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1. STATEMENT OF PROBLEM STUDIED

Observed and modeled concentration fluctuations in smoke plumes

in the atmosphere are quite large, with the standard deviation

at least as large as the mean C. There is interest in concentration

fluctuations because of their importance in assessing environmental

and toxicological effects, in evaluating models for predicting mean

concentrations, and in determining the response of remote sensors

pointed towards smoke plumes. During the past ten years there has

been a large increase in research on this subject because of the

concerns listed above, because of advan.es in the development of

instruments than can measure short-term concentration fluctuations,

and became of increases in speed and storage capabilities of computers

that some researchers are using to run models of concentration

fluctuations.

The purpose of the research performed under this contract is to

review existing models and data sets on concentration fluctuations,

and use this information to develop and test a simplified model.

Emphasis is on the use of U.S. Army data to evaluate the model. As a

result of the model evaluation, research required for model

improvement is recommended and steps taken to begin some of this new

research.

2. SUMMARY OF THE MOST IMPORTANT RESULTS

This research project can be divided into three tasks:

a Review of existing models and data,

* Development of simple model and evaluation with U.S. Army

data.

* * Development of strand model.

The first two tasks were completed during the first 20 months of the

project and most of the results are reported in the publications that

are listed in Section 3. Abstracts of the journal articles are given

here, and the reader is referred to the original articles for details.
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The last task has been underway since September, 1984, and is not

completed. It is briefly reviewed below and a more detailed progress

report is given as Appendix A.

2.1 Review of Existing Models and Data

CONCENTRATION FLUCTUATIONS IN A SMOKE PLUME

Steven R. Hanna

Atmospheric Environment, 18 (6), 1091-1106

(First received 5 September 1983 and received

for publication 17 January 1984)

Abstract - Previous research results are reviewed and used to derive a

new set of analytical formulas for predicting concentration

fluctuations in smoke plumes. The meandering plume approach and the

internal plume approach are compared. Some simple models are tested

with field and laboratory data sets, showing that several aspects of

the data (e.g. the concentration fluctuations on the plume axis) are

reasonably well simulated. However there is much room for

improvement, since the models have some fundamental disagreements and

must more testing with data should take place. In particular, a good

knowledge of the Lagrangian time scale is essential for predicting

concentration fluctuations.

2.2 Development of Simple Model and Evaluation with U.S. Atmy Data

THE EXPONENTIAL PROBABILITY DENSITY FUNCTION AND

CONCENTRATION FLUCTUATIONS IN SMOKE PLUMES

Steven R. Hanna

Boundary Layer Meteorology. 29, 361-375.

4 (Received in final form 31 May, 1984)

Abstract - Observations of 1-s average concentration fluctuations

during two trials of a U.S. Army diffusion experiment are presented and
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compared with model predictions based on an exponential probability

density function (pdf). The source is near the surface and

concentration monitors are on lines about 30 to 100m downwind of the

source. The observed ratio of the standard deviation to the mean of

the concentration fluctuations is about 1.3 on the mean plume axis and

4 to 5 on the mean plume edges. Plume intermittency (fraction of

non-zero readings) is about 50% on the mean plume axis and 10% on the

mean plume edges. A meandering plume model is combined with an

exponential pdf assumption to produce predictions of the intetmittency

and the standard deviation of the concentration fluctuations that are

within 20% of the observations.

In addition to the above paper that was published in Boundary

Layer Meteorology, three other papers have been prepared in which the

simple model is compared with observations, two of these can be found

in conference proceedings (CRDC Conference, AMS Conference), and the

third is to be published soon in Atmospheric Environment. The first

two present additional statistics from the U.S. Army Smoke Week III

experiment, including observed probability density functions and

moments of the distributions of instantaneous concentration, plume

width, plume centroid, and cross-wind integrated concentration. The

latter paper compares the new model with observations of ground level

concentrations resulting from tracer releases from a tall stack in

Deardorff and Willis' convective tank.

