors

in ihe successive EDMFs are also constrained to lie in a plane parallel to it and ~ j

containing the origin on the direction of translation sphere. Thus, more and more 2 1

- values for the fit can be collected over time, thereby increasing the accuracy of the - .f
processing. The extent of rotation can then be recovered by techniques for pro- ]

cessing motion restricted to a known plane described in chapter VI. The processing :

is further simplified since the image displacements have already been computed or .1

were determined from computing the EDMF. ]

The best planar fit to the EDMF vectors can be found using any of a number j

° .1
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of plane fitting routines. In the experiments here, an eigenvector fit procedure (de-
scribed in [Duda73] pp. 332-335) is used, having been adapted for planes containing
the origin. Once the plane of motion is determined, the algorithm for processing
known planar motion from a computed displacement field is used. We now consider

gsome examples.

The grass sequence 2 from this chapter involving pure rotation is a case of
motion constrained to a plane since the environmental displacement paths all lie
in planes perpendicular to the axis of rotation. Using the EDMF determined for
the grass texture sequence described above, the normal to the best plane fit was
(.003,.999,-.014). This is in error by .015 radians, or .836 degrees, from the correct

rotational axis.

Using all the EDMF vectors determined for the flow field in figure 51 in the
plane fitting procedure, the normal to the plane of motion i8 determined to be
(.647, .544, .534). This deviates from the correct axis by .089 radians or 5.078
degrees. This fit can be improved by removing vectors from the EDMF for which the
corresponding local FOE/C yields a large error, and therefore a poor translational
approximation. For the EDMF vectors computed from the flow field in figure
51, the error value is equal to the sum of the angles between the flow vectors
in each 5x5 neighborhood over which the EDMF vector was determined and the
displacement paths corresponding to the translational axis which minimized the
error measure. We can thus express the validity of a computed EDMF vector by the
sum of these deviation angles. Figure 53 shows the error values in the translational
fit proportional to image darkness. Note that the greatest errors occur where the
image displacement vectors have a rotational character. By restricting the planar

fit to EDMF vectors for which the sum of the deviation angles corresponds to less

than some threshold (90 degrees in this example) of error relative to the determined
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translational field lincs over the 5x5 pixel neighborhoods, the normal is determined
to be (.579462, .583347, .569148). This deviates by .010380 radians or .594798
degrees from the correct rotational axis. Thus, the high error measure values have
been used to remove the rotational-like displacements in the center of the image.
The error histogram derived from the flow field in figure 51, assuming motion to be
constrained to this plane, is shown in figure 54a and 54b. In the contour plot (figure
54b) a “ - ” indicates a local minimum and a “ + ” indicates a local maximum.
The correct rotation was selected from the histogram; (the rotational parameter
was varied from -0.15 to 0.15 radians in 0.1 radian increments). The determined
rotational field is shown in figure 55a and the translation field which results from
subtracting the determined rotational field from the original displacement field is

shown in figure 55b.

T
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Figure 54a. Error Histogram for Simulated Flow Field
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Environmental Inference via EDMF and Rigidity Constraints

A basic paradigm in computer vision is to take an environmental property
and express it in terms of the constraints it imposes on resulting image structures
[Barr81]. These constraints are then expressed as equations whose solution deter-
mines an interpretation of image events consistent with the assumed environmental
properties. In this section, we utilize the constraint of environmental rigidity to
derive a set of equations whose solution determines a set of environmental depths
that are consistent with given image displacements. We show the conditions under
which solutions to these equations are possible [Lawt80, Meir80, Ullm79, Webb81|
for general motion and how these conditions are affected for restricted cases of mo-
tion. We then show how the equations for unrestricted motion are significantly
simplified when information concerning the direction of environmental motion is

also utilized.

Development of Rigidity Constraints

For this development, we refer to the camera model described in chapter III.
Equation 1 from chapter III can be used transform expressed relations between en-
vironmental points into a set of equations in terms of image position vectors and
unknown Z values which corresnond to the environmental depth values. Solutions
to the resulting equations yield a set of Z values which provide a consistent in-
terpretation over time for the positions of the corresponding set of environmental

points.

