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tion used in setting operation due dates can be shown to guarantee the achievement
of a global optimum when applying a myopic rule locally. In more general job shop

environments, we study scheduling with due dates when jobs have different tardiness
penalties. Advanced slack evaluation methods have been developed for our Apparant
Urgency rule and for the modified CoverT rule. First, waiting line analysis fur-
nishes the use of indirect load information, such as the distribution of the jobs'
weights and processing times, in assigning static priority-based waiting time

estimates for each operation. Second, the waiting time estimation and look-ahead
parameters of the rules are further adjusted on the basis of direct., periodically
updated state information, such as the anticipated queue lengths in the shop. Third,
an iterative scheme is used to revise new lead time estimates based on the jobs'
realized waiting times in successive schedules. This lead time iteration provides
also feedback from the performance of the rule for the coordination of the priority
assignments. The latter two enhancements of the myopic dispatching rules are

implemented using rolling forecasting and planning horizons.

In our large scale tests in static flow shops and dyn;, c job shops, the Apparent
Urgency and CoverT rules with the static lead time estimates surpassed the competing

rules in weighted tardiness performance. The new priority-based lead time estimates

imporived both rules vis-a-vis the conventional method, making CoverT best in heavily
loaded shops. The periodic adjustment of the slack evaluation parameters did not,
however, lead to a consistent improvement of the rules' performance. The coordina-
tion of the Apparent Urgency rule, achieved through the lead time iteration procedure,
proved paramount for a superior performance in weighted tardiness and combined

schedule costs. The experiment with continuously updated information, the average

anticipated urgency of the jobs in the machine queues, as a part of the AU priority
index was not as successful. This probing of job's relative priority on the next

machine should prevent temporary congestion, but it was ineffective in long run.
The robustness of the new rules was tested against errors in the processing time
estimates and also in terms of other criteria such as the number of tardy jobs,
work-in-process inventory, and maximal tardiness cost with extremely good results.

Further extensions of state dependent rules are specified to multi-objective,

multi-resource scheduling using composite priority indexes and to dynamic lot sizing
problems in closed job shops. Applications in developing incentive-compatible
priority rules and in supporting diagnostic routines of scheduling expert systems are
discussed.
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Abstract

The purpose of this thesis is to enhance the priority setting procedures for job shop
scheduling systems. The new state dependent priority rules extend the concept of a myopic
dispatching heuristic -by allowing a wide choice of forecasting and planning horizons and by
encompassing indirect or direct load information, even performance feedback, while maintaining
the flexibility and robustness of the dispatching approach. Preliminary results are proven in the
special case of proportionate flow shops with pre-emption. Many optimal rules for lateness and
tardiness problems are extended from the single machine case to flow shops. Appropriate lead
time estimation used in setting operation due dates can be shown to guarantee the achievement
of a global optimum when applying a myopic rule locally. In more general job shop environments,
we study scheduling with due dates when jobs have different tardiness penalties. Advanced slack
evaluation methods have been developed for our Apparent Urgency rule and for the modified
CoverT rule. First, waiting line analysis furnishes the use of indirect load information, such as the
distribution of the jobs' weights and processing times, in assigning static priority-based waiting
time estimates for each operation. Second, the waiting time estimation and look-ahead
parameters of the rules are further adjusted on the basis of direct, periodically updated state
information, such as the anticipated queue lengths in the shop. Third, an iterative scheme is used
to revise new lead time estimates based on the jobs' realized waiting times in successive
schedules. This lead time iteration provides also feedback from the performance of the rule for
the coordination of the priority assignments. The latter two enhancements of the myopic
dispatching rules are implemented using rolling forecasting and planning horizons.

In our large scale tests in static flow shops and dynamic job shops, the Apparent Urgency
and CoverT rules with the static lead time estimates surpassed the competing rules in weighted
tardiness performance. The new priority-based lead time estimates improved both rules vis-a-vis
the conventional method, making CoverT best in heavily loaded shops. The periodic adjustment
of the slack evaluation parameters did not, however, lead to a consistent impjrovement of the
rules' performance. The coordination of the Apparent Urgency rule, achieved through the lead
time iteration procedure, proved paramount for a superior performance in weighted tardiness and
combined schedule costs. The experiment with continuously updated information, the average
anticipated urgency of the jobs in the machine queues, as a part of the AU priority index was not

* as successful. This probing of job's relative priority on the next machine should prevent
temporary congestion, but it was ineffective In long run. The robustness of the new rules was
tested against errors in the processing time estimates and also in terms of other criteria such as
the number of tardy jobs, work-in-process inventory, and maximal tardiness cost with extremely
good results.

Further extensions of state dependent rules are specified to multi -objective, multi-resource
scheduling using composite priority indexes and to dynamic lot sizing problems in closed job
shops. Applications in developing incentive-compatible priority rules and in supporting
diagnostic routines of scheduling expert systems are discussed.
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1. Introduction and Summary

1.1 Introduction

The production control activity has, generally speaking, three major responsibilities: timely
service of customers, avoidance of unnecessary work in-process and end product inventories,
and efficient utilization of the plant capacity. Possible conflicts of these goals have to be resolved
by the job shop scheduling activity, but the traditional scheduling rules have had only limited
success [17]. A rule that favors the most expensive and short jobs, such as the Weighted Shortest
Processing Time first (WSPT) rule, guarantees reasonably efficient use of the capacity but often
leaves some longer jcbs very late whereas rules that emphasize the due dates, such as the
Earliest Due Date first (EDO) rule, fail if the shop gets congested. The combinatorial complexity of
the scheduling problem with due dates and job specific delay penalties, or the weighted tardiness
problem, prohibits the optimal solution of all but unrealistically simple cases.' Academic interest
has been directed to other problems for which exact solution procedures can be found while the
practically important ones, including the minimization of weighted tardiness costs, are still by and
large unexplored [15, 33].

The purpose of this thesis is to improve the use of information concerning the load of the
shop in the scheduling process. We analyze the marginal costs and benefits of scheduling
decisions under weighted tardiness criterion to understand the interactions of job attributes,
shop layout and loading of the machines and their effects upon the performance of a given
sequencing rule. In order to reduce the complexity of the search for efficient sequences of the
jobs we use a dispatching approach: when a machine becomes idle, one of the waiting jobs is
started next according to the priority index assigned to each job. Since every machine can be
loaded as soon as there is at least one schedulable job in the queue in front of it, the dispatching
discipline eliminates any unnecessary idle time of the machines. Timely delivery of products and
low level of in-process inventories can be achieved by using a priority index function that
coordinates the different operations of a job with respect to its due date and processing time
requirements, taking into account the competing jobs and resource availability. A dispatching
rule can also be used, in a simulation mode, to generate and test schedules for longer time
periods, such as weekly or monthly shop schedules and quarterly production plans. The
dispatching approach should work like a good manager: use simple and efficient reasoning, be
flexible in different load situations, and adapt the rules when the situation changes. This can be
achieved using a state dependent priority rule. First. a priority index evaluation should be a
tangible, computationally efficient procedure and easy for the managers to understand. Second,
a flexible priority rule can be applied in several different scheduling problems without major
changes in the priority index function or the dispatching procedure. An empirical study by Jones
[421 suggests that simple rules do not achieve this kind of long-term robustness without some
additional information to allow more explicit trade-of fs among the different goals. Third, the
scheduler has to adapt continuously to changing problem situations. If the rule is not flexible

1Even the single machine case with weighted tardiness criterion is NP-hard, see (45). Fisher (221 has developed an
enumerative solution procedure for small resource- constrained scheduling problems using Lagrange multipliers.
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enough to handle efficiently an anticipated change of the load, the priority index parameters can
be adjusted temporarily for more appropriate response. Coordination of the parameter changes
can pose major problems, however. Incorrect or incomplete forecasts can further jeopardize the
possible gains from the reaction to the anticipated changes. An advantage of a myopic
dispatching rule is that the performance achievable by the rule can be maintained despite the
uncertainty of the future.

Extensive research for over twenty years has pursued a flexible, efficient and intuitively
appealing priority rule. 2 A simple form of a state dependent rule is the (Anticipated) Work In Next
Queue, or (A)WINQ rule [17, 58], whose priority index is the work load (or anticipated work load)

* on the machine the job will visit next. A more elaborate state dependent dispatching rule, the
Dynamic Composite Rule (DOR) discussed by Conway et. al. [17], incorporates into its priority

4 index the operation due date, the processing time of the operation, the work in the current queue,
and the work in the next queue relative to the total load in the shop. Carroll [16] developed and
tested a parametric family of CoverT rules which incorporate a "look-ahead" feature: the global
slack, evaluated against a standard waiting time allowance, determines the job's expected
marginal tardiness cost and its priority index. Both DOR and CoverT rules performed well in
computational tests for several tardiness related measures such as number of tardy jobs and
average job tardiness, but these rules has been found sensitive to the values of the parameters
used in the priority index calculation [16, 40). Also, these rules are not meant for weighted

* tardiness scheduling.

The development of state dependence of priority dispatching rules should address the
* question of distributing the planning, implementation and control of the scheduling activities in
- the organization by establishing the necessary coordination for efficient local decisions. The

quality of information in the scheduling system should be re-examined, including the use the
* expectations concerning the load of the shop in the near future, the feedback from the anticipated

performance of the rule, and the sensitivity of the scheduling mechanism to incorrect and
I incomplete data. Within our extended framework of state dependent priority rules, we distinguish
* two principal ways to add more information and coordination to a dynamic priority rule:

1. The extension of the horizon and type of information feedback.
2. The extension of the scope and detail of the status information.

4 The state variables and parameters of the priority index are based on some horizons of
* information feedback (see the framework in figure 1 -1). Static rules (WSPT, EDD) use only the

initial data of the problem, whereas dynamic rules include time dependent terms, such as slack of
* the job and work load in the next queue. Myopic dynamic rules use the observable status of the

job shop without any forecasting. If a forecast of the future status of the job shop is available,
current dispatching decisions can be made dependent on the anticipated state indicators. Finally,
the anticipated performance of the rule over some forecasting horizon can be used to adjust its
parameters and to choose the best estimates of the state variables over a planning horizon.

The scope and detail of the load in formation is another dimension that differentiates the

2 Detailed surveys of scheduling heuristics can be found in [3, 17, 33, 58. 66], and Chapters 2 and 4 below.
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HORIZON OF INFORMATION FEEDBACK:

SCOPE AND 1. Observable 2. Anticipated 3. Performance
DETAIL OF status status feedback
STATUS
INFORMATION:

Slack/Operation (Ch. 2.) Ch. 2.
A. Local Chs. 2, 4 and 5.

B. Indirect CoverT Chs. 4 and 5. Chs. 4 and 5.
Global Chs. 4 and 5.

C. Direct WINQ, OCR AWINQ Emery's rule
Global Ch. 6. Ch. 6. (Ch. 6.)

Figure 1 - 1: A framework for classifying dynamic priority dispatching rules
according to the information used in the priority index. The matrix shows
some existing rules and the chapters discussing the new enhancements.

priority indexes. Local rules use only the information concerning the current machine and the
jobs in its queue. In addition to the local information, some rules use observable or anticipated
information of queues of the other machines and the general characteristics of the load as well.
This global load information can be indirect. The estimates of expected waiting times, for
example, can be derived from aggregate load indicators, such as the distribution of processing
times and delay penalties without explicit reference to the attributes of the specific jobs to be
scheduled on the subsequent machines. Direct global information would include observed or
anticipated measures of the jobs to be scheduled on the other machines, such as the queue
lengths or the opportunity costs of the machines.

This classification shows the principal categories of information in state dependent
dispatching rules. It does not implicate that the use of some global or anticipated load indicator
would make a rule perform better. The contrary is sometimes true: the consistency of priority
assignments over time can be more important than the exact ranking of local opportunities.
Hence the value of state information depends on the scheduling problem at hand and the specific
priority rule implemented. It also depends on the quality of the data available in terms of
completeness, correctness, accuracy and timeliness. The most representative rules reported
previously are shown in our new framework in figure 1.1. The priority index of the Slack per
Operation rule depends on the current slack of the job, or the time remaining until its due date
and the number of remaining operations. The CoverT index is based on the expected waiting time
of the job on the subsequent machines, which can be estimated more accurately if the aggregate
utilization of the shop is known. Direct load information, the current work in the machine queues.
is used in WINO and DCR indexes. The anticipated load information included has been the

I , .
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anticipated work in the next queue, as in the AWINO rule. Emery's dispatching procedure [20J is
the only rule that uses iterative evaluation of the performance of the rule in search of optimal
parameter values. This multi-stage screening procedure is, however, more complex than a
priority index evaluation. Several interesting classes of potential state dependent rules have not
been formulated at all as indicated in figure 1-1. The development of the new kinds of priority
rules, possibly based on the previous rules, is the challenge of this thesis.

A state dependent priority index is derived from some load indicators, such as queue
* lengths, waiting times or due date distribution, using adjustable parameters. The previous studies

reported in Conway et. al. (117], have used an experimental search to determine the best constant
* parameter values for the priority index function. One simple way to adapt the rule to the problem
* is to run Simulations with several different rules and then choose the rule that performs best [55).

A more systematic way if a weighted priority index approach. The priority index of the scheduling
rule can have several components, for example SPT and Slack/Operation priority indexes, or

* SPT and AWINQ. The weights of the component indexes can be set according to the experience
with the rule in some previous problems [3, 10, 17]. The rule can thus, in principle, "learn" the
best weights for the composite index in a given job shop and load situation. Iterative heuristic
search procedures have been applied in the resource constrained project scheduling system by

6 Wiest [70] and the job shop scheduling program by Holloway and Nelson [40]. These systems
start with some feasible schedule and improve it locally by applying heuristic change rules. Emery
(20] provides an interesting attempt to design an optimum-seeking procedure for the adjustment

of the parameters of a five-component dispatching rule. Actually, Emery used a two-stage method
by screening first the less urgent jobs from the final dispatching decision that was based mainly
on the CoverT rule. Kriebel and Fox [251 show that the weights used in a composite dispatching
rule can be estimated from the past decisions of a human scheduler, in the same way Bowman

* estimated efficient linear decision rules for aggregate planning [13]. In the development of expert
systems for managerial applications, the terms of a state evaluation function are usually based on
rules imitating the reasoning of a human expert. Fox [24] gives an example of a heuristic search
procedure in which experienced schedulers can provide the evaluations of the different states of
the job to furnish the choice among alternative machines for an operation, or among more

* specific queue positions. Haley and McDermott [36, 37] augment the critical path method with
local rules which incorporate some additional constraints and expert knowledge. An incremental
schedule is constructed for each job via epportunistic search which is guided by several global

* rules or "demons". The role of demceiis in the knowledge based scheduling process is similar to
that of shadow prices in coordinated hierarchical systems. These attempts to incorporate load
indicators and managerial expertise into a scheduling rules have been problem dependent and

* difficult to transfer from the test-bed into different shop environments. We hope that the results of
this thesis will provide a step toward more rational, cost based derivation of the priority rules and
their parameters.

1.2 Summary

The contribution of the thesis falls into three areas. First, we have proven several properties
* of optimal schedules in flow shops with unit jobs and different machine speeds. Although the
* special structure allows us to avoid some of the complexity of general flow shop problems, the
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results concerning the role of bottleneck machines and lead time estimates in the successful
decentralization of scheduling decisions have important implications to the development of state
dependent priority rules for general flow shops and job shops.

Second, we have improved priority rules for weighted tardiness problems in single machine
shops, static flow shops and dynamic job shops. The large scale tests indicated that the CoverT
rule [15. 16], after modification for the weighted tardiness problem, can outperform the other
standard rules. Our new Apparent Urgency rule is consistently better than CoverT using the
traditional local information for lead time estimation. Appropriate use of indirect global
information (expected utilization of the shop, distribution of the delay penalties of the jobs)
improves both rules, making CoverT best in extremely congested shops. Successive adjustment
of lead time estimates through an iterative procedure allows the use of performance feedback in
the search for improved estimates. This lead time iteration yields the best performance in
weighted tardiness and combined schedule costs, whereas additional direct load information
(anticipated queue lengths, average anticipated urgency of the lobs on the next machine) with
periodic adjustment of the rule parameters does not improve the average performance of the
Apparent Urgency or CoverT rules. The new state dependent rules have been extremely robust.
The same rules work with minor modifications in different job shops and varied load conditions,
the performance has been insensitive to erroneous data where tested, and the rules are superior
to the previous rules (including the original CoverT) in terms of other important criteria such as
number of tardy jobs and maximal weighted tardiness of any job while maintaining low levels of
work-in-process inventories.

Third, the formulation of the new state dependent priority rules is based on our extended
framework of information and coordination of the dispatching process. The distinctions between
indirect and direct global information, on one hand, and between status and performance
feedback, on the other, are shown to be significant in determining the minimal information
requirements for a desired level of schedule performance. Furthermore, the experiments with the
self-adjusting priority indexes verify the previously intuitive setting of the slack evaluation
parameters for Apparent Urgency and CoverT rules depending on the anticipated load.' Hence
our framework serves as a basis for documenting and developing the expertise of state evaluation
in scheduling support systems. A summary of the thesis is given below covering the main topics
and results of the remaining chapters. The state dependence studied with the new rules in each
of the chapters is also indicated in the framework in figure 1.-1.

Chapter 2: A Framework for State Dependent Priority Rules
This chapter provides an extensive review of the dispatching rules used for scheduling inI

job shops under tardiness related measures of performance. A rule that involves a job's
processing time, due date and delay penalty is the look-ahead rule, the Apparent Urgency rule,
first tested in the single machine case by Rachamadugu and Morton [61, 62].~ Based on this
survey, we classify the information that could be used in a state dependent rule according to the
forecasting horizon to observed status, anticipated status, and feedback from anticipated

performance. According to its scope and detail, the load information used in the priority index is

3W. mnodify also the CoverT rule f1161 to accomodate the job specific tardiness penaity in chapters 4 and 5.
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either local to the machine, global but indirect such as the distribution of job attributes, or direct
* global information such as average queue lengths on different machines. This general framework

forms a basis for the development and testing of state dependent rules.

Some properties of the locally optimal Apparent Urgency (AU) rule, for example the form of
the look-ahead function are discussed. We revise an iterative heuristic procedure for the AU rule
to adjust the length of the look-ahead for each job according to its relative earliness or tardiness
in a previous schedule. The adjusted look-ahead parameter incorporates feedback of the
anticipated performance into the otherwise myopic rule. In a simulation study with some of the
hard problems studied in [61], the look-ahead adaptation saved 30-60% of the margin between
the optimal weighted tardiness and the solution with the constant look-ahead, in par with a locally
optimal pairwise interchange procedure. The AU index values are shown to be insensitive to the
errors in processing time estimates used in the iterations. The indicated robustness of the rule
was tested in a ona-machine simulation study with varying the maximal error in processing time
estimates from 30% to 90% of the actual. The performance of the constant AU rule deteriorated
only by 2% to 36% from the cost of the schedule in the deterministic case. The adaptation of the
look-ahead parameters of the jobs improved the performance in all cases. Good performance of
the basic and adaptive AU rules, in terms of other criteria such as the number of tardy jobs and

0 the maximal weighted tardiness, persisted despite the estimation errors. Hence the iterative
look-ahead adaptation constitutes a planning procedure that can successfully utilize even

* erroneous data in setting essential control parameters for the detailed scheduling.

Chapter 3: Scheduling in Proportionate Flow Shops
The development of state dependent dispatching rules for multi-stage processes or fnow

shops is started by studying scheduling problems in proportionate or uniform flow shops: the job
processing time on any machine is proportionate to the processing time on the first machine.
Though flow shop problems are a special case of job shop problems. even these problems have
proven themselves so far to be too complex to provide any analytical solutions. Except for the

IJ makespan results in the case of two machine flow shop by Johnson (41], Gilmore and Gomory
[29] and the two results characterizing optimal solutions by Conway et. al. [17], there are no
known analytic solutions for flow shop problems.

In this chapter, the optimal solutions of the pre-emptive version of the problem, i. e. with
unit time jobs in the proportionate flow shops, are characterized. Some of these properties are
used in developing iterative procedures for the weighted tardiness problems in general flow shops
in the next chapter. First, we show that permutation schedules constitute a set of dominant

*schedules for minimizing any regular measure of performance. 4 This characterization by itself
reduces the search space for seeking optimal solutions. Second, we show that makespan is
minimized by any permutation schedule. The derivation of this result shows also how the
makespan depends critically upon the bottleneck machine (the machine with the largest job

* . processing times), a result which makes intuitively sense and explains why practitioners tend to be
very much concerned about bottleneck machines. Further it is shown that, analogously with the

4 I1n the case of ordinary flow shops, this statement is valid only on the first two machines for any regular measure of
performance and also on the last two machines in the case of makespan problems [17].
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single machine case. the weighted mean flowtime is minimized by the Weighted Shortest
Processing Time rule and the maximum lateness is minimized by the Earliest Due Date rule. The
weighted tardiness problem can, in the special problem discussed here, be reduced into a linear
assignment problem. It is shown that the necessary condition of optimality in the case of weighted
tardiness criterion is similar to the condition previously obtained in [61 ]. These results are further
extended to the cases in which job-passing is not permitted. It is also shown that when job-
waiting is forbidden, i. e. when a job can not wait between subsequent operations,6 all the above
results hold good except that the start times on the first machine have to be delayed appropriately.

Chapter 4: Lead Time Iteration in Flow Shop Scheduling
Though no computational results have been reported in flow shops for the weighted

tardiness criterion, extensive experimental work has been done by Carroll [3,15, 16], for the
average tardiness problems in job shops. He developed a parametric family of look-ahead rules
called CoverT which performed better than other rules such as SPT and Slack per Operation in
dynamic job shops, The performance of the rule was found to be sensitive to the setting of a
parameter adjusting the "length" of the look-ahead (as measured in the units of standard waiting
time in the subsequent queues). Some other priority dispatching rules include setting "operation
due dates" based on the remaining processing time, simple estimates of the waiting times, or

* some other considerations.

In this chapter, the existence of optimal operation due dates is established in the
preemptive version of the proportionate flow shop. In this case it is shown that if the lead time
estimates are chosen optimally, then the scheduling problem can be decomposed into single
machine optimization problems. Local optimal solutions to these problems correspond to a global
optimal solution. The derivation of this result also indicates how the optimal operation due dates
are influenced by the bottleneck machine and the external job due dates. The optimal operation
due dates are shown to be robust against errors in the lead time estimates thus providing
promising ground for the application of approximate procedures. Using these results, an iterative
lead time estimation scheme is developed for the flow shop problems as follows: we start with an
initial lead time estimate and decompose the problem into several single machine problems.
These can be solved in dispatching mode using the Apparent Urgency rule and applying the
appropriate operation due dates. Then in the subsequent iterations, the due date setting uses the
lead times realized in the previous iteration. The process is repeated a finite number of times
and/or until no further improvement takes place in the measure of performance. In a large
computational experiment consisting of 1280 problems with sizes varying up to 60 jobs and 8
machines. the AU rule outperformed other competing heuristics such as CoverT and four other
rules by at least 10% in the average. The adaptation of the lead time estimates through iteration
further improved the weighted tardiness performance of the AU rule, additional savings ranging
from 10% to 25% depending on the shop load conditions. The results proved to be relatively

* insensitive to the variation of the parameters of AU rule and CoverT over a wide range of problem
specifications. The coordination achieved through the use of better state information in the
adaptive rule is advantageous also on the basis of some other important measures, such as the
number of jobs tardy, the work in process inventory, and the maximal weighted tardiness.

5Job waiting is naturally not possible in continuous process industries such as glass production.
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* Moreover, the fact that these rules are dispatching rules makes them rather easy to implement in
practice.

Chapter 5: Slack Evaluation for Priority Dispatching in Dynamic Job Shops
Waiting time estimates are used in the CoverT rule to evaluate a job's priority index by

- comparing its global slack to the sum of standard (worst case) waiting times. The slack evaluation
of the Apparent Urgency rule has two parts: the global estimates of the actual (resource
constrained) waiting times determine a local operation due date, and the local slack, compared to

- the processing times of the competing jobs, constitutes the look-ahead. In dynamic job shops
studied in chapter 5, jobs arrive continuously on the machines and the simulation can extend

* long time periods. Since the jobs have a random routing, their expected waiting times can be
studied with queueing theory. The new estimates of the waiting times for a job with a given
natural index (weight/processing time) value, can be obtained through a numerical approximation

* of the results of waiting line analysis. These "~priority based" waiting time estimates are used to
- derive two new waiting time estimation functions, an inverse function of the natural index and a

composite function of the weight and the processing time. These approximations are then tested
in weighted tardiness performance against the traditional multiples of processing times of the AU
and CoverT rules. The parametric lead time estimation methods require some indirect load

0 information, such as the capacity utilization of the shop and the weight and processing time
distributions of the jobs.

The iterative estimation of job waiting times introduced in chapter 4 can be implemented in
* the dynamic job shop via rolling forecasting and planning horizons. A forecasting horizon is the

time period over which the performance of the rule is simulated. The best waiting time estimates,
* found during the successive simulations, are implemented over a planning horizon which is
* shorter than the forecasting horizon. However, the lead time iteration proved rather insensitive to

the variations in the forecasting and planning horizons.6 We tested the weighted tardiness
performance of the constant and iterative AU and CoverT rules in large job shop problems with 10
machines and 2,000 jobs. Expected capacity utilization varied from 80% to 97% of bottleneck
capacity, and the random due date allowances had the average of 3 or 6 times the average total
processing time. Three different shop structures were studied: general, proportionate, and
bottleneck job shops. The results with the conventional static waiting time estimates were similar
to the results in flow shops. The AU rule was best in the weighted tardiness and in the number of

* tardy jobs, followed by CoverT and the other heuristics. More accurate lead time estimates, either
* through iteration or through the new priority-based lead time estimates, improve the AU rule
* 316-10% in the weighted tardiness performance. However, the same lead time estimat..s helped
* CoverT to even better performance in some heavily loaded shops, due to the better smoothing of
- job priorities over the global slack. The AU rule can balance machine loading and job tardiness

* through the lead time iteration, resulting in lowest combined costs of tardiness, inventory- holding
and late shipments with CoverT lagging up to 10% behind. These results establish the new
priority-based waiting time estimation method as a new standard for the slack evaluation by the
look-ahead rules.

GThe posaibility of determining dynamically the most appropriate length of the horizons, or to obtain weak horizons (531,
will not be Studied here.
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Chapter 6: Coordination of Job Priorities via Direct Load Information
In the previous tests of the look-ahead rules, constant slack evaluation parameters have

been applied in the simulation through a long busy period including widely varying shop
conditions. In this chapter, we experiment with a periodic adjustment of the look-ahead and
waiting time estimation parameters of the Apparent Urgency rule, based on the anticipated
critical queue lengths on the machines. This anticipated direct load information can be obtained
by simulation over a forecasting horizon. The results obtained after extensive experimentation
with several plausible parameter adaptation functions indicate that the parameters of the AUI
priority index can be automatically adjusted without any significant loss of performance when
compared to the best static rules. But no consistent improvement can be achieved either, due to
insufficient coordination of the local priorities. The tests with several "self-adjusting" mechanisms
verify, however, the best parameter setting and other coordination requirements of the previous
dispatching rules.

The complexity of job routings in a job shop suggests also that the immediate priority of a
job could be adjusted according to the load on the next machine. We use the projected relative
priority of the job on the next machine as an argument of the priority index on the current
machine, instead of the more conventional queue length or work contents of the next machine
used in AWINO [3,17, 58] and the Dynamic Composite Rule [17]. The "probing" term of the AU
priority index functiori keeps the machines loaded but allows the urgent jobs to be rushed
through the shop. Hence the two-stage AU rule should improve the performance with respect to
most of the criteria used above by avoiding congestion and idle time on any bottleneck machines.
The results of test simulations proved rather disappointing: the probing of the projected urgency
differential on the next machine lead only occasionally to a significant improvement of the
weighted tardiness criterion.

Chapter 7: Conclusions and Future Research
The last chapter summarizes the contributions of the thesis and discusses the issues

related to the implementation of the state dependent priority rules. We have studied new state
dependent dispatching rules for weighted tardiness scheduling, starting with a constant
parameter rule on a single machine and building gradually more complex applications in static
flow shops and dynamic job shops. The new Apparent Urgency rule has been tested in these
applications, and the CoverT rule has been modified for better performance in weighted tardiness
problems. We have enhanced these rules by incorporating indirect and direct load information to

6 the priority index valuation, and by using lead time iteration to obtain performance feedback for
parameter adjustment. The results of extensive testing have justified the added complexity of the
state dependent rules on grounds of reduced weighted tardiness costs, low inventory holding
costs and fewer tardy jobs.