2.3 Development of Strand Model

The strand model is a new concept that is under development and

has not yet been published in a journal or report. A preliminary

description of the model is in Appendix A. The purpose of this

research is to explicitly account for concentration fluctuations at

very small scales. This model assumes that the source emits strands

of polluted material, which diffuse due to molecular motions and split

when their diameters double. If polluted strands are close enough

together, they may entrain each other when they split. The whole

packet of strands also diffuses at a rate comparable to that of

* 3
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an instantaneous Gaussian puff. When combined with a model for the

meander of the instantaneous plume, the model gives predictions in

agreement with wind tunnel data of Fackrell and Robins. The model

produces a probability density function of the concentration

fluctuations at a point, and can account for the effects of source and

sampler size and sampling and averaging time.

3. LIST OF PUBLICATIONS

Hanna, S.R., 1984. Concentration Fluctuations in a Smoke Plume.

Atmos. Environ., 18, 1091-1106.

Hanna, S.R., 1984. The Exponential Probability Density Function and

Concentration Fluctuations in Smoke Plumes. Bound. Lay.

Meteorol., 29, 361-375.

Hanna, S.R., 1984. Observed and Modeled Concentration Fluctuations in

a Small Smoke Plume. Proceedings of Fourth Joint Conference on

Applications of Air Pollution Meteorology. Am. Meteorol. Soc.,

128-131.

Hanna, S.R., 1984. Comments on Deardorff and Willis' (1984) Paper

Entitled "Ground-Level Concentration Fluctuations from a Buoyant

and a Non-Buoyant Source within a Laboratory Convectively-Mixed

Layer." to be published in Atmos. Environ.

*Hanna, S.R. and J. Pleim, 1984. Characteristics of Observed

Concentration Fluctuations During Smoke Week III. Proceedings of

1984 CRDC Scientific Conference on Obscuration and Aerosol

Research, Aberdeen Proving Ground, MD.
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4. LIST OF MEETINGS ATTENDED

Feb. 20-21, 1983, White Sands Missile Range.

Concentration fluctuation data sets were discussed with W.

Ohmstede, R. Sutherland, and others at the Atmospheric Science

Laboratory. A seminar on models of concentration fluctuations

was given. Plans were made for a possible smoke experiment to

take place this fall.

June 15-17, 1983, ARO Quail Roost Workshop on Aerosol Dispersion in the

Atmospheric Surface Layer.

At this workshop current U.S. Army research projects were

discussed and recoimendations made for future research priorities.

November 17, 1983, Aberdeen Proving Ground, MD.

A paper entitled "Concentration fluctuations in smoke plumes from

near surface releases" was presented at the 1983 Scientific

Conference on Chemical Defense Research. This research project

was discussed with D. Sloop and R. Saucier of CSL.

December 5 & 6, 1983 and February 3, 1984, Boulder, CO.

Dr. Hanna attended a meeting of the Large Eddy Simulation Working

Group, sponsored by ARO. Research plans for this project were

discussed with W. Bach of ARO and W. Ohmstede of ASL.

June 25, 1984, Aberdeen ProvinE Ground, MD.

Dr. Hanna attended the 1984 CRDC Scientific Conference on

Obscuration and Aerosol Research at Aberdeen, Proving Ground, MD,

where he presented a paper entitled "Characteristics of Observed

Concentration Fluctuations during Smoke Week I1.
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October 19, 1984, Portland, OR

Dr. Hanna presented a paper entitled "Observed and Modeled

Concentration Fluctuations in a Small Smoke Plume" at the

AMS/APCA Fourth Joint Conference on Applications of Air Pollution

Meteorology.

October 23-25, 1984, Kiawah Island, SC.

Dr. Hanna attended the DOE/AMS Workshop on Model Evaluation in

Kiawah Island, SC, where he presented a talk on the results of

this project as they affect model evaluation, and discussed

progress with Dr. Bach of ARO.

November 7, 1984, Raleigh, NC

Dr. Hanna visited Dr. Bach and Dr. Flood at ARO in RTP, NC.

