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correlation function as a distance measure between the histogram of the input

image and a set of training histograms. Binary Connectivity Analysis analyzes
the connectivity of an object's silhouette and uses the resulting image features

to determine orientation. Ellipse Fitting uses the parameters of an ellipse in
the image to specify the orientation of the corresponding circular object surface.
Location of the image ellipse is accomplished by exploiting knowledge about

object boundaries and image intensity gradients. -.

The orientation information from each of these three methods is combined using
a "plausibility" function. This probability-based, sub-optimal, decision rule --
employs weighted sums of joint conditional probabilities to enhance robustness.

The conbined techniques for estimating orientation were tested on 138 images of
transistors. The limitations of this research, and suggestions for further study,
are also discussed.
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Abstract

Three techniques are presented which use assumptions about the real world to
determine the orientation of objects from a single visual image. The orientation
information from each of these techniques is combined to provide a more accurate
estimate of object orientation. This algorithm is applied to the task of estimating
the orientation of a single transistor against a uniform, but contrasting, background.

Three techniques are proposed for estimating object orientation. Histogram
Template Matching employs a nearest-neighbor classifier using the normalized cor-
relation function as a distance measure between the histogram of the input image
and a set of training histograms. Binary Connectivity Analysis analyzes the con-
nectivity of an object's silhouette and uses the resulting image features to determine
orientation. Ellipse Fitting uses the parameters of an ellipse in the image to specify
the orientation of the corresponding circular object surface. Location of the image
ellipse is accomplished by exploiting knowledge about object boundaries and image
intensity gradients.

The orientation information from each of these three methods is combined using
a "plausibility" function. This probability-based, sub-optimal, decision rule employs
weighted sums of joint conditional probabilities to enhance robustness.

The combined techniques for estimating orientation were tested on 138 images
of transistors. The limitations of this research, and suggestions for further study,
are also discussed.
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Chapter 1

Introduction

1.1 Objectives

Given a single two-dimensional image of a three-dimensional object, humans can
usually infer the three-dimensional shape ,and orientation of the object in the scene.
This feat is accomplished in spite of the fact that there is no unique correspondence
between an image and its corresponding scene. The ability of humans to infer
three-dimensional shape seems to indicate that humans employ assumptions about
objects and image formation to aid the vision process. The assumptions made are
usually learned from basic physical reasoning and a lifetime of visual experience.

The objective of this study is to analyze a number of techniques which use as-
sumptions about the world in order to estimate the orientation of objects. The
orientation information from each of the these techniques is then combined to pro-
vide a single, more accurate estimate of object orientation. This algorithm is applied
to the task of estimating transistor orientations.

The focus of this work addresses only a limited subset of the problems which are
relevant to the field of computer vision, however, the work is not without practical
significance. Many industrial applications of computer vision rc.uire fast, accurate,
classification and orientation of known objects.

0
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1.2 Background

It is the purpose of this research to examine techniques which may be applicable
to the determination of 3-dimensional object orientation from a single view. This
problem has been addressed in the field of computer vision, and a brief review of

the relevant research is in order.

Early attempts at computer vision employed a pattern recognition approach
based on simple image features [Rosenfeld 1969] [Levine 1969] [Duda 1973] [Fuku-
naga 1972]. This approach is designed to classify input images into predetermined
categories. First, a set of feature values is extracted from an input inage and then
classification is performed on the basis of statistical decision rules in the feature
space. For the purpose of determining orientation, the range of object orientations
may be divided into a number of individual orientation classes. Although there is
a large body of well-developed theory concerning the creation of optimal decision
rules, pattern classification methods are limited in their applicability. In compli-
cated problem domains, it is not always possible to determine a set of useful image
features which can be extracted reliably. The application of classification techniques
also requires the use of task dependent a priori knowledge in order to determine
the appropriate decision rule.

The problem of determining object orientation has also been addressed through
the use of object modeling [Roberts 1965 [Agin 1973] [Brooks 1981]. If a complete
three-dimensional model of the object is available, it is possible to hypothesize a
number of object orientations based on low-level image features and then match the
model to each of the hypothesized orientations. The orientation which provides the
best match is selected as the orientation of the object.

A more general set of methods for determining object orientation can be found

in the so called "shape-from" methods. These techniques employ only very general
assumptions about the world in an effort to obtain local surface orientations. Shape
from shading [Horn 1975] uses the variation of image intensity to infer local surface
orientation by exploiting knowledge about the physical process of image formation
and by assuming that real world surfaces are discontinuous only at object bound-
aries. Similar assumptions can be used to infer shape from texture[Kender 1980] or
from occluding contours [Marr 1977].

The approach taken in this paper borrows from many of the techniques men-
tioned above. It has been assumed that some a priori knowledge about the object
is available, but that a full model of the object is not necessary. The approach usedF.- has been specifically designed to be able to perform on real-life images, which often
defy simple theoretical frameworks. There has also been an effort to combine the
different types of inforniation which may arise from various orientation determining

2
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techniques.

The integration of high-level knowledge is one of the primary goals of the field
of artificial intelligence. Currently, knowledge integration is a poorly understood
process, but much relevant research is underway. There are a number of "expert
systems" which have attempted to combine information through the use of produc-
tion rules [Davis 1977] or decision trees [Ballard 1976], but each of these systems
employs task specific methods to achieve their goals. There is no general theory
which can be used to select an optimal method for combining real world information
in the face of error and uncertainty.

1.3 Application to Transistor Orientation

The techniques proposed in this study are applied to the task of determining
the orientation of discrete transistors from a single grey-level image. The transistor
package is a shiny cylindrical can with three leads, and the resulting images are
related to orientation in complex ways. This application was selected as a test
vehicle for the orientation operators because it represents a real life example with
practical significance for robotic assembly systems. After determining the location
and orientation of a transistor using vision, a robot arm may be used to acquire the
device and insert it into a specified location of a printed circuit board.

The leads of the transistor are small when compared to the transistor body and,
because the body itself is very nearly cylindrical, it becomes possible to approximate
the entire transistor by a cylinder for the purpose of specifying orientation. The
presence of the leads is used only to determine which end of the can corresponds to
the "top".

Assuming that a transistor can be represented as a cylinder, it will be useful
to establish a coordinate system which can be used throughout the rest of the
report. Referring to figure 1.1, the axis of the imaging camera is aligned along the
z axis of the world coordinate system. Assume that a separate coordinate system

(Zc, Ye, z.) has been attached to the cylinder such that z, corresponds to the central
axis of the cylinder and the "top" face of the cylinder occurs at a larger value of zc
than the bottom face. The orientation of these cylinder axes with respect to world
coordinates may be measured uniquely by the three angles Ltilt, /rotation and Lb,
where Lrotation is defined as the angle between the y axis and Lp - the projection
of zc onto the zy plane.

Since the transistor is symmetric about its central axis (z,), /tilt and /rotation
are sufficient to fully specify the three-dimensional orientation of the transistor.
This implies that, without loss of generality, it is possible to rotate the transistor
about z until z lies in the xy plane; at this point, I/b is equivalent (but not equal) to

3
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Camera I
Axis direction

Z Top Z

Transistor
/ ICylinder

Y

C

Figure 1.1: Viewing geometry for a cylinder. x, y, z axe the world
frame coordinates and z, ye, z, are the coordinate axes as-
sociated with the cylinder.

Lrotation and represents redundant information. In this study, Lrotation is allowed
vary from 0' to 3590, and is referred to simply as "rotation". Similarly, Ltilt is
referred to as "tilt", and can take on values between 0' and 900.

The Popeye grey-level vision system [Bracho 1983] was used to implement the
required algorithms and perform the necessary evaluation experiments. All of the
algorithms were developed under the assumption of orthographic projection. Sample
transistor images, and their corresponding orientations, are presented in figures 1.2
through 1.4 to familiarize the reader with the concept of transistor orientation. The
picture at the top of figure 1.2 represents a transistor with a tilt angle of 600 and a
rotation angle of 150'. This picture is used consistently throughout the report for
the sake of illustration. Notice that rotation is measured in a clockwise direction
because the Popeye system frame buffer represents a left-handed coordinate system.

..



1.4 Overview of this Report

The remainder of this report is divided into five chapters. Each of the first three
chapters introduces and analyzes a specific iniage operation which can be used to
deduce object orientation from a single grey-level image. The subsequent chapter
examines methods for combining the orientation information from each of these
operations. Finally, there is a chapter discussing conclusions and suggestions for
further research.
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Figure 1.3: Top: Sample tranisist or iniage withi till of 7.5 m id rotation
of 255'. Bot tom: tilt is 90' and rotation is 15'.
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Ft.
Figure 1.4: Top: Sample transistor image with tilt of 15' and rotation

of' 90'. Bottom: tilt is 0' and rotation is 00.



Chapter 2

Histogram Template Matching

2.1 Introduction

The orientation of an object is related to various properties of a corresponding
image. By identifying and measuring these relevant image properties it may be
possible to deduce object orientation using a pattern recognition approach. In
this chapter, the image intensity histogram is used to determine object orientation
from an image of a single object on a uniform background. Although the intensity
histogram ignores the spatial arrangement of pixels, its structure may consistently
reflect changes in grey-level distributions associated with changing object views

and, therefore, be a useful monitor of object orientation. The approach is limited to
interpretation of highly structured scenes with a training set of views corresponding
to different orientations. Under these restrictions the intensity histogram is found
to provide useful cues for orientation with a minimal computational cost.

2.2 Histograms and Orientation

2.2.1 Information in Histograms

An image intensity histogramu is a discrete estimate of the intensity probabil-
ity distribution function for an image. This function can be viewed as a highly

9



compressed, statistical description of the inlage. The statistical description is not
complete, but may contain clues to the orientation of individual objects which make
up the scene. For example, consider a scene containing a white cube on a black
background. The relative heights of the "white" and "black" histograni peaks will
vary in a systematic fashion as the white cube is rotated in the scene and its pro-
jected area changes accordingly. The intensity distribution changes smoothly with
orientation, but does not uniquely determine orientation. In more complex grey-
level scenes, shadows, shading and highlights vary as well as the projected area;
these components of the image also vary systematically with orientation.

While the intensity histogram retains only a portion of the original image infor-
niation, this large data reduction, allows significant simplifications of the problem
domain. For example, histograms are independent of rotation in the image plane.
Neglecting minor quantization errors, a scene can be rotated arbitrarily about the
centerline of the imaging optics without affecting the resulting image histogram.
In fact, given a uniform background, orthographic projection and objects which do
not overlap, it is possible to individually rotate the objects within a scene while
leaving the histogram constant. Even with this kind of ambiguity and significant
loss of scene data, a histogram will often still contain some useful information about
the orientation of objects within a scene. The process of extracting this informa-
tion, however, is not simple. Additional knowledge or training on known images is
required.

2.2.2 Estimating Orientation Using the Intensity Histogram

One potentially useful source of additional knowledge is a priori information
about the scene to be imaged. In many image processing applications, the overall
structure of a scene and its imaging conditions are known in advance and can be
used to aid the information extraction process. For example, the number or type
of objects to be imaged and a general description of the background can provide a
strong clue to the relationship between a histogram and the orientation of the ob-
jects in a scene. The hypothetical example of a white cube on a black background,
at the beginning of this section, should make this point clear. While prediction of
projected image area from model information is straightforward, relations involving
shading and highlights require much more complex models of object geometry, sur-
face properties, and optics. Such complex cases lead to a training based approach.

Techniques of classical pattern recognition (see [Duda 1973]) use a training based
approach to represent a priori information about the imaging taAk. A training set of
histograms may be obtained by imaging a sample object in all possible orientations.
This training set of histogranms may be used to derive an orientation classification
rule using nearest neighbor or probability of error criteria. A histogram correspond-

ing to an object with unknown orientation is compared to the "oriented histograms"
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of the training set to determine the most probable orientation of the object. While
such a histogram matching process may not uniquely determine orientation with
high statistical confidence, it results in a ranked ordering of likely orientations which
may be used in conjunction with other sources of information.

2.3 Histogram Matching

2.3.1 Mathematical Background

Histogram matching uses a similarity measure between pairs of histograms to
determine the best match. A number of well-known similarity measures may be

used here.

Similarity measures determine the distance between two histograms by combin-
ing histogram differences at every grey-level. For example, one possible distance
measure between two histograms is obtained by subtracting the histogram heights
at each grey-level and then summing the absolute value of these differences. Defin-
ing a histogram as a function H(g) where g represents an element of the set of
possible grey-levels and H(go) represents the histogram height at grey-level go, this
distance measure can be expressed as:

D =y IH.Cg) - H2Cg)1 ( 2.1)
allg

A more common distance measure is based on the Euclidean distance:

S g (2.2)

This root mean-square error measure tends to reduce errors introduced by a small
number of outlying points.

Equation 2.2 is more conveniently expressed by using the mean-square error
[Pratt 19781:

E 2 = [HI(g) - H2(g)•2  (2.3)
all g

Multiplying out the term [HI(g) - 1I2(g)] 2 yields:

E 2 -- [E? -2E12 +E 22], (2.4)

rI

r , : = . :.. . ... . ....... . ... . : : / .. . . '' .'(' . " .. .



where E?1 : [H I CY)12

all g

E222 : [1H2(g)]
2

all g

The terms Ell and E22 represent the energy in histogram Hi(g) and H2(g), re-
spectively. Equivalently, E,1 and E4 could be viewed as the autocorrelation of
Hi(g) and H2(9). The term E2 represents the cross-correlation between the two
histograms Oppenheim 19751. Under the assumption that every histogram has ap-
proximattly the same energy, the relative square error distance between pairs of
histogram- is determined by the cross-correlation term alone.

In practic:. this strategy does not produce consistent results because different
histograms have different energy. One method for circumventing this problem is
the normalized cross- correlation distance measure:

N 12 - E2 (2.5)
E1 El.

In accord with the Cauchy-Schwarz inequality, the normalized cross-correlation has
a maximum value of unity which occurs if and only if III (g) is a multiple of H2(g).
This distance measure has many properties which are desirable for histogram match-
ing. It accurately measures the distance between histogram shapes under all con-
ditions and maps the result into the range between zero and one. It provides a
practical bonus because a histogram scaled in height correlates perfectly with the
original histogram. This feature allows the distance measure to compare shape,
not just amplitude, and is useful for comparisons between imaging systems with
different numbers of pixels per image. The normalized cross-correlation has been
used in the matching experiments described here.

