unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 7 GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
NPS52-84-022
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A Formal Method For Specifying Computer Resources
In An Implementation Independent Manner

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s; 8. CONTRACT OR GRANT NUMBER(e)

Daniel L. Davis

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ERLEMENT. PROJECT, TASK
Naval Postgraduate School e N

Monterey, California 93943 61153N: RR014-08-01
P N000L1483WR30346
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Chief of Naval Research November 1984
Arlington, Virginia 22217 13. NUMBER OF PAGES
37

14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1§. SECURITY CLASS. (of thie report)

1Se. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if ditterent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide if neceseary and fdentfty by block number)

20. ABSTRACT (Continue on reverae eide {f neceeeery and {dentify by block number)

This paper is an investigation of a methodology for the formal specification
of computer software or hardware resource interfaces. The objective of the
methodology is to make possible the specification of implementation independent,
and thus portable, interfaces for the development of software. This paper is
concerned with the theoretical and conceptual issues of such a specification
methodology, and for the most part is an adaptation of the methods of algebraic
specification of data types to he specification of computer resources. This
paper is the basis for.a practical specificatiQn.dn progress
DD ,73%; 1473 EoiTion oF 1 NOV 65 15 OBSOLETE
S/N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

&

NPS52 84-022

NAVAL POSTGRADUATE SCGHOOL

Monterey, California

ADA |99 09

By g

- T
=i
: % o

I"r:. Ii|
\

4|

ks 3

AD-A149 955

A FORMAL METHOD FOR SPECIFYING COMPUTER RESOURCES
IN AN
IMPLEMENTATION INDEPENDENT MANNER

Daniel Davis

November 1984

«

Approved for public release, distribution unlimited

Prepared for:

S Pt gy

Chief of Naval Research
Arlington, VA 22217

85 01 29 118

NAVAL PQOSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker D. A. Schrady
Superintendent Provost

The work reported herein was supported by Contract
from the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

5: . c z dxa ;

DANIEL L. DAVIS
Associate Professor of Computer Science

Reviewed by: Released by:
A
Eﬁéng‘{ngZEZJ%jf’ '
[feceatn e Dy pin
RUCE J. MACLENNAN KNEAVE T. MARSHALL
Acting Chairman Dean of Information and

Department of Computer Science Policy Science

A FORMAL METHOD FOR SPECIFYING COMPUTER RESOURCES
IN AN
IMPLEMENTATION TNDZPENDENT MANNER

Daniel Davis
Deoartment of Comnouter Science
Naval Postgraduate School

Monterey, California

Introduction

The ourpose of this reoort is to describe a methodology
for the soecificaton and development of portable software
environments for limited resource machines. The wultimate
goal of this work is to be able to build a portable software
developoment environmnent for development on and for limited
resource machines. A limited resource develooment system is
a single user system that includes a orocessor, memory, disk
storage, disolay, keyboard, and 1list device. The target
machine for develooment might be a dedicated oprocessor
system such as in a smart device such as a robot, or process
control devicze, or it may be an apolication oOn the
development system,

The specific oroblem addressed here is the develooment
of a methodoloay for specifying resources, both physical
resources and oroblem solving (software), in an
inolementation independent manner. This methodology can
then be used to specify successive lavers of resource
abstraction, beginning with the physical resources at the
lowest level and ending with oroblem solving abstractions at
the highest level, To achieve this goal we need a
conceotual framework that has the following features.

It must oe presentable in 3 clear and precise form.

It must osrovide a comolete and ridorous theory of
abstract soecification

It must include a oractical theory of inolementation

A nunber of people have worked on the related oroblem
of specifications of abstract data tyoes, The focus of this
report is the application of similar technigues to the
soecification of physical resaources.

To further clarify my oojectives here, I wish to

briefly describe some of the historical background leading
uo to the current work,

Page ¢

Traditionally, software environments have developed
around a ©oody of hardware and to a certain extent reflect
this heritaje. Such systems of software tend to develoo
into ‘closed systems' of software, with very little
possibility of movenent between systems. Even though hiagh
level abstractions provided oy high level languages orovide
some measure® o5f software standardization and oortability,
they tend to> create closed systems at a very high level, and
thus their cortability is limited because to oort such a
systen, all the Jlayers of software below them must be
ported. Moreover, oecause of the problems in soecifying the
semantics 9f high level constructs of different languages
through any consistent theory, it has oroven difficult to
translate orograms in one language to another. These
factors and the labor intensive nature of svstems software
development have combined to create closed systems,

The oroblem of creating portable software achieved
greater significance when our ability to design and create
new orocessors accelerated. Traditionally, only a few
companies have existed to oroduce the hardware environments
around which software has evolved., With the development of
microorocessors and the microcomouter industry, the number
of companies oroducing computers proliferated, and at least
inftially, no one comouter manufacturer oredominated. At
the same time these small companies did not have the
resources to develoo an extensive body of software for their
particular environments, particularly things such as high
level language compilers., Thus a new set of conditions
surrounding the design and develooment of software occurred.
The result has been that standardization and abstraction
occurred at levels above the hardware, but below the high
level languages, Examoles of this are CP/M, the P=system,
and 'C' and the 'C' runtime system. These systems are a
software abstraction of physical _resources. From the
historical oerspective, this is one of the more interesting
conceots that has arisen from the development of
microcomputerse.

For some time, it has been recognized that the
ooerating system reoresents an abstraction of the hardware
system that supports the layers of software built over it,
that 1is, an operationg svstem 1is an abstraction of the
physical resources of a system. Traditionally the operating
system orovides a standardized orogrammatic interface to the
secondary Temory resources, orimary nemory resources,
processsors, and i/0 resources.The most recent personal
computing systems go a step beyond the traditional operating
system by includina more soohisticated abstractions of the
console disolay.

The oroblems that must be faced in trying to specify
the oroperties of a real or aostract ohysical resource are
similar to the problems faced by linguists who try to
soecify the semantics of language constructs. It is

Page 3

difficult to develop abstract models that are precise,
caoture the essential features 2f something real, yet do not
ooscure and complicate our ability to work with what s
real. On the other hand, if we are able to successfully
capture the essential features of something we know
intuitively, the abstract model can become a tool that
enables us tp sharpen our intuition, and increase our
understanding, Unless we can develop abstract models that
allow us to clothe our intuitive notions with precision, we
will remain at an imoasse in our ability to know which of
these ideas are important and which are not.

In the following section we will outline the main
elements of a conceptual system develooed for this ourpose.
In the later sections, this conceotual system is

made
precise and illustrated in some detail,

Page 4

1.0

Concepotual Tools

There are a number of features of the oroblem of
apstract soecification that naturally lead us to draw ON
mathenatical discipline. The methodology we use must be
representation independent. The methodolgy must give us a
method of proving the correctness of our assertions about
formal specifications and their implementations. We must be
able to combine and compose specifications. The methodology
we use should encourage a discipline of care and orecisione.
At the sane time we should attempt t9 avoid wunnecessary
aostraction or concepts that do not directly improve the
correct use of the methodology.