Future research should extend the applications of the state dependent dispatching rules.
First, scheduling under combined costs, such as inventory- holding, tardiness and rush-shipping
costs could be tried in dispatching mode using a composite priority index, the expected marginal
benefits of a decision per the marginal costs of implementing it. We specify the most promising
composite priority index functions for several cost components. The allocation of multiple

*resources along the dispatching process and the procedures for the evaluation of their
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opportunity costs are discussed. Second, the scheduling of the production lots of several
products with finite productions rates on a single facility leads to an inventory tardiness problem
with dynamic lot sizing. The costs for inventory holding and tardiness (backordering) are convex,

* presupposing a modification of the AU priority index. In an iterative two-level solution procedure,
* capacity evaluation could be used to find the relevant production and availability constraints

- which determine the appropriate setup costs and dynamic lot sizes. Given the lot sizes, slack
* times (inventory availabilities) and quadratic penalty functions. a priority index can be derived for

dispatching the next lot.

Third, the application of priority rules in service centers can create incentive problems
since some customers would have to wait much longer in the optimal schedule than under the

* "fair" FCFS discipline. The delay penalties needed for priority assignment are unobservable and
often private information, complicating the equitable assignment of service priorities. We propose
to modify Dolan's [19] centralized taxation schema for lateness problems into a dynamic,
decentralized transfer- pricing mechanism that eliminates possible gains from strategic cheating.
The nonlinearity of the tardiness costs breaks down any transfer- pricing mechanism in the case of
different due dates. Several plausible bidding strategies could be tested for sequential priority
auctions on a single facility. Finally, we believe that priority rules provide an appropriate way to

* accumulate expertise for the design of more sophisticated search systems, such as scheduling
expert systems [23, 24, 37]. A primary area for application would be the diagnosis of schedule
and capacity problems. a neglected area of scheduling research (60,69]. Among the constraints
to be considered in state evaluation are precedence relations among the lobs, allowing
alternative routings and sequence dependent setup times, and other resources. Linking
aggregate capacity and materials planning to detailed scheduling is a potential area for heuristic
search, with few attempts with empirical [9] and optimizing [26, 27] approaches. The trade-off
between the dynamic tardiness costs and the fixed costs of facilities could be studied in a
hierarchical planning framework similar to the closed shop case in (32, 34]. The diagnostic study
of the status of a job shop could be based on its approximate loading using a state dependent
rule. A cost-oriented priority index is essential for the effective integration of the diagnostic

* routines and the incremental scheduling of implicated improvements. Hence the knowledge
representation of the expert system (24, 36, 68] should reflect the required state information,

* including indirectly derived parameters and opportunity costs of resources.

Co-authorship
The results of chapter 2 were first reported in (67]. The research reported in chapters 3 and

- - 4 was joint with Professor Thomas Morton and Dr. R. V. Rachamadugu, references (63], (66], and
also [62]. The research for chapter 5 was joint with Professor Morton.
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2. Framework for State Dependent Priority
Rules

Summary
Scheduling with due dates and weighted tardiness criterion is a common business

problem for which there is no adequate theory of optimal solution. Hence the
development of new heuristic approaches for solving problems of practical size and
with realistic information availability is warranted. State dependent priority rules use
information concerning the anticipated load in the shop or the simulated performance
of the rule in order to. adapt to the local opportunities for improved dispatching
decisions. The trade-off between the locally enhanced performance of the rule and the
long run coordination is discussed. The information feedback in priority index
evaluation extends the framework for state dependent rules and suggests new practical
methods for load estimation. The new concepts are demonstated in single machine
weighted tardiness problems. We tested a new "look-ahead" rule called Apparent
Urgency as the prototype of a state dependent rule.' The priority index value of a job is
reduced expontially with longer slack. The factor that determines the length of the
look-ahead can be adapted in a heuristic fashion, using iterated performance feedback,

* to a particular shop load situation. This look-ahead adaptation improved the worst case
performance of the of the Apparent Urgency rule to the level of pairwise interchange
procedure. Moreover, the new rule is shown to be robust against errors in jobs'

* processing time estimates.

2.1 Introduction

2.1.1 Weighted Tardiness Problems

Scheduling against due dates and job specific delay penalties, or the weighted tardiness
problem, is common in most job shops [15, 33]. In heavy equipment industry, some plants use
timely shipment of orders for strategic positioning of their products. For example, the capital tied
in generators, turbines and in the operations dependent on this equipment justifies the high
premiums for prompt spare part service of the customized components needed on short notice,
classified as forced outages. Sometimes the promised delivery date, or manufacturer's due date,

* brings along contractual penalties for late shipments. Tardiness causes also potential losses in
terms of bad reputation, higher shipping costs, etc. These problems encompass complex
technical and organizational information processes, relating the scheduling activity directly to
the strategic management of the plant. Communication between marketing and manufacturing
calls for better understanding of the sensitivity of a production schedule against capacity changes

* (machine breakdowns) and new rush orders. These characteristics of the weighted tardiness
problems, dynamics, complexity and uncertainty, have rendered the use of exact methods and
existing dispatch rules insufficient in practice. Consequently, most tardiness related scheduling is
done manually by experienced schedulers who can cope with the process information and
unpredictable organizational responses in technologically intensive service operations. Formal

1The Apparent Urgency priority index was first derived by Morton and Rachamadugu in (61]. See also (621.
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scheduling systems, where implemented, have often been abandoned by the schedulers due to
the additional data preparation required, errors, inadequate reporting and inflexibility of problem
formulation.

Weighted tardiness problems are known to be NP-complete even in the one machine case
[45]. Enumerative methods can solve static scheduling problems consisting of up to 30 jobs on a

single machine [33, 61 1.2 Related to the branch and bound techniques, there has been some
interest in sequencing methods, i.e., heuristic methods for generating optimal solutions in some
special problems, and statistically good solutions to general static scheduling problems3

[5, 21, 64, 65]. These sequencing procedures define sufficient dominance properties between
the jobs in order to eliminate some of them as them as starting or ending jobs from the sequence
enumeration. Examples of sequencing methods are the Schild-Fredman method [64], and the
Montagne method [5]. These sequencing methods have not been applied in dynamic problems of
realistic size.

The failure to find exact solutions has motivated our search for efficient heuristic

approaches. The problem is formulated as a dispatching process in which machine loading
decisions are made dynamically when there are schedulable jobs on an idle machine. A dispatch
rule is used to assign a value, priority index, for each job. The jobs are then ranked according to

their priority indexes, and the most urgent is started. The dispatching discipline generates non-
delay schedules without inserting idle time [3]. Dispatching constitutes often a single pass search
in which the start time of every operation is determined only once. However, some adjusting
procedures, such as the look-ahead iteration proposed in this chapter, can be used to improve

the schedule after several jobs have first been scheduled tentatively.4 The purpose of our study is
to develop more efficient dispatching methods for weighted tardiness problems by incorporating
more status information (load, capacity, relative urgency of the jobs, etc.) into the priority
evaluation. The results of the experimental simulations have been encouraging.

2.1.2 Review of Priority Dispatching Rules

The reported research in the heuristic rules for weighted tardiness problems is scarce, but

other related measures of performance, such as total or average (unweighted) tardiness and
fraction of tardy jobs, have been investigated quite extensively. The research of dispatching rules,

and the simulation methodology used in this research, was established by the RAND studies in
the early 60's [17]. Those results and more recent survey articles on the development priority
rules, e. g. [3,17, 51, 58] are summarized here. The Weighted Shortest Processing Time first -rule
(WSPT) can be shown to minimize the weighted tardiness criterion in a single machine shop if all

jobs are necessarily tardy [5]. WSPT, or SPT in average tardiness problems, performs
consistently in most problems by expediting several short jobs while delaying the processing of
few long and cheap jobs. Especially in high load situations, this principle seems to more than

2 For a detailed review of enumerative methods in weighted tardiness scheduling, see (33, 61).

3This kind of methods are called "algoristics" in [521.

Some notable examples of adjusting, or improving, procedures are described below, see also [18, 28, 401.

- .- .. o -* . *o
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compensate for the complete lack of due date information in the WSPT priority index. Another
intuitive heuristic is the Earliest Due Date (EDD) rule that can generate an optimal schedule
whenever it is possible without making any job tardy [64]. Consequently, one would expect it to
be a reasonable rule for lightly loaded shops. Its performance deteriorates, however, even with
moderate increase of load. A multi-machine modification, the earliest Operations Due Date
(OPNDD) produced high variance of the job flow times [17]. Under OPNDD discipline, the initial
time allowance before job due date is divided evenly (or according to the processing times) into
operation lead times to assign operation due dates. These artificial operation due dates are then
used as a basis for myopic EDD dispatching. These rules ignore job's weight (relative importance
or delay penalty) and their processing time information, leading to the inefficiency in congested
shops with short lead time allowance. Three dynamic variants of the OPNDD rule use no
operation due dates: total Slack remaining, the Slack per Operations remaining (S/OPN) and the
Slack per Remaining Processing Time S/RPT [3]. These rules determine the remaining slack, i.
e. the time until the due date less the lead time of remaining operations, on the arrival to the
machine queue [3, 9, 66]. Dynamic slack rules work well in light load situations. Critical Ratio, CR,
is the ratio of dynamic slack to the standard remaining lead time used as priority index in many
MRP systems [9]. Gere [28] and Baker [4] have proposed a dynamic version of the EDD rule that
seems to work well for the unweighted tardiness problems. This modified due date method
changes the due date of any late job to be the earliest possible date it could be completed; it then
applies the normal EDD.

The relative total slack constitutes look-ahead information in Carroll's CoverT rules
(3, 15, 16, 51]. The CoverT priority index is based on the projected (unweighted) tardiness cost,
ci , and the processing time, pi, of job j on the machine in question, or "Cost OVER Time". If d I
denotes the job due date, the priority index of job j at time t, TcoverT, would be:

(2.1)
WTCoverT(t) = CJ/p. = (1/p)[Q W i-(d . r -t ) +] + / (Q Wi)

where W i denotes the anticipated waiting time and r the remaining operation time.5 If the slack
di-r.-t < 0, the anticipated tardiness cost is set to ci = 1, and if the total slack exceeds the worst
case waiting time OW,, the cost is set to c = 0. The parameter 0 can be adjusted to control the
look-ahead period of the rules. CoverT outperformed standard rules SPT and OPNDD in an
average tardiness problem with an appropriate selection of parameter 0.6 When jobs have
different routings through the shop, the priority of the job on the current machine can be lowered
by the length of the queue on the next machine to avoid congestion and uneven use of capacity.
To prevent overreaction, the rule usually anticipates new jobs entering the next queue by the
completion of the current job, hence the name Anticipated Work In Next Queue, AWINO, [3,17].
Another way to balance the conflicting objectives is adopted in linear combination rules, which
use the weighted average of the component priority indexes, for example aispT + (I.a)WNQ or
bitsPT + (1.b)wS/OPN reported in [17], Often the combination rule outperforms the constituent
rules, contingent to appropriate parameter value selection. The estimation of best parameter
values has been seen as an empirical problem without theoretical results for guidance [3, 17, 401.

5Here we use notation (x) + = Max4O, x).

6In the test with a light load, the CoverT rule with value 0 = 0.5 performed better than 0 = 1, see [3, 15].

!p
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A complex 3-parameter state dependent rule, Dyramic Composite Rule or DCR, was also tested
in the average tardiness studies [17]. The priority index at time t, ffOCR(t), was determined by the
operation due date, 0, and the operation processing time, Pl

9 DCR(t) = Oi-p. + b [I pi]r pi + h Wnq (2.2)

where b, r and h are constant parameters, Z p, is the sum of the processing times in the current
queue, and Wnq is the ratio of the work contents in the next queue to the total work in the other
queues. Thus DCR dependes on the due date, the processing time of the job and the congestion
of the current as well as of the next queue in choosing the next job to be started. With proper
parameter values, such as b = 0.3, r = 1 and h = 160, the DCR rule achieved the lowest average
tardiness and conditional tardiness. However, the efficient choice of one parameter was entirely
dependent on the values of the others (17]• 7

Some classification of the schedulable jobs and the scheduling state can be used to select
one rule among several rules for priority index valuation. For example, a truncated SPT rule
switches from SPT to EDD when the machine queue falls below a critical length, or when the
waiting time of some jobs exceeds some limit. Swapping between several rules is subject to the
same criticism as the linear combination rules: the procedure is not always consistent in different
load situations, and its performance is sensitive to the values of the parameters involved. The
dispatching discipline can also be extended by including multiple passes through the loading
procedure. Gere (28] suggested several "second-pass" adjustment procedures, and Holloway
and Nelson [40] gave an example of a multipass heuristic search procedure for lightly loaded
shops.8 Emery [20] provides an interesting attempt to design an optimum-seeking procedure for
the adjustment of the parameters of a state dependent dispatching rule. Actually, Emery used a
two-stage method for screening the less urgent jobs from the final dispatching decision that was
based mainly on the CoverT rule.

In summary, only few heuristic rules are capable of reasonable average tardiness
scheduling in widely varied load situations. This deficiency results, we hypothesize, from ignoring
relevant state information in the priority index evaluation. No previous rule has all three attributes
value, processing time, and due date in the priority index.9 The use of state information, e. g. the
lead time estimates, has been unsatisfactory in many experimental simulations [3, 9]. The effects
of the local environment, such as the jobs in the next queues, have been included in some priority
rules, but more global estimates of the future load are missing. Rachamadugu and Morton tested
a new look-ahead heuristic for weighted tardiness dispatching, the Apparent Urgency rule [61],
that performed close to the optimum in single machine problems. A parametric family of

Apparent Urgency rules forms the basis for our state dependent rules.

7Unfortunately, DCR was not tested against CoverT. Conway at. al. [171 concluded in their study that the slight
improvement of the performance of the state dependent rules over the static combination rules does not warrant their use
in job shops having a manual scheduling system and relatively modest delay penalties. The availability of computer based
information systems in shops with major tardiness penalties motivates our closer analysis of the state dependent rules.

8 Dannenbring [181 discusses the difference between one-pass, or "schedule generating" procedures and multi-pass, or

"schedule improving" procedures in the case of minimum makespan problems.

9 Adding a missing attribute to some of the priority indexes is sometimes straightforward, see the "weighted CoverT" in
chapter 4. but it can also be less obvious as in the case of DCR, analyzed in chapter 6.



4FRAMEWORK FOR STATE DEPENDENT RULES 15

The balance of this chapter is organized as follows. In the next section, the concept of state
dependent dispatching rule is defined technically, providing a new framework for further
classification of the information feedback in priority rules. A state dependent priority rule is
developed for one-machine weighted tardiness scheduling in section 3. An iterative scheme is
used in extracting state information for the basic Apparent Urgency rule. We discuss and test also
the sensitivity of the new rule against errors in processing time data. Concluding remarks can be
found in section 4.

2.2 A Framework for Analysis of State Dependent Priority
Rules

2.2.1 The Definition of State Dependent Priarity Rules

The concept of priority dispatching rule can be formalized as follows [3, 58]:
Definition 2.2-1: A priority dispatching rule consists of a procedure for

determining a value of priority index, wr, for any job in a given scheduling situation,
and of a ranking procedure using the priority indexes for selecting one of the

* schedulable jobs waiting on an idle machine to be started next.
Different dispatching rules have been discussed above. The priority index of the WSPT rule is the
tardiness penalty of job j, w,, over its processing time, p,, for the imminent operation, or
VWSPT w ./p..* The ranking procedure generates a sequence of non-increasing indexes and the
highest priority is given to the first job in this sequence. For the EDO rule, the priority index is the
due date of the job, ir EDO = d,, and the jobs are ranked in nondecreasing order of i, EDO' Different
rules have been characterized according to the following distinctions between static and dynamic
rules on one hand, and between local and global rules, on the other [3, 58].

*In static rules, the priority index is constant over time: a static rule assigns a constant
value of the priority index to each operation of a job when it enters the shop. In a
multi-machine shop, the static priority index of a job can differ on individual machines,
and hence over time, but the values of these indexes can be assigned from the outset.
For a dynamic rule, the priority index changes over time even on a single machine.
One example of a dynamic rule is the S/OPN rule: the dynamic slack per operation
changes when the job proceeds in the shop.

* . The rule is local, if the priority index is based on local information, typically the
attributes of the jobs in the current machine queue.
A global rule uses information concerning the status of the shop, such as the length of
the present queue relative to the average queue length in the shop.

The dynamic and global dispatching rules reported in the literature have been parametrized, and
* the parameters values have been kept constant for all jobs over each simulation run. This

practice is justified on the grounds of simplicity and lack of efficient parameter adjustment
methods. However, we can include job-specific and dynamically adjusted parameters in the
definition of state dependent dispatching rules:

Definition 2.2-2: A state dependent priority rule is a dynamic rule whose
* priority index for each job is a parametrized mapping from the state variables of the

shop to real numbers.
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More formally, we can define a state dependent priority index w of a job as a mapping from the
* job attributes and other state variables, such as the attributes of the other jobs and average load

on the machines, and time t, s = (s, , 1" ) and parameters b = (b1 ,..., bin) that are free or
depend on some state indicators, to the real numbers:

Rn 7X pm.~ 4 R (2.3)
Best values of the parameters are not necessarily functions of the current state of the dispatching

* system even for a regular measure of performance but might require the estimation of the
anticipated status of the shop. In practical dispatching systems, we specify an approximation of
the priority index mapping in Equation (2.3) using estimates of only few state variables, or
anticipated state variables, 9, and some parameters, 6. This approximation can be called the

*priority index function, say g1

g ,).(2.4)

A state dependent rule is by definition a dynamic rule. The arguments 9 of a state dependent
priority index function are usually explicit measures of the load, such as the lengths of queues in
the Dynamic Composite Rule in Equation (2.2) above. Job specific parameters, 6, can also reflect
the load in the shop. The information available for estimating the (aggregate) state variables and
in setting the parameter values is determined by the forecasting and planning horizons of the

* dispatching process.

2.2.2 New Distinctions of State Information in a Priority Index

The classification the priority dispatching rules given above distinguishes two principal
* ways to add state information into the priority index evaluation: either by improving the quality of
* the information through extension of the forecasting horizon from static to dynamic, or by

extending the scope and detail of the information from local to global. We propose to refine both
of these dimensions to obtain a more useful framework for developing scheduling systems. First,
the initial data of the problem used in static rules (job attributes) can be augmented by observed

16 or anticipated state indicators. More specifically, the dynamic priority index formula and its
parameters can be based on the following horizons of information feedback (see figure 2-1):

1. The observable status of the job shop, such as the slack of a job or the length of a
machine queue."1

* 2. The anticipated status of the job shop in the future, for example average queue
lengths estimated through aggregate forecasts or detailed forward simulation.

* 3. The anticipated performance of the rule and parameters in the problem under study.
The performance feedback can be obtained through an iterative simulation or by
solving an aggregate formulation of the problem. The parameter values and state

0 estimators are selected based on the best performance of the incremental schedule.

101t is possible to reduce any multi-stage priority screening scheme, such as truncated SPT or Emery's method, to a
priority index function.

* 11 lnistead of updating the state information upon each dispatching decision, the priority index is evaluated just at the
arrival to the queue or the shop in simple rules.
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HORIZON OF INFORMATION FEEDBACK:

STATIC: DYNAMIC:
0. Initial 1.Observable 2.Anticipated 3. Performance

SCOPE AND data status status feedback
DETAIL OF
LOAD INFO: EDD Slack/RPT

WSPT
A. Local

B.Indirect CoverT
Global

C. Direct WINQ AWINQ Emery's rule
Global DCR

Figure 2-1: The classification of the priority dispatching rules according
to the information used in the priority index

Second, the state information can also be analyzed based on the scope and detail of the
load estimates used in the priority index function. Local information refers, as above, to the
attributes of the jobs on the current machine. Global information, however, can further be divided
into indirect and direct load information. The (anticipated) load can be used indirectly to infer the
probable waiting times of the jobs or average queue lengths can be used directly in estimating the
expected waiting times. Hence the spatial information used in the priority index function can fall
into the following categories shown in figure 2.1:

1. Local information concerning the current machine and the jobs to be scheduled on it.

2. Indirect global information: In addition to the local information, the rule uses
information that either characterizes the distribution of the problem parameters or can
be inferred from the (anticipated) solution of the scheduling problem. An example is a
lead time estimate obtained through simulation before priority index valuation.

3. Direct global information: the priority index uses explicit, observable or anticipated
measures of load on several machines. Such direct information is the queue length on
the next machine, or the implicated opportunity cost of the machine.

The adoption of this framework is justified if the new distinctions suffice to identify
significant differences of the efficiency of the implicated rules vis-a-vis the costs of the

• v .: , i' • " . • " • i i-"' "" " "
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*information systems needed. Somne other issues pertaining to the development of state
* dependent priority rules are addresses in the thesis as well. First, bottleneck facilities require

special attention to avoid any idle time and excessive lines. Can this be achieved using a priority
rule? If the rules are adjusted for the bottleneck facilities, how do we ensure the coordination of
priority assignments across machines? Second, can the rules take an advantage from a special
layout of the shop, or other known structure of the load? How sensitive the performance of a
particular rule is to the inaccurate specification of the shop? Do some errors in the status

a information degrade the performance of the rule? Third, can the estimation of the parameters of a
state dependent priority index be decomposed, or does the change of one parameter require
some internal adjustment of the others12 1 Finally, how do we extract more information

* concerning the future status of the shop, such as a forecast of the lead time requirements of a job
on the subsequent machines? We propose the use of forward iteration to estimate the values of
any job specific parameters and toad indicators of the priority index. This can be accomplished
through diagnostic load analysis, through locally improving procedures, or through global
performance feedback. Also, we hope that the rule parameters giving the most efficient
performance convey some useful information about the load to operations management.
Consequently, the new framework would provide guidelines for the integration of the detailed
scheduling activity into the overall management information system.

2.3 An Adaptive Priority Rule for Single Machine Weighted
Tardiness Scheduling

2.3.1 Some Properties of Apparent Urgency Priority Indexes

The objective in a weighted tardiness problem is to minimize the total tardiness cost,
7. C (t), when the penalty associated with the completion of job i at time ti, Ci(ti), is: Ci(t1)=
wimaxfO, It di)) , where w. and d, are its value and due date, respectively. In a single machine

* weighted tardiness problem, a locally optimal condition for scheduling job i before an adjacent
job j can be expressed as follows [61]

(w1/pi) [1 - (d, - t - p.)4* /p.] - > (w./p.) [1 - (d. - t - p.) - /p.]4  (2.5)
where t is the current time, pi and p , are the processing times of the jobs. The derivation of
equation (2.5) is based on the minimization of the marginal cost of scheduling one of jobs i andj

* in the current position. Since equation (2.5) gives a necessary condition of optimality, an
approximation of this condition can be used as a priority dispatching rule. The priority index,
called the "apparent priority", was first given in (611:

(2.6)
U~I(t) = (w1/p1)(1 - (d, - t - pi)'/(k F5)].

* Here i3 is the average processing time of the schedulable jobs. The parameter k changes the
length of the 'look-ahead", or the slack which starts the anticipation of tardiness, that is

* measured in terms of the average processing time. In a large simulation study, the following
exponential modification outperformed the linear priority index:

61
1The variabjility of parameter values in DCR and Emery's rule indicate their interdependence [17, 201.
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(2.7)
Vri(t) = (wi/p i)e (di t. pi

) +/1 1

Again, K determines the length of the look-ahead that is usually shorter than in the linear case. In
order to understand the convex shape of the look-ahead specified by equation (2.7), we can find

the locus of points of indifterence for two jobs with identical delay penalties w i = w, = 1. Assume
that in equation (2.5), the slack of job i, (d.t-pi) > 0, we would be indifferent in starting this job or a

longer job j that is already tardy (having the value 1/pj <1/p, of the Apparent Urgency index) at

time tb if di. tb = pj" Hence the following property holds for slack evaluation of the shorter job i on
the machine with two jobs:

Property 1: The unweighted Apparent Urgency index of the shorter job, i, having
slack Pi P, is 1/p.

The convention of using the same length of the look-ahead period, Ke *5, for all schedulable jobs,

often forces the more expensive jobs to be done before they are due. One possible precaution for
this is to make the look-ahead parameter of job i, K., inversely proportioal to its weight, w i. This
property can be tested in lightly loaded shops. The length of an efficient look-ahead has been

shown in experimental simulations to increase with higher load [621. This simple property is,
however, quite difficult to establish analytically.

2.3.2 The Adaptive Apparent Urgency Rule

Since the optimal length of a job's look-ahead depends on the number and parameter
values of the competing jobs suggests that the performance of the Apparent Urgency rule could

be improved by adjusting the parameter K in equation (2.7) for each job separately. In the

following, we use an iterative search to adapt the look-ahead parameter K to the problem data. 13

We illustrate the problem of finding an efficient combination of static Kivalues with a static

one-machine example:

Optimal k values
Job# i proc.time due date value (average of 5 runs)

1 2 3 3 .7
2 2 5 1 2.2
3 2 6 3 .6
4 2 9 1 2.6
5 1 9 3 .7
6 4 10 4 .9
7 4 17 3 .5

The weighted tardiness of a WSPT schedule is 18, and application of EDD rule results in 12.
The weighted tardiness with the Apparent Urgency rule, applying the priority index in equation
(2.7) with look-ahead parameter K =2 is 14. Shortening the look-head to K = 1 improves the

performance to 10. The best weighted tardiness achievable is 9 with a constant K = 0.8 for all jobs. 71

The optimal solution 8 can be found by inspection. The Gantt chart for the optimal schedule is

13 The properties discussed above indicate how the look-ahead should be adjusted in an average sense. These results
will be tested in chapter 6 in general job shop scheduling by adjusting the K parameter directly on the basis of the average
queue length and the weight of the job on a machine.
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Figure 2-2: The optimal schedule of the example as a Gantt chart.

shown in Figure 2-2.This solution can also be found through an adaptive apparent urgency rule.
This rule is based on an iterative adjustment of the look-ahead parameter K as follows14

1. Run one simulation run, using some initial value Ck = Kint for all jobs.

2. Examine the resulting schedule: For each job that is late, increase the look-ahead,
and for the jobs that are extremely early, decrease the K value, both proportionally to
the tardiness/earliness of the respective job3.

3. Repeat the simulation with these new K-values assigned to the jobs.

With some rather arbitrary values for the adjustment parameters, this "look-ahead adaptation"
found the optimal schedule within 1 -8 iterations, starting from values 0.5 < Kint < 2.0.

We tested the look-ahead adaptation with the constant AU rule (with K = 2.0) in some hard
problems whose weighted tardiness was at least 5% higher than the optimal in an earlier
experiment [61]. Our sample of 30 hard problems with both 20 jobs and 30 jobs was further
classified according to the expected portion of tardy jobs.15 The portion of tardy jobs in an
average schedule, denoted -r below, was set to 0.2, 0.4 or 0.6, that is, 20%, 40%, or 60% of the
jobs were expected to be late. The adaptation procedure was in detail as follows:16

. A tentative correction of the K. parameter for job i is determined after each dispatching

simulation run from the following equation:
AK i = IKt- KiXS/Sref , (2.8)

1 4 Notice that in this adaptive schedule, the xi-parameters are constant for each job throughout an iteration.

1 5Le than 5% of the problems were hard. For details concerning the test load generation, see (61].

161n the preliminary test runs, the adaptation procedure was found to be quite insensitive to wide range of the parameter
4 values explained in the text. As a possible modification of the procedure, we could adjust the look-ahead factor according

to the relative weighted tardiness of the job in question. In our test, this modification had a quite small but improving effect
on the performance of the rule.

4
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where s is the lateness' 7 of the job i from the results of the run, Sref is a reference level
for earliness or tardiness, experimentally set at 60"(average processing time). Kext is
an upper bound of x for a job that is late, or a lower bound for an early job (set to 3.0
and 0.3, respectively).

e The adjustment step size, AK, is further constrained by an upper bound of 0.2 for
increasing and 0.1 for decreasing the a's.

* The AU rule has two tie breakers, the due date and the value (penalty on being late).