2.3.2 Practical Considerations

It has been assumed that it is possible to obtain a set of training histograms
which represent the objects in the scene in every possible position. This is clearly a
theoretical impossibility for most objects. A uniform sphere on a neutral background
has only one possible orientation, but this is the exception rather than the rule. The
training set must represent a quantized subset of all possible orientation histograms,
where the coarseness of the quantization is to be determined by the requirements of

12
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the application. The quantized values may be farther apart for convex, lambertian
objects where small changes in object orientation tend to produce small changes
in the resulting histogram. These objects may also make it possible to use linear
interpolation between likely values of orientation. For example, given an unoriented
histogram that has a very high correlation with both the first and second members
of a training set, it is likely that the true orientation of the object is between the
two training orientations.

Another practical problem with histogram matching arises from the illumina-
tion of the scene. A system designed to determine object orientations would be more
useful if it were able to correctly interpret object orientations under various illumi-
nations. Such a system would be required to differentiate between scene changes due
to changes in object orientation and those due to changes in illumination. Changes
in illumination can be further broken down into changes in light source position and
changes in light source intensity. Changing the number or position of light sources
often raises the issue of shadows, which may drastically alter the image of a scene
in complex, highly non-linear ways. Such complexities are beyond the scope of this
paper. Therefore, changes in illumination will be restricted to uniform changes in
the intensity of all light sources.

It is necessary to modify the histogram matching process somewhat to incor-
porate changes in uniform illumination intensity. One possible modification would
be the addition of more training histograms. A complete set of oriented histograms
would have to be obtained for every possible scene illumination. Unfortunately, this
tactic would greatly increase the required number of oriented histograms. A more
intelligent approach can be discovered by examining how a histogram is affected by
a change in scene illumination.

The observed intensity of any scene is directly proportional to the intensity of
the illuminating source [Horn 19751. This simple linear result holds true regardless
of the object's surface composition and can be used to reduce the number of oriented
histograms required. Figure 2.1 illustrates the effects of light intensity changes on
a given histogram. As can be seen, there is a linear compression of the histogram
as illumination is lowered. Given an oriented histogram, therefore, it is a simple
matter to generate the oriented histogram corresponding to the same scene at some
multiple of the light intensity. Quantization errors will produce meaningless results
for very large or very small multiples of intensity, but there will be a range where

this technique is applicable. In this range, it is possible to expand or squeeze each
oriented histogram to the intensity value of the unoriented histogram and then
proceed with the histogram matching process. The one remaining obstacle is that
the illumination intensity of the unoriented histogram is not known a priori. It is
not actually possible to determine the intensity value of the unoriented histogram
unambiguously, but there is a technique which will work in many cases.

13 K
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0

~3000.

2500 normal illumination

....... low illumination
2000.

1500

1000.
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0 32 64 96 128 160 192 224 256
intensity

Figure 2.1: Histogram data for one scene at two different illumina-
tion intensities. Lowering the intensity compresses the his-
togram. In principle, the compression should be exactly
linear, however, the automatic gain control of the imaging
camera provides a slightly non-linear result.

The technique relies on the fact that histograms obtained at a given intensity
level often have approximately the same height. For this procedure, each member of
the set of oriented histograms is individually expanded or contracted until its highest
point is at the height of the highest point on the unoriented histogram. Such a
transformation will not always introduce the correct intensity scaling factor because
the histogram shapes vary with the orientation of objects in the scene. However,
the transformation will produce a nearly correct intensity scaling for the oriented
histograms which correspond to scene orientations most closely resembling the scene
orientation of the unoriented histogram. Those histograms which are least likely to
be scaled correctly are also the ones which are not likely to match the unoriented
histogram because they have an inappropriate shape. Conversely, the histograms
which are likely to match the unoriented histogram are also the most likely to
be scaled correctly, thereby ensuring that they are of low error when evaluating

14



the difference measure. Such positive reinforcement adds to the robustness of the
algorithm, but this procedure involves many simplifying assumptions. It can be
thrown off by quantization errors incurred during large swings in intensity or by
inherent histogram ambiguity. The real test of the technique will have to come from
practical applications.

2.4 Intensity Histograms for Transistor Images

2.4.1 Symmetry and Illumination

The histogram matching technique, along with the other orientation determin-
ing methods discussed in this report, was tested by estimating the orientation of
a single transistor on a uniform background. The properties of the transistor used
were explained and illustrated in chapter 1. Referring to figure 1.1, it would be
useful to consider some aspects involved with the symmetry of the problem. Since
histograms are independent of rotation about the imaging optics, it is clear that
the rotation of the transistor cannot be deduced from the intensity histogram. The
only angle remaining is the tilt angle, which is allowed to take values between 0*
and 900. Due to the various symmetries of the problem, tilt is the only orientation
information which histograms axe capable of determining.

The amount of tilt information contained in histograms is somewhat dependent
on the lighting conditions of the environment and the surface material of the object
being viewed. The transistor used in this research had a highly specular surface,
and the illumination was provided by a single fluorescent "ring" light.

2.4.2 Histogram Regions

Figures 2.2 and 2.3 depict the actual histogram data for a single transistor,
against a dark background, at a number of different orientations. The histograms
in these figures appear to be divided into 2 or 3 subregions. Each histogram has
one region which contains a large number of pixels at low intensity corresponding to
the dark background of the scene. Each histogram also has a central region whose
shape varies dramatically with changes in orientation. Some histograms contain a
peak near the top of the intensity range arising from a specular highlight.

Since the transistor histograms appear to be naturally divided into regions, it
may be worthwhile to take a closer look at each of these regions individually. The
background section, for example, does not vary much from one transistor orientation
to another. Its position and shape are almost constant. The only real change that
occurs in the background peak is its height or, equivalently, its area. This change in
area is not a useful indication of orientation, however, because a histogram's total
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Figure 2.2: Actual histogram data for a single transistor, against a
dark background, at four different orientations. There are
256 different grey-levels and a total of 36,864 pixels.

area must be constant. Any change in the area of the background region can be
deduced by examining the area of the other histogram sections. In fact, the back-
ground region of transistor histograms contains little or no orientation information
and can be removed from the histogram with no ill effects to the histogram match-
ing technique. There may even be some positive effects to be gained by removing
this high power, low information region of the histogram.

The highlight region is another area of a histogram which deserves further study.
This region exists only for those orientations where large areas of the transistor
are reflecting illumination from the light source directly into the camera. The
simple existence or non-existence of this region constrains the orientation to be

* within certain ranges. Unfortunately, this constraint is usually not very tight when
highlights are absent. For the transistor images, a highlight region is present only
for tilts between 0' and approximately 120. Therefore, knowing that a highlight is
not present does not narrow the range of possible tilts by more than 16%. On the
other hand, if there is a highlight, this imposes a considerable constraint on the tilt

6
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value.

One note of caution should be mentioned in conjunction with highlights: small
changes in the orientation of a specular object might easily produce highlights which
will cause large histogram changes. This effect tends to reduce the success rate of
matching the intensity histogram unless the training set is very finely quantized and
very large.

The remaining region of the histogram is the central region. This is the region
which contains most of the orientation information for all orientations. Due to this
fact, it is this region which should be consistently used for the purposes of histogram
matching. The highlight region is only useful at certain constrained ranges of tilt
and should therefore be considered separately. For this reason, the center histogram
scction will be known as a "histogram template" and the entire process becomes
"histogram template matching".

2.5 Method Summary

Now that the individual elements of histogram template matching have all been
discussed, it is time to review how these elements fit together. The first step in the
process is to determine the quantization of orientation required for the application.
This decision represents a trade-off between high accuracy and high computational
costs, in terms of complexity and the storage space required for large training sets. S
For the transistor application, a quantization of 50 was chosen. This choice implies a
relatively small number of training histograms ((900 + 50) + 1 = 19) and a maximum
accuracy of approximately ±2'. The next step is the accumulation of a training set.
Obtaining the necessary histograms is a relatively easy task in most applications,
but as mentioned previously, the histograms will have to undergo some modifications

before they can be used. These modifications are what separates a histogram from
a histogram template.

2.5.1 From Histograms to Templates

Histograms can be viewed as discrete estimates of the analog probability distri-
bution function which describes the probability of illumination for any image point
(not necessarily a pixel). This estimate may not be very accurate depending on
the number and location of samples (pixels) taken from the image. To facilitate
the histogram matching process, the estimate can be improved by using a Parzen-
window convolution [Parzen 1962] which provides multi-point interpolation through
smoothing. In essence, the raw image histogram is convolved with a smoothing fil-
ter, known as a Parzen window, to provide a histogram which may better represent
the image involved.

17
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Whether the histogram is really improved, or just distorted, depends on the
the choice of filtering function. Among other things, the filter must be a legitimate
density function whose total area equals one. It is also desirable for the filter to
peak at its origin and decrease smoothly in both directions. A typical filter choice
which satisfies these criteria is a zero-mean univariate normal density. The variance
of such a filter must be chosen carefully to insure that the filtering process does
not obliterate useful features of the histogran while still providing a reasonable
measure of smoothing [Sanderson 19761. In general, this variance should become
smaller as the number of samples (pixels) grows, but most imaging applications
have a constant number of samples so that the variance may be fixed. The variance
used to smooth transistor histograms was chosen by trial and error and fixed at
01.2 = 4, or a = 2. The transistor histograms shown in figures 2.2, 2.1 and 2.4 were
all filtered by a gaussian with a = 2 intensity levels. Figure 2.3 portrays a histogram
both before and after smoothing for the purposes of illustration.

~3500 Background Center Highlight
region (template) region

region

23000

2000 ....... raw data
smoothed data

- - - region delimiting line
1500

1000.

000

0 32 64 96 128 160 192 224 256
* intensity

Figure 2.3: Transistor histogram for tilt = 5' . Both the raw and
smoothed data are shown along with the 3 different regions
of the histogram.
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After smoothing, the histogramn is partitioned into its component regions using
a simple hysteresis peak finding algorithm. Figure 2.3 shows how this algorithm
performed on transistor data with tilt = 50. The highlight and background regions
are then removed from the raw histogram and the remaining central region of raw
data is smoothed to create the final histogram template. The template formed using
the data in figure 2.3 is displayed separately in figure 2.4

0 100.

0.
= 0.

60 80 100 120 140 160 180 200 220
intensity

Figure 2.4: Histogram template for tilt = 5'. The template is a

smoothed version of the raw data's central region.

2.5.2 Matching

Once all of the training histograms have been converted to templates and stored,
it is time to obtain an unoriented histogram and attempt the matching process. The
first step in the process involves converting the unoriented histogram to an unori-
ented template using the steps elucidated in the preceding section. The resulting
template is then sequentially compared to all of the oriented histogram templates
as described below.

For each template comparison, the template with the greater maximum value
is linearly expanded until its height is equal to that of the lower template. This
step attempts to correct for any changes in illumination intensity as mentioned in
section 2.3.2. Once the expansion is complete, the templates are shifted so that the
highest point of each template corresponds to the same intensity value. Equation
2.5 is then applied to produce the normalized correlation value for this pairing of
templates. This process is repeated for each training template and the highest of all
the correlation values indicates the histogram template of best fit. The orientation
of this best-fit histogram is then assigned to the unoriented histogram.

2.6 Results
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The histogran template matching technique was used to determine the tilt of
138 transistor images at various orientations. Figure 2.5 displays the results by
plotting the estimated tilt against the actual transistor tilt.

80. .

IS

S70 j."* ,* +
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0.

60.

50 . .
Uj

40 .

30.. ."

30 , .4."4.

4.,20.

0 10 20 30 40 50 60 70 80 90
Actual Tilt (degrees)

Figure 2.5: Actual transistor tilt vs. estimated tilt obtained from his-
togram template matching.

On the average, the results exhibit the desired linear relationship between es-
timated and actual orientation. There is some scatter about the ideal line. The
following table provides a concise summary of the magnitude of this scatter.

Error Percentage
(degrees) within error

-!00 31.9%
±50 60.9%

±10 o  82.6%
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The data points corresponding to a tilt of 300 exhibit a large systematic error
and are worthy of further discussion. Ten of the fourteen images corresponding to
a tilt of 30' were estimated to have a tilt of 90'. This error is significant both in
the amount of the error, 60', and the number of points which exhibit such error.
The source of this error can be traced, in part, to the shape similarity between the
intensity histogram at tilt = 300 and tilt = 900 after correcting for possible changes
in illumination. Through sheer coincidence, the histogram of a transistor at a tilt of
300 is quite similar to a low intensity version of the histogram for a tilt of 90'. This
type of error occurs because intensity histograns are not guaranteed to display a
unique relationship to orientation, especially when arbitrary amounts of expansion
or compression are allowed. The camera non-linearities mentioned in figure 2.1 are
also partially responsible for the errors of figure 2.5.

6000. +

+

4+
SS

-9 4000.

3000
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1000

0 10 20 30 40 50 60 70 80 90
Actual Tilt (degrees)

Figure 2.6: Transistor tilt vs. area of the highlight region. If no his-
togram highlight region is found, the area is assumed to be
zero.

The highlight region of an intensity histogram also provides some measure of the
transistor's tilt, as mentioned in section 2.4.2. Figure 2.6 displays the relationship
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between tilt and the area of such a highlight region (if any). There is a clear
correspondence between low tilt angles and the presence of a highlight region. This
relationship is emphasized in the following table.

Tilt Number of Number with
(degrees) Images Highlight

0°  14 14
50 2 2

100 2 1
15 14 1

The intensity histogram methods presented in this chapter provide a useful
measure of transistor orientation. The orientation estimate is imperfect and does
not provide information about rotation. In later sections, the histogram template
matching technique will be combined with other techniques to significantly improve
the accuracy of the orientation estimate.
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Chapter 3

Binary Connectivity Analysis

3.1 Introduction

Real world objects are composed of surfaces with finite areas. In an image, these
surfaces often appear as regions exhibiting some constant image characteristic such
as intensity, shading, texture, etc. Each image region. then, represents a portion of
a surface, and the shape of that region contains information about the orientation
of the surface in the scene. The task of this chapter is to examine a method which
will segment these image regions and record their salient features so that orienta-
tion information about the underlying surfaces can be extracted. Specifically, this
chapter will examine a method to segment the image of a single object on a uni-
form background based on binary intensity values. A statistical description of the
segmented regions is then employed to determine object orientation from a simple
heuristic.

The methods of this chapter represent a rather limited subset of region based
image segmentation techniques. The technique used in this chapter uses a local
measure of similarity to determine connectedness. Other researchers have devised
schemes which group pixels based on a global measure of pixel properties [Ohlander
1970]. There are also region merging methods which use boundary "melting" [Brice
1970], or relaxation techniques [Rosenfeld 19781. See [Fu 19811 for a more complete
survey.
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The heuristic used to determine the correspondence between segmented region
features and orientation is sub-optimal, but computationally inexpensive. The tech-
niques of pattern recognition could be used to determine an optimal decision rule
for this case at the cost of increased computation. However, for the transistor ap-
plication, the increase in performance is slight and does not justify the extra effort.

