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The soecific oroblem addressed here is the develooment 
of a methodology for specifying resources^ Doth physical 
resources and oroblem solving (software)* in an 
imolementation independent manner. This methodology can 
then be used to specify successive layers of resource 
abstraction/ beginning with the ohysical resources at the 
lowest level and ending with oroblem solving abstractions at 
the highest level. To achieve this goal we need a 
conceotual framework that has the following features. 

It must oe presentable in a clear and precise form. 

It must orovide a comolete and  rigorous  theory  of 
abstract soecification 

It must include a oractical theory of imolementation 

A number of peoole have worked on the  related oroblem 
of specifications of abstract data tyoes.  The focus of this 
reoort is the  application  of  similar  technigues to  the 
soecification of physical resources. 

To further  clarify  my  oojectives  here,  I  wish  to 
briefly  describe  some of the historical background leading 
uo to the current work. 
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Tradi t i ona11v» 

around a oodv of 
this herit age. Sue 
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ooss i bi1i t y of move 
1 eve 1 abst rac t i ons 
some -neasure of sof 
they tend toe peate 
thus t hei P oopt ab i1 
syste-n* all the 
popted. ^opeovep» 
semant i c s of high 
thpouqh any consist 
tpanslate opogpams 
f ac t OPS and the lab 
develoDment have co 

softwape  enyipon^ents  have  develooed 
hapdwape and toa captain extent peflect 

h systems of  soft^ape  tend  to  develoo 
stems'  of  softwape»  with  vepy  little 
ment between systems.  Even  though  hiah 
ppovided oy high level languages opovide 
twape  standapdization  and  ooptability» 
closed systems at a vepy high level* and 
ity is limited because  to  oopt  such  a 
layeps  of  softwape  below  them must be 
oecause of the ppoblems in soecifying the 

level constpucts of diffepent languages 
ent theopy* it has  opoven  difficult  to 

in  one  language  to  anothep.   These 
OP intensive natupe of  systems  softwape 
mbined to cpeate closed systems. 

The opoblem of cpeating oortable software achieved 
gpeatep significance when OUP ability to design and cpeate 
new opocessops accelepated, Traditional1yr only a few 
companies have existed to produce the hardwape environments 
around which softwape has evolved. With the development of 
microorocessors and the micpocomoutep industryr the number 
of companies opoducing computeps ppolifepated» and at least 
initially* no one comouter manufacturer predominated. At 
the same time these small companies did not have the 
resoupces to develoo an extensive body of software for their 
particular environments» particularly things such as high 
level language comoilers. Thus a new set of conditions 
surrounding the design and development of software occurred. 
The result has been that standardization and abstraction 
occurred at levels above the hardware* but below the high 
level languages. Examoles of this are CP/M, the P-system, 
and 'C and the 'C runtime system. These systems are a 
software abstraction of physical resources. From the 
historical oerspective* this is one of the more interesting 
conceots that has arisen from the development of 

mi c rocomput ers • 

For some time* it has been recognized that the 
ooepatinq system peopesents an abstraction of the hapdwape 
system that supports the layers of software built over it* 
that is* an operationg system is an abstraction of the 
ohysical resources of a system. Traditionally the ooerating 
system orovides a standardized orogrammatic interface to the 
secondary memory resoupces* opimary memopy resources* 
processsors* and i/o resources.The most recent oersonal 
computing systems go a step beyond the traditional operating 
system by including more soohisticated abstractions of the 

console di sol ay . 

The oroblems that must be faced in trying to specify 
the oroperties of a real or aostract ohysical resource are 
similar to the problems faced by linguists who try to 
soecify   the  semantics  of  language  constructs.   It  is 
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difficult to develoo abstract models that are DPecise» 
caoture the essential features of somethinq real* yet do not 
ooscure and comolicate our ability to work with what is 
real. On the other hand» if we are able to successfully 
caoture the essential features of something we know 
intuitively^ the abstract -nodel can become a tool that 
enables us to sharoen our intuition, and increase our 
understanding. Unless we can develoo abstract models that 
allow us to clothe our intuitive notions with orecision, we 
will remain at an imoasse in our ability to know which of 
these ideas are imoortant and which are not. 

In the following section we will outline the main 
elements of a conceotual system develooed for this ouroose. 
In the later sections* this conceotual system is made 
orecise and illustrated in some detail. 
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1.0 

Conceot ua1 Too 1s 

There are a number of features of the oroblem of 
aostract soecification that naturally lead us to draw on 
mat he-nat i ca 1 discioHne. The methodology we use must be 
peoresentation indeoendent. The methodolgy must give us a 
method of proving the correctness of our assertions about 
formal specifications and their implementations. We must be 
aole to combine and comoose soecifications. The methodology 
we use should encourage a discioline of care and orecision. 
At the same time we should attempt to avoid unnecessary 
aostraction or concepts that do not directly improve the 
correct use of the methodology. 

Most of the conceots that we use here were develooed to 
soecifiy the semantics of high level language constructs* 
oarticular1y» the specification of abstract data types. 
Since the soecification of a oortable oroorammatic interface 
has its origins in this work* and since these conceots are 
more readily understood in its early form* we will begin 
with an informal treatment of aostract data types. 

1.1 

Abstract Data Tyoes 

In their most common usages* abstract data tyoes are 

simoly oroolem solving resources. Some astract data types* 
for examole a stack* are also abstractions of ohysical 
resources. Our ouroose is to develoo a theory of 
soecification that can be used to describe either oroblem 
solving (software) resources or physical resources. To do 
this* we use a theory of abstract data tyoes that has been 
developing over a number of years* and has involved a number 
of different researchers, -The orimary references to this 
work can be found in Goguen [l^TSJ and Guttag [19781. 

One of the simplest and -nost common data types in 
mathematics and computer science is boolean. We will use 
this data tyoe to introduce our general methods. 

Mote first that a data type consists of more than the 
values of the tyoe. The tyoe is a comoosite of the values 
and the ooerators used with the type. In traditional usage* 
the set of values denotes the data tyoe* when in fact* the 
aggregate of operations and values denotes the tyoe. There 
is a similar misconceotion of the function conceot in 
mathematics. Often a function is denoted by just its rule* 
when in fact it is an aggregate of domain* codomain* and 

rule. 
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For the ooolean tyoe* there are two values used» which 
nnav be denoted by T and F and several fundamental operators 
such as '-,, (logical negation), •&' (logical conjunction) 
and 'i' (logical disjunction). Finally, there are relations 
that must hold for these operators as given by the 
traditional truth tables: 

(X) 

T ! F 

x i   ! &(x,Y) X Y ! I(X,Y) 

T   T 

.-*•>! 