We used a normalized measure of weighted tardiness, or the total weighted tardiness
divided by the total processing time and the average weight of the jobs. This measure is
independent of the problem size and the units of measurement of processing times and weights.
Test results for the 20-job problems are displayed in table 2-1. The following notation has been
used: WTom is the optimal weighted tardiness from [61], WTcon the weighted tardiness with
constant K, from [61], and WTad is the weighted tardiness obtained after the adaptation. From
these measures, the following ratios were computed:

Average absolute improvement = Av(WTcon.WTad)

Average % improvement from margin = Av((WTcon. WTad)/(Tcon.WTo ))

Average improved value relative to the optimal = Av((WTm,)/WT).

The average optimal normalized weighted tardiness measures were approximately 0.035, 0.30,
and 0.84 for the three different load levels, respectively. Another 30 problems with 30 jobs each
were selected similarly from the test material in [61]. The results are shown in table 2-2.

Table 2-1: The improvement of the performance of the new Apparent Urgency
rule using the look-ahead adaptation procedure for the 20-job problems.

T (#of probl.) Av. optimal Av. absolute Av. % improv. Av. Improved Av. # of

tardiness improvement from margin rel. tardiness iter.

0.2 (10) 0.035 0.034 (100%) 78% 1.31 7.4

0.4 (12) 0.30 0.058 (20%) 66% 1.14 6.7

0.6 (8) 0.84 0.076 (10%) 66% 1.05 7.1

Total (30). 0.055 60% 1.17 7.0

Based on this small sample, the look-ahead adaptation improves relatively more the solutions of
the slack problems, but the absolute saving is more in the tardier problems with higher ir values.
Often some of this improvement could be captured through an appropriate constant value of Kc,
using a shorter look-ahead, ic = 0.5 - 1.0, in a slack shop and a longer one, 0C = 1.5 - 3.0, in a

0
1 7 The earliness of an early job is first reduced by one average processing time in order to avoid overreacting.

""S " ' " . . " " ."" . - -. 2 . " .
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Table 2-2: The improvement of the performance of the Apparent Urgency
rule using the look-ahead adaptation procedure for the 30-job problems.
The improvement with a pairwise interchange procedure is given below

in parenthesis for comparison.

Tr (#of probl.) Av. optimal Av. absolute Av. % improv. Av. improved Av. # of

tardiness improvement from margin rel. tardiness iter.

0.2 (9) 0.028 0.021 (75%) 82% 1.61 5.3

(0.019) (56%) (1.76)

0.4 (17) 0.189 0.Olb (8%) 21% 1.41 4.8

(0.031) (45%) (1.25)

0.6 (4) 1.71 0.040 (3%) 25% 1.06 5.0

(0.020) (17%) (1.067)

Total (30) 0.020 34% 1.42 5.0

(0.027) (44%) (1.36)

heavily loaded shop. In table 2-2, we have also given the corresponding results using a pairwise
interchange procedure that improves the same initial sequence. In this sequence, the condition
(2.5) is checked for any adjacent jobs. If it fails, the jobs are interchanged. The exact
interchange algorithm is as follows:

1. Start with the initial sequence of the n jobs generated by the Apparent Urgency rule
with some constant value of look-ahead. Set i = 1.

2. Number the jobs according to the present sequence.

3. Check the condition (2.5) for jobs i and i + 1.

a. If the condition is satisfied for the present sequence, set i = i + 1. Go to 4.

b. If the condition is not satisfied, interchange the jobs i and i + 1. Set i = i. 1, and
go to 2.

4. Test if done:

a. Ifi<n,goto3.

b. If i = n, compute the weighted tardiness of the present sequence. Stop.

The improvement using the interchange algorithm is approximately the same as it is using the
look-ahead iteration in these hard problems.

0
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2.3.3 The Effects of Errors in Processing Time Estimates

Conway et. al. (17] discovered that the WSPT rule maintained 80% of its power in reducing
the average flow time of a FCFS sequence when using processing time estimates with errors up to
100% of the actual processing times. Muth (55] studied the consequences of the errors in
processing times for minimum makespan problems. Holloway and Nelson [40] designed a multi-
pass adjusting procedure for minimizing the average tardiness in static job shops. Their heuristic
search procedure, which allowed non-delay schedules, outperformed SPT, truncated SPT,
S/OPN and EDD rules in three deterministic problems. The introduction of errors in processing
time estimates affected most their heuristic multi-pass procedure, although a non-delay version of
it was more robust in the stochastic problems. The other rules had less pronounced deterioration
of performance. 18 When scheduling with the Apparent Urgency rule, several factors can be
affected if some erroneous processing time estimates, pi, are applied instead of the actual
processing times, pi, in computing the index values in equation (2.7). First, the si/p, part of the
index changes the same way as in WSPT scheduling, and this bias is opposite to the error in the
processing time estimate. Second, a change of the slack term, di-t-pi , changes the priority index
of a slack job. Third, the accumulation of the errors in processing time estimates can shift the
time t of the simulated dispatching decisions biasing all slack estimates. However, in a one-pass
dispatching routine the actual processing times will be observed before the next decision is
made. More formally, the effect of processing time estimation errors, denoted dp, upon the
numerical value of the exponential version of the Apparent Urgency index can be derived
through differentiation. From equation (2.7), ir = (w/p)e"(d' tP)/p we get by total
differentiation, assuming that d-t-p > 0 and l1 = constant:

(2.9)
di = (am/ap)dp = (1/ic1 /p)w dp,

The relative error of the AU priority index, dw/w, amounts to:

dir/w = (p/K5 -1) dp/p. (2.10)
These errors in the Apparent Urgency indexes are rather small for processing times relatively
close to the average look-ahead period, K5. For a tardy job, the relative error of ff is -dp/p. We
ran a simulation study to see the real effect of errors in processing time estimates on the
performance of the AU rule and its adaptive modification in the single machine case. The
problems were generated randomly. The actual processing times were taken from a uniform
distribution pi - U[5, 25]. The weights of the jobs were then generated based on the processing
time pi from the uniform distribution wi - U[1, 2pi]. The due dates were set with the tardiness
factor r = 0.5. This means, that the due dates, di, are distributed as di - U[d (1 -r), d (1 + r)], where
the parameter r, 0r<1, determines the dispersion of the due dates around the average due date
d = Xpi(1-r). In the study we used a value of r = 0.8.

The experimental design consisted of five different loads of 20 jobs each. We generated
erroneous data on three levels of deviations from the actual processing times. The erronieous
processing times, pie, were taken from a uniform distribution pi' - U((1-E)pi, (1 + E)pi], where E,

1 8 Holloway and Nelson rejected the use of parametrized rules, such as COVERT, Dynamic Composite rule, etc.
because of the difficulty to choose robust parameter values in the static problems. Most of the parametrized rules have
been tested in stationary dynamic shop environments.

. .- ' " - " - - -" " " - " ' -" " "" "-
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the maximal absolute error, was given the values 0.3, 0.6 and 0.9, i.e. the maximal errors were
allowed to be 30%, 60% or 90%, respectively, from the actual processing times. Five sets of
garbled processing time data were generated for each actual load, a total of 25 problems. Two
common rules, WSPT and EDO, were used as benchmarks. The WSPT rule is known to be rather
robust with erroneous processing time data, and the EDO rule does not use processing time
information. rhe simulation procedure was as follows. First we solved a problem with the actual
processing times to get a deterministic benchmark. The resulting average normalized tardiness
for the basic 5 problems is shown in the first column of Table 2-3 below. Then the dispatching
decisions were made based on the erroneous estimates, and the actual processing times were
implemented during the simulation. In the case of the iterative look-ahead adaptation explained in
Section 2.3.2 above, actual processing times were used just during the final simulation. Thle
performance with the three levels of maximal errors for each of the rules is also shown in Table
2-3: these normalized tardiness figures are averages of 25 runs.

Table 2.3: The effect of errors in processing time estimates on the normalized
weighted tardiness performance of the WSPT, EDO and AU rules.

With the With errors of:

Rule actual data Max. 30% Max. 60% Max. 90%

*WSPT 1.155 1.147 1.312 1.422

EDD .8 .646 .646 .646

AU w/constant look-ahead .254 .259 .304 .344

AU w/look-ahead adaptation .225 .240 .270 .318

From these results we can see that the rules are quite insensitive to the errors in processing
time estimates. The performance of the rules remained within 7%, 20% and 36% of the results with
actual data for errors up to 30%, 60% and 90%, respectively. The absolute deterioration of

* performance was considerably less for the AUI rules than for WSPT in the cases with large errors.
* The best rule, the AU rule with look-ahead adaptation, maintained its clear margin even for the

highest level of errors. This result, which holds in small flow shops as well, is more encouraging
than the results reported in [40]; the performance of the heuristic search procedure dropped in

* some cases even below the SPT and EDO levels.

* We recorded also the performance of the rules in terms of two other measures, namely the
- number of tardy jobs (out of 20) and the maximal weighted tardiness cost for any one job. These

results are shown in Table 2-4.

The new AU rules were again superior for the maximal weighted tardiness cost in the
* deterministic case and maintain their advantage despite the errors in processing time estimates.

The AU rules were also better than the WSPT and EDO rules in terms of the number of tardy jobs

07
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Table 2-4: The performance of the rules in terms of maximal weighted tardiness
and the number of tardy jobs out of 20 (in parenthesis).

With the With the errors of:

Rule actual data Max. 30% Max. 60% Max. 90%

WSPT 2142 (9.6) 2034 (9.8) 2338 (10.2) 2539 (10.0)

EDD 1487 (8.8) 1487 (8.8) 1487 (8.8) 1487 (8.8)

SAU w/constant look-ahead 456 (7.0) 512 (7.0) 638 (6.7) 768 (6.7)

AU w/look-ahead adaptatio 455 (7.0) 491 (6.7) 642 (6.3) 785 (6.4)

although these rules are known to be efficient with respect to this measure [3,17]. Furthermore,
the errors in processing time estimates did not impair the average performance of the AU rules.

The iterative adaptation of the parameters of a priority rule represents the planning of
scheduling activity. We have shown that this planning can be consistently advantageous, even if
the information available for planning is not perfect. The value of the incomplete and erroneous
load information depends on the efficiency of the parameter setting for the final dispatching. But
better information might be available later at the time of eventual dispatching. Hence in a
stochastic environment, scheduling systems should address both the control problems and
planning problems:

1. How well the rules perform assuming that there are some errors in the processing time
estimates that cannot be detected before the job has been completed (the control
problem of scheduling), and

2. How much the imperfect/incomplete load information that becomes more accurate
after the job release dates can be used in the aggregate planning (the planning
problem of scheduling).

The robustness of new AU rules against errors in processing time estimates indicated by our

results is essential for the control of the scheduling activity in a dynamic environment. But the
consistent performance of the AU rules could also help in linking the scheduling activity into the
aggregate planning in a hierarchical production planning system, thus increasing the potential
gains from scheduling information.

! I
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2.4 Conclusions

We have started with a new framework for systematic analysis of priority rules for
scheduling. The search among the dispatching alternatives becomes more opportunistic when
the rule uses more information of the status of the shop. But instead of explicit analysis of work
contents or due date distribution of the load, we revise a heuristic, iterative procedure for
adjusting the job-specific look-ahead parameter of the new Apparent Urgency rule. The
performance feedback improves the weighted tardiness and portion of tardy jobs of the AU rule.
The AU priority index is insensitive against errors in processing time estimates. The robustness of
the basic AU rule and its look-ahead adaptation is demonstrated in a simulation experiment with
stochastic processing times.
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3. Scheduling in Proportionate Flow Shops
Summary

It is well known that except in the case of makespan problems, there are hardly any

analytical results for flow shop problems. This chapter considers of a class of flowI
shop problems where job processing time at a machine is proportionate to the
processing time on the first machine. We show that for the pre-emptive version of the
problem, in order to minimize any regular measure of performance, it is sufficient to
consider permutation schedules. Also, results for various other measures are derived.
A characterization of the optimal solution for the weighted tardiness problem is derived
which is analogous to its counterpart in the single machine case. It is indicated how
this characteriation can be used to develop heuristics for flow Shop problems.

3.1 Introduction

Flow shop problems have been the center of attention for researchers in Scheduling TheoryI
for a long period of time. Though flow shop problems are a special case of general job shop
problems, even these problems have proven themselves to be too complex to provide many

analytic solutions. As has been established by Lenstra, [45], most problems in this area fall in the
NP-Complete class. There are no known polynomially bounded procedures for this class of
problems and it is unlikely that there are any such procedures. Most prior research in the field of
flow shop problems has been confined to makespan problems. The most widely quoted result is
due to Johnson (41] to minimize makespan in two machine flow shop problem and its extension to
a special case of three machine flow shop problem. Also, Gilmore and Gomory [29] devised an
algorithm with a computational burden of 0(n 2) for the two machine flow shop problem where job
waiting is not permitted. There are hardly any other known polynomially bounded procedures for
the problems in flow shops. Another widely quoted result, due to Conway, Maxwell and Miller [171,
proves the optimality of the same permutation sequence on the first two machines in a flow shop
for any regular measure of performance and the additional result that the sequence on last two7
machines is the same for makespan problems. The fact that these results were discovered more

than two decades ago and no further significant progress has been made in the case of flow shopI
problems in deriving analytical attests to the complexity of these problems. Most of the recent
research in flow shops has been largely directed towards finding optimal solution using
enumerative methods such as branch and bound or developing "good" heuristics for makespan
problems [11, 12, 14, 18, 35, 47, 50, 57]. There is hardly any significant work done for other
important measures of performance.

This chapter addresses scheduling problems in the context of a particular kind of flow shop
where the task processing time of any job at a machine is proportionate to the processing time on
the first machine. Results derived in this chapter relate to the problems where the jobs can be
pre-empted or divided into parts of unit duration without penalty. We show that in such a case,
permutation schedules constitute the set of dominant schedules for any regular measure of
performance and we further derive results for performance measures based on completion times
and/or the due dates of the jobs. These results hold good even in cases where job-passing is 3
prohibited. In case of shops where intermediate queues are prohibited (once a lob is begun on the
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first machine, it has to be processed without interruption at any subsequent machine), these
results hold good except that the start times on the first machine have to be appropriately delayed.

3.2 Permutation Schedules for the Proportionate Flow Shops

In this section. we consider the pre-emptive version of the general problem for the
proportionate flow shop problem. We wish to schedule a set of jobs, {J 1,J2 ,J 3,...jn) so as to
minimize a regular measure of performance. It is not unusual to find jobs being preempted in
practice in order to expedite them through the production system. Also, the pre-emptive case is an
important relaxation of the original problem from the computational point of view. The following
proposition holds good for the pre-emptive case.

PROPOSITION I : To minimize any regular measure of performance, it is sufficient to
consider permutation schedules.

Proof : Consider an optimal schedule in which the ordering of jobs is not the same on the
last two machines m-1 and m. Consider any two jobs J. and Ji such that Ji < Ji on machine m and
J ( Ji on machine m-1. Since all jobs have the same processing time on any particular machine,
pairwise interchange of any two jobs on a particular machine does not affect the completion times

of any other jobs on that particular machine. So, pairwise interchange of jobs Ji and Ji on machine
m-1 does not affect completion time of any other job on machine m-1. If such pairwise
interchange on machine m-1 is forbidden by the schedule on machine m-2, we can switch jobs Ji
and Ji on machine m-2 as well and so on back to the first machine. Thus, we can always form an
optimal schedule in which machines m-1 and m have the same sequence and completion times of
jobs on machine m are no greater than the original given optimal schedule. Now, we extend the
same argument inductively between machines m-1 and m-2 , m-2 and m-3,..., 2 and 1. Since the
completion times of the jobs are no greater than the completion times in the original schedule,
permutation schedules constitute the set of dominant schedules for any regular measure of
performance. 0

Now we derive some results relating to the completion times of the jobs. Let Pk represent the
processing time for any job(piece) on machine k. Consider any permutation schedule. Let Ck•[i]
represent the completion time for the piece in the i th position on machine k. The following result
holds:

PROPOSITION II: For any piece,

*Ci] = I:l p, + (i-1)n=j2..j {Pq.

.6. • - .
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PROOF: In a permutation schedule, same sequence is used on all machines. Hence
C1 = =j

The rest of the proof is by induction. Suppose that in a permutation schedule Ck C k

Dk for some particular machine k (this is obviously true for k = 1 and i = 2,3,...,n). We show that
cki 1 + I. ] = D k.1 where D k+l is a constant and is given by max(Dk, Pk )

4e have two cases to consider: 1) Pk + 1> Dk and 2) Pk+ 1 < Dk"

Case 1 :Pk+.1 Dk

Machine k (i+I]

k Ck

O'K  Pk+l

Machine k+1 J(i] J

ik+1 C k

Figure 1 [i]  [i+1]

fn this case, there is no idle time on machine k + 1. Therefore, Ck 1 1] = 1=

max (Dk, Pk Ei d

Pk~

Case2Pkl<D k [i+k

Machine k

Machine k+1 j9 i f

Figure 2 S

In this case, Ckl .ck+I = Dk
=] i[iD] = max{Dk,pk~l }

S

. ', •
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ThsC' = Ci +iiC C' )
TIh] 

- + =2 [i] 11]

= C111 + (i-1) max ( D '1,pj}

= C11 + (i-1)mpx,..j{p q

We had earlier indicated that makespan problems are the most widely researched area in the
case of the flow shop problems. Further, it is well known that the optimal schedule need not
necessarily be a permutation schedule except that the sequence is the same on the first two
machines and also on the last two machines. However, when all jobs have equal processing times
on the first machine, the following proposition holds good in the case of proportionate flow shop.

PROPOSITION III : Any permutation schedule provides the minimum makespan for the
proportionate flow shop problem in the case of jobs with equal processing times on the first
machine.

PROOF : Let p max be the maximum processing time of a job on some machine. Work
content at this particular machine is np max' Also, every job has to undergo processing prior to and
subsequent to this machine. Therefore, the minimum processing time for these operations is
yk= kPmax Hence, the minimum makespan is given byk=1 kPm

vk = M pa kM +(-)
Xk= I Pk * Pmax k= nPmI = k Pk + (n'l)Pmax

From Proposition II, it is clear that the minimum makespan is acheived by any permutation
schedule and hence the result. 0]

Now we discuss some measures relating to the completion times of jobs in the case of the
proportionate flow shop for jobs with equal processing times.

COROLLARY 1 : Any permutation schedule of the pieces minimizes F.

PROOF : F is a regular measure of performance and permutation schedules constitute the
set of dominant schedules. From Proposition II, it is clear that all permutation schedules have
same F.

F = (1/n)-(Zii -
n Cm

[i] = 1 ppr

k =n 1/ 2 (n.1)pnaxk=1 Pk + 2]



PROPORTIONATE FLOW SHOPS 31

COROLLARY 2 : Fw is minimized by scheduling the jobs according to the weighted shortest
processing time rule.

PROOF: Fw is a regular measure of performance and we need to consider only permutation
schedules. Completion times of jobs in a permutation schedule is given by

C] = :k= Pm + (i-1) Pmax (application of Proposition II)

F = (1/n)- { yi=nCw CmW

It follows directly from basic algebra that the product of two series is minimized by arranging one
in the ascending order and the other in non-ascending order. 0

Just as in the single machine case, we can show in this case also that arranging the jobs in
non-increasing order of the weights minimizes the weighted lateness as shown below:

COROLLARY 3: The Earliest Due Date rule minimizes maximum lateness and maximum
tardiness.

PROOF: Consider any two adjacent jobs Ji and J. in a given schedule such that Ji < Ji and
di > d. Let t be the completion time of J,.

I j

Ji I Jj •  I

dj di

<>
Pmax

Figure 3

Maximum lateness among jobs J. and J is given by

max ( t- di , t + Pmax d = t + Pmax - dj. (1)

Suppose we interchange Ji and J." Maximum lateness among Ji and Ji is given by

max {t-d 1 ,t + Pmax"di. (2)

It is clear that (1) > (2). Thus, by interchanging Ji and J,, the schedule is no worse off and in fact, it
would improve if the maximum lateness in the original sequence occured for J1. Since Tmax equals
max(O, Lm.), the result holds good for maximum tardiness as well. C

Another important measure of performance is weighted average tardiness. Since this is a
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regular measure of performance, it is sufficient to consider only permutation schedules. Following
results relate to this measure of performance for jobs with equal processing times on the first
machine in the case of proportionate flow shops.

PROPOSITION IV : The optimal pre-emptive solution to the XwiT i problem is found by
solving the linear assignment problem.

PROOF : It is clear from the Proposition II that Cm is independent of the job occupying ith
[ii

position in the sequence. We can form the cost matrix tableau for the linear assignment problem
(41ii indicates the penalty incurred if Ji is in the ith position in the sequence) as follows:

0ii = wj max(O, .1 Pk + (i)Pmax d1 )
Solving the linear assignment problem using the above cost tableau yields optimum solution. It
may be noted that the solution procedure has a computational burden of the order of 0(n3). [3

In fact, the result in the Proposition IV can easily be generalized to any penalty function of
the completion times of the jobs so long as they are nondecreasing functions of the completion
times of the jobs and the performance measure is additive over the completion times of the jobs.
Though Proposition IV provides us with a polynomially bounded procedure for solving the pre-
emptive version of .wiT i problem, the following characterization of optimal solution for the same
problem is interesting from the point of view of developing heuristics for the flow shop problems.

PROPOSITION V : Consider an optimal sequence for XwT, problem for jobs with equal
processing times on the first machine for the proportionate flow shop. Consider any two jobs, J
and J, i < j (without loss of generality, assume that job index is same as the locational index in the
sequence under consideration). Then, the following property must be satisfied in an optimal
sequence:

m +.I-m +

(di - Clil) (dj - C[i])
wit (j-i) Pmax >J W L (ji) ? J

-

PROOF: The proof is similar to the proof provided in the appendix of an earlier paper on the
myopic heuristics for the single machine tardiness problem [61] and is omitted here for the sake of
brevity. -

This property can be considered to be valid for a relaxation of the general problem in
proportionate flow shops where jobs are permitted to be preempted at unit intervals on the first
machine and all such pre-empted pieces have the same due date as the original job. However, if
all jobs have equal weights and equal processing times, then the earliest due date sequence

4 provides an optimum sequence for the average tardiness problem as shown in the next
proposition.

1
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PROPOSITION Vt If all jobs (jobpieces) have equal weights, the earliest due date
sequence minimizes the average tardiness.

PROOF: From Proposition I, it is clear that we have to consider only permutation schedules.
Consider an optimal solution in which two successive jobs do not follow the earliest due date rule,
i.e., J < J and d > d

Case 1 : Suppose that both J and J. are early or on time. Since J is early or on time and
di > di, pairwise interchange does not degrade the solution.

Case 2 : Both Ji and Ji are tardy. Pairwise interchange does not degrade the solution since
the weights are equal.

Case 3: J. is tardy and J. is early or on time. This is impossible since d > d. and Cm < Cm

Iii oil
Case 4: Ji is early or on time and J is tardy.

Subcase 4.1
4

Pmax

FIgu re 4
Clearly, pairwise interchange improves the solution.

Subcase 42

LI

-l dj d

Figure 5
Clearly, pairwise interchange improves the solution.

I t I

... 4.2
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Subcase 4.3

J, J

I M  C c =

dj [__] di. _J

Pmax

Figure 6

Cost of Ji and
Ji in given schedule =Cm+Pax -d (3)

Cost after interchange = (Cm + P dax.) + (Cm -d) (4)

Subtracting (4) from (3), = d- "Cm >0.

Therefore, pairwise interchange results in an improvement.

Subcase 4.4 d d .

Pmax

Figure 7

Cost of J
and J. in given schedule =Cm + pma -d. (5)

SCost after interchange =Cm + p(6)

* Since d, > d., (5) > (6). Therefore, pairwise interchange improves the solution.

I I

Thus, in all cases, pairwise interchange does not degrade the solution and, in fact, may improve it.

Since our arguments employ only information about the individual jobs and not the location,
ensurance of local optimum at all locations in the sequence ensures global optimum and hence
the earliest due date rule is optimal. 0

3.3 Schedules with No Job-passing

There is a special class of flow shop problems where no job-passing is permitted. That is,

once a job is begun on the first machine, it maintains same priority relative to other jobs for

subsequent processing on any other machine. No job-passing is a matter of practical and design

I
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expediency. As stated by King [43], 'this is typically the situation in many manufacturing plants
where jobs are moved from station to station by conveyor'. Even in Flexible Manufacturing
Systems, due to problems involved in computation of optimal resouce utilization, not more than
two or three jobs are permitted to pass the others in the sequence [3,8, 39]. Also, since
technologically designing input buffers to machines to accomodate any scheme other than First
Come. First Served is rather complex, in many situations no job-passing restriction is used. In
case of proportionate flow shops, the following remark holds good.

REM A RK 1: Permutation Schedules < = > Schedules with no job- passing

Hence all results derived in section 2 equally hold good for jobs with equal processing times

in proportionate flow shops.

3.4 Schedules with no Job-waiting

Another special class of flow shop problems are those where job waiting is forbidden. Once
a job is begun on the first machine, it must be processed with no waiting at any other machine.
Steelmaking is an example of such a situation [43, 71 ]. It is clear that schedules with no job-
waiting are a subset of schedules with no job-passing. So, here again, it suffices to consider only
permutation schedules for optimizing any regular measure of performance. But, due to the no-
wait condition, it would be necessary have inserted idle time on the first machine. An exact
algorithm for minimizing makespan for the case of two machines with no job-wait is given by
Gilmore and Gomory [29]. Wismer [71 ] has shown that the makespan problem for general flow
shop problem with no job-waiting can be translated into an equivalent Asymmetric Traveling
Salesman Problem. Lenstra [45] has shown that the Hamiltonian Path problem is reducible to
makespan problem in flow shops with no job-wait, thus establishing the latter problem to be
NP-Complete. King and Spachis [431 developed heuristics for this problem and tested them
against random sequences and other heuristics.

However, in the case of jobs with equal processing times to be processed in proportionate
flow shop, we can easily extend the results obtained in section 2 even for situations where job-
waiting is not permitted.

PROPOSITION VII :Any permutation sequence for proportionate flow shop (all jobs with
equal processing times on the first machine) can be scheduled so that completion times on the last
machine are not changed and the jobs do not form queues at any machine.

4S

4
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PROOF: Consider two adjacent jobs, J and J1 +" Suppose J starts on machine I at
time t. Then Cm - t + 11 -,m p

J1 , can start on machine 1 only at such a time that once its processing has begun, it does
not have to wait at any other mchine. In order to determine when J, + , complete on machine m, we
simply left shift Ji + , such that its processing on machine m can begin immediately after Ji is
complete on machine m and then right shift it to the minimum possible extent to make it feasible.
NowC i]= t +

Overlap of J and J on machine j = max{ 0, C. [Ci + Pm" y=p = m

i i~l iq=1 Pq

=max {0, P Pm

Therefore, time difference between completion times of two successive jobs on machine m is
given by pmax "m + Pm Pmax" Thus, the completion time of ith job on machine m, Cm is given
bym = CmI+(i 1)Wp"=.

We note that this value is same as the one derived in Proposition II with no constraints on
job-waiting. Thus, all the results derived in section 2 hold good even in the case when job-waiting
is prohibited. However, the start times on the first machine will be delayed so that there are no

queues at intermediate machines. The start time for the job in the ith position is given by

a C ,+(i.)*p 'qTil 
0 1 P

= (i-1)*P ax ]

3.5 Conclusion

There are hardly any previous analytic results for flow shop problems except in the case of
the makespan problem. We have derived such results for the situation where job processing times
at any machine are proportionate to the time on the first machine. We considered the case where
jobs are permitted to be preempted; these results may be used for developing lower bounds for
non-preemptive cases. Also, the property developed for characterizing an optimal solution for the
weighted tardiness problem can be used for developing heuristics for the flow shop problems. Our
investigations in this direction have been promising.

| I
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4. Lead Time Iteration in Flow Shop Scheduling

Summary

This chapter studies the development of state dependent priority dispatching rules
for flow shops. We demonstrate the advantage of using indirect state information, more
specifically the lead time estimates of the jobs, to determine their priority index values.
The theory of optimal lead time estimation is advanced in the special case of
proportionate flow shops with with unit jobs. In this case, we can give an analytical
characterization of the optimal sequence on the first machine using optimal lead time
estimates. The same procedure can be repeated at all subsequent machines, using
operation due dates computed from the optimal lead time estimates. Operation due
dates can be used as coordination mechanism in the scheduling under any regular
measure of performance, not only in scheduling against externally provided job due
dates. Lead time estimates that are erroneous can be used insofar the errors do not
exceed given bounds.