The basic relation for interpreting environmental motion is the assumption of
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rigidity which reflects the invariance of distance between environmental points dur-
ing motion. For two points ¢+ and j on a rigid body at times m and n, this

preservation of distance is expressed as

—
'

”Pmi - ij“ = ”Pm' - Pnj” (16)

which can be expanded, by using the substitution specified by equation 1 from

chapter III and squaring both sides, into the image-based equation

PP P P
-

z?m‘(lm:' i) + zsnj(lmj : Imj)

>

—‘zzmizmj(Imi : Im]) - 2'2"-(1,"- ' Im')

—22 (L; - Inj) + 22niznj{Ini - Inj) = 0 (17)

,vvﬁv,yr‘f‘ﬁ\;-"v

where the inner-product terms in parentheses are constants determined from the
positions of image points. To determine a solution, we will find the minimum

number of points and frames for which the number of independent constraints (in

T

the form of equation 17) equals or exceeds the number of unknown Z values. It is
then necessary to solve the resulting set of simultaneous equations. Note that each

such constraint is a second degree polynomial in 4 unknowns.

We begin with the number of unknown Z values. For N points in K frames
(where N > 2 and K > 1), there are (NK — 1) unknown Z values. The decrease

by one in the number of unknowns reflects the loss of absolute scale information.
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Thus, one of the Z -values can be set to an arbitrary value which can be recovered

from the actual sensor displacement if such absolute measurements are available.

The number of rigidity constraints generated by a set of N points in K frames
is the product of 3 x (N —2) and (K —1). The first term is the minimum number
of unique distances which must be specified between pairs of points, in a body of
N pcints with no three points being collinear, to assure its rigidity. Thus, 4 points
require 6 pairwise distances (all that are possible). For configurations of more than
4 points, it is necessary to specify the distance of each additional point to only
3 other points to assure rigidity. The second term is the number of interframe
intervals, with each interval providing a set of additional constraining points. Each

distance specified must be maintained over each interframe interval.

A solution is possible when the number of constraints is greater or equal to the

number of unknowns. This occurs when:

2NK-6K -3N+7>0 (18)

Thus, minimal solutions can be found when N = 5 and K = 2, producing nine

constraint equations or when N = 4 and K = 3 producing 12 constraint equations.

Rigidity Constraints Applied to Known Planar Motion. As one would expect,

the rigidity constraints are simplified by adding restrictions on allowable motions
of environmental points. For example, consider motion constrained to a plane.
For simplicity, we will assume that it is parallel to the XZ plane of the camera
coordinate system, but an appropriate transformation can be applied so that the

results are valid for motion constrained to an arbitrarily oriented, but known, plane.
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Here, the Y component of an environmental point is assumed to remain constant

over time. For a point i at times m and n, this is expressed as

Ymi = Zmibmi = Zpibni = Yai (19)
and solving for z,; yields
2ni = zmi(bmi/bm') (20) .,v
; This allows a substitution for points ¢+ and j in equation 17 which simplifies (at
m least in terms of the number of unknowns) the rigidity constraint to _
L b
. zrzm'((lmi ) Imi) - ('bﬂ?')z(lm' ) Ini))

422, (I Ioj) - (%-'3;5)2(1..,-- I.,)

+2m£zmj(2((:—':f)(%:_;)(lni Inj) = Imi - Inj)))

=0 (21)

The planarity constraint has removed two unknowns. Note that the bracketed
expressions are again constants that can be determined from the locations of the

image points. This equation can be solved given two points in two frames. Thus, for
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K points 3+ and j at times m and n with the corresponding unknown depth values
Zmiy Zmj, Zni, Znj, €quation 21 reduces these to a system of 2 unknowns, z,,; and
Zmj. One of these variables, say z,,;, can be set to an arbitrary value, reflecting

scale independence, allowing 2,,; to then be determined by solving the quadratic

-
in terms of z,,;.

Rigidity Constraints Applied to Translational Motion The constraint imposed
by translational motion of points 1+ and j on a rigid body at times m and n is
expressed by

Ppi — Ppj = Ppy — Py (22)
i which is similar to equation 16 except the operation is vector subtraction reflecting
the preservation of length and orientation under translation. Setting z,,, to a
constant value 1, to reflect scale independence in equation 22, yields 3 simultaneous
) linear equations in 3 unknowns
(ami) bmi: 1) = zmj(amj’ bmjs l) + zm'(am': bm" 1) - znj(anj, bnj, l) (23)
Thus, not surprisingly, environmental inference from translation requires 2 points
7 in 2 frames.
]
ot
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Solving the Rigidily Constraints using the EDMF

The rigidity constraints can be significantly simplified when they are integrated
with information concerning the environmental direction of motion from the local
translational decomposition. To do this the EDMF is used first to find consistent
relative depths for single points over successive images. Consistent relative depths
for several points are then determined by scaling the particular depth values for the

individual points using the rigidity constraint.