December 5, 1984, White Sands Missile Range, NM.

Dr. Hanna visited ASL at White Sands Missile Range, NM, where he

presented a seminar on his research and discussed this project

with R. Meyers and other ASL scientists.

5. LIST OF PARTICIPATING SCIENTIFIC PERSONNEL

Dr. Steven R. Hanna

Dr. Robert- J. Yamartino

Mr. Jonathan Pleim

No degrees were awarded.
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APPENDIX A

A STRAND THEORY OF CONCENTRATION FLUCTUATIONS

by

R.J. Yamtartino

and

S.R. Hanna

STATUS REPORT

* ENVIRONMENTAL RESEARCH & TECHNOLOGY, INC.

696 Virginia Road, Concord, Massachusetts 01742
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1. Introduction

The notion that pollutants may be emitted, dispersed and

described mathematically as though the material were confined to small

packets of size X has been described by Csanady (1973), Chatwin and

Sullivan (1979), Venkatram (1983), and recently by Chatwin (1984).

The prime motivation for such a formulation is that higher moments of

the concentration distribution, including the variance, can be readily

computed since the problem reduces to that of "counting" statistics.

The size of the packets, X, is generally chosen to correspond

to the conduction length scale where molecular diffusion is the only

operative dilution mechanism; however, most treatments then either

ignore the effects of molecular diffusion or assume that packet growth

by molecular diffusion results only in the entrainment of clean air.

In this paper we assume that pollutants emerge from a source in

long thin strands, rather than small three-dimensional packets, and

that these strands subsequently grow by diffusive processes until a

time td' whereupon they split into two strands that then repeat the

above mentioned process. Consideration of strand entrainment of both

clean and polluted air leads to a differential equation for the time

development of the spatial density of polluted strands. The solution

of the resulting first-order, non-linear, differential equation

combined with counting statistics then permits a determination of

ensemble average concentration statistics as would be measured by a

finite aperture detector possessing a time response that is extremely

rapid compared with all relevant time scales.

Model predictions for plume intermittency are then compared with

the wind tunnel observations of Fackrell and Robins (1982). Further

assumptions about the statistical nature of the strands then permits

total and conditional (i.e., C>O) concentration statistics to be

evaluated. Additions to the theory to include plume meander, time

averaging, and finite response detectors are discussed.

'.\- I
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2. Strand Theory

2.1 Development of the Governing Equations

Rather than postulating a non-linear differential equation for

the concentration variance, as is done by Lewellen and Sykes (1983),

we begin with the simple notion of pollutants confined to thin strands

of diameter X that are dispensed by turbulent eddies and also grow

in size until shear forces tear the strand in two. Such an approach

leads naturally to the computation of higher moments of the observed

concentration distribution including the variance. The actual size of

these strands will correspond to the conduction length scale, which

Chatwin and Sullivan (1979) estimate to be of order 10- 3 meter;

however, specific choice of a numerical value for X is not a

prerequisite for development of the formalism.

Consider a source of diameter ds emitting at rate Q (mass/time)

into a flow field of velocity u. Assuming that the emissions are well

mixed across the source aperture, one might imagine (Figure 1) that

the pollutant emerges from the source in thin strands of diameter X

and containing a concentration C . In such a case the number of
0

strands, N , emerging would be

N ( /()2  (I)

and the concentration in the strands would be

ds 2

Co  Q/( d2 u) (2a)

or

C = Q/[21r a (0) az (0) u] (2b)o y z

in the more familiar notation of plume modeling. Instantaneous
concentrations C(x,y,z) downwind could then be expressed as

C(x,y,y) = C D(x,y,z) (3)0

' ,.\- 2
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where the instantaneous plume dilution function D(x,y,z) is defined

such that at the source D(x,y,z) = D(O,0,O) = 1. The dilution

function is assumed to be known, through means of a numerical or

analytic model, but is given for the Gaussian plume model as

a C(0 O) 1 1 2

D(xyz) = y(x) a(x) exp [- y (y/y(x)) - 2 (z/Oz(x)) . (4)

where o (x) and a (x) are the horizontal and vertical
y z

instantaneous plume width standard deviations respectively as a

function of downwind distance x. Substituting Eqs. (2b) and (4) into

(3) gives us back a Gaussian plume expression and indicates that

nothing unusual results from this re-grouping of terms.