New versions of Apparent Urgency and CoverT dispatching rules are proposed for
general flow shop scheduling. The new rules use performance feedback, obtained
through an iterative procedure, in lead time estimation. In the computational study
reported in this chapter, the Apparent Urgency rule performed better than any other
rule tested even with constant lead time estimates based on multiples of the job
processing times. Application of the lead time iteration procedure can improve
considerably the weighted tardiness performance of the look-ahead rules. More
accurate lead time estimation improves the overall coordination of the local dispatching
decisions, resulting in robust performance also in terms of several important secondary
measures of performance, including number of tardy jobs, maximum weighted
tardiness, and work in process inventory.

4.1 Introduction and Summary

4.1.1 The Need for Lead Time Estimation

In a flow shop, jobs have operations on several machines, and consequently the total time a
job spends in the process, or its lead time, can vary depending on the load in the shop and the
priority rules used in scheduling. If the objective is to minimize some due date based criterion,
such as weighted tardiness, it would be useful to know when a job should be completed on a
particular machine in order to get through all its remaining operations on time, i.e., we need to
determine some appropriate operation due date for each job on each machine.1 The due date of
an operation can be obtained by subtracting the remaining lead time, that is the sum of
processing times and waiting times of the remaining operations after the current one, from the
external due date of the job. Thus:

(operation due date) = Uob due date) - (lead time for the remaining operations)

1The oper3tion due date is not. however, the only way to determine the expected tardiness cost of a job as a function of

time. Alternative formulations, such as CoverT rules, will be discussed later on.

... - . . ."I• .
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A common practice in the dispatching approach has been to use some constant estimate
for the lead time, based on experience and/or the attributes of the job such as the total

* processing time. The waiting time estimates, or the operation due dates obtained from the lead
time estimates, can then be used in a myopic heuristic to determine the local sequencing
priorities.

The purpose of this chapter is to develop a flow shop version of the Apparent Urgency rule
* tested earlier in scheduling one-stage processes under the weighted tardiness criterion, see

(61, 621 and chapter 2 above. The new rule uses local operation due dates. The look-ahead of
the AU rule means that a job's priority index, or its anticipated tardiness cost per its processing
time, is increased gradually with diminishing slack until the job reaches its due date. In a flow
shop, the due dates of the operations other than the last one are determined as discussed above.
In order to provide good estimates of the .lead times, we revise them by successive simulation
over a forecasting horizon. By applying the best waiting time estimates obtained during this
iterative procedure in the final dispatching, we can further improve the weighted tardiness
performance of the myopic AU and CoverT rules by 5-20% in static flow shop problems.

4.1.2 Related Heuristic Approaches

Many commonly used scheduling heuristics avoid the necessity of determining the
operation due dates and the use of lead time estimates. One of the most efficient scheduling
rules even in tardiness related problems is WSPT, the Weighted Shortest Processing Time rule

* [3, 17]. WSPT is a static rule and does not use any information regarding the external due dates
of the jobs. Some other heuristics use the time remaining until the due date, or the slack of job,
as basis for the priority index. Examples of these rules are [3, 15, 17]:

1. External (Job) Due Date: The priority index of the job on any machine is the same as
the job due date. The job with the earliest due date is started first.

* 2. Operation Due Date: In this case, the the due dates for the operations are set by
equally allocating the available time among all remaining operations when the job
arrives at the machine center. The job with the earliest operation due date is started
first.

o 3. Static Slack Time: The job priority index is the static slack of the job, i. e. the difference
between the due date and the time of arrival at the machine center. The lob with the
least slack is started first.

4. Static Slack per Operation: This priority index that is the static slack of the job divided
by the number of remaining operations. In the case of a flow shop in which all jobs go
through the same sequence of machines this rule is effectively the same as Slack Time
priority rule.

5. Static Slack per Operation Time: The priority index is the static slack of the job divided
by the remaining processing time.

Dynamic rules use more up-to-date information about the time remaining until due date at the time
of dispatching decision. Simple dynamic rules based on due dates often use the operation time
remaining as a primitive lead time estimate. Examples of these rules are:
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1. Dynamic Slack Time, Dynamic Slack per Operation, or Dynamic Slack per Processing
Time remaining [15]: The priority index is the dynamic slack, or the time until due date
less estimated processing time of the remaining operations, divided either by one, the
number of the operations remaining, or the total processing time of the remaining
operations.

From the discussion and experimental testing to follow we shall see that the rules listed above,

although widely used in industry, do not in general provid*e good solutions for weighted tardiness
problems. Some of the more elaborate heuristic procedures require an a priori estimate of the
lead time on the remaining operations either for determining "normal" waiting times or for

setting a local operation due dates. Examples of these rules are:

1. Critical Ratio: The priority index is the ratio of available time until due date over the
standard lead time, i. e. the estimated queue and work time for the remaining
operations [15].

2. CoverT rules: The relative length of global slack constitutes the basic information in a
parametric family of scheduling rules called CoverT [3, 15, 16, 51]. Job i's priority
index is based on the projected (unweighted) tardiness cost, c. , and its processing
time, p., on the machine in question. If d. denotes the external 'due date, the priority
index of job j at time t, wCoverT' is:2

7 bCoverT(t) = c.(t)/p = (1/p.)[k W.- (d.- r.- t)+]*/(k W), (4.1)
Coe I i I i

where W. denotes the expected waiting time and r. the processing time for the
remaining operations. If the total slack d. - r. - t < 0, tle anticipated tardiness cost is
set to c. = 1; if the slack exceeds the "standard waiting time k W., the cost is set to
c. = 0. Alence the parameter k, k > 1.0, increases the length of the slack for which c1>O
to provide worst case tolerance. beyond the average waiting times.3 Note tnat CoverT
does not set any operation due dates.

3. Dynamic Composite Rule: The most complex rule used for the average tardiness.
studies is called Dynamic Composite Rule (DCR), a 3-parameter state dependent rule
[17]. The priority index is determined by the due date and the processing time of the

operation in question, adjusted by terms dependent on the congestion the current and
the next machine the job will need. The operation due date is set accordind to the
standard lead time of the job class in question. See chapters 2 and 6 for more details.

A new myopic rule for weighted tardiness scheduling is the Apparent Urgency rule

discussed in chapter 2. This rule applies a look-ahead feature, i. e. the anticipated tardiness cost

of a job increases smoothly with decreasing positive slack. An exponential form of the look.ahead
was found to be most efficient [61, 62]:

(4.2)

7i(t) = (wi/pi) e (di t pi) /K p

2Here we use notation (x) = max(O, x).

3Some standard waiting times, determined during a reasonably high load period, were used originally with CoverT. In the
case of a light load, these standards had to be adjusted downward by using another parameter 0, 0<1.0 [15, 16). See also
chapters 2 and 5.
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* Here r5is the average processing time of the jobs, and w. is the weight of job i. The slack of of a
job is normalized by K03 that determines the rate of exponential decrease of the expected urgency
value from a maximum of w1/p1 (the WSPT priority index) for a tardy job. In the earlier
experiments, the value of the look-ahead parameter K = 2.0 performed close to optimal in a wide
variety of one machine problems.

There are no previous studies in weighted tardiness scheduling in static flow shops [33].
ro From the literature reviewed above we know that due date based rules are efficient in lightly
* loaded shops in which due date setting is not very tight. However, the performance of these rules

deteriorates quickly with increasing load or tightness of the due dates. WSPT has been a very
robust rule in a wide variety of shop conditions, but it is usually inefficient in the problems in which
due date rules are most efficient. CoverT works well in reducing the average (nonweighted)
tardiness in job shop environments [3, 15, 16], but CoverT has not been tested previously in
weighted tardiness problems, or in static flow shops, or against some state dependent rule, such
as the Dynamic Composite Rule. In this chapter, we implement the original one-stage AU rule in a
flow shop environment. The basic problem in modifying the rule for a multi-machine case is
discussed above: how to set appropriate due dates for the operations preceding the last
operation. In order to improve the due date setting in the actual shop situation, we use lead time
estimates that reflect the effects of the load on job's realized waiting times in the subsequent
queues. This is achieved by using an iterative procedure far adjusting the waiting time estimates
according to the waiting times realized in a previous simulation with the same load. It the
expectations concerning the required waiting times are consistent with realized ones, an
equilibrium condition, the rule shou!d exhibit a superior performance. In the terms of the
framework developed in chapter 2, the lead time estimates serve as global coordination
parameters that convey indirectly the feedback concerning the rule's performance.

4.1 .3 Chapter Summary

The rest of this chapter is organized as follows. Based on the approach introduced in
chapter 3, or [63], it is shown in the next section that the optimal lead time estimates for any
regular measure of performance can be determined analytically in the case of a proportionate
flow shop with unit jobs. Then, using estimates close enough to these optimal lead times to
determine operation due dates, there exists a locally optimal dispatching discipline that yields also
a globally optimal solution. Thus the problem may be decomposed and solved separately at each
machine. The procedure is shown to be insensitive to small errors. In more general flow shop
environments, optimal lead time estimation is impossible but efficient heuristics are developed

*for weighted tardiness scheduling based on the concepts of adaptive state dependent
dispatching rules discussed in [67] and chapter 2 above.

In section 3, we report a large computational study testing the performance of the new AU
rule, in its basic version and with the iterated lead time estimates, against several well-known
myopic rules including FCFS, WSPT, EDD, Slack per Remaining Processing Time (S/RPT), and
CoverT (a "weighted" version of the original rule in [16]), in static flow shop scheduling problems
having up to 60 jobs and 8 machines. The results of this study indicate that AU, even without lead
time iteration, outperforms the other rules clearly with respect to the weighted tardiness criterion
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in an average of 1280 different randomly generated prr T he use of better lead time
estimates, obtained through iteration, improved the perf t the new AU rule 5- 10% in the
average. The final weighted tardmness cost achieved j\ ye AUI rule was in average
10-30% lower than that of CoverT' for different problen- d shop layouts. By modifying
CoverT to use the lead time iteration as well we can get wn J the average results achieved
with the iterative AUI rule. Furthermore, the lead time ad -i of the AUI rule yields a robust
performance in a wide variety of flow shop conditions and for several secondary measures of
performance. including maximum weighted tardiness, number of tardy jobs and work-in-process
inventories. In particular, the AUI rule averages the lowest number of tardy jobs. Conclusions of
this chapter can be found in section 4.

4.2 Lead Time Estimation in Flow Shops

4.2.1 Due Date Setting in Proportionate Flow Shops with Unit Jobs

In order to make the flow shop problem amenable to analytical study, we structure the
scheduling environment under consideration with some simplifying assumptions. The concept of
permutation schedule is useful in reducing the number of different sequences to be explored
especially in flow shop problems [3,17].

Definition 4.2-1: A permutation schedule is a schedule in which the jobs are
processed in the same sequence on all machines.

For several special classes of problems, permutation schedules constitute a dominant set of
schedules. We are particularly interested in a common flow shop structure that is called
"proportionate" in chapter 3.

Definition 4.2-2: A proportionate, (or uniform4) flow shop is oi1.t in which the
processing times of the jobs on different machines are constant multiples of some
standard, e.g. the processing times of the operations on the first machine.

Proportionate flow shops represent an extreme of the rather realistic assumption that the
processing time of an operation depends on the size of the job (a manufacturing order) in
number of units and the relative speed per unit of the machine performing the operation.5 In
practice, we can expect to observe at least some uniformity in a job's operation times.

* The concepts of lead time and operation due date are important for the development of
myopic heuristics for scheduling. The "real" due date of the last operation of a job is the
economically preferred completion date of the job in the context of production coordination. The
first surrogate of this job due date is the external (promised) due date. Some dispatching
heuristics use the Surrogates of operation due dates for priority index computations as discussed
in Introduction, but there has been also some experiments in applying the projected or possible
completion date as the basis for the EDD priority index, see e.g. Baker [4, 28]. The basic idea of
the look-ahead heuristics, such as AUI and CoverT, is that the value of the priority index of a job

4 The term "uniform" is used particularly in the problems with paraliel machines, see [331.
5An "ordered" flow shop wouid be one in which the processing times can be rank ordered in the same order on each

machine, but the requirement of exact proportionateness is relaxed.
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increases smoothly before the job is due on a machine. Thus there is no need to assign any
artificial job due dates.

Consider the proportionate flow shop problem for jobs with equal processing times on the
first machine.6 Suppose that the objective is to minimize the total tardiness cost, 1i Ci(ti), when
the penalty associated with the completion of job i at time ti, C(t,), is given as:

C(ti) = w, max {0, (ti - d)) . (4.3)

Without loss of generality, assume that jobs are indexed according to the order in an optimal

sequence for the problem that we have already shown to be a permutation schedule in chapter 3.

Proposition 4.2-1: If the lead times for setting the operation due dates are
optimally chosen, then an optimal local assignment of priorities leads to a globally
optimal schedule.

Proof: Consider the following problem. Jobs J1 , J2, ... Jn have weights w1,
w2 ..... wn and artificial due dates P1, P1 + Pmax' p, + 2 Pmax .. where pmax is the
processing time on the slowest machine. We want to show that there exists a sequence
which minimizes ~i= I wiT, on machine 1 alone which is same as a globally optimal
sequence.

If the completion date of the job scheduled at ith position on machine m is
c - = .z'q + (i - 1)pmax, as derived in chapter 3, then the optimal completion
time at machine 1, tc, is

t <cm"q=m (4.4)
c- (i] q=2 Pq

_ (i - 1) Pmax + pl.

From the definition of the problem, the optimal sequence is Jl, J2 ... Jn'
Consider the value of the same sequence on machine 1:

wiT 1 = wt max{0,p, - p l ) = 0,
w 2T2 = w 2 max{O, 2 P P P,max} = 0,

wnTn = wn max {0, n p - (n'l)p, -pmax= 0.

The sum is zero which is the minimum possible weighted tardiness value, and hence it
is also optimal for the single machine case defined above.

The same argument can easily be extended to any other machine. The due date
set for Ji on machine j is given by

c lq=m 1pq = (i+ 1)ma + q (4.5)ji] - =j lq=

The proof is by induction. Suppose that the jobs complete by the set due dates at
machine j (we have just shown that it is valid for machine 1). Then it can easily be seen
o

SA more general discussion of this problem is provided in chapter 3 above and [63).
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that the jobs can be completed by the due date set for machine j + 1 if decisions were
made independently for machine j + 1. It is clear that if the job is completed on
machine j by the due date set by equation (4.5) in an optimal sequence, then the same
optimal sequence is is generated on machine j + 1 as well (even with incorporation of

the release dates for the jobs on machine j + 1). We have already shown that the due
date setting scheme is optimal for machine 1 and hence the proof. C

Some points of practical importance are noteworthy in the context of the above proof. First,
the latest possible optimal due dates are the artificial due dates set in the proof. Second, the
optimal lead time for job i, Li, is, assuming non-delay scheduling,

Li  = cm . c 1  (4.6)

= Jq:=X p + 0 - 1)(P 'p)

This gives a unique optimal lead time for the first job, but for the other jobs the lead times

determined by equation (4.6) are not necessarily the only optimal lead times when the weighted
tardiness criterion is solely considered. This flexibility is due to the possible slack on each
machine preceding a slower machine, and ultimately the operation due dates set according to the

operation lead times derived similarly to Equation (4.6) are unique only on the slowest, i. e. the
bottleneck machine (see chapter 3 for further elaboration of this point).

If the results derived in Proposition 4.2-1 are used for solving the optimal schedule in a
proportionate flow shop with preemption, the solution procedure is insensitive to small errors in

the optimal lead time estimation. -This can be shown as follows. Let Aii be the error in the lead time
estimate of any job J, at machine j. The estimated due date is given by:

(i-1) Pa + Z - Pq + A...
Note that the value of the sequenice {Jig J2 ... on machine j is still

=1[(i- 1)(maXq= 1_...J [Pdq Pmax) + Aii]

Since Pmax - maxq = ..... JipqJ , for small values of Ai the above expression tends to zero. Thus,
in the neighborhood of the optimal lead time estimate, the solution procedure would be relatively
insensitive to the errors in lead time estimation.

The minimal lateness for job J. on machine j, Mi', is given by

M! = c] .d i  (4.7)

= (i.1)m x1 ...... Pq + ' iPq "di.q
From equation (4.7) it is clear that the operation due date depends on the due date, processing
time on the bottleneck machine (even if the bottleneck machine precedes the machine under

4 consideration), and processing time on the previous machines. Now we can compare the
operation due dates generated by the heuristic procedures listed in Introduction to the optimal

due dates derived above.

1. External (Job) Due Date: It can easily be seen that if all jobs have equal weights then
this scheme gives the optimal result in a proportionate flow shop with unit jobs

4 (Proposition VI in chapter 3)).

-
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2. Operation Due Date: This scheme works well only if processing times are equal and
jobs have identical weights.

3. Static Slack Time: This rule, as well as the two modifications of it (Static Slack per
Operation and Static Slack per Remaining Processing Time) generate the same
sequence as as the EDD rule in a proportionate flow shop with unit jobs.

4. The rules with Dynamic Slack calculation: A priori (standard) waiting time estimation
is not likely to work optimally in static flow shop problems discussed above, since the
jobs have different lead times depending on the position in the optimal schedule.

An important aspect of Proposition 4.2-1 is that it lets us to decompose the global
scheduling problem into m local scheduling problems. In a practical situation, this implies that the
scheduler of the factory or plant sets up internal due dates for the various operations of each job
and the locally optimal decisions made at the machine centers automatically lead to a globally
optimal sequence. Thus, the machine center supervisors not only have control on their resource
management, but also on the scheduling within their own department as well. This possibly
eliminates one major source of organizational friction between schedulers and line supervisors.

4.2.2 Setting Operation Due Dates for the Apparent Urgency Rule

In more general flow shops, it is not possible to solve analytically for the optimal due dates
and the lead times of the jobs. Thus we have to use heuristic methods for the setting of operation
due de'es. Toward that end, we analyze a two machine flow shop. Considering the weighted
tardiness criterion that is a regular measure of performance, we know from Theorem 5-1 in [171
that an optimal schedule in the two machine flow shop is a permutation schedule. Lt wk be the
weight and Pkr the processing time on machine r of job k, (r = 1, 2 and k = i, j). The resource
constrained slack of job i, if scheduled in the first position at time t, L1 , can be expressed as
follows (see figure 4.1 below):

Lil = max{O, di (t + pi1 + Pi2 + W)}" (4.8)

Here W1 is the waiting time of job i on the second machine if it is started first, or:

Wi = max(0, (r. pi)},
where r is the processing time of the previous job on second machine exceeding time t.. The

* correction in efficient slack of job i if scheduled second, due to possible waiting at the second
machine, Ri, is given by:

Ri = (Wid p +.pi)+-Wi, (4.9)
The corresponding definitions hold for job j.

Proposition 4.2-2: Consider two last jobs i and j in an optimal sequence in a
two machine flow shop. Then in this sequence, at time t, job i precedes job j if the
following condition is satisfied on the first machine:

(4.10)
(wi/pil) [1 - (Lil - Ri) + /p] + > (w /pl) [1 - (Ljl - R,) + /pi l ] + .

p.I
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Proof: According to the observation above, we can restrict our attention to
permutation schedules. Condition (4.10) has to be proven in six cases, determined by
the tardiness of the jobs when scheduled at the current or the second position.

Case 1: Both jobs i and j would be tardy scheduled in either position. The cost
of scheduling i first, c(i), is then (figure 4-1 below):

c(i) = wi(t + Pil+ P 2 +Wi" di) + w (t + Pil +p.l + (Wd + ) P.2 Pi1) + .P2 "d.)•

Similarly, scheduling job j first has the following cost:
c(j) = w(t+ pjl + p 2 +W- d) + wi(t+p +Pil+(W+P. 2 " P.1 )+ +p 2 di).

For i < j in the optimal sequence, we must have c(i) < c(j). After some manipulation of
the terms, this condition yields

w(Pil + (Wi + Pi2" Pil ) + -W)< wi(pj 1 + (W + Pi2" Pid ) + "Wi)"

After dividing by pj1 pl and rearranging, we get
(w i/Pil)[1 "(Wj(W i + Pi2Pil ) +)/Pill + < (wi/Pil)[1 "(Wi'(W j + Pj2Pil ) + )/Pil]+ '

which is the same as condition (4.10) since the slack is zero for both jobs by
assumption.

Machine #1 I  p ,i

t I 1
II I

WL di di
Machine #2 ' / / 1

I I
Figure 4-1: Illustration of the case ;n which both jobs are tardy even if

started first.

Case 2: Both jobs are early in either position. Now the tardiness cost is zero for
both jobs, and they can be sequenced so that condition (4.10) is satisfied.

Case 3: Both jobs would be early if started at time t, and both of them would be

tardy if started second. The tardiness costs c(i) and c(j) are in this case:

c(i) = w ft + Pil + Fil +  (W1 +  pi2"Pil ) + + pi2"d] + '

c(j) = wiIt + pil + pil + (Wi + Pi2"P )* + pj2"di] + .

4 We can add and subtract W. (or W.) inside the square brackets in the expression for
c(i) (for c(j)). Dividing by Pilpil and rearranging, we get from the condition c(i) < c(j):

(w./Pjl)[1 - (di - t- p1 - W - pj2 + W - (Wi + Pi2" P1) +)/Pil]

< (w./p.i)[1 - (d.-t- PW"P 2 + Wi (W +P

that is the same as equation (4.10).

, . -: .- i: ....... ... . .. ........ . . . . . . . - -: . -.- : : • - i: :-: '" , i
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Case 4: One job is early in both positions, and the other is tardy in both
positions. Assume job i is tardy in both positions. Now the tardiness costs are:

c(i)=wi(t+Pi1 +Pi 2 + Wi.di) + 'and

c(j) = wi(t + Pil + pil +(W + pi2 - P ) + Pi2 -di ) + .

Obviously i < j in optimal sequence, as can be seen from the condition c(i) < c(j):

0 < wi(p1 l + (W + Pj2"Pit ) + -W i)'

that can after dividing by pi pit be rewritten as

(wi/pit ) [1 - (Wi -(Wi + pI2 pil)+)/P.] +  > 0,
or

(wi/pil)[1 -( Wi.(Wi + Pi2"Pi )  )/PI+

> (w i/PI)[1 "(d,'t-PII"W 'Pj2 + W I (Wi + Pi2"PI1) +)/Pill +

which is the same as condition (4.10).

The proofs of two other cases, i. e. Case 5: one job is early if scheduled in the
current position but tardy if second, and the other job is tardy in both positions, and
Case 6: one job is early if scheduled in the current position but tardy if second, and
the other job is early in both positions, are similar and have been omitted here for the
sake of brevity. 03

This result is valid only locally, since the completion time of the last job depends on the
sequence. We suggest, however, the following myopic priority index for a two machine flow shop,
reminicient of the linear single machine Apparent Urgency rule in chapter 2:

rIl(t) = (wi/Pil)[1 - (di - t - Pil " i" i Ri) + / k 10 +  (4.11)

where r3 is the average processing time of the schedulable jobs on machine 1 at time t. We can
use the exponential form in Equation (4.2) above as well, except the operation due date for
operation 1, d.1 , is used instead of the job due date. The operation due date is obtained by
subtracting the expected lead time of the job i on machine 2 from its due date di , or7

di =d" W " Pi2" R. (4.12)
We can generalize the results in Proposition 4.2.2 and the implied operation due dates in
equation (4.12) to the dynamic priority indexes in general multi-machine flow shops and general
job shops. In the following, we work out an iterative procedure that uses lead times realized in the
previous simulation run as lead time estimates for the next dispatching run.

4.3 A Computational Study of Lead Time Estimation

We tested the analytical results obtained above concerning the use of lead time estimates
as state (load) dependent parameters in the Apparent Urgency rule, through a simulation study.
This computational experiment had two major objectives: to examine the efficiency of the new AU

7 The correction term due to possible queueing at the second machine, R, is usually determined by the bottleneck
machines. To achieve global optimum, it is also important to avoid possible idle time of the second machine. Analysis of
these issues in flow shops with bottlene~ck facilities has been started by Ow [591.

:: . .. .:. . .. .- - . -. - .:. : ..- . . . .
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rule in flow shops with constant lead time estimates compared with some other commonly used
dispatching rules, and to introduce an iterative procedure to improve the lead time estimates for
setting the local due dates used in the AU rule. We ended up improving the waiting time estimation
for CoverT as well. Before describing the study and its results, we specify the lead time adaptation
procedure and motivate the selection of the iteration parameters.

4.3.1 The Scheme for Lead Time Iteration

The manufacturing (or internal) lead time estimate for job i after the operation at machine k,
denoted L ik' is an estimate of the time the job will spend in the process for the subsequent
operations. Thus Lik is given as:

Lik = k+l (Wiq + piq) k=... m, (4.13)
where Wjq is the estimated waiting time in the queue at machine q, Pq is the corresponding
processing time and m is the number of stages (machine centers) in the shop. The iterative
procedure for lead time estimation consists of two stages: providing some initial values for the
waiting time estimates Wiq and updating the estimates based on the realized waiting times in a
subsequent simulation with the rule in question.

The a priori lead time estimates, or the initial values L° , can be determined from the initial
waiting time estimates Wiq, q = 1 .... m. These estimates can be based on empirical observations,
or they can be constant multiples of the processing times of the corresponding operations:

W =/3xp. (4.14)
'q 

i

where,8 > 0 is a multiplier whose efficient values depend on the load. In small shops values of
1.0 < ft - 3.0 work relatively well if the shop is not extremely congested. Alternatively, we can
use as the initial waiting time estimates the realized waiting times when scheduling first with the
WSPT rule (or with some other rule not using a priori lead time estimates)., The lead time
estimates, Lik , are then updated based on the realized waiting times, qfl, recorded during the

Id nth simulation: 9

Wn  = Wn +a(q . Wn), (4.15)iq i iq iq

n+ m (Wnl + p.
ik q=k+1 iq + P iq)

Parameter a can be used for smoothing the effects of new waiting time changes. In the
experiments in simple flow shops a wide range of values 0.3 < a < 1.0 work relatively well. In the
main experiment we used the value a = 1.0.

Now the nth estimate of the operation due date for operation k of job i, dn , can be
determined based on the job due date di and the lead time estimates as follows:

d n = d " Ln , k (4.16)
ik i ilk' k 1.,m

This operation due date can then be substituted for the due date in the AU priority index in the
single machine case in equation (4.2). Similarly for the iterative CoverT rule, the estimates of the

81n a dynamic job shop, the waiting time estimates can be derived analytically using Queuing Theory, see chapter 5.
9Here we assume that the processing times are known with certainty.
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normal waiting times in equation (4.1) can be taken from the previous simulation. The weighted

tardiness measures improve usually during the first few iterations, but since there is no reason to

expect uniform convergence in the schedule cost or the lead time estimates we have to employ
some stopping rule for the iteration. The stopping rule takes into account, besides possible
convergence or fluctuation of the lead time estimates, the improvement in the weighted tardiness

measure and the number of iterations.

4.3.2 The Design of the Simulation Experiment

We studied the performance of the AU rule and the iterative versions of CoverT and AU
rules in a flow shop environment for different load conditions and compared them with some

other well known scheduling rules. The controlled variables of the simulation study can be

classified as follows: a) the layout of the shop, b) the type and parameters of the load, and c) the
rules tested. 10

1. The layout of the shop is flow shop with 4 or 8 machines, in which the jobs arrive
simultaneously at some of the machines and then go through all the subsequent
machines. All jobs may start at the first machine, or some of the machines may have
an initial load (this initial load would correspond to "side load" of the machines in a
dynamic flow shop). The processing speeds of the machines can have four different
patterns: increasing, constant, decreasing or some random pattern. We choose to
study three patterns in the case of 4-machine shop, one which displays decreasing
processing speeds (relative processing times are increasing: 1.0, 1.5, 2.0 and 2.5) one
with constant (all relative processing times equal to 1.0), and one with increasing
processing speeds (relative processing times 2.5, 2.0, 1.5 and 1.0). The effect of lead
time estimation is, a priori, more important in a shop with more queueing, i. e. in the
case of increasing processing times. For the 8-machine shop there are two patterns:
increasing (from 1.0 by 0.3 to 3.1) and alternating (1.5, 2.0, 1.5, 2.5, 1.0, 2.0, 1.5 and
1.0) relative processing times.

