
unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Palm Entered)

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

NPS52-84-022

2. GOVT ACCESSION NO

♦ . TITLE (and Subtitle)

A Formal Method For Specifying Computer Resources
In An Implementation Independent Manner

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED

7. AUTHORfs;

Daniel L. Davis

9, PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943

6. PERFORMING ORG. REPORT NUMBER

6. CONTRACT OR GRANT NUMBERft)

It. CONTROLLING OFFICE NAME AND ADDRESS

Chief of Naval Research
Arlington, Virginia 22217

14. MONITORING AGENCY NAME & ADDRESSC/f d*'/eren(from Controtllnt Office)

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

61153N: RR014-08-01
N0001483WR30346

12. REPORT DATE

November 1984
13. NUMBER OF PAGES

37
15. SECURITY CLASS, (of thle report)

Ma. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol thU Report)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (al the abetracl entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

fg" KEY WORDS (•Continue on reverje aide If necemaary and Identity by block numbsr;

20 ABSTRACT CCont/nu* on reverse aide If neceaeary and identify by block number)

This paper is an investigation of a methodology for the formal specification
of computer software or hardware resource interfaces. The objective of the
methodology is to make possible the specification of implementation independent,
and thus portable, interfaces for the development of software. This paper is
concerned with the theoretical and conceptual issues of such a specification
methodology, and for the most part is an adaptation of the methods of algebraic
specification of data types to tie specification of computer resources. This
p^ppr is rhp hx^i* fnr- a pr-^rtir^l ^ppr i f i r at i rm in nrngrpss.

EDITION OF 1 NOV 65 IS OBSOLETE

5 N 0102- LF-0U-6601 SECURITY CLASSIFICATION OF THIS PAGE r"***" Data Mnlarad)

DD ,^NRM73 1473

NPS52 84-022

NAVAL P08I0RAQUATE SCHOOL
Monterey, California

i
Q

t
DT1C
ELECTE
FEB 1 1 1985 D

A FORMAL METHOD FOR SPECIFYING COMPUTER RESOURCES
IN AN

IMPLEMENTATION INDEPENDENT MANNER

Daniel Davis

November 1984

Approved for public release, distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

85 01 29 118

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker
Superintendent

D. A. Schrady
Provost

The work reported herein was supported by Contract
from the Office of Naval Research.

Reproduction of all or part of this report is authorized,

This report was prepared by:

btfU^uJL <£^M/-o
DANIEL L. DAVIS
Associate Professor of Computer Science

Reviewed by:

/V /"

k
^^5****-"'

RUCE J. MACLENNAN
Acting Chairman
Department of Computer Science

Released by:

KNEAl^E fTWRSHALL
Dean of Information and
Policy Science

A FORMAL METHOD FOR SPECIFYING COMPUTER RESOURCES
IN ANJ

IMPLEMENTATION INDEPENDENT MANNER

Daniel Davis

Deoartnfient of Ccnouter Science

Naval Postgradjate School

Monterey» California

Int roduc t i on

for
env i
goal
deve
peso
a si
stor
mach
Syst
cont
deve

The
the

r onu
of

1 ODTI

urce
ngl e
age^
i ne
e-n s

rol
1 OOTl

ourp

soe
ent s
this
ent e
Tiach
user
di s

for
uch a
dev i

ent s

ose of this r
c i f i cat on an
for limited r
^ork is to be
nv i rontient f o
i nes. A 1i m i
systen that

olay» keyboa
deve1ooment
s in a snart
cef or it
ystem.

eoort is to desc ri be
d development of por
esource mach i nes.
ah 1e to build a por

r develooment on and
ted resource develoo
includes a orocessor
rd» and list devi c
might be a dedi ca
device such as a rob
may be an apoli ca

a met hodology
table software
The ultimate

t able software
for limited

ment system is
, memory, disk
e . The t arget
ted processor
ot t or process
t i on on the

The soecific oroblem addressed here is the develooment
of a methodology for specifying resources^ Doth physical
resources and oroblem solving (software)* in an
imolementation independent manner. This methodology can
then be used to specify successive layers of resource
abstraction/ beginning with the ohysical resources at the
lowest level and ending with oroblem solving abstractions at
the highest level. To achieve this goal we need a
conceotual framework that has the following features.

It must oe presentable in a clear and precise form.

It must orovide a comolete and rigorous theory of
abstract soecification

It must include a oractical theory of imolementation

A number of peoole have worked on the related oroblem
of specifications of abstract data tyoes. The focus of this
reoort is the application of similar technigues to the
soecification of physical resources.

To further clarify my oojectives here, I wish to
briefly describe some of the historical background leading
uo to the current work.

Paqe 2

Tradi t i ona11v»

around a oodv of
this herit age. Sue
into 'c1osed sy
ooss i bi1i t y of move
1 eve 1 abst rac t i ons
some -neasure of sof
they tend toe peate
thus t hei P oopt ab i1
syste-n* all the
popted. ^opeovep»
semant i c s of high
thpouqh any consist
tpanslate opogpams
f ac t OPS and the lab
develoDment have co

softwape enyipon^ents have develooed
hapdwape and toa captain extent peflect

h systems of soft^ape tend to develoo
stems' of softwape» with vepy little
ment between systems. Even though hiah
ppovided oy high level languages opovide
twape standapdization and ooptability»
closed systems at a vepy high level* and
ity is limited because to oopt such a
layeps of softwape below them must be
oecause of the ppoblems in soecifying the

level constpucts of diffepent languages
ent theopy* it has opoven difficult to

in one language to anothep. These
OP intensive natupe of systems softwape
mbined to cpeate closed systems.

The opoblem of cpeating oortable software achieved
gpeatep significance when OUP ability to design and cpeate
new opocessops accelepated, Traditional1yr only a few
companies have existed to produce the hardwape environments
around which softwape has evolved. With the development of
microorocessors and the micpocomoutep industryr the number
of companies opoducing computeps ppolifepated» and at least
initially* no one comouter manufacturer predominated. At
the same time these small companies did not have the
resoupces to develoo an extensive body of software for their
particular environments» particularly things such as high
level language comoilers. Thus a new set of conditions
surrounding the design and development of software occurred.
The result has been that standardization and abstraction
occurred at levels above the hardware* but below the high
level languages. Examoles of this are CP/M, the P-system,
and 'C and the 'C runtime system. These systems are a
software abstraction of physical resources. From the
historical oerspective* this is one of the more interesting
conceots that has arisen from the development of

mi c rocomput ers •

For some time* it has been recognized that the
ooepatinq system peopesents an abstraction of the hapdwape
system that supports the layers of software built over it*
that is* an operationg system is an abstraction of the
ohysical resources of a system. Traditionally the ooerating
system orovides a standardized orogrammatic interface to the
secondary memory resoupces* opimary memopy resources*
processsors* and i/o resources.The most recent oersonal
computing systems go a step beyond the traditional operating
system by including more soohisticated abstractions of the

console di sol ay .

The oroblems that must be faced in trying to specify
the oroperties of a real or aostract ohysical resource are
similar to the problems faced by linguists who try to
soecify the semantics of language constructs. It is

Page 3

difficult to develoo abstract models that are DPecise»
caoture the essential features of somethinq real* yet do not
ooscure and comolicate our ability to work with what is
real. On the other hand» if we are able to successfully
caoture the essential features of something we know
intuitively^ the abstract -nodel can become a tool that
enables us to sharoen our intuition, and increase our
understanding. Unless we can develoo abstract models that
allow us to clothe our intuitive notions with orecision, we
will remain at an imoasse in our ability to know which of
these ideas are imoortant and which are not.