3.2 Binary Connectivity and Object Orientation

9.2.1 Intensity Based Segmentation

It is generally recognized that a crucial step in the formation of any image
description is the determination of the spatial relationships, or connectivity, of
pixels which are of the same class [Rosenfeld 1979]. Connectivity analysis is a
segmentation scheme which describes an image as a collection of regions that are,
in turn, composed of connected groups of pixels displaying some common trait.
These connected regions, or "blobs", axe then described by aggregate properties of
the region's pixels.

The criteria selected to define the division of pixels into classes greatly affects
the image description obtained from connectivity analysis. In general, the class de-
scription of a pixel may be specified using any combination of primitive, or localized,
pixel properties such as brightness, color, local texture, etc. The most commonly
used criteria, however, is simply monochromatic intensity. In fact, some research
(and most industrial vision) uses only two classes of intensity [Agin 1980] [Ward
19791 [Sanderson 1983] [Kelley 1982]. This simple scheme provides practical benefits
because binary images greatly simplify the analysis algorithms. Binary algorithms
can often be expressed as logical operations involving only a very local group of
pixels and axe, therefore, very fast.

In order to apply these binary algorithms to a grey-level image, it is necessary
to threshold the grey-level input image to create a binary image. This "binariza-
tion" should be performed in a manner which preserves the desired image regions.
The selection of an appropriate threshold is the most straightforward in situations
where the image contains objects of reasonably uniform brightness against a uni-
form background of different intensity. In this case, it is a simple matter to select a
threshold using the grey-level image histogram. The type of image under discussion
always yields a bimodal histogram, and a threshold can be chosen on the basis of
the minimum histogram point between the two peaks. Histogram smoothing (see
section 2.5.1) is usually required before attempting to find the minimum, but this is
a simple operation and does not hamper the selection of an appropriate binarization
threshold. Images containing non-uniform objects or non-uniform background may
require more complex threshold selection methods (see [Weseka 1976]).
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3.2.2 From Segmentation to Orientation

Given an appropriate binary image, it is worthwhile to examine how connectivity
analysis might describe the various image regions. The description desired should be
more compact than an array of intensity values, but should not involve a reduction
in critical image information. The contradictory nature of these goals, along with
the fact the information which is critical in one application may be irrelevant in
another, has prevented any universally accepted optimal representation. A widely
used convention for region description involves the use of statistical parameters.
Typically, the zeroth, first, and second order moments of inertia of .. - blob are
used. These parameters enable the recovery of area and position information, as
well as the size and orientation of the approximating ellipse.

The statistical description of a blob is not a perfect description, however, be-
cause statistical parameters do not uniquely identify the region which they are
trying to describe. One set of parameters could correspond to a large number of
differently shaped regions. Using statistical parameters alone, it is impossible to
find the smallest rectangle which will enclose the region, let alone determine the
shape of the region's boundary. For this reason, the statistical description is usually
augmented to include, at least, the minimum and maximum cartesian coordinates of
the blob. In this research, the region description also contains a full representation
of the region's boundary. This hybrid statistical description captures the regions
useful information in a compact, easily accessible format.

The process of transforming a binary input image to a statistical description
of the blobs which compose the image is known as Binary Connectivity Analysis
(BCA). This algorithm attempts to capture image information which may be rel-
evant to the determination of object orientation. Finding the exact relationship
between the statistical blob descriptions and the orientation of the corresponding
object in the scene is, in general, a non-trivial task. The general problem of find-
ing three-dimensional orientation from two-dimensional regions cannot be solved
uniquely, and high level domain knowledge is usually required.

As mentioned previously, the training based techniques of pattern recognition
have been used extensively to incorporate domain knowledge into systems using
statistical descriptors. In some cases, however, it becomes possible to use heuris-
tics to transform blob features to the orientation of the object. Such a method
lacks generality because of the application-specific knowledge used to generate the
heuristics, but in some situations this poses no problems. For the purposes of this
research, a simple heuristic was used to relate the statistical blob description to
orientation. This heuristic will be described shortly.

3.3 Binary Connectivity Analysis
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3.3.1 Definition of Connectedness

Before it is possible to analyze an image, a precise definition of connectedness is
necessary. Pixels of the same class which are adjacent are defined as connected, but
it is not always clear which pixels should be considered adjacent. For a rectangular
grid, the two most natural conventions are 8-connectedness and 4-connectedness

(See figure 3.1 (a) and (b)). 4-connectedness is defined by allowing a pixel to be
connected to any of its nearest non-diagonal neighbors which belong to the same
class. 8-connectedness permits a pixel to be connected to any of the pixel's 8 nearest
neighbors, including those along the diagonal directions.

XXXX X X
X X X X X X

(a) (b) (c)

Figure 3.1: Definitions of (a) 8-connectedness, (b) 4-connectedness,
and (c) 6-connectedness. The X's indicate which of the
pixels in a 3 by 3 neighborhood may be connected to the
center pixel.

Both of these conventions, however, present an undesirable paradox which is
illustrated with the aid of figure 3.2 (a). Under 8-connectedness, figure 3.2 (a)
consists of a continuous black ring on a white background. Notice that although
the ring is considered to be a continuous figure, it does not in any way separate the
white area inside the ring from the white area outside the ring; the background is
considered to be a single connected area according to the concept of 8-connectedness.
This causes an apparent contradiction with real-world objects, which cannot totally
surround an area and yet not define that area as a separate region. The problem
stems from the fact that pixels may be connected at an infinitely small point,
while real-world objects must have some non-zero thickness. The same problem
crops up using the definition of 4-connectedness, but in a reversed form. Under 4-
connectedness, figure 3.2 (a) depicts three disconnected black figures which somehow
manage to divide the white background into two distinct regions.
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(a) (b)

Figure 3.2: Figure (a) demonstrates the connectivity paradox that
arises from using the definition of 8-connectedness (or 4-
connectedness) on both the black and the white pixels.
6-connectedness resolves this paradox, but produces ori-
entation dependent results. In (a), 6-connectedness defines
two disconnected black regions, however when the figure is
rotated 900, as in (b), 6-connectedness discovers only one
black region.

There are two generally accepted methods for dealing with this paradoxical sit-
uation. The first method involves defining a new concept of connectedness known
as 6-connectedness. 6-connectedness is illustrated in figure 3.1 (c) and is guaranteed
to produce an interpretation of connectedness which is not paradoxical. Unfortu-
nately, 6-connectedness has some weaknesses. Figure 3.2 (b) shows figure 3.2 (a)
rotated by 90' . By applying the definition of 6-connectedness to both versions of
the figure, it should be clear that interpretation of the various regions is changed
by more than a simple rotation. In fact, the underlying connectedness of the figure
is dependent upon the orientation of the figure being segmented. This orientation
dependency may be unimportant for some applications because it only occurs for
objects which meet at a single point.

There is, however, a second method which gets around the orientation problem

completely. This method uses different definitions of connectedness for different
classes of pixels. If, for example, all white pixels were grouped using 8-connectedness
and 4-connectedness was used to define black blobs, there would never be paradoxes
or orientation dependencies. This scheme complicates the connectivity algorithms
to some extent, but produces a conceptually clean view of connectedness. For the
research conducted in this paper, this "double standard" definition of connectedness
is adopted.

3.3.2 Binary Connectivity Algorithm
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The connectivity algorithm accepts a binary image as input and produces a
statistical description of the image. Since efficient iniplementations of the algorithm
are readily available [Cunninghani], detailed discussion will be kept to a minimum.
Instead, a general explanation of the algorithm will be provided, followed by an
example. Before examining the algorithm, it will be worthwhile to review the
elements of the output description.

Each image is described as a hierarchically linked list of blobs. For each blob,
the output representation contains all of the zero-th, first and second moments of
area. E x (the sum of the x coordinates for all pixels in the blob) and E y represent
the first moments. E Xy, E X2, and E y 2 represent the second moments, while E 1
(the number of pixels in the blob) represents area, the zero-th moment. The color of
each blob (black or white) is also recorded, along with the maximum and minimum
values of x and y, and a representation of the blob's boundary. The hierarchical
tree structure of the blob list arises because - assuming the image is surrounded
by black pixels - every blob in the image is surrounded by a blob of the opposite
color. Any blobs contained within a given blob represent the child nodes of the tree
structure while the surrounding blob is the parent node.

The connectivity algorithm is a raster scan operation designed to sequentially
examine each image pixel in conjunction with three of its neighbors. This process
is accomplished by scanning the image with a 2 by 2 image window whose lower
right-hand corner always contains the current pixel. Since each of the four pixels
being examined can only be colored black or white, there are 16 possible patterns
that may appear in the 2 by 2 window. Each of these window states is numbered
using the values of the window pixels to form a four bit binary number as illustrated
in figure 3.3 (a). This window state number, combined with the partially completed
statistical description, is sufficient to specify the action to be taken by the algorithm
at each pixel. The correspondence between state number and algorithm action is
specified through a software look-up table. The algorithm always assigns the pixel
to the blob in which it belongs, and updates the necessary statistical summations;
it may also update the maximum or minimum values, the boundary description, or
even the hierarchical blob list, depending on the situation.

A simple example, based on figure 3.3 (b), will help to elucidate the procedure.
Figure 3.3 (b) contains a 3 by 4 "image", marked by a thick solid rectangle and
surrounded by black pixels. The surrounding pixels are not part of the image,
but are introduced by the connectivity algorithm to provide a black background for
consistent hierarchical structure. The 2 by 2 connectivity window is passed over the
figure such that its lower right-hand corner sequentially coincides with the numbered
pixels. At the first pixel, the window state number is 1; this signifies that a new
blob has been discovered (the background blob was the old blob). This new blob
is assigned the label A, to distinguish it from all other blobs, and the appropriate
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statistics are updated. The second image pixel corresponds to state number 8. This
state number implies that the current pixel belongs to the saitie blob as the pixel
directly above it; therefore, the current pixel is assigned to the background blob
and the background statistics are updated. The third image pixel corresponds to
state 1, as did the first pixel. The third pixel, therefore, must represent a new blob
and is assigned the label B.

W = P1 + (2x P2) Background

+ (4x P3) + (8x P4)
Temporary

Blob 1Blob
A B

P3 P2 5 6 7
______ ______Blob 1

C9

*P4 P1 13 14 15

(a) (b)

Figure 3.3: Figure (a) illustrates the computation of the window state
number, W, where P.. can be either 0 or 1 - black or
white - for x = 1, 2, 3, 4. Figure (b) is small example

image, surrounded by black pixels.

At this point, it appears that the connectivity algorithm has made a mistake.
There is only one white blob in the image, but it currently has two labels associated
with it. This situation is not, however, an error; it is a necessary part of the
algorithm. The raster scan nature of the algorithm makes it impossible to determine

0 that pixels 1 and 3 belong to the same blob until pixel 7 is reached. By the time
the algorithm reaches pixel 7, pixel 4 has been assigned to the background, pixels
5 and 6 have been determined to be part of blob A, and the correct statistics have
been updated. Pixel 7 is then examined and found to correspond to state number
11 which means that the blob label of the pixel in time upper right-hand corner of

0 the window must be compared to the blob label of the lower left hand pixel. If
these labels are different, as in the current example, the two blobs involved both
belong to the same blob and must be merged together. The merge is accomplished
by adding the statistics of blob B to blob A and deleting all references to blob B,
thereby leaving a single blob with the label A.
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Image pixels 8 and 9 are easily assigned to the correct blobs using the window
state number. Pixel 10, however, corresponds to state 14 which, like state 1, starts a
new blob. The new blob receives the label C. Pixels 11 through 14 and 16 through
19 correspond to simple window states and are assigned to their appropriate blobs
using a simple look-up table. Pixel 15, on the other hand, is another example of
state 11 and requires more complex processing. For pixel 15, the blob labels of the
upper right and lower left hand window pixels are both A. In this case, blob A has
completely surrounded blob C (the blob corresponding to the pixel in the upper left
hand corner of the connectivity window), signifying the termination of blob C and
the parent-child relationship between A and C. Pixel 20 corresponds to state 4,
but the processing is just the same as it was for pixel 15: the upper right and lower
left window pixels are compared. The comparison indicates that the background
has closed around blob A, thereby terminating the blob and the algorithm. The
resulting linked list of descriptors is ready to be applied to the task at hand.

3.3.3 Determining Blob Features

The zero-th, first, and second moments of area, defined for each blob during
binary connectivity analysis, can be used to determine some basic features of the
blob. The blob area, for example, is already recorded as the zero-th moment. The
centroid of the blob is specified using the first and zero-th moments of area:

x = 1, Ycent = E

The centroid calculated in this manner is relative to the origin of the image. The
moments of inertia, Z X2 and Zy2, and the product of inertia, E xy, are also
calculated relative to the image origin.

For many applications, it is useful to calculate the parameters of an ellipse which
has the same moments of inertia as the blob under analysis. If the blob is roughly
elliptical in shape, this approximating ellipse will be a very good characterization
of the shape and orientation of the blob (the size and position will always be the
same). To calculate the parameters of the approximating ellipse, it is necessary to
first calculate the second moments of the blob with respect to the blob's centroid.
The moment of inertia about Y = Ycent (I,), the moment of inertia about x x Zcet
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(), and the product of inertia about xc,,nt,Yc nt (P.,y) are given by:

I.i

P Z Y -- x z y

Using these quantities to construct a Mohr's circle [Beer 19771, it is possible to find
the principal axes of inertia about the centroid. The principal axes emanate from
the blob centroid and are rotated by an angle 9, in a counterclockwise direction,
from the coordinate axes of the input image array. Where the 0 is given by:

1 2P ,\y
0 = arctan I "

2 k4'xI1

The principal axes specified by 0 are also the principal axes of the approximating
ellipse. Therefore, 0 completely describes the orientation of the major axis of the
ellipse. Since the blob's moments of inertia about its principal axes (Ima and II
must. be equivalent to the approximating ellipse's moments about the same axes,
it is possible to calculate the length of the ellipse's major and minor axes. From
Mohr's circle, 'max and 'mm are given as:

I, + IV + V(I. - I4)2 + (2Pzy) 2

'max
2

Ix+ y V(I Y)2 +(2Pxy) 2
2(2
2

These quantities are equated with the principal moments of an ellipse to obtain:
7r 3 7r 3

Imax = a b, Imm = -ab

where a is the length of the ellipse's semi-major axis and b is the length of the
semi-minor axis. Solving for a and b, yields:

Having calculated a, b, and 0, the approximating ellipse is now fully specified (the
formula for calculating the centroid is given above). The parameters of this ellipse
can be used as features that further describe the shape and orientation of the blob.
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Another generally useful feature that can be derived from the output of BCA is
blob perimeter length. Assuming that pixels represent tiny squares that compose
the image, the perimeter of a blob corresponds to the pixel edges which contact
a pixel of the opposite color. The boundary of a blob is described, in part, by
the number of horizontal and vertical edge segments (N, and N,), as well as the
total number of corners (N,), in the perimeter. It would be simple to calculate the
perimeter length of a blob by simply adding the number of horizontal and vertical
edge segments, however, this measure exhibits considerable orientation dependence.
For example, a square measuring 50 pixels a side would have a perimeter length of
200 if exactly aligned with the coordinate frame of the image array. If, on the other
hand, this square were rotated 450, the sum of horizontal and vertical edge segments
would be greatly increased due to the "staircase" effect. [Agin 1984] has suggested
that the orientation dependence can be reduced by subtracting small amounts from
the perimeter length for each corner in the boundary. His empirical formula which
provides a good approximation to ideal perimeter length is:

Perimeter = 0.948059 Nh - Nv -- - (2 N.)