Most of the concepts that ~e use here were develooed to
soecifiy the semantics of high level language constructs,
particularly, the specification of abstract data types.
Since the soecification of a sortable programmatic interface
has fts origins in this works and since these conceots are
more readily wunderstood in its early form, we will begin
with an infornal treatment of aostract data types.

t.1
Abstract Data Tyoes

In their most common usagjes, abstract data types are
simoly oprodlem solving resources. Some astract data types,
for exanole a stack, are also abstractions of ohysical
resources. Our puroose is to develop a theory of
soecification that can be used to describe either problem
solving (software) resources or physical resources. To do
this, we use a theory of abstract data types that has been
develogping over a number of vears, and has involved a number
of different researchers, The orimary references to this
work can be found in Goguen [1978) and Guttag [1978).

One of the simplest and mnost common data types in
mathematics and computer science is boolean, WNe will use
this data tyoe to introduce our g3eneral methods.

Note first that a data type consists of more than the
values of the type, The tyoe is a comoosite of the values
and the ooerators used with the type, In traditional usage,
the set of values denotes the data tyoe, when in fact, the
aggregate of operations and values denotes the type, There
is a similar misconceotion of the function concept in
mathenatics. Often a function is denoted by just its rule,
when 1n fact it is an aggreg3ate of domain, codomain, and
rU]ec

Page S

For the poolean tyoe, there are two values used, which
may be denoted by T and F and several fundamental operators

such as '"' (logical negation), ‘%' (Voqical <conjunction)
and '!' (logical disjunction). Finally, there are relations
that must hold far these oo2erators as given by the

traditional truth tables:

X 1=(x) X ¥ 1 R(X,Y) XY 1 OX,Y)

T L F = = TN T

F oy TF! F TF LT
FT4Y F FT 4 T
FF 1! F FF 1 F

With the above definitions we are able to establish the
truth of other relations:

The idemootent law for negation

The associative law for conjunction

The commutative law for conjunction

The distributive law for conjunction and disjunction
The DeMorgan laws

Obviously, there are othepr realizations of the data
type that we normally call the boolean tyoe. The symbols
used for the data values may oe (0,1}, the ooverators may be
given different notations, etc, The fundamental operators
may also oe different, For example, the fundamental
ooerators nmnay be negation and implication. It is generally
understood that this set of ooerators defines the ‘'same
tyoe', Also, it is clear that this data type admits many
other ooerators, exclusive disjunction, for exanple. It s
clearly difficult to capture the essence of a type itself,
independently of a oarticular realization of it, This s
one of the problems that a theory of abstract soecification
must solve,

The things that are useful about a data type are not
just the values of the tyoe and the ooerators of the type,
but the expressions we can build from values and operators.
We use exoressions to calculate with boolean values, so we
need to 'evalyate' expressions and to determine {if two
expressions are 'equal', etc. Expressions are built from
values and operators by abiding by the domain constraints of
the operators, and wusing comoosition of operators. For
example, all the following are obviously correctly formed
expressions, assuming a orefix form for the ooerators.

2 (~(&(T,F))

Page 6

BLT), (R(F,~(T)))
We also form expressions with 'free variables':
T(~(x),&(T,y))

where of course x and v are the 'free' variables., Often we
want to determine if two exoressions are 'formally equal’.

In particular we have reason to believe that every
expression without free variaoles is equal to either T or fF.
Or we may have reason to believe that we <can ‘'orove' that

the expression “(2(x,y)) equals (~(x),~(y)). In qgeneral,
whenever we create and use a 'data tyoe', we are potentijally
interested in the set of all exoressions involving values of
the type or free variables on the type. These objects are
the abstract reoresentatives of the things in the real world
modeled by the data type, In fact, Hoffman and O0‘'Donnell
(19821 have recently expressed the view that much of
computing involves no more than the transformation of
complex expressions to recognizable form.

1.2
Algebras

The aggregate made up of specific sets of values,
ooerators, and expressions form what is called an 'algebra',
Basically an algebra is a comoosite structure consisting of
ooerations and sets. The sets describe the types of
ooerands and results, The operations define all the ways
that results are determined from ooerands. In the general
case, the oderations can have nultiple ooerands of mixed
type, The types of the operands are called 'sorts'.
Boolean is a sort of the boolean data tyoe, Ooerators may
have multiole operands of mixed sort and give a result of a
fixed sort. An operator is simoly an n=ary function of the
form:

003 AIIAZIAsrl..’An -> A

where Al,..0,An,A are carrier sets of sort Sl,...,Sn,$
respectively, The distinction between the 'tyoe' of a set
and its name is intentional.

In our description of an algebra, the operations are
assumed to be exolicitly defined functions on explicitly
defined sets. If, however, we intend to use these concepts
for the soecification of real oojects, we must be careful to
avoid the soecification of operations or sets that are not
constructible bv finitary methods. For exanole, the set of
real numbers is not constructible by finitary methods. Also
many of the ooerations used in mathematics assume
non=finitary orincioles in their construction. Thus it s
imoortant to use care in the choice of which orinciples we

Page 7

assume to construct the objects we use to reoresent the real
opjects we are attemoting to specify,

Ne must also be sure that the method of sopecification
jtself has no reoresentational bias. In the example above,
we do not want to say that the Doolean data type consists of
the poerators above on the sets above, since there are other
operations and sets that reoresent this type equally well,.

Sinilarly, we do not wish to soecify a resource in a
computing System as consistina of a specific orocessor,
memory, disk, etc. but by the abstract functional
orooerties these objects provide. However, we also have to
account for the situation in which two systems which appear
functionally different, are in fact functionally equivalent,

1.3
Algebraic Specifications

The manner in Which algebraic specifications solve
these oroblens is by first soecifying 'templates' for the
sets and operations that are Seing soecified, and ‘axioms'
for the orooerties that any actual sets and ocerations must
satisfy to neet the soecificatian., The templates do not
make any assumptions about the elements of the sets or the
way that the operations act on elements. Al such
properties are soecified in the axioms. Then rules are
qiven_ to determine when two 'temolate' specifications
specify the same thing. The ideas can pe illustrated with
the boolean data tyoe.

First we require that there be exactly one set whose
'type' will pe described by the name 'Bool'. There must be
two 'constants' (0-ary operations) of tyoe Bool, named
'True' and 'False'. Then there must be exactly two
overations, one unary and one-binary, with names, 'Not' and
'‘And', with aopropriate functional type, Summarizing,

True: => Bool

False: => Bool

Not: 800l => Bool

Bndt Bool,Bool => Bool

Next, the following 'axioms' must hold:

Not(True) = False

Not (Not(x)) x

And(True,x) x

And(False,x) = False

And(x,y) = And(y,x)
And(And(x,y),2z) = And(x,And(y,z))

Page 8

The axioms above were chosen to compactly describe what are
claimed to de all the essential properties of the operators.
Note that nowhere is there a specification of the number of
elements in any set that olays the role of '3o00l'., There
are constant operations 'True' and 'False' whose values must
be in the set playing the role of Bool, but there is no
guarantee that these values are distinct, or that they are
the only values.