imaoe Plane

Focal Point

Figure 56. Relative Depths for a point over time from the EDMF.
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We first examine the use of the EDMF in the determination of consistent relative
depths for a single point over time. Consider the image position vectors I,,; and
I; (for the successive image positions of point i at times m and n) and the
environmental direction of motion associated with point ¢ at time m, E,,;. (Figure
56). Assuming the ideal case, in which there is no error in any of these cuantities,
the EDMF vector E,,; will lie in the plane determined by I,,,; and I,,;. Thus, given
a depth z,,; along the ray of projection corresponding to I,,;, one can find a depth
value z,; along the ray of projection associated with I,; from the intersection of
the lines P,,; +tE,; and z,;I,;. In the usual case of error in these measurements,
these lines will not intersect because they are skewed in three dimensions. In these
r instances we can solve for the line segment which is perpendicular to both of these
lines. Let us express the point along the ray of projection determined by I,; which
is closest to the line determined by the point P,,; = z,;I,,; and the direction of

motion E,,; from the EDMF:

((zmilmi + tEmc') - (zm'Im')) - Emi =0

((zml'lmi + tEmt') - (zm'Im')) ' Im' =0 (24)

—iraaa®

which simplifies to

.
K I

-]

t(Emi - Emi) — Zni( B - Ind) = — 2mi(Imi - Emi)

t(Emi . Im’) - zni(Im' ' Im’) = _zmi(Imi : Im') (25) R

o

These equations can be expressed in terms of the ratio of the relative distances
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along the successive rays of projection consistent with the environmental direction

of motion E,,; (and treating ¢ as a dummy variable)

t(Emi : Evm') - rmm'(Emi ' Ini) = (Imi‘ ' Em")

t(Emz' : Im') - rmm'(Im' : Im') = (Imi ' Im') (26)

where

Zmi

Tmai =
ne

This yields the relative depths of a single point over time. We now use the
rigidity constraint to detetrmine the appropriate scaling of each of these ratios for

all of the points.

Assume we have two points 1+ and j at times m and n. Let z,; be set to an

Zn

arbitrary value. Then, z,; may be obtained by the product z,,; X fimpj = 2Zmj X 2£
my

where the ratio r,,; is obtained through the relation expressed in equation 26.
This yields the environmental points P,; and P,;. We can now use the rigidity
constraint to determine a scale factor expressing Pp,; = Zpmilms and Py = 24,1, =

ZmiTmnilni in terms of Pp,; and P,; Substitution into the rigidity constraint yields

2mi Imi — ij” = [|2miTmnilni — Pnj“ (27)

where z,,; is the scale factor. Equation 27 can be expanded as

r
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zsmi((lmi . Imi) - (rmm'Im' : rmm'Im'))

+((ij ’ ij) = (Pnj : Pnj))

».
' _zzmi((Imi : ij) - (rmm'Im' : Pnj)) =0 (28)
The resulting equation is quadratic in one unknown. Thus, given successive depth
values determined for a particular point from its EDMF vector, consistent depths
can be determined for every other paur of successive depth values by solving this
‘ equation for each resulting pair of points. ]
D

In summary, given a flow field and an EDMF, a pair of depth values for each
image point at successive instants m and n can be found which are consistent
with the determined EDMF vectors describing motion from time m to n. These
are relative depth values, and hence may be scaled arbitrarily and inferred from <Y
equation 26. Once these relative, successive depth values are determined for each
point, they may then be scaled relative to a selected point whose depth is arbitrarily

u set by solving equation 28 for each point paired with this selected point. There is

a great deal of redundancy for optimization procedures to exploit. Several depth

.,
® L
Yoy | ] LY ah A L 4 v3

maps can be computed (one for each selected image point) and the certainty of a
particular depth inference would be based upon agreement in the relative depth =]
values in all the resulting depth maps. If there are further spatial constraints, such
as motion relative to a planar surface, all the determined depth maps would have to iff::-,
be in agreement with respect to the shape. For example, all the determined depth -

maps for a plane would have to correspond to a single plane at the same orientation. °

This work shows that if the EDMF can be reliably computed, it is a very useful

low level representation for rigid body motion analysis. This is p«-ssible for densely