T T   T    I T 
T   F F T   F    ! T 
F   T F F   T   ! T 
F   F F F   F    ! F 

With the above definitions we  are  able  to  establish  the 
truth of other relations: 

The idemootent law for negation 

The associative law for conjunction 

The commutative law for conjunction 

The distributive law for conjunction and disjunction 

The De^organ laws 

Obviously, there are other  realizations 
type  that  we  normally call the boolean tyoe. 
used for the data values may oe {0,1}, the ooer 
given  different  notations, etc.  The fundamen 
may  also  oe  different.   For  example,  the 
ooerators  may be negation and implication.  It 
understood that this set  of  ooerators  define 
type".   Also,  it  is clear that this data typ 
other ooerators, exclusive disjunction, for exa 
clearly  difficult  to capture the essence of a 
independently of a particular realization of  i 
one  of the problems that a theory of abstract 
must solve. 

of  the  data 
The symbo1s 

at ors may  be 
tal operators 

fundament a 1 
i s general 1y 

s the 'same 
e admi t s many 
mple.  It  is 
type itself, 

t. This is 
soec i f i cat i on 

The things that are useful about a data tyoe are not 
just the values of the tyoe and the ooerators of the type, 
but the expressions we can Ouild from values and operators. 
We use exoressions to calculate with boolean values, so we 
need to 'evaluate* expressions and to determine if two 
expressions are 'equal', etc. Expressions are built from 
values and operators by abiding by the domain constraints of 
the operators, and using composition of operators. For 
example, all the following are obviously correctly formed 
expressions, assuming a prefix form for the ooerators. 

-(-(&(T,F)) 
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& ( T , t ( & {F ,-• ( T ) ) ) 

We also fom exoressions with 'free variables': 

! (■•(x),&(T,y) ) 
where of course x and v are the 'free' variables. Often we 
want to determine if two exoressions are 'for-nally equal'. 
In oarticular we have reason to believe that every 
expression without free variaoles is eaual to either T or F. 
Or we may have reason to believe that we can 'orove' that 
the exoression ^ ( i ( x f y ) ) equals 1 (-< ( x ) , "C y ) ) . In qeneral/ 
whenever we create and use a 'data tyoe'r we are potentially 
interested in the set of all exoressions involving values of 
the type or free variables on the type. These objects are 
the abstract reoresentatives of the things in the real world 
modeled by the data type. In fact* Hoffman and O'Donnell 
l\9B2] have recently expressed the view that much of 
computinq involves no more than the transformation of 
complex expressions to recognizable form. 

1.2 

A1qebras 

The aggregate made uo of specific sets of values^ 
ooeratorSf and expressions form what is called an 'algebra'. 
Basically an algebra is a comoosite structure consisting of 
ooerations and sets. The sets describe the types of 
ooerands and results. The operations define all the ways 
that results are determined from operands. In the general 
case^ the ooerations can have multiple ooerands of mixed 
type. The tyoes of the ooerands are called 'sorts'. 
Boolean is a sort of the boolean data 
have multiole operands of mixed sort 
fixed sort. An operator is simoly an 
form: 

tyoe. Ooerators may 
and give a result of a 
n-arv function of  the 

oo Al,A2,A3,...,An  -> A 

where Al,,,.fAnrA are carrier sets of sort SI,,,,,Sn,S 
respectively. The distinction between the 'tyoe' of a set 
and its name is intentional. 

In our description of an alqehra» the operations are 
assumed to be exolicitly defined functions on exolicitly 
defined sets. If» however, we intend to use these concepts 
for the soecification of real oojects, we must be careful to 
avoid the soecification of operations or sets that are not 
const ruetib1e bv finitary methods. For examole, the set of 
real numbers is not const ruetib1e by finitary methods. Also 
many of the ooerations used in mathematics assume 
non-finitary orincioles in their construction. Thus it is 
imoortant  to  use care in the choice of which orincioles we 
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assume to construct the objects we use 
oojects we are attemoting to specify. 

to reoresent the real 

Me must also be sure that the method of soecification 
itself has no reoresentationa1 bias. In the examole above» 
we do not want to say that the aoolean data tvoe consists of 
the ooerators above on the sets abovef since there are other 
ooerations and sets that reoresent this tyoe equally well. 

Similarly^ we do not wish to soecify a resource in a 
comoutinq system as consisting of a specific orocessor, 
memory^ disk, etc. but by the abstract functional 
orooerties these objects orovide. However* we also have to 
account for the situation in ^hich two systems ^hich apoear 
functionally different* are in fact functionally equivalent. 

1.3 

Algebraic Specifications 

The manner 

these  oroblems 

specifications  solve in  which  algebraic 

is  by first soecifyinq 'temol ates ' for the 
being specified*  and 

First we require that there be exactly one set whose 
'type* will oe described by the name 'Bool'. There must be 
two 'constants' (0-ary ooerations) of tyoe Bool* named 
'True' and 'False'. Then there must be exactly two 
ooerations* one unary and one-binary* with names* 'Not' and 
'And'* with aopropriate functional type.  Summarizinq* 

True: -> Bool 
False: -> Bool 
Not: Bool -> Bool 
Bnd: Bool*Bool -> Bool 

Next* the following 'axioms' must hold: 

Not(True) = False 
Not(Not(x)) = x 
And(T rue * x) = x 
And(False*x) = False 
And(x * y) = And(y » x) 
And(And(x*y)*z) = And(x* And(y*z)) 
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The axioms above were chosen to comoactly describe what are 
claimed to oe all the essential orooerties of the ooerators. 
Note that nowhere is there a soecification of the number of 
elements in any set that olays the role of 'Bool*. There 
are constant operations 'True' and 'False' whose values must 
be in the set playing the role of Bool» but there is no 
guarantee that these values are distinct* or that they are 
the only values. 

The above soecification can be codified into a  comoact 

synt ax : 

SPECIFICATION Boolean 

SORTS 

OPS 

AXIOMS 

Bool 

True: -> Bool 
False: -> Bool 
Not: Bool -> Bool 
And: Bool>Bool -> Bool 

Not(True) = False 
NoKNotCx) = x 
And(T rue» x) = x 
And(False» x) = False 
And(x»y) = And(y,x) 
And(And(x,y)»z) = And(x,And(y/z)) 

Algeoraic soecifications always occur in two parts. 
The first oart includes the sorts and the ops and is called 
the signature. The second oart consists of the axioms. The 
axioms aoove are described as equations between terms with 
free variables. Axioms may also be 'conditional eguations'. 
A eguation is conditional if it has the form: 

E1,E2,...,En => E 

where EI>E2/...»En, and E are eguations between terms. 

He say that an algebra has the same signature as a 
specification if there is a one to one correspondence 
between the sorts and operations of the specification and 
the carrier sets and the operations of the algebra that is 
consistent with the type properties of the operations in the 
soec i f i cat i on. 