The above specification can be codified into a compact
syntax:

SPECIFICATION Boolean

SORTS

Boo)
0OPS

True: => Bool

False: => Bool

Not: Bool => Bool

And: Bool,Bool => Boo)
AXIOMS

Not(True) = False

Not (Not (x) = «x

And(True,x) = x

And(False,x) = False

And(x,y) = And(y,x)
And(And(x,y),2) = And(x,And(y,2))

Algeoraicz specifications always occur in two parts.
The first oart includes the sorts and the ops and is called
the signature. The second opart consists of the axifoms. The
axioms above are described as equations between terms with
free variables. Axioms may also be 'conditional equations'.
A equation is conditional if it has the form:

EllEalooolEn => E
where E1,E27e..7En, and E are eguations between terms.

Ne say that an algebra has the same signature as 2
soecification if there is a one to one correspondence
between the sorts and operations of the specification and
the carrier sets and the operations of the algebra that is
consistent with the type properties of the ooerations in the
soecification,

1f 'Bool' s associated to the set {T,F},'True'is
associated tp the <constant function whose wvalue is T,
'False' is associated to the constant function whose value
is F, 'Not' is associated to the unary operator ~, and 'And'
is associated to &, then it follows that the algebra we have
discussed oreviously satisfies the above soecification.

Also this algebra clearly satisfies the axfoms. Note

Page 9

however there are many other algebras that also satisfy the
anove soecification. For exanple, associate to the sort
'Bool' the set {a}. Associate to the O=ary operators 'True'
and 'False', the constant function on {3} whose value is
Vgt Associate to 'Not' the trivial unary function on {a}
that is the identity, Associate to 'Angd' the trivial binary
function on {a}. This algeora has the correct signature and
it is not difficult to show that it satisfies ¢the axjoms.
Yet we would not say this second algeora is representatijve
of the 'Boolean' tyoe. Thus there is a clear distinction
between an algebraic specification and an algebra.

In the aoproach of 'algebraic semantics'y the meaning
of a specification is agiven by a class of algebras that is

uniquely associated to the specification, In the current
work on adstract data types there are two Ccomplementary
semantics associated to algedraic specifications, To

describe these we first need some additional concepts.

1.4 The Herbrand Construction

Recall that a specification consists of a pair (S,E)
where S is a signature and E is a set of axions. Let ALG(S)
denote the set of all S-algebras, algebras whose signature
is S, Given S, how do we know that there exists any
algebras in A1g(S) ? And given that such S-algebras exist,
how do we know that there exist S-algebras that satisfy the
axioms E ?

Given a specification (S,E), define the set of all

formal free terms, Term(X,S), according to the following
rules:

1. If t is a O-ary operator or free variable of sort s,
then t is a term of sort s.

2. If tl, t2, ... ,tn are. terms of sorts sl, S2, ...sSn,
and t is an ooerator of characteristic

t:sllsaloooosn -> S
then

t(tlltaloooltn)

is a term of sort s,

Let Term(S) denote the set of all terms that do not
contain any free variables. Note that both Term(X,S) and

Term(S) consist of terms of different sorts. Denote the
terms in Term(S) of sort s by Term(S)(s). The sets
Term(8)(s) can now be viewed as carriers in a S-algebra
Term(S). lhe operations on this algebra are associated to

the operator templates of S. If op is an operator template

Page 10

of characteristic s1,s2/0.0s8n => s define the operation
f=0p from Tern(S)(s1),.corTern(S)(sn) to Term(S)(s) by:

f=00(tl)eeertn) = oo(tlseeertn)

where
tt,ee.rtn are terms of sort sl,...rSnN

The formal construction used to create Term(S) is called the
Herbrand construction in the mnathematical literature,

In the case of the Boolean specification above, the
term algebra consists of all the term exporessions we can
form abiding by the type characteristics of each operator
temolate,

There is another equivalent descriotion of the sets of
terms determined Dy a sfgnature. We can view the terms as
strings on the alphabet consisting of the ooperator names,
the comma, left and right ©Darentheses, and some finite
alohabet of symbols for free variables of different sorts.
Then the set of terms forms a language on this alphabet with
the following arammar:

For each sort s in S add the production rule:
<Term(S)> => <Term(S)(s)>

For each operator of characteristic:?
00t s1/yS2r7ecerSn => s

add the rule:

<Term(S)(s)> => 'oo('<Term(S)(st1)>', " o'y '<Term(S)(sn)>')"’

For each free variable X of sort s, add the rule:

<Term(S)(s)> => 'X!

It is not difficult to see that the resulting grammar s
LL(1), and therefore parsable by simole and efficient
methods, In particular there are automatic oarser
generators that will take the sianature of a soecification
as input and ocenerate a table driven parser for terms
defined for the given signature. The resulting oarse tree
can in fact be used as a reoresentation of the term for use
in raoid orototyping. Essentially this is the theoretical
justification for the methods implemented in Guttag,
Horowitz, and Musser [(1978].

Page 11

1.5
Congruences

An equivalence relation R on a S-algebra A is called a
congruence if:

1. R=equivalent elements have the same sort

2, If (e1,t1'),(t2,t2")reees(tnstn’') are pairs of R=equivalent
elements of sorts s1,52s7¢.0s8N and op is an operation of type
$§1,52,e.0¢30 => 8, then 0o(tls)eesrtn) is Re=equivalent to
oo(tl',eeertn’).

I1f R is a congruence on 23 S-algebra A, then there s
induced on the eguivalence classes A/R a natural S=algebra,
called the auotient algebra (Gratzer [1968)),

1.6 Initial Algebras

If (S,E) §is a specification, there are two canonical
congruences induced on the term algebra Term(S) by the
axioms E. These two congruences then induce two Qquotient
algebras on Term(S), called the '‘initial quotient algebra'
and 'final gquotient algebra’'.

The first congruence will pe denoted Initial(S,E), and
the second w«ill be denoted Final(S,E). Initial(S,E) is
defined by the following rule:

(t,t') are Initial(S,E)-equivalent
if and only if
t = t' can be proved from the axioms of E

The axioms as expressed are eguations between terms of “the
'free term algebra' associated to the algebra, This free
algebra includes terms with free variables of the
aopropriate sort. For exanple, in the axioms for the
Boolean type there occur axiomns such as:

And(True(),x) = x

The variable x is a free variable of sort Bool, The rules

for proving eguations from axions and other oroven equations
are given by:

1. Any axion is a proven equation. Any conditional axiom is a

valid rule of inference for oroving equations from proven
equations.

2. It in a oroven eguation, every occurrence of a free variable
is replaced by a single term of the same sort as the varijable,

Page 12

the resulting equation is oroven.

3, If in an ejuation, some term is replaced by a term provably
equal to it, the resulting equation is poroven.

4, Any equatisn derived from oroven equations by the use of
the reflexjve law, symmetric law, or transitive law for
equalityr, is also> poroven.