Ignoring the minor "defect" introduced by the assumed Gaussian

shape at the source, earlier assumed to be uniform, we note that when

the dilution function takes on a maximal value of unity all available

strands are populated with pollutant, as is consistent with our

definition of the number of polluted strands N by Eq. (1).
s

Temporarily ignoring diffusive breakup or splitting of the strands,

these entities would simply disperse relative to each other, so that

at some downwind receptor sampling strands of air, a fraction D(x,y,z)

would contain pollutant and a fraction 1-D would contain only "clean

ambient air". Thus, we may think of D(x,y,z) as either the usual

diffusion function or as the polluted strand density function

representing that fraction of locally available strands that are

polluted. With this information in hand, one could immediately write

down expressions for mean square concentration, concentration

variance, and other moments of the distribution; however, the results

would be in poor agreement with experiments as the all-important

diffusive growth of the strands and subsequent strand breakup has been

ignored.

A -4
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If the strands experience diffusive forces specified by the

molecular diffusivity v, they will double in areal size in a time,

td , given as

t = X2 /C(4-) (5a)

whereupon the strand is sheared apart by turbulent eddies into two

strands of diameter X. Given molecular diffusivities of order
-5 2 -3 -2 -310 m /sec and X = 10-m, one computes td in the 10 - 10

second range; however, as with X, the precise numerical value of

td is not critical at this point except to note that it will be

sub-second and thus relatively short in comparison to many time scales

relevant to atmospheric dispersion. More generally we may merely say

that growth in the number of strands is associated with a time scale

T without relating T to td via a rigorous relation such as

T = t/ln2 , (5b)
d

that would result if we took the doubling concept literally. Allowing

such a growth in the number of polluted strands creates an interesting

dilenmma that will prove quite useful in developing a differential

equation for the number density of polluted strands. Imagine that a

long pipe with diameter d were connected to the source described5

earlier and that the flow speed u was such that the travel time in the

pipe was much greater than T. N strands of concentration C
S 0

would go into the pipe and, since the pipe is completely filled with

strands, N strands of concentration C would come out the far

end. What if anything, happened during the journey along the pipe?

Diffusion and strand splitting did in fact occur, but since the pipe

was already as full as it could possibly be with a polluted strand

density of D = 1, the growing strands had no other choice but to

devour existing strands with the result that no net growth, g,

occurred in the polluted strand density. Can we then write down a

plausible differential equation describing the time evolution of the

effective polluted strand density, p(t), defined as

p(t) 2 g(t) D(t) , (6)

A-5



where the dilution function D(x,y,z) has been re-expressed as

D(t) = D(ut,y,z) for compactness? Knowing also that the number of

strands will grow freely as g - exp(t/T) if the polluted strand

density is low (i.e., p <<l) we may write the differential equation

p' p(1-p)/T + g D' , (7a)

where the prime indicates the time derivative operator, as the

simplest form that possesses the three necessary properties:

a) exponential growth of polluted strand fraction, p, with

time scale T for p small

b) termination of growth as p approaches unity via the term

(l-p), and

c) forced dilution created by changes in D(t) in time.

Applying the chain rule to Eq. (6) and dividing through by D, Eq. (7a)

may be alternatively expressed as

g' = g(l-p)/r (7b)

which, because the factor (l-p) corrects for new strands consuming

or recombining with existing strands, elucidates the meaning of the

term "net growth" function being applied to g(t).

Equation (7a) for the polluted strand density or fraction is the

principal result given to us by this simple, physically-based model of

strand behavior, and this equation may be used in conjunction with any

dispersion model, analytic or numerical, giving rise to a diffusion
function D. It is also worth noting that since p(t) is closely

related to the intermittency factor y discussed extensively by

Wilson et. al. (1984), many useful expressions could be written down

by inspection; however, we shall first explore the theory further.