If 'Bool' is associated to the set (T,F},'True'is 
associated to the constant function whose value is T» 
'False' is associated to the constant function whose value 
is F/ 'Not* is associated to the unary operator •<, and 'And* 
is associated to &, then it follows that the algebra we have 
discussed oreviously satisfies the above soecification. 
Also  this  algebra  clearly  satisfies  the  axioms.   Note 
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however there are -nany other alqebras that also satisfy the 
aoove soec i f i cat i on . FOP exa-nole* associate to the sort 
'Bool* the set {a>. Associate to the 0-apy ooerators 'True' 
and 'False'/ the constant function on {3} whose value is 
'a*. Associate to 'Not* the trivial unary function on {a> 
that is the identity. Associate to 'And' the trivial binary 
function on {a>. This algeora has the correct signature and 
it is not difficult to show that it satisfies the axioms. 
Yet we would not say this second algeora is reoresentative 
of the 'Boolean' tyoe. Thus there is a clear distinction 
between an algebraic soecification and an algebra. 

In the aoproach of 'algeoraic semantics'* the meaning 
of a specification is given by a class of algebras that is 
uniquely associated to the specification. In the current 
work on aostract data types there are two complementary 
semantics associated to algeoraic soecifications, To 
describe these we first need so-ne additional concepts. 

l.y  The Herbrand Construction 

Recall that a soecification consists of a oair (S^E) 
where S is a signature and E is a set of axioms. Let ALG(S) 
denote the set of all S-alqebras* algebras whose signature 
is S. Given S, how do we know that there exists any 
algebras in Alg(S) ? And given that such S-algebras exist» 
how do we know that there exist S-algebras that satisfy the 
axioms E ? 

Given a soecification (S,E),  define  the  set  of  all 
formal  free  terms»  Term(X,S)/  according to the following 
rules: 

1. If t is a O-ary operator or free  variable  of  sort  s» 
then t is a term of sort s. 

2. If tl» t2, ...  ,tn are- terms of sorts sl»  s2/  .,.,sn, 
and t is an ooerator of characteristic 

t:slrs?/....sn -> s 

t hen 

t(t I/t2, .. .,tn) 

is a term of sort s. 

Let Term(S) denote the set of all terms that do not 
contain any free variables. Note that both Term(X,S) and 
Term(S) consist of terms of different sorts. Denote the 
terms in Term(S) of sort s by TermCSHs). The sets 
TermCSMs) can now be viewed as carriers in a S-algebra 
Term(S). Ihe operations on this algebra are associated to 
the ooerator temolates of S.  If op is an ooerator  template 
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of  characteristic s\,s2,,.,r sn     ->  s define the ooeration 
f-oo from Ter-n(S) (si )»...» Ter-n( S) (sn) to Term(S)(s) by: 

f-oo(t1#...»tn) = oo(t1»...>tn) 

where 
t1f.../tn are terms of sort slr..«fSn 

The formal construction used to create Term(S) is called the 
Herbrand construction in the mathematical literature. 

In the case of the Boolean  soecification  above*  the 
term  algebra  consists of  all the term exoressions we can 
form abiding ov the type characteristics  of  each  operator 
t emolate. 

There is another eguivalent descriotion of the sets of 
terms determined by a signature. We can view the terms as 
strings on the alphabet consisting of the ooerator names* 
the comma* left and right oarentheses* and some finite 
alohabet of symbols for free variables of different sorts. 
Then the set of terms forms a language on this alohabet with 
the following qrammart 

For each sort s in S add the production rule: 

<Term(S)> -> <Term(S)(s)> 

For each ooerator of characteristic: 

OP: s 1 * s?*...» sn -> s 

add the rule: 

<Term(S)(s)> -> 'OD('<Term(S)(s1)>'»'...'»'<Term(S)(sn)>')' 

For each free varia-ole X of sort §$   add the rule: 

<Term(S)(s)> -> 'X' 

It is not difficult to see that the resulting grammar is 
LL(l)f and therefore parsaole by simole and efficient 
methods. In particular there are automatic oarser 
generators that will take the sianature of a soecification 
as inout and generate a table driven parser for terms 
defined for the given signature. The resulting oarse tree 
can in fact be used as a reoresentation of the term for use 
in raoid orototyoing. Essentially this is the theoretical 
justification for the methods imolemented in Guttag* 
Horowitz/ and Musser [19781. 
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1.5 

Congruences 

An equivalence relation R on a S-alqebra A is called  a 
congruence if: 

1. R-equivalent ele-nents have the same sort 

2. If (tl#t1'),(tZfta1),..., (tn/tn'} are oairs of R-equivalent 
elements of sorts sl»s2,..wsn and OP is an operation of tyoe 
sl/s2,...'Sn -> s,    then OD(t1»...»tn) is R-equivalent to 
oo(t1 •»..•» tn ') . 

If R is a congruence on a S-algebra A,  then  there is 
induced  on the equivalence classes A/R a natural S-algebra, 
called the quotient algebra (Gratzer [19681). 

1,6  Initial Algebras 

If (S,E) is a soecification, there are t^o canonical 
congruences induced on the term algebra TermtS) by the 
axioms E. These two congruences then induce two quotient 
algebras on Term(S), called the 'initial quotient algebra' 
and 'final quotient algebra*. 

The first congruence will oe denoted Initial(3,E), and 
the second -ill be denoted Final(S,E). Initia1(S,E) is 
defined by the following rule: 

(t^t1) are Initial(S»E)-equivalent 
i f and only if 

t   -   t'   can be proved from the axioms of E 

The axioms as expressed are equations between terms of the 
'free term algebra' associated to the algebra. This free 
algebra includes terms with free variables of the 
aoprooriate sort. For example/ in the axioms for the 
Boolean type there occur axioms such as: 

And(True()» x) = x 

The variable x is a free variable of sort Bool. The rules 
for Proving equations from axioms and other oroven equations 
are given by: 

1. Any axioti is a proven equation. Any conditional axiom is a 
valid rule of inference for oroving equations from proven 
equat ions. 

2. If in a oroven equation, every occurrence of a free variable 
is replaced by a single term of the same sort as the variable. 
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the resulting equation is oroven. 

3, If in an equation, some term is reolaced bv a term orovably 
eaual to itf the resulting equation is oroven. 

a. Any equation derived fron oroven equations by the use of 
the reflexive law, synmetric law, or transitive law for 
equality* is also oroven. 

With the above rules, it is not difficult to orove that the 
relation defined by all oairs of orovaoly eaual terms (with 
or without free variables) is a congruence. 

1.7 

Fi nal A 1gebras 

The set of terms of specific sort s  in  the 
quotient algeora defined oy a soecification (S,E) is 
be 'trivial* if using the axioms E, any two terms t# 
sort s are orovably equal. 

initial 
said to 
t'  of 

Given a soecification (S,E)r we say that an equation 
between two terms t = t' of a non-trivial sort s in the free 
term algebra is 'consistent* with the axioms Ef if in the 
soecification defined by the axioms E with the additional 
axiom t = t*, the set of terms of sort s is not trivial. It 
follows, for examole, that any provable equation is 
consistent. However, there may be consistent equations that 
are not provable. Define the relation Final(S,E) on terms 
of the free term algebra Term(S) by: 

t, t* are Final(S,E) - equivalent 

i fi 
t = t* is consistent with the axioms E 

It can be oroved that the relation Final(S,E) is a 
congruence. The corresponding quotient alqeora is called 
the *final algebra* defined by the specification (S,E), 

1,8 

Alqebra Morohisms 

So far» we have shown that a specification (S,E) 
determines two specific S-algebras, the initial S-algebra 
and final S-algebra. How are specifications related to 
other aloebras ? For example, we have given a soecification 
for the Boolean type. How is this specification related to 
an algebra that seems to realize the specification ? 
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Given two  S-alqebras  A  and  B, a  corresoondence  H 
associating each carrier set of * to a carrier set of B, and 
each operation of A to an ooeration of 3 is said  to  be  an 

S-homomorph i s-n if! 