With the above rules, it is not difficult to prove that the
relation defined by all pairs of provadbly eaual terms (with
or without free variables) is a congruence,

1.7
Final Algebras

The set >f terms of a specific sort 8 in the inijitial
quotient algeora defined by a soecification (S,E) is said to
be 'trivial' if using the axioms E, any two terms t, t' of
sart s are orovably equal.

Given a specification (S,E), we say that an equation
between two terms t = t' of a3 non-=trivial sort s in the free
term algebra is 'consistent' with the axioms E, if in the
soecification defined by the axioms E with the additional
axiom t = t', the set of terms of sort 5 is not trivial., It
follows, for example, that any provable -equation is
consistent. However, there may be consistent eauations that
are not provable, Define the relation Final(S,E) on terms
of the free term algebra Term(S) by:

t, t' are Final(S,E) = equivalent
iftf)
t = t' is consistent with the axioms E

It can be proved that -the relation Final(S,E) s a
congryence, The corresponding quotient alqgedra is called
the 'final algebra' defined by the specification (S,E).

1.8
Algebra Morohisms

So fars we have shown that a specification (S,E)
determines two specific S=algebras, the initial S-algebra
and final S-algebra. How are specifications related to
other algebras ? For example, ~e have given a soecification
for the Boolean type. How is this specification related to
an algebra that seemns to realize the specification ?

Page 13

Given twsy S-algebras A and B8, a corresoondence H
associating each carrier set of A to a carrier set of B, and
each operation of A to an ooeration of 8 is said to be an
S-homomorphisn §fe

{. the corresosondence between carrier sets oreserves the
sort tyoe.

2. the corressondence between ooerators oreserves the
ooerator characteristics.

3. if tlseeesrtn are elements of sorts sl,eeersn in A

and oo is an ooerator in A, then
H(oo(t"a..'tn)) = H(OD)(H(tl)'ooo'H(tn))o

An S=homomorphism is called an S-monomorohism if each

correspondence between carrier sets 1is injective. An
S-homomorohisn is called an S=epimorohisn if each
correspondence between carrier sets is a surjection. And an
S-homomorphisn is called an S-isomorphisnm if each

correspondence between carrier sets is a bijection,

S=homnomnorphisms are intimately associated to
S-congruences., If H is an S~honomorphism between S-algebras
A and B, define the relation R(A) on the S~-algeora A by:?

For any sort s in the signature S, let A(s) be the <carrier
of sort s in the alaebra A, and 1let H(s) be the
correspondence determined by H petween the carriers of A and
B of sort s.

a, a' in A(s) are R(H) = equivalent
1f¢§
H(s)(a) = H(s)(a')

It is not difficult to show that R(H) is an S=~congruence,

It is the Se=congruence canonically associated to the
S-homomorohisn H,

Given any S=-algebra A, there is a canonical
S~homomorphismn Val(A) from the term algebra Term(S) to A,
determined oy evaluating each formal term of Term(S) through
its corresponding terms in A, There is then an S=congruence
R(Val(A)) on Term(S) induced by Val(A), For convenience,
this congruence will be denoted R(A),

1.9

Algebraic Semantics

Page 14

At this ocoint we have all the conceotual tools we need
to precisely describe the two classes of algebras that will
normally be used to interoret a specification (S,E), Each
class of algebras will determine one of the two meanings
that a specification deternines, hence the terminology
‘algebraic senantics'.

The 'initial algebra' senantics of a soecification
(S,E) is the czlass of all S-algabras A such that:

l. the S=homomorphism Val(A) from Term(S) to A §s an
S=epimorphism,

2., the S=congruence R(A) on Term(S) is identical with
Initial(S,E),

The 'final algebra' semantics of a soecification (S,E)
is the class of all S=algebras A such that:

1. the S-homomorphism Val(A) from Term(S) to A s an
S-epimorphism,

2. the S=conjruence R(A) on Term(S) s identical with
Final (S,E).

It follows that the initial quotient algebra is an element
of the <class of initial algebras, and similarly, the final
Quotient algeora is in the class of final algebras, It is
not difficult to orove that anv two S-algebras in the class
of 'initial algebras' are S-isonorphic. Similarly all the
S=algebras in the class of ‘final algebras' are
S-isomorphic. Thus, in effect, anv algebra in the class of
initial algebras 1is isomorohic to the aquotient initial
algebra constructed from the term algebra and the
Tnitial(S,E) congruence. Similarly for final algebras.

The adove characterizations of the meaning of a
soecification can be wused to effectively determine if a
soecification 'means' what we want it to mean. For example,
in the examole for Boolean, we started with an algebra
consisting of a set {T,F} and ooerations '8' and '=', The
ooerations were defined exolicitly with a truth table., nHe
then created a formal specification Boolean that we claimed
caotured the '‘essence’ of the boolean data type,
Soecifically we should be able to prove that the explicit
algebra is a member of the class of initial or final
algebras defined by the specification. Define a
S-homomorohisn H from Term(Boolean) to algebra A py:

True() -> T
False() => F
Not =3 sy
And -> &

Page 15

H is clearly a surjection from Term(Boolean) to (T,F}.
Consider the relation R(A) induced on Term(Boolean) by A,
We will show that it equals the relation Initial(S,E), where
E is the set of axioms. We have to show that two terms
evaluate in A to the same value if and only if the terms are
provably equal wusing the axioms in E, Let the size of a
term oe the number of operators in the term. We will first
prove Dby induction on the size n of the largest of the two
terms that if two terms evaluate in A to the same result,
then they are provably equal from E.

First we prove the following:

lLemma? if t evaluates to Ty then t is orovably equal to
True, and 1{1f t evaluates to F, then t is provably equal to
False,

Proof: Induct on the size n of t, If n = 1, the result 1is
oDvVious. Assume true for n <= N and assume n = N + 1, The
term t has the form t = Not(x) or And(x,y) for some terms «x
and y of size <= N, If t = Not(x), and t evaluates to T,
then Not(Not(x)) = x evaluates to =T = F, and x has size <=
N , therefore x is provably equal to False. But then t =
Not(x) is provably equal to Not(False), hence provably eqgual

to Not(Not(True)) = True. Similarly §if t evaluates to F.
If t = And(x,y), and t evaluates to T, then x and y must
evaluate to T also. Since the size of x and vy <= N, x and vy
are provably equal to True, But then from the axiom
And(True,x) = x, it follows that t = And(x,y) is orovably
equal) to True, Similarly if t evaluates to F,

-Clearly every expression evaluates to T or F.
Therefore 1f two exoressions evaluate to the same value by
the above they are oprovably equal to each other,

Conversely, if two exoressions are provably equal to each
other, then they must evaluate to the same value, since the
ooerators corresponding to each operator temolate satisfies
the corresponding axioms,.

Thus the quotient alaebra defined by
Term(Boolean)/Initial(S,E) is isomorphic to the algebra A,
and A is an 'initial algeora' for the soecification.

Moreover, note that the 'trivial' algebra consisting of
the {a} and the operations?

T =F = a, =(a) = a, 8(a,a) = a

has the correct signature but is not in the class of
'initial alagebras' defined by the specification, since in

this algebra True and False evaluate to the same value, but
are not provaoly equal.