In the following section we will outline the main
elements of a conceotual system develooed for this ouroose.
In the later sections* this conceotual system is made
orecise and illustrated in some detail.

Page a

1.0

Conceot ua1 Too 1s

There are a number of features of the oroblem of
aostract soecification that naturally lead us to draw on
mat he-nat i ca 1 discioHne. The methodology we use must be
peoresentation indeoendent. The methodolgy must give us a
method of proving the correctness of our assertions about
formal specifications and their implementations. We must be
aole to combine and comoose soecifications. The methodology
we use should encourage a discioline of care and orecision.
At the same time we should attempt to avoid unnecessary
aostraction or concepts that do not directly improve the
correct use of the methodology.

Most of the conceots that we use here were develooed to
soecifiy the semantics of high level language constructs*
oarticular1y» the specification of abstract data types.
Since the soecification of a oortable oroorammatic interface
has its origins in this work* and since these conceots are
more readily understood in its early form* we will begin
with an informal treatment of aostract data types.

1.1

Abstract Data Tyoes

In their most common usages* abstract data tyoes are

simoly oroolem solving resources. Some astract data types*
for examole a stack* are also abstractions of ohysical
resources. Our ouroose is to develoo a theory of
soecification that can be used to describe either oroblem
solving (software) resources or physical resources. To do
this* we use a theory of abstract data tyoes that has been
developing over a number of years* and has involved a number
of different researchers, -The orimary references to this
work can be found in Goguen [l^TSJ and Guttag [19781.

One of the simplest and -nost common data types in
mathematics and computer science is boolean. We will use
this data tyoe to introduce our general methods.

Mote first that a data type consists of more than the
values of the tyoe. The tyoe is a comoosite of the values
and the ooerators used with the type. In traditional usage*
the set of values denotes the data tyoe* when in fact* the
aggregate of operations and values denotes the tyoe. There
is a similar misconceotion of the function conceot in
mathematics. Often a function is denoted by just its rule*
when in fact it is an aggregate of domain* codomain* and

rule.

Paqe 5

For the ooolean tyoe* there are two values used» which
nnav be denoted by T and F and several fundamental operators
such as '-,, (logical negation), •&' (logical conjunction)
and 'i' (logical disjunction). Finally, there are relations
that must hold for these operators as given by the
traditional truth tables:

(X)

T ! F

x i ! &(x,Y) X Y ! I(X,Y)

T T

.-*•>!

T T T I T
T F F T F ! T
F T F F T ! T
F F F F F ! F

With the above definitions we are able to establish the
truth of other relations:

The idemootent law for negation

The associative law for conjunction

The commutative law for conjunction

The distributive law for conjunction and disjunction

The De^organ laws

Obviously, there are other realizations
type that we normally call the boolean tyoe.
used for the data values may oe {0,1}, the ooer
given different notations, etc. The fundamen
may also oe different. For example, the
ooerators may be negation and implication. It
understood that this set of ooerators define
type". Also, it is clear that this data typ
other ooerators, exclusive disjunction, for exa
clearly difficult to capture the essence of a
independently of a particular realization of i
one of the problems that a theory of abstract
must solve.

of the data
The symbo1s

at ors may be
tal operators

fundament a 1
i s general 1y

s the 'same
e admi t s many
mple. It is
type itself,

t. This is
soec i f i cat i on

The things that are useful about a data tyoe are not
just the values of the tyoe and the ooerators of the type,
but the expressions we can Ouild from values and operators.
We use exoressions to calculate with boolean values, so we
need to 'evaluate* expressions and to determine if two
expressions are 'equal', etc. Expressions are built from
values and operators by abiding by the domain constraints of
the operators, and using composition of operators. For
example, all the following are obviously correctly formed
expressions, assuming a prefix form for the ooerators.

-(-(&(T,F))

Paqe 6

& (T , t (& {F ,-• (T)))

We also fom exoressions with 'free variables':

! (■•(x),&(T,y))
where of course x and v are the 'free' variables. Often we
want to determine if two exoressions are 'for-nally equal'.
In oarticular we have reason to believe that every
expression without free variaoles is eaual to either T or F.
Or we may have reason to believe that we can 'orove' that
the exoression ^ (i (x f y)) equals 1 (-< (x) , "C y)) . In qeneral/
whenever we create and use a 'data tyoe'r we are potentially
interested in the set of all exoressions involving values of
the type or free variables on the type. These objects are
the abstract reoresentatives of the things in the real world
modeled by the data type. In fact* Hoffman and O'Donnell
l\9B2] have recently expressed the view that much of
computinq involves no more than the transformation of
complex expressions to recognizable form.

1.2

A1qebras

The aggregate made uo of specific sets of values^
ooeratorSf and expressions form what is called an 'algebra'.
Basically an algebra is a comoosite structure consisting of
ooerations and sets. The sets describe the types of
ooerands and results. The operations define all the ways
that results are determined from operands. In the general
case^ the ooerations can have multiple ooerands of mixed
type. The tyoes of the ooerands are called 'sorts'.
Boolean is a sort of the boolean data
have multiole operands of mixed sort
fixed sort. An operator is simoly an
form:

tyoe. Ooerators may
and give a result of a
n-arv function of the

oo Al,A2,A3,...,An -> A

where Al,,,.fAnrA are carrier sets of sort SI,,,,,Sn,S
respectively. The distinction between the 'tyoe' of a set
and its name is intentional.

In our description of an alqehra» the operations are
assumed to be exolicitly defined functions on exolicitly
defined sets. If» however, we intend to use these concepts
for the soecification of real oojects, we must be careful to
avoid the soecification of operations or sets that are not
const ruetib1e bv finitary methods. For examole, the set of
real numbers is not const ruetib1e by finitary methods. Also
many of the ooerations used in mathematics assume
non-finitary orincioles in their construction. Thus it is
imoortant to use care in the choice of which orincioles we

Paqe 7

assume to construct the objects we use
oojects we are attemoting to specify.

to reoresent the real

Me must also be sure that the method of soecification
itself has no reoresentationa1 bias. In the examole above»
we do not want to say that the aoolean data tvoe consists of
the ooerators above on the sets abovef since there are other
ooerations and sets that reoresent this tyoe equally well.

Similarly^ we do not wish to soecify a resource in a
comoutinq system as consisting of a specific orocessor,
memory^ disk, etc. but by the abstract functional
orooerties these objects orovide. However* we also have to
account for the situation in ^hich two systems ^hich apoear
functionally different* are in fact functionally equivalent.

1.3

Algebraic Specifications

The manner

these oroblems

specifications solve in which algebraic

is by first soecifyinq 'temol ates ' for the
being specified* and

First we require that there be exactly one set whose
'type* will oe described by the name 'Bool'. There must be
two 'constants' (0-ary ooerations) of tyoe Bool* named
'True' and 'False'. Then there must be exactly two
ooerations* one unary and one-binary* with names* 'Not' and
'And'* with aopropriate functional type. Summarizinq*

True: -> Bool
False: -> Bool
Not: Bool -> Bool
Bnd: Bool*Bool -> Bool

Next* the following 'axioms' must hold:

Not(True) = False
Not(Not(x)) = x
And(T rue * x) = x
And(False*x) = False
And(x * y) = And(y » x)
And(And(x*y)*z) = And(x* And(y*z))

Paqe 8

The axioms above were chosen to comoactly describe what are
claimed to oe all the essential orooerties of the ooerators.
Note that nowhere is there a soecification of the number of
elements in any set that olays the role of 'Bool*. There
are constant operations 'True' and 'False' whose values must
be in the set playing the role of Bool» but there is no
guarantee that these values are distinct* or that they are
the only values.