1. the corresoondence between carrier sets preserves the 

sort t yoe. 

2. the corresoondence between ooerators oreserves the 
ooerator characteristics. 

3. if tl/...ftn are elements of sorts sl>...»sn in A 
and oo is an ooerator in A, then 

H(oo(t1r ...»tn) ) = H(OP)(H(t1), .. .,H(tn)) . 

An S-homomorphisn is called an S-monomorohism if each 
correspondence between carrier sets is injective. An 
S-homomorohi s* is called an S-eoi moroh i sti if each 
correspondence between carrier sets is a surjection. And an 
S-homomorph i s-n is called an S-i somorph i s-n if each 
correspondence between carrier sets is a bijection, 

S-hononorphisms are intimately associated to 
S-congruences. If H is an S-hoiiomorph i sm between S-algebras 
A and B, define the relation R(H) on the S-algeora A by: 

For any sort s in the signature S,    let A(s) be  the carrier 
of   sort   s  in  the  algebra  A,  and  let  Hfs) be  the 
correspondence determined by H oetween the carriers of A and 
B of sort s. 

a,   a1 in A(s) are R(H) - eguivalent 
i f f 

H(s)(a) = H(s)(a') 

It is not difficult to show that RCH) is an S-congruence. 
It is the S-congruence canonically associated to the 
S-homomoroh i s-n H, 

Given any S-algebra A, there is a canonical 
S-homomoroh i sn VaHA) from the term alqebra Term(S) to A, 
determined ov evaluating each formal term of Term(S) through 
its corresponding terms in A, There is then an S-congruence 
R(Va1(A)) on Term(S) induced by VaHA). For convenience* 
this congruence will De denoted R(A), 

1.9 

Algebraic Semantics 
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At this ooint we have all the conceotual tools we need 
to Drecisely describe the two classes of algebras that will 
normally be used to interoret a soecification (S,E), 
class of algebras will determine one of the two 
that a specification deter-nines, hence 
'algebraic senantics'. 

the 

Each 
mean i ngs 

terminology 

re r/he '^^i31  alaebra'  semantics  of  a  soec i f i cat i on 
15,E) is the class of all S-algebras A such that: 

1.  the S-homomorohism  Val(A)  from  Term(S)  to  A  i 
S-eoi moroh ism. 

an 

2.  the S-congruence  R(A)  on  Term(S)  is  identical  with 
Initial(S,E). 

The 'final algebra' semantics of a soecification  (S,E) 
is the class of all S-algebras A such that: 

1,  the S-homomorohism  Val(A)  from  Term(S)  to  A 
S-eo i moroh i sm, 

is an 

2,  the S-congruence  R(A) 
Final(S,E). 

on Term(S)  is  identical  with 

It follows that the initial guotient algebra is an element 
of the class of initial algebras, and similarly, the final 
quotient algeora is in the class of final algebras. It is 
not difficult to orove that any two S-algebras in the class 
of 'initial algebras' are S-i soiioroh i c. Similarly all the 
S-algebras in the class of 'final algebras' are 
S-isomorphic. Thus, in effect, any algebra in the class of 
initial algebras is isomorohic to the auotient initial 
algebra constructed from the term algebra and the 
Initial(S,E) congruence.  Similarly for final algebras. 

The aoove characterizations of the meaning of a 
soecification can be used to effectively determine if a 
soeci'ication 'means' what we want it to mean.  For example, 

for  Boolean,  we  started with an algebra 

and  '-••.   The 

t n  the  examole 

consisting of a set {T,F} and ooerations 'S' 

ooerations  were  defined exolicitly with a truth table. tie 
then created a formal specification Boolean that we  claimed 
caotured   the   'essence'   of   the   boolean  data  type. 
Soecifically we should be able to orove  that  the  exolicit 
algebra  is  a  member  of  the  class  of  initial or final 
algebras   defined   by   the   specification.    Define   a 
S-homomorohi STI H from Te rm ( Boo 1 ean ) to algebra A by: 

True() 
FalseO 
Not 
And 

-> T 
-> F 
-> -» 

-> & 



Page 15 

H is clearly a surjection from Term(Boolean) to {T,F>. 
Consider the relation R(A) induced on Term(Boolean) bv A. 
We will show that it equals the relation InitiaHS,E)r where 
E is the set of axioms. We have to show that two terms 
evaluate in A to the same value if and only if the terms are 
orovably equal using the axioms in E. Let the size of a 
term oe the number of ooerators in the term. We will first 
Drove by induction on the size n of the largest of the two 
terms that if two terms evaluate in A to the same results 
then they are provably equal from E. 

First we prove the following: 

Lemma; i f 
True* and 
False. 

t evaluates to Tr then t  is 
if t evaluates to f,   then t 

orovably  equa1  t o 
i s provably equal to 

Proof: Induct on the size n of t. If n = 1> the result is 
oovious. Assume true for n <= N and assume n * N ♦ I, The 
term t has the form t = Not(x) or And(xfy) for some terms x 
and y of size <= N. If t = ^ot(x), and t evaluates to T, 
then Not(^ot(x)) = x evaluates to "•! = F, and x has size < = 
N f therefore x is provably equal to False. But then t = 
Not(x) is provably equal to Not(False)» hence provably equal 
to Not(Not(True5) = True. Similarly if t evaluates to F. 
If t = And(x,y)» and t evaluates to T, then x and y must 
evaluate to T also. Since the size of x and y <= N» x and y 
are provably equal to True. But then from the axiom 
And(True»x) = x, it follows that t = And(x,y) is orovably 
equal to True.  Similarly if t evaluates to F. 

Clearly every expression evaluates to T or F. 
Therefore if two exoressions evaluate to the same value by 
the above they are provably equal to each other. 
Conversely* if two exoressions are orovably equal to each 
otherf then they must evaluate to the same value* since the 
ooerators corresponding to each ooerator temolate satisfies 
the corresponding axioms. 