This formula is optimized to produce correct perimeter lengths for circular blobs,
and exhibits some length error for other blob shapes.

The features mentioned above are those typically used in industrial vision appli-
cations. The output of BCA, however, is general enough to allow the computation
of other useful features. These features can then be used to describe a blob and
provide clues to the orientation of objects in the underlying scene.

3.4 Applied Binary Connectivity Analysis

In order to apply BCA to the task of determining transistor orientation, it is
first necessary to acquire and threshold a grey-level transistor image. The threshold
can be chosen on the basis of the intensity histogram ; described in section 3.2.1.
The transistor image histograms presented in chapter 2 clearly indicate the large
intensity difference between the two regions which permits the use of this thresh-
olding technique. The entire transistor is easily distinguished from the background
of the image using a single global intensity threshold. Any small specks which tran-
scend the threshold can be rejected after connectivity anadysis by ignoring all but
the biggest blob. The result of thresholding using histogram information can be
seen in figure 3.4. This binary image is then segmented and reduced to a statistical
description by BCA.
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Figure 3.4: Binarized version of original image. Rotation is 150', tilt

is 60'

The relationship between binary blob features and transistor rotation is rela-
tively straightforward to determine because the cylindrical axis of the transistor
always corresponds with the long axis of the segmented blob --- unless tilt = 00,
where the value of rotation is arbitrary. The relationship between blob features and
traiiistor tilt is riot quite as simple to compute and will not be considered for the
sake of simuplicity. l'ost-segmentation processing, then, simply involves determining
the orientation of the major axis for the blob's approximating ellipse, as mentioned
in section 3.3."?. This angle is used as the estimate of transistor rotation.

3.5 Results of Binary Analysis

The methods described in this chapter were applied to 138 images of transistors
at different orientations. For each image, an estimate of transistor rotation was

extractled. Figm -3.5 displays the results of this operation by graphing the estimated
rotations versus the actual transistor rotations.
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Figure 3.5: Actual transistor rotation vs. rotation estimated from bi-
nary connectivity analysis. Estimated rotation values are

ambiguous ±180'.

The results of figure 3.5 are generally good. The data displays the desired

linear relationship between actual and estimated rotation values, and all of the
estimated rotations are within 5% (19') of their actual values. There is clearly a
small systematic error, however, because every estimate is slightly higher than the
actual value. The average value of this error is approximfately +100.

This error can be directly attributed to blob asymictries introduced by the
presence of the transistor leads. The heuristic rule use1 to determine the correspon-

dence between blob features and transistor rotation assumes that the transistor can
be approximated by a cylinder. Looking at figure 3.4, this assumption is clearly not
completely valid ad, therefore, directly affects the results.

It should be noted that data of figure 3.5 is actually ambiguous 11800 due to the
inherent ambiguity or the blob's approximating ellipse. Notice also that no rotation

values are plotted for transistors with a tilt of 0' because they are meaningless.
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Chapter 4

Ellipse fitting

4.1 Introduction

The projection of a three-dimensional circular surface onto a two-dimensional

image plane yields an ellipse whose shape is directly related to the surface orien-
tation. This relationship can be exploited to determine the orientation of objects
under various imaging conditions. By extracting or enhancing the ellipse edge
points, an ellipse may be fit to these points in the image plane. The parameters
of this ellipse may be used to estimate three-dimensional surface orientation. This
chapter describes an algorithm, based on [Agin 19811, for fitting ellipses to a set of
image points. This algorithm is then applied to the problem of estimating transistor
orientation.

Ellipse fitting may be applied to determine the orientation of any cylindrical ob-
ject with visible end-planes. In this case, image preprocessing and the identification
of ellipse boundary points are required as a basis for ellipse fitting. Knowledge of
the cylindrical geometry of the object may then be used to infer object orientation.

Ellipse fitting may also be used in conjunction with structured lighting tech-

niques, such as light-striping [Agin 1973] [Shirai 1971] [Bolles 1981] [Vanderbrug
1979], to determine object orientation. When a projected plane of light strikes a
cylindrical surface, the stripe of illumination appears as a partial ellipse in the image
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plane. By estimating the parameters of this partial ellipse, it is possible to deduce
the local orientation of the cylindrical surface for a specified camera and light plane
geometry.

One of the ir.ajor difficulties in applying these techniques is the determination
of which image points correspond to the perimeter of the ellipse. Some high level
information is necessary to determine the region of interest. The problem of fitting
an ellipse to a set of data points in a plane will be addressed initially by assuming
that some set of "interesting" image plane points has already been determined. The
question of how to determine interesting points will then be discussed.

4.2 Fitting Ellipses to Points

4.2.1 The Ellipse Equation

An ellipse which has its center at the origin of the coordinates and which is
aligned with the coordinate axes can be represented by the equation

X2 2

where a and b are the length of the semi-major and semi-minor axes respectively,
a > b. Such an ellipse is illustrated in figure 4.1a.

0 V
b a

0

(a) (b)

Figure 4.1: (a) An ellipse aligned with the coordinate axes and cen-
tered on the origiln. (b) An ellipse with arbitrary parame-
ters.
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In general, an ellipse may be translated such that its center is at any arbitrary
point (h, k) and may be rotated such that it forms al angle 0 with the coordinate
axes. A rotated and translated ellipse is shown in figure 4.1b, along with the five
parameters needed to fully specify its position (a, b, h, k, 0). The equation of an
ellipse at any arbitrary rotation and translation is given by

xt2 y,2a2 T 2 (4.1)

where
we =(z-h) cos0 + (y - k) sin

Y' =-(x - h)sin 0 + (y -k)cos0.

Equation 4.1 can also be written as

G(z,y) = Az 2 + B xy + Cy2 + Dz + Ey + F =O. (4.2)

This form of the ellipse equation is, in fact, the general equation for second order
curves and is capable of representing all conic sections [Lynch 1973]. For equation
4.2 to represent an ellipse, it is necessary and sufficient that B 2 - 4AC < 0. This
paper will assume that this ellipse condition is met; other conics will be ignored
(but not rejected by the mathematics). Under this assumption, the coefficients of
equation 4.2 can be explicitly expanded as follows:

A = a2 sin2 9 + b2 cos 2 0
B = (b2 - a 2)2sin0cos0
C = a 2 cos 2 0 + b2 sin 2  

(4.3)

D = -2h(a 2 sin2 0 + b2 cos 2 0) - k(b 2 - a2)2 sin 0 cos 0
E = -2k(a 2 cos 2 0 + b2 sin 2 0) - h(b2 - a2)2 sin 0 cos 0
F = h 2 (a2 sin 2 9 + b2 cos2 0) + hk(b2 - a2)2 sin 0 cos 0 + k2(a2 cos 2 0 + b2 sin 2 0)

4.2.2 Generalized Curve Fitting

A generally accepted method for fitting functions such as equation 4.2 to scat-

tered data points is the method of "least squared error" [Wiley 1966]. This method
uses an error measure to describe the discrepancy between any given data point
and the function being fit. The total error between the function and the data is

then computed by summing the squared error from each individual data point. By
minimizing this total error, the function parameters which best fit the data can be
estimated.

4.2.3 An Error Measure for the Ellipse
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It is usually desirable to fit curves in a way which is general, simple to compute,

and invariant to translation, rotation, and scaling of the input data. Accomplish-

nent of these goals depends heavily upon the error measure chosen. Intuitively,
it seems that the (shortest) perpendicular Euclidean distance from the ellipse to a
data point would provide a useful error measure. As described below, however, this
error measure leads to intractable analytical results requiring iterative solutions.
Therefore, there is a need to consider alternative error measures.

An examination of the problem of fitting a straight line to data points in a
plane may provide some suggestions for such an alternative error measure. In the
straight line case, the perpendicular distance between a point P = (xl,y ) and a
line ax + by + c = 0 is given by

laxi + by, + cl
Distance V 2

The validity of this equation is easily verified by viewing the line ax + by + c = 0
as the intersection of the plane z = ax + by + c with the zy plane, as illustrated in
figure 4.2. The line-to-point distance d is equal to the height h of the plane at P1,

h = laxi +by, + c,

divided by the maximum slope of the plane,

IlIVzl = (-7 + - = a2 + b2 .
(ax (ay)

This distance measure can be used to obtain a least squared error fit for the
straight line case. The distance measure is convenient because it yields a closed
form solution which is not degenerate for vertical lines. Traditional linear regres-
sion methods which use vertical distance, rather than perpendicular distance, as a
measure of error also provide a closed form solution, but are degenerate for vertical
lines.

In an attempt to apply a similar distance measure to the ellipse equation, an
ellipse can be viewed as the intersection of an elliptic paraboloid with the xy plane,
as shown in figure 4.3. The equation of an elliptic paraboloid is obtained by simply
removing the restriction on equation 4.2, G(x, y) = 0, so that G(x,y) = z (under
the assumption that B 2 - 4AC < 0). Now, the distance from the ellipse G(x, y) = 0
to a point P can be obtained approximately as

Distance z G(xI,yi) (4.4)IlNG(x, y)!l i(=,,I "
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Z Plane Equation

t a.w z plax + by + c

f elie tLine Equation
the h oax + by +c 0

I Y

h i

P

X

Figure 4.2: The line ax+b'y+c -0 is represented by the intersection of
the plane z = ax +by --c with the xy plane. Tlhe distance d
from the line to point P, = (xj, yl) in the xy plane is equal
the height h of the plane at xj, yj divided by the magnitude

of the plane gf adient, I1IIV.

Although this distance measure is approximate, it has been found to provide good
curve fits even for difficult cases such as data from very eccentric ellipses [Agin 1981].
The distance measure still requires iterative methods for the minimization of total
square error. Many people [Paton 1970i [Albano 1974 [Cooper 1976], therefore, 7
use a less accurate, but computationally less expensive measure of error which can
provide a solution using only linear algebra techniques.

The error measure which is usually used is the equation of the elliptic paraboloid
itself, IG(z,y)l. This measure retains a rough qualitative resemblance to that of
equation 4.4 since IG(z, /)l increases monotonically with distance along any line in
the zy plane which is perpendicular to the ellipse. The error function does not,
however, relate distance directly. In fact, the rate at which error increases with
distance will vary depending upon which perpendicular line is chosen.
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*Y

,-P,

Figure 4.3: An ellipse can be represented as the intersection of an
elliptic paraboloid with the xy plane. The distance d from
the ellipse to a point P in the xy plane is monotonically,
but non-linearly, related to the height h of the paraboloid
above P1 .

4.2.4 Constraining the Minimization

Using JG(x, y)I as the pointwise error measure, the total squared error, 2, is
given by

-- = ,(G(x,)) . (4.5)
all (Zi,yi)

To determine the best fit ellipse, 2 must be minimized with respect to the parame-
ters of G(z, y): A, B, C, D, E, and F. Such a minimization is usually accomplished
by taking the partial derivatives of 2 with respect to A, B, C, D, E. and F and then
setting these equal to zero. In this case, directly applying such operations yields the
trivial solution A = B = C = D = E = F = 0. The reason for this rather disap-
pointing result is shown in figure 4.4. An infinite number of elliptic paraboloids can
be used to describe a single ellipse in the zy plane; therefore, the pointwise error
(and the total error), can be made arbitrarily small by choosing an appropriately
shaped error function. To avoid this problem, it is necessary to place a constraint
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on the coefficients of G(z,y) so that the error function can have only one shape for
a given ellipse.

//

/ 

x

44

Figure 4.4: Elliptic paraboloids A and B both represent the sme
ellipse in the xy plane. In fact, an infinite number of such
paraboloids are capable of describing this ellipse.

The constraint used must be chosen carefully so that the shape of the error
function does not change if the ellipse data is rotated or translated in the zy plane.
More generally, the constraint should be chosen so that the error measure and the
resulting curve fit are invariant with respect to the equiform group of transforma-
tions in the Euclidean plane: rotation, translation and scaling [Bookstein 1979].
This means that if an equiform coordinate transform is performed on the data, the
new best-fit curve must be exactly equal to a transformed version of the curve which
best fit the original data.

One constraint which satisfies the invariance requirement [Bookstein 1979] is

A2 + B2 /2 + C2 = constant.

By substituting the explicit expressions for A, B, and C from equation 4.3, it is easy
to show that this constraint is equivalent to

a 4 + b4 = constant

which is clearly invariant under rotation and translation. Another constraint which
satisfies the invariance requirement is the "average gradient constraint" [Agin 1981].
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The average gradient constraint requires that the mean-square gradient of G(x, y),
as measured at all of the data points, is equal to unity. This can be expressed as

E lHVG(xy) l2
all (zi,yi) X yin -- = 1, (4.6)

where n is the number of data points. This constraint was chosen because "on the
average" it tends to reestablish the approximate link between G(x, y) and Euclidean
distance, as shown in equation 4.4. It does not, however, provide any theoretical
increase or decrease in curve fit error when compared with the first constraint.

4.2.5 Minimizing the Total Squared Error

For the sake of illustration, this paper will follow the notation of [Agin 1981] and
use the average gradient constraint to constrain the minimization. A shift to a more
compact notation will make the exposition easier. Equation 4.2 can be rewritten as

G(x, y) - VTX = XTV,

where

V C and Y2

The total squared error , from equation 4.5, then becomes

S(G(x, Yi)) = (VTXXTV)
all (zi,yi) all (xi,yi)

- vT (XXT) '1V VTPV, (4.7)
* all (z,,y,)

where P is now a matrix containing the sums of xi, yi raised to various powers. Using
vector notation to express the average gradient constraint, equation 4.6 becomes

1,70(X(,'Y) 2 (i,,i) n ,'
all ( ji,yjV

where

i!Gxy112  
- G 2+ (aG ) 2  (v -a + (VTaX)2

'%.GOz) y)~ -a oaj 49X49
42

"



6]

Defining

OX Y XX .