PP T T U




textured image sequences for which the camera motion parameters to be recovered
correspond to motion constrained to an unknown plane. The local translational
decomposition may also be applicable to inferring qualitative descriptions of non-
rigid motions by noting certain patterns in the relative directions of motion as would

typify such motions as expanding or twisting.
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SUMMARY AND FUTURE WORK )
w. . ®
’ {
We summarize the major contributions of this thesis and many of the questions e
it raises for further study. We shall conclude with a consideration of two major areas
for future research that are intimately related to motion processing: architectures
. for real-time processing and image interpretation in the domain of dynamic road . J
o
scenes. ]
B Summary ]
®
The review of work in dynamic image processing in chapter II stressed a basic
problem in motion research. There has been a discrepancy between the precision
‘ ) and reliability with which image displacements can be determined and the sensi- @
1
tivity of the environmental and sensor motion inference procedures to such noise .
and resolution errors. In addition, there are open questions about the stability of 1
the inference procedures themselves. We noted that this has limited the practical —-;3
applications of dynamic image processing in domains where its use is fundamental.
In chapter IV we developed a procedure for processing translational motion.
The most important feature of this procedure is that the determination of the im- .‘
age displacements, the direction of sensor motion, and environmental depth are ]
1
combined into a single, mutually constraining computation. The procedure consists 1
1
’ 175 - o
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of two basic steps: Feature Extraction and Search. The feature extraction pro-

cess finds small image areas which may correspond to distinguishing, and therefore
trackable, parts of environmental objects. The direction of translational motion
is then found by a search which minimizes an error measure defined over a unit
sphere, with each point on the sphere corresponding to a different direction of sen-
sor translation. A given direction of translation constrains the motion of extracted
image features to straight lines which radiate from or converge onto a single point
in the image plane. Thus, the error measure associates a point on the unit spkere,
corresponding to a particular translational axis, with a number describing the de-
gree of total feature mismatch along the set of displacement paths determined by
the translational axis. Experience has shown this error measure to be smooth and
with a distinct minimum in a large neighborhood about the correct translational
axis. This allows simple search procedures to be effective. Experiments were pre-
sented which indicated that the algorithm was robust in a variety of ways. It could
function effectively with weak or false features, with a small numbers of features,

and even with a small number of features in limited portions of an image.

Many extensions and possible areas of further work were also discussed, and

we mention two, here, that are of particular interest. First, the procedure should

be developed to extend over multiple frames. The determined translational axis,

{ image displacements, and environmental depth values should be used to constrain
-
L ¢ further processing and feature extraction in a manner that will allow refinement
{ in the accuracy of sensor motion parameters and the environmental depth map.
s Second, a theoretical formulation is necessary to develop a more complete, analytical

« understanding of the robustness of the procedure.
!
[ In chapter V we considered other extensions to the translational procedure in-
{ cluding its embodiment as a hierarchical computation; processing translational blur
[ q

q
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paths; dealing with multiple independently translating objects; and using the trans-
lational procedure for autonomous vehicle control by having a stabilized sensor or
associated devices to determine the rotational parameters. The hierarchical exten-
sion was found to significantly increase the speed of the procedure, since it reduces
the number of feature correlations that are necessary along potential translational
displacement paths. There are still a variety of alternatives to be investigated
before the most effective implementation of the hierarchical computation will be
thoroughly understood. We showed that the processing of translational blur paths
could be performed by a simple extension of the error measure used in chapter IV.
The extensions discussed for multiple, independently moving objects were based
upon the similarity of the translational procedure to generalized Hough transforms
and the limited image areas necessary for the procedure to function. Finally, the
incorporation of the procedure with sensor stabilization and rotational dispiacement
sensing devices has exciting implications for passive-sensing based autonomous ve-

hicles.

In chapter VI we successfully processed other simple cases of restricted motion,
pure sensor rotation and motion constrained to a known plane, for which it was
computationally feasible to search . .rough the subspace of the sensor motion pa-
rameters for values that are consistent with image feature displacements. For pure
sensor rotation the dimensionality of the search increased over the translational
case, but was compensated for by the additional constraint that the extents of all
feature displacements were identical. We noted a typical case of planar motion,

quite common to terrestrial motion, which is inherently ambiguous.

In chapter VII we showed how to process sensor motion by applying the pro-
cedure for translational motion to local areas of images. This yields a low level

description of motion that we termed the Environmental Direction of Motion Field

. al
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(EDMF) which associated a relative direction of environmental motion between
features from restricted image subareas and the sensor. We showed how to pro-
cess the case of motion constrained to an unknown plane using the constraint that
all the EDMF vectors are constrained to lie in this plane. This constraint forms
the basis of a robust computation to recover the parameters of sensor motion in
this case. We discussed the recovery of the parameters of sensor motion from the
EDMF for general sensor motion. We developed the rigidity constraints which ex-
press the inference of environmental depth from displacement fields by exploiting
the preservation of object rigidity during motion. We showed that these constraints
were directly solvable for restricted cases of motion and that this was also possible

for arbitrary motion when information from the EDMF was incorporated with the -

rigidity constraints.