Page 16

Is the algebra A in the class of 'final algebras'
defined by the same soecification ? Equivalently, are the
relatjons R(A) and Final(S,E) the same ? By what we have
already oroved it is sufficient to ask whether there are
terms t, t' that are consistent, but not orovably equal. I[f
t and t' are consistent, then from E and the equation t =
t', it does not follow that True and False are bprovably
equal. But if. t and t' are not orovably equal, then they
evaluate to different values T and F, say. But then by the
lemma t is orovably equal to True and t' is provably equal
to False, and hence from the equation t = t', True is
provably ejual to False, Therefore if t and t' are
consistent, they are orovably equal. Clearly if t and t°
are provably equal, then they are consistent.

The above arguments show that for the specification
Boolean, the initial algebra and final algebra semantics are

the same, It is a theoretical fact that there exist
soecifications for which this is not the case, This will
become fairly evident when the comoutability of a

soecification is discussed in a later section.

In the case of Boolean, the axioms enable us to
formally evalpyate each term in terms of constant terms, For
example, to evaluate And(Not(False),True):

And(Not(False),True) = And(True,Not(False))
And(True,Not(False)) = Not(False)
Not(False) = Not(Not(True))

Not (Not{(True)) = True

In fact, the tables describing the ooerations exolicitly
(which also determine an eguational soecification, without
free variables) is derivable from the above eguations. The
advantage of the equational specification with free
variables is its compactness,

Ordinarily, it cannot be assumed that every term is
provably eaual to a constant term, It is often the case in
the theory of abstract data tyoes for examole, that the
numbepr of distinct classes of unequal terms is infinite,

2.0
Properties of Specifications

Now that the basic conceots of our methodology have
been described, we want to determine if it can be used to
fulfill the requirements of a methodology for
soecifications.

Page 17

2.1
Equivalence of Soecifications

First it i8 possible to define when two soecifications
with the same signature have the same meaningd, in the two
interporetations of meaning discussed above, Two
specifications (S,E) and (S,E') with the same signature have
the same initia)l algebra semantics when they determine the
same class of initial algebras. Similarly, they have the
same final algebra semantics when they determine the same
class of final algebras. It follows from the above that two
soecifications (S,E) and (S,E') have the same meaning in
initial algebra semantics if and only if the axioms E are
provably equal from the axioms E' and conversely. Similarly
two sopecifications (S,E) and (S,E') have the same final
algebra semantics if and only if any eguation of formal
terms t = t' is consistent with E if and only if it is
consistent with E',

The above definitions allow us to determine when two
specifications with the same signature but different axioms
have the samne meaninag. What about specifications that have
different signatures ?

Assume that (S,E) and (S',E') are two soecifications.
A corresoondence H between S and S' is called a Poincare
transformation if:

1. for every sort s in S, H(s) is a sort in S°'

2. for every operator oP in S of characteristic
$1,52)c0es8Nn => s,
H(op) is an operator in S' of characteristic
H(s1),H(S2),eeerH(8N) => H(S)

Clearly, H induces a correspondence between Term(S) and
Term(S'). If H is bijective between S and S', then H
induces a bijection between Tern(S) and Term(S'). Thus each
equation t = t' in Term(S)is mapoed to an equation H(t) =
H(t') in Term(S'). 1In this case the specifications (S,E)
and (S',E') are semantically equivalent in the sense of
initial algebras, or final algeoras, when the soecifications
(S',E')Y and (S',H(E)) are, and the question of equivalence
reduces to the previous case. These cases cover the cases
that correspond to a renaning of sorts or operators, in
addition to a change in the axioms,

In general, two specifications have the sane semantics
when they determine the same class of alaebras,

Page 18

2.2
The Adequacy and Comoutability of Algebraic Soecifications

In this section we exanine the ability of this
specification methodology to define all the types of objects
that we might want to define. This is the ‘'adequacy'
problem, Bergstra and Tucker [1983) have written a series
of papers dealing with this question and Je will summarize
their ideas here,

Given a specification (S,E) and an S=-algebra A, we say
that A s ‘'effectively oresented' whenever ~e posSsess an
effective enuneration of its elements and we can effectively
calculate its operations. The algepre A is said to be a
'semiconputable algebra', or a 'cosemicomputable algebra' if
in addition the equality relation of A s recursively
enumerable, or co-recursively enumerable, respectively.
(Recall that a set 1is co=recursively enumerable if its
complement is recursively enumerable). A is a ‘'computable
algebra' when equality is decidable.

Since for initial semantics two terms are equal if and
only if they are orovably e3ual from the axioms, and since
al) such oroofs can be enumerated, the initial algebra of a

soecification is semicomoutable. It is Yess obvious, but
also true, that the final algeora of a soecification s
co-semicomoutable. Note that if an alaebra is both

semicomputaole and co-semicomoutable, then the equality
relation bDetween terms is decidable.

0f more interest to the Juestion of adeguacy +1s the
converse of these facts. Is every semicomoutable algebra
the initial algebra of some specification ? Is every
co-semicomputable algebra the final algebra of some
specification ? Is every comoutable algebra both the final
algebra of some specification and the initial algebra of
some specification ? Berastra and Tucker (1983) have been
able to prove the second and last of these assertions, given
that the specifications may finclude conditional equat\ons.

Theorem (Berastra and Tucker). An algebra is semicomputable
it and only if it 1is the final algebra of a finite
conditional soecification.,

Theorem (Bergstra and Tucker). An algebra is comoutable if
and only if it {s both the initial algedbra of 3 finite
conditional soecification and the final algebra of a finite
conditional specification.

Bergstra and Tucker also show that the set of functions
computed by LOOP oroqrams on the natural numbers compose 3
data type which has 2 finite conditiona)l soecification using
final algeora semantics, put does not possess an effective
soecification of any kind using initial algebra semanticS.

Page 19

The fact that individually, initial and final semantics do
not attach the same semantics to algebraic secifications s
one reason why both conceots need to de introduced., There
is another more practical reason however, It is reasonable
to require that the soecifications of some resources be
computaole. Presumably the functional behavior of most
ohysical devices is decidable.

Unfortunately, the characterization of the
computability of a specification given by Bergstra and
Tucker is not generally practical. In order to maka the
methodology »oractical we need simple but broad criteria for
insuring the computability of a specification.

One aooroach to this proolem fs to determine if the
axioms define rewrite rules that allow one to orove that
each term without free variables can be reduced to a normal
form,. To do this it is necessary to prove some kind of
Church Rosser property for normal forms, to guarantee their
uniqueness.