2. The major load characteristics are that the load is static and it consists of 20 or 60
jobs, generated randomly from the classes of loads specified below:11

a. The processing times of the jobs depend on the speeds of the machines, the
size distribution of the orders (jobs), and the assumption of the
proportionateness of the machines. More specifically, the processing time of
job i on machine j, p.,, is taken from the following uniform distribution:

p - U {si r.1 -ip/2), S, r.(1 + p/2)) si - U (5, 25) (4.17)
For the size of the jobs or orders, si, we use a uniform distribution between 5
and 25. Here the machines can be proportionate to some degree, depending on
the range of the random variation, p. In the experiment, we have almost
proportionate shops (p = 0.5, or the maximum random variations in processing
times are 25%), and shops with more random operation processing time
distribution (p = 1.5 or maximum variations of 75%).

10 This simulation experiment is the first for the Apparent Urgency rule, as well as for the other rules tested in static flow

shops with the weighted tardiness criterion. The rules are tested in more general dynamic job shops in chapter 5.

1 1 The use of a static load is justified as the first step in studying the iterative rules [401. The same rules will be tested in
dynamic job shops in chapter 5.

* 5i:i ii :i.. . .
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b. There are two types of side loads: no side load or 20% side load on each of the
three trailing machines in a 4-machine shop, and respectively no side load or
10% side load in a 8-machine shop.

c. For due dates, we want to control the due date setting procedure, the tightness
of the due dates, and the dispersion of the due dates. The due dates are
randomly distributed over the region specified below. The random due dates (as
opposed to the constant or proportional to the work contents) have been shown
to make the most difficult problems to solve, see [3, 17]. The tightness of the
due dates is determined by the same way as in the one machine case [61], using
the bottleneck machine, or the machine with maximal expected total processing
time (work contents), P, as the reference.1 2 Thus the due date of job i is
generated from the uniform distribution:

d ~ U (P (1-')(1 R/2), P(1i-r)(1 + R/2) , (4.18)

Here P (1.r) is the average due date, where the expected fraction of tardy jobs,
r, is set on two levels: r = 0.3 and r = 0.6. These levels of tardiness are the most
interesting, because in more slack shops, the schedules would often have close
to zero tardiness making the comparison of the rules less interesting and
problems with higher levels of tardiness resemble weighted lateness problemsfor which WSPT is known to be very efficient. The dispersion of the due dates

around the average due date is controlled by the range parameter R. We use
two ranges, R = 0.6 and R = 1.6, giving max 30% and 80% random deviation from
the average due date.

d. The values (or delay penalties) of the jobs are made correlated to the work

contents (order size) of the jobs. The value is taken from the uniform
distribution

w.- Uti1 2s (4.19)

where s is the order size. This assumption also hardens the problem because it
makes the distribution WSPT priority indexes of the jobs flatter.

3. Finally, the rules to be studied in the experiment are:

a. The FCFS rule that serves as a "random" benchmark,

b. The WSPT rule, using the processing time of the imminent operation,

c. The EDD rule with global due dates,

d. The S/RPT rule, or slack per total remaining processing time.

e. The CoverT rule, which we make "weighted" by multiplying the "unweighted"

priority index in Equation (4.1) by the value of the job j, w:

"r CoverT, 1 = (wi/pi) c. = (w./p)[k W -(d I-r i-t) +] +/kW, (4.20)

12 For problems with high tardiness, -r > 0.4, the total processing time P of the bottleneck machine was increased by
(m/2)*(average processing time), where m is the number of machines in the shop, in order to compensate for possible idle
time in the beginning and/or end of the run.

t
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where the symbols are explained in section 1, equation (4.1). The CoverT rule is
applied with constant waiting time estimates (CoverTcon) and as an iterative rule

(CoverTiter). The most efficient value for the look-ahead parameter in the
problems studied was k = 2.0, and for the initial lead time estimation parameter

/3 = 2.0.13

f. The AU rule using exponential look-ahead, equation (4.2). This state dependent
rule is tested with initial constant lead time estimates (AUcon) and with iterated
lead time estimates (AUiter). Thus AUcon is the new look-ahead heuristic with
constant K = 2.0 look-ahead parameter and constant lead time estimates (/3 =
2.0 in Equation (4.14)), and AUiter, or the same rule with lead time adaptation,
updating the waiting time estimates according to Equation (4.15). The
smoothing parameter a was given value 1.0, although other values (a = 0.5 and
0.2) were tested with good results. 14

A full factorial experiment of this design, for certain type of flow shop and given number of
jobs, includes two types of side loads, two tightness classes of due dates (expected portion of
tardy jobs 'r = 0.3 or 0.6), two kinds of dispersion of due dates (range R = 0.6 or 1.6) and two
levels of proportionateness, or random variations in the operation processing times (p = 0.5 or
1.5), gives 2 x 2 x 2 x 2 = 24 = 16 cases for each of the rules. In this study, we ran samples of 10
replications of each load, altogether 160 experiments with each of the eight rules. This basic test

was repeated for different shop layouts (three relative processing time distributions for 4-machine
shops and two for the 8. machine shops) and for different number of jobs (20 jobs on 4 machines,
and 60 jobs on 4 and 8 machines). Thus the total number of problems solved in the experiment is
(3+3 +2)x 160 = 1280.

4.3.3 Weighted Tardiness Performance of the Rules

The primary criterion of performance in the study is weighted tardiness, ZC i, where the
tardiness cost of job i is given in equation (4.3) as C = w i max{0, ti-di}. When reporting the
results of our simulations, we have normalized the tardiness measures by dividing the total

weighted tardiness of a schedule by the mean weight, mean total processing time and the number
of jobs. This normalized measure expresses the weighted tardiness in terms of how many average
total processing times tardy an average job will be, thus permitting meaningful comparisons
among problems which have different job characteristics as well as different number of machines
and jobs. Because optimal solutions are not available to the problems, we use the average
normalized weighted tardiness in excess over the measure of the best rule tested in each of the

problems as a benchmark for the performance of the heuristics. The results of the simulation
study with respect to the normalized tardiness criterion are summarized in the following tables

13 The Dynamic Composite Rule in 117] was not included in our test because it is not "weighted" and thus resembles the
other slack rules in weighted tardiness performance. The priority index would not have the next machine correction since
the next machine in a flow shop is the same.

14The stopping rule for the lead time iterations for CoverT and AU was as follows: If the lead time estniates converge of
fluctuate, stop. Otherwise, iterate 5 times and start counting the iterations since the last improvement in the weighted
tardiness measure: iterate until there is no improvement in weighted tardiness during the last 5 iterations. This rule
guarantees at least 10 iterations in the case of no convergence.

S
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4-1. 4-2 and 4-3. We have shown a further break-down of the results according to the tightness

of the due dates, determined by the expected level of tardiness T = 0.3 and T = 0.6 and further
according to the range of due dates R = 0.6 and R = 1.6.

Table 4-1: Normalized weighted tardiness for different tardiness levels and
ranges of due dates. Three shop layouts, 480 problems with 4 machines and 20

jobs.

Normalized Weighted Tardiness: Excess

r 0.3 T 0.6 Total over

Rule R =0.6 R= 1.6 R =0.6 R =1.6 Best Rule

FCFS .601 .753 1.455 1.588 1.129 .746

WSPT .254 .441 .707 .883 .571 .188

EDD .368 .218 1.251 1.240 .769 .386
S/RPT .437 .264 1.265 1.253 .805 .422

CoverTcon  .195 .210 .706 .744 .464 .081
CoverTiter .162 .153 .650 .679 .411 .028

AUco n  .170 .166 .698 .714 .437 .053
AUiter .143 .128 .631 .658 .390 .007

Table 4-2: Normalized weighted tardiness for different tardiness levels and
ranges of due dates. Three shop layouts, 480 problems with 4 machines and 60 jobs.

Normalized Weighted Tardiness: Excess

r 0.3 r 0.6 Total over
Rule R = 0.6 R = 1.6 R = 0.6 R = 1.6 Best Rule

FCFS 1.171 1.970 3.547 3.997 2.672 2.065

WSPT .335 .850 1.565 1.919 1.167 .560
EDD .349 .026 3.053 2.571 1.500 .893

0 S/RPT .376 .039 2.948 2.472 1.459 .852

CoverTcon  .198 .043 1.513 1.069 .706 .099

CoverTiter .156 .027 1.380 1.016 .645 .038

AUco n  .132 .014 1.455 1.015 .654 .047

AUitor .112 .010 1.383 .971 .619 .012

The results show that the new Apparent Urgency rule with constant lead time estimates,

AUco n , outperformed clearly the other simple rules in terms of weighted tardiness. The new

S.
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Table 4-3: Normalized weighted tardiness for different tardiness levels and
Sranges of due dates. Two shop layouts, 320 problems with 8 machines and 60 jobs.

Normalized Weighted Tardiness: Excess
r 0.3 r= 0.6 Total over

Rule R = 0.6 R = 1.6 R = 0.6 R = 1.6 Best Rule

FCFS .836 1.269 2.264 2.395 1.691 1.267
WSPT .261 .625 1.017 1.242 .786 .362
EDD .322 .054 1.904 1.661 .985 .561
S/RPT .361 .075 1.921 1.658 1.004 .580

CoverTcon  .163 .071 1,002 .784 .505 .082
CoverTiter .131 .062 ,930 .738 .465 .041

AUcon .121 .033 1.004 .738 .474 .051
AUiter .104 .021 .912 .679 .431 .007

iterative AUiter outperformed the weighted CoverTcon by 10-30% in different classes of problem
sizes and load characteristics. Lead time iteration improved the average weighted tardiness
measures of the AU by 5-10%, and almost equally those of the CoverT rule. The new iterative
CoverTiter was the only rule to come within 5% of the average performance of the AUiter rule in
some problem classes. The average number of iterations to reach the best solution was less than
5 for all different problem sizes.

The performance of AU and CoverT rules with constant setting for the look-ahead
parameter (k = 2.0 for both) and the ,B parameter for obtaining the initial lead time estimate from
the operation processing times (/f = 1.0 for AU and P. = 2.0 for CoverT) was similar across the
problems with different number of jobs and machines. The shop layout in terms of the relative
processing times of the machines had an obvious effect: lead time iteration was most efficient in a
shop in which there were queues in front of some machines further down in the process, e. g. due
to a bottleneck machine. Otherwise, the different shop layouts had no significant effects on the
relative performance of the rules.

Among the load parameters, the level of tardiness Tr had the following effects. For problems
with low level of tardiness r = 0.3, AU rule was relatively more efficient than CoverT, and in very
slack shops with almost zero average tardiness, also EDD rule was very good. High level of
tardiness r = 0.6 made WSPT and CoverT relatively more efficient in problems with small
dispersion of due dates, or with R = 0.6. Otherwise, the AU rule was relatively most efficient in the
shops with large dispersion of due dates R = 1.6. The effects of initial side-loads or the random
variations of processing times are not shown separately in the tables above. In general, initial
side-loads on the machines reduced the positive effect of lead time iteration on the performance
of AU and CoverT rules, AUcon being relatively more efficient than CoverTcon in these problems.
The magnitude of random variations in the processing times, p, determining the degree of
proportionateness of the shop, did not affect the relative average performance of AU and CoverT

6e
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rules tested in this experiment. Of the other rules, EDD was better than CoverTcon within the
problem classes with low tardiness level r = 0.3 and large R = 1.6. A lower value of k-parameter
can, however, improve CoverT in these cases. But otherwise, AU and CoverT were always the
best rules in the study. As an example we can consider the largest problem size, 60 jobs on 8
machines. The AU rule dominated all the other rules, in the sense that AU was better than evencon
CoverTiter, in the average of all the problems with tardiness level of T = 0.3, of all the problems
with larger dispersion of due dates, R = 1.6, and of all the problems with side-loads. Only for the
problems having r = 0.6, R = 0.6 and no side-load, constant and iterative CoverT outperformed its
AU counterparts. For these problems, WSPT comes close to CoverT and AU, but here a larger
value for parameters sc and P8 used for the look-ahead and lead time estimation, respectively,
would improve the perfonance of AU.

Some parametrized rules are sensitive to the values of the parameters making their use less
convenient in practice. The parameters of the iterative AU and CoverT rules are the look-ahead
parameter k, the parameter P3 used to determine the initial waiting time estimates from the
operation processing times, and parameter a that can be used in smoothing the lead time
iteration. As we have seen above, a poor choice of some of these parameters can hurt the
performance of AU and CoverT in certain problem classes. In several tests not reported here, we
found that AU rule is robust for the values 1.0 < k< 3.0, in terms of average performance in all
the criteria reported above. For problems with low tardiness factor, smaller values of k-1.0...2.0
tend to perform better in most of the problems and high tardiness favors higher values of
k-2.0...3.0. Also the values offl can vary considerably in the range 1.0< 0: 3.0 for AUiter to
yield relatively consistent performance. CoverT seemed to be more sensitive to the initial
parameter selection. Nevertheless, the values 1.0< k< 3.0 and 1.0< /1:5 3.0 gave better
average performance than any of the other myopic rules tested. Furthermore, the iterative
method moderates the adverse effects of parameter selection for the rules by improving more the
weighted tardiness performance of the rules with inappropriate parameter values. As to the
smoothing parameter a, we used the value a = 1.0 throughout the main experiment, i. e. the new
waiting time estimates in an iteration were equal to the realized waiting times in the previous
iteration. This procedure gave usually a rapid gradual improvement in the weighted tardiness
measure, although the convergence of the lead time estimates was not uniform, causing the
weighted tardiness to diverge or fluctuate during the later iterations. From a few tests we
concluded that the parameter a is not very critical, especially in large shops. Values of 0.2< a<
1.0 performed almost equally in the problems with 8 machines and 60 jobs. The number of
iterations is usually larger (but under 8 in the average) for smaller values of a. Another way to
avoid fast divergence is to limit the range of feasible lead time estimates. 15

4.3.4 Other Criteria of Performance
The new AU rule appeared to be the best myopic dispatching rule for weighted tardiness

scheduling among the rules tested above. However, the lead time iteration procedure can further
improve the performance of the AU and CoverT rules. But are these results with respect to

15 The tests with the range of o.3p.. < W.. < 5p.., where p.. and W.. are the processing time and waiting time estimate,
respectively, of job i on machine j, gave posive resu lts in larggr problems.
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weighted tardiness achieved at the expense of some other important scheduling criteria? We
recorded also four secondary criteria in order to verify the overall performance of the rules tested:
a) the portion of tardy jobs, b) the maximal (normalized) tardiness of a single job in the schedule,
c) the normalized flow time from the start to the completion, weighted by job sizes s, (work-in-
process, or WIP), and d) the normalized weighted shop-time, i. e., the time from the starting of the
first operation to the completion or to the due date, whichever is later, weighted by job sizes s,
(work-in-shop, or WIS). The results for different problem classes are shown in tables 4-4, 4-5 and
4-6.

Table 4-4: Rule performance in terms of portion of tardy jobs, maximal weighted
tardiness, work in process (WIP) and work in shop (WIS) inventories for

4 machines and 20 jobs (three shop layouts, 480 problems).

Rule Norm.Weight. Max.Norm. Portion of WIP WIS
Tardiness Tardiness Tardy Jobs

FCFS 1.129 .326 53.6% 2.24 3.11
WSPT .571 .145 50.3% 1.91 2.84

EDD .769 .176 56.5% 1.94 2.48

S/RPT .805 .193 67.1% 2.00 2.51

CoverTcon  .464 .115 52.3% 2.04 2.70
CoverTter  .416 .101 52.0% 1.97 2.60

AUco n  .437 .108 48.5% 1.98 2.62
AUiter .390 .100 45.5% 1.93 2.57

Table 4-5: Rule performance in terms of portion of tardy jobs, maximal weighted
tardiness, work in process (WIP) and work in shop (WIS) inventories for

4 machines and 60 jobs (three shop Iayouts, 480 problems).
Rule Norm.Weight. Max.Norm. Portion of WIP WIS

Tardiness Tardiness Tardy Jobs

FCFS 2.672 .367 47.8% 5.09 8.12
WSPT 1.167 .134 44.7% 3.72 6.99
EDD 1.500 .151 43.2% 3.69 5.58
S/RPT 1.459 .183 51.4% 3.80 5.52

CoverTcon  .706 .083 38.0% 4.45 6.53
CoverTjtr .645 .075 37.1% 4.10 6.18

AUco n  .654 .071 34.6% 3.72 5.68
AUiter .619 .070 33.3% 3.79 5.80

From the results we can see that AU and CoverT rules performed well with respect to all of
the secondary criteria. Furthermore, the lead time iteration did not have any adverse effects on
their performance. In fact, it often improved these measures as well. In particular, AU was the
best rule in terms of the average number of tardy jobs and also gained most from iteration. This

- " - - - - - --I-- ~ - --
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Table 4-6: Rule performance in terms of portion of tardy jobs, maximal weighted
tardiness, work in process (WIP) and work in shop (WIS) inventories for

8 machines and 60 jobs (two shop layouts, 320 problems).

Rule Norm.Weight Max.Norm. Portion of WIP WIS
Tardiness Tardiness Tardy Jobs

FCFS 1.691 .227 49.5% 4.52 6.33
WSPT .786 .085 46.2% 3.80 5.69
EDD .985 .097 47.5% 3.84 4.94

S/RPT 1.004 .123 57.1% 3.96 4.99

CoverTcon .505 .055 42.1% 4.24 5.49
CoverTiter .465 .052 41.6% 4.05 5.34

AUco n  .474 .049 39.9% 3.87 5.03
AUiter .431 .048 37.4% 3.86 5.07

indicates that AU succeeds in making more accurate trade-offs between the urgency and the

processing time than does CoverT.

.-
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4.4 Conclusions
We have discussed the use of lead time estimates as state dependent parameters in myopic

dispatching rules for flow shop scheduling. For proportionate flow shops with unit jobs it is shown
*that appropriate lead time estimates can be applied in local heuristics to achieve a globally

optimal weighted tardiness schedule. Thus the lead times estimates improve the coordination of
distributed scheduling systems. In general flow shops. efficient lead time estimates can be
generated through iterative procedures introduced in this chapter. The Apparent Urgency rule,

* developed originally for one stage problems [61, 62], as well as a "weighted " version of the
* CoverT rule [15, 16], are both amenable to the coordination. In a large computational experiment
* with static flow shop problems, the new AU rule outperformed CoverT and the other four rules

tested in weighted tardiness. The AU and CoverT rules were robust even with constant parameter
*values, and the new iterative lead time estimation method further moderates the effects of

inappropriate selection of the parameter values. The lead time iteration maintained the good
* average performance of the AU and CoverT rules also with respect to important secondary
* criteria such as the number of tardy jobs, maximum weighted tardiness, and work-in-process

inventory.

* The results are encouraging for the further application of the state dependent scheduling
rules and the lead time iteration in more general job shop environments. We can also ask to what
extent lead time iteration and some exogenous setting of the lead time estimates could be used to
control the completion times of the jobs in practical scheduling situations. If the consistent
multi-objective performance can be transferred from the simple test-bed to real job shops, the
look-ahead rules could be used as a kernel of an interactive scheduling system.
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5. Slack Evaluation for Priority Dispatching in
Dynamic Job Shops

Summary
In this chapter, we extend the use of indirect load information and performance

feedback for lead time estimation to dynamic job shops. The different roles of slack
evaluation in the Apparent Urgency and modified CoverT rules are discussed.
Appropriate " priority- based" waiting time estimates are derived for more efficient slack
evaluation. Further improvement can be achieved through the lead time estimation
procedure introduced in the previous chapter. In a dynamic setting this iterative
procedure requires the implementation of rolling forecasting and planning horizons.

Despite the practical importance of scheduling with due dates, there are no previous
studies in general job shops using the weighted -tardiness criterion. Our results in a
large scale experiment are quite similar with those obtained in static flow shops. The
new Apparent Urgency rule and our modified CoverT rule are superior to all the other
rules tested. Moreover, the iterative Apparent Urgency rule has 5.30% lower vweighted
tardiness costs than the basic CoverT rule in widely varied load situations. This margin,

* and the portion of tardy jobs, can be reduced by using the new priority-based waiting
time estimates or lead time iteration with CoverT. AU and CoverT also outperform the
other rules tested when compared in terms of combined inventory- holding, rush-
shipping and tardiness costs. The best rule in all load conditions is the AU rule with
lead time iteration.

5.1 Introduction

Some dynamic dispatching rules which use a job's due date require also some estimates of
the waiting times on its subsequent operations to evaluate the effect of any slack upon the job's
priority index value. Since the priority of the job, and hence its expected waiting time at any
machine, depends on the waiting time estimates used, an efficient waiting time estimation method
should use the expected priority of the job to guarantee the consistency of the priority
assignment. In this chapter, we develop efficient waiting time estimation methods for the
Apparent Urgency rule [61, 62] and the CoverT rule [3, 16] in general job shop scheduling
problems with dynamic job arrivals. The original CoverT uses a constant multiple of the
processing time of the job on machine as a "standard" waiting time estimate which is then
represents a worst case limit in assessing the probability of the job being tardy. This is
appropriate in average (non-weighted) tardiness problems since the priority of a job is
proportional to the inverse of its processing time. The same method is also used in many
Materials Requirements Planning (MRP) systems. In the weighted tardiness problems, jobs have
different tardiness penalties, or weights, and a job's priority is proportional to its "natural index",
penalty over its processing time. Obviously the expected waiting time should, in this case, be
estimated on the basis of the inverse of this natural index. This simple idea ;15 made precise in
section 2 by using waiting line analysis of the weighted lateness case. The AU rule evaluates a
job's actual resource constrained slack. Hence, ideally. AU should use the expected waiting times

* and not the standard (worst case) estimates for setting its operation due dates. Any initial waiting
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timie estimates can be adjusted using the iterative procedures introduced in chapter 4. In a
* dynamic shop the application of the lead time iteration procedure requires rolling forecasting and

planning horizons. We discuss the setting of these horizons so as to improve the consistency and
convergence of the iteration in section 2.

In section 3. we specify a large experiment to test the effectiveness of the different waiting
time estimation methods. The results reported in section 4 show that AU and CoverT are again
far superior to the other rules tested. Furthermore, the new priority-based waiting time estimates

consistently improve the weighted tardiness of the Apparent Urgency rule, up to 5% beyond'1
traditional estimation methods. But more accurate waiting time estimates, obtained through lead
time iteration, can still improve the performance by 3-10%. The fraction of tardy jobs is smaller in
as well in most cases. Both the basic and iterated versions of AU perform better than those of

~CoverT, but the difference diminishes with higher load. In fact the new priority-based waiting time

estimates improve CoverT's performance in weighted tardiness beyond that of lead time iteration.
The portion of tardy jobs, previously CoverT's weak point, improves up to the level of the AU rule.
The rules are also compared in terms of combined costs of inventory- holding, rush-shipping of
tardy jobs, and variable tardiness penalties. The AU rule with lead time iteration is the best by a

narrow, but consistent, margin over all the problems studied. The conclusions of this chapter are

in section 5.

5.2 Estimation of Job Waiting Times to Evaluate Slack
Priorities

5.2.1 Slack Evaluation in the Apparent Urgency and CoverT Rules

The s!ack of the job, or the time between the due date and present date which is not
ailocated explicitly for processing or waiting, is used as the dynamic term in the priority index
function of many dynamic dispatching rules. Jackson (see e. g. [171) used a due date based
"urgency index" to study the statistical properties of the dynamic scheduling rules. The
conventional slack-time rules give the highest priority to the job with least slack, often divided by
the number of remaining operations or by the remaining processing time.' A common priority rule
in MRP systems is the "Critical Ratio", or the ratio of the global slack to the remaining processing
time. Carroll [16] elaborated the use of slack in his CoverT rules by mapping the slack to the
expected tardiness "cost" of job i, c11, that varies from zero, for a very slack job, to a maximum of
one, for a tardy job. The cost c,, represents the probability of a job being tardy by its completion.
The relative urgency of a job depends on the ratio of this probability over the processing time of
the job on machine b, or ci/p.. In the case of job specific tardiness penalties, w., a job that is
within the remaininig processing time of its due date (i.e. it will be tardy), can be assigned the
"natural priority" or the WSPT priority index 7r'~ w w/p... This priority can be discountedWSPT I i

linearly with the increasing slack until the "worst case" waiting time on the subsequent machines,
or the length of the look-ahead, is reached. The jobs with a longer slack are assigned the priority

1The conventional rules compute the slack without the waiting times forced by resource constraints. The AU rule
recognizes the resource constraints explicitly, see discussion below.
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index value of zero as in the original CoverT, see Figure 5-1. Hence the "weighted" CoverT

priority index represents the expected tardiness cost per a unit of machine processing time
[15, 161:2

(5.1)
ieT(t) = (w./Pi)[1 - (di - t- rii) 

+/k Wj ] 
+

where d. is the due date of job i, r. is the remaining processing time of the job including the

imminent operation j, and W" =jW' is the remaining standard waiting time or the maximal
Sk j ik

waiting time for the remaining operations in a normal load situation. Hence the total slack of job i,di -t -rii, is compared to a standard, Wi! that is estimated either from empirical data or using a

heuristic rule such as a constant multiple of the "crash time", or the remaining processing time
(15]. The resulting look-ahead profile is shown in figure 5-1. Carroll [161 used the parameter k
to shorten the allowed slack in a light load, setting k (1.0. Thus the length of the look-ahead
period was determined by one parameter and the length of total standard waiting time.3

However, the use of iterative lead time estimation introduced in [66], or in chapter 4 above,
requires a separation of the look-ahead and waiting time estimation parameters. A new look-
ahead parameter k determines the slack tolerance beyond the anticipated waiting time
generated by lead time estimation; hence k > 1.0. Another parameter ,# determines the initial
estimate for the waiting time, for example, the multiple of the crash time.

Priority
index r
value

AU I
L I

di time

Figure 5-1: The comparison of the CoverT, CoverT-2 and AU priority indexes
for a job which has two operations remaining.

In the earlier study in chapter 4 above, CoverT left 5-25% more jobs tardy than AU. We
modified the look-ahead of CoverT in equation (5.1) by keeping the priority index at its maximal
level over a portion a, (0<<l.0), of the total look ahead period. The new priority index is
ffiCoverT.2(t) = (w1/pii)[1 - (di - t- r.. - aWl) / k Wl] . For this safety limit the value a = 0.2 worked

best, producing often a minor improvement of the portion of tardy jobs. However, this gain was
offset by a deterioration of the weighted tardiness performance in many cases.

2 The notation (x) + means that only the positive values of x are considered, i. e. (x) +  = Max(0, x).

31n the original CoverT studies. P =6.0 and kc = 1.0. for a load 90% of capacity, and kc 0.5 for a load 80% of capacity,
see (16].

S
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The slack evaluation of Apparent Urgency rule is decomposed into two parts: the

estimation of machine constrained waiting times. or the glo[- i1 lead time down the route, and the
determination of the length of the local look-ahead.4 The look-ahead depicts the decreasing
marginal tardiness cost of the job when its slack is normalized by the average processing time of
the competing jobs. The time reference determining the slack is the (local) operation due date,

that is the (external) job due date minus the estimated lead time on the subsequent machines.
The form of the look-ahead is exponential discounting as shown in figure 5-1. Hence the priority

index formula for AU is [61, 62]:
4. ! 1 +/, (5.2)

9 = (wi/pij) e [di" tPii i r " + /1
]  (52

where Wi' 1  n= Wik is the expected waiting time of the job on the subsequent machines. K

is the parameter that adjusts the length of the look-ahead scaled by the average processing time
of the schedulable jobs, 15. Here the lead time estimate, or the sum ot the processing times and
the expected waiting times on the subsequent machines, is used to determine a realistic
operation due date that takes into account job's waiting times forced by the contention over
machines:5 di = d.- (Wii+ 1 + r,,+ 1). Hence a resource constrained slack of the job, dii-t-Pii, is used
to determine its priority. In the following, we will discuss the estimation of the expected waiting
times, Wii, using two different methods: a waiting line analysis and an extension of the lead time
iteration procedure introduced in chapter 4 above.

5.2.2 Derivation of Priority-Based Waiting Times

A conventional waiting time estimate for a job at a machine, used for AU and CoverT in the
previous studies, is a multiple of the processing time of the corresponding operation [15, 16, 171.
In the following, we analyze the expected waiting times of the jobs in a job shop when scheduling
with the weighted tardiness criteridn. Assume a decomposition of the shop into individual
machines. Each machine has an input process which is assumed to be stationary. The expected
waiting times of the jobs are determined from the following waiting line analysis that captures jobs'

different priority levels. To establish the required notation, let:

,X = future arrival rate of jobs,

W(i)= the expected waiting time of job i with WSPT priority index 7fi, arriving at the
machine,

0(7>7i) = the expected number of jobs in the queue with priority index value larger than
or equal to 7ri,

4 P(7r > 7) = probability that a job arriving in the future will have a higher priority index value
than job i,

4 Some details of the look-ahead feature and the lead time iteration for the AU rule have already been discussed in
chapters 2 and 4 above.