The above soecification can be codified into a comoact

synt ax :

SPECIFICATION Boolean

SORTS

OPS

AXIOMS

Bool

True: -> Bool
False: -> Bool
Not: Bool -> Bool
And: Bool>Bool -> Bool

Not(True) = False
NoKNotCx) = x
And(T rue» x) = x
And(False» x) = False
And(x»y) = And(y,x)
And(And(x,y)»z) = And(x,And(y/z))

Algeoraic soecifications always occur in two parts.
The first oart includes the sorts and the ops and is called
the signature. The second oart consists of the axioms. The
axioms aoove are described as equations between terms with
free variables. Axioms may also be 'conditional eguations'.
A eguation is conditional if it has the form:

E1,E2,...,En => E

where EI>E2/...»En, and E are eguations between terms.

He say that an algebra has the same signature as a
specification if there is a one to one correspondence
between the sorts and operations of the specification and
the carrier sets and the operations of the algebra that is
consistent with the type properties of the operations in the
soec i f i cat i on.

If 'Bool' is associated to the set (T,F},'True'is
associated to the constant function whose value is T»
'False' is associated to the constant function whose value
is F/ 'Not* is associated to the unary operator •<, and 'And*
is associated to &, then it follows that the algebra we have
discussed oreviously satisfies the above soecification.
Also this algebra clearly satisfies the axioms. Note

Page 9

however there are -nany other alqebras that also satisfy the
aoove soec i f i cat i on . FOP exa-nole* associate to the sort
'Bool* the set {a>. Associate to the 0-apy ooerators 'True'
and 'False'/ the constant function on {3} whose value is
'a*. Associate to 'Not* the trivial unary function on {a>
that is the identity. Associate to 'And' the trivial binary
function on {a>. This algeora has the correct signature and
it is not difficult to show that it satisfies the axioms.
Yet we would not say this second algeora is reoresentative
of the 'Boolean' tyoe. Thus there is a clear distinction
between an algebraic soecification and an algebra.

In the aoproach of 'algeoraic semantics'* the meaning
of a specification is given by a class of algebras that is
uniquely associated to the specification. In the current
work on aostract data types there are two complementary
semantics associated to algeoraic soecifications, To
describe these we first need so-ne additional concepts.

l.y The Herbrand Construction

Recall that a soecification consists of a oair (S^E)
where S is a signature and E is a set of axioms. Let ALG(S)
denote the set of all S-alqebras* algebras whose signature
is S. Given S, how do we know that there exists any
algebras in Alg(S) ? And given that such S-algebras exist»
how do we know that there exist S-algebras that satisfy the
axioms E ?

Given a soecification (S,E), define the set of all
formal free terms» Term(X,S)/ according to the following
rules:

1. If t is a O-ary operator or free variable of sort s»
then t is a term of sort s.

2. If tl» t2, ... ,tn are- terms of sorts sl» s2/ .,.,sn,
and t is an ooerator of characteristic

t:slrs?/....sn -> s

t hen

t(t I/t2, .. .,tn)

is a term of sort s.

Let Term(S) denote the set of all terms that do not
contain any free variables. Note that both Term(X,S) and
Term(S) consist of terms of different sorts. Denote the
terms in Term(S) of sort s by TermCSHs). The sets
TermCSMs) can now be viewed as carriers in a S-algebra
Term(S). Ihe operations on this algebra are associated to
the ooerator temolates of S. If op is an ooerator template

Page 10

of characteristic s\,s2,,.,r sn -> s define the ooeration
f-oo from Ter-n(S) (si)»...» Ter-n(S) (sn) to Term(S)(s) by:

f-oo(t1#...»tn) = oo(t1»...>tn)

where
t1f.../tn are terms of sort slr..«fSn

The formal construction used to create Term(S) is called the
Herbrand construction in the mathematical literature.

In the case of the Boolean soecification above* the
term algebra consists of all the term exoressions we can
form abiding ov the type characteristics of each operator
t emolate.

There is another eguivalent descriotion of the sets of
terms determined by a signature. We can view the terms as
strings on the alphabet consisting of the ooerator names*
the comma* left and right oarentheses* and some finite
alohabet of symbols for free variables of different sorts.
Then the set of terms forms a language on this alohabet with
the following qrammart

For each sort s in S add the production rule:

<Term(S)> -> <Term(S)(s)>

For each ooerator of characteristic:

OP: s 1 * s?*...» sn -> s

add the rule:

<Term(S)(s)> -> 'OD('<Term(S)(s1)>'»'...'»'<Term(S)(sn)>')'

For each free varia-ole X of sort §$ add the rule:

<Term(S)(s)> -> 'X'

It is not difficult to see that the resulting grammar is
LL(l)f and therefore parsaole by simole and efficient
methods. In particular there are automatic oarser
generators that will take the sianature of a soecification
as inout and generate a table driven parser for terms
defined for the given signature. The resulting oarse tree
can in fact be used as a reoresentation of the term for use
in raoid orototyoing. Essentially this is the theoretical
justification for the methods imolemented in Guttag*
Horowitz/ and Musser [19781.

Page 11

1.5

Congruences

An equivalence relation R on a S-alqebra A is called a
congruence if:

1. R-equivalent ele-nents have the same sort

2. If (tl#t1'),(tZfta1),..., (tn/tn'} are oairs of R-equivalent
elements of sorts sl»s2,..wsn and OP is an operation of tyoe
sl/s2,...'Sn -> s, then OD(t1»...»tn) is R-equivalent to
oo(t1 •»..•» tn ') .

If R is a congruence on a S-algebra A, then there is
induced on the equivalence classes A/R a natural S-algebra,
called the quotient algebra (Gratzer [19681).

1,6 Initial Algebras

If (S,E) is a soecification, there are t^o canonical
congruences induced on the term algebra TermtS) by the
axioms E. These two congruences then induce two quotient
algebras on Term(S), called the 'initial quotient algebra'
and 'final quotient algebra*.

The first congruence will oe denoted Initial(3,E), and
the second -ill be denoted Final(S,E). Initia1(S,E) is
defined by the following rule:

(t^t1) are Initial(S»E)-equivalent
i f and only if

t - t' can be proved from the axioms of E

The axioms as expressed are equations between terms of the
'free term algebra' associated to the algebra. This free
algebra includes terms with free variables of the
aoprooriate sort. For example/ in the axioms for the
Boolean type there occur axioms such as:

And(True()» x) = x

The variable x is a free variable of sort Bool. The rules
for Proving equations from axioms and other oroven equations
are given by:

1. Any axioti is a proven equation. Any conditional axiom is a
valid rule of inference for oroving equations from proven
equat ions.

2. If in a oroven equation, every occurrence of a free variable
is replaced by a single term of the same sort as the variable.

Page 12

the resulting equation is oroven.

3, If in an equation, some term is reolaced bv a term orovably
eaual to itf the resulting equation is oroven.

a. Any equation derived fron oroven equations by the use of
the reflexive law, synmetric law, or transitive law for
equality* is also oroven.

With the above rules, it is not difficult to orove that the
relation defined by all oairs of orovaoly eaual terms (with
or without free variables) is a congruence.

1.7

Fi nal A 1gebras

The set of terms of specific sort s in the
quotient algeora defined oy a soecification (S,E) is
be 'trivial* if using the axioms E, any two terms t#
sort s are orovably equal.

initial
said to
t' of

Given a soecification (S,E)r we say that an equation
between two terms t = t' of a non-trivial sort s in the free
term algebra is 'consistent* with the axioms Ef if in the
soecification defined by the axioms E with the additional
axiom t = t*, the set of terms of sort s is not trivial. It
follows, for examole, that any provable equation is
consistent. However, there may be consistent equations that
are not provable. Define the relation Final(S,E) on terms
of the free term algebra Term(S) by:

t, t* are Final(S,E) - equivalent

i fi
t = t* is consistent with the axioms E

It can be oroved that the relation Final(S,E) is a
congruence. The corresponding quotient alqeora is called
the *final algebra* defined by the specification (S,E),

1,8

Alqebra Morohisms

So far» we have shown that a specification (S,E)
determines two specific S-algebras, the initial S-algebra
and final S-algebra. How are specifications related to
other aloebras ? For example, we have given a soecification
for the Boolean type. How is this specification related to
an algebra that seems to realize the specification ?