2.3 Specification Syntax

Now that the basic conceots underlying the nmethodology
of algebraic soecifications have been introduced we can
illustrate hos these concepts are used in practice. First
we need to establish a syntax for describing a
soecification., Rather than give a qrammar, we will describe
the tenplates used for soecifications, An example of the
form of a soecifications was given above for the boolean
data tyoe., A template for this form is:

SPECIFICATION <Specificationcidentifier>

OPERANDS ‘
<0Operandelist>

OPERATORS
<Operatoretlist>

AXIOMS
<Axiomelist>

It {s convenient to have a specification syntax that
facilitates the combination and extension of specifications
to> provide a nodular aoproach to comolex specifications.
Al though ultimately, a soecification should always be
expressible in the above form, it is convenient to eliminate
expressive redundancy through a more complex _syntax. For
éxample, we want to orovide a facility for readily
incoroorating a commonly used specification into a new

Page 20

soecificatiOn, The syntax used to incorporate a previously
defined soecification into a new specification is:

SPECIFICATION <New¢specificatione¢identifier>

EXTEND]
<0)despecificationtidentifiereclist>

BY

OPERANDS
<Noerande¢list>

OPERATORS
<Operator¢list>

AXIOMS
<Axionelist>

The semantics of such an extended specification are the
semantics of the composite specification as if it were
written without extension. The properties of the extension
may _involve the operands and ooerators of both
specifications. Thus in an extension the semantics of a
previously dsfined specification could change within the
context of nes operands, operators, and oroperties. In most
cases such semantic changes are undesirable. Thus, we need
a criterion for when such changes do not occur, In the
orocess of determining such a criterion we will also
illustrate the use of the semantic interpretation associated
to a specificatione.

Assumne (S,E) and (S',E') are two specifications for
which S is a subset of S' and E is a subset of E', First
let us consider initial algebra semantics. In this case,
the relation Initial(S',E') is a subset of the relation
Initial(S',E') since every formal term in Tern(S) is also a
term is Tern(S'), and if t and t' are orovably equal in E,
they are orovably egual in'E' since E is a suoset of E'.
The terms in Term(S), viewed as terms in Term(S') will have
the same oroperties in (S',E') as the prooerties in (S,E) if
and only 1f any two terms t and t' in Tern(S) that are
Initial(S',E') related are also Initial(S,E) related. In
other words, if the restriction of the relation
Initial(S',E') to Term(S) equals the relation Initial(S,E).

Ne say that a specification (S,E) is persistent in an
extended soeczification (S'E'), in the sense of initial
semantics, if the relation Initial(S',E') restricted to
Term(S) equals the relation Initial(S,E).

If S is a ‘subsignature' of S' and A and A' are
S-algebras and S'-algebras respectively, then A is said to
be a subalgebra of A' if there is a S=monomorohism from A to
AY, Similarly, we say that a specification (S,E) s

Page 21

oersistent in an extended soecification (S',E'), in the
sense of final semantics, if the relation Final(S',E')
restricted to Term(S) equals the relation Final(S,E),

The following theorems can now be proved,

Theorem: (S,E) is a oersistent subsoecification of (S',E"),
in the sense of initial semnantics, if and only if the
initial algebra of (S,E) is a subalgedbra of the initial
algebra of (S',E').,

Theorem: (S,E) is a oersistent subspecification of (S',E£"),
in the sense of final semantics {f and only if the final

algebra of (S,E) is a subaljeora of the final algebra of
(S',E").

Although these results are essentially theoretical they
are the basis for at least one opractical test for
persistency. In the examole given for boolean we showed how
to verify the correctness of a soecification by establishing
a maooing between the soecification and an algebra that is a
canonical reoresentative of the data type. Soecifications
may often be obtained in this way in practice. If the data
type is comoutable, this algebra is both a final and initial
algebra for the specification. If the specification s
extended, then it will Dbe oersistent in the extended
specification if and only if 1its canonical algebra i{s a
subalgeora of a canonfcal algebra for the extension,

2.4
Derived Algebras and Specifications

Given an algebra of signature S and a term
t(xl/x2s,eeerxn) with free variables of sorts sl,s2,ec.,8n
and return sort 8, we can view t as defining an ooerator of
characteristic sl,.cersn => s. Such an ocoerator is called a
derived ooerator of A, More generally, an algebra B, whose
sorts are a subset of the sorts of A, and whose operators
are derived ooerators of A, is called an algebra derived
from A. The signature of B is also said to be derived from
the signature of A, For examole,

Inp(x1,x2) = Not(And(x1,Not(x2))

is a derived osperator in Boolean. This is the well known
'implies' ooerator.

If (S,E£) and (S',E') are soecifications, and S' is a
signature depived from S, we say that the initial semantics
of (S',E') are consistent with the initial semantiecs of
(S,E) if given any terms t and t' of Term(S'), 1f (t,t') is
in Imitial(S*',E') then (t,t') is in Initial(S,E). Ne say

Page 22

that the initial semantics of (S',E') are faithful to the
inftial semantics of (S,E), if for any t, t' in Term(S'),
(t,t!) is {n Initial(S,E) if and only if (t,t') is in
Initial(S',E'), Simnilarly for final senantics.

2.5
Interoretations and Implementations

The opractical problem we are attempting to solve
involves software portability, Specifically, we want to be
anle to soectify resource interfaces {n an inplementation
independent ntnanner beginning with physical interfaces up to
problem solving interfaces. In this view, we want to
successively build layers of resources imolemented on
previously dJdefined sublayers. For this reason it is natural
to expect that an 'implementation' must be determined by
relating one specification to another,

Afiternatively, we want to realize a soecification in
terms of resources for which we do not have specificatfions.
Ne <call such a realization an interoretation, An
interoretation s soecified oy associating to each sort a
description of the values that will realize the sort, and to

each operator, a function orocedure operating on the
aospropriate values. An interpretation is wvalid {if it
defines an algebra in the semantic class chosen for the
soecification, Thus an interpretation associates the

specification to a specific 'algebra', that is realized by a
set of function procedures and data types in a orogram.

To inplenent a specification A in terms of another
soecification B ought to mean that the sorts, ooserators, and
properties of A ought to be imnplementable from those of B,
Therefore we nake the following definition:

Given soecifications (S,E) -and (S',E'), an inolementation of
(S,E) on (S',E'), in the sense of initial semantics, is a
Poincare transformation H from the sfignature S to a derived
signature S'' of S' with the property that the homomorphism
induced from Term(S) to Term(S'') 1is <consistent with the
congruences Initial(S,E) on Term(S) and Initial(S',E') on
Term(S'')., Op equivalently, for t,t' in Tern(S),

if (¢,t') is in Initial(S,E)

then
(H(t),H(t')) is in Initial(S',E")

An implenentation H is faithful, in the sense of
fnitial semantics, if in fact it satisfies:

(t,t') is in Initial(S,E)

Page 23

if and only if
(H(t),HCt')) is in Initial(S',E"')
We clearly have similar definitions for implementations in
the sense of final semantics.

Theorem: There is an imolementation of (S,E) on (S',E') in
the sense of initial (final) semantics if and only if there
{s a homomorphism from the initial (final) algebra of (S,E)
ts a derived algebra of the 1initial (final) algebra of
(s',E').

Andr

Theorem: There is a faithful implementation of (S,E) on
(S',E') in the sense of initial (final) semantics if and
only if there is a monomorphism from the initial (final)
alagebra of (S,E) to a derived algebra of the initial (final)
algebra of (S',E'").