X=ax- 0g a9x 2
_ 0 and Xy -

01
0 0

the average gradient constraint can be written in its final form

VT (XXXXT + XYXYT) V
all (-i,Yi)

o al Zjyj = VT { XXXXT +±XY XYT) }
= VTQV = n.

Here, Q is a matrix much like P which is composed of the sums of powers of x and
y. For any given set of data, P and Q are constant.

Now that the error equation and its corresponding constraint have been ex-
pressed in matrix form, it is time to get down to the business o. minimizing
-= VTPV under the constraint VTQV = n. Such problems in constrained nin-

ima are traditionally solved using the method of Lagrange multipliers ILynch 1973].
Lagrange's method states that at the constrained minima the following condition
must be true:

v(VTPV) = V (VT QV).

After taking the required gradients, this condition reduces to

PV = AQV. (4.8)

The solution to this equation is clearly an eigenvalue problem, but because Q is
singular, some rather unusual methods are required for the final solution t. The
method used by [Agin 1981] yields five eigenvalues and five eigenvectors. The eigen-
vector corresponding to the smallest eigenvalue represents the coefficient vector V
which is the minimum error solution. This fact can easily be deduced by pre-
multiplying both sides of equation 4.8 by VT and then realizing that the result is
equivalent to S = An. Since n is a constant, total error is minimized for the smallest
eigenvalue A.

t If A2 + B 2 /2 +- C2 = constant is used as the minimization constraint, the eigen-
value problem can be solved using standard techniques.
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At this point, it may be worthwhile to look at one concrete example of ellipse
fitting in order to obtain a qualitative estimate of algorithm performance. Figure
4.5 depicts a set of data points in the plane (represented by "+") and the ellipse
which was fit to those points using the technique described above. Qualitatively,
the fit appears excellent; it is not, however, perfect. In general, ellipse fitting based
on the minimization of the general conic (equation 4.2) is inherently inaccurate due
to the non-linearity of the error measure. These inaccuracies tend to favor ellipses
which are more elongated than expected [Ballard 1982]. While this tendency is not
very noticeable in the example of figure 4.5, the problem gets worse for scattered
data generated by partial or very eccentric ellipses.

Figure 4.5: A sample ellipse fit. The data points to which the ellipse
was fit are denoted by "+".

Given this method for fitting ellipses to collections of points on the plane, it is
still necessary to determine which image points are to be fit. The next section will

0describe one possible method for the determination of candidate ellipse points and
r. its use in the transistor application.

4.3 Applied Ellipse Fitting: Determining Orientation
0

4.3.1 Object Boundary Methods

Real world images may contain many combinations of features which might be
described as elliptical, "partially" elliptical, "approximately" elliptical, etc. Fur-
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thermore, these features may correspond to changes of intensity, texture, distance,
reflectance, ad infinitum in the scene. It is clearly beyond the scope of this paper to
examine any number of these cases in depth, therefore, only some simplified subset
of real world images will be considered.

One possible simplification is to examine only those portions of the image which
correspond to the boundary of an object in the scene. Object boundaries are often
easy to determine because the discontinuity in scene distance creates distinctive
features in the image. Object boundaries also provide some measure of an object's
shape, hence they may be able to suggest elliptically shaped edges. Finally, object
boundaries vary with the viewing orientation of the object. The combination of
the above properties make object boundaries an ideal choice for a simple feature to
which ellipses can be fit with the ultimate goal of determining object orientation.
The determination of orientation, however, may require some a priori information
about the object to which the ellipse is being fit.

4.3.2 Transistor Boundaries

The transistor images provide -an excellent example. As discussed in chapter
3, it is easy to segment the image region corresponding to the transistor from the
background, thereby obtaining the transistor image boundary. Figure 4.6 illustrates
the results of performing this operation on a typical transistor image.

*)

Figure 4.6: The object boundary for a transistor with tilt = 600 and
rotation 1500.
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The transistor outline of figure 4.6 clearly exhibits curve segnents which are
approximately elliptical in shape. The task now is to identify these curve segments
and use the corresponding points as input for ellipse fitting. In the simplified domain
of object boundaries, it is possible to compute a curvature measure for any given
curve segment. This curvature measure will provide enough information to identify
boundary regions which may correspond to elliptical edges.

4.3.3 The Mathematics of Curvature

A curve in the zy plane, such as the one shown in figure 4.7a, can be described
in a number of equivalent ways. The usual formulation for such a curve is y = (x),
however, the curve might also be described parametrically as (x(t),y(t)) using the
independent variable t. Another possible formulation of the curve equation is a
f(s), where a is the direction of the curve with respect to the x axis and s represents
arc length, the distance traveled along the curve. This form of the curve equation
requires the specification of a starting point in order to represent a unique curve,
but is otherwise equivalent to the more standard curve equations. This last form of
the curve equation also proves to be the most natural for describing the concept of
curvature.

y y a=tan'" dy
a = I(s) 2 + 2- 2 /

or .. ds= dy +dx
y = 1(x)' d

ds
a dy

a
S=O

s dx

x x

(a) (b)

Figure 4.7: (a) The definition of a curve as either y = f(x) or a =

f(s). (b) The relationship between dy,dx and e, ds.

Curvature is defined as the rate of change of direction along a curve. In other
words, curvature, k, is a measure of how fast a changes in relation to s. This
definition is described mathematically by

det
k(s) = -(4.9)
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As one can see, it is mathematically straightforward to define a curvature measure
for a curve described by a = f(s). Unfortunately, many curves are represented as
y = f(x). In order to describe curvature as a function of x, it is necessary to make
the following transformations, as illustrated in figure 4.7b:

a= arctan
\dx!

and

ds= Id 2 + dy 2 = dx 1+ )

Noting that
da 1 d2X
dx 1+ (!Y2

and

ds 1 + (dy 2

dx V\dz)
curvature can be expressed as

k(x) = da/dx d2 x/dy2 3 (4.10)dsld - )3/2"
ds/dx d) 2

)

4.3.4 Curvature of Real Object Boundaries

Referring to figure 4.6, it is obvious that neither equation 4.9 nor, equation
4.10 are immediately applicable to the curve which represents the transistor bound-
ary. Firstly, the chain-coded transistor boundary is not in the form of an analytic
function of any type and, therefore, can not simply be plugged into one of the
curvature equations. Secondly, even if the boundary were in some analytical form,
the boundary equation would be almost useless for the purposes of measuring cur-
vature because noise and quantization errors would be greatly accentuated by the
differential operations [Bennett 1975]. To get an estimate of the curvature for a real
boundary requires the use of some special curvature estimator.

One technique for estimating the curvature of chain-coded boundaries is to fit
low order polynomials, usually parabolas, to small subsections of the boundary
[Smith 1984]. These polynomials can then be differentiated analytically and the
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results plugged into equation 4.10 to determine the curvature of that boundary
section. This method redtuces noise and quantization errors by fitting a curve to
the average trend of the boundary points.

A somewhat more direct approach is suggested b figure 4.8. In figure 4.8a, a

straight line L2 is fit to a small subsection of the curve (between points P,, and P,)
in order to estimate a directly. Another straight line is fit to a section of boundary'u
points at a distance As further along the curve to obtain a different a value, as
illustrated in figure 4.8b. From equation 4.9 the curvature can be estimated directly
by subtracting the two a's and dividing the result by As, k Aa/As. Once again,
smoothing is obtained during line fitting by averaging the error from a number of
points.

L-2

Y / L3

2

/AS

x Nox
(a) (b)

Figure 4.8: (a) Li and L2 illustrate two different methods to estimate
a for the curve section between Pa and Pb. L 3 is a line
parallel to L1 . (b) Curvature can be estimated by obtaining
estimates of a at two different curve positions and then
subtracting these estimates and dividing by As.

The algorithm actually used to estimate the curvature of the transistor bound-

ary represents a slightly simplified version of the previous method. In order to

increase processing speed, each estimate of a was accomplished using a straight line

fit to only the end points of the boundary subsection. This is illustrated by L, in

figure 4.8a. This simplified method is clearly more susceptible to errors due to noise
and quantization effects, but these errors can be removed by smoothing later on.
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The results of applying this quick but noisy curvature operator to the transistor
boundary can be found in figure 4.9.

It should be noted that the method of curvature estimation depicted in figure
4.8b assumes that As is equivalent to the distance between the midpoints of the
curve subsections. In principle, As should represent the arc length between the
curve points whose directions are given by the two estimates of a. Referring to
figure 4.8a, the mean value theorem states that somewhere between P,, and Pb
there must be a line L3 which is tangent to the curve direction and parallel to L1 .
If the curvature is constant between Pa and Pb, then L3 will be tangent to the
midpoint of the curve. If the curvature is non-uniform, then L3 may be tangent to
the curve at a point other than the midpoint. In this case, the true value of As will
be different from the distance between the two curve midpoints, thereby distorting
the curvature estimate.

1500.

o 1000..
" ..

0
100 2 0 4 o

-.

. 500 , ,.- .- ,-.,

• - ..- , - .. • .

100o -.2Q0. 300 -0. :50o ... QO: 700. 80
Arc L6ngth (hid upits)

-500

-1000

-1500

Figure 4.9: A graph of curvature vs. arc length for the transistor
outline shown in figure 4.6. Positive values of curvature
indicate convex curves, negative values indicate concave
curves. Arc length is 0 at the bottom-most pixel of the
boundary and increases in a clockwise direction.

As expected, figure 4.9 exhibits considerable noise patterns. By smoothing the
curvature estimate with a 1-dimensional gaussian filter, most of this noise can be
eliminated, as in figure 4.10.
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Figure 4.10: A smoothed version of figure 4.9.

4.3.5 Interpretation of the Curvature Estimate: Where's the Ellipse?

Now that a smooth estimate of tihe transistor's boundary has been obtained,
it must be used to segment those boundary regions which may have arisen from
elliptical edges in the image. The difficulty of this task depends heavily on the task
domain and the availability of a priori information about the types and sizes of
ellipses that may be present. If very small ellipses may be present, then almost any
convex boundary section might belong to such an ellipse. Similarly, it is easy to
confuse straight lines with very elongated ellipses because they both have sections
of approximately zero curvature.

For a transistor boundary, the areas of interest are those which correspond to
the top and bottom edge of the transistor cylinder. In principle, the top and bottom
edges should be equally useful for determining orientation. In practice, the top edge
is usually easier to find and more useful for future orientation operations. In the
curvature graph, the elliptical edge generated by the transistor top should be visible
as a long region of positive curvature. With this powerful a priori constraint, it is
possible to generate a simple, but effective curvature segmentation rule: select the
boundary region which exhibits the longest stretch of positive curvature.

Applying this criterion to the curvature graph of figure 4.10 generates the result
shown in figure 4.11. The points represented by "+" in figure 4.11 are the points
to which an ellipse is to be fit using the methods enumerated in the first sections
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of this chiapter. 'Fhe results of suich an ellipse fit have already beeni presenited in
lig-ure 1.5. The fit, appears remarkably good when comiparcd to the input points
which reprecn t(lie partial ellip~se. When comtpared to the transistor imiagc seen
in figure .1. 12, however, there is a distinguishlable error between the fit ellipse and
the top of the tranisistor cylindler. The mninor axis of the lit ellipse is 19% larger
thii it should be to accurately describe the transistor top). T1hiis error will create
significatit inaccuracies in the orientation estimate.

Fiur 41: hesctono te rntobunaymre y i
seleted or elips fitig, bae nit uvtrepoie

4.3. Usng Itenity radentInfomaton fr Elips fitin

Figur 4.11: chesecionof the transistor boundary ol oian afo mredlpi by oundaryi
L The otherlial of se elite for elipse fittie baed on' ipi(i o its cuias pr i t

c.o6nsider soenfte niGae nformation for Hoilise tthingisighaf

Thn sowst oitis notg surprisigt hre shuldi be schanduerri the mlt
*~psto ftl ellipse fit result. Of al the inomto otaied in p a s teal wordige she a theo

meetmstc, the tranist or bonar only coni- .2.Tis hlf vol eflltia bogny

of thle ellipse whtich can not be ohtaiined fromu thle tran sistor boun idary. If it were

51



m lip

Figuie 4.12: The ellipse which was fit using selected boundary points is
shown on the original transistor image. Tilt = 600, rotation

150

)o:msible to identify this region and use those points as input to the ellipse fitting
algorithm, a more accurate fit would result.

Identifying the region of interest is a difficult task. One possible tool for accom-
plishing this task is all "edge operator", such as the one suggested by I. Sobel [Duda
1973'. Such an operator is used to pick out the image areas which exhibit high in-
tensityl gradients. The results of applying the Sobel edge operator to the original
transistor image can be seen in figure 4.13. Figure 4.13 clearly illustrates the image
highlighIt which denotes the edge between the top and the side of the transistor.
The boundary of the transistor is also outlined, as well as a nimiber of other inte-

Srior points. To determine candidate ellipse points, the "edge image" obtained using
the Sobel operator is thresholded using the method of Schlag 1983 and then the
ellipse of figure 1.12 is slperimposed on the resulting image. The points in the edge
image which are near to to the ellipse represent image features which correspond
to the ellipse in the scene. These points arise both from the curved portion of the
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trans~istor bounidary anid fromi the brightly lit corner which miarks t he tile opposite
side of* thle ellipse III thle lilage. All of these Points ShIould be used for ellipse tittiig.

Figure 4.13: Edge image of original transistor obtained using the Sobel
edlge op~erator.

To collect the (datal fer all, the points of interest, the ellipse which was fit using
only bound ary in formrat ion is eX1aldled alid then repositioned onl tilie binarized edge
Image. All of the edge image poin~ts wich lie inside this exparndedl ellipse can then
b~e Iiscel as ipit, to tile ellipse litter. Figure 4.14 dlepict s the superposition of the
original ellipse, the expandled ellipse, and1 the grad ient image. Figure 4.15 illustrates
the imiprovedl ellipse fil obt ai nedl using t hiis methlod. The minor axis of the improved
ellipse is only 2%/, larger thian it should be to accurately dlesc ribe the transistor top.
This can be comipared to the 19% error of the first ellipse, which is also shown in
figure 4.15.1

4.3. 7 Orientation Prom Ellipses .
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Figure 4.14: The ellipse of figure 41.12 is expanded and then superiln-
posed on the binarized edlge image. The original ellipse of
figure !.12 is also shown for comparison.

Knfowledlge of which ellipse p~arameters best fit the image data does not intrin-
sically allow the dci eriiiinat ion of orientation. Something imist be known about the

object to which time ellipse is fit before any useful orient ation informiation may bc
extracted.