Page 13

Given two S-alqebras A and B, a corresoondence H
associating each carrier set of * to a carrier set of B, and
each operation of A to an ooeration of 3 is said to be an

S-homomorph i s-n if!

1. the corresoondence between carrier sets preserves the

sort t yoe.

2. the corresoondence between ooerators oreserves the
ooerator characteristics.

3. if tl/...ftn are elements of sorts sl>...»sn in A
and oo is an ooerator in A, then

H(oo(t1r ...»tn)) = H(OP)(H(t1), .. .,H(tn)) .

An S-homomorphisn is called an S-monomorohism if each
correspondence between carrier sets is injective. An
S-homomorohi s* is called an S-eoi moroh i sti if each
correspondence between carrier sets is a surjection. And an
S-homomorph i s-n is called an S-i somorph i s-n if each
correspondence between carrier sets is a bijection,

S-hononorphisms are intimately associated to
S-congruences. If H is an S-hoiiomorph i sm between S-algebras
A and B, define the relation R(H) on the S-algeora A by:

For any sort s in the signature S, let A(s) be the carrier
of sort s in the algebra A, and let Hfs) be the
correspondence determined by H oetween the carriers of A and
B of sort s.

a, a1 in A(s) are R(H) - eguivalent
i f f

H(s)(a) = H(s)(a')

It is not difficult to show that RCH) is an S-congruence.
It is the S-congruence canonically associated to the
S-homomoroh i s-n H,

Given any S-algebra A, there is a canonical
S-homomoroh i sn VaHA) from the term alqebra Term(S) to A,
determined ov evaluating each formal term of Term(S) through
its corresponding terms in A, There is then an S-congruence
R(Va1(A)) on Term(S) induced by VaHA). For convenience*
this congruence will De denoted R(A),

1.9

Algebraic Semantics

Page m

At this ooint we have all the conceotual tools we need
to Drecisely describe the two classes of algebras that will
normally be used to interoret a soecification (S,E),
class of algebras will determine one of the two
that a specification deter-nines, hence
'algebraic senantics'.

the

Each
mean i ngs

terminology

re r/he '^^i31 alaebra' semantics of a soec i f i cat i on
15,E) is the class of all S-algebras A such that:

1. the S-homomorohism Val(A) from Term(S) to A i
S-eoi moroh ism.

an

2. the S-congruence R(A) on Term(S) is identical with
Initial(S,E).

The 'final algebra' semantics of a soecification (S,E)
is the class of all S-algebras A such that:

1, the S-homomorohism Val(A) from Term(S) to A
S-eo i moroh i sm,

is an

2, the S-congruence R(A)
Final(S,E).

on Term(S) is identical with

It follows that the initial guotient algebra is an element
of the class of initial algebras, and similarly, the final
quotient algeora is in the class of final algebras. It is
not difficult to orove that any two S-algebras in the class
of 'initial algebras' are S-i soiioroh i c. Similarly all the
S-algebras in the class of 'final algebras' are
S-isomorphic. Thus, in effect, any algebra in the class of
initial algebras is isomorohic to the auotient initial
algebra constructed from the term algebra and the
Initial(S,E) congruence. Similarly for final algebras.

The aoove characterizations of the meaning of a
soecification can be used to effectively determine if a
soeci'ication 'means' what we want it to mean. For example,

for Boolean, we started with an algebra

and '-••. The

t n the examole

consisting of a set {T,F} and ooerations 'S'

ooerations were defined exolicitly with a truth table. tie
then created a formal specification Boolean that we claimed
caotured the 'essence' of the boolean data type.
Soecifically we should be able to orove that the exolicit
algebra is a member of the class of initial or final
algebras defined by the specification. Define a
S-homomorohi STI H from Te rm (Boo 1 ean) to algebra A by:

True()
FalseO
Not
And

-> T
-> F
-> -»

-> &

Page 15

H is clearly a surjection from Term(Boolean) to {T,F>.
Consider the relation R(A) induced on Term(Boolean) bv A.
We will show that it equals the relation InitiaHS,E)r where
E is the set of axioms. We have to show that two terms
evaluate in A to the same value if and only if the terms are
orovably equal using the axioms in E. Let the size of a
term oe the number of ooerators in the term. We will first
Drove by induction on the size n of the largest of the two
terms that if two terms evaluate in A to the same results
then they are provably equal from E.

First we prove the following:

Lemma; i f
True* and
False.

t evaluates to Tr then t is
if t evaluates to f, then t

orovably equa1 t o
i s provably equal to

Proof: Induct on the size n of t. If n = 1> the result is
oovious. Assume true for n <= N and assume n * N ♦ I, The
term t has the form t = Not(x) or And(xfy) for some terms x
and y of size <= N. If t = ^ot(x), and t evaluates to T,
then Not(^ot(x)) = x evaluates to "•! = F, and x has size < =
N f therefore x is provably equal to False. But then t =
Not(x) is provably equal to Not(False)» hence provably equal
to Not(Not(True5) = True. Similarly if t evaluates to F.
If t = And(x,y)» and t evaluates to T, then x and y must
evaluate to T also. Since the size of x and y <= N» x and y
are provably equal to True. But then from the axiom
And(True»x) = x, it follows that t = And(x,y) is orovably
equal to True. Similarly if t evaluates to F.

Clearly every expression evaluates to T or F.
Therefore if two exoressions evaluate to the same value by
the above they are provably equal to each other.
Conversely* if two exoressions are orovably equal to each
otherf then they must evaluate to the same value* since the
ooerators corresponding to each ooerator temolate satisfies
the corresponding axioms.

Thus the guotient alqebra defined by
Term(Boolean)/Initial(S*E) is isomorohic to the algebra A,
and A is an 'initial algeora' for the soecification.

the
Moreover* note that the 'trivial* algebra consisting of

{a> and the operations:

T = F = a* "'(a) - a* i(a*a) = a

has the correct signature but is not in the class of
'initial algebras' defined by the soecification * since in
this algebra True and False evaluate to the same value* but
are not provaoly egual.

deli
re 1 a
al re
term
t a
t ',
equa
eval
1 emm
to F
orov
cons
are

Is
ned
t i on
adv
s t ,
nd
it d
1.
uat e
a t
al se
ably
i ste
orov

the a
oy

s RCA

orov
t ' t

t ' a
oes n
But

to d
is

» and
equ

nt , t
abl y

Iqebra A
the same
) and Fi
ed i t
hat are
re cons i
ot follo
if t a

i f f erent
orovab1y
hence f

al to
hey are
equal» t

i n

soe
na) (
i s
cons
st en
w th
nd t
va 1
equ

rom
Fals
orov
hen

th

c i f i
S,E)
suf f
i st e
t, t
at
' ar
ues
al t
the

e.
ably
they

e c 1 a
cat i on

t he s
i c i ent
nt > bu
hen f r
True
e not
T and
o T rue

equa
There
equa 1
are c

ss o
? E

ame ?
to a

t not
om E
and
orova
F, sa
and

t i on
fore
. Cl
ons i s

f '
qu i v

By
sk w

oro
and
Fals
bly

y.
t' i

t
i f

earl
tent

Page 16

final algebras'
alently* are the

what we have
hether there are
vab1y equal. If
the equat i on t =
e are orovably
equa1, then they
But then by the
s orovably equal
= t'/ True i s

t and t' are
y i f t and t'

The above arguments show that for the soecification
Boolean^ the initial algeOra and final algebra semantics are
the same. It is a theoretical fact that there exist
soecifications for which this is not the case. This will
become fairly evident when the comoutabi1ity of a
ssecification is discussed in a later section.