2.2 Closed Form Solution

Without the forced dilution function D', Equation (7a) is

identical to that used by population biologists to describe population

A-6



growth in a world with a fixed and finite food supply and is easily

solved analytically by means of the substitution y = 1/p. (Kaplan,

1958). Using this hint it quickly follows that a solution+ to

Equation (7b) is

g(t) = e-ti+ 1 f dt ' e(t'-t)/ITD(t')}- (8)

where t' is simply a dummy variable for the time between release

(i.e., t = 0) and present time t. The only thing disturbing about

Eq. (8) is that the path between source and end point at time t is not

specified. Figure 1 shows how many different paths, equivalent to the

strand trajectories, could end up at a specific point and that some

weighted consideration of all possible paths (and thus strand density

time developments) should be involved in the correct solution of

Eq (7b). A plausible solution might consider the straight line path

as the mean solution pathway with the reciprocity theorem suggesting

that D(t') in Eq. (8) be replaced by

I
D(t') = 2ir(t-t') z(t-t') -f dy'dz'D(ut',y m+y',z m+z')

( -y') 
2  -z')2

expf- 2 m- 2 2 (9)2 y 2tt, 2 a 2(-)
y z

where Ym = yt'/t and z = zt'/t specify the mean path and y',z'

are dummy integration variables. While Eq. (9) may represent a

significant theoretical point, it appears to be of secondary

importance in most applications. in addition, we note that Eq. (9)

can be cumbersome and numerically problematic to evaluate even for a

single mean path; thus, we turn to numerical integration of the more

well-conditioned Eq. (7b).

+Non-Linear differential equations may have multiple solutions.

A- -
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2.3 Numerical Solution

Numerical integration of Eq. (7b), subject to the initial

condition g(O)=1, must recognize that the potentially explosive growth

(i.e., exponential) in the solution could lead to rapid divergence of

the numerical solution from the true solution. For this reason we

adopt a second-order accurate, time-centered (i.e., Crank-Nicolson)
procedure to provide a reasonable compromise between accuracy and

stability. The finite difference form of (7b) then becomes

gn+l n + (gn+l + n) (- D n+l - 2 gn) (10)

where 8 = At/T and At is the time step. The time advanced
2

value, gn+l, appears on both sides of the equation, and solution of

the resulting quadratic equation for gn+l yields the familiar

-b + (b2-4ac)1/2
1n+1 2a (I)

where a = 8 D
2 n+11b I B [I- (D + D_]

2n n n+l
and c = [1 + 5(1-i gnDn)]

Equation (11) is then marched in time using a time step chosen as the

lesser of 0.IT and 0.1 D/D'.

Figure 2 shows several crosswind profiles of the resulting p

function at several values of downwind distance x=ut using parameters

relevant to the wind tunnel studies of Fackrell and Robins (1982).

The most interesting feature of these curves is the variation in

crosswind profile shape as one moves to different downwind distances.

Profiles with a fairly small plume-axis value of p, denoted poI
look Gaussian in shape while those with po=l show a broad

flat-top region with a precipitous drop at large ylc . As it willy
prove important in the inclusion of plume meander effects to know this

A -8
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crosswind profile function, the crosswind behavior of the analytic

solution, Eq. (8), was considered assuming that the on-axis values

were available from the numerical integration procedure described

above. For the particular trajectory that follows the path

y C y z 9 a it can be shown that

12 Y
p(utyz)IPo S 2 2)_ (12)

I + exp[-1 ( + C )](S(ut)-l1

where po = p(ut,0,0)

and S(ut) - et /g(t) D(ut,o,o)e tITp . The function
0t/S(ut) is just the ratio of what g could have been (i.e., et ) if

its growth were unhindered to what it actually is on the plume

centerline and hence it will be referred to as the "growth suppression

factor" S. Equation (12) provides a reasonable description of the

crosswind profiles shown in Figure 2 with the exception that falloff

is too rapid beyond when p/p0 = 10
-2 , but this may not be a

serious drawback since this plume fringe regime should not dominate

most practical problems.