5When the expected waiting time estimates are used in CoverT's priority index, the following should hold: kWJ = kW
I C I
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U = the expected remaining processing time of the job currently being processed,

p = E{pj1 wi > ti} = the expected processing time of jobs j for which i > ti"

Notice that the dynamic priority index values will be equally proportional to the WSPT
priorities 1ti if all jobs i have approximately equal slack times. The arrival rate and the job
parameters in a machine queue can be assumed to have the same distribution as the process
arriving to the shop.6 Then we can assume, following Dolan [19], that the expected waiting time of
a job arriving at a machine is equal to the processing times of the jobs already in the queue having
higher priority index values, or being processed, plus the sum of the processing times of the jobs
arriving during the wait that have higher priorities:

W('ni)  = Q(ir>7. i) 0. 1,i + U + X W(7'i) P(lT>7ri) a3 ti , (5.3)

if we can assume that the arrival rate X is less than the service rate 1 /0. Solving equation (5.3) for
W(?ri), we get:

W(t i) = [Q(fT>7T i) 0 i + U] / [1.0- X P(7r>7ri)5 ]. (5.4)
The expected waiting time is directly proportional to the relevant queue length and increases with
the arrival rate of the higher-priority jobs. This result assumes constant slack; hence it holds
more accurately in a shop in which the load is high and the due date allowance is short. The
waiting time estimates indicated by the analysis above can be approximated numerically, given
the distributions of the processing times, pj, and the delay penalties, w. One approximation is
shown in figure 5-2 for the case of uniform distributions of pii and wi- U(0.1, 1.9), with the mean
values of 15 = = 1.0. Although the priority rules coordinate the jobs so as to avoid too early

-starts, some jobs in the queues will have rather long slack since the due date setting is random.
The effects of increased load and slack on the expected waiting times of different jobs are:

* the length of expected waiting time increases with increasing load, since the arrival
rate X increases and the expected queue length Q(i>ri)) increases. This changes
mainly the waiting time estimates for jobs which have 7r < i, see Figure 5-2.

* longer due date allowances decrease the number of critical jobs in the queues, thus
shortening the waiting time of the jobs which have relatively low WSPT priority. On the
other hand, jobs which have high WSPT priority might stay in the queue longer than
indicated above due to slack and lower relative urgency. As a result, the waiting time
distribution will be flatter with longer due date allowances.

5.2.3 Waiting Time Estimation in a Dynamic Job Shop

The graphs in figure 5-2 above'suggest the estimation of the expected waiting times with

some function of the job parameters. But can we use the same waiting time estimates for both
CoverT and AU? CoverT uses the maximum standard stay in the queues as a reference for the
relative tardiness of a job. Apparent Urgency uses realistic operation due dates in the priority

I6 6 Obviously this is nnt always true since WSPT rule can leave some long jobs sitting in the queues. Conway et. al. (171

provide simulation results that qualify this approximation over a distinct busy period.

• " ". . . -. ..-
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Figure 5-2: Three sets of a job's expected waiting time graphs as functions of the
priority index v : 1) The approximation of the expected waiting time7( ........
2) The priority-based estimation function W = /fl/ir(y) + 0.5, 1 = 1.0, (- -

3) The priority based waiting time estimates for slack jobs, y < 1.0, (.........

.,,¢,
0
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//
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7Job attributes Ip and w have are taken from uniform distribu tions p -~U(O. 1, 1 9) and w- U(O. 1, 19) f or these waiting time

functions.
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index valuation. Hence the waiting time estimates should be close to the expected waiting times

forced by the sharing of resources. To recapitulate, the coordination of the dispatching decisions
via lead time estimates requires unbiased estimates of the expected waiting times for the AU rule

but the worst case estimates for the CoverT rule. The expected average and worst case waiting
times are related to each other in a nontrivial manner. For the sake of simplicity, we approximate
the normative standard lead times by multiplying the expected waiting times by some tolerance
factor to count for the worst case. This tolerance is introduced by parameter kc, 1.0<kc,

discussed above:

(maximum normal waiting time) = kc *(expected waiting time).

Hence we propose the same waiting time estimation methods for AU and CoverT rules to be

tested against the traditional multioles of the processing times:

1. Static lead time estimation : Expected waiting times that depend on the attributes of
the job and some aggregate measure of load such as the average utilization or the
average queue length. We introduce two slightly different waiting time estimation
functions to study alternative coordination principles:

e The expected waiting time given in equation (5.4), approximated by a inverse
function of the WSPT priority index value, and

o A composite function in wi and pii that allows us to experiment with different
weighting of these attributes.

2. Dynamic lead time iteration : Iterative adjustment of the waiting time estimates
according to the performance feedback using dynamic adjustment of the estimates
with rolling forecasting and planning horizons.

We use the following parameters for adjusting the waiting time estimation functions for operation j

of job i (5 is the average processing time, -F the average priority index value, and * is the
average weight of the jobs in the shop):

a = smoothing parameter for the processing time effect, ii(a) = a pii + (1 - a) 0.

,8 = scale parameter for the load effect, i. e. the waiting time of an "average" job is
proportional to some measure of load.

y = smoothing parameter for the priority index (or the weight) of the job:
;r.(7) = 7yri. + (1 -y)i, or 4(y) = yW + (1-y) /.

The functional form of the priority based waiting time estimation is an inverse of the priority
index value wri. plus the expected processing time of the job currently under processing:8

Wi = /1w/i(y) + 0.53 . (5.5)

The estimates can be bounded from above, for example by /3R 15, to avoid excessive waiting time
allowances. Here ri is the average number of operations of the jobs.

8 Another iodification of the priority based waiting time estimation function was tested: Wii = / p(a)/ij(¥) + 0.5
with good results.

I
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In the composite waiting time estimation function, both the weight and processing times
can be smoothed:

W.- =Pv'5..(a) / v(T). (5.6)
This estimate can be bounded from below and from above. The composite form allows the
experimentation with different smoothing of wi and pii separately. For example, we get the
conventional multiple of crash time waiting time estimates when a = 1.0 and -y = 0.0. By setting
a = 0.0 and y = 1.0 waiting times can be estimated solely on the basis of the value of the job.

Lead time iteration uses the feedback from the global performance of the rule to adjust the
current lead time estimates based on the realized waiting times. This procedure can be adopted
in the dynamic case through a rolling horizon procedure. The rule is run from a starting date, to,
to a forecasting horizon. t, I and the performance in terms of weighted tardiness is recorded. Let
W ik be the estimated waiting time in the queue at machine k and Pkthe corresponding
processing time. The iterative procedure for waiting time estimation consists of two stages. First
some initial values are provided for the waiting time estimates; then the estimates are updated
based on the realized waiting times in a simulation with the rule in question. The a priori waiting

timeik esiats 1k ,..m can be based on the estimation methods introduced above. For
example, they can be multiples of the corresponding processing times:

= ~ p~,(5.7)

Letting /~=2.0 provides ra.latively robust estimates. The updated lead time estimates Wn+Iare
then be obtained using the realized waiting times q~ recorded during the nl simulation as
follows:

W + =W W+ a( qn -W), (5.8)
The parameter a, 0.0 < a < 1.0, can be used for smoothing the waiting time changes. In the
main experiment a = 0.5.

The operation due date for operation k of job i, d ik, can now be determined based on the
job due date d~ and the lead time estimates as follows:

d= d1  E zk (W~ + p. ) , k=,.m. (5.9)
This operation due date can then be used in equation (5.2) for the next iteration with the Apparent
Urgency rule. For the iterative CoverT rule, the estimates of the standard waiting times in
equation (5.1) can be derived, as discussed above, after smoothing the realized waiting times in
the previous simulation. Since the convergence in schedule cost or lead time estimates is not
uniform in general, we employ a stopping rule of a maximum of 10 iterations. Whenever the
weighted tardiness measure improves, we record the waiting time estimates. After 10 iterations
the best waiting time estimates thus far are restored, and the system is run to a planning horizon

4 t <(t The performance of this iterative method was found to be rather insensitive to the choice of
Pf1

the lengths of the forecasting and planning horizons, subject to the following considerations:

1. Improvements and convergence are often easier to obtain with a relatively short

period, such that t, to < 200*5. Otherwise, local improvements in performance '
measures might be offset by a worsening somewhere else.

2. The consistency of the decisions presupposes a relatively long forecasting horizon,

that is long enough so that lengthy jobs can be completed during the period.
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Thus tto > 20 ,say.

3. The planning horizon should be sufficiently shorter than the forecasting horizon to
prevent overly opportunistic myopic decisions at the end of the period.

4. Computational efficiency requires that the planning horizon is not exremely short

compared to the forecasting horizon.

Robust performance was found with the following values:

30 15 < (tf - to) < 150"5, (tp-to) = (0.5 ...1.0)*(tf. to).

The actual values used in the main experiment were (tf- to) = 133*0 and (tp- to) = 0.5"(tf-to). The
initial values for the waiting time iteration were Wij = 2.0"p.. The smoothing parameter in
equation (5.8), a = 0.5, and the waiting time estimates were bounded from below and from above

by 0.5"5 (W( 10"1.

5.3 Experimental Design for Dynamic Job Shops

5.3.1 The Job Shop Problems

The dynamic job shops studied had 10 machines. Jobs arrive continuously according to a

truncated Poisson process and are simulated over long time periods. We tested the weighted
tardiness performance of the basic and iterative CoverT and Apparent Urgency rules in large job
shop problems having 2,000 jobs, each of which had 1 to 10 operations assigned randomly. All
2000 jobs were included in the recording of the results of any simulation run, since we are
interested in the performance of the rules in varying shop ccnditions. 9 The processing times were

generated either from a uniform distribution p-U(1,30) for a general load, or with proportionality
in the following way: the job was assigned a size from a uniform distribution s-U(5,25), and the

operation processing times were generated from the uniform distribution p~U(.33*s, 1.670s). In
addition to these general and proportionate loads, a third kind of load was generated with uneven

distribution of the processing speeds of the machines. The relative processing times for the ten
machines were assigned as follows: (0.7, 0.8, 0.9, 1.0, 1.0, 1.0, 1.0, 1.1, 1.2, 1.2.) Thus there were

three machines which had less.than-average load (as much as 30% below the average) and there
were three botleneck machines with up to 20% more work than average. The weight of a job was

generated from a uniform distribution wi - U(1, 2"si), where s, = 15 for the general load.

The average level of load was determined by varying the arrival rate to yield five different

load conditions: 80%, 85%, 90%, 95% and 97% of the bottleneck capacity. Two different due date

settings were used: in a slack shop, the due date allowance varied uniformly from 0 to 12 times
the total processing time of an average job, 5.5015. Thus the jobs had an average due date
allowance of six times the average total processing time.10 The other shops had a tighter average

9Most previous studies have recorded only the performance of the rule over a more stationary time period, by loading
the shop without recording the performance of the rules, and also stopping the recording before the shop is empty [1, 171.

l~conway etal. [17] found that the random due date setting was the most difficult for most rules to handle. See also [3).
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due date allowance, set to three times the average processing time. This is less than in previous
studies which used at least four times the average processing time as the average due date
allowance.

5.3.2 Measures of Performance

The weighted tardiness critei ion associates the cost, C1(t,) = w, max (0, (ti - di)), with the
completion of job i at time ti, when the due date of the lob is di and the penalty for tardiness of one
time unit is w, The major objective is to minimize the total tardiness cost, ZiCi(t). We make it
easier to compare the weighted tardiness performance of the rules in different job shops, by
normalizing the weighted tardiness cost by the average processing time, the average weight and
the total number of jobs completed as was done in chapter 4 above, or in [66]. The number of
tardy jobs is an important secondary criterion that is normalized in the reporting to the portion of
tardy jobs of the total number of jobs completed. The measure of maximum weighted tardiness
was found to be correlated with the average weighted tardiness performance of the rules in a
previous study. It will not be reported here.

A good dispatching rule should also provide resonable inventory holding cost performance.

We used the flow time from the start to the completion, weighted by the size of the job as the

primary measure of the work-in-process inventory (WIP), normalized by the average length,
average size and total number of the jobs completed. Because early completion sometimes
forces the firm to hold the product until the requested delivery date, we recorded a secondary
inventory measure called work-in-shop (WIS), in chapter 4. The normalized WIS is computed like
the WIP statistic except that the flow time is replaced by the time from the start date until the due
date or the completion of the job, whichever is later. A large difference between WIP and WIS in a
problem with a relatively high capacity utilization indicates that the rule is not successful in
coordinating the completion dates and due dates.

5.3.3 Rules Tested

The main interest of the experiment was to find out if the new lead time estimation methods
improve the performance of the AU and CoverT rules over the basic versions. However, since no
systematic comparison of any rules in the weighted tardiness problems has been reported before,
we wanted to test some common rules for benchmarks. These were the same as in chapter 4:

1. The FCFS rule that served as a "random" benchmark

2. The WSPT rule, using the processing time of the imminent operation,

3. The EDD rule with global due dates,

4. The S/RPT rule, or slack per total remaining processing time.

We made the CoverT rule "weighted" by multiplying the original "unweighted" priority index by
the delay penalty job j, w., see equation (5.1) above. Four different versions of CoverT will be
reported. One used constant multiples of crash-times as waiting time estimates (CoverTcon) anu
another used lead-time iteration (CoverTiter). The values for the look-ahead parameter kc and for

* S
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Table 5-1: The assignment of the look-ahead parameter K and the lead time
estimation parameter /) for the AU and CoverT rules corresponding to the

load in the shop in terms of the expected capacity utilization.
Lead Time Estimation Method:
Iterative (initial) Priority Based

Capacity Util. K, ,/

CoverT: < 90% 1.5 2.0 2.0 1.5

90% ... 95% 1.5 2.0 2.0 2.0

95% < 2.0 2.0 2.0 3.0

Apparent Urgency: < 85% 2.0 2.0 2.0 1.0

85% ... 90% 3.0 2.0 3.0 1.0

90% < 4.0 2.0 4.0 2.0

the initial lead time estimation parameter /3 are given in Table 5-1 for different levels of
anticipated average load of the shop. The priority-based waiting time estimation method

(CoverTprio) was applied with the parameter value y = 1.0 in equation (5.5). The composite waiting
time estimation method (CoverTcomp), was used with the parameters a = y = 0.5.

The Apparent Urgency rule in equation (5.2) above, was tested with initial constant lead
time estimates (AUcon) and with iterated lead time estimates (AUiter). The values of constant
look-ahead parameter K and lead time estimation parameter /3 in equation (5.7) are given in table

5-1. AUiter is the same rule with lead time adaptation, updating the waiting time estimates
according to equation (5.8). The same priority-based, AUprio, and composite, AUcomp, waiting
time estimation functions were used as for CoverT. 1'

5.4 The Results of the Experiment

5.4.1 Weighted Tardiness and Portion of Tardy Jobs

The results of the experiment are reported according to the expected load and the average

due date allowance. Since there was no significant difference in the performance of the rules and
* waiting time estimation methods for the different job shop types tested (general, proportionate

and bottleneck job shops), the results for the three have been averaged to obtain larger samples.

The normalized weighted tardiness for the different rules are shown in Table 5-2 as a

function of the expected load of the shop. These problems had rather loose random due dates
with the average due date allowance of six times the processing time of an average job. The

corresponding results for the tight due date setting having the average allowance of three times

1 1 1n the pilot studies, the following values of the rule parameters were tested: K = 1.5, 2 0, 3.0 and 4.0,/3 = 1.0, 2.0 and
3.0, 7 = 0.0, 0.3, 0.5, 0.7 and 1.0, and a = 0.0, 0.3. 0.5, 0.7 and 1.0. Most of the combinations of the parameters worked

according to the intuition given in the text. The results for the reported parameter combinations were most consistent,

although some others performed reasonably well, too, e.g. the composite model with a = 0 0 and y = 1.0, or lead time
estimates coordinated by jobs' weights.

L
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the average processing time are shown in table 5-3. The performance of the rules in terms of the
portion of tardy jobs is shown in tables 5-2 and 5-3 in parenthesis. These results are shown in a
graphical form as well. The weighted tardiness graphs for both slack and tight due date settings
are depicted in figure 5-3. The average portion of tardy jobs is graphed in figure 5-4.

Table 5-2: The normalized weighted tardiness averaged for the three shop types.
Slack due dates. The average portion of tardy jobs is shown in parenthesis.

Normalized Weighted Tardiness (Portion of Tardy Jobs):
Load estimates:

80% 85% 90% 95% 97%
Rule:

FCFS .278 (16.5) .546 (23.0) 1.173 (34.3) 2.692 (51.2) 3.390 (52.3)

EDD .022 ( 5.1) .073 ( 8.7) .197 (20.4) 1.222 (45.3) 1.899 (51.0)
S/RPT .018 ( 5.3) .034 ( 9.6) .078 (19.7) .919 (48.6) 1.503 (54.2)
WSPT .110 (12.7) .208 (16.1) .348 (20.1) .617 (24.3) .710 (24.1)

CoverTcon  .019 ( 6.7) .031 (10.2) .055 (15.2) .199 (23.1) .294 (25.7)
CoverTprio .015 ( 4.8) .025 ( 6.6) .041 ( 8.7) .198 (16.8) .268 (17.5)
CoverTcomp .016 ( 4.1) .024 ( 6.7) .043 ( 9.2) .193 (17.4) .268 (17.8)
CoverTiter .012 ( 5.0) .023 ( 8.7) .049 (12.9) .204 (22.5) .294 (24.8)

AU con .016 ( 4.3) .029 ( 6.8) .046 (8.6) .199 (16.8) .291 (18.8)
AUprio .015 ( 4.2) .025 ( 5.7) .046 ( 7.6) .189 (15.2) .281 (17.4)
AUcomP .015 ( 4.6) .024 ( 6.1) .038 ( 8.0) .190 (15.7) .277 (18.2)
AUiter .010 ( 3.7) .021 ( 6.2) .037 (8.0) .182 (15.9) .267 (17.8)

The conventional rules did not perform satisfactorily in the test problems. The due date
oriented rules, EDD and S/RPT, are reasonable in light load and loose due date situations, but
their performance deteriorates quickly when the load increases beyond 85% with tight due dates
and beyond 90% with slack due dates. WSPT while never extremely bad is far from the top in most
cases.

The modified CoverT and AU rules were superior to the other rules for all shop-load
conditions. The basic AU rule was up to 10% better than CoverT in the weighted tardiness

measure, and 10-25% better in the portion of tardy jobs. The priority-based lead time estimates
improved the weighted tardiness performance of the modified CoverT by 5-20% on average.
Moreover. the portion of tardy job was improved up to 30%. The AU rule gained less from the
priority dependent waiting time estimation while the AU rule with lead time iteration was the best
overall rule in both average weighted tardiness and average total cost. CoverT's improvement
due to the lead time iteration was usually less than with the static priority based lead time
estimates. Its improvement relative to AU in heavily loaded shops is due to the more global nature
of its priority index. CoverT minimizes the average contribution to the weighted tardiness that is
the major concern when several jobs are interacting intensively in contention over the machines.
The AU rule is designed to minimize any local contribution to the tardiness. Hence it is at its best
in more decomposable problems in lightly loaded shops. AU's global performance can be
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Table 5-3: The ncrmalized weighted tardiness averaged for the three shop types.
Tight due dates. The average portion of tardy jobs is shown in parenthesis.

Normalized Weighted Tardiness (Portion of Tardy Jobs):
Load estimate:

80% 85% 90% 95% 97%
Rule:

FCFS .753 (36.8) .922 (42.1) 2.329 (60.9) 3.033 (64.5) 5.984 (76.4)

EDD .354 (31.4) .444 (38.2) 1.662 (67.2) 2.360 (69.7) 4.465 (80.5)
S/RPT .269 (36.1) .338 (43.0) 1.586 (74.5) 2.062 (74.9) 4.063 (85.1)
WSPT .247 (24.3) .296 (26.3) .556 (32.1) .666 (34.1) 1.079 (36.8)

CoverTcon .101 (22.4) .121 (26.4) .342 (40.0) .432 (38.7) .777 (44.3)
CoverTprio .088 (17.8) .102 (20.6) .325 (29.1) .416 (30.2) .741 (34.5)
CoverT .087 (17.4) .099 (20.7) .322 (31.4) .412 (30.8) .735 (35.4)compCoverTiter .092 (22.4) .100 (22.3) .311 (35.4) .401 (35.1) .731 (37.8)

AUcon .101 (18.4) .112 (20.7) .332 (30.2) .422 (33.1) .754 (35.4)
AUprio .096 (17.0) .109 (19.0) .327 (29.0) .404 (30.1) .752 (34.6)
AUcomP .092 (17.3) .107 (21.1) .331 (31.3) .416 (32.0) .773 (35.2)
AUiter .080 (17.2) .096 (19.8) .292 (29.0) .380 (31.2) .734 (35.1)

improved by "costing" the congested machines that a job needs later on, thus reducing the
immediate priority of a slack job in CoverT-like manner (see chapter 6 for details).

5.4.2 Other Measures of Performance

The robustness of the AU and modified CoverT rules indicates that they must be reasonably
good in utilizing the machine resources. The statistics for work-in-process inventories and the
work-in-shop measures, shown in tables 5-4 and 5-5 for all rules and different load conditions,
confirm that there was no deterioration of the performance of AU and modified CoverT for these
objectives. Quite the contrary, the AU rule ranks among the best two or three for both WIP and
WIS measures in most problems.

The maximum weighted tardiness measures were not recorded systematically in the
dynamic job shops. Several observations indicated that the AU and CoverT rules are also
superior to the other rules in this measure of performance, as was the case in the static flow shops
reported in chapter 4.

Recognizing the multiple objectives of scheduling, the rules are also compared in terms of
combined costs of inventory holding, fixed charges for tardy jobs, and the variable tardiness
penalty. The average tardiness penalty is set to twenty times the inventory holding cost, and the
relative fixed cost for late shipment equals half of the tardiness penalty of an average job delayed
by its processing time. Thus the total costs are:

(5.10)
U Total Cost = 2.0"(Norm. Weighted Tardiness) + (% Tardy Jobs) + 0.1 °(Norm.WIP)
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Figure 5-3: The weighted tardiness for the different levels of load averaged
over the three shop types. Slack (--)and tight due date setting (--.
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Figure 5-4: The percentage of tardy jobs for the different levels of load averaged
over the three shop types, Slack (--)and tight due date setting ()
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Table 5-4: The normalized WorkIn-Process (WIP) inventory averaged for the three
shop types, slack due dates. The Work-In-Shop (WIS) is shown as well.

Normalized WIP (WIS):

Load estimate:
80% 85% 90% 95% 97%

Rule:

FCFS 2.55 (6.85) 3.20 (6.88) 4,46 (7.38) 6.32 (8.35) 6.80 (8.91)
EDD 2.30 (6.46) 2.78 (6.05) 3.47 (5.91) 4.37 (5.85) 4.69 (6.26)
S/RPT 2.62 (6.58) 3.12 (6.30) 3.86 (6.08) 4.72 (5.80) 4.96 (6.24)
WSPT 2.23 (6.98) 2.74 (7.14) 3.59 (7.83) 4.86 (8.78) 5.35 (9.37)

CoverTc0 n 2.45 (6.56) 2.97 (6.29) 3.81 (6.15) 4.74 (6.18) 511 (6.61)
CoverTprio 2.50 (6.59) 3.05 (6.34) 3.92 (6.29) 4.83 (6.17) 5.34 (6.93)

CoverTcamp 2.45 (6.58) 2.98 (6.30) 3.90 (6.27) 4.77 (6.17) 5.27 (6.84)
CoverTiter 2.43 (6.53) 2.97 (6.29) 3.86 (6.11) 4.77 (6.16) 5.12 (6.64)

AUcc n  2.33 (6.54) 2.81 (6.21) 3.49 (6,14) 4.33 (6.22) 4.77 (6.77)
AUprio 2.34 (6.55) 2.81 (6.23) 3.55 (6.18) 441 (6.29) 4.87 (6.75)

* AUCOMP 2.29 (6.55) 2.78 (6.16) 3.44 (6.05) 4.31 (6.17) 4.70 (6.56)
AUiter 2.38 (6.51) 2.86 (6.21) 3.59 (6.14) 4.41 (6.30) 4.98 (6.86)

Table 5-5: The normalized Work-In-Process (WIP) inventory averaged for the three
shop types, tight due dates. The Work-in-Shop (WIS) is shown as well.

G Normalized WIP (WIS):
Load estimate:

80% 85% 90% 95% 97%
Rule:

FCFS 2.85 (4.29) 3.08 (4.36) 4.64 (5.45) 5.20 (5.97) 7.40 (7.90)
EDD 2.43 (3.64) 2.54 (3.59) 3.34 (3.97) 3.75 (4.25) 474 (5.08)
S/RPT 2.59 (3.62) 2.70 (3.61) 358 (3.96) 3.77 (4.15) 463 (4.88)
WSPT 2.43 (4.31) 2.63 (4.47) 3.78 (5.46) 3.97 (5.62) 5.57 (7.10)

CoverTcon 2.57 (3.77) 2.71 (3.77) 3.66 (4.25) 4.06 (4.69) 5.34 (5.78)
CoverTprio 2.56 (3.76) 2.66 (3.73) 3.83 (4.51) 4.11 (4.83) 5.38 (5.91)

CoverTcomp 2.55 (3.74) 2.67 (3.72) 3.74 (4.35) 4.10 (4.77) 5.34 (5.84)
I CoverTiter 2.52 (3.75) 2.62 (3.75) 3.71 (4.36) 3.96 (4.67) 5.25 (5.78)

AUco n  2.46 (3.77) 2.60 (3.78) 3.46 (4.54) 3.83 (4.63) 5.21 (5.99)
AUprio 2.46 (3.78) 2.61 (3.77) 3.66 (4.51) 3.88 (4.70) 5.25 (5.98)

* AUcomP 2.44 (3.72) 2.54 (3.66) 3.57 (4.36) 3.88 (4.63) 5.27 (5.94)

AUiter 2.50 (3.74) 266 (3.77) 3.67 (4.49) 3.95 (4.66) 5.32 (6.06)

These costs, averaged over the different shop types, are shown in Figure 5-5 for slack and
tight due dates separately. AU and CoverT are again far superior to the other rules tested. The
standard AU is approximately as good as the best version of CoverT, using enhanced lead time
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estimation in the problems with long average lead time allowance. But the enhanced CoverT is
better with shorter lead time allowances. However, the AU rule with lead time iteration is the best
by a consistent margin over all the problems studied. -

5.5 Conclusions
In this chapter, we have discussed the evaluation of priorities for slack jobs under the A

weighted tardiness criterion in dynamic job shops. The new state dependent rules have surpassed

the previous standards, represented by the CoverT rule, in several ways. First, we have improved
the original CoverT rule by introducing new static waiting time estimation methods which yield
reductions of 5-30% in the weighted tardiness and portion of tardy jobs, depending on the
characteristics of the problem. More specifically, the new priority-based lead time estimates
sometimes suffice for obtaining the best performance of all rules tested. Second, the basic
version of our Appaient Urgency rule is better than CoverT in terms of weighted tardiness and
number of tardy jobs in most moderately loaded shops with a capacity utilization of less than

95%. CoverT is designed to minimize global average weighted tardiness, hence it performs well inI
tightly coupled problems in congested job shops. The AU rule was designed to be locally optimal.
It performs best in decomposable problems in lightly loaded shops but needs additional
coordination in heavily loaded shops. Third, the lead time iteration makes the AU rule consistently
better than CoverT in weighted tardiness costs, in inventory- holding costs, and in rush-shipping
costs.