In the case of Boolean^ the axioms enable us to
formally evaluate each term in terms of constant terms. For
example, to evaluate And(Not(Fa 1se),True):

And(Not(False),True) = And(True,Not(Fa 1se))
And(True,Not(False)) = ^ot(False)
Not(False) = Not(Not(True))
Not(Not(True)) = True

In fact» the tables describing the ooerations exolicitly
(which also determine an equational soecification, without
free variables) is derivaOle from the aoove equations. The
advantaqe of the equational specification with free
variables is its comoactness.

Ordinarily, it cannot be assumed that every term is
orovably equal to a constant term. It is often the case in
the theory of abstract data tyoes for examole, that the
number of distinct classes of unequal terms is infinite.

2.0

Properties of Specifications

Now that the basic conceots of our methodology have
been described, we want to determine if it can be used to
fulfill the requirements of a methodology for
soec i f i cat i ons.

2.1

Page 17

Equivalence of Soecifications

wi th
inter
soec i
t he s
same
same
class
soec i
i ni 11
orova
t riO
al geb
t erms
consi

Firs
the

aret
f i ca
ame
cla

f ina
of

f i ca
al
bly
soec
ra s

t
st en

t 11
sa

at i o
t i on
i ni t
ss
1 al
f i na
t i on
al ge
eqja
i f i c
eman

t wi

i s o
■ne s
ns
s (S,
i al a
of i
gebra
1 alg
s (S,
bra
1 f PO
at i on
t ics
t ' i
th E'

oss i ble
i gnat UP
of me
E) and
1gebpa
ni t i a 1
semant

ebpas.
E) and
semant i
m t he a
s (S,E
i f and
s cons

to
e ha
an i n
(S,E
sema
a 1 ge
i cs
It

(S,E
cs
x i om
) a
on 1 y
i ste

def i
ve t
3
') w
nt i c
Dpas
rthen

fol 1
') h
i f a
s E'
nd

i f
nt

ne when
he same
di scuss
i t h the
s when

Si m i
they

ows f PO
ave t h
nd on 1y
and co
(S^E*)

any
with E

t wo
mea

ed
sam

they
1 apl
det e
m th
e s

i f
nvep
hav

eaua
if a

soec
ni ng»

aoov
e sign

dete
y» the
rm i ne
e abov
ame m
t he ax
sel y ,
e the
t i on
nd onl

i f i cat i ons
in the two
e. Two
atupe have
pm i ne the
y have the
the same

e that two
eani ng in
i oms E ape
Si mi Iap1y

same final
of fopmal
y if it is

The above definitions allow us to detepmine when two
soecifications with the same siqnatupe but diffepent axioms
have the same meaning, rthat about soecifications that have
different signatupes ?

ftssume that (S/E) and (S'fE') ape
A coppesoondence H between S and S'
t pansfopmat ion if:

t wo soec i f i cat i ons.
is called a Poi ncape

1. fop evepy sopt s in S, H(s) is a sopt in S'

2. fop evepy opepatop oo in S of chapactepistic
s1,s2,...,sn -> s,

H(OD) is an ooepatop in S' of chapactepistic
H(sl),H(s2),...,H(sn) -> H(S)

Cleaplyf H induces a coppesoondence between Tepm(S) and
TepmO'). If H is bijective between S and S', then H
induces a bijection between Tep-ntS) and TepmO'). Thus each
equat i on in Tepm(S)is maooed to an equation H(t) =
HCt1) in TePmCS'). In this case the soecifications (S,E)
and (SSE*) aPe semantically equivalent in the sense of
initial algebpas» OP final algeopas» when the soecifications
(S'^E1) and (S'^HKE)) ape» and the question of equivalence
peduces to the orevious case. These cases cover the cases
that correspond to a renaming of sorts or ooerators^ in
addition to a change in the axioms.

In qeneral/ two soecifications have the save
when they determine the same class of aloebras.

semant i c s

Page 18

2.2

The Adequacy and Co-nout at» i 1 i t y of Algebraic Soec 1 f i c at < ons

In this section we exa-nine the ability of this
soecification methodology to define all the types of objects
that we might want to define. This is the 'adeguacy'
oroblem. Bergstra and Tucker [19851 have written a series
of oaoers dealing with this guestion and we will summarize

their i deas here.

Given a specification (S,E) and an S-algebra A, we say
that A is 'effectively oresented' whenever we possess an
effective enumeration of its slements and we can effectively
calculate its operations. The algeora A is said to be a
'semicomputable algebra'* or a 'cosemicomoutable algebra' if
in addition the eguality relation of A is recursively
enumerable* or co-recursive1y enumerable* respectively.
(Recall that a set is co-recursively enumerable if its
complement is recursively enumerable). A is a 'computable

algebra' when equality is decidable.

Since for initial semantics two terms are egual if and
only if they are orovably equal from the axioms* and since
all such oroofs can be enumerated* the initial algebra of a
soecification is semicomoutable. It is less obvious* but
also true* that the final algeora of a soecification is
co-semicomoutable. Note that if an algebra is both
semicomoutaole and co-semicomoutable* then the eguality

relation oetween terms is decidable.

Of more interest to the question of adequacy *is the
converse of these facts. Is every semicomputable algebra
the initial algebra of some soecification ? Is every
co-semicomoutable algebra the final algebra of some
soecification ? Is every comoutable algebra both the final
algebra of some specification and the initial algebra of
some specification ? Bergstra and Tucker (19831 have been
aole to prove the second and last of these assertions* given
that the specifications may include conditional eguations.

Theorem (Bergstra and Tucker),
i f and only i f it is the
conditional soecification,

An algebra is semicomputable
final algebra of a finite

Theorem (Bergstra and Tucker).
and only if it is both the initial algebra of a
conditional soecification and the final algebra of a
conditional soecification.

An algebra is comoutable if
finite
finite

Bergstra and Tucker also show that the set of functions
computed by LOOP programs on the natural numbers compose a
data tyoe which has a finite conditional soecification using
final algeora semantics* out does not oossess an effective
soecification of any kind using initial algebra semantics.

Page 19

The fact that individually, initial and final semantics do
not attach the same semantics to algebraic secifications is
one reason why both conceots need to oe introduced. There
is another more oractical reason however. It is reasonable
to require that the soecifications of some resources be
comoutaole. Presumably the functional behavior of
ohysical devices is decidable.

most

Unfortunately, the characterization of the
computability of a specification given by Bergstra and
Tucker is not generally oractical. In order to make the
methodology oractical we need simple but broad criteria for
insuring the comoutabi1ity of a specification.

One approach to this proolem is to determine if the
axioms define rewrite rules that allow one to orove that
each term without free variables can be reduced to a normal
form. To do this it is necessary to prove some kind of
Church Rosser property for normal forms, to guarantee their
uni gueness.