Thus the guotient alqebra defined by 
Term(Boolean)/Initial(S*E) is isomorohic to the algebra A, 
and A is an 'initial algeora' for the soecification. 

the 
Moreover* note that the 'trivial* algebra consisting of 

{a> and the operations: 

T = F = a*  "'(a) -   a*  i(a*a) = a 

has the correct  signature  but  is not  in  the  class  of 
'initial  algebras'  defined  by the soecification * since in 
this algebra True and False evaluate to the same value*  but 
are not provaoly egual. 
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final algebras' 
alently* are the 

what we have 
hether there are 
vab1y equal. If 
the equat i on t = 
e are orovably 
equa1, then they 
But then by the 
s orovably equal 
= t'/ True i s 

t and t' are 
y i f  t  and  t' 

The above arguments show that for the soecification 
Boolean^ the initial algeOra and final algebra semantics are 
the same. It is a theoretical fact that there exist 
soecifications for which this is not the case. This will 
become fairly evident when the comoutabi1ity of a 
ssecification is discussed in a later section. 

In the case of Boolean^ the axioms enable us to 
formally evaluate each term in terms of constant terms. For 
example, to evaluate And(Not(Fa 1se),True): 

And(Not(False),True) = And(True,Not(Fa 1se )) 
And(True,Not(False)) = ^ot(False) 
Not(False) = Not(Not(True)) 
Not(Not(True)) = True 

In fact» the tables describing the ooerations exolicitly 
(which also determine an equational soecification, without 
free variables) is derivaOle from the aoove equations. The 
advantaqe of the equational specification with free 
variables is its comoactness. 

Ordinarily, it cannot be assumed that every term is 
orovably equal to a constant term. It is often the case in 
the theory of abstract data tyoes for examole, that the 
number of distinct classes of unequal terms is infinite. 

2.0 

Properties of Specifications 

Now that the basic conceots of our methodology have 
been described, we want to determine if it can be used to 
fulfill the requirements of a methodology for 
soec i f i cat i ons. 
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Equivalence of Soecifications 
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The above definitions allow us to detepmine when two 
soecifications with the same siqnatupe but diffepent axioms 
have the same meaning, rthat about soecifications that have 
different signatupes ? 

ftssume that (S/E) and (S'fE') ape 
A  coppesoondence  H  between  S and S' 
t pansfopmat ion if: 

t wo  soec i f i cat i ons. 
is called a Poi ncape 

1. fop evepy sopt s in S, H(s) is a sopt in S' 

2. fop evepy opepatop oo in S of chapactepistic 
s1,s2,...,sn -> s, 

H(OD) is an ooepatop in S' of chapactepistic 
H(sl),H(s2),...,H(sn) -> H(S) 

Cleaplyf H induces a coppesoondence between Tepm(S) and 
TepmO'). If H is bijective between S and S', then H 
induces a bijection between Tep-ntS) and TepmO').  Thus each 
equat i on in Tepm(S)is maooed to an equation H(t) = 
HCt1) in TePmCS'). In this case the soecifications (S,E) 
and (SSE*) aPe semantically equivalent in the sense of 
initial algebpas» OP final algeopas» when the soecifications 
(S'^E1) and (S'^HKE)) ape» and the question of equivalence 
peduces to the orevious case. These cases cover the cases 
that correspond to a renaming of sorts or ooerators^ in 
addition to a change in the axioms. 

In qeneral/ two soecifications have the save 
when they determine the same class of aloebras. 

semant i c s 
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2.2 

The Adequacy and Co-nout at» i 1 i t y of Algebraic Soec 1 f i c at < ons 

In this section we exa-nine the ability of this 
soecification methodology to define all the types of objects 
that we might want to define. This is the 'adeguacy' 
oroblem. Bergstra and Tucker [19851 have written a series 
of oaoers dealing with this guestion and we will summarize 

their i deas here. 

Given a specification (S,E) and an S-algebra A, we say 
that A is 'effectively oresented' whenever we possess an 
effective enumeration of its slements and we can effectively 
calculate its operations. The algeora A is said to be a 
'semicomputable algebra'* or a 'cosemicomoutable algebra' if 
in addition the eguality relation of A is recursively 
enumerable* or co-recursive1y enumerable* respectively. 
(Recall that a set is co-recursively enumerable if its 
complement is recursively enumerable). A is a 'computable 

algebra' when equality is decidable. 

Since for initial semantics two terms are egual if and 
only if they are orovably equal from the axioms* and since 
all such oroofs can be enumerated* the initial algebra of a 
soecification is semicomoutable. It is less obvious* but 
also true* that the final algeora of a soecification is 
co-semicomoutable. Note that if an algebra is both 
semicomoutaole and co-semicomoutable* then the eguality 

relation oetween terms is decidable. 

Of more interest to the question of adequacy *is the 
converse of these facts. Is every semicomputable algebra 
the initial algebra of some soecification ? Is every 
co-semicomoutable algebra the final algebra of some 
soecification ? Is every comoutable algebra both the final 
algebra of some specification and the initial algebra of 
some specification ? Bergstra and Tucker (19831 have been 
aole to prove the second and last of these assertions* given 
that the specifications may include conditional eguations. 

Theorem (Bergstra and Tucker), 
i f and only i f it is the 
conditional soecification, 

An algebra is semicomputable 
final  algebra  of  a finite 

Theorem (Bergstra and Tucker). 
and  only  if  it  is  both  the initial algebra of a 
conditional soecification and the final algebra of a 
conditional soecification. 

An algebra is comoutable  if 
finite 
finite 

Bergstra and Tucker also show that the set of functions 
computed by LOOP programs on the natural numbers compose a 
data tyoe which has a finite conditional soecification using 
final algeora semantics* out does not oossess an effective 
soecification of any kind using initial  algebra  semantics. 



Page 19 

The fact that individually, initial and final semantics do 
not attach the same semantics to algebraic secifications is 
one reason why both conceots need to oe introduced. There 
is another more oractical reason however. It is reasonable 
to require that the soecifications of some resources be 
comoutaole. Presumably the functional behavior of 
ohysical devices is decidable. 

most 

Unfortunately,    the    characterization    of the 
computability  of  a  specification  given  by  Bergstra and 
Tucker is not generally oractical.  In  order  to  make the 
methodology  oractical we need simple but broad criteria for 
insuring the comoutabi1ity of a specification. 

One approach to this proolem is to determine if the 
axioms define rewrite rules that allow one to orove that 
each term without free variables can be reduced to a normal 
form. To do this it is necessary to prove some kind of 
Church Rosser property for normal forms, to guarantee their 
uni gueness. 