For the transistor. the imiage ellipse is gel)Crate(l b~y the persp~ective view of the

circular transistor t op. Thme relative lcengthlis of' the miajor and minor axes will then
determine the tilt of' the transistor according to the following formula:

Tilt -arccos()

Thje rotation of the transistor corresponds to the orientation of the minor axis. The

estimate of' rotalion ,,'III be am~biguous I-180 becatise any ellipse i otated by 1800
is equivalent to thme original ellipse. In terums of the standlardl c Ii pse parameters,

Rotation 0 i9 90' 1800
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Figure 4.15: The ellipse fit using edge information is shown oi the
original transistor image. The larger, less accurate, ellipse
of figure .1.12 is also shown for comparison.

The ellipse fittimg algorithm mentioned in this chapter provides a solution in
terms of the parameters A, 13, C, D, E, and F. For completeness, the equations for
converting from these parameters to the standard ellipse parameters a, b, h, k, and
0 are provided below:

BE - 2CD 2EA - BDh - 4 -and k :7- 44AC - B 2  /fi2 -- 4AC

0 -2 arctan

Using h,k, and 0 from above,

a = /.I(s,, - cos- ) a J(cos - 0 - sin2- 0)
\C s(in-o - A cos2 0 \C cos 2 0 -AsinO
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%where J h2A hk 3 k 2 C F.

4.3.8 Applicattion Summery

The task of fitting ellipses to imnages has been described in this chapter as a
two part process. First, there is the general question of how to fit an ellipse to a
set of points in the coordinate patimc. This problem has received much study, and a
nminber of general purpose solutions exist. Secondly, there is the question of which
iniage points should be selected as a group to represent an ellipse.

It is this second question for which no general solution exists. This paper has
considered the simplified image domain of object boundaries and determined that
curvature methods can le used to identify curve segments which may correspond
to elliptical edges. For the specific case of the transistor application, some simple a
priori knowledge about the outlines of cylindrical objects was sufficient to uniquely
idtntify the ellipse shaped segment of the object boundary. Such curve segments
provide an ellipse solution which is a good first approximation to the original image
data, but one which could use some improvement.

The ellipse solution obtained using boundary methods was then used as a guide
for selecting candidate ellipse points from the more complicated domain of intensity
gradients. The extra inforination extracted from the gradient domain was found
to provide a more accurate ellipse fit for the sample transistor image. The pa-
rameters of the ellipse were then converted to an estimate of orientation using the

knowledge that the elliptical region of the image was generated by the perspective
transformation of a circle.

4.4 Result, of Ellipse fitting

In order to objectively analyze the methods of the previous sections, these meth-
ods were almlied to 138 different images of transistors. The orientation of each
transistor was Ieasured using standar(d mechanical techniques. Each image was
then labelled with an estimate of orientation derived from the methods put forth in
this chapter. The correspon(ling performance gral)hs are shown in figures 4.16, 4.17
and 4.18. Each graph shows the actual orientation versus the estimated orientation.

Figure 4.16 illustrates the estimates of tilt obtained using only boundary cur-

vature to select ellipse points. The errors evident in this graph arise from (at least)
three different independent error mechanisins.

9 The smoothing function ased to smooth the curvature graph (see figure 4.10)
tends to blur the sharp change in curvature between the transistor top and side.
Because of this, tlh, boundary region selected for ellipse fitting is always a few
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Figure 4.16: Actual transistor tilt vs. tilt estimated from ellipse paramn-
eters. Ellipse fit was obtained using only selected transistor
boundary points.

* pixels too long, resulting in low tilt values. This type of inaccuracy is most
critical for high values of tilt and is the overriding cause of error for tilts greater
than 300.

*The estimation of tilt is very sensitive for tilt values near 00 (see section 4.3.7).
At low tilts, a 2% error in the estimation of a or b introduces a 100 error in tilt

* value. For the images used in this research, a 2% error corresponds to about
one pixel at tilt = 00. This helps to explain the large errors at low tilts.

* As previously discussed, ellipse fitting based on minimization of the general conic
(equation 4.2) tends to favor ellipses which are more eccentric than expected.
Because of the two points mentioned above, these erroneously eccentric ellipses
cause the most problems at low tilt angles. Figure 4.16 displays a clear tendency
to overestimate tilt for values of tilt less than 300.

Ellipse fitting does not always work as well as figure 1.16 might seem to indicate.
At ccrtain orientations (those with high tilt values), the ellIiptical shape of the
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transistor boundary is nonexistent, or difficult to discern. In these cases, the curve
fitting method of the previous sections decides that a hyperbola fits the data better
than any ellipse. In practical terms, this indicates a total failure of the ellipse
methods and such points are not shown in figures 4.16, 4.17 and 4.18. There are

16 of these disasLer points, but they are confined to transistors with high tilt, as
shown by the following table.

Tilt Angle Number of Number of
(degrees) attempts Failures

90 14 12
85 2 2
80 2 1
75 14 1

It is useful to note that the heuristic used to segment transistor boundaries

usually finds the boundary section corresponding to the top end of the transistor.
This occurs because the outline of the bottom is broken by the outline of the legs.

For low tilt angles, however, the legs are occluded by the transistor body and the
ellipse is often fit to the bottom edge of the transistor. While this does not pose

any problems for determining the orientation of the ellipse in figure 4.16, it is still
important to be able to recognize which end of the transistor is the top.

The use of intensity gradient information as described in section 4.3.6 actually
assumes that the transistor top has been located. If this assumption is invalid,
then a very large error is reported by the ellipse fitting algorithm when the edge

image is used. This large error is used to recognize the "wrong end" condition and
corrective measures are applied. In principle, corrective measures might include

reanalyzing the curvature graph and determining the top end correctly. In this
research, corrective measures correspond to using the ellipse which was fit to the

bottom boundary and then simply remembering that this ellipse corresponds to the

bottom end.

Figure 4.17 depicts the performance for the tilt estimate obtained using infor-

mation from the edge image; figure 4.18 depicts the performance for the rotation
estimate using the same method. Notice that there is a 180' ambiguity in the ro-

tation value since the ellipse parameters do not distinguish between the top and

bottom ends of the transistor.

Comparing figure 4.17 with figure 4.16, it is clear that intensity gradient infor-

mation significantly improves results. The errors that do exist can be explained by
the following points
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Figure 4.17: Actual transistor tilt vs. tilt estimated from ellipse pa-
rameters. Ellipse fit was obtained using intensity gradient
information, as well as selected transistor boundary points.

9 As for figure 4.16, there is an inherent tendency for all ellipses to be more
eccentric than desired causing all tilt estimates to be on the high side. This
error has a greater effect at low tilts because the required arccosine operation
is very sensitive around 0'.

9 At low tilts, especially around 150, the ellipse is first fit to the bottom end of the
transistor. When the edge data is used to improve the initial ellipse estimate,
the "wrong end" condition is detected and no ellipse improvement occurs. The
use of somewhat cruder ellipses results in large scatter of the tilt estimate at
150.

e At tilt = 90' there is theoretically no ellipse in the image. This usually results
in a failure of the ellipse method as mentioned earlier. In some cases, however,
the transistor boundary is seen as slightly curved and an ellipse is fit. The tilt
estimated from such an ellipse can never be the actual value of 900 , but must
be some smaller value.
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Figure 4.18: Actual transistor rotation vs. rotation estimated from el-
lipse parameters. Four pairs of outlying points are labelled
with their corresponding tilt value. Estimated rotation val-
ues are ambiguous ±1800. Ellipse fit was obtained using
intensity gradient information, as well as selected transistor
boundary points.

The results of the cllipse rotation estimate are displayed in figure 4.18. 92.6%
of the rotation estimates are within ±25' of the actual rotation values, but there
are four distinct pairs of outlying points. Each pair of outlying points is labelled
with the actual transistor tilt value for that pair, and it is clear that all of the
outlying points were generated by transistors with very low tilt values. There are
three major causes for this systematic error.

* Very low tilts correspond to almost circular ellipses which are inherently degen-
erate in 0.
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* As previously discussed, low tilt angles often result in fitting an ellipse to the
bottom end of the transistor which yields less accurate ellipse parameters.

e The Sobel edge image generated by low tilt transistors is often more "cluttered"
than the edge image of high tilt transistors. This increases the chance that
improper edge points will be used to determine the ellipse.

It should be noted that figure 4.18 does not contain any points corresponding
to failed ellipses or to those ellipses with an actual tilt of 0' because the concept .
of rotation is nonsensical in these cases. It is also worth noting that the points in.
figure 4.18 have a ±1800 ambiguity.
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Chapter 5
C t Combining Orientation Information

5.1 introduction

In previous chapters, three methods have been presented for determining the
three-dimensional orientation of objects from a two-dimensional image. Each of the
methods has its own weaknesses and conditions of applicability, but each has proven
to be useful for determining orientation. Intuitively, it seems that the information
from each of these methods should be mutually reinforcing, and that some combi-
nation of the methods should be able to provide a better estimate of orientation
than any of the methods alone.

The concept of combining information sources has been generally recognized
and is used in many well-known AI expert systems [Ballard 1976] [Buchanan 1969]

[Davis 1977] [Brooks 19811 [McDermott 19821 [Pople 1982]. Unfortunately, such
use of multiple independent knowledge sources in practical problem solving is often
very application specific. Due to the diverse types of knowledge, no generally useful
theory has been developed to combine different information concerning a specific
task. There are techniques, however, which show promise for combining information
about certain problem domains.

5.2 Representing and Combining Knowledge
0
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5.2.1 Knowledge Representation

Information may be represented in a number of different formats, and often the
complexity of real world information requires several levels of representation. For
example, consider the image of a sphere. Information concerning the presence of
the sphere in the image can simply be represented as a boolean value: True or False.
On the other hand, information concerning the image intensity values of the sphere
could be represented as a surface in a real-valued three dimensional space or by an
equation which describes this surface.

Using the definitions of [Ballard 1982], the knowledge necessary for computer
vision tasks can be divided into three categories of representation. Each of the three
representations are illustrated in the sphere example and will be further described
here.

* Analogical representations are used to model real-valued "analog" phenomena,
such as the three dimensional description of an image's surface. Analogical rep-
resentations are continuous and often related to the structure of the represented
situation. Most importantly, analogical information is typically manipulated by
complex computational procedures.

* Propositional representations contain knowledge about high-level concepts such
as whether there is a sphere present in an image. Propositional models are
usually discrete abstractions. Propositional representations take on values like
True or False and are manipulated using some type of inference engine, such as
predicate calculus.

Procedural representations store information about "how-to" perform some com-
plex activity. This information is stored as a sequence of program steps or "pro-
cedures". A procedure, for example, might explain how to use a formula which
represents the surface of a sphere. There is some question as to whether proce-
dural information is really just a type of analogical or propositional information,
but that need not be of concern here.

The ideal knowledge representation depends heavily upon the problem domain
and the solution desired. Some problems are inherently analogical while others are
propositional; many problems contain both analogical and propositional informa-
tion. The ideal representation also provides for ease of combining or comparing
information.

5.2.2 Knowledge Combination

The solution for many problems requires the combination of information from
diverse knowledge sources. Due to the complexity of real world problems, a number
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of different techniques for combining information have been proposed. Some of
these techniques will be illustrated in this section.

Pattern recognition techniques are well-known methods for combining purely
analog information [Duda 19731 [Fukunaga 1972]. Here, the information from the
scene is represented in terms of "features" which are usually modeled as gaussian
probability distribution functions. Analysis of the features using Bayesian decision
theory yields a solution based on minimun probability of error. Such techniques,
however, require that all domain knowledge be represented in a common feature
space. This is an inadequate description for many high-level tasks.

Production systems have been used to draw inferences from propositional knowl-
edge [Davis 1977] [McDermott 1982]. A production system consists of a number of
inference "rules" which specify some conclusion which can be inferred given that
some number of conditions are satisfied. A simple example of such a rule might be:
"IF a section of the image is green THEN that section is grass". This type of rule
is useful when the required high-level propositional information has been extracted,
but is impractical for low-level analog processing.

It is important to note that information may interact in subtle and complex
ways. Often, one piece of information is used to help deduce another. This interde-
pendence must be represented as part of the knowledge about the problem. There
must also be provisions for uncertainty or error. If an erroneous piece of data is
used to derive a proposition which is, in turn, used to make higher level deductions,
serious errors could result. Most importantly, the goal of most problems is to de-
termine the globally best solution. This requires that there is some way to prevent
local errors from propagating throughout the information network.

To account for these complex issues, practical systems usually use some combi-
nation of analogical and propositional techniques. A classical example is the MYCIN
system [Buchanan 1984]. MYCIN is an expert system that tries to diagnose the
cause of bacterial blood infections. MYCIN employs production rules to represent
"expert knowledge" about blood bacteria, but certainty factors - ranging from
zero to one - are attached to each piece of information and each production rule.
These analog certainty factors are necessary because a correct diagnosis must be
made in a domain where deductions are not certain.

The exact application of the certainty factors depends on the type of production
4 rule involved.

e AND rules require that a number of conditions (all) be satisfied before the
corresponding conclusion can be reached. For these rules, the certainty of the
conclusion is computed by multiplying the smallest certainty factor of the con-
ditions by the certainty of the rule itself.
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OR rules require that (only) one, or more, condition need be satisfied before
the corresponding conclusion can be reached. For OR rules, the certainty of
the conclusion is equal to the certainty of the production rule multiplied by Ct,
where

Ct=CI+C 2 +.+C.-C 1 C2 ... C,

and Ci is the certainty of the ith satisfied condition for i = 1,... , n.

MYCIN, therefore, operates on analogic and propositional information in parallel.
Data from a doctor is used by the production system to deduce ever higher levels
of propositional abstraction while analogic certainty measures are used to weed out
erroneous propositions and find the globally "best" final conclusion. This flow of
information is depicted in figure 5.1.

Conclusion

Production Rule CR3

C7

Prodctio Rul CRIProduction Rule 0 R2

3 5

DATA DATA DT AADT

Figure 5.1: Information flow in the MYCIN system. Ci represents the
certainty factor associated with a piece of information, and
CRi is the certainty corresponding to a given production
rule.

It should be noted that this method of combining information can not be called
optimal. No theoretically optimal set of rules and certainty factors is available

because the problem is not fully understood even by the best humans. The ba-
sic structure of the productions and the corresponding certainties are based upon
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the subjective knowledge of experts. Such a heuristic approach is typical of most
systems which attempt to solve real world problems at a high level of abstraction.