Though these theoretical results seem comforting, are there
any practical methods for deternining if a correspondence is
an imolementation or if such an implementation is faithful ?

If H is a correspondence from (S,E) to (S',E') that assfigns
to each sort s in S, a sort H(s) in S', and to each operator
f in S, a derived ooperator H(f) of S', then H is an
inolementation in the sense of initial semantics if and only
if for every axiom t = t' in E, the equation H(t) = H(t') is
orovably eaqual from E',

2.6
Parameterized Specifications

Certain kinds of resources are naturally parameterized.
For exanple, in the case of the string data type, strings of
integers, or strings of characters, or strings of bits all
require many of the same ooerations and share many of the
same oDroperties, yet in most cases must be defined
separately. Parameterized specifications are soecifications
used to specify resources that may be instantiated for a
number of di fferent resource parameters, but are not
uniquely associated to any of them, In this section, we
introduce the basic ideas with a minimum of discussion, For
details of some of the theoretical work in this area see
Enhrfch (19821,

Page 24

3.0
Parameteri2zed Specification Syntax,

The template for a varameterized specification has the
form:

SPECIFICATION <specificationetidentifier>

PARAMETERS
OPERANDS
<paraneterecoperandel ist>

OPERATORS
<paranetertoperator¢tlist>

AXIOMS
<paranetertaxiontlist>

OPERANDS
<operandelist>

OPERATORS
<operatortlist>

AXIOMS
<axiomelist>

The axioms for the body of the parameterized soecification
may include operand classes and operators of the parameter
part, in addition to the other operand classes and
ooerators., The axioms of the parameter part may include
only operand classes and operators of the oarameter part.
The parameter part describes the operand classes, operators,
and axioms that must be specified in any invocation of the
parameterized specification. The syntax of an fnvocation
is:

<parmespectident> (<spectident>)
NHERE
OPERANDS
<spectooerand> IS <parmespectoperand>

OPERATORS
<spectoperator> IS <parmespectoperator>

Thus in an invocation, a correspondence is established
between operands and operators of one specification (actual
parameters) and the operand and operators of the parameter
oart of the parameterized soecification. For semantics, the
soecification resulting from such an invocation is viewed as
an extension of the specification that supolies the actual

Page 25

parametersS., To be a valid invocatjon, the actual parameters
must satisfy the parameter axioms as a consejuence of the

axioms that they already satisfy. Also, to be a wvalid
invocation, the specification supplyiny the oarameters must
be persistent in the resulting soecification. In the
resulting soecification, as in an extension of a
specification, the semantics must be the sSame as in the
actua)l parameter subspecification, The significant point
from the oractica)l viewooint is that im this case, as well
as in the case of speicification extension, we need

oractical criteria for determining the persistence of a
subspecification,

4,0

Conclusions

Current practical aporoaches to functional
ssecification are not based on any rigorous foundation, or
developed in the context of any general theory. This fact

precludes the development of oortable logical interfaces, or
the sytematic specification of a hierarchy of logical
interfaces. The approach taken here attempts to resolve
some of these problems. It begins with a model close to
practice, the idea of an 'algebra', consisting of operators
and ooerands, and establishes a syntax and semantics for
soecificatfons. Transformations between soecifications at
the syntactical level are described by Poincare
transformations, a concept used for a long time in logic to
describe the same process of establishing a <correspondence
between the names of the entities of one formal theory with
those of another. The semantics are established through
interoretations of the syntactical elements as elements of
certain algenras, depending on the semantics chosen.
Relatjons oetween the semantics of two specifications are
established by homomorphisms between their respective
fnteroretations. Every i{mportant concept associated to
soecifications can now be given rigorous definitions.,

At the practical level, concrete resources, either in
software or hardware, are viewed as defining concCrete
algebras that may serve to interporet a specification
faithfully, Whether this assumption is reasonable remains
to be seen. This is the most obvious aquestion open to
further research. Moreover, it seems apparent that much of
the theorem proving technology develooed in recent years may
find an aoplication to the analysis of soecifications. In
any case, this aoproach has served to form a rigorous
foundation for a theory of specification, and to expose some
of the difficuylt issues that must be addressed by any
aspproach.

Page 26

5.0
4 Sample Abstract Machine

To illustrate the oractical potential of this
soecification technique, a soecification of an abstract
processor is included below. The first opart defines the
data types required to define memory, values, and states.
The later part defines the operations and instructions of
the orocessor, The basic idea for such a machine can be
found in Fasel1{19801].

The specifications below combine to specify a sample
abstract machine. Metasymnbols describing the form of the
specification are capitalized.

CONVENTION
A binary oo X: Elem, Elam => Elem is
COMMUTATIVE
if X({x,y) = X(y,x)
ASSOCIATIVE

if X(XC(x,y),2) = X{x,X(y,2))

SPEC Boolean

SORTS

Bool
oPS

True: => Bool

False: => Bool

Not: Bool => Bool

And: BoolrBool => Bool
AXIOMS

Not(True) = False
Not (Not(x)) x
And(True,x) x
And(False,x) = False
And is COMMUTATIVE
And is ASSOCIATIVE

SPEC Natural

SORTS
Nat
0PS
0: => Nat
Next: Nat => Nat

SPEC Integer
EXTEND Boolean,
Natural

WITH

SORTS

OPS

NOTATION

AXT10MS

END
SPEC Character
SORTS

0OPS

END
SPEC Identifier

EXTEND

SORTS

0PS

Int

0: => Int

Next: Int =-> Int
Neg: Int => Int

Add: Int,Int => Int
Sub: Int,Int =-> Int
Lte: Int,Int => Bool
Abs: Int => Nat

-x is Neg(x)

xty is Add(x,y)
x=y is Subl(x,y)
x<=y is Lte(x,vy)

Add is COMMUTATIVE, ASSOCIATIVE
Add(x,0) = x

Add(x,Next(y)) = Next(Add(x,y))
Neg(0) = 0 .

Next (Neg(Next(x))) = Neg(x)
Add(x,Neg{x)) = 0

Sub(x,y) = Add(x,Neg(y))
Lte(x,x) True

Lte(x,y) => Lte(Next(x),y)
Lte(x,y) Lte(Sub(x,v).O)

Char

A: => Char
a: => Char
B: => Char
b: => Char .