2.3  Specification Syntax 

Now that the basic conceots underlying the methodology 
of algebraic soecifications have been introduced we can 
illustrate how these concepts are used in practice. First 
we ^eed to establish a syntax for describing a 
soecification. Rather than give a grammar, we will describe 
the templates used for soecifications. An example of the 
form of a soecifications was given above for the boolean 
data tyoe.  A template for this form is: 

SPECIFICATION <Speci f i cat i on«-i dent i f ier> 

OPERANDS 

<0oerand<-l i st > 

OPERATORS 

<0perator«-l i st> 

AXIOMS 

<Axi omH i st > 

It is convenient to have a specification syntax that 
facilitates the combination and extension of soecifications 
to provide a modular approach to complex specifications. 
Although ultimately, a soecification should always be 
expressible in the above form, it is convenient to eliminate 
expressive redundancy through a more complex syntax. For 
example, we want to provide a facility for readily 
incoroorating  a  commonly  used  specification  into  a new 
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soecif<cat 1 on.  The syntax used to incoroopate a  previously 
defined soec i f i cat i on into a ne«< specification is: 

SPECIFICATION <New«-soecificationHdentifier> 

EXTEND 
<01d«-speci fication«-identifier«-l ist> 

BY 

OPERANDS 
<0perand«-l i st > 

OPERATORS 
<Opepat OPH i st > 

AXIOMS 
<Axio-n«-l i st> 

The semantics of such an extended specification are the 
semantics of the composite specification as if it were 
written without extension. The properties pf the extension 
may involve the operands and operators of both 
specifications. Thus in an extension the semantics of a 
previously d-fined specification could chanqe within the 
context of new ooerands* operators* and orooerties. In mpst 
cases such semantic changes are undesirable. Thus/ we need 
a criterion for when such changes do not occur. In the 
process of determining such a criterion we will also 
illustrate the use of the semantic interpretation associated 

t o a spec i f i cat i on . 

Assume (SfE) and (S'/E') are two soecificat 
which S is a subset of S' and E is a subset of E 
let us consideP initial algebpa semantics. In th 
the relation Initia 1(S',E ' ) is a subset of the 
Initial (S*,E') since every formal term in Term(S) i 
term is Term(S')» and if t and t' are orovably eg 
they are orovably egual inE' since E is a suoset 
The terms in Tepm(S)» viewed as tepms in TepmCS') 
the same orooePties in (S'^E') as the pppoepties in 
and only if any two tepms t and t* in Tepm(S) 
Initial(S*,£') pelated ape also Initial(S,E) pela 
other words, if the restriction of the 
Initial(S*»£') to Term(S) equals the relation Initi 

ions for 
'. Fi rst 
i s  case, 
relat i on 

s also  a 
ual in E, 

of  E'. 
will have 
(S,E) if 
that are 

ted.   In 
relation 

al (S,E). 

We say that a specification (S,E) is persistent in an 
extended soec i f i cat i on (S'EMr in the sense of initial 
semantics, if the relation Initial (S ' ,E ' ) restricted to 
Term(S) eguals the relation I nitia 1(S , E) . 

If S is a 'subsignature' of S* and A and A' are 
S-algebras and S'-algebras respectively, then A is said to 
be a subalgebra of A* if there is a S-monomorohism from A to 
A',   Similarly,  we  say  that  a  soecification  (S,E)  is 
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oersistent in an extended ssecification (S'^E*)* in the 
sense of final semantics/ if the relation FinaHS'^E') 
restricted to Term(3) equals the relation Final(S,E), 

The following theorems can now be oroved. 

Theorem: (S,E) is 
in the sense of 
initial a 1gebra of 
algebra of (S*,£') 

a oersistent subsoec i f i cat i on of (.S',E'), 
initial  setiantics*  if  and only if the 

(S»E) is  a  subalgeora  of  the  initial 

TheoreTi: (S,E) is a oersistent subspec i f i cat i on of (S'^E1)/ 
in the sense of final semantics if and only if the final 
algebra of (S,E) is a subalgeora of the final algebra of 
(SSE'). 
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2.a 

Derived Algebras and Soecifications 

Given an algebra of signature S and a term 
t(x1#x2 , ...>xn) with free variables of sorts sl»s2,...fsn 
and return sort Sr we can view t as defining an ooerator of 
characteristic sK..wsn ->• s. Such an ooerator is called a 
derived ooerator of A. More generally, an algebra B» whose 
sorts are a subset of the sorts of A, and whose operators 
are derived ooerators of A, is called an algebra derived 
from A. The signature of B is also said to be derived from 
the signature of A.  For examole, 

ImD(xl,x2) = Not(AndCxl,Not(x2)) 

is a derived operator in Boolean, 
'implies' ooerator. 

This is  the  well  known 

If (S,E) and (S'^E') are soecifications, and S' is a 
signature derived from S, we say that the initial semantics 
of (SSE') are consistent with the initial semantics of 
(S,E) if given any terms t and t' of TermCS'), if (t/t1) is 
in Ini t ial (S1 ^E') then (trf) is in  In i t i al ( S, E) .   rte  say 
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that the initial semantics of (S'^E*) are faithful to the 
initial semantics of (S»E)» if for any t, t* in TermCS')/ 
(tft1) is in Initia1(S,E) if and only if (t^t') is in 
Ini t i al (S ' , E ' ) .  Si-nilarly for final semantics. 

2.5 

Interoretations and Implementations 

The oractical oroblem we are attemoting to solve 
involves software oortability. Specifica11y» we want to be 
aole to soecify resource interfaces in an implementation 
independent nanner beginning with physical interfaces up to 
problem solving interfaces. In this view* we want to 
successively build layers of resources imolemented on 
previously defined sublayers. For this reason it is natural 
to expect that an 'implementation* must be determined by 
relating one specification to another. 

Alternativelyf we want to realize a soecification in 
terms of resources for which we do not have specifications. 
Me call such a realization an interpretation. An 
interpretation is specified oy associating to each sort a 
description of the values that will realize the sort» and to 
each operator, a function orocedure operating on the 
aopropriate values. An interpretation is valid if it 
defines an algebra in the semantic class chosen for the 
soecification. Thus an interpretation associates the 
specification to a specific 'algebra', that is realized by a 
set of function procedures and data types in a orogram. 

To implement a specification A in terms of another 
soecification B ought to mean that the sorts, operators, and 
properties of A ought to be imp1ementab1e from those of B. 
Therefore we make the following definition: 

Given specifications (S,E) and (S^E'), an implementation of 
(S,E) on (SSE'), in the sense of initial semantics, is a 
Poincare transformation H from the signature S to a derived 
signature S1' of S' with the property that the homomorohism 
induced from Term(S) to TermCS*') is consistent with the 
congruences Initial(S,E) on Term(S) and Initial(S ' ,E') on 
TermCS*').  Or equivaIent1y, for t,t'    in Term(S), 

if (t, t ' ) is in Ini t i al(S,E) 
then 

(H(t),H(t')) is in Initial(S',E') 

An implementation  H  is  faithful,  in 
initial semantics, if in fact it satisfies: 

(t ,t ' ) is in Ini t ial(S,E) 

the  sense  of 
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i f and only if 
(H(t),H(t')) is in Initial (S* ,£') 

We clearly have similar definitions for  implementations 
the sense of final semantics. 

1 n 

Theorem: There is an imolementation of (S»E) on (S'fE1) in 
the sense of initial (final) semantics if and only if there 
is a homomorohism from the initial (final) alqebra of (SrE) 
to a derived alqebra of the initial (final) alqeora of 
(S'^E'). 

Andf 

Theorem: There is a faithful implementation of (S^E) on 
(S'^E1) in the sense of initial (final) semantics if and 
only if there is a monomorphism from the initial (final) 
algebra of (S,E) to a derived algebra of the initial (final) 
alqebra of (S' ,£'). 