5.2.3 Plausibility Functions

The problem of combining multiple sources of unreliable information raises fun-

damental issues in estimation theory. When accurate probability models of obser-
vations are available, there exist several strategies - including maximum likelihood
and maximum a posteriori probability - to optimally estimate underlying model
parameters. In practice, such models may themselves be unreliable, and unreliable
observation of any one measurement may be catastrophic for the estimation process.
In many cases, one would, perhaps, prefer a less optimal estimate in exchange for
a more graceful mode of failure in the face of unreliable models. In this study, the
use oi plausibility functions is introduced as an estimation technique which weights
observation likelihoods according to the reliability of the underlying probability
models. The resulting expressions are weighted averages of possible likelihood es-
timates and offer sub-optimal estimates in any given regime, but are robust with
respect to failure of the underlying models.

As an example, consider a robot with N different range sensors, Si for i =

1,. N. The robot is a distance d from an obstacle, and each sensor Si yields a
distance measurement x,. The distance estimated by a sensor will vary about the
true distance d depending on the surface properties and geometry of the obstacle.
Assuming that a reliable probabilistic model can be obtained for sensor Si, the
measurement xi will have a known probability density function p(xild).

Simultaneous observation of n reliable sensors is described by the joint con-
ditional pdf p(xl,... , zId). If all sensor models are reliable, and if the reliable
observations are also statistically independent, the joint pdf of the xi given d is

N

p(Yld) = p(zl,..., xvld) = f7np(zi1d).

The maximum likelihood estimate, dML, is that d for which p(Y[d) is a maximum:

m p(-l)

If some a priori information p(d) is available, Bayes Rule,

p(Yld)p(d)p(dl F) = p
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can be employed to deduce the a posteriori estimate of d. The maximum a posteriori
estimate, dMAP is that d for which p(dIY) is a maximum:

aMAP = Max [(d) pl(xztId)]

Given reliable sensor models, dMAP is determined by finding the maximum value
of the function resulting from the multiplication of the sensor probability density
functions with the a priori pdf of d. Unfortunately, this scheme does not degrade
gracefully in the presence of unreliable models. If just one of the robot's distance
sensors were to fail in such a way that the sensor reported p(zild) = 0 for zi = d,
then the maximum likelihood estimate dML would never be accurate. This poor
result would occur even if all of the other N - 1 sensors provided perfectly correct
estimates of d.

The pdf of a reliable model must, therefore, indicate that such serious errors
may occur. In practice, the determination of a pdf which reliably deals with all
possible failure modes may not be feasible. This leads to the use of probability-like
density functions and, therefore, sub-optimal combination rules.

One possible method for the combination of these unreliable pdfs is suggested
by analyzing the failure mode of the classical probability approach. The maximum
likelihood estimate breaks down in the presence of serious error because it is an
intersection operation. In other words, all of the sensors must be accurately modeled
by their probability density functions. In the case of unreliable estimates, it may
be useful to define a sub-optimal, but more robust, plausibility function which is a
linear combination of sub-optimal likelihood estimates:

N

pL(zX,. .. ,xN d) = W, p(xld)
i=1

i<'

+ E Wijkp(,xjxId)

k<j<i

+ W1...N p(zl,... ,NId).

Each possible joint pdf is multiplied by some weighting factor W, which is known
as a plausibility factor, and then summed to obtain the plausibility function. The
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resulting most plausible estimate is obtained as:

dMPL = max[Pl(Xl,.XNd)1
d

The estimate provided by the equation above reduces to the maximum likelihood
estimate when all observations are reliable and all of the plausibility factors are equal
to zero, except W4 I ...N = 1. The plausibility function incorporates joint probability
densities, which are most useful for estimation when they are reliable, but which are
also the most sensitive to unreliable observations. In practice, these joint probability
densities are the most difficult to estimate. It is of particular practical interest to
examine the case where joint density models are unobtainable or independence
assumptions are uncertain. In this case all joint probability models are regarded as
unreliable. The resulting single factor plausibility function:

N

Pl(Xl,..XN 1d) ZWip(xi ld)
i=l1

describes the average likelihood given mutually exclusive observation of xi, for i =
1,...N.

The single factor plausibility function is closely related to a number of heuristic
linear weighted probability schemes which have been previously proposed [Buchanan
19841. The development presented here relates these approaches to more traditional
estimation strategies and shows that maximumu likelihood estimation may be re-
garded as a special case of the general plausibility function method. The single
factor plausibility function is used as the basis for estimation in this study due
to the difficulty in estimating joint densities and in determining joint plausibility
factors which may be functions of the model parameter d.

5.3 Integrating Information About Trarsistor Orientation

5.3.1 Representing Transistor Orientation Information

In this paper, the task is to combine the estimates of tilt and rotation obtained
from the methods of Chapters 2, 3, and 4, in order to obtain the most plausible
single interpretation of transistor orientation. Before this can be accomplished, it
is first necessary to establish a consistent representation for orientation informa-
tion. The representation selected should capture the critical aspects of the problem
domain while allowing easy comparison and manipulation of the information. An
analogical representation seems the most natural to satisfy these constraints because
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of the analog nature of orientation estimation - tilt and rotation are both naturally
expressed as smoothly varying real-valued parameters. It will be useful to see what
types of information are available from the orientation estimates of the previous
chapters and how this information can be converted to an analog representation
with the desired properties.

The binary connectivity analysis of chapter 3 provides two estimates of transis-
tor rotation which are 1800 apart. This information appears to be a poor choice for
analog representation because the information simply consists of two numbers (only
one of which is unique). A little thought, however, will show that the two estimates
actually contain analog information when viewed properly. The rotation estimates
represent the most probable estimate. Due to the effects of noise and measurement
error, it is only slightly less probable that the actual transistor rotation is 1' above
or below this estimate. In fact, the estimate of rotation represents the center of
an analog probability density function. As discussed above, the shape of the pdf
must be determined by a priori knowledge or empirical studies, but given such a
function, it is possible to create an orientation representation which models the in- 5
formation quite well. For the purposes of this research, a gaussian density function
is used. The two single-valued estimates of rotation obtained from binary connec-
tivity analysis can now be transformed to a rotation probability density function by
convolving each value with a gaussian filter. The tilt and rotation estimates from
ellipse fitting can also expanded to probability functions through convolution with
a gaussian density function.

The estimates from histogram template matching, however, represent a different
form of information and must be handled differently. As discussed in chapter 2, both
the center section and the highlight section (if any) of a transistor histogram already
generate a probability measure for each 50 of tilt. The probability measure from
the center histogram section corresponds to the degree of correlation between the
input histogram and the current histogram from the training set. The probability
measure generated by the highlight section of the histogram depends on the presence
(or absence) of a highlight region in both the input histogram and the current
histogram from the training set. In order to create an analog probability function
from each of these discrete probability functions, linear interpolation is used.

All of the tilt and rotation estimates discussed in the preceding chapters have
now been represented in a uniform analog format. Each estimate has been trans-
formed in a way which attempts to model the real world considerations of noise

and error while preserving the underlying structure of the knowledge. Examples of
these functions will be illustrated in the next section.

5.3.2 Combining Transistor Orientation Information
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The rotation estimates obtained from binary connectivity analysis and ellipse
fitting both suffer from a ±1800 ambiguity. In order to alleviate this problem,
another (unambiguous) estimator of rotation is used. The orientation of a line
drawn between the center of the binary blob and the center of the ellipse is a
unique estimator for the rotation of the transistor. This estimate is convolved with
a gaussian density function to create a probability function.

The results for such an estimator are displayed in figure 5.2. The graph exhibits
generally linear behavior with a few outlying points. The three points which exhibit
the greatest error have been labelled with their appropriate tilt values. The pair
of points with a tilt of 50 display the greatest error because the rotation estimator
is inherently degenerate for tilts approaching 0' . This degeneracy is responsible
for most points which display significant error. There is, however, one outlying
point with a tilt of 800. In this case, the ellipse which was fit to the data had
an approximately correct length to width ratio, but it was twice the size of the
desired ellipse. It is more difficult to fit ellipses to transistors with high tilt because
the ellipse becomes non-existent at 900 and the corresponding edge image is quite"cluttered".

With this new rotation estimate, there are a total of six orientation estimators:
three estimates of transistor tilt and three estimates of rotation. To create a single
estimate of tilt (rotation), some method for combining the three tilt (rotation) esti-
mates is necessary. As discussed in the preceding section, one combination method
involves scaling each pdf by an appropriate plausibility factor and then summing
the resulting plausibility functions. The final orientation estimate corresponds to
the the most plausible point of the total plausibility function.

The plausibility factors are intended to provide a "fair" balance between the
individual estimates. The plausibility factors specify the relative importance of the
given estimate to the final conclusion, and are closely related to the certainty factors
of MYCIN. As in MYCIN, the values of these scaling factors must be selected on
the basis of experience. The scaling factor for the orientation estimates from ellipse
fitting can also be modified by the error of the ellipse fit: the higher the error, the
smaller the scaling factor.

Figures 5.3 through 5.10 illustrate the entire process of representing and com-

bininrg information for a transistor with tilt = 60' and rotation = 1500. Figures 5.3,
5.7, 5.8 and 5.9 show the result of convolving a gaussian density function with one,
or two, single-valued orientation estimates and then scaling the result by a plausibil-

ity factor to obtain the appropriate plausibility function. Figures 5.4 and 5.5 were
obtained by applying linear interpolation to the two discrete probability functions
provided by histogram template matching and then scaling the result. Figure 5.6
depicts the result of summing the tilt plausibility functions, and figure 5.10 repre-
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Figure 5.2: Actual transistor rotation vs. unambiguous rotation esti-
mated from the orientation of a line drawn between the
center of binary blob and center of ellipse. The graph does
not contain points for which the transistor tilt was 00, or
for which ellipse fitting failed.

sents the summation of the rotation plausibilities. The most plausible orientation
value from each of these plots is selected as the orientation of the transistor. In this
case, tilt = 590 and rotation = 154 ° .

The method of summed plausibility functions illustrated by figures 5.3 through

5.10 has a number of useful properties. First, the representation used fits in well
with the problem domain and allows for easy combination of information. Second,
there is no need to attach separate certainty factors to each estimate of orientation;
the certainty of any estimate can be included as part of the plausibility representa-
tion through a scaling factor. Third, this method allows all the information to come
together in a single summing operation thereby providing a globally most plausible
solution. This is possible because there is no need to deduce an orientation esti-
mate from information gained using another method. These important points are
summarized in figure 5.11 and may be compared to the MYCIN system (figure 5.1).

4p
71

4p



5000

o 4000

3000

2000

1000

0 10 20 30 40 50 60 70 80 90
Tilt (degrees)

Figure 5.3: Tilt plausibility function obtained using ellipse fitting.
Maximun plausibility occurs at tilt of 59.3 . The actual
transistor tilt is 60'.
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Figure 5.4: Tilt plausibility function obtained from histogram tem-
plate matching. Maximum plausibility occurs at tilt of 55'.
The actual transistor tilt is 60'.
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Figure 5.5: Tilt plausibility function obtained from histogram high-
light matching. Maximum plausibility occurs for all values
of tilt between 150 and 90* . The actual tilt is 600.
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Figure 5.6: Tilt plausibility function obtained by summing the three
previous plausibility graphs. Maximum plausibility occurs
at tilt, of 59'. The actual tilt is 600.
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Figure 5.7: Rotation plausibility function obtained from ellipse fitting.
Maximum plausibility is at a rotation of 1510 or 331'. The
actual tilt is 1500.
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Figure 5.8: Rotation plausibility function from binary connectivity
analysis. Maximum plausibility occurs at a rotation of 159'
or 3390.
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Figure 5.9: Rotation plausibility function obtained from unambigu-
ous rotation estimator. Maximum plausibility occurs at a
rotation of 1520. The actual transistor rotation is 1500.
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Figure 5.10: Summation of the three previous plausibility graphs. Max-
imum plausibility occurs at a rotation value of 1540. Actual
rotation is 1500.
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Conclusion

DATA DATA

Figure 5.11: Information flow in the transistor system. The Ci are
scaling factors analogous to MYCIN's certainty factors.

5.3.3 Unusual Ellipse Situations

A number of unusua.l situations rmay arise which affect the ellipse fit and the
subsequent plausibility function. These situations and their effects are addressed
here.

If the ellipse fitting algorithm fails (i.e. tile data fits best to some conic other
than an ellipse), the relevant probability density functions are generated as a special
case. For the rotation estimate, every angle is equally probable, so a flat probability
function is generated. For tilt, it is most probable that the actual tilt is close to 90'

since this is where the ellipse usually fails (as explained in section 4.4). These syn-
thesized probability functions are then multiplied by very small plausibility factors
to indicate a low degree of confidence. Finally, the unambiguous rotation estimator
described at the beginning of the previous section requires the presence of an ellipse
to function properly. When the ellipse is non-existent, the estimator measures the
orientation of a line drawn between the center of the binary blob and the center of
the points to which the ellipse fit was attempted.

0 If the ellipse is accidentally fit to the bottom end of the transistor, the tilt and
rotation estimates from the ellipse will be unchanged. The unambiguous rotation
estimate, however, will be oi by 1800. In this case, 180' is added to correct the
estimate. The plausibility factor for the ellipse orientation estimates is also reduced
somewhat because ellipses fit to the transistor bottom are inherently less accurate,
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as mentioned in chapter 4.

5.4 Results

To test the performance of the total system, the system was used to estimate
transistor orientation for a number of transistor images. Forty-nine transistor im-
ages were used, each image corresponding to a different orientation. The 49 different
orientations used were determined by trying all possible permutations of 7 rotations
(00 , 450, 90 ° , 1500, 1950, 2550, 3000) and 7 tilts (00, 150, 30' , 450, 600, 750, 900).
The resulting estimates of tilt and rotation are displayed in figure 5.12 and figure
5.13, respectively.

,360.36 1 tilt = 15degrees

330 3 tilt = 30 degrees
=Q 4 tilt = 45 degrees30. 6 tilt = 60 degrees.-

,-270 7 tilt = 75 degrees -

240 9 tilt = 90 degrees.o240 ..

€ 210.
L 180.

120.
" 90.
Uj 60

30 .

0 30 60 90 120 150 180 210 240 2;0 300 330 360
Actual Rotation (degrees)

Figure 5.12: Actual vs. estimated rotation from combined system. Data
is labelled by tilt for 49 images under normal illumination.

Figure 5.12 exhiLLs the desired straight line trend between actual and estimated
orientation. On the average, there is a tendency for the rotation estimate to be a few
degrees too high. This systematic error is caused by the position of the transistor
legs as discussed in chapter 3. Including these errors, every rotation estimate is still
within ,1% (1.10) of the actual rotation. Two minor points to notice are:

1. "his graph does not include any data points which correspond to tilt 0'
because such points have no meaningful rotation value.
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90 0 rotation =O0degrees .
Q 804 rotation = 45 degrees *

64) Bo- 9 iotation = 90 degrees
+ rotation = 150 degrees

70. rotation = 195 degrees

60. c3 rotation =255 degrees
60 C> rotation = 300 degrees4

'I,

530.