There are several aspects of the work in chapter VII that require further explo-
ration. The processing of unrestricted motion should be evaluated with respect to .
the required accuracy of the set of direction vectors in the EDMF. It may be possi-

ble to derive qualitative inferences more robustly. This is also related to the way in

which the EDMF . computed. We investigated only one of the techniques that were
discussed, the case where image subareas are centered on individual features. In =
another of the suggested techniques, the subareas are formed by dividing the image |
into regular, nonoverlapping subareas and applying the translational procedure over
each of these. In this case, the EDMF would not be associated with a particular
environmental point, but with a larger environmental area, thcreby reducing the

resolution in the EDMF.

Direct solutions to the rigidity constraints should also be studied further, since
our formulation of the rigidity constraints was developed some years ago [Lawt80] -

and was not explored beyond noting that the equations were tractable using simple
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._ iterative optimization techniques and that the solutions were multimodal in the
cases of minimal numbers of points and image frames. What, for example, are the
effects of using multiple images and a greater number of points? Additionally, there
has been interest in using optimization procedures based on simulated annealing
[Kirk83)] to solve these equations. These techniques have shown an ability to deal

with multimodal error surfaces in very high dimensional spaces.

Future Work

Architectures for Translational Motion P .

The translational procedure that we have developed offers an attractive possi-

. bility for real-time implementation of a motion processing system. The architecture
. is a straightforward design consisting of multiple independent processors, each as-
sociated with a unique, disjoint set of features. Each processor determines the

displacement and extent of error for its features along the translational displace-

ment paths specified by a given FOE/C. The processors are then coordinated by
a global search executive which specifies a particular FOE/C, sums up the error
responses of the multiple processors, and determines which translational axis to be
evaluated next. The critical parameters for effective implementation are the speed
- with which a feature’s displacement can be determined along its displacement path
- by its associated processor and the number of times the error function must be
evaluated to determine the translational axis to sufficient accuracy. Experiments

3 with the translational procedure indicate that, outside of pathological cases, fewer
than 50 evaluations of the error function will be sufficient and even fewer when the

translational axis has been initialised by previous processing. Preliminary timing
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studies using Motorola 68000 processors (10 megaherts minor cycle time) to deter-
mine feature displacements indicate that the necessary processing rates are feasible

[Levi83).

mage Int

Research often advances by the stimu'ating problems that are found in a wisely
chosen task domain. The VISIONS system [Hans78] used outdoor house scenes as a
guiding incentive to develop procedures and representations necessary for complex
imagery. A domain that we feel would be challenging, yet one in which achiev-
able results would be possible, is the interpretation of outdoor road scenes along
highways and country roads as seen from a moving vehicle. This domain is quite
tractable under assumptions consistent with a variety of the algorithms presented
in this thesis. The assumed constraints might include the vehicle constrained to
translational motion or constrained to a plane; a stabilized sensor or knowledge of
the rotational parameters; sensor and object motions constrained to slowly changing
translations; or motion of independently moving objects constrained to a roughly de-
termined plane. This domain forces us to address interesting questions such as how
to achieve dynamic segmentations using the temporal behavior of complex image
structures over time, the incorporation of object-speciﬁc semantics into recognition
using environmental depth and image motion information, and predicative process-
ing from a model which is established by temporally extended inferences. Thus, a
whole new set of issues arise as a full road scene interpretation system is developed
which integrates motion and static interpretation into a goal oriented perceptual

system in a dynamic environment.
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greatly simplify the recovery of sensor motion parameters. We also develop
the constraints associated with object rigidity in determining the inference
of sensor motion parameters, and then show how these constraints are
simplified by information in the EDMF.

We conclude with a summary of the major results of the thesis and
mention future work, chiefly in the areas of architectures for real time
motion processing, and applications to more challenging and specific domains.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Deate Entered)

- v v o' = = 7V

e




F gt R we b Ml S Sngier e i St 3 g BR R 420 IORAINRLINE SN ACI o - Dty Bk Jiatt Bt g JP i i ) U o AR gl Rl oK o

TaFPa“aT A7 N 1M L 1Te . TR LB B, 4

——p—

il
@

—

>

L e, N . PR e L
S e e " . 00 SN o e N
[ S P TP PRI IV B WP S e b Ny P, O VAT SV . . V. v