Though these theoretical results seem comforting* are there 
any practical methods for determining if a correspondence is 
an implementation or if such an implementation is faithful ? 

(3*,E') that  assi gns 
and to each operator 

If H is a correspondence from (S»E) to 
to each sort s in S,   a sort H(s) in S'* 
f in Sr a  derived  ooerator  H(f)  of  S'r  then  H  is  an 
implementation in the sense of initial semantics if and only 
if for every axiom t = t' in E, the equation H(t) = H(t') is 

orovably equal from E', 

2.6 

Parameterized Specifications 

Certain kinds of resources are naturally parameterized. 
For example* in the case of the string data type* strings of 
integers* or strings of characters* or strings of bits all 
require many of the same ooerations and share many of the 
same properties* yet in most cases must be defined 
separately. Parameterized specifications are soecifications 
used to specify resources that may be instantiated for a 
number of different resource parameters* but are not 
uniquely associated to any of them. In this section* we 
introduce the basic ideas with a minimum of discussion. For 
details of some of the theoretical work in this area see 
Ehrich [19821. 
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3.0 

Parameterized SoecificaHon Syntax. 

The template for a oarameterized soecificat 1 on has  the 

form* 

SPECIFICATION <SDecification«-identifier> 

PARAMETERS 
OPERANDS 

<Dara,neter«-ooepand«-1 <st> 

OPERATORS 
<Dara"neter«-ODerator«'l ist> 

AXIOMS 
<Dara"neter*-aKio'n*-l ist> 

OPERANDS 
<ODerand«-l i st > 

OPERATORS 

<0DepatOPH i st> 

AXIOMS 
<ax i om*-\ i st > 

The axioms fop the body of the oapametepized soecification 

may include opepand classes and ooepatops of the papametep 
papt» in addition to the othep opepand classes and 
ooepators. The axioms of the oapametep oapt may include 
only opepand classes and ooepatops of the oapametep papt. 
The papametep papt descpibes the opepand classes* opepatopsr 
and axioms that must be specified in any invocation of the 
papametepized soecification. The syntax of an invocation 

i s: 

<oapm«-specH dent> ( <spec«-i dent > ) 
WHERE 

OPERANDS 
<spec*-ODePand> IS <Dapm«-spec«'ODepand> 

OPERATORS 
<spec«-opepatOP> IS <Dapm«-spec«-opepatOP> 

Thus in an invocationr a coppesoondence is established 
between operands and ooerators of one soecification (actual 
oarameters) and the ooerand and operators of the parameter 
oart of the parameterized specification. For semantics* the 
soecification resulting from such an invocation is viewed as 
an  extension  of the soecification that suoolies the actual 
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a valid invocation* the actual oarameters 
"ioms as a consequence of the 

to  be  a  valid 

oarameters.  To be 
must  satisfy  the  parameter ax.~...., 
axioms that they already  satisfy.   Also* 
1 
b 

p 
s 
a 

a.o 

Cone 1 us i ons 

Current practical aporoaches to functional 
specification are not based on any rigorous foundation, or 
developed in the context of any general theory. This fact 
precludes the development of oortable logical interfaces, or 
the sytematic specification of a hierarchy of logical 
interfaces. The approach taken here attempts to resolve 
some of these problems. It begins with a model close to 
practice, the idea of an 'algebra', consisting of operators 
and ooerands, and establishes a syntax and semantics for 
soecifications. Transformations between soecifications at 
the syntactical level are described by Poincare 
transformations, a concept used for a long time in logic to 
describe the same process of establishing a correspondence 
between the names of the entities of one formal theory with 
those of another. The semantics are established through 
interoretations of the syntactical elements as elements of 
certain algeoras, depending on the semantics chosen. 
Relations oetween the semantics of two specifications are 
established by honomorphisms between their respective 
interoretations. Every important concept associated to 
soecifications can now be given rigorous definitions. 

At the practical level, concrete resources, either in 
software or hardware, are viewed as defining concrete 
algebras that may serve to interpret a specification 
faithfully. Whether this assumption is reasonable remains 
to be seen. This is the most obvious question open to 
further research. Moreover, it seems apparent that much of 
the theorem proving technology developer! in recent years may 
find an aoplication to the analysis of specifications. In 
any case, this approach has served to form a rigorous 
foundation for a theory of specification, and to expose some 
of the difficult issues that must be addressed by any 
aopproach. 
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5.0 

A Samole Abstract Machine 

To illustrate the oractical ootential of this 
soecification technique^ a soecification of an abstract 
processor is included below. The first oart defines the 
data tyoes required to define memory* values^ and states. 
The later part defines the ooerations and instructions of 
the orocessor. The basic idea for such a machine can be 
found in Fasel [19801 . 

The specifications below combine to specify a sample 
abstract machine. Metasymbols describing the form of the 
soecification are caoitalized. 

CONVENTION 
A binary oo X: Elem, Elam -> Elem is 
COMMUTATIVE 

i f X(x,y) = X(y,x) 
ASSOCIATIVE 

i f X(X{x,y),z) = X(x,X(y,z)) 

SPEC Boolean 
SORTS 

OPS 

AXIOMS 

Bool 

True: 
False 
Not; 
And: 

-> Bool 
-> Bool 
Bool -> Bool 
BoolfBool -> Bool 

Not(True) = False 
Not(Not(x)) = x 
AndCTrue* x) = x 
AndCFalse» x) = False 
And is COMMUTATIVE 
And is ASSOCIATIVE 

SPEC Natural 

SORTS 

OPS 
Nat 

0: -> Nat 
Next: Nat -> Nat 

SPEC Integer 

EXTEND  Boolean, 
Natural 

WITH 

SORTS 
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OPS 
Int 

0: -> 
Next: 
Neq: 
Add: 
Sub: 
Lte: 
Abs: 

Int 
Int -> Int 

Int -> Int 
Int,Int -> Int 
Int,Int -> Int 
Int,Int -> 9oo1 
Int -> Nat 

NOTATION 

AXIOMS 

END 

SPEC Character 

SORTS 

OPS 

•x 
x t y 
x 
x < = y 

is Neq(x) 
is Add(x,y) 

-y is Sub(x r y) 
<=y is Lte(x,y) 

Add i s COMMUTATIVE, ASSOCIATIVE 
Add(x,0) = x 
Add(x,Next(y)) = Next(Add(x,y)) 
Neq(0) = 0 
Next(Neg(Next(x))) = Neq(x) 
Add(x,Neg(x)) = 0 
Sub(x,y) = Add(x,Neg(y)) 
Lt e(x » x) = True 
Lte(x,y) => Lte(Next(x),y) 
Lte(xfy) = Lte(Sub(x,y),0) 

Char 

A: -> Char 
a: -> Char 
B: -> Char 
b: -> Char 

END 

SPEC Identifier 

EXTEND  Boolean WITH 

SORTS 

OPS 
Id 

Regi ster: -> Id 
Main: -> Id 
Disk: -> Id 
Disolay: -> Id 
Eqid: Id,Id -> Bool 
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END 