40.|

(00

0 10o n0 30 40 50 60 70 8o 90
Actual Tilt (degrees)

Figure 5.13: Actual transistor tilt vs. estimated tilt from combined sys-
tem. Input data is labelled by rotation for 49 different

transistor imiages under normnal illumination.

2. The single data point at tilt = 600, rotation = 330 is not one of the possi-

50 .. 0

ble permutations mentioned above. This data point was accidentally included
instead of the point at tilt 60", rotation 300'.

The tilt estimates (figutre 5.13) exhibit a larger percentage error than the rota-
tin~ estimates. With the exception of the single data point corresponding to tilt

4= 15' and rotation = 3300, every tilt estimate is within 11% (100) of the actual
value. The various sources of error have been explained in the relevant sections of
the previous chapters, however, some adlditional explanation is warranted for the
outlying point at tilt 15' and rotation 330'.

This point had a tilt of 24.6' according to the best fit ellipse. Its histogram
correlated best with a tilt of 60', but 200 and 00 correlated well also. The real
problemi occurred with the highlight portion of the histogram; according to the
histegramn highlight this data point should have a, tilt of 00, 50 or, 10'. This incorrect
information could not be corrected by the other tilt estimates because they were
not very accurate either.

It is important to note that the histogram tilt estimators play a more important
role in estimating small tilts. Referring to figure 4.17, it is clear that the ellipse
tilt estimate suffers from systematic errors at low angles and that these errors must
be overcome by the histogram estimators. A quick glance at figure 5.13 suggests
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that the histogram tilt estimators were indeed able to reduce these errors. Figure
2.5 further suggests that much of the error reduction was supplied by the highlight

portion of the histograms.

Using the same 49 transistor orientations, a set of low intensity images was

collected to test the system's sensitivity to changes in illumination intensity. These
darker images were actually obtained under the same lighting conditions as the first

set; the lens aperture was just closed two f-stops. The result of using these darker

images can be seen in figures 5.14 and 5.15.

Figure 5.14 is almost identical to figure 5.12 and all of the same analysis is
applicable. The only discrepancy worth mentioning is the point at tilt = 900 and

rotation = 300'. This point is the only point with an error greater than 4% (140),
but it is not an obvious "outlier".

Similarly, figure 5.15 bears a very close resemblance to figure 5.13. The outlying
point in figure 5.15 occurs, in part, because the ellipse fitting algorithm fails to find
any ellipse at all. The histogram tilt estimator then selects 350 as the most plausible
tilt value and there is no information available to correct the mistake. Ignoring this
one dlata point, every tilt estimate is within 11% (10') of the actual value.

Eight extra images were used to further test the response of the rotation esti-
mators. The results of this test are shown in figure 5.16. Low intensity versions of
these eight images were used to generate figure 5.17. Both of these figures exhibit
extremely low error; the maximum error in either graph is 1% (40).

Twelve extra images were used to further test the response of the tilt estimators.
The results of this test are shown in figure 5.18. Figure 5.19 shows the results
obtained using twelve extra low intensity images. Both figures exhibit some error
in the 00 to 40' range due to the ellipse fitting errors discussed in chapter 4. Figure
5.19, however, also displays errors for very high tilt angles. These errors arise from
histograuni correlation. In either case, the maximum error is 11% (10°).
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Figure 5.14: Actual transistor rotation vs. estimated rotation from coin-
bined system. Points are labelled by tilt for 49 different
transistor images under low illumination.
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o rotation = 255 degrees

- -60 0 rotation = 300 degrees

50 .0.

E§ 40.

2.0 .I.•.

10 .

0 10 20 30 40 50 60 70 80 90
Actual Tilt (degrees)

0

Figure 5.15: Actual vs. estimated tilt from combined system under low
illumination. Points are labelled by rotation value.
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Figure 5.16: Actual transistor rotation vs. estimated rotation from com-
bined system. Points are labelled by tilt for 15 different

transistor images under normal illumination.
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Figure 5.17: Actual vs. estimated rotation of combined system. Points
are labelled by tilt for 15 images under low illumination.
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Figure 5.18: Actual transistor tilt vs. estimated tilt from combined sys-
tem. Points are labelled by rotation for 19 different tran-
sistor images under normal illumination.
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Figure 5.19: Actual vs. estimated tilt from combined system for 19
images under low illumination. Rotation = 45° .
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Chapter 6

Conclusion

6.1 Summary

One general goal of computer vision is to be able to produce a semantic de-
scription of a scene from a single image consisting of a two-dimensional array of
intensity values. The desired description will often consist of a list of the objects in
the scene as well as the orientation of those objects and their spatial relationship.
This study has examined the problem of determining object orientation from simple
real-life images using a limited amount of a priori knowledge about the scene being
observed.

The emphasis of the work was directed toward devising methods for extracting
object orientation information from a single image. The methods were designed to
be independent of changes in the illumination intensity of the scene and changes in
object size. The general problem of locating the object in the image has been treated
only briefly as a prelude to the analysis of orientation. To facilitate this approach,
it was assumed that input images would contain a single object on a uniform,
but contrasting background. It was further assumed that complete mathematical
models of the imaged objects would not be necessary, although a number of sample
images and some general description of the object would be available.

Three techniques were presented for estimating object orientation.
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a Histogram template matching employed a nearest-neighbor classifier using the
normalized correlation function as a distance measure between the histogram
of the input image and a set of training histograms.

* Binary connectivity analysis assumed that the object silhouette could be ob-
tained by thresholding the image. The silhouette was then analyzed for connec-
tivity, and the features of the resulting image region were used, in conjunction
with some a priori knowledge, to determine orientation.

o Ellipse fitting used knowledge about the shape of circles to determine orien-
tation. A circle in a scene corresponds to an ellipse in the image, and the
parameters of the ellipse can be used to specify the orientation of the circular
surface. Location of the image ellipse was accomplished by exploiting knowledge
about object boundaries and image intensity gradients.

The orientation information from each of these three methods was then combined
using the plausibility function. This probability-based, sub-optimal, decision rule.
employed weighted sums of joint conditional probabilities to enhance robustness.

The combined techniques for estimating orientation were tested on 138 images
of transistors with good results. Of the 138 estimates for transistor rotation, 137
(99.3%) were within 14* (4%) of the actual rotation value. For the tilt estimates,
136 (98.6%) of the 138 estimates were within 100 (11%) of the actual tilt values.
These results demonstrate the feasibility of accurately determining object orien-
tation, using grey-level computer vision, for certain simple classes of monocular
images.

6.2 Limitations

The orientation determining methods presented in this report have proved to
be quite effective for estimating the orientation of transistors from images of single
transistors against a uniform dark background. The methods used, however, were
able to employ some simplifying assumptions that exploited the natural constraints
inherent in the problem domain. Although these assumptions were stated explicitly
wherever they were used, it may be useful to examine the limitations of these
methods.

Histogram template matching is limited almost exclusively to scenes which are
highly structured. This technique assumes that changes in the image intensity
histograia vary smoothly and systematically with object orientation, and that there
is a unique correspondence between orientation and histogram shape. The method
also requires a set of training histograms. Even under these stringent conditions,
histogram matching is incapable of determining rotation about the imaging axis.
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Binary connectivity analysis requires that the features of the thresholded image
regions vary smoothly and uniquely with object orientation. This requirement is
reasonably easy to satisfy (possibly with a small number of ambiguous orientations)
for most objects, if it is possible to binarize the grey-level image in such a way that
the binary image regions correspond to specific object surfaces. A correspondence
between binary regions and object surfaces is unlikely for most complex scenes, but
in many industrial applications the imaging environment can be structured so that
such a correspondence exists.

The method of ellipse fitting is restricted to those scenes which may generate
elliptical features in the image plane. The extraction of the ellipse perimeter points
is a difficult task which may involve significant computational cost. The methods
presented in this study are optimized to extract the points corresponding to the
edge of the unoccluded end face of a protruding cylinder. These methods may
not be applicable to the determination of perimeter points for a circular hole, or
other object features which generate an ellipse in the image. Once the ellipse is
fit, it is necessary to know the relationship between ellipse parameters and object
orientation in order to determine the orientation of the object involved.

The method of plausibility functions is limited to representing and combin-
ing information which can be expressed as a probability density function. Purely
propositional knowledge will not fit into the required framework and is best repre-
sented by production rules or some similar construct for performing propositional
deductions and inferences. In general, the plausibility function will not yield an
optimal solution, and it may require non-trivial amounts of effort to choose a set of
plausibility factors which provide a "good" sub-optimal behavior.

6.3 Further Study

6.3.1 Potential Improvements

The results obtained for the transistor application indicate that orientation
methods used in this study are useful, but imperfect. Some of these imperfections
are explained by violations of the inherent limitations stated above; others are not.
Each of these errors has been analyzed and explained in the relevant section of this
report. Here, potential remedies will be suggested for the more serious errors.

Histogram template matching suffers from two serious problems which merit
further discussion. The first problem stems from the inherent limitation that his-
togram shape must correspond uniquely to obj 'ct orientation. In general, this
assumption will be false, and the problem is exacerbated by the use of arbitrary
amounts of histogram scaling and expansion in order to preserve illumination and
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scaling independence. Many erroneous matches are the result of unrealistic amounts
of histogram expansion, or the result of non-linear expansion due to the imaging
camera. These errors could be reduced using a more linear camera and reasonable
heuristic assumptions about the possible deviation of illumination and object area.

Another source of histogram error occurs because histograms do not vary uni-
formly with changes of orientation. Histogram shape may vary rapidly for some
ranges of orientation and quite slowly over other ranges. These problems could be
ameliorated by quantizing the training set in narrow intervals over the range of ori-
entations where histograms vary rapidly and by quantizing in wider intervals over
the ranges where histograms change slowly.

The major drawback of binary connectivity analysis is the use of binary images.
Many scenes do not easily lend themselves to segmentation based on a single thresh-
old. As discussed in chapter 3, there are many alternate region-based segmentation
schemes which employ more sophisticated techniques. Such sophisticated methods
may be used to separately segment the top, leads and body of a transistor, thereby
greatly increasing the available information and enhancing orientation estimates.
The use of pattern recognition techniques to analyze region features would also
increase the accuracy of the orientation estimation.

The potential improvements for ellipse fitting fall into three categories. The first

category of improvement is in the area of mathematical methods for ellipse fitting.
A more accurate ellipse fit can be obtained using a more exact error measure for
determining the distance between a data point and an ellipse. This modification,
however, will require iterative solutions and will therefore be computationly more
expensive.

The second potential improvenment is the use of additional heuristic constraints
specific to the transistor application. The heuristic used to determine ellipse shapedboundary sections could be improved by employing constraints on the shape or area

of the desired section of the curvature graph. The ellipse error conditions could also
be exploited to greater. advantage. Ellipse "failure" provides significant informa-

0 tion about transistor tilt, but this information is currently ignored. Similarly, the
"wrong-end" condition could be used, in conjunction with the original curvature
graph, to search for the boundary section corresponding the transistor top, thereby
improving the ellipse fit.

The process of ellipse fitting might also be improved by replacing the ellipse
fitting algorithm used in this study with a Hlough transform algorithm. The Hough
transform method does not require the extraction of candidate ellipse points and
may be more useful for some applications. The Hough method may, however, be
more expensive in terms of comptutational complexity and memory requirements
since it requires finding local maxima in a five dimensional accumulator array.
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Finally, there is the subject of combining knowledge. The a priori pdfs used
to represent the individual estimators of transistor orientation are rather simplistic

models for the estimation process. These models could be greatly enhanced by
including the notion of failure, so that no single model could incorrectly rule out
a parameter value. The values of the plausibility factors could then be changed to
reflect some of the joint density terms which would provide a more accurate final
estimate of orientation given the improved models.

6.3.2 Other Areas of Application

The problem of determining object orientation from a single view is a task of
great practical interest. Many potential industrial applications require a vision
system to determine the location and orientation of an object so that the object
may be inspected, or acquired using a robot manipulator. The "bin-picking" task
is a typical example of a useful industrial application [Kelley 1982]. The problem
of loading industrial machines from bins of randomly oriented parts requires that
the location and orientation of an appropriate part be determined so that it may
be grasped.

The orientation estimating techniques described in this report have been demon-
strated by applying them to the problem of determining transistoi orientation, and
it may be useful to consider whether these techniques are also relevant to the bin-
picking problem. The general limitations of each method, as discussed in the pre-
vious section, can be used to determine whether the methods will work well for any
given application. However, discussion of specific points may help to clarify the
concepts.

The major difficulty introduced by considering a bin of parts is the task of

locating a single object in the image. This report has emphasized methods for

determining orientation given that it is "reasonably easy" to locate a single object
in the image. This assumption is no longer valid for the bin of parts problem,
and new techniques must be developed to segment the image into regions which
correspond to individual objects. The ease with which this can be accomplished is
highly task-specific and will not be addressed here except to note that a number of
segmentation techniques have been proposed in the literature [Fu 1991].

The remaining difficulties lie in the interactions between the stacked parts.
Changes in the lighting conditions of individual objects may be caused by shad-
ows or reflections from the surfaces of other objects. The occlusion of objects is also
a new factor to consider. Given a viable segmentation scheme, however, each of the
orientation techniques may be modified for use in the new problem domain.

Histogram template matching, for example, could be used by obtaining the
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histogram of one segmented region and comparing it to a number of oriented his-
tograms as explained in chapter 2. This modified technique will fail if the lighting
conditions in the bin are radically different from the lighting conditions used to ob-
tain the histogram training set. In an industrial setting, however, it may be possible
to structure the tighting to miniiize such effects.

The use of binary connectivity analysis is also possible given a good segmen-
tation scheme. The segmented image region is passed to the binary connectivity
algorithm to determine the relevant features of the region. The orientation analysis
would have to be changed to handle (or ignore) the silhouettes of occluded objects,
but typically there will be a number of unoccluded objects at the surface of the bin.

Given objects with circular surfaces, the use of ellipse fitting is viable, subject
to approximately the same limitations as binary connectivity analysis. In other
words, the region boundaries can be used as the initial input to the ellipse fitting
algorithm, as described in chapter 4. Some modifications would be required to deal
effectively with the presence of partial object boundaries due to occlusion.

The use of plausibility functions remains unchanged for the bin-picking applica-
tion because they represent a general method for combining the information from
individual orientation estimators. It is this combination of sometimes unreliable
information which accounts for the power of the results presented.
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