The new rules use the information of the load and status of the shop indirectly, either in
setting some static lead time estimates or in adjusting dynamically the lead time estimates
according to the simulated performance of the rule. The look-ahead and waiting time estimation
parameters have been fixed, based on aggregate load estimates. over an extended busy period.
The lead time iteration generates waiting time estimates which reflect the specific load conditions
but are not derived from any direct measure of the load. An obvious improvement to the lead time
iteration would be to initialize it with the new priority-based waiting time estimates. The testing of 9
possible gains is left for future studies. In practical scheduling situations, the scheduler would
probably be tempted to adjust the the parameters of the dispatching rule in anticipation of certain
kind of shop load conditions in the near future. In next chapter, we will analyze the consequences
of dynamic adjustment of the slack evaluation parameters based on the anticipated load on the
machines. If this kind of locally opportunistic adjustment can be coordinated automatically to
ensure global performance, the resulting dispatching system would eliminate the initialization
problems of the parametrized rules.
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Figure 5-5: An example of combined inventory, tardiness and rush order costs forI

different load levels averaged over the three shop types. Stack(-adtgt()ueaestin.
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6. Coordination of Job Priorities via Direct Load
Information

Summary
The purpose of this chapter is to study the coordination of job priorities with the use

of detailed state information in a "self-adjusting" priority rule. The efficiency of priority
assignment depends, intuitively speaking, on the opportunistic use of resources
according to the local load in the machine centers and on the coordination of the
dispatching decisions across machines according to more global characteristics of
load in the shop. Hence we make the look-ahead and waiting time estimation
parameters of the myopic Apparent Urgency rule dependent on the estimates of direr
load information, such as the anticipated lengths the machine queues and the average
urgency of the jobs. The analytical results and experiments with the constant AU rule in
the previous chapters have suggested that the average number of critical jobs on a 0
machine might determine the most appropriate look-ahead factor and waiting time
estimates. Despite extensive testing of different adjustment procedures, however, no
consistent improvement over the best constant values of the parameters has been
obtained.

The priority of a job on the current machine can also be adjusted according to its
relative priority on the next machine to avoid congestion of the shop while allowing the
most urgent jobs to be rushed through. But again several attempts to implement this
"probing" of a job's relative urgency on the next machine did not improve consistently

the weighted tardiness performance of the AU rule. These negative results parallel, by
and large, with the earlier findings in the case of average (non-weighted) tardiness
scheduling.

6.1 Introduction

The performance of most dispatching rules varies greatly when applied in different shop
conditions or when measured with some modified objective function. Even the Apparent Urgency
rule that has been robust in our tests requires some adjustment of its parameters for extreme load
conditions. Hence we risk some opportunity costs when using fixed parameter values.' Could the
parameter of the priority index be adjusted to the temporary variations of the load in the shop, or
even at the level of each machine as well ? If the priority index parameters were adjusted
continuously, the consistency of the priority assignments might be lost. The indications of priority
coordination problems are obvious. The look-ahead adaptation in the single machine case
worked better in sm?'I problems than for a large number of jobs. In the dynamic job shops, the
lead time iteration works better on several loosly coupled problems, i.e., separate busy periods in
a lightly loaded shop. Furtermore, the combination of the look-ahead adaptation with the lead
time iteration was not worthwhile. Even though some immediate savings seem attainable through
more opportunistic use of resources, the gains are often more than offset by the less
advantageous consequences of these decisions on the machine loads later on.

1ForeapethAUrlwihloahdpaaee 2.yilssseacal10loecotta =40oeaperiod with average capacity utilization npproximately 80%, but Kc 4.0 is almost equally better when the load approaches
'95%.
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Consider a dispatching decision when the main objective is to minimize weighted tardiness

and you have a reliable forecast of the future load. If the machine is a bottleneck with a a long
queue it should be loaded efficiently according to the WSPT rule: short and expensive jobs
should be given higher priority despite their slack. Any idle time on that machine should be
avoided as well. On the other hand, if a machine will have rather light load in the future, jobs can
be sequenced according to the shortest slack, allowing idle time if necessary for expediting a
critical job. Naturally, the expected waiting times of jobs on these two machines will be very
different since a long job would probably stay for a long time in the bottleneck queue but could be
processed quickly on the slack machine. These heuristic rules can be implemented by proper
parameter setting of the AU rule: a long look-ahead (large k) and long lead time estimates (large
83) are needed for jobs going through a bottleneck machine, and smaller k and 13 on the slack
machines. Moreover, the priority index of a job that is going next into a long tardy queue should
be lowered on the current machine.

In the previous studies in chapters 4 and 5, the lead time estimation and look-ahead
parameters were set on a constant level that was appropriate for the average utilization of the
machines. However, the lead time estimation with a constant /3 did not work as well in a shop
with bottleneck machines as in an evenly loaded shop, as indicated by improvement obtained

* with the lead time iteration. We have already found in chapter 3 that the bottleneck machines
* determine the structure of the optimal schedule in a proportionate flow shop with unit jobs. The

experience with some commercial job shop scheduling systems, such as OPT [31], supports also
the view that an efficient loading of the bottleneck machines has a primary role in job shop
scheduling. Hence we might expect some gains from increasing the Kc and P3 parameters on a
bottleneck machine to adapt the rule to the load conditions. But by how much these parameters
can be adjusted before losing the consistency of the dispatching decisions over time and across
the machines. To address the coordination problem, we need to measure the trade-off between
the cost of delaying the processing of a job (time cost of a job) and the cost of using the machine

* (opportunity cost of the machine). This ratio would allow comparisons across the opportunity
* costs of different machines, and the costs of the jobs across different time periods as well.
* 'Previous research has concentrated on the study of the behavior of simple rules which do not

encompass the cost information required for proper coordination [3,17, 33, 58]. A common state
indicator used before has been the length of a queue, measured in terms of the number of jobs,
work contents, the utilization of the machine, or the expected waiting time of a job. As Maxwell
[49] has shown these measures are closely related and hence equally suitable surrogates for
estimating the opportunity costs of the machines. Bertrand [10] proposes a direct loading

* procedure to estimate the job lead times with some coordination of job priorities. His adjustable
dispatching rule uses aggregate load information in the form of the average due date of the jobs in
the shop and the lengths of the queues. Examples of state coordinated rules that use the queue
length as state indicator are the (anticipated) work in next queue, (A)WINQ, rule and the

6 composite rules that include it [3, 17, 58]. This "machine look-ahead", or probing component
lowers the priority of a job on the current machine if it would exit into a long queue at the next
machine. In order to a'ioid overreaction, anticipated queue length can be used instead the
currently observed ones. A component similar to the WINO but normalized by the total work in the
shop is included in the Dynamic Composite Rule (DCR) in [17]. OCR is the only priority rule that

* adjusts the priority index directly to the load on the current machine as well (see section 2 below).
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Emery [20] designed a multi-stage dispatching procedure which uses several state indicators to
screen jobs from the final dispatching. The components of this optimum seeking search
procedure will also be discussed below.

Some of the previous resL ts in this thesis have indicated how to choose the most efficient
parameter values for the Apparent Urgency rule. The purpose of this chapter is to study
systematically the possibilities of periodic adjustment of the priority indexes and the coordination
of dispatching decisions using anticipated state information. In section 2, we specify adaptation
rules for the AU priority index. The efficiency of the new "automatically" state dependent rule is
tested against the constant rules in the problems reported the previous chapter. The results,
which do not indicate any consistent improvement in the weighted tardiness performance of the
AU rule, are analyzed in section 3. Section 4 concludes the experiment.

6.2 Load Estimates as Priority Coordination Parameters

6.2.1 Different Mechanisms of Priority Coordination

The dispatching process is reminicient of any coordination problem. We have to make an
opportunistic local decision, taking into account the interactions of several local decisions to

guarantee a good global performance. Hence we have to anticipate the future status of the shop
before knowing the final dispatching decisions. In the myopic dispatching approach, the
complexity of local decisions is reduced by the greedy search forward in time. But this
computational efficiency comes at the cost of not using any information of future status of the
machines. The uncertainty of the future is endogenous since it could be removed if we could
solve the problem using forward dynamic programming or some other exact method.2 However,
we can get an estimate of the future load by an aggregate analysis of the problem data or through
simulation with a myopic dispatching rule. Different methods and time horizons of state estimation
are classified in our framework in chapter 2. Some of this kind of coordination was included in the
Dynamic Composite Rule (DCR), a 3-parameter state dependent rule for average tardiness
scheduling [17]. The priority index at time t for jobi, 7r", 8() is determined as follows (o1 denotes
the due date of operation j, set according to the standard lead times of the job class in question,

ithe processing time):

9 t CR(t) =o.-p.. + b kpk]r pi + h Wnq~ (6.1)
where b, r and h are parameters constant during a particular simulation run, 1kPkj is the sum of
the processing times in the queue from which the selection is to be made, and Wn is the ratio of
the sum of the processing times in the next queue to the sum of the processing times of the jobs
in all the other queues in the shop. DCR is actually a minimum slack rule (the job with the lowest
index value has the priority) that is adjusted for the congestion of the current queue and of the
next queu; Vith proper parameter selection, for example b = 15, r =1, h =0, or b =0.3, r =1,
h = 160, this LOmbination rule performed better than its component rules in terms of average
tardiness and conditional tardiness. The DCR index in equation (6.1) represents the time
dimension (slack and processing time) of priority. The AU priority index is expressed in terms of

the marginal tardiness cost per time unit on the machine (high value gets the priority):
2Here we assume that the problem data is known with certainty.

J1
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(6.2)

if =u(t) (w1/pii) e [d1 t.P 1  w i

Here W!.+ 1 is the expected lead time on the subsequent machines and 1 is the average
processing time of tha unscheduled jobs. Parameter K determines the scale of the measure of the

slack of the job. This AU index can be represented in the slack time domain as well. Any
monotonic transformation of the priority index will maintain the ranking of priority assignment

unaltered. Thus we can take the negative of the logarithm of the AU index in equaticn (6.2),

following [54]:
(6.3)

r..(t) = [d t- p" r+1 " w+
1]+ + c5 In(p../w).

Comparing this to the DCR index above, we notice that both have a similar slack component. The

second component is a function of the queue length multiplied by a term containing the weight

and the processing time, or a "utilization factor" [54]. The main difference is that the DCR index

does not include a job specific weight, w. The third term of DCR, the relative length of the next
queue, in effect adds a "time penalty" to the local slack due to the heavy load on the next
machine. In the original study [17], the second, "SPT-like" term, improved the performance of the
plain slack term considerably, whereas the third, "probing" term, did not improve all tardiness
related measures. In the following ._ction, we experiment with a probing term in the opportunity

cost domain.

Emery [20] designed an optimum seeking procedure for minimizing average inventory

holding, earliness and tardiness costs in a static job shop scheduling problem. His priority

function is a composite rule. The priorities of schedulable jobs are determined in two stages.
First, six screening criteria are applied in a sequence to eliminate the jobs which are not "critical"

for the final priority evaluation. The six threshold criteria are the job's 1) external priority class, 2)
CoverT index value, 3) time spent in the present queue, 4) remaining processing and queue time

over current processing time, 5) processing time of current operation, and 6) size of next queue.
The second stage is an ordinary dispatching decision among the jobs which survived the

screening stage. The priority index function is a weighted sum of the terms used in each of the
screening stages (except the external priority). Thus there are 5 parameters to be adjusted over

some region using simple heuristic grid search. In the example reported in [20], the optimum

seeking process resulted in total inventory holding and tardiness cost that was 5% lower than the
starting solution and 10% lower than the cost with the plain CoverT rule. However, the effects of
each of the coordination terms upon the performance of the rule are not explained in [201.

6.2.2 The "Self-Adjusting" AU Priority Index

We propose a new adjustable form of the AU rule to test the need for coordination in

variable load situations. The AU priority index function can be adjusted "automatically" to the

variations of the load on the different machines and in the shop over time following the intuition
given in Introduction:

• long look-ahead (large k) and long lead time estimates (large P) should be used for
jobs going through a heavily loaded (bottleneck) machine with long queues, and
smaller k and / on the slack machines having short queues.
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* the priority of a job on the current machine should be reduced if it is going next onto a
machine which will have more urgent jobs to process (and possibly a longer queue).
We could also expedite jobs going to an idle machine that will later have enough load
and delay jobs going to heavily loaded machine toward the end of its busy period.

The priority index of job i at machine j is the basic AU priority index with the following

modifications:

1. The waiting times for each of the remaining operations after the current one, Wik, are
estimated based on the use of the average anticipated queue lengths on the
machines, q = (ql, q2 .. qm)  q consists of weighted averages of the current,
anticipated and total average queue lengths for the look-ahead estimation (see next
section). The waiting time estimation parameter, fl, of the priority-based model3 can
now be determined on the basis of the anticipated queues:

Wik(q) = /8(q) V/7rik + 0.5 0 , (6.4)

W!,(qW.7-m ),
Wi(q) = k=j ik(q)'

where v.ri is the WSPT priority index value of job i on machine j, v is the average
weight and p is the average processing time of the jobs in shop. P3 is some non-
decreasing function of q to be determined later.

2. The length of the look-ahead is also determined by the anticipated queue lengths, q.
That is, K = oc(q) in the state dependent AU priority index:

. . W + -(q)]+/K(q) i (6.5)
.-rAu(t, q) = (w1/p) e [di" t - pir" ii +1 1

We use the average anticipated queue length because the jobs arriving to the queue
in the near future will compete for the machine capacity with the jobs which might not
yet have arrived.

3. Add probing or a further adjustment of the priority index for ,..e load on the next
machine. The correction term in the opportunity cost space considered here is the
difference between the anticipated AU priority ii Jex value of job i on next machine n
after time T1 , rAUI(t + T), and the anticipated average priority index value of the jobs
being processed on the next machine at the same time, rn(t + T1), or:4

*Affi(1,n , t, T1) = ,n"Au(t + T1)- ffn(t + T1). (6.6)
The implementation of this probing term depends on the load information available in
the scheduling system discussed in the next section.

4. The "self-adjusting" AU priority index is the sum of the urgency terms on the current
and the next machine:

S9id (t, q, 1,
n) = 7n'Au(t, q) + C A7run(7 n, t, T1). (6.7)

The probing of the anticipated urgency differential on the next machine is controlled
by setting the parameter c0O above.

3 See chapter 5 for the derivation of the priority-based waiting time model.

4The priority could be decreased if the priority index differential increases later after time period T2 > Ti.

6
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4

In the earlier studies we have found that the AU priority index could be adjusted to certain
load conditions if the appropriate state information were available. We test three further
ref inements:

1. The waiting time estimates W.. can be adjusted according to the average tardiness of
th osi h niiae ahine queues as discussed in chapter 5. If the jobs have

long slack on average, the waiting time estimation function is flattened using Y < 1 .0 in
equation (5.5).

2. The look-ahead parameter K can be adjusted according to the value of the job, if there
are only few jobs anticipated in the queue: more expensive jobs should have shorter
look-ahead or a lower value Of K as discussed in chapter 2.

3. The priority index of a job going later to heavily loaded machines can be reduced by
allocating the expected marginal tardiness cost over the "effective" remaining
processing time. The effective processing time is the processing time on the current
machine plus a portion of remaining processing time that depends on the load on the
subsequent machines. This modification gives the AU rule "CoverT-like" global
coordination in heavily loaded shops: the priority index of a job with several operations
remaining reaches the full WSPT value just when job is within the crash time from its

4 ~due date.

Beore testing the new coordinated AU rule, we specify the load estimates needed for the priority
index functions given above.

6.2.3 Estimation of State Indicators

The estimation of the two state indicators proposed above, the average queue length and
the average priority index values of the schedulable jobs, requires a simulation of the problem
with some dispatching rule, for example the basic AU rule. The horizon of this forward simulation

* can extend from the extrapolation of the current status by a few tentatively simulated decisions
(as with the AWINO rule) to the use of long forecasting and planning horizons. Since we are
mainly interested in the waiting time estimates in the near future, a rolling horizon procedure can

* be implemented.

To estimate the queue length, we should count only the "critical" jobs in the queue. The
critical jobs are those jobs i for which the urgency function for operation j, e -fd Itp-1 i+ 1 W ]
exceeds some tresh old value. Alternatively, the critical queue length can be estimated as a sum
of the urgency function values of the jobs in the queue. Both of these critical queue length

*estimates characterize the anticipated dispatching situation better than the queue length

4 including all jobs, even those with considerable slack. The critical queue lengths could be
weighted averages of three components: the current queue length at a machine, the average
anticipated queue length of that machine, and the average queue lengths averaged over all
machines of the shop. In the pilot studies, the current queue length was found too volatile to be
used as a rule parameter in the simulation. More stable queue statistics were obtained through
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5moving averages of the average machine queue lengths and the global average queue length of

the shop. The forecasting horizon was set to 100*1 and the planning horizon to 60"1. Second,
the anticipated average priority index value on the next machine reflects the urgency of the load
on that machine. This index can be obtained as a sum of the projected6 priority indexes of the
schedulable jobs and the those of the pjs scheduled to arrive on that machine, divided by the
average critical queue length. If on a bottleneck machine the load is temporarily higher than

average, the correction term works like the AWINQ rule. preventing further congestion of the
machine. Otherwise, a job with relatively high projected Apparent Urgency index can be rushed
to that machine against the prescription of the AWINQ rule.

6.3 Experiments in Dynamic Job Shops

6.3.1 Job Shop Problem and Rules Tested

Different versions of the new coordinated AU rules were tested in the problems used in
chapter 5. The performance of the rules was recorded over a complete busy period of the shop to
count for varying shop conditions. The rules were:

Apparent Urgency

Constant The AU rule using the priority based waiting time estimates with/3 = 1.0, and
look-ahead factor K = 3.0.

Indirect The AU rule with selected constant priority based lead time estimation and
look-ahead parameters used in the previous experiment in chapter 5.

Lead Time Iter. The AU rule with lead time iteration as benchmark from the previous
experiment.

Direct Load Information, Coordinated with X and X k
The AU rule with a dynamic priority based waiting time and look-ahead
estimation. Coordination parameter ,\f represents the weight of the global
average queue length, 4 (t), in the queue length estimate, q (t), of machine m,
for the waiting time estimation parameter, fim(t), at time t:

qm (t) = / (t) + (1- XP) m(t), (6.8)

13m(t) =(q t) 0 ,

Wir= #m wvim + 0.755.

The functional form P8 = q0 .5 was robust in a pilot study. Coordination
parameter Xk represents the weight of the global queue length in a machine's
queue length estimate for the look-ahead parameter K(t) at time t:

5 The queue lengths were averaged continuously over time buckets of the length 1Op - . The forward moving average of
four of these time buckets was used as the estmate of the anticipated queue length.

6 The slack estimate of a job was reduced by 2*p-.

.. ,... ,. ..
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qm(t) = X ( (t) + (1-X K)q M(t), (6.9)

Km(t) =(q(0))
0 7 5

The form K = q0 7 5 was robust in the pilot study.
The parameters X = (X Xk) determine to what extent the priority assignment
is coordinated by global load in the sh3p. The weight 1.0 - X is given to the
specific machine queue statistic. For example, the values X = (1.0, 1.0) assign
the same waiting time look-ahead estimates for all machines, adjusted
periodically by the changing load in the shop. ,A = (0.5, 0.5) allow the load of a
machine to affect its look-ahead and waiting time estimation. The "effective"
processing time approach has been used with the AU rules to improve the

clobal coordination in on congested machines.7

Next Machine Probing
The AU rule with the probing of the next machine urgency. The anticipated
average priority index value on machine n is computed as

x n(t+T 1  E fnU(t +T 1 )/0.5(q n(t) + q0(t)), (6.10)

where rin is job i's projected priority index value on the next machineAU
n. Hence the machines with less-than-average queue length should be easier
to load. The probing parameter in equation (6.7) is assigned the value
c=q (t)/20.0 if the correction AinU < 0, and c=0.0 otherwise. Hence a
machine with a long queue can reject a job with low projected urgency but no
machine can "pull" a job even with high projected urgency.

Look-ahead Adjustment
The same AU rule except that the look-ahead parameter K is reduced for jobs
with value w above average, especially in a slack shop.

K! = K (1 - (1 - w /V)/ ). (6.11)m m

Probing and Look-ahead adjustment
Both next machine probing and look-ahead adjustments implemented.

We studied the periodic adjustment of waiting time estimates, or parameters ,8m , for CoverT as
well. The probing of next machine urgencies was not implemented.

Cove rT:
Constant The CoverT rule with constant priority based waiting time estimates, with

/=2.0 and k. = 2.0.

* Indirect The CoverT rule with the selected constant priority based lead time estimation
parameters used in the previous experiment in chapter 5.

Lead Time Iter. The CoverT rule with lead time iteration as benchmark from the previous
experiment.

0

7 The effective processing time is p = E n PkPik where the machine congestion factor = (t) - 1)/20.

i S k i kP=

'. "
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Direct Load Information
The modified CoverT with priority based waiting time estimation method, using
the coordination parameter X = 0.5 or 1.0, with a constant look-ahead
tolerance kc = 2.0.

The parameters of the final experiment were selected from a pilot study. The exponential forms of
/f- and K-functions were tested with the following values of the exponent: 0.25, 0.4, 0.5, 0.6, 0.75,
0.8, 0.9, and 1.0. The values of the coordination variables X tested were 0.0, 0.25, 0.5, 0.75 and
1.0.

6.3.2 The Results of the Experiment

The weighted tardiness results of the experiment are shown in Tables 6-1 and 6-2, for the
different load categories and averaged over the three shop types, for slack and tight due dates,
respectively.6 It is obvious that the periodic adjustment of the priority index functions using direct
state information fails to improve the average performance of the rules consistently in terms of
weighted tardiness or percentage of tardy jobs. Also the inventory holding measures were
approximately the same as with the constant rules. The new state dependent AU rules had some
promising cases with better performance than the selected constant parameter rules. CoverT, in
the contrary, has very stable performance that is worse than the "constant" CoverT in most cases.
The percentage of tardy jobs was, however, very low compared to the other rules.

The ccordination achieved via the global queue length seems to provide some robustness.
The additional state information from the machine queue lengths improves the weighted tardiness

U performance occasionally, but the gains are, by and large, rather disappointing. CoverT holds
some advantage in heavily loaded shops but fails in the case of light load. The amount of
coordination does not appear relevant for CoverT. This can be understood by the fact that the
CoverT index aggregates the waiting time estimates thus reducing the variance of any estimation
errors. Probing the priority on next machine does not improve the average performance of the AU
rule although in individual problems the improvement can match the corresponding results in the

earlier study with the DCR [17]. The adjustment of the look-ahead parameter K according to the
relative weight of the job had mostly negative consequence.

8 See previous chapter 5 for description of the job shop problems.

0. 7 " .. " -
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Table 6-1: The performance of the self-adjusting rules in terms of normalized weighted
tardiness with slack due dates, averaged for the three shop types. The average

percentage of tardy jobs is shown in parenthesis.

Normalized Weighted Tardiness (Portion of Tardy Jobs):

Load estimates:
Rule: 80% 85% 90% 95% 97%

I Apparent Urgency: __

Constant .016 ( 4.7) .030 ( 6.4) .048 ( 7.8) .195 (16.4) .287 (19.7)
Indirect .015 ( 4.2) .025 ( 5.7) .046 ( 7.6) .189 (15.2) .281 (17.4)
Lead Time Iter. .010 ( 3.7) .021 ( 6.2) .037 ( 8.0) .182 (15.9) .267 (17.8)

(B XX Coordinated Direct Load Information:
1.0,1.0 .015 ( 3.7) .029 ( 5.9) .043 (7.9) .191 (17.1) .287 (18.1)
0.5,1.0 .015 ( 3.6) .028 ( 6.0) .049 (8.0) .192 (16.4) .283 (18.6)
0.5,0.5 .015 ( 3.7) .025 ( 5.7) .048 (7.3) .192 (16.4) .299 (17.6)

Coordinated Next Machine Probing:
1.0,1.0 .015 ( 4.3) .026 ( 5.9) .046 (8.0) .197 (17.3) .271 (18.3)
0.5, 1.0 .015 ( 4.2) .030 ( 6.6) .046 (8.5) .197 (17.2) .277 (18.5)
0.5,0.5 .015 ( 4.3) .028 ( 5.9) .048 (7.9) .197 (16.3) .272 (17.5)

Coordinated Look-ahead Adjustment:
1.0, 1.0 .015 (4.0) .026 ( 6.1) .044 (8.3) .191 (17.3) -299 (19.3)

Probing and Look-ahead Adjustment:
1.0,1.0 .015 ( 3.7) .025 ( 6.0) .040 (8.3) .193 (17.2) .291 (19.6)

CoverT:
Constant .017 ( 4.8) .032 ( 6.8) .047 (8.8) .195 (16.5) .271 (18.2)
Indirect .015 ( 4.8) .025 ( 6.6) .041 (8.7) .198 (16.8) .268 (17.5)
Lead Time Iter. .012 ( 5.0) .023 ( 8.7) .049 (12.9) .204 (22.5) .294 (24.8)

A -I 1 Coordinated Direct Load Information
1.0, 2.0 .016 ( 4.2) .028 (6.4) .052 (8.7) 205 (16.3) 283 (17.0)
0.5,2.0 .018 ( 4.3) .030 ( 6.3) .052 ( 8.6) .211 (16.1) .284 (16.8)

II
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Table 6-2: The performance of the self-adjusting rules in terms of normalized weighted
tardiness with tight due dates, averaged for the three shop types. The average

percentage of tardy jobs is shown in parenthesis.

Normalized Weighted Tardiness (Portion of Tardy Jobs):

Load estimates:

Rule: 80% 85% 90% 95% 97%

Apparent Urgency:

Constant .096 (16.6) .115 (18.8) .329 (29.2) .406 (31.1) .766 (36.7)
Indirect .096 (17.0) .109 (19.0) .327 (29.0) .404 (30.1) .752 (34.6)
Lead Time Iter. .080 (17.2) .096 (19.8) .292 (29.0) .380 (31.2) .734 (35.1)

X3. X Coordinated Direct Load Information:
1.0,1.0 .089 (16.1) .105 (19.4) .328 (30.4) .416 (31.6) .762 (35.6)
0.5,1.0 .080 (16.0) .110 (19.0) .333 (29.6) .416 (31.9) .756 (35.0)
0.5, 0.5 .089 (15.3) .107 (18.3) .328 (28.7) .413 (30.7) .749 (34.6)

Coordinated Next Machine Probing:
0 1.0,1.0 .090 (17.0) .105 (18.9) .326 (29.5) .403 (30.4) .770 (35.9)

0.5,1.0 .091 (16.9) .110 (19.6) .328 (29.9) .403 (30.2) .748 (35.5)
0.5, 0.5 .088 (16.2) .109 (18.6) .324 (28.5) .409 (30.3) .773 (35.3)

Coordinated Look-ahead Adjustment:

1.0,1.0 .092 (16.6) .112 (19.9) .341 (30.6) .425 (32.2) .760 (35.6)

CntnProbing and Look-ahead Adjustment:
1.0, 1.0 .089 (16.2) .108 (19.6) .325 (29.7) T406 (32.0) .746 (35.6)

CoverT:
Constant .097 (16.6) .113 (19.0) .330 (29.2) .417 (30.9) .750 (37.3)

Indirect .088 (17.8) .102 (20.6) .325 (29.1) .416 (30.2) .741 (34.5)
Lead Time Iter. .092 (22.4) .100 (22.3) .311 (35.4) .401 (35.1) .731 (37.8)
X 1K Coordinated Direct Load Information

* 1.0, 2.0 .093 (16.4) .109 (18.4) .327 (28.0) .405 (29.4) .779 (33.8)
0.5, 2,0 .096 (16.3) .116 (19.1) .329 (27.1) .404 (29.1) .781 (34.0)

.0 ... .
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6.4 Conclusions

Direct load information has been applied in the dispatching approach without any
significant loss of weighted tardiness performance. The coordination is achieved through
smoothed queue length information. Our failure to improve the AU and CoverT rules with direct
load information should not deter further experiments with self-adjusting rules. First, despite
careful pilot studies, the state indicators and parameter estimation functions specified here might
not have been the most appropriate ones, Second, any additional constraints (multiple resources,

Ialternative routings) will add to the potential need for more direct dual price information. Third, a

conclusion of our results is that indirect load information suffices for good performance in
weighted tardiness problems, especially with performance feedback. The self-adjusting rules can

be used, however, to find the best constant parameter values for the indirect rules.9

I The implementation of the state dependent rules depends on frequency of the parameter
adjustment and the updating of the queue estimates. Actually this direct information should be
replaced with more accurate shadow price information (resource rents). The insensitivity of our
results to the length of the estimation period allows quite infrequent use of any centralized
information. However, the utilization of the urgency probing of the next machine would require
more advanced scheduling information system. Other issues, such as the goodness of load

forecasts, errors in data, etc. should be studied before practical application.

I

9In the previous studies the parameter selection problem has not been discussed in detail (3. 17, 58]. It has been viewed
as an emplrial question without any systematic analysis of the superposition of separately estimated parameters.