Page 28 

Eqi d(x,x) = True 

SPEC String 

PARAMETER 

EXTEND 

WITH 
SORTS 

OPS 

SORTS 

Nat jral 

Ele-n 

AXIOMS 

StP 

Nul1: -> Str 
Make: Elem  -> Str 
Cat: St P» St r -> Str 
Len: StP -> Nat 
Head: StP -> Elem 
Tai1: Stp -> StP 

Len(Nu11) = Natzepo, 
Len(Make(a)) = Next(Natzepo) 
Head(Make(a)) = a 
Tai1(Nul1) = Nul1 
Tai1(Make(a)) = Nul1 
Cat is ASSOCIATIVE 
Cat(s#Nul1) = Cat(Nul1»s) 
Cat(s,Nul1) = s 
Head(Cat(Make(a) #3) = a 
Tai1(Cat(Make(a)r3) = s 
Len(Cat (Make(a)f s)) = Nextde 
Len(Cat (s,Make(a)) = Nextden 

n(s)) 
(s)) 

Ele-n IS Bool 

END 

SPEC Bitstping 

St pi ng(Boolean) 

WHERE 

END 

SPEC Chpstping 

St pi ng(Chapactep) 

WHERE 
Elen IS Chap 
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SPEC Dat a«-val ues 

EXTEND 

WITH 

SORTS 

OPS 

Boolean 
Natural 
Int eqer 
Charac t er 
Bi tst ri ng 
Chrst ri ng 

Val 

Errval : -> Val 

AXIOMS 

Val«-to<-bool : Val -> Bool 
Val •-to*-nat: Val -> Nat 
Val ►toH nt : Val -> Int 
Val «-to<-cHr: Val -> Chr 
Val »-to*-bi tst r: Val -> Bitstr 
Val t-t o«-chrst P: Val -> ChpstP 

Bool ♦•to'-val : Bool -> Val 
Nat t-t o«-val : Nat -> Val 
Int ♦■t o«-val ; Int -> Val 
Chapval: Chap -> Val 
Bi tst p*-to*-val : BitstPing -> Val 
Chpst p«-t o«-val : Chpstping -> Val 

FOR X = Bool»^at»IntrChap»8itstp,ChPStp 

Val«-to<-X(X«-to«-val (x)) = x 

X«-to«-val (Val«-to«-X(v)) = v 

FOR X,Y = Bool»Nat»IntfChap»BitstPfChpstP 
X r= i, 

X«-to«-val (Val«-to«-Y(v)) = Eppval 

SPEC Addpesses 

EXTEND 

WITH 
SORTS 

Ident i f i eP» 
Boolean 

AddP 
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OPS 

AXIOMS 

Startaddr: Id -> Addr 
Nextaddr: Addr -> Addr 
Equaladdr: Addr^ Addr -> Bool 

EqualaddP is an EQUIVALENCE 
Equal addp(Start addr(x) # St art addr ( y ) ) = Equal i d( x » y*) 
Equaladdr(Nextaddr(x), Nextaddr(y)) = Equa1addr(x,y) 

SPEC Operators 

EXTEND 

WITH 
SORTS 

OPS 

Dat a*-val ues 

MonoDf 
B i noD» 
Pel oo 

Bool not: -> Monoo 
Booland: -> Binoo 

Natadd:  -> Binoo 

Intadd:  -> Binoo 

Chrstrcat: -> Binoo 

Bi t st rcat :  -> Bi nop 

Intgt:  -> Reloo 

AXIOMS 

Applymonoor MonoD»Val -> Val 
Applybinoo: Bi noo»\/a1 »Val -> Val 
Applyreloo: Peloo,Val»Val -> Val 

Applymonoo(Bool not#v) = 
Bool val (Not (Val«-to«-bool (v)) ) 

Applybinoo(Booland»v1»v2) = 
Bool val (And(Val«-to<-bool (vl)»Val«-to*-bool (v2))) 

etc 

SPEC Inst ruct i ons 

EXTEND 

WITH 
Operators 
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SORTS 

OPS 

SPEC Values 

EXTEND 

WITH 
OPS 

AXIOMS 

Inst r 

Monad: MonoD»Addp»AcHr -> InstP 
Binad: Binoo»AddrfAddr»Addr -> Instr 

Mov: Addr»Addr -> InstP 
Movit Addr, Val -> InstP 
Jmo: Addp -> InstP 
If: Pelop»Addp,Addp,Addp  -> InstP 
Push: Addp, Stk -> InstP 
POD: Addp» Stk -> InstP 
Cal1: AddPr Stk -> InstP 

Ret: Stk -> InstP 
Halt: -> Inst P 

Dat a«-va 1 ues» 
Inst PUCt i ons 

Inst p«-to«-val : InstP -> Val 
Val «-toHnst P: Val -> InstP 

Val «-to<-i nst P( Inst p«-to«-val n )) = \ 
Inst p«-to«-val (Val «-to«-i nst P(V) ) = v 

FOR X = Bool^at»Int,Chp,BitstPrChPStP 

Inst p>-to«-van Val ♦■to^-X (v)) = Eppval 

SPEC ^acM nest ate 

EXTEND 

WITH 
SORTS 

OPS 

AXIOMS 

SPEC Machine 

EXTEND 

Values, 
Inst PUCt\ons 

State 

Ini t ialstate: -> State 
Stope: Val»Addp»State -> State 
Fetch: AddPf State -> Val 

Fetch(a»Initialstate) = Eppval 
Fetch(a»St ope(Vfa,s)) = v 
Stope(Fetch(a*s)»a,s) = s 

Machi nest ate 
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WITH 

OPS 

AXIOMS 

Program: Addr»State -> State 
Execute: InstP/AddPfSt ate •> State 

Program(a/s ) = 
Execute(Val<-to«-instp(Fetch(a»s))»a»s) 

Execute(Mov(al»a2),a»s) = 
Progpam(Next(a)rSt0Pe((Fetch(al,s),a2,s)) 

Execute (MovHal» v)» ar s) = 
PpogpamC^ext(a)fStope(v»al»s)) 

Execute(JmD(a 1)»a»s ) = 
Ppogpann(alfS) 

Executed f (P^ al »a2»b) , a» s) = Ppogpam ((Cond (Val ♦•t o»-bool 
(Aoo1ype1oo(p»Fetch(al,s)»Fetch(a2,s)))fb,Next(a)),s) 

Execute(Ha11,a» s) = s 
Execute(Monad(m,al,a2),a*s) ) = Ppogpam(Next(a)» 
StoPe(ADolyTnono3(m>Fetch(alrS))»a2/S)) 
Execute(Binad(b,al»a2,a3),a»s) = Ppogpam(Next(a) f 
Stope(ADp1voinoo(b,Fetch(alfs)fFetch(a2#s))»a3,s)) 
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