2.3 Specification Syntax

Now that the basic conceots underlying the methodology
of algebraic soecifications have been introduced we can
illustrate how these concepts are used in practice. First
we ^eed to establish a syntax for describing a
soecification. Rather than give a grammar, we will describe
the templates used for soecifications. An example of the
form of a soecifications was given above for the boolean
data tyoe. A template for this form is:

SPECIFICATION <Speci f i cat i on«-i dent i f ier>

OPERANDS

<0oerand<-l i st >

OPERATORS

<0perator«-l i st>

AXIOMS

<Axi omH i st >

It is convenient to have a specification syntax that
facilitates the combination and extension of soecifications
to provide a modular approach to complex specifications.
Although ultimately, a soecification should always be
expressible in the above form, it is convenient to eliminate
expressive redundancy through a more complex syntax. For
example, we want to provide a facility for readily
incoroorating a commonly used specification into a new

Paqe 20

soecif<cat 1 on. The syntax used to incoroopate a previously
defined soec i f i cat i on into a ne«< specification is:

SPECIFICATION <New«-soecificationHdentifier>

EXTEND
<01d«-speci fication«-identifier«-l ist>

BY

OPERANDS
<0perand«-l i st >

OPERATORS
<Opepat OPH i st >

AXIOMS
<Axio-n«-l i st>

The semantics of such an extended specification are the
semantics of the composite specification as if it were
written without extension. The properties pf the extension
may involve the operands and operators of both
specifications. Thus in an extension the semantics of a
previously d-fined specification could chanqe within the
context of new ooerands* operators* and orooerties. In mpst
cases such semantic changes are undesirable. Thus/ we need
a criterion for when such changes do not occur. In the
process of determining such a criterion we will also
illustrate the use of the semantic interpretation associated

t o a spec i f i cat i on .

Assume (SfE) and (S'/E') are two soecificat
which S is a subset of S' and E is a subset of E
let us consideP initial algebpa semantics. In th
the relation Initia 1(S',E ') is a subset of the
Initial (S*,E') since every formal term in Term(S) i
term is Term(S')» and if t and t' are orovably eg
they are orovably egual inE' since E is a suoset
The terms in Tepm(S)» viewed as tepms in TepmCS')
the same orooePties in (S'^E') as the pppoepties in
and only if any two tepms t and t* in Tepm(S)
Initial(S*,£') pelated ape also Initial(S,E) pela
other words, if the restriction of the
Initial(S*»£') to Term(S) equals the relation Initi

ions for
'. Fi rst
i s case,
relat i on

s also a
ual in E,

of E'.
will have
(S,E) if
that are

ted. In
relation

al (S,E).

We say that a specification (S,E) is persistent in an
extended soec i f i cat i on (S'EMr in the sense of initial
semantics, if the relation Initial (S ' ,E ') restricted to
Term(S) eguals the relation I nitia 1(S , E) .

If S is a 'subsignature' of S* and A and A' are
S-algebras and S'-algebras respectively, then A is said to
be a subalgebra of A* if there is a S-monomorohism from A to
A', Similarly, we say that a soecification (S,E) is

Page 21

oersistent in an extended ssecification (S'^E*)* in the
sense of final semantics/ if the relation FinaHS'^E')
restricted to Term(3) equals the relation Final(S,E),

The following theorems can now be oroved.

Theorem: (S,E) is
in the sense of
initial a 1gebra of
algebra of (S*,£')

a oersistent subsoec i f i cat i on of (.S',E'),
initial setiantics* if and only if the

(S»E) is a subalgeora of the initial

TheoreTi: (S,E) is a oersistent subspec i f i cat i on of (S'^E1)/
in the sense of final semantics if and only if the final
algebra of (S,E) is a subalgeora of the final algebra of
(SSE').

are
oersi
t o ve
a mao
c anon
may o
t yoe
a 1 geb
ex t en
soec i
subal

Al th

the
st en

ri f y
oi ng
i cal
f ten
i s c
ra f
ded,
f i ca
geor

ough

b
cy •
the
bet
re

be
omou
or t

th
t i on
a of

these
as i s
In th
corre
^een t
oresen
obt a i n
t able^
he so
en i t

i f an
a can

result

for at
e examo
ct ness
he soec
t at i ve
ed i n t
this a

ec i f i ca
wi 1 1

d onl v
oni cal

s are e

1 east
1 e give
of a so
i f i cat i
of the

his way
1gebra
t i on.
be oe

if its
algebra

ssen
on

n f o
ec i f
on a
dat
i n

i s b
If

rsi s
ca

for

tially
e or ac
r boole
i cat i on
nd an a
a tyoe.
orac t i c
ot h a f
the s

t ent i
noni cal
the ex

t heo
t i ca
an M

by
Igeb

So
e.
i nal
oec i
n t

al
tens

ret i cal
1 test
e showed
establis
ra that
ec i f i cat
If the
and i ni

f i cat i on
he ex t e
gebra i
i on.

they
for
how

h i nq
i s a
i ons
dat a
t i al

i s
nded
s a

2.a

Derived Algebras and Soecifications

Given an algebra of signature S and a term
t(x1#x2 , ...>xn) with free variables of sorts sl»s2,...fsn
and return sort Sr we can view t as defining an ooerator of
characteristic sK..wsn ->• s. Such an ooerator is called a
derived ooerator of A. More generally, an algebra B» whose
sorts are a subset of the sorts of A, and whose operators
are derived ooerators of A, is called an algebra derived
from A. The signature of B is also said to be derived from
the signature of A. For examole,

ImD(xl,x2) = Not(AndCxl,Not(x2))

is a derived operator in Boolean,
'implies' ooerator.

This is the well known

If (S,E) and (S'^E') are soecifications, and S' is a
signature derived from S, we say that the initial semantics
of (SSE') are consistent with the initial semantics of
(S,E) if given any terms t and t' of TermCS'), if (t/t1) is
in Ini t ial (S1 ^E') then (trf) is in In i t i al (S, E) . rte say

Page 22

that the initial semantics of (S'^E*) are faithful to the
initial semantics of (S»E)» if for any t, t* in TermCS')/
(tft1) is in Initia1(S,E) if and only if (t^t') is in
Ini t i al (S ' , E ') . Si-nilarly for final semantics.

2.5

Interoretations and Implementations

The oractical oroblem we are attemoting to solve
involves software oortability. Specifica11y» we want to be
aole to soecify resource interfaces in an implementation
independent nanner beginning with physical interfaces up to
problem solving interfaces. In this view* we want to
successively build layers of resources imolemented on
previously defined sublayers. For this reason it is natural
to expect that an 'implementation* must be determined by
relating one specification to another.

Alternativelyf we want to realize a soecification in
terms of resources for which we do not have specifications.
Me call such a realization an interpretation. An
interpretation is specified oy associating to each sort a
description of the values that will realize the sort» and to
each operator, a function orocedure operating on the
aopropriate values. An interpretation is valid if it
defines an algebra in the semantic class chosen for the
soecification. Thus an interpretation associates the
specification to a specific 'algebra', that is realized by a
set of function procedures and data types in a orogram.

To implement a specification A in terms of another
soecification B ought to mean that the sorts, operators, and
properties of A ought to be imp1ementab1e from those of B.
Therefore we make the following definition:

Given specifications (S,E) and (S^E'), an implementation of
(S,E) on (SSE'), in the sense of initial semantics, is a
Poincare transformation H from the signature S to a derived
signature S1' of S' with the property that the homomorohism
induced from Term(S) to TermCS*') is consistent with the
congruences Initial(S,E) on Term(S) and Initial(S ' ,E') on
TermCS*'). Or equivaIent1y, for t,t' in Term(S),

if (t, t ') is in Ini t i al(S,E)
then

(H(t),H(t')) is in Initial(S',E')

An implementation H is faithful, in
initial semantics, if in fact it satisfies:

(t ,t ') is in Ini t ial(S,E)

the sense of

Page 23

i f and only if
(H(t),H(t')) is in Initial (S* ,£')

We clearly have similar definitions for implementations
the sense of final semantics.