2.4 Statistical Measures

Once the mean probability p is known at the receptor, the

binomial distribution (Ross, 1972) gives the probability P(j), that j

of the N detected strands contain pollutant, as
r

N! -N-j
P" PJ j -0,1,..... N:P(j) - (N rj ) , p(1-p) r 01,.

rr
4 S

2where N =(d) for a receptor having an aperture dr.
r rrThus, the probability distribution for detecting j polluted strands is

identical to those used for predicting the probabilities in die

(p 1/6) and coin (p = 1/2) toss games.

A-10



Since, there is always the finite probability

N

P(O) = (-p)

that none of the strands contain pollutant, the "intermittency" factor

S= -P(O), (15)

discussed extensively by Wilson et al. (1984), will be less than one

even for an ideal, zero concentration threshold detector and in the

complete absence of plume meander, as presently assumed here.

Figure 3 shows the intermittencies predicted by Eq. (15) for

plausible strand properties of T = 0.2 sec and X 0.4 m and

superimposed onto wind tunnel measurements of Fackrell and Robins

(1982). The curves, one for each of the five elevated source

diameters considered, demonstrate that the strand theory approach can

i) yield predictions that exhibit reasonable qualitative

behavior in terms of source size and downwind distance

dependence and

ii) span the range of observed values.

However, as important ingredients (e.g., plume meander, finite

detector thresholds and averaging times, strand concentration

distribution assumptions) are still missing from the formulation,

results depicted should only be taken as grounds for "cautious

optimism."

The moment generating function for the binomial distribution

gives the ensemble average number of polluted strands sampled as

3 = p , (16)
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the ensemble mean square number of polluted strands as

.2 2 (7
= (N -)p + NP (17)

r r r

as well as any higher order measure j Thus, the ensemble variance

in the number of polluted strands is just

2 .2 
()

a. =J -j =N rp(-p) (18)

so that, even if at each point all strands have the same concentration,

a finite ensemble concentration variance would be observed.

Hypothesizing that at the receptor each of the j polluted strands

has the same concentration, Cs, the particular sample will have.

concentration

C(j) = Cs (j/N r ) (19)

and the ensemble mean concentration will be

C= £ P(j)C(j) = C (j/ ) = C sP (20)

However, for this result to be consistent with Eq. (3) it must be true

that

S
Cs =C/g(t) (21)

A-13



Similarly, the squared concentration

2 (jN)2 2 )2 (2C c(j) = c(/N) = j C /(gN r )  (22)

results in the ensemble mean square concentration

2 2 22C E P(j)C Q() = [(l-I/Nr) P + PINr ](C /g)2  (23)i 0

and variance of

-2
2 c2 _ -1  )(C /g)2 (24)O C Nr o-(-)C

The total concentrations fluctuation intensity, i, can then be

expressed as

S

-22 2- 1i= c/C = (1/p -1) (25)

i C

Wilson et al. (1984) discuss the logic and convenience of

decomposing the fluctuation intensity, i, into two parts: the part

arising from detecting positive concentrations and the part due to

samples where the detector sees no material. The resulting

decomposition is

.2 .2 "

i I (1-y)/y , (26)

where

i2  2 2  
,21=p acp/C p  (27)

p p
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and the subscript p refers to that fraction y of the samples where

the receptor conditionally sees positive (i.e., finite non-zero)

signals. This decomposition into conditional quantities, denoted by

the subscript p, is also convenient for consideration of the effects

of allowing strands to have a distribution of concentrations.