I
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7. Conclusions and Future Research

7.1 Conclusions

7.1.1 Introduction

The scheduling problems addressed in this thesis are important in practice but intractable
for an exact solution. Minimizing the tardiness penalties without risking the costs associated with
other important criteria, such as number of tardy jobs, work-in-process inventory and extremely
late deliveries, can be viewed as the main goal of production control [15, 33]. Although
experienced schedulers perform this task daily in many firms, the exact information requirements
and cost trade-offs of dispatching decisions have not been subject to analytical study before. A
multitude of ad hoc dispatching rules has been suggested [1, 3, 16, 17, 40, 58], but none of these
rules has been acceptable for weighted tardiness problems in a natural variety of job shop
problems. The family of rules developed and tested in this thesis, the Apparent Urgency rules,
have well-defined informational requirements for dominating the previous dispatching rules in
weighted tardiness problems. The priority indexes of the new rules are derived from the necessary

* conditions for local optimality of a dispatching decision. A comprehensive framework is used to
categorize the state information that improves the global coordination of the local decisions,
including the job attributes, aggregate shop status indicators. and local and global performance
feedback. Finally, computationally efficient procedures have been revised and tested to
encompass the relevant state inftormation for the parametrized rules. The implementation of the
new state dependent rules requires often diagnostic or iterative analysis of the anticipated load or
rule performance, but the final scheduling decisions can be supported in a dispatching mode.

It has been shown previously that rather simple linear rules suffice to capture most of the
scheduling expertise used in practical as well as in laboratory settings [13, 25], but the attempts to
derive the priority rules from the problem data have been few and tentative [421. Our state
dependent rules formalize, in fact, the relevant economic constraints and opportunities facing a
rational scheduler. In the next sections, we conclude with the framework and guidelines for the
choice of a priority rule in a given scheduling environment. Possible extensions of this research
are discussed as pertaining to the promising directions for future research.

7.1.2 The Framework for Information in'Priority Rules

Two principal ways to add more information to a dynamic priority dispatching rule are shown
in the framework in figure 7-1 below: the extension of the forecasting horizon and type of

* information feedback, and the extension of the scope and detail of the information. First, in
addition t o the observable status of the job shop, the priority index formula and its parameters can
be based on the anticipated status within some forecasting horizon. The parameters of the rule
can also be adjusted according to the anticipated performance of the rule over a forecasting
horizon. An appropriate use of this performance feedback ensures the consistency of the

* dispatching decisions over time.
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HORIZON OF INFORMATION FEEDBACK:

SCOPE AND 1. Observable 2. Anticipated 3. Performance
DETAIL OF status status feedback
STATUS
INFORMATION: Look-ahead estim. Look-ahead adapt.

Slack/RPT (single machine) (single machine)
A. Local Basic AU,CoverT

Ch. 2. (Ch. 2) Ch. 2.

Lead time Dynamic lead time Lead time
B. Indirect estimation estimation iteration

Global AU, CoverT
Chs. 4 and 5. Ch. 6. Chs. 4 and 5.

Probing of next Rule adaptation
C. Direct DCR machine load

Global WINQ AWINQ Emery's rule
Ch. 6. Ch. 6. (Ch. 6.)

Figure 7-1: The classification of the state dependent dispatching rules according
to the information used in the priority index. The enhancements of the basic
look-ahead rules '..J and CoverT are shown along with some previous rules

and the pertinent chapters of the thesis.

Second, the spatial coordination of the decentralized dispatching decisions requires the
extension of the scope and detail of the machine and load information used by the priority rule. In
addition to the local information concerning the current machine and the jobs to be scheduled on
it, a rule can use some observable and/or anticipated information concerning the load on some
other machines as well. This global information is indirect if it does not refer explicitly to the
attributes of the other jobs or machines. Examples of indirect global load information are the
distribution of the weights of the jobs and some appropriate estimates of their lead times. The
explicit measures of the load on the other machines constitute direct global information, such the
workload of the next machine, or the opportunity cost of that machine.

The framework illustrated in figure 7.1 shows the principal categories of information
required for the implementation of different state dependent rules. The concentration of each of
the chapters of the thesis in terms of the additional state information embedded in the new rules is
indicated along with a characteristic implementation technique., The value of the additional
information depends also on the properties of the specific rule selected for the scheduling system

1If a procedure included in the framework is not tested, the corresponding chapter is shown in parenthesis.

."



* 4 - V - V -. 0. - 77 V a VV7 V

CONCLUSIONS 89

and on the quality of the available data in terms of completeness, correctness. accuracy and
timeliness.

Two priority rules were superior for weighted tardiness scheduling. Carroll [16] had revised
a family of parametrized CoverT rules for average (nonweighted) tardiness scheduling. His
original idea was to minimize the total expected tardiness by prioritizing the lobs according to the
probability of a lob being tardy allocated over its processing time. We have modified CoverT to
apply when the lobs can have different delay penalties,or weights.2 Carroll used some "standard"
waiting times of the remaining operations to evaluate the global slack of a lob in terms of the
probability that a lob will be tardy. Our analysis confirms that the conventional lead time estimates,
the multiples of the "crash time" or the remaining processing time, are appropriate for the average
(nonweighted) tardiness problems. Furthermore, this method is shown to be a special case of a
general 'priority-based" lead time estimation method developed in the thesis.3 Another family of
(parametrized) priority rules, originally derived for the single machine case by Morton and
Rachamadugu 161, 62], uses the opportunity cost of the lob not being started next as the priority
index. This -rule, the Apparent Urgency or AU rule, uses the expected waiting times on the
subsequent machines in setting the local operation due dates. Three kinds of forward
enhancements of the basic AU rule have been studied: adjusting a local look-ahead, more
accurate lead time estimation on the subsequent machines, and the probing of the relative priority
on the next machine. First, the AU priority index has an exponential look-ahead, i.e., priority
discounting with increasing slack, scaled by the average processing time. A constant length of the
look-ahead can be determined for all problems, but better performance can be achieved by
adjusting the look-ahead according to the anticipated tardiness of the load. Performance
feedback can be improved by adjusting the look-ahead period for each lob according to its
lateness in a schedule. An iterative procedure is revised for the look-ahead adaptation and tested
in the single machine case. Second, the estimated waiting times on the subsequent machines, or
the lead time of the job, are used to determine the slack and normative operation due dates for a
job. Two kinds of methods using indirect load information have been revised:

1. Lead time estimation: The approximation of the expected waiting time of a job based
on its attributes and the average level of load in the shop, or some other indirect
information.

2. Lead time iteration: The smoothing of realized waiting time of a job in successive
simulations with a dispathicing rule. In an iterative process, the waiting times yielding
the lowest cost of a partial schedule are used in the final dispatching.

The performance feedback can be obtained through iteration of longer periods to find the
parameter values or decision variable values which yield the best objective function values.4 The

Sechapters 4 and 5 for the details of modifying the CoverT rules for the weighted tardiness problIem.

3See chapter 5. for the discussion of lead time estimation in a dynamic job shop.

4 The performance feedback can be on the level of an individual job, as in the look-ahead adaptation in chapter 2, or on
the level of the full load as in the lead time iteration in chapters 4 and 5. The adjustment of a job's parameters based on the
performance of the job in a schedule appears to be as efficient as a pairwise interchange routine. In larger problems, the
simuitaineous local adjustments are not as likely to converge in global performance.
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efficient length of the look-ahead and the lead time estimates constitute indirect load information
used in the priority index. Direct state information, such as the number of jobs in a queue, can be
used to adjust periodicafly the priority setting parameters among different machines. This
adjustment of the look-ahead and waiting time estimation parameters does not improve the
performance compared to the best constant values of these parameters, but confirms the validity
of the parameter setting rules for the constant rules in a given load conditions. Third kind of direct
state information, such as the average urgency of the jobs, can be obtained through probing of the

*i anticipated load on the machines using projected AU indexes. No significant improvement of the
weighted tardiness criterion could be achieved, however, confirming the earlier findings with the
Dynamic Composite Rule in averge tardiness scheduling [17].

7.1.3 Application of State Dependent Priority Rules

The results of the large scale experiments in static flow shops (chapter 4) and in dynamic job
shops (chapters 5 and 6) have shown that the AU rule and the modified CoverT rule are very
effective in minimizing weighted tardiness penalties and the number of tardy jobs. Both rules
maintain also low levels of inventory. Since the AU rule is based on the local minimization of the
marginal tardiness cost, it works best for decomposable problems in lightly loaded shops. CoverT
is designed to minimize the average contribution to weighted tardiness costs, having an advantage
in extremely congested shops. However, the performance of both rules is sensitive to the
information used in the priority index. Four levels of information requirements can be
distinguished, indicating the relevant trade-offs for scheduling system design. These relevant
levels of state dependence of the AU and CoverT rules are:

Constant rules.
A simple system would can have a constant look-ahead parameter Kc and
waiting time estimgtion parameter P, without any global state information. The
setting of appropriate parameter values for extended periods is rather easy on
the basis of an estimate of the shop utilization. The performance of constant
rules can, however, vary 10% and more depending on the overall load
conditions. The rules are easy to implement in a decentralized system. The
new priority based waiting time estimates, which use the distribution of the
weights and processing times of the jobs, are robust enough to be applied
even without frequent updating of the indirect load information.

Lead time iteration.
The parameters ic and P5 are fixed but the waiting time estimates are improved
through centralized iteration. This method was the best in the average
performance for the simulation problems, moderating also the adverse effects
of an inappropriate parameter selection. The new priority based waiting time

estimates can be used to initialize the lead time iteration to guarantee high
performance. The implementation of the lead time iteration is computationally
manageable since the centralized simulation is straightforward and the
performance feedback is not needed very frequently. The robustness against
changes and errors in problem data has not been tested.

5 Is needed for initial lead time estimation.

.ro
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Load anticipation.
The values of K and /1 parameters are directly dependent of some state
indicator, for example the average critical queue length in the shop. The look-
ahead and waiting time estimation functions are intuitive and the state
estimates are based on simulated load conditions. The system can work in
dispatching mode most of the time since the smoothed queue length estimates
have to be updated only periodically eliminating the need for on-line state
estimation. However, these rules provide no significant improvement in the
weighted tardiness performance. The estimation of the queue lengths, once
installed, allows the use of several refinements of the AU priority index function
which require the identification of bottleneck machines and the machine-
specific adjustment of the parameter values.

Urgency anticipation.
The coordination of the priority assignment according to the anticipated
relative priority of the job on the subsequent machine requires rather frequent
updating of the projected average urgency values or the queue lengths of the
machines. The improvement of rule performance is not consistent, and the
sensitivity of the probing procedure to the updating period and changes in
problem data should be tested before implementation would be warranted.

The implementation of several state dependent enhancements was tested with the "self-adjusting"
rule with marginal results. However, combining the state estimated look-ahead and priority
probing with the lead time iteration procedure might provide enough improvement to warrant the

testing. Another area of further testing is the setting of forecasting and planning horizons for
performance feedback. The most appropriate lengths of these horizons depend on the congestion

of the shop (longer horizons are needed in more congested shops) and on the possible
forecasting errors in scheduling data.

These methods incorporate load indicators and managerial expertise into a scheduling

support system. They can be compared to the previous methods reviewed in Introduction
(heuristic search, estimation of decision rules, beam search or CPM dispatching with constraint
driven state evaluation). Most centralized systems are inefficient in rapidly changing
environments. Some are more decentralized but lack sufficient coordination of the local rules
through resource pricing or global allocation rules. Managerial support is solicited in one of two
ways: either the manager is given a fully designed, parametrized system and he has to learn to use

it, or the manager serves as the source of different situational rules, state evaluations and
constraints to be implemented in the system.6 In both cases, resulting systems are often
application dependent and difficult to. transfer to different shops. Too often the amount data
generation and mental adjustment needed to initialize and learn the system has had
counterproductive impact on the user organization. We solve the information extraction problem
by letting the managers first define the scheduling task in terms of costs, technical constraints and
local decision premises. We provide tangible rules that can accommodate the relevant
information, starting with simple and general rules and then refining the approach for additional

6 The "Take (as is) and learn to use" is the conventional approach in operations research, whereas the "Extract. use and
modify" is the approach adopted in the A.l. work on knowledge based systems.

I
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constraints and performance. The marginal benefits and costs of the dispatching decisions, used
as the priority index, depend on the future status of the shop which has been the weak part of the

* previous approaches. We let the computer analyze the anticipated future status of the shop
through iterative application of the dispatching rule. The load indicators realized in one iteration
are then used as the estimates in the next one. The effectiveness of the priority rules, the state

* indicators and the coordination mechanisms is tested through large comparative simulation
studies in statistically specified load conditions.

* 7.2 Directions for Future Research

The results obtained in developing coordinated state dependent priority rules suggest
* several extensions and new applications of our approach. First, the Apparent Urgency rules can

be generalized to consider explicitly several cost components, such as tardiness cost, inventory
* holding cost, earliness cost. and rush shipping costs of late orders. This leads to a composite

priority index approach that can also deal with several resource constraints. Second, in dynamic
* inventory problems with finite production rates and a machine constraint, the stockout costs can

be interpreted as quadratic tardiness cost function. Item availabilities can be used as slack
* estimates to derive efficient dispatching policy for the separately determined production lots.

Third, the use of priority rules in a service system can lead to incentive-problems. It the
information needed for the priority assignment is not publicly available, the user of a service
system might get a strategic advantage from overstating his (unobservable) delay penalty. This
possibility should be eliminated by an incentive-compatible pricing mechanism. Finally, the
approach of state dependent priority indexes can be generalized in search systems requiring more
extensive state evaluation, for example in a knowledge. based scheduling "expert" system. In the
following, we explore these potential research topics in more detail concerning the methods of
analysis and the expected results.

7.2.1 Composite Priority Indexes

The priority indexes studied above consist of the ratio of the expected marginal benefit (cost
avoided) to the marginal cost of of implementing the decision (the opportunity cost of the
machine). The opportunity cost of processing a job is proportional to its processing time and the

* opportunity cost of the machine has been normalized to one since we have considered only one
resource. This basic approach can be generalized by introducing a composite priority index of the

* form:
(7.1)

Composite Priority Index = I C.%aAp
*where MC.. is the estimate of the marginal benefit of processing job i immediately, in terms of

avoiding cost component i. The marginal cost of resource r is its opportunity cost Xr for the
fraction used by job j, a,, and the processing time of job j, p .

The benefit side in Equation (7.1) above has a term for each cost component of the problem.
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Examples of typical cost components and their dynamic approximations are:

1. Tardiness penalty: the simple exponential look-ahead of the Apparent Urgency rule
would be the first approximation.

2. Inventory- holding cost: before the job has been started, the holding cost can be
avoided by delaying the start of the first operation. Thus, for an extremely slack job,
the marginal benefit should be reduced by the holding-cost rate. When the job
becomes critical, however, the holding cost could be increased linearly from this
negative value to enforce a timely start of the job. After the job has been started, the
the holding cost should be added to the potential marginal benefit.

3. Rush-shipping cost: there is a fixed penalty s. for shipping job j late. An approximation
of the marginal cast rate for avoiding tardiness of the last operation can be given as

s Pcwhere pc is the estimate of the processing time of a competing job. When a lob
is projected to be tardy, this benefit would be reduced to zero. In order to avoid too
early reaction, the full rate s./pc should be reduced by a fraction for each additional
operation remaining and for the global slack of the job analogously to the CoverT rule.

4. Earliness penalty: an explicit penalty for early completion over and above the work-in-
process inventory-holding. cost, such as a special storage cost. 7 For more detailed
analysis of efficient estimation of the marginal cost rates, see [591-

Morton [541 has discussed the estimation of the opportunity costs of the resources. We
could solve an aggregate version of the machine loading problem with a method which yields the
dual prices. The dual prices are, however, usually quite unstable and thus problematic in the
detailed scheduling application. More practical approach in the simulation context would be to
use average resource utilization rents, based either on the historical values or on the anticipated
usageas in chapter 6.

The testing of different approximations of the composite priority indexes implied above4
follows the experimental design used in the thesis. Starting with static single machine problems,
each one of the cost components would first be studied separately as in the case of tardiness
costs. Then different combinations of the cost components can be tested as a composite index.
Similarly, additional resources can be added for experimenting with different shadow price
estimation methods. After detailed studies in the simple environments, the most promising
composite priority index methods could be tested in general dynamic job shop scheduling. We
expect to discover simple superposition principles for combining individually tested results from
the pilot studies in the full scale experiment. It should be noted, however, that the marginal costs
and the opportunity costs are related by duality. Hence the consistency of their estimates should

* be a guiding factor in the development of the iterative adaptation procedures. Except for small
problems, we cannot use the optimal solutions as benchmarks for the performance of the
heuristics. The comparisons among different heuristics have to be facilitated in the experimental
design.

7 Actually the inventory- holding cost should be changed from stage to stage during the manufacturing process.

Z:1
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7.2.2 The Lot Scheduling Problem

The research above has concentrated on scheduling in machine constrained open job
shops. Inventory management in closed shops provides another example of a dynamic penalties9
(for inventory holding and stock-outs) that are convex (piecewise linear or quadratic) in lateness.

* More specifically, we are considering a single machine, multi-product lot sizing problem with
dynamic demand. This problem has been solved in the case of stationary demand, allowing no
stock-outs, and with the restriction to cyclical policies. We formulate a heuristic solution
procedure that relies to certain extent on the principles of priority dispatching. The projected

* inventory- holding cost and stock-out costs, which depend on the rate of demand, will be used as
the components of a composite priority index. The cost and duration of machine setup
determines, in part, the desirable size of a manufacturing lot. Some of the costs of a setup are
independent of the sequence and scheduling situation, such as labor and fixture costs, whereas
the opportunity cost of the machine while it is down for the setup can vary over time.8 If there is
slack capacity, the capacity cost will be low allowing more frequent setups, smaller lot sizes and
lower holding costs. The lot size will be constrained from below by the availability requirement
through the production cycle. Once the lot size has been fixed, the production rate of the product
in question determines the length of the machine reservation.

The use of dispatching approach requires a specification of the lots in terms of their
(expected) processing times and due dates. The problem decomposes into two decisions:

1. When the machine, becomes idle, what is the product to be produced next.I

2. Given a product to produce, what is the appropriate lot size.

* These levels interact since the dispatching decision depends on the possible lot sizes. This
hierarchical system could be solved using iteration, solving first the problem with fixed lot sizes (e.
g. EOO or approximation of master cycle with static demand) to find to what extent the finite
production rates limit the availability of some products. Then the lot sizes can be adjusted for the
externalities cau sed by the other products. Given the tentative schedule, the dispatching priorities

* can be reassessed, possibly adjusting them for the contingencies later in the schedule.

Consider a case with zero setup cost and time for all but one product. An optimal policyI
would have larger than one unit production lots for all products since the longer production run for
one product would violate the availability of the other products. The priority index in the quadratic
problem could be derived analogously to the linear case in [591 smoothing the earliness and

analysis of the local look-ahead. The expected tardiness cost of a job can be derived by
integrating the marginal cost function over the duration of the competing lots. The optimal

* processing time of a job (lot size), anid its lead time (inventory availability) are determined
simultaneously. The production plan for one product can, in fact, be viewed as a multi-stage job
with flexible operation processing times and due dates. Cyclical production policies with fixed lot
sizes serve as benchmarks for different dynamic demand scenarios.

eThe major factor in reducing the setup costs in Japanese production has been the preparation of the setup off -line,
before the machine is stopped for setup, to eliminate the capacity cost.
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7.2.3 Incentive-Compatible Priority Pricing Mechanisms

The application of a priority rule can create incentive problems since some jobs, typically
long ones, have in the optimal schedule a longer wait than expected under the "fair" First Come-
First Served discipline. The poor global performance of the FCFS rule in terms of weighted
tardiness and inventory-holding costs indicates the need for motivating the users of a service
center to comply with a more efficient priority assignment. The people involved might also have
private information, for example the product manager alone has an accurate estimate of the cost
of missing a delivery date promised to a client. A Pareto efficient priority rule would implement the
globally optimal schedule that satisfies the jobs (product managers) via an equitable charge for a
service on a shared facility delaying some other jobs. Moreover, this kind of pricing mechanism
would be incentive-compatible if no user can gain from mispresenting his true cost parameter. We
review first some results concerning priority pricing under lateness costs before addressing the
problems of Pareto efficient incentive mechanisms for scheduling with due dates. Kleinrock [44]
studied how a customer could determine his queue position by paying a fee, or a "bribe", to the
service station manager when customers are served in the order of decreasing bribes. In a
one-server poisson queue, the optimal9 bribe is an increasing function of the individual waiting
cost. Naor [56] proposed a toll levied for joining the queue to regulate the queue length and the
externalities caused by the new entrant. The customers get a constant benefit from the service
and they have homogeneous waiting costs. Without a toll a customer would balk when the
estimated waiting time cost exceeds the benefit of the service whereas a toll for joining the queue,
imposed by a central planner, induces the customers to balk when a "socially allowable" queue
length has been exceeded. Adiri and Yechiali [2] considered several queues with different
priorities and different tolls in one service center. They study customers' optimal queue (priority)
selection rules and the related price setting procedures by monopolistic and non-monopoly
service stations. Beja and Sid [8] look at the selection of optimal1 ° priority class assignments
when the customers have heterogenous waiting time costs as well as different service time
requirements. However, the customers do not consider the state of the queues and their
incentives when making the priority class selection. Marchand [48] derived a pricing formula for
serving customers who have different wealth levels, delay costs and expected service times when
a customer cannot have priority over another one. The optimal pricing rule was linear in the mean
and variance of the service rate. Thus customers with longer service times are penalized more
than proportionately. Levhari and Sheshinski [46] extend the pricing rule to a priority queue by
determining the necessary conditions for a price system that induces the choice of the appropriate
priority class by the customer.

Balachandran [6] addressed the question of the incentives of the customers to implement an
efficient decision rule in decentralized queueing system. In his model, following [44], he allows
customers to purchase priorities based on certain information about the queueing situation. He
defines a stable payment policy which is optimal to use for any individual if it is adopted by the
others as well. The remaining problem is, however, that while stable payment policies often are

9Here optimality is defined in terms of minimum expected total cost (bribe plus waiting time cost) subject to an average
bribe constraint.

lOThe optimality of the system is determined by the expected waiting costs in the queue per unit of operating time.
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easy to determine, they quite seldom yield globally optimal performance.'" Dolan [191 introduced
an incentive compatible taxation mechanism for a centrally run service facility. In a dynamic case,
the mechanism charges an entrant a priority price that is equal to the marginal delay cost imposed
on others. This price induces the user to reveal his true delay cost when maximizing his individual
welfare. Hence the customers pay priority premiums which depend on the expected later arrivals
into the queue. Dolan discusses also the incentive problems due to the possible redistribution of
the collected taxes back to the customers.

Most of the previous work has addressed the efficiency problem, whereas the individual
rationality of the users is not always assumed. Only Dolan solves the self-selection problem which
leads to a incentive-compatible pricing mechanism. We want to extend his results. First, his
taxation scheme for the dynamic lateness problem accumulates premiums to the manager of the
facility. The same charges could be redistributed through a transfer-pricing mechanism. Each job
passing another one in the line would pay an amount no less than the additional waiting cost
directly to the other job. The research question is, does this procedure work when the jobs know
only their own delay penalties. The possible gains from lying depend on the distribution of the
delay penalties, the status of the machine queue, and the expected arrivals to the queue. We
attempt to find out the robustness of the simple transfer-pricing mechanism against systematic
deviations from truth telling through simulation experiments. Additional state dependent charges
might be needed to prevent individual gain from overstating the delay penalty.

Second, the transfer-pricing mechanism, even if efficient in in the weighted lateness case,
would break down with due dates. The changes of the costs delay would require "AU-like"
look-ahead for finding a globally efficient schedule. We propose to study dynamic bidding
mechanisms, administered according to well-known auction procedures. The complexity of the
strategy space suggests the analysis of small problems with just a few jobs to find some good
candidates for general bidding rules. Obviously a job would not bid more than the minimum of the
expected sum of waiting time and bid costs later on. Thus the bidding rules are sensitive to the
assumptions concerning the status information available either publicly or to the jobs individually.
The role of the station manager is to provide approximate load information to guide the customers'
expectation in deciding on their bidding strategy. Furthermore, only those jobs which are delayed
beyond their due dates need compensation for the delay penalty. The design of a side payment
scheme to achieve this provides another interesting problem. The potential advantages of
transfer-pricing and bidding mechanism in more complex multi-stage scheduling problems should
be studied further. Another goal of an incentive-compatible pricing mechanism is to improve the
estimation of the strategic tardiness costs which are usually unobservable. Repeated bidding for
priority reveals implicitly the cost that a manager assign to the consequences of being late.

11A simple example of an optimal payment policy with homogeneous service time expectations and constant waiting
costs is to pay nothing, no matter how many jobs are in the queue. However, this policy is obviously not stable since a
customer joining a long queue would have an incentive to pay a positive bribe to avoid the waiting cost. An example of a
stable rule is a strictly increasing payment with the length of the queue. This policy, however if followed by all customers,
implemets the LIFO discipline that is known to be non-optimal.

.,S. . . .. .. ,,
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7.2.4 Diagnostic Analysis for Scheduling Expert Systems

The design of most scheduling systems has evolved around a few analytical models of the
scheduling problem. Different users often adapt their own thinking to the limited view presented
by the system to maintain communication. An alternative scenario is offered by the development
of several expert systems and a technology that facilitates the extraction of the inference rules and
multiple representations of the problem domain, or the knowledge base embodied in the
experience of the human schedulers [23, 24, 37]. The inherent complexity of scheduling and the

a computational burden of the main tools, rule-based languages and frame-like knowledge
representation systems, presuppose the application in conceptually rich tasks, such as checking
the consistency and completeness of the formulation of a scheduling problem, analysis of the
feasibility and structure of a given schedule, and explanation of the trade-offs among decision
alternatives, rather than in computationally intensive tasks such as schedule generation. Hence a
diagnostic analysis of production -inventory systems with problem-driven data analysis, trouble-

shooting and incremental scheduling, one of the underrated areas of research [33, 60, 69],
appears to be well suited for an application of knowledge-based systems. The following topics
provide our challenge for new heuristic approaches and their practical implementation.

The precedence relations among jobs and their operations are important in the job shops
* with product assembly and project managament. Usually jobs have several alternative routings

through the shop [30, 54], and the setup costs depend on the sequence of the jobs [7]. The
allocation of other resources besides machines, such as labor and tools, would require an
automatic link between the aggregate production planning and the detailed scheduling models. A
hierarchical planning framework, similar to the concept in closed job shops [32, 34], would allow
aggregate planning decisions as preconditions of scheduling, and a detailed schedule as an input
to the loading of capacity. There are empirical studies in closed shop environment [9], and some
analytical approaches have been tested for the coupling of capacity planning and Scheduling
decisions in single-machine open shop [26, 271. We will simplify the analysis on the detailed
scheduling level by using state dependent dispatching rules to generate an approximate timing of

* the jobs, given their tardiness penalties and initial estimates of the opportunity costs of the
resources. Then the capacity planning could assign the jobs to certain periods. The expert
system should also be capable of scheduling on different levels of aggregation to allow a
hierarchical analysis of the problem.

. - Equipped with the hierarchical, multi-resource model of the scheduling environment, the
expert system would be capable of useful diagnostic analysis. The data of a trouble-shooting
problem would include the records of the operations in question, the specifiaction of any existing
rules, and the measures of performance. In addition, the system would require a history of the
implemented decisions, including possible previous plans and changes of operational policies.
The system could check the consistency of past scheduling decisions by using the priority index of
a state dependent rule. Given some symptoms of an unuisual situation, the system would identify
the possible problems involved. The task of the system would be to find out the possible causes of
the problems, for example if there has been errors in the data, if poor decisions have been made,
or if the decisions have not been implemented properly. The same diagnostic approach would
suffice to examine future plans for consistency, sensitivity to changes in data, sensitivity to
implementation errors (systematic bias or random errors), and to ensure contingency plans for
flexibility.
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The diagnostic analysis of scheduling problems should orient to the most appropriate level

of abstraction, indicating the need for hierarchical knowledge representation [24, 681. The
hierarchy would encompass different aggregations of resources and schedules and a focusing

capability to concentrate on most relevant issues, such as the scheduling of bottleneck facilities
and the availability of critical parts. Most interesting extension to the existing scheduling expert

systems [24, 37] should be, however, the capability of representing the diagnosis problem, in terms

of some (tentative) solutions, as several internally cosistent mappings between the. primal

(measurable) and dual (opportunity cost) dimensions.

0
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