1 n

Theorem: There is an imolementation of (S»E) on (S'fE1) in
the sense of initial (final) semantics if and only if there
is a homomorohism from the initial (final) alqebra of (SrE)
to a derived alqebra of the initial (final) alqeora of
(S'^E').

Andf

Theorem: There is a faithful implementation of (S^E) on
(S'^E1) in the sense of initial (final) semantics if and
only if there is a monomorphism from the initial (final)
algebra of (S,E) to a derived algebra of the initial (final)
alqebra of (S' ,£').

Though these theoretical results seem comforting* are there
any practical methods for determining if a correspondence is
an implementation or if such an implementation is faithful ?

(3*,E') that assi gns
and to each operator

If H is a correspondence from (S»E) to
to each sort s in S, a sort H(s) in S'*
f in Sr a derived ooerator H(f) of S'r then H is an
implementation in the sense of initial semantics if and only
if for every axiom t = t' in E, the equation H(t) = H(t') is

orovably equal from E',

2.6

Parameterized Specifications

Certain kinds of resources are naturally parameterized.
For example* in the case of the string data type* strings of
integers* or strings of characters* or strings of bits all
require many of the same ooerations and share many of the
same properties* yet in most cases must be defined
separately. Parameterized specifications are soecifications
used to specify resources that may be instantiated for a
number of different resource parameters* but are not
uniquely associated to any of them. In this section* we
introduce the basic ideas with a minimum of discussion. For
details of some of the theoretical work in this area see
Ehrich [19821.

Page 2*4

3.0

Parameterized SoecificaHon Syntax.

The template for a oarameterized soecificat 1 on has the

form*

SPECIFICATION <SDecification«-identifier>

PARAMETERS
OPERANDS

<Dara,neter«-ooepand«-1 <st>

OPERATORS
<Dara"neter«-ODerator«'l ist>

AXIOMS
<Dara"neter*-aKio'n*-l ist>

OPERANDS
<ODerand«-l i st >

OPERATORS

<0DepatOPH i st>

AXIOMS
<ax i om*-\ i st >

The axioms fop the body of the oapametepized soecification

may include opepand classes and ooepatops of the papametep
papt» in addition to the othep opepand classes and
ooepators. The axioms of the oapametep oapt may include
only opepand classes and ooepatops of the oapametep papt.
The papametep papt descpibes the opepand classes* opepatopsr
and axioms that must be specified in any invocation of the
papametepized soecification. The syntax of an invocation

i s:

<oapm«-specH dent> (<spec«-i dent >)
WHERE

OPERANDS
<spec*-ODePand> IS <Dapm«-spec«'ODepand>

OPERATORS
<spec«-opepatOP> IS <Dapm«-spec«-opepatOP>

Thus in an invocationr a coppesoondence is established
between operands and ooerators of one soecification (actual
oarameters) and the ooerand and operators of the parameter
oart of the parameterized specification. For semantics* the
soecification resulting from such an invocation is viewed as
an extension of the soecification that suoolies the actual

Page 25

a valid invocation* the actual oarameters
"ioms as a consequence of the

to be a valid

oarameters. To be
must satisfy the parameter ax.~....,
axioms that they already satisfy. Also*
1
b

p
s
a

a.o

Cone 1 us i ons

Current practical aporoaches to functional
specification are not based on any rigorous foundation, or
developed in the context of any general theory. This fact
precludes the development of oortable logical interfaces, or
the sytematic specification of a hierarchy of logical
interfaces. The approach taken here attempts to resolve
some of these problems. It begins with a model close to
practice, the idea of an 'algebra', consisting of operators
and ooerands, and establishes a syntax and semantics for
soecifications. Transformations between soecifications at
the syntactical level are described by Poincare
transformations, a concept used for a long time in logic to
describe the same process of establishing a correspondence
between the names of the entities of one formal theory with
those of another. The semantics are established through
interoretations of the syntactical elements as elements of
certain algeoras, depending on the semantics chosen.
Relations oetween the semantics of two specifications are
established by honomorphisms between their respective
interoretations. Every important concept associated to
soecifications can now be given rigorous definitions.

At the practical level, concrete resources, either in
software or hardware, are viewed as defining concrete
algebras that may serve to interpret a specification
faithfully. Whether this assumption is reasonable remains
to be seen. This is the most obvious question open to
further research. Moreover, it seems apparent that much of
the theorem proving technology developer! in recent years may
find an aoplication to the analysis of specifications. In
any case, this approach has served to form a rigorous
foundation for a theory of specification, and to expose some
of the difficult issues that must be addressed by any
aopproach.

Page 26

5.0

A Samole Abstract Machine

To illustrate the oractical ootential of this
soecification technique^ a soecification of an abstract
processor is included below. The first oart defines the
data tyoes required to define memory* values^ and states.
The later part defines the ooerations and instructions of
the orocessor. The basic idea for such a machine can be
found in Fasel [19801 .

The specifications below combine to specify a sample
abstract machine. Metasymbols describing the form of the
soecification are caoitalized.

CONVENTION
A binary oo X: Elem, Elam -> Elem is
COMMUTATIVE

i f X(x,y) = X(y,x)
ASSOCIATIVE

i f X(X{x,y),z) = X(x,X(y,z))

SPEC Boolean
SORTS

OPS

AXIOMS

Bool

True:
False
Not;
And:

-> Bool
-> Bool
Bool -> Bool
BoolfBool -> Bool

Not(True) = False
Not(Not(x)) = x
AndCTrue* x) = x
AndCFalse» x) = False
And is COMMUTATIVE
And is ASSOCIATIVE

SPEC Natural

SORTS

OPS
Nat

0: -> Nat
Next: Nat -> Nat

SPEC Integer

EXTEND Boolean,
Natural

WITH

SORTS

Page 27

OPS
Int

0: ->
Next:
Neq:
Add:
Sub:
Lte:
Abs:

Int
Int -> Int

Int -> Int
Int,Int -> Int
Int,Int -> Int
Int,Int -> 9oo1
Int -> Nat

NOTATION

AXIOMS

END

SPEC Character

SORTS

OPS

•x
x t y
x
x < = y

is Neq(x)
is Add(x,y)

-y is Sub(x r y)
<=y is Lte(x,y)

Add i s COMMUTATIVE, ASSOCIATIVE
Add(x,0) = x
Add(x,Next(y)) = Next(Add(x,y))
Neq(0) = 0
Next(Neg(Next(x))) = Neq(x)
Add(x,Neg(x)) = 0
Sub(x,y) = Add(x,Neg(y))
Lt e(x » x) = True
Lte(x,y) => Lte(Next(x),y)
Lte(xfy) = Lte(Sub(x,y),0)

Char

A: -> Char
a: -> Char
B: -> Char
b: -> Char

END

SPEC Identifier

EXTEND Boolean WITH

SORTS

OPS
Id

Regi ster: -> Id
Main: -> Id
Disk: -> Id
Disolay: -> Id
Eqid: Id,Id -> Bool

AXIOMS

END

Page 28

Eqi d(x,x) = True

SPEC String

PARAMETER

EXTEND

WITH
SORTS

OPS

SORTS

Nat jral

Ele-n

AXIOMS

StP

Nul1: -> Str
Make: Elem -> Str
Cat: St P» St r -> Str
Len: StP -> Nat
Head: StP -> Elem
Tai1: Stp -> StP

Len(Nu11) = Natzepo,
Len(Make(a)) = Next(Natzepo)
Head(Make(a)) = a
Tai1(Nul1) = Nul1
Tai1(Make(a)) = Nul1
Cat is ASSOCIATIVE
Cat(s#Nul1) = Cat(Nul1»s)
Cat(s,Nul1) = s
Head(Cat(Make(a) #3) = a
Tai1(Cat(Make(a)r3) = s
Len(Cat (Make(a)f s)) = Nextde
Len(Cat (s,Make(a)) = Nextden

n(s))
(s))