2.5 The Exponential Strand Concentration Distribution

In the previous section, all strands at a given point in space

were assumed to have the same concentration C; however, a receptor
s

at some downwind location will detect strands that have experienced a

spectrum of histories as oppose A to the simplistic notion that each

strand will have suffered &(t)-1 bifurcations. In developing a theory

of strand "ageing" as a sequence of bifurcations, analogy (Ross, 1972)

with other decay distribution examples (e.g., radioactive decay,

probabilistic failure analysis) suggests that the strands will have an

exponential age distribution

1 -r/m
P(r) = - e (28)

where r is the age parameter and a represents the average strand

age. As increasing strand age corresponds to a greater number of

bifurcations, yielding successively lower strand concentrations, it is

reasonable to conjecture that these concentrations also will be

distributed exponentially as

0 ~-r/16
C (r) = C e (29)s 0

where & is a constant describing the effect on concentration of

a single bifurcation. The average strand concentration, which Eq.

(21) tells us must be C /g(t), is then

+A value of 6 = ln2 would yield C (r) C ) implying

that each effective bifurcation reduced the strand concentration in

half, but such a strong assumption is not necessary.

A-15
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Co
C - J dr exp[-r(I/a + 1/6)] (30)

S a 0

oS

C 0o /(1 + ct/6) C 0/gCt)

which therefore constrains the ratio a/6 to be

(a/6) = gt) - 1 (31)

and leads to the same ensemble mean concentrations of

C= C P/g (32)

obtained assuming uniform concentration strands. Perhaps, not

surprisingly, the average age parameter x has a time dependence

proportional to g-1. At the source g=l and the distribution becomes

an infinite spike at r=0 (i.e., the delta function 6(r))

corresponding to the emission of unaged strands of concentration

C . It is also noteworthy that, even at great distances from the
0
source, there will be a finite probability of detecting an undiluted

strand with the original concentration C 00

Computation of higher moments of the observed concentration must

recognize that for any one sample only j of the N strands are~r
populated with pollutant. Thus, the mean square concentration for j

polluted strands involves the j-dimensional integral

C2

2 2 r /6 -r2 /
6  -r /6 2

C (j) 0 Jfdr f dr.. Idr [-1 e2 i .+ e j
2 1 2. .r O O O

(rI + r2 + .. + r.)/cL (33)
*e 1

c2  .2
0 + 21 1/ t I 

j 2

N2  1 + 2(I + 16)
r
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and the ensemble mean square concentration

C= £ P(j)C2 (j)
i

involving the sum over I from zero to N becomesr

2 2-Co . Np N (N -1)p +N p-N p
2 0 r + r r r

N2  1+2c%/& 2le6
r

after invoking the expressions for mean j and j2 given by Eqs. (16)

and (17). Cancelling Nrp contributions in the second term and

replacing a/6 with S-1 then yields the final results

C 2  (N -1)p2

C2 = + ] and (34)
N 2S-1 2r

• C2

2 _ 2 2]2" re. - (plg) 2  (35)'- -" WN 2g-1

for the ensemble mean square concentration and concentration variance

respectively. The corresponding conditional estimates can then be
-1

immediately written down as y times the corresponding ensemble

mean values given by Eqs. (32) and (34), since excluding the j = 0

terms from the sum requires renormalization of the probabilities P(j)

by the factor y = (1-P(o)) to ensure that the conditional

probabilities P c(j) obey the constraint

E P U.) = 1 j = 1,2,....
c r

* A- 17 0
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where P c(j) = P(j)/y. The equivalent conditional variance is then
c

just

C
2

2 =A (..°A..__2.. - (p/g)2 ((36)
dcp = NM 2g-1 (rC/~l~)

mr

and the conditional concentration fluctuation intensity, i, given by

.2 = - N (1/y-1)-1] (37)

p N D(2g-1) r

Far from the source g>>l and D<<1 so that the first term dominates and
1/2

ip = (Y/(2N rD)] , revealing the increasing fluctuation
intensity as one moves away from the plume centerline.

3. Inclusion of Additional Effects

The theory development to this point has focussed on the problem

of determining ensemble statistical measures. Experimental evaluation

of these measures would require repeated sampling at fixed points

relative to the centerline of the instantaneous plume. While perhaps

not an impossible experimental feat, it is of greater relevance to

adapt the theory to the case of a plume meandering back and forth

across a receptor fixed in space and accepting samples without regard

to the plume's position.