Boolean WITH

Id

Register: => Id
Main: => Id

Disk: => Id
Disolay: => Id
Eqid: Id,Id => Bool

Page 27

AXIOMS

EqQqid(x,x) = True

END

SPEC String
PARAMETER

SORTS
Elem
EXTEND
Natural
WITH
SORTS
Str
OPS
Null:
Make:
Cat:
Len:
Head:
Tail:

-> Str
Elem => Str
Str => Nat
Str => Elem
Str => Str
AXI0OMS

Len(Null) =
Len(Make(a)) =
Head(Make(a)) = a
Tail(Null) = Null
Tail(Make(a)) =
Cat is ASSOCIATIVE
Cat(s,Null) =
Cat(s,Null) = s
Head(Cat (Make(a),s)
Tail(Cat(Make(a),s)
Len(Cat (Make(a),s))
Len(Cat(s,Make(3))

END
SPEC Bitstring
String(Boolean)
WHERE
Elem IS Bool
END
SPEC Chrstring

String(Character)

WHERE
Elem IS Char

Str,Str => Str

Natzero,
Next (Natzero)

Null

Page 28

Cat(Null,s)

a
s
Next(Len(s))

Next{(Len(s))

END

SPEC Data¢values

EXTEND

WITH
SORTS

oPS

AXIOMS

SPEC Addresses

EXTEND

WITH
SORTS

Boolean
Natural
Integer
Character
Bitstring
Chestring

Val

Errval: => Val

Val
val

«> Bool
> Nat
=> Int
> Chre
Val => Bitstr
Val => Chrstr

Vale¢toebool:
Valetoenat:
Valetoeint: Val
Valetoechr: Val
Valetoebitstr:
Valettoechrstr:
Booletoetval: Boosl => Val
Natetotval: Nat => Val
Intetoeval: Int => Val
Charval: Char => Val
Bitstretoeval:
Chrstretoevals

FOR X =
ValetoeX(Xetoeval(x))

Xetoeval (ValetoeX(v))

FOR X,Y
X t= Y,

= Bool,Nat,Int,Char,Bi

Xttoeval(ValetoeY(v))

Identifier,
Boolean

Addr

Page 29

ditstring => Val
Cherstring => Val

Bool,Nat,Int,Char,Bitstr,Chrstr

X

v

tstr,Cherstr

Errval

0PS

AXIOMS

SPEC Operators
EXTEND

WITH
SORTS

0PS

AXIOMS

Page 30

Startaddr: Id => Addr
Nextaddr: Adder => Addr
Equaladdr: Addr, Addr => Bool

Fqualaddr i8S an EQUIVALENCE
Equatladdr(Startaddr(x), Startaddr(y)) = Equalid(x,y)
Equaladdr(Nextaddr(x), Nextaddr(y)) = Equaladdr(x,y)

Dataevalues

Monoo,
Binoo:
Rel oo

Boolnot: => Monop
Booland: => Binoo

v

Natadd: => Binoo
Intadd: => Binoo
Chrstrcat: => Binopo
Bitstrcat: => Binopo
Intgt: => Relood

Applymonoos Manop,Val => Val
Applybinop?: Binoo,Val,Val => Val
Applyrelop: Reloso,Val,Val => Val

Applymonopr(Boolnot,v) =

Boolval (Not(Valetoebool (v)))
Apoplybinoo(Booland,vi,v2) =

Boolval (And(Valetoebool (vi),Valetorbool(v2)))

ese EtC.

SPEC Instructions

EXTEND

WITH

Operators

SORTS

0PS

SPEC values

EXTEND

WITH
OPS

AXIOMS

Page

Inste

Monad: MonopsAddr,Addr => Inste
Binad: BinoorAddr,Addr,Addr => Instr
Mov: Addrs,Addr => Inste

Movis: Adde, Val => Instr

Jmp: Adder => Instr

1f: Relop,Addr,Addr,Addr => Instr
Push: Addr, Stk => Instr

Pop: Addr, Stk => Instr

Call: Addr, Stk => Instr

Ret: Stk => Inste

Halt: => Instre

Data¢tvalues,
Instructions

Instretoeval: Instr => Val
Valetorinstr: Val => Instr

Valrtortinstr(Instretorval ({))
Instretoeval (Valetoeinstr(v))

i

v

FOR X = Bool,Nat,Int,Chr,Bitstr,Chrstr

Instretoeval (ValetoexX(v)) = Errval

SPEC Machinestate

EXTEND
WITH
SORTS

0PS

AXTIOMS

SPEC Machine

EXTEND

Values,
Instructions

State
Inftialstate: => State

Store: Val,Adder,State => State
Fetch: Addr, State => Val

Fetch(a,Initialstate) = Errval
Fetch(a,Store(v,a,8)) = v
Store(Fetch(ars),a,s) = s

Machinestate

31

WITH
OPS

AXTI0MS

Page 32

Program: Addr,State => State
Execute: Instrs,Addr,State => State

Program(a,s) =
Execute(Valetorinstr(Fetch(ars))rars)
Execute(Mov(al,al2),ars) =
Program(Next(a),Store((Fetch(al,s),a2,s))
Execute(Movi(al,v),a,s) =
Program(Next(a),Store(v,al,s))
Execute(Jmp(al),a,s) =
Program(al,s)
Execute(If(r,al,a2,b)sa,s) = Program((Cond(Valetotbool
(Apoiyreloo(r,Fetch(al,s),Fetch(a2,s))),b,Next(a)),s)
Execute(Halt,a,s) = s
Execute (Monad(m,al,a2),a,s)) = Program(Next(a),
Store(Apolymonoo(m,Fetch(al,s)),ad,s))
Execute(Binad(b,al,a2,a3),a,8) = Program(Next(a),
Store(Applyoinoo(b,Fetch(al,s),Fetch(ad,s)),a3,s))

Page 33

Acknowl edgements

This research was supported at the Naval Postgraduate School
under the Foundation Research Program.

Page 34

References,

A, Bergstra and J.V. Tucker, A natural data type with a
finite equatijonal finmal semnantics soecification but no

effective ejuational initial semnantics soecification. Bull
EATCS, 11! (1980), oo. ¢23=33.

A.Bergstra angd J.V. Tucker, Initial and Final Algebra
Semantics for Data Tyoe Specifications: Two
Characterization Theorems. STAM J, Comput. Vol. 12,
Nno.2, May 1983,

Bundy, Alan, "The Comouter Modelling of Mathematical
Reasoninqgq", Academic Press, New York, 1983,

Ehrichy H.D,, 0n the Theory of Soecification,
Inplenentation, and Parametrization of Abstract Data Tyoes,
J.Of ACW. 29’ NO'I’ Jan.,l‘?ﬁa.

Fasel, Joseph, "Programming Langjuages as Abstract Data Types
- Definition and Imolementation ", Ph.D. Thesis, Purdue

University August, 1980.

Gratzer.G., Universal Algebra, D.Van Nostrand, New York,
1968,

J.A. Goguen, J.W. Thatcher,E.G. Wagner and J.B. Wriaght,

An initial algebra aporoach to the soecification,
correctnesss and imnplementation of abstract data typese.
Current Trends in Programning Methodoloay IV, Data

Structurings R.T.Yeh,ed.,Prentice~Hall, Englewood Cliffs
NJ,1978,p0.80=-149,

Guttag, J.Ve., Horowitz, E.,and Musser, D.R,, "Abstract Data
Types and Software Validation"™, pp. 1048=-64, Comm. ACM,,
V.21, No.12, Dec., 1978,

Hoffman,C.M., O'Donnell,v.J.,"Programming with Equations”",
p5.,83-112, ACM Trans, on Proq. Lang., Vol.4, No.l,
January,1982

»~

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93943

Chariman, Code 52ML

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Associate Professor Daniel L. Davis, Code 52Vv
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

60731

» o