Ele-n IS Bool

END

SPEC Bitstping

St pi ng(Boolean)

WHERE

END

SPEC Chpstping

St pi ng(Chapactep)

WHERE
Elen IS Chap

END

Page 29

SPEC Dat a«-val ues

EXTEND

WITH

SORTS

OPS

Boolean
Natural
Int eqer
Charac t er
Bi tst ri ng
Chrst ri ng

Val

Errval : -> Val

AXIOMS

Val«-to<-bool : Val -> Bool
Val •-to*-nat: Val -> Nat
Val ►toH nt : Val -> Int
Val «-to<-cHr: Val -> Chr
Val »-to*-bi tst r: Val -> Bitstr
Val t-t o«-chrst P: Val -> ChpstP

Bool ♦•to'-val : Bool -> Val
Nat t-t o«-val : Nat -> Val
Int ♦■t o«-val ; Int -> Val
Chapval: Chap -> Val
Bi tst p*-to*-val : BitstPing -> Val
Chpst p«-t o«-val : Chpstping -> Val

FOR X = Bool»^at»IntrChap»8itstp,ChPStp

Val«-to<-X(X«-to«-val (x)) = x

X«-to«-val (Val«-to«-X(v)) = v

FOR X,Y = Bool»Nat»IntfChap»BitstPfChpstP
X r= i,

X«-to«-val (Val«-to«-Y(v)) = Eppval

SPEC Addpesses

EXTEND

WITH
SORTS

Ident i f i eP»
Boolean

AddP

Page 30

OPS

AXIOMS

Startaddr: Id -> Addr
Nextaddr: Addr -> Addr
Equaladdr: Addr^ Addr -> Bool

EqualaddP is an EQUIVALENCE
Equal addp(Start addr(x) # St art addr (y)) = Equal i d(x » y*)
Equaladdr(Nextaddr(x), Nextaddr(y)) = Equa1addr(x,y)

SPEC Operators

EXTEND

WITH
SORTS

OPS

Dat a*-val ues

MonoDf
B i noD»
Pel oo

Bool not: -> Monoo
Booland: -> Binoo

Natadd: -> Binoo

Intadd: -> Binoo

Chrstrcat: -> Binoo

Bi t st rcat : -> Bi nop

Intgt: -> Reloo

AXIOMS

Applymonoor MonoD»Val -> Val
Applybinoo: Bi noo»\/a1 »Val -> Val
Applyreloo: Peloo,Val»Val -> Val

Applymonoo(Bool not#v) =
Bool val (Not (Val«-to«-bool (v)))

Applybinoo(Booland»v1»v2) =
Bool val (And(Val«-to<-bool (vl)»Val«-to*-bool (v2)))

etc

SPEC Inst ruct i ons

EXTEND

WITH
Operators

Page 31

SORTS

OPS

SPEC Values

EXTEND

WITH
OPS

AXIOMS

Inst r

Monad: MonoD»Addp»AcHr -> InstP
Binad: Binoo»AddrfAddr»Addr -> Instr

Mov: Addr»Addr -> InstP
Movit Addr, Val -> InstP
Jmo: Addp -> InstP
If: Pelop»Addp,Addp,Addp -> InstP
Push: Addp, Stk -> InstP
POD: Addp» Stk -> InstP
Cal1: AddPr Stk -> InstP

Ret: Stk -> InstP
Halt: -> Inst P

Dat a«-va 1 ues»
Inst PUCt i ons

Inst p«-to«-val : InstP -> Val
Val «-toHnst P: Val -> InstP

Val «-to<-i nst P(Inst p«-to«-val n)) = \
Inst p«-to«-val (Val «-to«-i nst P(V)) = v

FOR X = Bool^at»Int,Chp,BitstPrChPStP

Inst p>-to«-van Val ♦■to^-X (v)) = Eppval

SPEC ^acM nest ate

EXTEND

WITH
SORTS

OPS

AXIOMS

SPEC Machine

EXTEND

Values,
Inst PUCt\ons

State

Ini t ialstate: -> State
Stope: Val»Addp»State -> State
Fetch: AddPf State -> Val

Fetch(a»Initialstate) = Eppval
Fetch(a»St ope(Vfa,s)) = v
Stope(Fetch(a*s)»a,s) = s

Machi nest ate

Page 32

WITH

OPS

AXIOMS

Program: Addr»State -> State
Execute: InstP/AddPfSt ate •> State

Program(a/s) =
Execute(Val<-to«-instp(Fetch(a»s))»a»s)

Execute(Mov(al»a2),a»s) =
Progpam(Next(a)rSt0Pe((Fetch(al,s),a2,s))

Execute (MovHal» v)» ar s) =
PpogpamC^ext(a)fStope(v»al»s))

Execute(JmD(a 1)»a»s) =
Ppogpann(alfS)

Executed f (P^ al »a2»b) , a» s) = Ppogpam ((Cond (Val ♦•t o»-bool
(Aoo1ype1oo(p»Fetch(al,s)»Fetch(a2,s)))fb,Next(a)),s)

Execute(Ha11,a» s) = s
Execute(Monad(m,al,a2),a*s)) = Ppogpam(Next(a)»
StoPe(ADolyTnono3(m>Fetch(alrS))»a2/S))
Execute(Binad(b,al»a2,a3),a»s) = Ppogpam(Next(a) f
Stope(ADp1voinoo(b,Fetch(alfs)fFetch(a2#s))»a3,s))

Page 33

Acknowl edgeT\ents

This research was supported at the Naval Postgraduate School
under the Foundation Research Program.

Page 3a

References.

4, Bergstra and J.V. Tucker* A natural data tyoe with a
finite equational final senantics soecification but no
effective equational initial se-nantics soec i f i c at i on . Bull
EATCS, 11 (1930), DD. ^i-33.

A,Bergstra and J.V. Tucker, Initial and Final Algebra
Semantics for Data Tyoe Soecifications: Two
Characterization Theorems. SIAM J. Comout. Vol. 12,
No.2, May 1983.

Bundy, Alan, "The Comouter Modelling of
Reasoning", Academic Press, Mew York, 1983.

Mat hemat i cal

Ehrich, H.D., Oi the Theory of Soecification,
I TIDI e-nent at i on , and Par amet r i zat i on of Abstract Data Tyoes,
J.of ACM. 29, No.l, Jan.,1982.

Fasel, Joseoh, "Programminq Languages as Abstract Data Types
Definition and Imolementation ", Ph.D. Thesis, Purdue

University August, 1980.

Gratzer.G,, Universal Algebra, D.Van Mostrand, New York,
1 9fe8.

J.A. Goguen, J.rt. Thatcher,E.S. Wagner and J.B. Wright,
An initial algebra aporoach to the soecification,
correctness^ and i-nol ement at i on of aostract data tyoes.
Current Trends in Programninq Methodology IV, Data
Structuring, R . T.Yeh,ed.,Prentice-Ha11, Englewood Cliffs
HJ, 1978,00.80-1^9.

Guttag, J.V., Horowitz, E.,and Husser, D.R,, "Abstract Data
Tyoes and Software Validation", DO. 10a8-6a, Comm. ACM,,
V.21, No.12, Dec. 1978.

Hoffman,C.M., 0'Donnel1,M.J.,"Programming with Equations",
oo.85-112, ACM Trans. on Prog. Lang., Vol.a, No.l,
January,1982

-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93943

Chariman, Code 52ML 20
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Associate Professor Daniel L. Davis, Code 52Vv 30
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

<*

R

1

(