In the case of the Gaussian plume model example we are able to

build upon the meandering plume formalism developed by Gifford

(1959). Defining a coordinate system where the receptor is located at

a point (y,z) relative to the mean centerline position of the plume,

the position of the receptor relative to the plume centerline at any

instant is (y-y',z-z') and occurs with probability

PNy',zt)=2 ) exp[- i(y'/d ))2 - (z,/O,§))2
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neglecting the influence of ground reflections. Referring back to

Eq. (32) and recalling that D = p/g we may immediately recompute the

mean concentration as

C= C J dy'dz'P(y',z')D(x,y-y',z-z') =C D (x,y,z) (39)0 o T

where D is given by Eq. (4) and D has the same form as D but uses
2 2 1/2the total sigma, a = (o +o) in place of the

instantaneous sigma measures a, referred to as a and ay z

throughout this paper.

Computation of the mean square concentration involves a similar

integral averaging of Eq. (34) and can be written

C 2

C - j dy'dz'P(y',z)[2- + (N - 1 (40)
r2g-1 r

where

D = D(xy-yl,z-z')

p = p(x,y-y',z-z') ,

g = plV

and p(x,y-y',z-z') can be approximated with the help of Eq. (12).

Given the complexity of Eq. (12), evaluation of Eq. (40) will either

require additional approximations or numerical integration.

Inclusion of the effects of a finite detector concentration

threshold, CT, is another complexity that may require numerical

evaluation in most cases. Referring back to Eq. (33), the generalized

form of the nth moment may be expressed as
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a , a -r1/6 -r/6
n j1 2

Cn(j) = IN dr 1 dr 2 I dr(e + e *... + e
0 0 0 (41)

-(r 1 r2+ ... r. )/ (e-r1 /6 e-r //6 -CTN/C*e 1 2" 0(1 ... e .j -NC
T r o

where the theta function e(x) is defined as

O(x) = 0 for x < 0
I for x > 0

Need for the e-function disappears as C *0 and can be replaced
T

by altered integration limits for N = 1 or 2, but we have not yetr
developed a general, analytic solution for Eq. (41); however,

integrals of this type are relatively common in statistical

mechanics. Once accomplished, one could compute the weighted sum over

j followed by the integral averaging suggested by Eq. (40).

Another important effect of the e function in Eq. (41) is that

the n = 0 normalization moment is less than unity so that the

probabilities given by Eq. (13) are modified and become

P'(j) = P(j) C (j) (42)
0

This has the immediate effect of reducing the value of y from that

given by Eq. (15) to

N
r

0
4 = I - P(O) - E P(j)[1-C (j)] (43)

j=1

thus, indicating the significance of instrumental "details" on the

outcome of concentration fluctuation experiments.
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Perhaps the last refinement that would be considered essential

for application to experimental data is the correction for averaging

time. For very small averaging times, Ta, much smaller than the

Lagrangian time scale, TL, associated with the principal, meander

driving eddies, it is thought that the temporal smearing is equivalent

to an increased receptor aperture diameter d defined asr

d' dr + (a a l/Ta (44)
r r v w a

where a and a are the relevant lateral and vertical
v w

turbulent velocities. This then has the effect of increasing the

number of strands received by the receptor to

N' = (dI) 2 = r+(Ovow)1/2 a /d r]2  (45)

which in turn has the effect of lowering the magnitude of the

concentration fluctuations as given by Eq. (35) for example.

Extension of the theory to longer time averaging periods remains

to be worked out in detail, but may require further assumptions about

the form of the auto-correlation function and T /TL

Venkatram (1979) provides results of assuming an exponential form for

this function and Hanna (1984) discusses other treatments of this

problem.

Finally, it should be noted that the strand theory can easily be

extended to multiple species. This extension could be an important

step in modeling the influence of sub-grid scale inhomogeneities on

processes involving non-linear chemical reactions.
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